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The existence of layers in the traditional network architecture facilitates the

network design by modularizing it and thus enabling isolated design of the difierent

layers. However, due to the inherent coupling and interactions between these layers,

their isolated design often leads to suboptimal performance. On the other hand, the

recent popularity of realtime multimedia applications has pushed the boundaries of

layered designs. Cross-layer network design provides opportunities for signiflcant

performance improvement by selectively exploiting the interactions between layers,

and therefore has attracted a lot of attention in recent years.

Realtime multimedia applications are characterized by their delay-sensitivity

and distortion-tolerance. The focus of this thesis is on Source Coding for Delay-

Sensitive Distortion-Tolerant data. In particular, we notice that even though using

longer descriptions for source symbols results in smaller distortion for each particular

symbol, it also increases the delay experienced in the network, which in turn causes

information loss for a delay-sensitive source, and therefore, increases the overall



distortion of the received message. In this thesis we investigate this trade-ofi across

the layers by considering two difierent problems.

In the flrst problem, we focus on a single source-destination pair to exploit the

interconnection between Source Coding, traditionally a presentation layer compo-

nent, and Parallel Routing, a network layer issue. We use a Distortion Measure that

combines signal reconstruction fldelity with network delay. We minimize this mea-

sure by jointly choosing the Encoder Parameters and the Routing Parameters. We

look at both single-description and multiple-description codings and perform numer-

ical optimizations that provide insight into design tradeofis which can be exploited

in more complex settings.

We then investigate the problem of flnding minimum-distortion policies for

streaming delay-sensitive distortion-tolerant data. We use a cross-layer design which

exploits the coupling between the presentation layer and the transport and link

layers. We flnd an optimum transmission policy for error-free channels, which is

independent of the particular form of the distortion function when it is convex and

decreasing. For a packet-erasure channel, we flnd computationally e–cient heuristic

policies which have near optimal performance.
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Chapter 1

Introduction

The recent increase of the popularity of rich multimedia realtime and peer-to-

peer applications, as well as the ever more popular use of the wireless medium, have

given rise to the need for rethinking the traditional layered designs of Communica-

tion Networks.

The traditional layered network architecture has facilitated the design of the

networks by enabling isolated design of difierent layers. However, it is recognized

that the inherent coupling and dependence among the layers of traditional architec-

tures provides opportunities for signiflcant performance improvement by exploiting

these interactions selectively.

Cross-layer network design has attracted a lot of attention in recent years for

difierent kinds of communication networks [1,2], and especially for wireless networks

due to the unique challenges associated with the use of the wireless medium [3].

Signiflcant improvements can be achieved by sharing information about the varying

wireless channel conditions across the layers [4{6]. Energy concerns, specially in

wireless ad hoc networks [7,8], have given rise to interesting cross-layer optimization

problems [5, 9{11].

The growing demand for real-time multimedia applications such as Voice over

IP, multimedia teleconferencing, and gaming have introduced yet another challenge
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for the network designers which can be very efiectively addressed through cross-layer

optimization [6, 12].

This thesis is concerned with cross-layer optimization of Source-Coding for

Delay-Sensitive applications. In particular, we focus on the distortion-delay tradeofi

which arises when dealing with delay-sensitive distortion-tolerant data, such as real-

time multimedia applications.

For such applications, any delay incurred by packets transiting the network

could decrease the perceived quality at the receiver. The delay budget that each

packet can afiord is determined by the application. For example for Voice over

IP (VoIP), a network delay of more than flfty milliseconds creates unacceptable

quality or equivalently high distortion. In this thesis, we focus on applications

with hard delay-constraints, for which, source symbol descriptions arriving after

their corresponding deadlines are discarded and therefore result in maximum quality

degradation when the signal is reconstructed.

A distortion function is a mathematical performance measure that indicates

the amount of degradation in the quality of the decoded information. While encod-

ing the source symbols into longer descriptions results in smaller distortion when

the source symbols are reconstructed, it also causes longer delays due to capacity

limitations of the channels utilized in the network. Due to the hard delay-constraint

on each source symbol, long delays can result in loss of information, which in turn

increases the overall distortion of the reconstructed message. The focus of this thesis

is precisely on this tradeofi and the beneflts that can be gained by exploiting the

interconnection between the layers of traditional architecture when dealing with this
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tradeofi.

In particular, we note that when dealing with applications with hard delay

constraints, the traditionally popular average delay performance metrics can often

be misleading. Instead, performance metrics should re°ect the dynamics of the delay

experienced by each individual data unit traveling through the network. Therefore,

we deflne a distortion measure that takes into account both the distortion incurred

due to lossy source encoding, as well as the degradation caused when descriptions

are received after their deadline.

Two difierent problems are considered in this thesis. In Chapter 2, we consider

the problem of flnding the best coding and routing strategies when there are two

parallel routes available between a delay-sensitive source and its destination. This

leads to a joint optimization problem which exploits the inherent coupling between

the presentation layer and the network layer. Then in Chapter 3, we focus on the

problem of flnding the best transmission policy for sending a given number of delay

sensitive source symbols to a destination. This is sometimes referred to as streaming

and flnds its use in applications such as video-on-demand, where a user views a

content as it is being downloaded. In such applications, users often prefer a certain

amount of degradation in the image quality to a large number of pauses in the stream

of video they are viewing. Our goal here is to flnd a balance between the signal’s

quality and delay, by simultaneously optimizing the source coding parameters as

well as the scheduling of the transmissions, while taking both distortion and delay

into consideration. A more thorough introductory section to each of these problems

is presented at the beginning of their corresponding chapter.
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Chapter 2

Source Coding and Parallel Routing

2.1 Introduction

In this chapter we demonstrate the advantages of using cross-layer approaches

by focusing on the interaction between Source Coding (traditionally a layer 6 issue

with physical layer connections) and Routing (a layer 3 issue). In particular we

observe that in networks, often, packets are duplicated and routed over separate

paths to their common destination to increase the chance of timely delivery and

to provide protection against packet loss and long delays. This practice is called

parallel routing and obviously results in increasing the ofiered load to the network.

At the same time we know that compression techniques can reduce packet-

length. So a natural question is how to choose the source encoding parameters

in conjunction with the routing parameters so as to minimize a suitable distortion

measure that incorporates both the quality of the signal reconstruction as well as

its delay.

In particular if multiple description coding is used the possibility arises nat-

urally that each description follows a difierent path to the destination, thereby

combining the idea of protection through redundancy with the need to reduce the

tra–c load.

Finally choosing the packet-length itself (or, more accurately, the source en-
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coding rate or \symbol"-length) along with designing the multiple description coding

and choosing the routing parameters goes even further in exploiting the observed

interrelationships.

In this chapter we study precisely this problem in the simplest of settings

and identify and analyze the underlying trade-ofis. More complicated and realistic

models can be naturally studied along similar lines in the future.

Communication Network

..
..EncoderSource Decoder Destination

Path k

Path 2

Path 1

Figure 2.1: System Diagram

Consider the simple diagram shown in Figure 2.1 that consists of a source-

destination pair, a source encoding-decoding module and a communication net-

work that delivers packets from the source to the destination. The source is delay-

sensitive, i.e., the source symbols that arrive after their corresponding deadlines will

be useless at the receiver.

Normally, each source symbol is compressed and appropriately transformed to

a single codeword by the encoder before entering the network. This coding scheme

is referred to as Single Description Coding (SDC). The coded symbols (i.e., packets)

usually follow a single path determined by the network to reach to the destination.

A path usually consists of several segments or communication links that connect

nodes in a network. Since each node could experience congestion, there is a chance
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that a particular packet will be excessively delayed or even be dropped from the

transmission queue.

As mentioned before, parallel transmission reduces the chance of packet loss

when congestion occurs in a network; however, the excess bit rate introduced by the

extra copies creates additional tra–c that in efiect contributes to congestion and

thus increases the probability of packet loss.

A Multiple Description Coder (MDC), [13] and [14], also transforms the se-

quence of source symbols into several parallel data streams; however, no excess bit

rate over a single description coder is used. Therefore, the source tra–c can poten-

tially adjust itself to the state of the network without being a contributing factor to

congestion [15].

Achievable rate-distortion region for a Double Description Coder (DDC) and

a Gaussian source has been studied in [16], [17]. In [15], it is shown that for a simple

network that consists of two parallel communication links, using an optimized DDC

amounts to signiflcant reduction in distortion compared to SDC. The distortion is

minimized in [15] by optimization of some of the coding parameters. In [18] and [19]

further gain is achieved, in SDC and DDC systems respectively, by considering the

network parameters in the optimization process. However, in all these works, the

expected packet-length is flxed. As a result, for high arrival rates the optimum

solution is to use one of the links as a dump for the excess tra–c and operate it

fully congested in order to save the other link from being congested, and therefore,

a fraction of the capacity of the network is wasted. In the work presented in this

chapter, we add the average packet-length to our optimization parameters, which
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results in signiflcant performance improvement. We also extend our analysis to the

case where queue length is flnite.

This chapter is organized as follows. In Section 2.2 general system model and

assumptions are explained. The modeling and formulations speciflc to the SDC and

DDC systems are explained in Section 2.3 in detail. The results are presented in

Section 2.4. Some of these results were flrst reported in [20]1and [21].

2.2 General Modeling and Assumptions

Link #1

Link #2

Other Sources

Source
Encoding

Module

Switching

Module

Decoding

Module
Destination

Figure 2.2: General System Model

To better focus on the interrelationships of the source coding and routing para-

meters, we consider the simple setting shown in Figure 2.2 along with the following

simplifying assumptions. Note that these assumptions are similar to those taken

in [18] and [19], and so the results are comparable.

1. The source generates i.i.d., zero mean, unit variance, Gaussian symbols.

2. The source is loss-tolerant and delay-sensitive (the source symbols can tolerate

a delay of up to ¢ seconds from generation to reception.)

3. Two classes of coding schemes, i.e., SDC (Single Description Coding) and

DDC (Double Description Coding) are considered. In the case of SDC each

1The parts presented in [20] in which the optimization is done with flxed expected packet
length were mostly carried out by the coauthors of the author of this thesis, and therefore, are not
presented here except in some of the flgures for comparison.
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source symbol is encoded into a single description (packet) with an expected

length of R bits. In the DDC case however, each symbol is encoded into two

packets of average lengths R1 and R2 bits.

4. Two cases are studied for the packet-length distribution:

(a) Exponential packet-length

(b) Deterministic packet-length

5. The output of the encoding module is combined with the tra–c coming from

other similar (i.e., with the same packet-length distribution) independent sources.

These tra–c streams are coming from difierent paths in the network. Accord-

ing to the Palm-Khintchin theorem [22] this type of aggregate tra–c converges

to a Poisson point process. We therefore assume that the arrival process of

the aggregate tra–c is a Poisson process.

6. The model includes two disjoint, noise-free communication links with capaci-

ties Ci, i = 1; 2 bits/second.

7. The switching module routes each packet of the aggregate tra–c to one of the

two links.

8. Each communication link is modeled by a First Come First Serve (FCFS) single

server queue. The time that every packet spends in service at the queues is

assumed to be proportional to the length of that packet.

8



9. The decoding module drops the packets that have experienced a delay exceed-

ing ¢ seconds.

Details regarding the operation of the system with SDC and DDC are consid-

ered in the next section.

2.3 Problem Formulation

In this section we summarize the SDC and DDC systems and derive the for-

mulations required for analyzing these systems.

2.3.1 System with Single Description Coding (SDC)

Source Encoder Decoder Destination

Queue #1

Queue #2

+

Other Sources

= qq
1

=1-qq
2

λ

Figure 2.3: SDC System Model

In the SDC system each source symbol is encoded into a single packet with

an average rate of R bits/symbol (in the deterministic case all symbols are encoded

into packets of R bits). The packets generated by the encoder are combined with

the tra–c coming from other similar and independent sources in the network. The

aggregate tra–c forms a Poisson process with rate ‚ packets/sec. This tra–c is

routed to the flrst queue with probability q1 = q and to the second queue with
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probability q2 = 1 ¡ q. In other words ‚i, the arrival rate to the ith queue, is

‚i = qi‚

We refer to q as the switch parameter hereafter. Figure 2.3 represents the SDC

system model.

2.3.1.1 SDC Distortion

Let T be the random variable indicating the total delay that a packet ex-

periences from generation until reaching its destination (hereafter referred to as

end-to-end delay). If D represents the achievable mean square error (MSE) distor-

tion for an i.i.d., zero mean, unit variance, Gaussian source, based on [23] and on

our concept of delay-based distortion, we have [15]:

D =

8
>><
>>:

2¡2R ; T • ¢

1 ; T > ¢

The end-to-end average distortion, therefore, can be written as

D = 2¡2R Pr[T • ¢] + Pr[T > ¢] (2.1)

The goal here is to minimize the average end-to-end distortion by choosing optimal

values for R and q. To calculate the overall distortion, we need to know the delay

distribution. The delay a packet experiences in the queue depends on the service
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time of the queue, which in turn depends on the packet-length. Denote the average

service rate of the ith queue by „i. Then we can write

„i =
Ci

R
(packets/sec); i = 1; 2

Three difierent cases are studied here

1. Inflnite-bufier, exponential packet-length modelled by an M/M/1 queue

2. Inflnite-bufier, deterministic packet-length modelled by an M/D/1 queue

3. Finite bufier, deterministic packet-length modelled by an M/D/1/k queue

It should be noted that since we are dealing with the rate distortion func-

tion, the most practical choice for the packet-length distributions would be one that

complies with the codewords of the encoders that can achieve the rate-distortion

function. To approach the rate-distortion limits, one needs to employ a vector

quantizer with a su–ciently large block length (encode n symbols at a time). If n

is large enough, the block lengths will approach a constant in the limit according to

the Asymptotic Equipartition Property (AEP). This suggests that the more realistic

choice for the packet-length distribution is the deterministic constant packet-length.

