
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Robust Routing with Unknown Traffic Matrices

by Vahid Tabatabaee, Abhishek Kashyap,
Bobby Bhattacharjee, Richard La, Mark Shayman

TR 2006-9

1

Robust Routing with Unknown Traffic Matrices
Vahid Tabatabaee, Abhishek Kashyap, Bobby Bhattacharjee, Richard J. La, Mark A. Shayman

University of Maryland, College Park, MD 20742, USA
Email: �vahid@cs, kashyap@eng, bobby@cs, hyongla@eng, shayman@eng�.umd.edu

Abstract— In this paper, we present an algorithm for intra-
domain traffic engineering. We assume that the traffic matrix,
which specifies traffic load between every source-destination pair
in the network, is unknown and varies with time, but that always
lies inside an explicitly defined region. Our goal is to compute
a fixed robust routing with best worst case performance for all
traffic matrices inside the bounding region.

We formulate this problem as a semi-infinite programming
problem. Then, we focus on a special case with practical merits,
where (1) the traffic matrix region is assumed to be a polytope
specified by a finite set of linear inequalities, and (2) our objective
is to find the routing that minimizes the maximum link utilization.
Under these assumptions, the problem can be formulated as a
polynomial size linear programming (LP) problem with finite
number of constraints. We further consider two specific set of
constraints for the traffic matrix region. The first set is based on
the hose model and limits the total traffic rate of network Point
of Presence (PoP) nodes. The second set is based on the pipe
model and limits the traffic between source-destination pairs. We
study the effectiveness of each set of constraints using extensive
simulations.

Using simulation results on Rocketfuel topologies, we study
and discuss effectiveness and characteristics of the proposed
algorithm for real world network topologies. Simulation results
show that robust routing is promising, and the number of
paths required is limited and manageable. They also show the
combination of hose and pipe model constraints can further
enhance the performance.

I. INTRODUCTION

We present a traffic engineering algorithm for cases when
the precise traffic load is not known. This is contrary to
common approaches for traffic engineering [7], [11], which
assume that the traffic load in the network is known or can
be measured. Relying on precise knowledge of the traffic
matrix enables nice provably optimal solutions [19]. However,
in practice, traffic demands between nodes change contin-
uously. With the increasing popularity of higher bandwidth
applications (e.g., file swarming [22], online- and offline-
video distribution), traffic patterns are more volatile even in
the aggregate. Further, multi-homed customers cause abrupt
changes in aggregate traffic by shifting traffic between net-
works [21]. Hence, traffic engineering schemes that require
precise knowledge of the current traffic matrix must rely on on-
line monitoring [18], and update their routes as traffic changes.
These distributed load-based updates can lead to complexity
and even network instability problems [14].

The alternative is to use a fixed routing that does not adapt
to the traffic changes. In fact, most deployed networks fall
into this category, and the (fixed) routing usually optimizes a
static metric, such as hop count. In this paper, we describe
an algorithm (called robust routing) that produces a single
routing that does not change over time. In our solution, we

incorporate readily available unchanging information about
the traffic as follows: Even though instantaneous traffic is
variable and demands unpredictable, certain information, e.g.
maximum possible demand between two nodes or specific
link capacities, is available and unchanging. Indeed, this
information was the basis of the “hose” model [6]. In our
solution, we assume that while the current (time-varying)
traffic matrix is unavailable, the network provider is able
to supply an upper bound on the traffic rate between each
source-destination pair and total outgoing (incoming) traffic
rate of a source (destination) node. This feasible region can be
derived (loosely) using link/gateway capacities; finer grained
information, which will result in better performance, can be
derived using traffic history, existing SLAs, etc.

Instead of tailoring the routing exactly to a given traffic
matrix, we find a single routing that works “reasonably” well
for all traffic matrices within a feasible region. In particular,
for a given cost function (say link utilization), our solution
finds the routing that minimizes maximum cost over all traffic
matrices inside the feasible region. Finding a single feasible
“good” routing given some demand information is an active
area of research, with Oblivious Routing [3], [4] being perhaps
the best known example. Oblivious routing [4] finds the single
path assignment with best relative performance compared to
the best performance possible for any arbitrary traffic matrix.
This is a powerful result; however, oblivious routing does not
provide absolute performance guarantees, which are, arguably,
more important in a production network. It is instructive to
explore this difference between oblivious routing and our work
with an example: Consider a traffic matrix region consisting of
two matrices �� and ��, and let ������� �� be the maximum
utilization when routing � is used with demand matrix �.
Suppose that the optimal routing for �� results in utilization
��������� � ��� and for ��, ��������� � ���. There are two
candidate routings �� and �� with following performances:
�������� ��� � ����, �������� ��� � ���, �������� ��� �
���, �������� ��� � ��	. The oblivious ratio for �� is 1.75
(0.7/ 0.4) and for �� it is 1.5 (0.6/0.4). In this case, oblivious
routing will select ��, whereas �� is clearly preferable in a
real network, since using �� allows us to admit demand ��
without loss. We discuss oblivious routing and other newer
related work in detail in Section III.

Solution Overview: We assume a source-based multi-path
routing model in this paper. To describe the routing com-
pletely, for each source-destination pair, we have to specify
each source-destination path, and a fraction of traffic that is
sent through each path. General multi-path robust routing can
be formulated as a semi-infinite programming problem. We
focus on a special case where cost function is maximum link

2

utilization and the traffic feasible region is a polytope specified
by a finite set of linear constraints. Our linear constraint set
derives directly from the well-understood hose and pipe model
constraints.

Instead of the usual link-flow-based solution approach [16],
we introduce a path-flow-based formulation. This path-based
approach enables us to explicitly control some characteristics
of the paths that are used for routing. For instance, we can
limit maximum hops of a path, force paths to visit (or not to
visit) certain links or node, or use only disjoint paths. We can
also find the optimal load distribution among a given set of
paths. It also gives us a simple way to augment the original
path set with new paths to cope with partial network failures.

We consider both hose and pipe model constraints in our
formulation. Using simulation results, we show that insertion
of pipe model constraints can further improve the performance,
or at least reduce sensitivity of the performance to routing
parameters.

Our contributions in this paper are as follows:

1) We develop a path-flow-based polynomial sized LP and
an iterative simple column generation algorithm for
robust routing.

2) We consider both the hose and pipe model constraints
for the traffic feasible region and study the added value
of pipe model constraints.

3) We provide a framework for considering solutions that
are robust to both traffic variations and failures in
the network, and evaluate our solution using detailed
simulations.

Roadmap: The rest of the paper is structured as follows.
In section II, we describe the notation and traffic models. In
section III, we review the related work. In Section IV, we first
introduce a general formulation for the robust routing problem.
For the linear case, with both hose and pipe model constraints,
we convert the problem to a finite size LP. In Section V, using
a column generation scheme, we reformulate the problem as
a path-flow-based network flow problem. Based on the new
formulation, we provide an iterative algorithm that updates the
path set in each step and ultimately converges to the optimal
solution. In Section VI, we explain how to take advantage of
the path-based formulation in order to find alternate paths to
cope with link failures. In Section VII, we study performance
and characteristics of the algorithm on multiple tier-1 ISP
topologies from Rocketfuel project. In particular, we study
effectiveness and sensitivity of the solution to (1) the pipe
model constraints and (2) link failures. Finally, we conclude
and propose future work in Section VIII.

II. ASSUMPTIONS AND NOTATION

We consider a network � � ����� with node set � and
directed link set �. The network graph has � nodes and
	 links. The capacity of link
 is ��. ��
� is the set of
incoming links to node
 and ��
� is the set of outgoing
links from node
. The traffic matrix element � �� specifies
traffic rate that network should transfer between source node

 and destination node �. Set of source-destination node pairs
is denoted by � and � is the cardinality of � . We assume

that the traffic matrix is variable and unpredictable, however it
always stays inside a region �. We specifically focus on two
type of linear constraints with practical merits to characterize
the traffic region:
Pipe Model Constraints: These constraints specify an upper
bound ��� � � for every entry of the traffic matrix � �� , such
that:

��� � ���
� � � �� � � � � �� (1)

The pipe model constraints can be derived from traffic profiles,
service level agreements, or traffic policing mechanisms.
Hose Model Constraints: These constraints specify an upper
bound �� for total traffic emanating from a source node
, and
an upper bound �� for total traffic being sent to a destination
node �:

��
���

��� � ��
 � �� � � � � ��

��
���

��� � �� � � �� � � � � ��

(2)

Hose model constraints can be derived from physical charac-
teristics of networks such as router capacity, and total capacity
of outgoing and incoming links of a node.

Our performance metric is maximum link utilization, and
our goal is to find a routing that minimizes maximum link
utilization for all traffic matrices in the feasible region �.