However, for some of the problems we consider, the exponential packet-length dis-

tribution greatly simplifles the numerical analysis of the problems. Because of this,

and in order for our results to be comparable to those in [18] and [19], where packet-

lengths have exponential distribution, in most of the problems we consider, we

assume the packet-lengths to have an exponential distribution.
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Note that in the flnite-bufier case, the deterministic packet-length assump-

tion results in simpler calculations compared to the exponential case. Since the

deterministic case is more realistic to deal with, and also, there are no previous

exponential packet-length flnite-bufier results to compare these results with, only

the deterministic assumption was considered in that case.

It should flnally be noted that large block lengths will result in long delays.

Since delay is a crucial component of the distortion function we will choose, we need

to implicitly assume that the transmission rates are su–ciently fast so that \long"

packets in number of bits are not \long" with respect to time.

2.3.1.2 M/M/1 Delay Distribution

The distribution of the system delay for an M=M=1 queue is known [24] to be

given by

FTi
(t) = Pr [Ti • t] =

¡
1 ¡ e¡„i(1¡‰i)t

¢
u(t); i = 1; 2

where Ti, i = 1; 2 is the random variable indicating the total delay of a typical

packet that is routed to queue i, u(t) is the unit step function, and ‰i is the loading

factor of queue i given by

‰i = min

µ
qi‚

„i

; 1

¶
; i = 1; 2
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Therefore, the total delay of a typical packet is given by

Pr[T > ¢] =
2X

i=1

qi(1 ¡ FTi
(¢)) =

2X
i=1

qie
¡„i(1¡‰i)¢ u(¢) (2.2)

2.3.1.3 M/D/1/K Delay Distribution

In this case the length of the packets, R, is taken to be a deterministic constant.

Let the parameter B represent the number of bits that flt in the system ,i.e., queue

and service together (hereafter referred to as \bufier size"), and let C indicate the

capacity of the link. Deflne the maximum bufier size, B̂ as

B̂ = ¢ £ C

If after the arrival of a given packet, there are no more than B̂ bits in the system,

that packet will reach its destination before the deadline. Therefore, there is no

point in having a bufier size that is greater than B̂ bits2, and so we choose B • B̂

in our analysis.

The probability of blocking, i.e., the probability that a packet arrives when the

bufier is full, for an M/G/1/K queue is known in the queueing literature (see [25] for

example). Replacing the general service distribution in the M/G/1/K model of [25]

with a deterministic constant service time, results in the following derivations for

2Note that when B̂ is not an integer multiple of R, when there are b B̂
R

c packets in the system,
a new arrival could make it in time if the packet that is already in service has spent more than
1
„

¡ (¢ ¡ b B̂
R

c 1
„

) in service. But in order to be able to admit such packets to the queue, we need
to increase the bufier size by R bits, which is not known a priori and can be anywhere between 1
bit and B̂ bits. We will discuss this issue further in the inflnite-bufier case.
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the M/D/1/K queue of our problem.

Let the parameter K denote the number of packets that flt in the bufier, in

other words

K =

„
B

R

”

The service rate „ is a deterministic constant in this case, and „ = C=R pack-

ets/second. Let Ln indicate the number of packets left in the bufier right after the

nth departure. Deflne …k as the steady state probability that after a departure, k

packets remain in the system, i.e.,

…k = lim
n!1

Pr[Ln = k]; 0 • k • K ¡ 1

and deflne

…0
k = …k=…0

Then …0
k can be calculated recursively as follows

…0
0 = 1

…0
k+1 =

1

a0

(…0
k ¡

kX
j=1

…0
jak¡j+1 ¡ ak); 0 • k • K ¡ 2

where

ak =
(‚=„)k

k!
e¡‚=„; 0 • k • K ¡ 2

14



Therefore

…0 = (
K¡1X

k=0

…0
k)¡1

…k = …0…0
k; 0 • k • K ¡ 1

Now deflne

Pk = Pr[ k messages in the system at an arbitrary time ]

„…k = Pr[ an arrival flnds k messages in the system ]

Using the PASTA property (Poisson Arrivals See Time Average), Pk = „…k .

Since for every departure, there is an arrival and for every arrival there is a departure

unless that arrival is blocked, we have

„…k = (1 ¡ Pblock)| {z }
c

…k ) Pk = c…k; 0 • k • K ¡ 1

where Pblock = PK is the blocking probability. Given that
PK

k=0 Pk = 1 and that

P0 = 1 ¡ c‰, we get

c =
1

…0 + ‰

where ‰ = ‚=„. So we flnally have

8
>><
>>:

Pk =
…k

…0 + ‰
; 0 • k • K ¡ 1

PK = 1 ¡ 1

…0 + ‰

15



Since the only packets that will not make it to the destination on time are those

that have been blocked, we have

Pr[T > ¢] = Pblock = PK

Note that the above derivations do not hold for the case where K = 0, in which

case the solution is trivial and is PK = 1 = P0 = Pblock.

2.3.1.4 M/D/1 Delay Distribution

The delay distribution for an M/D/1 queue is well known [26]. However,

since we are going to use numerical methods to evaluate the delay probability, we

choose to use a modiflcation of the M/D/1/K formulas, because they have a better

numerical behavior and moreover this enables us to easily compare the M/D/1/K

and M/D/1 case.

It can be seen in the M/D/1/K derivations that …0
k ; k = 0; 1; ¢ ¢ ¢ ; K ¡ 1 are

independent of the value of K. On the other hand …k = …0…0
k, so the only component

that is directly dependent on the value of K is …0. Note that

P0 =
…0

…0 + ‰

Therefore

…0 =
P0‰

1 ¡ P0

On the other hand we know that for an inflnite K, we will have an M/D/1 queue

16



in which case P0 = 1 ¡ ‰. Replacing P0 in the above equation we have

…0 = 1 ¡ ‰

Therefore the M/D/1/K derivations can be used with the initial condition …0 = 1¡‰

to calculate the steady state probabilities of an M/D/1 queue. The delay probability

can be calculated as follows

Pr[T > ¢] = 1 ¡ (
K̂¡1X

k=0

Pk + PK̂e¡((K̂+1)=„¡¢)‚) (2.3)

where K̂ =
j

B̂
R

k
. The last term takes care of the cases where ¢ is not an integer

multiple of 1=„ (Figure 2.4). In this case, if an arrival occurs at the moment when

K̂ packets are in the queue but the packet currently being serviced has spent more

than K̂+1
„

¡ ¢ seconds in service, the new arrival will be able to make it to the

destination before its deadline.

Figure 2.4: M/D/1 Delay: When ¢ is not an integer multiple of the service time,
it is possible that the (K̂ + 1)st packet accepted to the queue meets the deadline
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2.3.2 Systems with Double Description Coding (DDC)

Encoder 1

R
1

Other Sources

Queue #1

Queue #2

Joint
Decoder

Destination

Encoder 2

R
2

Other Sources

Decoder 1

Decoder 2

1

2

1
C

2
C

Source

Figure 2.5: DDC System Model

In the DDC system, the source information is encoded by two side-encoders

as shown in Figure 2.5. The codeword length generated by encoder i has an average

length of Ri; i = 1; 2 bits per packet, with R = R1 + R2. The tra–c from other

similar (in packet-length distribution), independent sources is combined with the

output tra–c of each encoder. The arrival process of the aggregate tra–c corre-

sponding to encoder i is assumed to be a Poisson process with an average rate of

‚i = ‚; i = 1; 2 packets/sec. In this system, the output of encoder i is routed to

queue i. Note that the two side encoders generate the two descriptions of a symbol

simultaneously. However, since two independent large tra–c streams from \other

sources" are combined with the outputs of the two encoders, we can assume that

the arrival processes to the two queues are independent from one another. This

means that the tra–c streams entering the two queues are two independent Poisson

processes.
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2.3.2.1 DDC Distortion

Let T i (i = 1; 2) be the total delay experienced by the output packets of

encoder i. Since the outputs of encoder i is routed to queue i, we have T i = Ti,

where Ti is the delay experienced in queue i. We use Ti hereafter in order to be

consistent with the notation used in the SDC case. If DDDC represents the achieved

MSE distortion, then for an i.i.d., zero mean, unit variance, Gaussian source, based

on [16] and on our concept of delay-based distortion, we have

DDDC =

8
>>>>>>>>>><
>>>>>>>>>>:

d0 = 2¡2(R1+R2) 1
1¡[max(0;(

p
ƒ¡p

⁄))]2
if T1 • ¢ & T2 • ¢

d1 = 2¡2R1(1¡–1) if T1 • ¢ & T2 > ¢

d2 = 2¡2R2(1¡–2) if T1 > ¢ & T2 • ¢

1 if T1 > ¢ & T2 > ¢

(2.4)

where

0 • –1; –2 < 1

ƒ = (1 ¡ d1)(1 ¡ d2) & ⁄ = d1d2 ¡ 2¡2(R1+R2)

The end-to-end average distortion therefore can be written as

DDDC = d0 Pr [ T1 • ¢; T2 • ¢ ] + d1 Pr [ T1 • ¢; T2 > ¢ ] + (2.5)

d2 Pr [ T1 > ¢; T2 • ¢ ] + Pr [ T1 > ¢; T2 > ¢ ]

Our goal here is to minimize the average distortion over all parameters it depends
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on, i.e., R1, R2, –1, and –2.

Note that in (2.4), –i signifles the amount of redundancy in side-encoder i. Low

values of –i (i.e., –i … 0) indicate good individual descriptions that jointly contribute

little extra information beyond one alone. On the other hand, high values of –i (i.e.,

–i … 1) indicate independent descriptions that are not individually good; however,

jointly they can achieve the same amount of distortion as in the case of an SDC

encoder of rate R = R1 + R2. This is because according to (2.4), in order to get a

perfect joint reconstruction (i.e. d0 = 2¡2(R1+R2)), we need to have

ƒ = ⁄

or equivalently

(1 ¡ d1)(1 ¡ d2) = d1d2 ¡ 2¡2(R1+R2)

so

d1 + d2 = 1 + 2¡2(R1+R2) = (1 ¡ 2¡2R1)(1 ¡ 2¡2R2)| {z }
> 0

+2¡2R1 + 2¡2R2

therefore

d1 + d2 > 2¡2R1 + 2¡2R2

This means that in order to minimize the value of d0 we need to let the side encoders

operate inside the rate-distortion region and therefore we need to have –i > 0.

To facilitate the understanding of the parameter –i, in Figure 2.6 we illustrate

an example in which an image, shown by the large dashed outer rectangle, is encoded

into two descriptions of lengths R1 (hatched rectangle) and R2 (gray fllled rectangle)
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for two difierent cases of large and small –i. We see in this example that when the

joint description is good (Figure 2.6(a)), the individual descriptions are not very

good since they contain information about half of the image. If the individual

descriptions are good (Figure 2.6(b)), they carry \similar" information about the

entire image, and therefore combining the two descriptions will not signiflcantly

improve the distortion.

(a) Large –i: di À 2¡2Ri , d0 ¿ min(d1; d2) (b) Small –i: di … 2¡2Ri , d0 … min(d1; d2)

Figure 2.6: Understanding –i, the redundancy of encoder i.

2.3.2.2 DDC Delay

Since the two queues are independent, we have

Pr[ T1 > ¢; T2 > ¢ ] = Pr[ T1 > ¢ ] Pr[ T2 > ¢ ]

The delay probabilities therefore can be calculated using the derivations in the

SDC case, by replacing Ti in SDC with Ti of DDC. Note that here „i and ‰i are
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given by

„i =
Ci

Ri

‰i =
‚i

„i

2.4 Results

As it was mentioned earlier, the goal here is to minimize the average end-

to-end distortion over the parameters it is dependent upon. In [15], [18], and [19]

the expected packet-length (encoding rate) R was flxed. In this work, we consider

the encoding rate R as one of the optimization parameters. From the coding point

of view, R determines the average codeword length; therefore, higher R results in

smaller value of distortion at the decoder. On the other hand, R is the average

packet-length which means that higher R results in longer packets or equivalently

longer delays; and therefore, higher distortion for a delay sensitive source. This

tradeofi points to the possibility of the existence of an optimal R that minimizes

the average end-to-end distortion for such delay sensitive sources.

In this section the results for the SDC and DDC systems for the three difierent

cases of M/M/1, M/D/1, and M/D/1/K queues are presented and compared to the

previous works. At the end of this section, the SDC and DDC systems are compared

to each other and it is shown how using multiple description coding can lead to a

better use of the path diversity. Throughout the section we take ¢ = 50 msec.

It should be noted that, in all the cases, the optimization of the distortion was

performed numerically by exhaustive search over the range of all parameter values.
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2.4.1 SDC Results

The problem of SDC with parallel routing has been previously studied in [18]

for a system with two parallel inflnite bufier-length queues and an SDC encoder

with an exponential packet-length distribution with a flxed average length of R = 6

bits/packet. The optimization is performed over the switch parameter, q, i.e.,

q⁄ = Argmin
q

D(q; R = 6)

Here we consider the exact same model, but we add the average rate R to our

optimization parameters. In other words, we have

(q⁄; R⁄) = Argmin
(q;R)

D(q; R)

We consider both cases of deterministic and exponential packet-length distrib-

utions. In the case of exponential packet-length distribution, we compare our results

to those obtained in [18].

2.4.1.1 Deterministic Packet Length

Here we consider the SDC system when the encoder generates packets of a de-

terministic constant length. We compare the case where the queue length (or bufier

size) is inflnite to several difierent cases where queue lengths are flnite. Figures 2.7

and 2.8 show the minimum distortion and the optimum packet-length respectively

in this case for difierent bufier sizes. The optimum switch parameter is q⁄ = 0:5 for
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all values of the arrival rate ‚.
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Figure 2.7: Average End-to-End Distortion for SDC with deterministic packet-
length, C1 = C2 = C = 1000 bits/sec

As it can be seen in Figure 2.7, in the flnite-bufier cases, as the bufier size

increases, the distortion decreases, however the amount by which the distortion

decreases becomes less signiflcant as the bufier-length gets closer to B̂ = ¢£C = 50

bits.