For each source-destination pair �
� ��, a routing � can be
defined by a set of unit link flow variables ����
�, that specifies
fraction of traffic that passes through link
. The flow variables
specify a valid routing if they satisfy the flow conservation
constraints:�

������

����
��
�

������

����
� � � � ��
� �

�
������

����
��
�

������

����
� � � � �

(3)

The set of all feasible routings which satisfy (3) for all pairs
�
� �� is denoted by � . We can decompose flow variables
into a set of paths. Alternatively, we can define a routing by
specifying ��� , a set of non-cyclic paths between each source-
destination pair �
� ��, and traffic rate �� for every path � in
��� . The path based formulation provides a valid routing if,

�
�����

�� � � � �
� �� � �� (4)

Number of constraints in a path based formulation is far
less than the link based formulation, however we have to
introduce one variable per path per source-destination pair.
We use a column generation method to avoid introducing all
paths explicitly in our optimization problem. The path based
formulation also enables us to explicitly control some other
characteristics of the routing such as number of paths, number
of hops per path and number of additional paths to cope with
link failures. We will explain these characteristics in more
detail later.

Utilization of link
, ����� ��, is a function of routing � and
traffic matrix � as follows,

����� �� �
�

��	���

����
����
��
�

� (5)

3

TABLE I

OVERVIEW OF RELATED WORK

Algorithm Number of Traffic Matrices Traffic Constraints Size of LP Formulation
Zhang et al. [26] Finite N/A Finite Link-based
Erlebach and Ruegg [8] Infinite Hose Infinite Link-based
Ben-Ameur and Kerivin [5] Infinite Hose and pipe Infinite Path-based
Kodialam et al. [16] Infinite Hose Finite Link-based
Azar et al. [4] Infinite No constraint Infinite Link-based
Applegate and Cohen [3] Infinite Pipe Finite Link-based
This paper Infinite Hose and Pipe Finite Path-based

III. RELATED WORK

Related problems on fixed robust routing for changing and
unpredictable traffic matrices have been considered before.
Zhang et al. [26] consider a finite number of traffic matrices
and find a routing that provides good average and worst case
performance. The hose model for resource management in
virtual private networks (VPN) is introduced in [6], where
single path and tree routing between the VPN endpoints
are considered. Erlebach and Ruegg [8] consider multi-path
routing for bandwidth reservation in the hose model using
link-flow-based formulation. However, the proposed algorithm
is based on solving an LP with infinite number of con-
straints. They use ellipsoid method with a finite size LP as
separation oracle. Even though ellipsoid method is proved to
have polynomial complexity, it is often too slow for practical
purposes. The authors also propose an algorithm using a
cutting-plane approach. The running time of this algorithm
can be exponential in the worst case.

Ben-Ameur and Kerivin [5] also consider routing for a
set of traffic matrices specified by linear constraints. In or-
der to simplify the solution, they have used a conservative
cost function. The cost function is a linear combination of
maximum utilization of all links. Note that each link attains
maximum utilization for a different traffic matrix, hence the
links will not have their maximum utilization simultaneously
in the network. To find the routing, they use an iterative
approach to solve an LP with infinite number of constraints
using a row generation procedure similar to [8]. Prasanna
et al. [23] also consider traffic engineering and routing for
traffic matrix regions specified by linear constraints. However,
their objective is to find upper and lower bounds for the
performance of single path optimal routing for traffic demands
inside the feasible region.

Kodialam et al. [15] and Zhang-Shen and McKeown [27]
propose a two phase routing scheme to make the maximum
traffic rate between every two nodes in the network predictable
and independent of traffic variations. In the first phase, a pre-
determined fraction �� of the incoming traffic at any node
 is
sent to node � independent of the final destination of the traffic.
In the second phase each node routes (relays) packets that it
has received in phase 1 to their final destinations. Kodialam
et al. [16] is perhaps the most relevant paper to the work
presented in this paper. The authors propose polynomial size
LPs to minimize maximum link utilization of two phase and

direct path routing with hose model traffic constraints. Our so-
lution is also a polynomial size LP to minimize maximum link
utilization. However, we consider both hose model and pipe
model traffic constraints, and therefore provide a framework
to study how effective pipe model constraints are in presence
of the hose model constraints. We also introduce a path-based
formulation of the LP, which enables us to explicitly control
some characteristics of the paths that are selected. The path-
based formulation also gives us an appropriate framework to
provision additional paths that we need to cope with failures
in the network. Note that the path-based formulation can be
applied to the two stage routing model in [16], to provide more
control over characteristics of the adopted paths.

Azar et al. [4] introduce the concept of oblivious routing.
Their performance metric for a routing � is relative and it
does not give any guarantee about the absolute performance
of the selected routing. For a routing � , the oblivious ratio is
maximum ratio (over all possible traffic matrices) of maximum
link utilization of routing � over maximum link utilization
of the optimal routing for traffic matrix �. Therefore, each
routing is compared to the best possible routing for each
traffic matrix and the oblivious ratio represents its worst
relative performance. The oblivious routing is the routing
with best oblivious ratio, which means it has the best relative
performance. Applegate and Cohen [3] introduce a polynomial
size LP to find the oblivious routing. In fact, we take a similar
approach to find a polynomial size LP for robust routing.

Oblivious routing is originally defined for unconstrained set
of traffic matrices. It is interesting to note that if for any traffic
matrix � there is a traffic matrix �� � � such that � � ���

for some � � �, then the oblivious routing over the region �
is the same as the oblivious routing over entire traffic matrix
space. Many practical traffic matrix regions, including those
constructed by hose and pipe model constraints, which we
consider in this paper, fall into this category. In other words,
the oblivious routing can not take advantage of these types of
constraints.

IV. LINK-FLOW-BASED FORMULATION

Our goal is to find routing � that minimizes the maximum
cost over all traffic matrices in the region �. The cost function,
��� ��� ��
 � � � � R� is a non-negative real valued
function of the routing � and traffic matrix �. Recall that � is
the set of feasible routings and � is the set of feasible traffic

4

matrices. This problem can be formulated as follows,

��

�� �

����
� is a routing ��
� �� � �

��� ��� �� � �� � �

(6)

The first constraint set is the set of unit flow conservation
constraints described in (3), which guarantee that � is a
feasible routing. The second set of constraints ensures that is
larger than ��� ��� �� for all traffic matrices in the region �.
Hence, for a fixed routing � the minimum possible value for
 is maximum of ��� ��� �� for all � � �. The optimization
problem finds the routing � that minimizes , therefore the
solution would be a minmax routing.

The second set of constraints contains one constraint per
traffic matrix in � which results in infinite number of con-
straints. Therefore, this would be a Semi-Infinite Programming
(SIP) problem. Depending on the structure of the cost function
and traffic region different algorithms are proposed to solve
this problem [13]. The most promising cases appear to be
when the cost function and the traffic region are convex.

In this paper, we focus on a special case with a linear cost
function and a traffic region specified by a set of linear inequal-
ities. More specifically, we consider maximum link utilization
as the cost function. This problem can be formulated as a
linear programming (LP) problem.

��

�� �

����
� is a routing ��
� �� � �

�
�	�

���������

��� � �
 � ! � � � �

(7)

The first set of constraint is exactly the same as in (6). From
(5), the left hand side of the second constraint is utilization
of link
 for traffic matrix �. Therefore, the second set of
constraints guarantees that every link utilization is less than
 for every traffic matrix. Clearly, solution to this LP is the
routing that minimizes maximum link utilization. Since there
are infinite number of matrices � in the polyhedron �, the
optimization problem is a linear semi-infinite programming
(LSIP) problem.

Exchange methods are one class of numerical solutions for
Semi-Infinite programming problems [13]. Instead of solving
(7) with infinite number of constraints we solve a simplified
version of it with finite number of constraints. In each step
a new constraint corresponding to a point � � � is added
to the constraint set and the LP obtained is solved to find a
new routing. Then, we check if the current solution satisfies
all constraints in (7) (even those not included in the simplified
version). In order to do that, for each link
, we compute the
maximum utilization for all traffic matrices in �, by solving

the following LP:

���
�
�	�

���������

���

�� � Dual variables

�
�

��� � ��
 � �� � � � � � "��
�

�
�

��� � �� � � �� � � � � � #��
�

��� � ���
� � � �� � � � � � $���
�

(8)

In this problem, routing (�) is fixed and we find the traffic
matrix in � that causes maximum utilization. For future
reference, we have also introduced dual variables for the LP in
(8). If the maximum utilization computed in (8) for all links

 is less than or equal to the solution of simplified (7), we
are done. Otherwise, we have to add the violating links with
their corresponding traffic matrices as new constraints to the
simplified version of (7) and solve it again.

Note that (8) is a separation oracle for the second set of
constraints in (7), hence (7) has polynomial solvability by
using the Ellipsoid algorithm [10]. In our formulation, we have
considered both hose and pipe model constraints. In fact, we
can add any form of linear constraints to this problem.