Comparing the curve for B = 50 and B = 1, it can be seen that for fast

arrivals the flnite bufier outperforms the inflnite bufier. This is due to the fact

that as we get closer to B̂ the limited length of the bufier comes to our beneflt

by eliminating packets that will not make it on time to the destination. On the

other hand, for slow arrivals, the inflnite bufier results in smaller distortion than

B = B̂ = 50. This can be explained by looking at the last term of equation (2.3). As

was explained earlier, in the case where ¢ is not an integer multiple of the service
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Figure 2.8: Optimum encoding rate for SDC with deterministic packet length, C1 =
C2 = C = 1000 bits/sec

time, a packet can arrive at a moment when there are K̂ packets in the system

and still make it to the destination in time. That happens if the packet that is in

service at the moment of the new arrival, has already spent a su–cient amount of

time in service. In the flnite-bufier case, such arrivals will not be admitted. On

the other hand, as we can see in Figure 2.8, the smaller the arrival rate, the larger

the optimal packet-length. So for small arrival rates, loosing a packet results in

a greater loss of information than at high arrival rates, therefore the queue with

B = 50 will have worse performance than the inflnite-bufier queue. When arrivals

are fast, however, packets are chosen to be smaller and the loss of a packet has an

insigniflcant impact on the overall distortion and therefore the flnite-bufier queue

with B = 50 outperforms the inflnite-bufier queue.

Figure 2.8 shows the variation of the optimum encoding rate versus the arrival

25



0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

18

λ

K
 : 

N
um

be
r 

of
 P

ac
ke

ts
 th

at
 fi

t i
n 

th
e 

qu
eu

e

buffer = 1 bit
buffer = 10 bits
buffer = 20 bits
buffer = 30 bits
buffer = 40 bits
buffer = 50 bits

Figure 2.9: Number of packets that flt in the queue for optimized SDC with deter-
ministic packet-length, C1 = C2 = C = 1000 bits/sec

rate (or packet-length) for difierent bufier sizes. As we can see here, the optimum

packet-length decreases as the arrival rate increases. We can also see that the curves

for the optimum rate are not smooth. This is due to the fact that the distribution

of the delay a packet experiences depends on K, the number of packets that flt in

the queue, which is an integer. As we can see in Figure 2.9 the discontinuities on

the value of K occur exactly at the points where the optimum rate is not smooth.

2.4.1.2 Exponential Packet Length

In this case we flnd the minimum distortion for an SDC system with inflnite

bufier length and balanced capacities, i.e., C1 = C2. The expected distortion and

delay probability are calculated as in equations (2.1) and (2.2) respectively. The

average end-to-end distortion for the optimal-R case and the flxed-R case [18] are
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both depicted in Figure 2.10 for C1 = C2 = 1000 bits/sec. Note that in [18] for

small arrival rates the optimal value for the switch parameter is q⁄ = 0:5, which

means that the tra–c is distributed equally between the two queues. However,

as the arrival rate increases, even distribution of the tra–c causes both queues to

become congested, since the packet-length and thus the service time are flxed. So in

that case the optimal solution is to provide one queue with as much tra–c as it can

handle and use the other queue as a dump for the leftover tra–c. As it can be seen in

Figure 2.10, optimizing R can improve the performance of this system signiflcantly.

This is because in this case as the arrival rate increases, instead of only using one of

the queues e–ciently, the packet-lengths can be decreased to match the capability

of both queues. The value of R that minimizes the distortion is demonstrated in

Figure 2.11. As it was expected, the optimal packet-length gets smaller as the

arrivals become faster. Note that for ‚ … 0, the value of R⁄ happens to be 6.006

and that is the reason the two distortion curves seem to meet at ‚ = 0. The optimal

value for q in the optimal-R case turns out to be q⁄ = 0:5 due to the symmetry in

the system.

2.4.2 DDC Results

The DDC system has previously been studied in [19] for the case where the

encoders generate packets of exponential length. However, the average length R =

R1 + R2 is assumed to be flxed. In other words, the optimization problem in [19] is
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Figure 2.10: Improvement achieved by optimizing R in SDC system, C1 = C2 = 1000
bits/sec. The dashed curve is the SDC with optimized q and flxed rate of R = 6
(borrowed from [18]).

formulated as follows3

(fi⁄; –⁄
1; –⁄

2) = Argmin D(fi; –1; –2)

where fi⁄ = R1=(R1 + R2) is the rate ratio. In our work however, similarly to the

SDC case, we add the expected packet length to the optimization parameters. The

problem is therefore formulated as follows

3In [19] the system model is slightly difierent and the outputs of the two encoders pass through
a switch with parameter q before entering the queues. Therefore, the actual formulation of the
optimization problem is as follows.

(fi⁄; –⁄
1 ; –⁄

2 ; q⁄) = Argmin D(fi; –1; –2; q)

however, it turns out that the optimum position of the switch for all values of ‚ is such that it
routes the output of encoder i to queue i, as is the case in our work. To avoid confusion, we
have removed the switch from our system model, and have stated the problem formulation of [19]
without the switch parameter q.
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(R⁄; fi⁄; –⁄
1; –⁄

2) = Argmin D(R; fi; –1; –2) (2.6)

We will consider two difierent packet-length distributions; deterministic and

exponential. In the case of deterministic packet lengths, we investigate the efiect

of difierent bufier sizes on the minimum distortion when the two channels have the

same capacity. In the case of exponential packet-lengths, we flrst consider a system

with balanced capacities (C1 = C2) and flnd an optimum solution among all the

balanced solutions, i.e., those with R1 = R2 and –1 = –2. The search for a balanced

solution was motivated by the symmetry of the channels as well as the fact that the

optimization in [19] is done under the constraint –1 = –2. However, we show that

better performance can be achieved when we allow for asymmetric solutions. We
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flnally look at a case where C1 6= C2 and study the asymptotic behavior of fi⁄ when

the capacities of the two channels are not balanced.

2.4.2.1 Deterministic Packet Length

In this subsection we consider the DDC system with deterministic constant

packet-lengths. Figure 2.12 shows the distortion and the optimum parameters for

difierent bufier sizes and the inflnite-bufier case. The optimization here is done

under the constraints R1 = R2 and –1 = –2. It can be seen that there is a behavior

very similar to what we observed in the SDC case. Namely, at large arrival rates,

the distortion for the flnite-bufier case with bufier size of B̂ = 50 bits is smaller than

that of the inflnite-bufier case. Also, similarly to the SDC case the discontinuities in

the values of R and – coincide with the discontinuities of K, the number of packets

that flt in the queue.

2.4.2.2 Exponential Packet Length

Fixed R, Asymmetric Solution:

In this section our goal is to minimize the average end-to-end distortion, DDDC , for

a flxed value of R = R1 +R2 when C1 = C2 = 1000 bits/sec. In [19] the optimization

is simplifled by taking –1 = –2. In other words, they flnd the solution to the following

problem,

(fi⁄; –⁄) = Argmin D(fi; –)
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Figure 2.12: Optimum DDC with deterministic packet-lengths. C1 = C2 = 1000
bits/sec, – = –1 = –2, and R = 2R1 = 2R2.

where – = –1 = –2. Here we do the optimization for all values of –1 and –2. In other

words,

(fi⁄; –⁄
1; –⁄

2) = Argmin D(fi; –1; –2)

We refer to this solution as the flxed-R global optimum.

Figure 2.13 shows how these two optimization problems compare. As it can

be seen in Figure 2.13(a), allowing –1 and –2 to take difierent values in the optimiza-

tion process results in a smaller distortion for arrival rates smaller than ‚ … 300

31



0 100 200 300 400 500 600
−40

−35

−30

−25

−20

−15

−10

−5

O
pt

im
al

 e
nd

 to
 e

nd
 d

is
to

rt
io

n

Arrival rate (λ)

optimal distortion when δ
1
=δ

2
globally optimaum distortion

(a) Improvement achieved in the minimum
distortion by optimizing –1 and –2 separately.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
δ* : δ

1
=δ

2
 case

α* : δ
1
=δ

2
 case

δ
2
* : globally optimum case

δ
1
* : globally optimum case

α*  : globally optimum case

(b) Optimum coding parameters.

Figure 2.13: Optimum DDC with flxed-R (R = R1 + R2 = 6 bits/packet): Compar-
ison of the two cases of –1 = –2 from [19], and the global optimum. C1 = C2 = 1000
bits/sec.

packets/sec. This is due to the fact that for ‚ < 300 the optimum values of –1 and

–2 are difierent, as shown in Figure 2.13(b). This also afiects the optimum value

of the rate ratio fi⁄. As we see here, fi⁄ < 0:5, which means R⁄
1 < R⁄

2. Therefore,

packets of the second encoder have a better chance of getting to the destination and

–⁄
i ’s are picked so that –⁄

2 < –⁄
1, so the second description has a better reconstruction

quality. However for ‚ > 300, the globally optimum solution is to send to one queue

as much tra–c as it can handle and use the other as a dump for the leftover tra–c.

This is done here by choosing R⁄
2 small enough so the second queue remains stable,

and letting R⁄
1 = R ¡ R⁄

2. The expected distortion for this region is given by

D = d2 Pr[T2 • ¢] + Pr[T2 > ¢]

therefore, we need to have –⁄
2 = 0 to minimize d2, and the value of –⁄

1 does not afiect

the distortion, and therefore, any value for –⁄
2 is in fact optimum. As –⁄

1 = –⁄
2 = 0 is
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one of these globally optimum solutions, the two optimization problems are equiva-

lent and therefore the minimum distortion is the same for the balanced and global

solutions at ‚ > 300.

Optimum R, Symmetric Solution:

As we mentioned earlier, when the total encoding rate, R, is flxed, at hight

arrival rates half of the capacity of the system is wasted, since the given encoding

rate is too large with respect to channel capacities.

Adding R to our optimization parameters provides us with the possibility of

decreasing the total rate as the arrivals become faster, and thus saving both queues

simultaneously from getting congested. Here we flrst search for the symmetric so-

lution, i.e., the optimization problem here is formulated as follows

(R⁄; –⁄) = Argmin D(R; –)

where

R1 = R2 = R=2

–1 = –2 = –

The optimal average end-to-end distortion is demonstrated in Figure 2.14(a)

as it compares to the minimum distortion achieved in [19]. As shown in this flgure,

optimizing R contributes in lowering the overall distortion for all values of ‚. The

optimal encoding rate R⁄ is shown in Figure 2.14(b), where we can see that R⁄
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decreases with ‚.
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(c) Optimal redundancies –1 = –2 = –⁄
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Figure 2.14: Improvement achieved by optimizing R in DDC system, C1 = C2 =
1000 bits/sec

Note that there is a discontinuity in R⁄ as is depicted in Figure 2.14(b). To

explain this behavior more clearly, let’s deflne the parameter –0 to be the value of –

that minimizes d0. In other words

–0 = Argmin d0(–)

Note that –0 is a function of R. Since d1 and d2 are monotonically increasing with
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–, and d0 is minimized at –0, the optimal value of distortion happens at –⁄ • –0.

The value of –0 at the optimal rate R⁄ can be calculated as follows [15]

–0 =
1

R⁄ log2

µ
2R⁄

+ 2¡R⁄

2

¶

Using equation (2.5), it is clear that if Pr[T1 • ¢; T2 • ¢] = 1, then –⁄ = –0.

Figure 2.14(c) shows the value of –⁄ as well as –0. As we can see in this flgure, for

small values of ‚, where we expect to have smaller delay probabilities, the value

of –⁄ is signiflcantly lower than –0, which seems counterintuitive. To explain this

behavior, we take a look at the optimal delay probability (Pr[T > ¢] = Pr[T1 >

¢] = Pr[T2 > ¢]) as shown in Figure 2.14(d).

Note that the discontinuity occurs for R⁄, –⁄, and Pr[T > ¢] at ‚ … 90. For

‚ < 90 the optimization process chooses to increase the encoding rate as much as

possible at the cost of getting a higher delay probability, which in turn decreases

the chance of receiving both descriptions on time and thus relies mostly on receiving

only one description and therefore chooses a small value for –⁄ to get smaller values

for d1 and d2. When ‚ > 90, the optimal solution would be one that decreases R⁄

to an extent that results in a small delay probability and thus increases the chance

of both descriptions’ on-time arrival at the destination. Therefore, as can be seen

in Figure 2.14(c), the value of –⁄ is very close to the value of –0 for ‚ > 90 packets/sec.

Optimum R, Asymmetric Solution:

In this section we further improve the performance of the DDC system by
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considering asymmetric solutions.We can formulate this problem as follows

(R⁄
1; R⁄

2; –⁄
1; –⁄

2) = Argmin D(R1; R2; –1; –2)

which is equivalent to (2.6). Figure 2.15(a) shows the improvement achieved by

allowing the pairs (R1; –1) and (R2; –2) to take difierent values. Figure 2.15(b) shows

the optimum values of R1 and R2 which decrease as the arrival rate ‚ increases in

order to keep the delays reasonably small. As it can be seen in this flgure, R⁄
1 < R⁄

2.

On the other hand we can see in Figure 2.15(c) that the optimum value of –1 is always

zero while –2 takes large values. This means that the flrst description has a minimal

individual distortion (d1 = 2¡2R1) while the second description individually does not

have a good quality (d2 … 1) and is only used to improve the joint reconstruction

quality.

To explain this behavior, let us look at the delay probabilities corresponding

to the optimum value of the parameters as shown in Figure 2.15(d). Note that the

probability of loosing the packets of the flrst encoder is signiflcantly smaller than

that of the second encoder since R⁄
1 < R⁄

2. On the other hand, both of these delay

probabilities are fairly small and therefore the most likely event is the event in which

both descriptions make it to the destination. In other words, in equation (2.5) d0

has the largest coe–cient. This means that the optimization process will try to

make d0 as small as possible. For a given value of R1 and R2, this happens if we

choose –i in a way that ƒ = ⁄. The equation ƒ = ⁄ has two degrees of freedom and
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(a) Improvement achieved in the end to end
distortion by allowing (R1; –1) and (R2; –2) to
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(b) Optimal encoding rates R1; R2.
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(c) Optimal redundancies –1; –2.

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9
x 10

−3

P
r[

D
el

ay
 >

 ∆
]

λ

p
1

p
2

(d) Delay probabilities p1 = Pr(T1 > ¢); p2 =
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Figure 2.15: Optimum DDC : (R⁄
1; R⁄

2; –⁄
1; –⁄

2) = ArgminDDDC(R1; R2; –1; –2), C1 =
C2 = 1000 bits/sec

there are inflnite values of –1 and –2 that satisfy this equation. On the other hand in

equation (2.5), d1 has the largest coe–cient after d0 and is minimized when –1 = 0.

By setting –1 = 0 and choosing –2 such that ƒ = ⁄, we can minimize the two most

signiflcant terms of equation (2.5). The value of –2 that minimizes d0 (denoted by

~–2) can be calculated by solving the equation ƒ = ⁄ for –2 while replacing –1 = 0.

~–2 = 1 + log2

£
1 + 2¡2(R1+R2) ¡ 2¡2R1

⁄
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Note that setting –1 = 0 and –2 = ~–2 minimizes the flrst two terms of equation

(2.5) and the last term is independent of –1 and –2. However, the third term of this

equation depends on –2 through d2 which is an increasing function of –2. Therefore

the actual optimum value of –2 is smaller than ~–2. The amount of this difierence

depends on the derivatives of d0 and d2 at –2 = ~–2 which are functions of R1 and R2.

It should also be noted that there is a discontinuity in the optimal encoding

rates at ‚ … 33. For ‚ < 33 the optimization process applies a difierent strategy

by increasing the encoding rates as much as possible at the cost of getting higher

delay probabilities. This in turn decreases the chance of receiving both descriptions

on time and thus has to rely more on receiving only one description and therefore

chooses a smaller value for –2 in order to get better values for d2.

2.4.2.3 Unbalanced Capacities

So far, we assumed that the two channels had equal capacities (C1 = C2 = 1000

bits/sec). In this section we will study the efiect of having unequal capacities and

see how this afiects the results.

We will consider two examples in this section for both the SDC and the DDC

systems with exponential packet-lengths. In the flrst example we will have channels

with capacities C1 = 1400 and C2 = 600 bits/sec, and in the second example we

will have channels with capacities C1 = 1800 and C2 = 200 bits/sec . Note that the

total capacity is kept at C = 2000 as in the previous cases.
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Figure 2.16: Unbalanced Capacities: Asymptotic behavior of q⁄ (in SDC system)
and fi⁄ (in DDC system) for difierent capacity ratios. We see that both q⁄ and fi⁄

converge the value of the capacity ratio as the arrival rate increases.

In the SDC system an interesting result is the behavior of the optimum switch

parameter q⁄ as displayed in Figure 2.16(a). For small values of the arrival rate ‚,

we get q⁄ = 1; therefore, all packets are routed to the link with the higher capacity.

This is due to the fact that for slow arrivals, at each arrival moment the queues are

very likely to be empty and therefore there is no point in sending the packets to the

slower link. When ‚ increases, the value of q⁄ starts to decrease to allow packets to

utilize both links. Of course, at the same time R is decreasing to compensate for the

queueing delay. As the arrival rate increases we see that the asymptotic behavior

of q⁄ points to a system with balanced load. In other words, at high values of the

arrival rate we obtain

q⁄ … C1

C1 + C2

or equivalently

‚1

„1

… ‚2

„2
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Figure 2.16(b) shows the value of the rate ratio fi⁄ in the DDC case. We can

see in this flgure that as the arrival rate increases, the value of fi⁄ converges to the

capacity ratio of the two channels. In other words, in all the cases depicted in Figure

2.16(b) for large values of the arrival rate, ‚, we have

fi⁄ … C1

C1 + C2

Therefore similarly to the SDC case, the asymptotic behavior of fi⁄ points to a

balanced load distribution for high arrival rates.
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Figure 2.17: Comparison of the average distortion for difierent capacity ratios.

Figure 2.17 shows a comparison of the distortion achieved in three difierent

cases for channel capacities. The total capacity in all cases is 2000 bits/sec. In

the case where C1 = 2000 we will basically have a single queue with capacity 2000
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bits/sec and the DDC encoder simplifles to an SDC encoder, since only one descrip-

tion can make it to the destination. As it is shown in this flgure, the case where

C1 = C2 = 1000 outperforms the other two cases. On the other hand we can see

that the system with a single channel has the worst performance among the three

cases studied. This result is somewhat surprising since on one hand, we know from

the queuing theory that splitting the capacity of a channel does not improve the

overall delay of the system; on the other hand, we know that DDC encoding by

itself cannot decrease the expected distortion compared to the SDC encoding. How-

ever, as we see here, using DDC encoding together with parallel routing renders the

system more °exible and improves the overall performance.

This result implies that, with proper encoding, it is best to split a channel into

two channels with half the capacity rather than using the entire channel at once.

Naturally, the question arises that whether the distortion is a decreasing function

of the number of description/channel pairs that are used for a flxed total channel

capacity.

2.4.3 Comparison of the SDC and the DDC Systems

So far, we have considered all parameters that directly afiect the end-to-end

average distortion for a simple system consisting of two routes. Two general classes

of coding schemes were considered and in each case a joint optimization problem to

minimize the average end-to-end distortion was solved. In this section, we would

like to quantify and compare the results obtained in the previous sections.
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Figure 2.18: Comparison of SDC and DDC with symmetric solution in both cases
of flxed R (from [19] and [18]) and optimum R. C1 = C2 = 1000 bits/sec

Figure 2.18 displays the performance of both systems (SDC and DDC) with

and without optimal encoding rate for the case of symmetric solution. As observed,

the DDC system with optimal rate outperforms all other systems. Similarly, the

SDC system with a flxed rate has the highest distortion. Comparing the SDC system

with optimal rate to the DDC system with flxed rate, we see that for arrival rates

larger than ‚ … 270 the SDC system with optimal rate outperforms the DDC with

flxed rate. This is because when the rate is kept flxed, unlike when it is optimized, at

large arrival rates one of the queues is permanently congested and only one queue

is used efiectively. We also see in Figure 2.18 that in both the flxed-R and the

optimum-R cases, the DDC system outperforms the SDC system.

Figure 2.19 shows the average end-to-end distortion for the SDC and DDC

systems in both cases of deterministic and exponential packet-lengths when the
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Figure 2.19: Comparison of SDC and DDC: deterministic vs. exponential packet-
length distribution C1 = C2 = 1000 bits/sec

bufier has inflnite capacity. As it can be seen in this flgure, for a given packet-

length distribution, the DDC system outperforms the SDC system. We also see

that the system with deterministic packet-lengths outperforms the one with expo-

nential packet-lengths. This can be explained using what we know from the queueing

theory that among all service time distributions with the same expected value, the

deterministic distribution minimizes the expected waiting time. In other words, for

a given expected service time we have

E[WM=G=1] ‚ E[WM=D=1]

since for an M/G/1 queue, the expected waiting time is given by the Pollaczek-

43



Khinchin (P-K) formula as follows

W =
‰S

2(1 ¡ ‰)

µ
1 +

var[S]

S
2

¶

where S is the service time random variable and therefore S = 1=„. For a given

expected service time, S, the term ‰S
2(1¡‰)

is flxed, and the term var[S]

S
2 is minimized

when var[S] = 0, which is the case for a constant service time.
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Chapter 3

Distortion Control for Streaming of Delay-Sensitive Sources

3.1 Introduction

In the classical network architecture, the source symbols are encoded in the

presentation layer, while the Data Link layer and/or the Transport layer take care

of providing error-free transmission by the use of channel coding or retransmissions.

In the case of packet erasure channels, packets traveling through the network are

dropped randomly depending on the channel condition. When immediate errorfree

feedback is available, the best one can do is to retransmit each dropped packet

repeatedly until it reaches its destination. When dealing with delay-sensitive appli-

cations with a hard deadline for every source symbol, this approach can be modifled

to one which repeats the transmission of each lost packet until either the packet is

expired or it has reached its destination. However, when dealing with distortion-

tolerant data, this approach is no longer optimum. In this case, the overall distortion

of the received message can signiflcantly be improved by calculatedly sacriflcing less

signiflcant bits corresponding to one symbol for more signiflcant bits of another.

We consider the problem of transmitting a flnite set of delay-sensitive source

symbols. This is sometimes referred to as \streaming" and is used in applications

such as video-on-demand where a server pre-stores encoded media and transmits it

on demand to a client for playback in real time.
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The problem of rate-distortion optimized streaming of layered video has been

addressed under various scenarios in the literature. To the best of our knowledge, the

works most closely related to the one we are presenting here have been carried out

in [27] and [28]. Miao and Ortega [27] propose a low-complexity heuristic algorithm

for scheduling of packet transmission. However, they assume that the number of

layers representing each symbol is predetermined. Podolsky et al. [28] use a Markov

chain analysis to flnd the optimal policy for transmitting layered media at a flxed

rate over a lossy channel. However, since the state space grows exponentially with

the size of the parameter space, the general solution is not presented in that paper.

Other less closely related works include [29] in which a policy for dynamic allocation

of bandwidth to each layer of symbol representation is found, and [30], where the

complexity of rate-distortion optimized streaming is investigated. A brief survey

of difierent approaches and results for this problem can be found in [31]. A more

general survey of the contributions in the fleld of streaming video over the Internet

can be found in [32].

In this chapter, we study the distortion-delay tradeofi by considering a source-

destination pair connected through a single-link as shown in Figure 3.1. A number

of source symbols are residing at the source and are to be encoded and transmitted

to the destination before their corresponding deadlines. Each reconstructed symbol

will result in a distortion which is a decreasing, convex function of the number of its

bits received. If the bits in an encoded symbol are arranged in a decreasing order

of utility, and furthermore, for decoding of a given bit, all the more signiflcant bits

are required, then the convexity of the distortion function follows. Therefore, the
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Figure 3.1: System diagram

convexity assumption on the distortion function is a reasonable one to make.

Our goal is to flnd a transmission policy which minimizes the total expected

distortion. A policy determines what bits of what symbol to transmit at any time,

based on the state of the system at that time. Finding the optimum policy depends

on the values of the distortion function and, except for special trivial cases, can be

computationally very costly.

We flrst consider a simple case where the packets are transmitted over an error-

free channel. We flnd that when the distortion function is convex and decreasing,

the optimum transmission policy is independent of the speciflc form of that function,

and present a computationally inexpensive algorithm for solving this problem. We

then proceed to solve the problem of minimum distortion streaming over packet-

erasure channels by flrst showing that if we restrict ourself to the set of open-loop

policies, the optimum policy is again independent of the form of the convex cost

function. We next propose an algorithm to flnd a suboptimal closed-loop policy and
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provide numerical results to show how it improves the distortion compared to the

optimal open-loop solution.

Most of the work presented here was flrst reported in [33{35].

3.2 The Basic Problem: Error-Free Transmission

In this section, we consider a simple scenario where a number of pre-encoded

delay-sensitive source symbols, residing at the source, are to be transmitted to the

destination through an error-free channel. We refer to this problem hereafter as the

Basic Problem.

3.2.1 Problem Formulation and Notation

The Basic Problem is structured as follows.

1. N source symbols pre-encoded to packets of lengths °1; : : : ; °N bits are residing

at the source at time zero and must be transmitted to a receiver before they

expire.

2. Each symbol i expires in Mi seconds, i.e., the bits corresponding to source

symbol i transmitted after time Mi will be useless at the receiver.

3. Without loss of generality we assume that the source symbols are indexed in

the order in which they expire, i.e., Mi • Mi+1 for i = 1; : : : ; N ¡ 1. We refer

to MN as the end of the session.

4. All encoded source symbols are available at the transmitter at the beginning
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of the session and there are no arrivals to the system.

5. A total of yi bits corresponding to source symbol i are transmitted by the end

of the session

6. d(yi) is the distortion for source symbol i. The distortion function d(¢) is

convex and decreasing.

7. The channel can accommodate an error-free transmission of ! bits per second.

Note that to avoid integer constraints, we allow for fractions of bits to be

transmitted, and assume that d(¢) is deflned on the set of real numbers. Given this

assumption, without loss of generality, we can assume that ! = 1.

Our goal is to flnd the number of bits corresponding to each source symbol to

transmit in order to minimize the overall distortion at the end of the session, i.e.,

D(y) =
PN

i=1 d(yi), while meeting the deadline constraints. In other words, we wish

to flnd the vector y = [y1 ¢ ¢ ¢ yN ], which solves

PBasic
:

min
y

D(y) =
NX

i=1

d(yi)

subject to

0 • yi • °i; i = 1 ¢ ¢ ¢ N (3.1)

iX
j=1

yj • Mi; i = 1 ¢ ¢ ¢ N (3.2)

We denote this problem by PBasic hereafter. The flrst set of constraints ac-

counts for the fact that we cannot send more bits of a source symbol than what we
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have available, and the second set of constraints ensures that all transmitted bits

corresponding to a source symbol are sent before that symbol expires.

3.2.2 Optimum Solution

In the following, we flrst prove that for a strictly convex function, d(¢), a

unique solution to PBasic exists and is independent of the form of d(¢). We provide a

low complexity algorithm for flnding the solution vector y⁄. We then show that y⁄

minimizes the distortion even if the convexity of d(¢) is not strict; however, in this

case y⁄ may no longer be the only solution to PBasic.

The following lemma, which proves a property of convex functions, is crucial

to our proof.

Lemma 1 Let d(¢) be a strictly convex function. Let 0 • a < b and – > 0 such that

– < b ¡ a, then

d(a + –) + d(b ¡ –) < d(a) + d(b)

Proof For the strictly convex function d(¢) and ‚ 2 (0; 1) by deflnition we have

d((1 ¡ ‚)a + ‚b) < (1 ¡ ‚)d(a) + ‚d(b)

Similarly we can write

d(‚a + (1 ¡ ‚)b) < ‚d(a) + (1 ¡ ‚)d(b)
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Adding the corresponding sides of the above two inequalities we get

d(a + (b ¡ a)‚) + d(‚(a ¡ b) + b) < d(a) + d(b)

Setting ‚ = –
b¡a

and substituting, we get

d(a + –) + d(b ¡ –) < d(a) + d(b)

d(a)−d(a+  )δ

δ
ba

δ

δd(b−  )−d(b)

Figure 3.2: Lemma 1 illustration.