We can use the exchange method to solve (6) if the cost
function is convex. However, in that case the separation oracle
would become a concave programming problem, since we
have to maximize a convex function. Unfortunately concave
programming problems are in general NP-hard.

A. Polynomial Size Single LP Formulation

The iterative algorithm presented in the previous section
solves two separate LP problems in each step. It is desirable
to combine these two problems in one single LP and solve the
problem in one step. However, since one of the problems is
minimization and the other is maximization it is not possible
to combine them into a single LP directly. To that end, we use
the dual of second optimization problem and combine it with
the first one. This approach, which basically replaces infinite
number of constraints in the original LP problem with dual of
the separation oracle LP presented in (8) has been used before
in [17] and more recently in the context of oblivious routing
in [3] and link-flow-based robust routing with the hose model
in [16].

For each link
, there are three sets of non-negative dual
variables shown in (8): "��
�, #��
�, $���
�. The dual LP is:

��

�
�

��"��
� �
�
�

��#��
� �
�
��

���$���
�

�� �

"��
� � #��
� � $���
� �
��� ���

���

"��
�� #��
�� $���
� � �

(9)

5

Due to the strong duality of linear programming, the optimal
objective values of (8) and (9) are equal. For a given routing �
we can solve either (8) or (9) to find the maximum utilization
of link
. Therefore, a routing � minimizes maximum link
utilization, over all links
 and for all traffic matrices � � �
if and only if it is a solution to the following LP:

��

�� �

����
� is a routing �
�
� �

�
�

��"��
� �
�
�

��#��
� �
�
��

���$���
� % �

����
�� ��
� �"��
� � #��
� � $���
�� � � �
�
� �

"��
�� #��
�� $���
� � � �
�
� �

(10)

The first set of constraints makes sure that the solution is
a feasible routing. The second set together with optimization
criterion ensures that the solution minimizes maximum objec-
tive function of the dual LP (9) for all links, hence due to
duality it minimizes maximum link utilization. The third set
of constraints is simply constraints of the dual LP (9) that
should be satisfied.

If we consider a full-mesh connected network, where every
node has traffic destined to every other node, there would be
������ source-destination pairs in the network. In this case,
in the single LP (10), there are � ��� � �� � 	��� � ��
constraints in the first set of constraints, 	 constraints in
the second set, 	��� � �� constraints in the third set, and
	��� � �� � ��	 constraints in the fourth constraint set.

After problem (10) is solved, we have to decompose source-
destination pair unit flows into paths for routing. In the next
section we provide an algorithm to specify paths and load
distribution ratio among them directly.

V. PATH-FLOW-BASED FORMULATION

We can formulate any network flow problem using a path-
based formulation based on directed path flows [2]. Even
though the number of directed paths in a network grows
exponentially with the network size, there are typically a few
paths that carry traffic in the optimal solution. Therefore, we
can start with an initial active path set, and use a column
generation procedure to add new paths to the active path set
(only if they can potentially reduce the cost). Figure 1 is a
high level block diagram of the algorithm. As illustrated in the
block diagram, we also remove those paths (with zero rate)
from the active path set to manage number of active paths.

Besides reducing number of constraints and variables there
are other advantages in a path-based formulation. The path-
based formulation gives us control over the characteristics of
the paths selected. For instance, we can directly control total
number of paths, number of paths per source-destination pair,
and number of hops per path. As another example, let us say
that only a subset of nodes in the network can do sophisticated

monitoring and we want every packet to visit at least one of
these nodes. It is again very straightforward to impose these
conditions in a path-based formulation.

The path-based formulation provides appropriate alternate
routing solutions for source/link failures. Suppose we have a
basic solution for the original network topology. We would
like to find an alternate routing to cope with link failures.
It is desirable to limit the number of new paths that are
introduced in the alternate solution. If we use a link-flow-based
formulation and solve the problem for the topology without
failed links, there is no guarantee that the original path set
is considered for routing. However, if we use a path-based
formulation we can use the original path set as the initial set
for the new topology, hence making sure it is considered. In
this way, number of alternate paths introduced for link failures
can be monitored and controlled.

The path-based formulation results in an iterative algorithm.
Let � � be the active path set in �th step, and � �

�� the subset
of � � representing the paths between source-destination pair
�
� ��, and ��

� the subset of � � passing through link
. By
definition we have,

�
����

��

�� � � � �
� �� � � (11)

�����
� �
�

�����
��
�	�

�
�

�� � �
� �� � ��
 � � (12)

where ����
� is the fraction of flow from
 to � that goes
through link
 at step � and �� is fraction of traffic of the
corresponding source sent on path �.