Figure 3.2 shows an example for the function d(¢) as described in Lemma 1.

As can be seen in this flgure, d(a)¡d(a+–) < d(b¡–)¡d(b). Note that the function

d(¢) need not be difierentiable for the lemma to hold.

Lemma 2 PBasic always has a solution.

Proof Since d(¢) is convex on the set of real numbers, it must be continuous,

and therefore, D(¢) is also continuous. On the other hand, the feasible set of PBasic
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is compact, and since a continuous real-valued function attains its minimum on a

compact set, a solution to PBasic always exists.

Let y⁄ be a solution to PBasic. In the following lemma, we prove that if d(¢)

is strictly convex, the smallest component of y⁄ can be uniquely determined. Once

the smallest component is found, we can remove this component and solve for the

next smallest element of y⁄ by applying the same argument to the new (N ¡ 1)-

dimensional problem. We can continue in this fashion until all the elements of the

optimal solution y⁄ are found. Therefore, the entire vector y⁄ can be uniquely

determined.

Lemma 3 Let y⁄ be a solution to PBasic. Let „i = Mi

i
for every i, and let |̂°, |̂„,

and |̂y be such that °|̂° = minf°jgN
j=1, „|̂„ = minf„jgN

j=1, and y⁄
|̂y

= minfy⁄
j gN

j=1. If

d(¢) is decreasing and strictly convex, then the value of y⁄
|̂y

is uniquely given by

y⁄
|̂y

= minf°|̂° ; „|̂„g

Proof We split the proof into two cases and prove the lemma by contradiction.

Case 1: °|̂° • „|̂„ .

Suppose that y⁄
|̂y

6= °|̂° . Then y⁄
|̂y

< °|̂° ; otherwise, since y⁄
|̂y

is the smallest

of all y⁄
i , we would have y⁄

|̂°
‚ y⁄

|̂y
> °|̂° which violates inequality (3.1). We now

construct a feasible vector ŷ such that D(ŷ) < D(y⁄), thus contradicting the opti-

mality of y⁄. We pick – > 0 such that y⁄
|̂y

+ – < °|̂° and deflne the N -vector ŷ as
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follows

ŷi =

8
>><
>>:

y⁄
|̂y

+ – ; i = |̂y

y⁄
i ; i 6= |̂y

Note that the elements of ŷ satisfy the inequalities (3.1). If ŷ meets the inequalities

(3.2), since d(¢) is decreasing, we have

D(ŷ) ¡ D(y⁄) = d(y⁄
|̂y

+ –) ¡ d(y⁄
|̂y

) < 0

and therefore, y⁄ cannot be optimum. Otherwise, if ŷ violates some of the inequal-

ities of (3.2), we let {̂ be the smallest index such that
P{̂

j=1 ŷj > M{̂ (i.e. inequality

(3.2) is not met). Then since ŷ|̂y = y⁄
|̂y

+ – < °|̂° • „{̂ = M{̂={̂, there exists

k 2 f1; : : : ; {̂g such that y⁄
k > y⁄

|̂y
+ –, otherwise

P{̂
i=1 ŷi • {̂(y⁄

|̂y
+ –) < M{̂. We set

ŷk = y⁄
k ¡ – > y⁄

|̂y
. Since ŷk is present in all the inequalities in (3.2) with i > {̂ ‚ k,

adjusting ŷk is su–cient to ensure that all the remaining inequalities hold. Now we

redeflne ŷ as follows

ŷi =

8
>>>>>><
>>>>>>:

y⁄
k ¡ – ; i = k

y⁄
|̂y

+ – ; i = |̂y

y⁄
i otherwise

Since y⁄
|̂y

< y⁄
k, and from the way we picked k we have – < y⁄

k ¡ y⁄
|̂y

, using Lemma 1

we get

d(ŷk) + d(ŷ|̂y) < d(y⁄
k) + d(y⁄

|̂y
)
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Adding
P

i6=1;|̂y
y⁄

i to both sides of the inequality we get

NX
i=1

d(ŷi) <

NX
i=1

d(y⁄
i )

Therefore,

D(ŷ) < D(y⁄)

which implies that y⁄ cannot be the optimum solution unless y⁄
|̂y

= °|̂° .

Case 2: °|̂° > „|̂„ .

If y⁄
|̂y

6= „|̂„ , we have to have y⁄
|̂y

< „|̂„ ; otherwise
Pq

i=1 y⁄
i ‚ qy⁄

|̂y
> q„|̂„ = M|̂„

which violates inequality (3.2). Therefore we can pick – such that ŷ|̂y = y⁄
|̂y

+– < „|̂„

and the rest of the proof is similar to case 1.

In the following lemma we flnd the index of the smallest element(s) of an

optimum solution.

Lemma 4 Let y⁄; |̂°, and |̂„ be deflned as in Lemma 3. Then we have

1. If °|̂° < „|̂„, then y⁄
|̂°

= °|̂° .

2. If °|̂° > „|̂„, then y⁄
1 = ¢ ¢ ¢ = y⁄

|̂„
= „|̂„.

3. If °|̂° = „|̂„, then y⁄
1 = ¢ ¢ ¢ = y⁄

|̂„
= y⁄

|̂°
= °|̂° .

Proof

1. If °|̂° < „|̂„ , Lemma 3 implies minfy⁄
i g = °|̂° . If y⁄

|̂°
6= °|̂° , then necessarily

y⁄
|̂°

< °|̂° which implies y⁄
|̂°

< minfy⁄
i g which is not possible and therefore we

have to have y⁄
|̂°

= °|̂° .
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2. If °|̂° > „|̂„ , Lemma 3 implies minfy⁄
i g = „|̂„ . If for some j 2 f1; : : : ; qg,

y⁄
j 6= „|̂„ , then either we have y⁄

j < „|̂„ = minfy⁄
i g which is a contradiction or

we have y⁄
j > „|̂„ in which case there is at least one element k 2 f1; : : : ; qg

such that y⁄
k < „|̂„ = minfy⁄

i g because otherwise
Pq

i=1 y⁄
i > M|̂„ and again we

reach a contradiction.

3. If °|̂° = „|̂„ , both previous arguments hold.

Using Lemma 4 we can calculate the optimum value of the transmitted packet

length yi for some of the °i’s. Now if we remove those °i’s and the corresponding yi’s

and Mi’s from the optimization problem and adjust the remaining Mi’s, the problem

reduces to a similar optimization problem with fewer arguments for which the same

lemma applies. Using this simple argument we can flnd the optimum algorithm for

constructing y⁄. We call this algorithm the base algorithm.

Base Algorithm

1. Deflne Ij = f1; ¢ ¢ ¢ ; jg, 8j 2 figN
i=1.

2. Let I = IN , and „i = Mi

i
; i 2 I

3. Let z = min ff„igi2I [ f°igi2Ig

4. 8i 2 fj 2 Ij°j = zg, set y⁄
i = z

5. Let |̂ = maxfj 2 Ij„j = zg

6. 8i 2 I|̂ \ I, set y⁄
i = z
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7. Set I = I ¡ fjjy⁄
j = zg

8. 8i 2 I, set „i =
Mi¡

P
j2Ii¡I y⁄

j

jIi\Ij .

9. If I 6= ;, go back to step 3; otherwise, stop.

Note that once y⁄ is found, it su–ces to send y⁄
i ’s in their order of expiration

to ensure their timely delivery.

Theorem 1 (optimum algorithm) For a strictly convex function d(¢), the base

algorithm flnds the unique optimum solution to PBasic.

Proof The proof of the theorem is immediately followed from Lemma 4.

It should be noted that if the function d(¢) is convex but not strictly convex,

the y⁄ found by the base algorithm is still optimal, although not necessarily unique.

For example, if „|̂„ = minf°|̂° ; „|̂„g and „|̂„ happens to lie on a linear segment of

d(¢), then there are inflnite number of optimal values for yi ; i = 1 ¢ ¢ ¢ |̂„ as long as

they all sum up to M|̂„ and stay in the same linear segment of d(¢). The optimality

of y⁄ for a merely convex d(¢) follows form the next lemma.

Lemma 5 Let Pd be a minimization problem deflned as follows.

min
y

D(y) =
NX

i=1

d(yi)

subject to

y 2 A
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where A µ IRN for some N ‚ 1. Let Dc and Dsc be the sets of all convex and all

strictly convex functions deflned on IR, respectively (Dsc ‰ Dc). If a given vector y⁄

solves Pd for all d 2 Dsc, then it solves Pd0 for all d0 2 Dc.

Proof We prove the lemma by contradiction. Suppose y⁄ does not solve Pd0 for

some d0 2 Dc. Then there must be some vector y0 2 A such that

D0(y⁄) ¡ D0(y0) > 0

where D0(y) =
PN

i=1 d0(yi). Let g(¢) be a function in Dsc. Deflne the function d– as

follows

d–(y) = d0(y) + –g(y)

Since the sum of a strictly convex function with a convex function is strictly convex,

we have d– 2 Dsc for any – > 0, and therefore, y⁄ must solve Pd–
for all – > 0. Let

D–(y) =
PN

i=1 d–(yi), then

D–(y
⁄) ¡ D–(y

0) = D0(y⁄) ¡ D0(y0) + –(
NX

i=1

g(y⁄
i ) ¡ g(y0

i))

since g 2 Dsc, we have
PN

i=1 g(y⁄
i ) ¡ g(y0

i) < 0, and therefore if we choose – > 0 such

that

– < ¡ D0(y⁄) ¡ D0(y0)PN
i=1 g(y⁄

i ) ¡ g(y0
i)

We get D–(y
⁄) ¡ D–(y

0) > 0. In other words, we can always pick – > 0 in a way

that D–(y
⁄) > D–(y

0) which implies that y⁄ does not solve Pd–
.

57



Figure 3.3: Illustration of the base algorithm for N = 5

Figure 3.3 illustrates the algorithm for the case of N = 5. In this case the

optimum solution is found in three steps. In the flrst step, minf°|̂° ; „|̂„g = „2 and

therefore y⁄
1 = y⁄

2 = „2. In the second step, the rest of Mi’s are adjusted and this time

minf°|̂° ; „|̂„g = °4 and so y⁄
4 = °4. And flnally in the last step, minf°|̂° ; „|̂„g = „5

and the remaining y⁄
i ’s are determined.

It should be noted that if instead of having a flxed rate continuous transmission

we are only allowed to send data at scheduled times, we can still solve the problem

using a modifled version of this algorithm. To show this, let ¿1 < ¢ ¢ ¢ < ¿L be

the ordered sequence of transmit opportunities before the end of the session, i.e.,

¿L • T = MN . Assume that at every transmit opportunity a maximum of B bits of

information can be transmitted. Deflne ni as the number of transmit opportunities

available for the source symbol i before it expires, i.e.,

ni = maxfkj¿k • Mig
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or in the case of periodic transmit opportunities ni =
¥

Mi

µ

ƒ
; i = 1; : : : ; N , where µ

is the period at which the transmit opportunities occur. Now the problem can be

translated to solving the following constrained minimization problem.

min
y

D (y)

subject to

0 • yi • °i; i = 1 ¢ ¢ ¢ N

iX
j=1

yj • niB; i = 1 ¢ ¢ ¢ N

Since Mi • Mi+1, we have ni • ni+1 for i = 1; : : : ; N ¡ 1, therefore, this problem is

equivalent to the previous problem and can be solved using the base algorithm with

„i = niB
i

. After y⁄ is found, we send the y⁄
i ’s in their expiration order. For this, we

might have to send some of the bits corresponding to a given source symbol in one

transmit opportunity and the rest of them in the next opportunity. However, all

the bits transmitted will still make it to the destination before their corresponding

deadlines.

It should flnally be noted that this algorithm achieves a worst case complexity

of O(N2 log N), since it involves a sorting of at most N variables in every iteration,

which takes N log N operations, and a maximum of N iterations. On the other hand

this is a convex minimization problem with linear constraints which can be solved by

nonlinear programming. A general Linear Programming algorithm involves solving

N -dimensional linear equations at each iteration which has a complexity of O(N3).
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An extension of the basic algorithm presented in this section can be used for

flnding an optimum solution for the case where there are deterministic arrivals to

the system as presented in Appendix A.1. Also, we assumed here that the channels

was noise-free. In Appendix A.2 we show an example where the base algorithm can

be extended to a system which uses a noisy channel.

3.3 Packet-Erasure Channel

In this section we consider a source-destination pair connected through a

single-link, packet-erasure channel as shown in Figure 3.1.

3.3.1 Problem Formulation and Notation

N source symbols are residing at the source and are to be encoded and trans-

mitted to the destination before their deadlines M1 • M2 • : : : • MN . We assume

that the time is slotted and that at every time slot, B bits of information can be

transmitted over the link. Each B-bit packet will either reach the destination in

its entirety with probability p, or will be entirely lost otherwise. We make the sim-

plifying assumption hereafter that the B bits transmitted at each time slot must

correspond to a single symbol. In other words, we cannot send a combination of

bits from difierent encoded source symbols in one transmission. Once we make this

assumption, without loss of generality, we can assume that B = 1.

At each time slot t, let b(t) be an N -vector whose ith element, bi(t), is the

number of bits of the ith symbol successfully received by the beginning of time slot t.
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Therefore, b(t) indicates the state of the system at time t. We assume that b(t) is

known to the transmitter at time t. Let s(t) be the index of the symbol from which

one bit is transmitted at time t. If the transmission at time slot t is successful, we

get

b(t + 1) = b(t) + es(t)

where ei is the unit N -vector with all but its ith element set to zero. We denote the

transmission policy by the function `(¢; ¢) such that

s(t) = `(b(t); t)

We wish to flnd a policy ` which minimizes the total expected distortion while

meeting the deadline constraints. In other words,

min
`

NX
i=1

E[d(bi(T ))]

subject to

zj(T ) 2 f0; 1; : : :g ; j = 1; : : : ; N

jX
i=1

zi(T ) • Mj ; j = 1; : : : ; N

where d(:) is the distortion function, T = MN + 1 is the time slot succeeding the

expiration of the last packet, and zi(t) is the total number of transmission attempts

on packet i before time t, i.e., z(t) =
Pt¡1

¿=1 es(¿). We refer to T hereafter as the end

of the session.
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Table 3.1 lists the notation used in this section.

Variable Signiflcance

N number of source symbols to be transmitted
Mi deadline of the ith symbol (time-slots)
B transmission rate (bits/time-slot)
p probability of success

d(:) distortion function (convex and decreasing)
bi(t) number of bits of ith symbol successfully received by t
s(t) index of the symbol from which one bit is sent in time slot t
zi(t) number of transmission attempts on ith symbol by time t

T end of the session (= MN + 1)
mi(t) number of time-slots left at time t before symbol i expires

Table 3.1: General Notation

3.3.2 Optimal Open-Loop Policy

In this subsection, we search for the best policy among the subset of policies

for which the decision as to which symbol is picked for transmission at each time

slot does not depend on the outcome of the previous transmissions. In other words,

we restrict ourself to the subset of policies which are only a function of time, i.e.,

for some function ~̀(¢),

`(b(t); t) = ~̀(t)

Therefore, we only need to decide on zi(T ), the total number of bits corresponding

to every source symbol to transmit by the end of the session, as long as we can

schedule them in a way that they meet all the deadline constraints.

In this section we drop the time index from the mathematical expressions and

simply use bi and zi in place of bi(T ) and zi(T ). Note that bi is a binomial random
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variable with parameters zi and p, i.e.,

Pr[bi = k] =

0
BB@

zi

k

1
CCA pk(1 ¡ p)zi¡k

therefore, E[d(bi)] is a function of zi. Deflne the function g : f0; 1; ::g ! IR as follows

g(zi) = E[d(bi)]

The problem statement therefore simplifles to the following

POL
:

min
z

G(z) =
NX

i=1

g(zi)

subject to

zj 2 f0; 1; : : :g ; j = 1; : : : ; N

jX
i=1

zi • Mj ; j = 1; : : : ; N

We refer to the above problem as POL hereafter. In the following lemma, we

prove that when d(¢) is strictly convex, g(¢) will have increasing forward difierences.

This property could be interpreted as an equivalent of strict convexity for discrete

functions. We then use this property to flnd an optimum solution to POL.

Lemma 6 Let bz be a binomial(z; p) random variable and d(¢) a strictly convex
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function. Then g(z) = E[d(bz)] has the following property

g(z + 2) ¡ g(z + 1) > g(z + 1) ¡ g(z) ; 8z 2 f0; 1; : : :g (3.3)

Proof We need to show that

E[d(bz+2)] ¡ 2E[d(bz+1)] + E[d(bz)] > 0

Let b1 and b0
1 be two independent binomial(1; p) random variables, which are also

independent of bz. Then given the fact that the sum of two independent bino-

mial random variables with parameters z1; z2 is a binomial random variable with

parameter z1 + z2, we can write

E[d(bz+2)] ¡ 2E[d(bz+1)] + E[d(bz)]

= E[d(bz + b1 + b0
1)] ¡ 2E[d(bz + b1)] + E[d(bz)]

= E[d(bz + b1 + b0
1) ¡ 2d(bz + b1) + d(bz)]

=
zX

i=0

1X
j=0

1X

k=0

Pijk £ [d(i + j + k) ¡ 2d(i + j) + d(i)]

=
zX

i=0

(Pi00 £ 0 + (Pi01 ¡ Pi10)[d(i + 1) ¡ d(i)]

+ Pi11[d(i + 2) ¡ 2d(i + 1) + d(i)]) > 0

where Pijk = Pr(bz = i; b1 = j; b0
1 = k) and the inequality of the last line is due to

the strict convexity of d(¢) and the fact that Pi01 = Pi10.
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It can similarly be shown that if d(¢) is decreasing, g(¢) is decreasing as well. In

the following lemma, we prove a necessary condition for the optimality of a solution

to POL when d(¢) is strictly convex and decreasing.

Lemma 7 Let the N-vector z⁄ solve POL. If g(¢) is decreasing and meets inequality

(3.3), then
|̂X

i=1

z⁄
i = M|̂ (3.4)

where

|̂ = max

‰
argmin

j
fbMj

j
cgN

j=1

¾

Proof If (3.4) does not hold, in order to meet the constraints of POL, we must

have
P|̂

i=1 z⁄
i < M|̂. Then there exists some j • |̂ such that z⁄

j •
j

M|̂

|̂

k
. Let r be

the largest such j, i. e.,

r = max

‰
j • |̂

flflflfl z⁄
j •

„
M|̂

|̂

”¾

Deflne the N -vector z0 as follows.

z0
j =

8
>><
>>:

z⁄
r + 1 ; j = r

z⁄
j ; j 6= r

If z0 meets all the constraints of POL, since g(¢) is decreasing, we get G(z0) < G(z⁄),

and we reach a contradiction. Let ~| be the smallest index for which the constraints

of POL are not met. In other words, ~| = minfj j Pj
i=1 z0

j > Mjg. Then we must
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have ~| > |̂, since for j < r we have

jX
i=1

z0
i =

jX
i=1

z⁄
i • Mj

thus, ~| ‚ r. If r • ~| • |̂, we have
P~|

i=1 z0
i > M~|. Since we have integers on both

sides of the inequality, we get

~|X
i=1

z⁄
i + 1 ‚ M~| + 1

and since z⁄ must be feasible, we must have

~|X
i=1

z⁄
i = M~|

On the other hand

|̂X
i=1

z⁄
i =

~|X
i=1

z⁄
i +

|̂X
i=~|+1

z⁄
i

> Mj + (|̂ ¡ j)

µ„
M|̂

|̂

”
+ 1

¶
; ~| > r

= Mj ¡ j

„
M|̂

|̂

”
+ |̂

µ„
M|̂

|̂

”
+ 1

¶

> Mj ¡ j
Mj

j
+ |̂

µ„
M|̂

|̂

”
+ 1

¶
;

Mj

j
>

„
M|̂

|̂

”

> M|̂

which contradicts the feasibility of z⁄. Therefore, ~| > |̂ and thus, by deflnition of |̂,
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we have
„

M|̂

|̂

”
<

„
M~|

~|

”

Then there must exist some ~{ 2 f1; : : : ; ~|g such that

z0
~{ ‚

„
M~|

~|

”
+ 1

‚
„

M|̂

|̂

”
+ 1 + 1

‚ z⁄
r + 2

Set z0
~{ = z⁄

~{ ¡ 1. The new z0 meets all the constraints of POL and furthermore,

G(z0) ¡ G(z⁄) = g(z⁄
~{ ¡ 1) + g(z⁄

r + 1) ¡ g(z⁄
~{ ) ¡ g(z⁄

r ) < 0

hence a contradiction.

The following algorithm flnds an optimum solution to POL.

Open-Loop Algorithm

1. Let |̂ = max
n

argminjfbMj

j
cgN

j=1

o
, k = M|̂ ¡ |̂bM|̂

|̂
c

2. Set z⁄
j =

8
>><
>>:

bM|̂

|̂
c ; j = 1; : : : ; |̂ ¡ k

bM|̂

|̂
c + 1 ; j = |̂ ¡ k + 1; : : : ; |̂

3. If |̂ < N , remove fMjg|̂
j=1, set j = j ¡ |̂ for j > |̂, update the remaining Mj’s,

and go back to step 1. Stop otherwise.

Theorem 2 The vector z⁄ found by the open-loop algorithm solves POL for any

convex and decreasing function d(¢).
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Proof We need to show that z⁄ minimizes G(z) and meets the constraints of POL.

We prove its feasibility in Lemma 8. Then, in Lemma 9, we show that for a strictly

convex d(¢), the flrst |̂ elements of z⁄ minimize
P|̂

j=1 g(z⁄
j ) among all integer-valued

|̂-vectors z which meet (3.4). Since according to Lemma 7, (3.4) is a necessary

condition for any vector that solves POL, this su–ces to show the optimality of the

flrst |̂ elements of z. Furthermore, since the exact same procedure is followed for

flnding the remaining elements of z⁄, this completes the proof of optimality of z⁄

for strictly convex d(¢)’s. The optimality of z⁄ for merely convex functions directly

follows by the use of Lemma 5.

The following lemma proves the feasibility of z⁄.

Lemma 8 The N-vector z⁄ found by the open-loop algorithm meets the constraints

of POL.

Proof z⁄’s components are, by construction, integer and non-negative. To show

that they meet the deadline constraints, two possible cases need to be considered

Case 1: j • |̂ ¡ k. In this case we have,

jX
i=1

z⁄
i =

jX
i=1

„
M|̂

|̂

”
= j

„
M|̂

|̂

”
• j

M|̂

|̂
• j

Mj

j
= Mj

Case 2: |̂ ¡ k < j • |̂. In this case we have

jX
i=1

z⁄
i =

jX
i=1

„
M|̂

|̂

”
+

jX

i=|̂¡k+1

1 = j

„
M|̂

|̂

”
+ (j ¡ |̂ + k)
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= j

µ
M|̂

|̂
¡ k

|̂

¶
+ (k ¡ |̂ + j)

• Mj + j

µ
k ¡ |̂ + j

j
¡ k

|̂

¶

= Mj +
(|̂ ¡ j)(k ¡ |̂)

|̂
• Mj

The last inequality is due to the fact that k < |̂ and |̂ ‚ j.

Note that this lemma proves the feasibility of the bit assignments in the flrst

round of the algorithm. However, since at every round of the algorithm, the exact

same procedure is followed, the same result applies for the next rounds, and there-

fore, the entire bit assignment is in fact feasible. In the following lemma, we prove

the optimality of z⁄.

Lemma 9 For a strictly convex function d(¢), the |̂-vector z⁄ found in the flrst

round of the open-loop algorithm minimizes G|̂(z) =
P|̂

j=1 g(zj) among all |̂-vectors

z for which (3.4) holds.

Proof Let Z be the set of all (non-negative) integer N -vectors for which (3.4)

holds. Let Z1 be a subset of Z, for each member of which the difierence between

any two of its elements does not exceed a unit. In other words,

Z1 = fz 2 Z j 8 i; j • |̂ ; jzi ¡ zjj • 1g

Then z⁄ 2 Z1, and furthermore for all z 2 Z1 we have,

G|̂(z) = kg(a + 1) + (|̂ ¡ k)g(a) = G|̂(z
⁄)
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where a = bM|̂=|̂c. This is true since any vector in Z1 must have k elements with

the value a + 1, and |̂ ¡ k elements with the value a.

Let z0 2 Z ¡ Z1. Then z0 must have some elements, i and j, for which

z0
i ¡ z0

j > 1. Deflne a new vector z00 2 Z which has the same elements as z0 except

that z00
i = z0

i ¡ 1, and z00
j = z0

j + 1. Then, since g(¢) is strictly convex and z0
i ¡ z0

j > 1,

using Lemma 1, we have

G|̂(z
0) ¡ G|̂(z

00) = g(z0
i) ¡ g(z0

i ¡ 1) + g(z0
j) ¡ g(z0

j + 1)

> 0

Therefore, G|̂(z
00) < G|̂(z

0) and no vector in Z ¡ Z1 can be optimum. Since we

are minimizing G|̂(z) over the set Z with a flnite cardinality, at least one optimum

solution must exist. This optimum cannot be in Z ¡ Z1, and therefore, it must be

in its complement, Z1. Since G|̂(z) = G|̂(z
⁄) for all z 2 Z1, G(z⁄) is the minimum

and z⁄ is a minimizer.

It should be noted here that the optimum solution found by the open-loop

algorithm is independent of the form of the distortion function.

Numerical evaluation of the performance of the optimal open-loop policy is

included in Section 3.4.

3.3.3 Suboptimal Closed-Loop Policy

In this section we present a computationally inexpensive closed-loop algorithm

that improves the performance compared to the optimal open-loop policy. In order
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to do this, we employ the idea of Certainty Equivalent Controllers [36].

The certainty equivalent controller (CEC) is a suboptimal control scheme that

applies, at each stage, the action that would be optimal if the random quantities

were flxed at some \typical" value. The way we apply this to our problem is to

flnd at each time slot t what would be the optimum total number of bits of each

packet to be transmitted from t on, denoted by yi(t), if we flxed the random variable

bi(T ) to its conditional expected value, E[bi(T )jbi(t)] = bi(t) + pyi(t). Once we flnd

the optimum values of yi(t), for i = 1; : : : ; N , we need to flnd some scheduling

policy, ˆ(¢) that determines s(t), the index of the symbol of which one bit will be

transmitted at time t, based on y(t). In other words,

s(t) = ˆ(y(t))

where y(t) = [y1(t) ¢ ¢ ¢ yN(t)]. So the algorithm will consist of two parts. In the flrst

part, at every time t, we solve the following minimization problem

min
y1(t);:::;yN (t)

NX

i=l(t)

d(bi(t) + pyi(t))

subject to

yi(t) ‚ 0 ; i = l(t); : : : ; N

jX

i=l(t)

yi(t) • mj(t) ; j = l(t); : : : ; N

where l(t) = minfijmi(t) > 0g is the smallest unexpired index. In the second part

of the algorithm, we use the y(t) found in the flrst part to determine s(t) = ˆ(y(t)).