We rewrite the single LP (10) in term of path rates rather
than the link flow rates:

��

�� �

�
����

��

�� � � �
� �

�
�

��"��
� �
�
�

��#��
� �
�
��

���$���
� % �

�
�����

��
�	�

�
�

�� � ��
� �"��
� � #��
� � $���
�� � � �
�
� �

"��
�� #��
�� $���
�� �� � � �
�
� �� �
(13)

The 	��� � �� flow conservation constraints in (10) are
replaced with ������ constraints in the first constraint set in
(13). Furthermore, instead of 	������ link flow variables,
we have 	� 	 path rate variables. As we will see in simulation
results, the number of active paths is much less than number
of flow variables in practice.

The LP (13) finds the optimal load distribution and routing
solution for the active path set � �. In the following, we
provide an algorithm to update the active path set in each
step.

6

Y

N

and Routing
Output the Paths

Convergence
 Check forPath RemovalPath Addition

Compute Routing
Solve LP (13) to

 Path Set
 Compute Initial

Fig. 1. Path-Flow-Based Robust Routing Algorithm

A. Active Path Set Update

We use a column generation method [2] to update the
active path set. Suppose that we have a rate variable �� for
every direct path in the network. We know that in the optimal
solution most of these variables will be zero. The main idea
behind column generation is to consider only a subset of these
paths in every step and insert only those paths that can reduce
the cost in each step.

Using the LP terminology, at each step, we find paths (vari-
ables) with minimum reduced cost (assuming a minimization
formulation). Then, if reduced cost of these paths is less than
the active paths’ reduced cost, we add them to the active path
set. The key is to find a simple way for finding a path with
minimum reduced cost. To that end, we define a set of link
length parameters &���
� for link
 and source-destination pair
�
� ��. Then, we show that reduced cost of a path between �
� ��
is equal to the path length using &���
� for the link length.

To that end, consider a standard LP:

��
 ���

�� �

'� � (
� � �

(14)

Suppose that we use a column generation scheme to solve this
problem. At step � a subset of columns are active while others
are set to zero. Let �� be the vector of optimal dual variables
at step �. The reduced cost of every variable �� is ���'�

� ��,
where '� is �th column of '.

Going back to the LP (13), the path rate �� does not appear
in the cost function and �� � �. �� is only present in the first
and third set of constraints. Let ��� and ����
� correspond
to the first and third sets of constraints dual variables. The
reduced cost for path � between �
� �� is:

"� � ���� �
�

� in path �

����
� (15)

To find a path with minimum reduced cost between �
� ��,
since ��� is independent of path �, we have to find path ��

that minimizes the second term,

�� � �����

�

�
��

�
� in path �

����
�

�
� (16)

It can be easily shown that the dual variables are non-positive,
and hence �� is a shortest path between �
� �� where length of
link
 is,

&���
� � �����
�� (17)

We only need to insert the shortest path if its length is less
than other paths that are already active. Therefore, in every
step � we compute a shortest path between every source-
destination pair. Length of links are different for different
source-destination pairs. If length of the computed shortest
path is strictly less than current active paths, then we insert
the new path to the set.

B. Path Removal

In order to control number of active paths in the problem we
can also remove some paths that are not used in the solution
at time step �. For each path we define path-idle-age counter.
The path-idle-age is initially zero and is set to zero, whenever
the corresponding path rate is non-zero. However, at time step
� if the cost function is decreased, then we increment path-
idle-age of those paths with zero rate. If path-idle-age of a path
reaches a positive integer) � �, we remove that path from
active path set. Theoretically) can be any positive integer,
but based on experiments, for faster convergence we set it to
5 in our simulations.

C. Convergence Criterion

The path-based formulation is an iterative algorithm, so we
should have a convergence criterion. If we do not use Path
Removal, we can simply iterate until no new path is added.
However, practically this may turn out to be infeasible since
path update procedure may keep adding paths with no or
negligible incentive. Note that by adding paths the LP becomes
more complex and it takes more time to find the solution.

The situation is even worse when we use path removal. Path
removal may get trapped in a periodic pattern where a group
of paths are added and then removed from the active path set.
To avoid these problems we have a no-improvement counter
that indicates number of consecutive time steps with negligible
improvement in the cost function. If the no-improvement
counter reaches a pre-specified threshold we decide that the
algorithm is converged.

The path-flow-based iterative algorithm steps are summa-
rized in Figure 1: We start with an initial active path set. At
every step we find the optimal solution for the current active
path set by solving LP (13). Next, we use the dual variables
to find the shortest path for every source-destination pair and
add them to the active path set, if their length is less than
current active paths. Then, we remove those paths that have
not been used for) consecutive time steps. Finally, we check
for convergence, and repeat the steps until convergence.

VI. NETWORK FAILURES

The path based formulation provides a simple approach
to cope with network failures. We first review some of the

7

basic and desirable requirements for a failure recovery solution
and then show that these desired characteristics are inherent
in a path-based solution. Consider the special case of single
link failures. Once a link fails, obviously those paths that go
through the failed link are not functional anymore. The first
natural attempt would be to redistribute traffic among active
paths that are still functional. After traffic redistribution if the
performance is still not acceptable, we have to add new paths
to improve the performance. However, it is desirable to limit
number of added new paths after failure.

Traffic redistribution among functional active paths and
addition of new paths are straightforward tasks in the path-
based framework. We remove the failed links from the network
topology and use the functional active paths as the initial active
path set. If for a source-destination pair there is no path in
the initial set, we add the minimum hop path to the set for
them. Obviously, if there is no path available between a source-
destination pair in the network, then we can do nothing for
that source-destination pair. We use the resulting path set as
the initial set for the iterative path-based routing algorithm. In
the first step, the algorithm redistributes traffic among paths in
the initial active path set. If the performance is acceptable we
do not need to add any additional path. Otherwise, we update
the active path set, until we achieve the desired performance
or the algorithm converges.

In contrast, using link-flow-based formulation we can find
the robust routing for the new topology, but there is no direct
way to redistribute the load between the functional active
paths first or incrementally add new paths to improve the
performance.

Furthermore, similar to the approach proposed in [9], it is
possible to identify a set of critical links and additional paths
that we need to introduce if they fail. These additional paths
together with the initial path set are considered as the the initial
path set for all link failures. In this way, we can further limit
the number of additional paths that need to be introduced.

VII. SIMULATION ON ISP TOPOLOGIES

A. Topologies and Traffic Matrix Regions

For our experiments we use six topologies listed in Table II.
Five topologies (except the Genuity topology) are originally
from the Rocketfuel project [24]. However, we use the refined
topologies used in [14] and provided to us by the authors
of that paper. In the refined topologies to obtain approximate
PoP to PoP topologies, topologies are collapsed so that nodes
correspond to cities. We removed the degree one nodes (nodes
connected to only one other node) from the topologies.

The Rocketfuel topologies do not have link capacities;
once again, we used link capacities as assigned by [14]. The
capacity assignment is based on the degree of the cities (nodes)
in the network. In [14], the authors assume that nodes with
high degrees are level-1 PoPs and the rest are smaller PoPs.
For each topology, they detect a knee in the degree distribution
of the nodes and nodes are classified into level-1 PoPs and
small PoPs based on that. Links connecting level-1 PoPs have
high capacity (10 Gbps) and the rest have lower capacity (2.5
Gbps). We adopt the same model and use the data generated
by [14].

TABLE II

FINAL NUMBER OF NODES AND LINKS IN TOPOLOGIES USED FOR

SIMULATION.

Topologies (AS#) Number of Nodes Number of Links

Genuity (1) 23 72
Sprint (1239) 27 126
Ebone (1755) 18 66
Tiscali (3257) 28 132
Exodus (3967) 21 72
Abovenet (6461) 17 74

The next step is to establish the traffic matrix regions.
We start with the hose model constraints, and assume that
node capacity (the upper bound for the total incoming and
outgoing traffic) is proportional to the total capacity of the
links connected to that node. This assumption is in accordance
with the study in [1]. Since links are symmetric, incoming and
outgoing capacities of a node are the same. Thus,

�� � ��

�

������

�� �
 � � (18)

Recall that �� and �� are respectively outgoing and incoming
bounds for node
. For the pipe model constraints, we assume
that maximum traffic rate between two nodes is proportional to
the minimum of the node capacities. The pair capacity cannot
be larger than the node capacity. This assumption is also in
line with the traffic models suggested in [20] and the gravity
model [25]. We set the pipe model upper bound constraints
��� as follows:

��� �
��
 ���� ���

�*�
� �
� �� � � (19)

Parameter � ranges from 1 to � in our simulations and control
non-uniformity of the traffic, where � is the number of nodes
in the network. For � � � , the pipe model constraints become
irrelevant and every pair’s traffic can be as high as minimum
of its nodes capacities. For � � �, traffic becomes very
uniform and the hose model constraints become irrelevant,
since summation of pipe model constraints for a node would
be less than the hose model constraint. Therefore, by changing
� we can study relative impact of pipe and hose model
constraints. If �� is the traffic matrix region corresponding
to �, then for �� % �� we have ��� � ��� . Consequently,
the routing cost (maximum link utilization) is a non-decreasing
function of �.