71



The value of bi(t) depends on bi(t¡1) as well as s(t), and therefore, the vector

b(t) depends on the transmission policy and cannot take just any value. We assume

that the scheduling policy ˆ(¢) is such that at any given time t we have

bi(t) ‚ bi+1(t); for i = l(t); ¢ ¢ ¢ ; N ¡ 1

This assumption matches our intuition since for any two consecutive unexpired

symbols, the flrst symbol expires no later than the second one, and therefore there is

no reason to send more bits of the second one when there has been fewer successful

prior transmissions of the flrst one. As we will see later, it is possible to flnd

scheduling policies with the aforementioned property, and furthermore, these policies

have near optimal performance. In the following, we will flrst flnd an optimum

value for y(t). We will next propose some heuristic scheduling policies to flnd

s(t) = ˆ(y(t)).

3.3.3.1 Part I : Finding y(t)

For the time being we drop the index t from the above variables and simply

refer to yi(t), bi(t), mi(t), and l(t) as yi, bi, mi, and l, respectively. Let xi = bi +pyi.

We can rewrite the problem in terms of xi as follows

PCEC
:

min
xl;:::;xN

NX

i=l

d(xi) (3.5)
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subject to

xj ‚ bj ; j = l; : : : ; N

jX

i=l

xi • Cj ; j = l; : : : ; N

Where bl ‚ bl+1 ‚ ¢ ¢ ¢ ‚ bN ‚ 0, and Cj =
Pj

i=l bi + pmj, for j 2 fl ¢ ¢ ¢ Ng. We

refer to this problem as PCEC hereafter. Note that aside from the nonzero lower-

bound constraints on xi’s, this is exactly the same problem as PBasic, with °i = 1

for i 2 f1 ¢ ¢ ¢ Ng. Applying the base algorithm to the above problem will result in

non-negative xi’s, but it does not guarantee that the lower bound constraints on xi

are met.

In what follows, we will flrst flnd the unique solution to the simple problem

of flnding the n-vector x⁄ which minimizes
Pn

i=1 d(xi) with a strictly convex d(¢),

if instead of the deadline constraints of PCEC we only have the equality constraint

of
Pn

i=1 xi = C. We next show that if n = |̂ = maxfargminjfCj

j
gN

j=1g, the |̂-vector

x⁄ will also meet the deadline constraints of PCEC. We then proceed by showing

that a necessary condition for a vector x⁄ to solve PCEC is to have
P|̂

i=1 xi = C|̂.

We flnally use these results to flnd the unique optimum solution to PCEC and then

extend the results to the case where d(¢) is merely convex.

For simplicity of presentation and without loss of generality, throughout the

following proofs we set l = 1.

73



Lemma 10 Consider the following minimization problem.

min
x1¢¢¢xn

nX
i=1

d(xi)

subject to
nX

i=1

xi = C (3.6)

xi ‚ bi; i = 1 ¢ ¢ ¢ n (3.7)

where C ‚ Pn
i=1 bi is a constant, b1 ‚ b2 ‚ ¢ ¢ ¢ ‚ bn, and d(¢) is a strictly convex

function. Then x = x⁄ deflned below, uniquely solves this problem.

x⁄
k =

8
>><
>>:

bk ; k • k̂C
n

„C
n (k̂C

n ) ; k̂C
n < k • n

where

„C
n (k) =

C ¡ Pk
i=1 bi

n ¡ k

and k̂C
n = minfk j bk+1 < „C

n (k)g.

Proof To prove the optimality of x⁄, we need to show that it meets the constraints

and minimizes the distortion. To show that it meets (3.6), we can write

nX
i=1

x⁄
i =

nX
i=1

x⁄
i =

k̂C
nX

i=1

bi + (n ¡ k̂C
n )„C

n (k̂C
n )

=

k̂C
nX

i=1

bi + C ¡
k̂C

nX
i=1

bi = C
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and it meets (3.7) trivially for k • k̂C
n , and for k > k̂C

n by deflnition of k̂C
n we have

xk = „C
n (k̂C

n ) > bk̂C
n+1

‚ bk

To prove the optimality of x⁄, let the n-vector x0 6= x⁄ solve the problem.

Then there must be some element {̂ < n for which x0
{̂ > x⁄

{̂ = maxfb{̂; „C
n (k̂C

n )g. On

the other hand, since x0 must meet (3.6) and (3.7), there must exist another element

~{ > k̂C
n such that x0

~{ < x⁄
~{ = „C

n (k̂C
n ). Deflne a new vector x00 as follows

x00
i =

8
>>>>>><
>>>>>>:

x0
{̂ ¡ – ; i = {̂

x0
~{ + – ; i = ~{

x0
i ; otherwise

where 0 < – < x0
{̂ ¡ maxfb{̂; „C

n (k̂C
n )g. Then, due to the strict convexity of d(¢), we

have
Pn

i=1 d(x00
i ) <

Pn
i=1 d(x0

i), hence a contradiction.

Lemma 11 Let |̂ = maxfargminjfCj

j
gN

j=1g. Then the n-vector x⁄ deflned in Lemma

10 meets the flrst n constraints of PCEC, when n = |̂ and C • C|̂.

Proof We want to show

jX
i=1

x⁄
i • Cj; 8j < |̂

For j • k̂C
|̂ , we have

jX
i=1

x⁄
i =

jX
i=1

bi • Cj
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For j > k̂C
|̂ , by deflnition of x⁄ we have

jX
i=1

x⁄
i =

k̂C
|̂X

i=1

bi + (j ¡ k̂)„C
|̂ (k̂C

|̂ )

=

k̂C
|̂X

i=1

bi + (j ¡ k̂C
|̂ )

C ¡ Pk̂C
|̂

i=1 bi

|̂ ¡ k̂C
|̂

•
k̂C

|̂X
i=1

bi + (j ¡ k̂C
|̂ )

C|̂ ¡ Pk̂C
|̂

i=1 bi

|̂ ¡ k̂C
|̂

•
k̂C

|̂X
i=1

bi + (j ¡ k̂C
|̂ )

Cj ¡ Pk̂C
|̂

i=1 bi

j ¡ k̂C
|̂

= Cj

where the flrst inequality is because C • C|̂, and the second and last inequality

follows from
C|̂

|̂
• Cj

j
, which itself is true by deflnition of |̂.

Lemma 12 If an N-vector x⁄ solves PCEC for a strictly convex and decreasing d(¢),

we must have
|̂X

i=1

x⁄
i = C|̂

where |̂ = maxfargminjfCj

j
gN

j=1g, as in Lemma 11.

Proof Let
P|̂

i=1 x⁄
i = C. If C 6= C|̂, then C < C|̂ or x⁄ will not be feasible. Note

that as long as the sum, C, of the flrst |̂ elements of x⁄ is flxed, the particular choice

of each of those elements will not afiect the feasibility of the rest of the elements,

i.e., those with j > |̂. Therefore, given the sum C, we can determine the optimum

value of each of the elements 1 through |̂ by choosing them such that
P|̂

j=1 d(x⁄
j) is

minimized, and the flrst |̂ inequalities are met. Using Lemmas 10 and 11, the flrst
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|̂ elements of x⁄ are given by

x⁄
k =

8
>><
>>:

bk ; k • k̂C
|̂

„C
|̂ (k̂C

|̂ ) ; k̂C
|̂ < k • |̂

Let – be such that 0 < – < minfC|̂ ¡ C;
C|̂

|̂
¡ x⁄

|̂ g. Deflne a new vector x0 such that

x0
i =

8
>><
>>:

x⁄
|̂ + – ; i = |̂

x⁄
i ; i 6= |̂

If x0 is feasible, since d(¢) is decreasing,
PN

i=1 d(x0
i) <

PN
i=1 d(x⁄

i ) and we reach a

contradiction. Otherwise, let ~| > |̂ be the smallest index for which
P|̂

i=1 x0
i > C~|.

Then there must be some ~{ such that |̂ < ~{ • ~| and x0
~{ > x⁄

|̂ + –; otherwise we have

x0
i • x⁄

|̂ + – <
C|̂

|̂
, for all i such that |̂ < i • ~|. Therefore,

~|X
i=1

x0
i =

|̂X
i=1

x0
i +

~|X

i=|̂+1

x0
i < C|̂ + (|̂ ¡ ~|)

C|̂

|̂

= |̂
C|̂

|̂
+ (|̂ ¡ ~|)

C|̂

|̂
= ~|

C|̂

|̂
< ~|

C~|

~|
= C~|

Deflne a new vector x00 as follows

x00
i =

8
>>>>>><
>>>>>>:

x⁄
|̂ + – ; i = |̂

x⁄
~{ ¡ – ; i = ~{

x⁄
i ; otherwise

Note that x⁄
~{ ¡ – > x⁄

|̂ ‚ b|̂ ‚ b~{, and
Pj

i=1 x00
i • Cj. Therefore, x00 is feasible by

77



construction, and furthermore, due to strict convexity of d(¢) we have
PN

i=1 d(x00
i ) <

PN
i=1 d(x⁄

i ), hence a contradiction.

The following algorithm flnds a solution to PCEC at a given time t, for l(t) = l.

In Theorem 3 we will show that the solution found by this algorithm is optimum

when d(¢) is convex and decreasing.

CEC Algorithm: Solving PCEC

1. „j =
Cj

j¡l+1
, 8j 2 fl; ¢ ¢ ¢ ; Ng

2. |̂ = maxfargminjf„jgN
j=lg

3. „|̂(k) =

8
>><
>>:

C|̂

|̂
; k = l ¡ 1

C|̂¡Pk
i=l bi

|̂¡k
; k 2 fl; ¢ ¢ ¢ ; Ng

k̂ = minfk 2 fl ¡ 1; ¢ ¢ ¢ ; Ng j bk+1 < „|̂(k)g

4. Let x⁄
k =

8
>><
>>:

bk ; l • k • k̂

„|̂(k̂) ; k̂ < k • |̂

5. If |̂ < N , let l = |̂ + 1; Ci = Ci ¡ C|̂; 8i ‚ l and go to step 1.

6. y⁄ = (x⁄ ¡ b)=p

Theorem 3 The vector x⁄ found by the CEC algorithm solves PCEC for a convex

and decreasing d(¢).

Proof For a strictly convex d(¢), i.e., d(¢) 2 Dsc, by applying Lemma 12 for a
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given value of l, we get the following necessary condition for a solution x⁄

|̂X

i=l

x⁄
i = C|̂

Then using Lemmas 10 and 11, elements l through |̂ of x⁄ are uniquely given by

x⁄
k =

8
>><
>>:

bk ; l • k • k̂

„|̂(k̂) ; k̂ < k • |̂

where k̂ and „|̂(k̂) are as given in the CEC algorithm. Equivalently, elements l

through |̂ of y⁄ are given by

y⁄
k =

8
>><
>>:

0 ; l • k • k̂

„|̂(k̂)¡bk

p
; k̂ < k • |̂

Once these elements are determined, they can be removed from the problem, and

using the same argument, the rest of the elements of x⁄ (and y⁄) can be derived in

a similar manner, as is done in the CEC algorithm. Therefore, the CEC algorithm

flnds the unique solution to PCEC when d(¢) 2 Dsc. Furthermore, using Lemma 5, we

can conclude that x⁄ also solves PCEC for a merely convex d(¢), i.e., when d(¢) 2 Dc.

Note that in this case the solution is not necessarily unique.

The CEC algorithm, flnds the real-valued solution vector y⁄(t). The overall

algorithm is given by what we call the Closed-Loop Algorithm as follows.
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Closed-Loop Algorithm

1. Let t = 1, and bi(t) = 0; mi(t) = Mi; i 2 f1; : : : ; Ng

2. l(t) = minfijmi(t) > 0g

3. Find y⁄(t) using the CEC algorithm

4. s(t) = ˆ(y⁄(t))

5. Set bs(t+1) = bs(t) + 1, and mi(t + 1) = mi(t) ¡ 1, for i 2 fl(t); : : : ; Ng

6. Set t = t + 1. If t < T = MN + 1, go to step 2.

The optimum value of s(t) can be directly calculated from the integer-valued

solution of the problem, if available. But the optimum integer-valued solution in

fact depends on the form of the distortion function (and not just its convexity) and

flnding this solution can be computationally costly. Since the CEC algorithm is a

heuristic algorithm, it does not make sense to go through the computation cost of

flnding the best integer solution, as it may not still help in getting a better flnal

solution to the problem. Therefore, in the following subsection we propose difierent

heuristics to calculate s(t) = ˆ(y(t)) and numerically evaluate their performance

in Section 3.4. As it was explained earlier, ˆ(¢) should be such that for every t,

bi(t) ‚ bi+1(t); i 2 fl(t); : : : ; Ng.
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3.3.3.2 Part II : Finding s(t) = ˆ(y⁄(t))

In the following, we will provide two difierent heuristics for the scheduling

policy ˆ(¢). We will show that these heuristics have the following property

bi(t) ‚ bi+1(t); i 2 fl(t); : : : ; Ng (3.8)

given that the initial vector b(1) has the above property.

Policy CEC1: ˆ1(¢)

In this case, s(t) is given by

s(t) = min

‰
argmax

i
fyi(t)gj⁄

i=l(t)

¾

where j⁄ = minfj j Pj
i=l(t) yi(t) ‚ 1g.

Lemma 13 If ˆ(¢) = ˆ1(¢) in the Closed-Loop algorithm, inequality (3.8) holds for

all t • T .

Proof We carry out the proof by induction. First, note that for t = 1, bi(t) = 0 for

all i, and therefore, (3.8) holds. Next, if (3.8) holds for a given t, if the transmission

fails, we have b(t+1) = b(t) and therefore the inequality is met at t+1. If, however,

the transmission is successful, we have

bi(t + 1) =

8
>><
>>:

bi(t) + 1 ; i = s(t)

bi(t) ; i 6= s(t)
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therefore, at time t + 1 we only need to show that bi(t + 1) ‚ bi+1(t + 1); for i =

s(t) ¡ 1, or equivalently bs(t)¡1(t) ‚ bs(t)(t) + 1. Since b(t) is an integer vector, this

is equivalent to having

bs(t)¡1(t) > bs(t)(t)

On the other hand, j⁄ • |̂, since

|̂X

i=l

y⁄
i (t) =

P|̂
i=l x⁄

i (t) ¡ P|̂
i=l bi(t)

p
=

C|̂ ¡ P|̂
i=l bi(t)

p

=
pm|̂

p
= m|̂ ‚ 1

and therefore,

y⁄
k(t) =

8
>><
>>:

0 ; l(t) • k • k̂

„|̂(k̂)¡bk(t)

p
; k̂ < k • j⁄

thus, argmaxifyi(t)gj⁄
i=l(t) = argminifbi(t)gj⁄

k̂+1
, and hence

s(t) = min

‰
argmin

i
fbi(t)gj⁄

k̂+1

¾

This means that we either have s(t) = k̂ + 1 if all the bi(t)’s are equal for i 2

fk̂ + 1; : : : ; j⁄g, in which case bs(t)(t) = bk̂+1(t) • „|̂(k̂) < bk̂(t) = bs(t)¡1(t); or else,

if bi(t)’s are not all equal, s(t) must be such that bs(t)(t) < bs(t)¡1(t).
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Policy CEC2: ˆ2(¢)

In this case, s(t) is given by

s(t) =

8
>><
>>:

j⁄ ; j⁄ • |̂

minfjjyj(t) ‚ 0g ; j⁄ > |̂

where

j⁄ = min fijyi(t) ‚ 1g

Lemma 14 If ˆ(¢) = ˆ2(¢) in the Closed-Loop algorithm, for any t • T , inequality

(3.8) holds.

Proof If j⁄ > |̂, s(t) = k̂ + 1 and we have bs(t)(t) = bk̂+1(t) • „|̂(k̂) < bk̂(t) =

bs(t)¡1(t). If j⁄ • |̂, then j⁄ > k̂ and

ys(t)(t) = yj⁄(t) ‚ 1 > yj⁄¡1(t) = ys(t)¡1(t)

therefore,

„|̂(k̂) ¡ bs(t)(t)

p
>

„|̂(k̂) ¡ bs(t)¡1(t)

p

so, bs(t)(t) < bs(t)¡1(t).

3.4 Numerical Results

In this section we compare the performance of the difierent algorithms dis-

cussed in the previous sections. The distortion function is assumed to be given
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by

d(R) = 2¡2R

which is the distortion-rate function when the source symbols are i.i.d. and are

drawn according to a Gaussian distribution. Given this distortion function, in the

open-loop case, the expected distortion is given by

E[d(bi)] =

µ
1 ¡ 3p

4

¶zi

which is, as expected, a convex function of zi. For flnding the actual optimum

solution, we use exhaustive search.
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Figure 3.4: Comparison of the optimum distortion with the open-loop policy and
the CEC policies for M = [2 8 9 9]

Figure 3.4 shows a comparison between the optimum solution, the open-loop

algorithm, and the difierent heuristics for the CEC algorithm, for the case where N =
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4 and M = [2 8 9 9] is the vector of deadlines. As we see here, the performance of

the CEC algorithm for the discussed heuristics is very close to the optimal solution.
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Figure 3.5: Performance evaluation of the open-loop policy and the CEC policies
for N = 4 and MN = 9

To do a more thorough evaluation of these algorithms, in Figure 3.5 we have

considered all possible cases when N = 4 and MN = 9, and have calculated the

average expected distortion achieved by all the suboptimal algorithms discussed. In

other words, we have solved the problem for all possible values of M = [M1 M2 M3 9]

where Mi • Mi+1. So for every given policy …, we have calculated

D… ¡ Dopt =
1

n

9X
M3=1

M3X
M2=1

M2X
M1=1

(E[D…] ¡ E[Dopt])

where n = 165 is the number of terms in the expression above, and … is the subop-

timal policy, which can be either of the Open-Loop, CEC1, and CEC2 policies. As
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we see in this case, the CEC policies signiflcantly outperform the Open-Loop policy.

Furthermore, with very low computational cost, the union of these heuristics can

be used to keep the distortion achieved by the CEC algorithm within about 0:004

of the optimum distortion, or in relative terms, within 5% of the optimum solution

as is shown in Figure 3.6.
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Figure 3.6: D…¡Dopt

Dopt
: Relative difierence between the suboptimal policies and the

optimum policy, for N = 4 and MN = 9
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Chapter 4

Conclusion and Future Work

We considered two difierent problems and studied the difierent cross-layer

issues that arise due to the distortion-delay tradeofi in communication networks.

For both problems, we proposed models that are simple enough to give insight

into the particular tradeofis and cross-layer interactions considered, by eliminating

other factors that might impact the network’s performance. These models make

the problems tractable while retaining a rich set of properties to study. In the

second problem, Distortion-Control for Streaming Delay-Sensitive Applications, the

simplicity of our models enabled us to derive some generalized analytical results,

which distinguishes our work from other related works in the literature [27, 28].

Despite the simplifying modeling assumptions, in some cases we had to resort to

simulations and heuristics for our analysis, which furthermore asserts the need for

such assumptions. These models still ofier many opportunities for future work, which

can build upon the insights gained form our results. In the following sections, we

summarize the contributions of each problem and discuss possible future directions.

4.1 Source-Coding and Parallel Routing

In Chapter 2, we presented a joint optimization problem that considers the

efiects of both coding and network parameters in minimizing the achieved distortion
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for delay-sensitive sources. In essence, we provided an illustration of a cross-layer

interaction that contributes to the bridging between Networks and Information The-

ory. Our analysis shows that a smart encoding scheme that is done consciously of

the routing can signiflcantly contribute to lower the achieved distortion. Additional

improvement can be expected if the switching module is intelligent enough to drop

packets that have passed their deadline.

We outlined a trade-ofi between packet delay and average distortion. The av-

erage distortion is a decreasing function of the encoding rate; however, the encoding

rate, which translates to packet length, in turn, determines the delay experienced

by a packet. Higher encoding rates result in larger packet delays. We showed that

there exists an optimal value for the encoding rate that signiflcantly impacts the

achieved distortion.

To obtain our results, we assumed the source to be memoryless and Gaussian;

and we used the rate-distortion bounds obtained by Ozarow [16]. For a general

memoryless source, explicit inner and outer bounds for the multiple description

rate-distortion region have been found in [37]. These bounds maintain the form

provided by Ozarow; therefore, we expect our analysis to be also applicable for any

memoryless source.

Further studies need to be done to flnd the applicability of the results obtained

in more realistic and complex networks (e.g., multi-hop, channel with noise, etc.).

Moreover, we studied the case of double description coding. Our analysis can be

further generalized for more than two encoders (i.e., Multiple Description Coding).

The achievable rate-distortion bounds for such encoders have been found in [38].
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4.2 Distortion Control for Streaming of Delay-Sensitive Sources

In Chapter 3, we studied optimum streaming of delay-sensitive data over both

error-free and packet-erasure channels. We found an optimum transmission policy

for the case of error-free channel, and showed that this policy is independent of

the particular form of the distortion function when it is convex and decreasing. In

the case of packet-erasure channel, we proposed an open-loop transmission policy

and proved that when the rate-distortion function is convex, this policy is optimum

among the set of all open-loop policies. While the general optimum policy for packet-

erasure channels depends on the form of the rate-distortion function and flnding it

is usually computationally costly, our open-loop policy is independent of the form

of the distortion function and is computationally inexpensive. We then proposed an

e–cient heuristic policy, which we called the CEC algorithm. We showed through

numerical evaluations that the CEC policy not only outperforms the open-loop

policy, but also has near optimal performance.

Further improvements to the performance of the CEC policy can be achieved

by the use of what is called policy improvement. An example of policy improvement

that is applicable to our problem is a one-step lookahead policy called the \rollout"

policy [36], which at every step uses a heuristic policy (here the CEC algorithm)

to calculate the cost-to-go from the next step to the end of the session for all the

difierent possible actions that could be taken at the current state. It then picks the

action with the smallest cost-to-go.

We considered streaming applications, for which the entire content is available
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at the transmitter at the beginning of the session. Since the CEC algorithm bases

its decisions on the number of source symbols that are available for transmission and

their deadlines, we expect the CEC results to be extendible, with some modiflcation,

to the case where there are arrivals to the network.

Finally, a natural extension of this line of research can be carried out into a

network coding framework by considering the distortion as the performance criterion

as opposed to the traditional throughput criterion.
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Appendix A

A.1 Distortion Control for Streaming Delay-Sensitive Sources:

Queue with Deterministic Arrivals

Consider a case where packets arrive at the queue according to a given deter-

ministic arrival schedule. Assume that the transmit opportunities occur periodically

every T seconds and B bits can be sent at every transmit opportunity. Assume fur-

thermore that upon arrival, all packets can wait a maximum of m transmit oppor-

tunities before they expire and that they all have the same packet length °. These

assumptions are not crucial to the solution and are made to simplify the argument.

We denote by ai the number of packets that arrive during the ith time slot. Since

all packets that arrive in the same time slot have the same packet length and same

deadline, the optimum number of bits transmitted for these packets should be equal.

We denote by yi the number of bits transmitted of every packet that has arrived in

the ith time slot. The following is a summary of the aforementioned variables:

We would like to minimize the total distortion for the packets arriving in the

flrst N time slots, i.e.,

min
y

NX
i=1

aid(yi)
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subject to

0 • yi • °; i = 1 ¢ ¢ ¢ N

and
jX

i=k

aiyi • (m + j ¡ k)B; k = 1 ¢ ¢ ¢ N; j = k ¢ ¢ ¢ N

If we set k = 1 in the second set of constraints, it ensures that all packets arrive

before their deadline. Setting k > 1 in these inequalities ensures that the solution

would not require us to send packets before they arrive at the queue.

If the cost function is strictly convex, the optimum solution can be derived in

a similar manner as in the case with no arrivals. Namely, if we deflne „jk as follows,

„jk =
(m + j ¡ k)BPj

i=k ai

; k = 1 ¢ ¢ ¢ N; j = k ¢ ¢ ¢ N

then the following algorithm flnds the optimum values of yi’s for this problem.

Optimum Algorithm for Deterministic Arrivals Case

1. Let I = f1; : : : ; Ng, Î = ;, Jk = fk; : : : ; Ng for k 2 I, and M = f„jkgk2I;j2Jk

2. Let z = minf°; min(M)g

3. If ° = z, then set yi = z for every i 2 I. STOP.

4. For every pair (k̂; |̂) such that „ĵk̂ = z, set y⁄
i = z, 8i 2 fk̂; : : : ; ĵg \ I,

5. Set I = I ¡ fijy⁄
i = zg , and Î = Î [ fijy⁄

i = zg

Set Jk = Jk \ I, 8 k 2 I, and J = J \ I
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Set „jk =
(m+j¡k)B¡Pj

i=k y⁄
i ¢I(i2Î)Pj

i=k ai¢I(i2I)
, 8 k 2 I; j 2 Jk

Set M = f„jkgk2I;j2Jk

6. Go back to step 2.

It should be noted that this solution can be easily extended to the cases where we

have aperiodic transmit opportunities or difierent packet lengths.
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A.2 Distortion Control for Streaming Delay-Sensitive Sources:

Channel with Noise

Let us assume that for every y bits transmitted, only Z(y) bits are received

error-free according to a given distribution fZ(y)(z) where z 2 [0; y]. Deflne g(y) =

E[d(Z(y))]. We want to minimize

NX
i=1

E[d(Z(yi))] =
NX

i=1

g(yi)

subject to

yi • °i; i = 1 ¢ ¢ ¢ N

iX
j=1

yj • Mi; i = 1 ¢ ¢ ¢ N

If for a given distribution we can show that g(¢) is convex, then we can use the base

algorithm to flnd the optimum transmitted packet lengths. For example, since the

bits in yi are arranged in decreasing utility order, it is reasonable to assume that the

most signiflcant bit that is afiected by noise is the one that determines the distortion

in the received codeword as shown in Figure A.1.

We can deflne the random variable Z(y) as Z(y) = y ¡ n̂, where n̂ is the most

signiflcant bit of y afiected by noise. For a binary symmetric channel with crossover
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Figure A.1: Most signiflcant bit afiected by noise determines the distortion in the
received packet. d(y) is the distortion of the transmitted packet and d(z) is the
distortion of the received packet

probability p the distribution of Z(y) can be written as follows

fZ(y)(z) =

8
>>>>>><
>>>>>>:

p(1 ¡ p)z ; z < y

(1 ¡ p)z ; z = y

0 ; otherwise

Then

g(y) = E[d(Z(y))] = d(y)(1 ¡ p)y +

y¡1X
z=0

d(z)p(1 ¡ p)z (A.1)

Lemma 15 If d(¢) is decreasing and convex, g(¢) given by (A.1) is also decreasing

and convex.

Proof If d(¢) decreasing, we have

g(y) ¡ g(y + 1) = d(y)(1 ¡ p)y + p

y¡1X
z=0

d(z)(1 ¡ p)z ¡ d(y + 1)(1 ¡ p)y+1

¡p

yX
z=0

d(z)(1 ¡ p)z

= d(y)(1 ¡ p)y ¡ d(y + 1)(1 ¡ p)y+1 ¡ pd(y)(1 ¡ p)y

= d(y)(1 ¡ p)y+1 ¡ d(y + 1)(1 ¡ p)y+1 > 0
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and therefore, g(¢) is also decreasing.

To prove that g(¢) is convex, we must show g(y) ¡ g(y + 1) • g(y ¡ 1) ¡ g(y).

We have

g(y)¡g(y+1)¡g(y¡1)+g(y) = (1¡p)y+1[d(y)¡d(y+1)]¡(1¡p)y[d(y¡1)¡d(y)]

If d(¢) is convex, we have d(y)¡d(y+1) • d(y¡1)¡d(y). Since (1¡p)y+1 • (1¡p)y

for 0 • p • 1, therefore

g(y) ¡ g(y + 1) ¡ g(y ¡ 1) + g(y) < 0

and the proof is complete.

Therefore, for the example above, we can use the base algorithm of Section

3.2 to flnd the optimum packet lengths. Note that this will determine the optimum

packet lengths ofi-line and does not use a feedback to determine which bits are

afiected by noise. Therefore the solution found is only optimum among the open-

loop solutions and can be improved in presence of feedback.
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