B. Experiments and Results

1) Primary Results: In this section, we demonstrate basic
characteristics of the path-based iterative algorithm for the
Exodus network with � � �� for the traffic matrix pipe model
constraints. Since there are 21 nodes in this network, � � ��
means that the pipe model constraints are not bounding, hence
this would result in the traffic matrix region bounded only
with the hose model constraint. We performed each experiment
on every ISP topology; however, the Exodus network has the
largest maximum link utilization in our experiments and has

8

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5
Evolution of Path−Flow−Based Iterative Algorithm for Exodus with alpha = 21

step

M
ax

im
um

 L
in

k
U

til
iz

at
io

n

0 5 10 15 20 25 30
400

600

800

1000

1200

step

N
um

be
r

of
 p

at
h

w
ith

 p
os

iti
ve

 r
at

e

Final max. util. = 0.9

Fig. 2. Evolution of path-flow-based iterative algorithm. Maximum link
utilization (top), and number of paths with non-zero rate (bottom) for Exodus
topology with alpha = 21.

TABLE III

NUMBER OF PATHS DISTRIBUTION FOR SOURCE-DESTINATION PAIRS IN

EXODUS NETWORK WITH ALPHA = 21.

Number of Paths 1 2 3 4
Source-Destination Pair Count 349 42 18 11

one of the slowest convergence rates with respect to number
of iterations. For detailed results, which shows the dynamic
behavior of the algorithm, we focus on the Exodus network
with maximum �, and present summarized results for other
experiments.

Figure 2 shows the evolution of characteristics of the path-
based iterative solution as it converges to the optimal solution.
The top plot is the maximum link utilization of the routing
used in each step and the bottom plot is number of active
paths with non-zero rate at each step. Initially, we start with
minimum hop paths between source-destination pairs. As the
algorithm evolves, new paths are added and some paths are
removed from the optimal solution. The final solution cost
(maximum link utilization) is ���.

For this particular run, the total number of active paths in
the final solution is 531. Since there are 420 source-destination
pairs, most source-destination pairs use only a single path.
Table III shows the final path count distribution. In fact, more
than ��� of the source-destination pairs use a single path, and
the maximum number of paths for a source-destination pair is
four. Therefore, in this configuration, number of additional
paths required for robust routing is not significant. In later
experiments, we confirm this observation more generally.

2) Effect of Pipe-model Constraints: In this set of exper-
iments, we change the parameter � and study its impact on
the final solution. Recall that increasing � increases the pipe
model upper bounds, which results in a larger feasible traffic

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Maximum Link Utilization vs. Alpha

Alpha

M
ax

im
um

 L
in

k
U

til
iz

at
io

n

Genuity
Sprint
Ebone
Tiscali
Exodus
Abovenet

Fig. 3. Effect of pipe model constraints in the robust routing performance
for tested topologies.

TABLE IV

MAXIMUM NUMBER OF PATHS IN ROBUST ROUTING SOLUTIONS FOR

TOPOLOGIES.

Topologies (AS#) Max. Path Count Average Max. Path Count
Genuity (1) 1007 1.99
Sprint (1239) 1474 2.10
Ebone (1755) 872 2.85
Tiscali (3257) 2490 2.29
Exodus (3967) 560 1.33
Abovenet (6461) 907 3.33

region. In other words, � controls how much traffic can be
sent between every source-destination pairs.

Figure 3 shows the cost (maximum link utilization) for
different values of � on different networks. As we expect, the
cost is a non-decreasing function of �. We also observe a knee
effect in the cost plots. There is a threshold value for � such
that the optimal cost drops significantly if � is less than the
threshold and remain constant if � is above the threshold. The
threshold value for most networks is in the neighborhood of
� � �. Recent studies have shown that internet traffic can be
very non-uniform and as much as ��� of traffic can be carried
by half or one third of source destination flows [20]. Roughly
speaking, this means that � should be in the neighborhood
of 3 in the real networks. The inference to be drawn here is
that even with non-uniform traffic matrices, rough pipe model
upper bound estimates derived from traffic profiles are still
useful and can have a significant impact on feasible routings
and their ultimate performance. Table IV shows the maximum
path count and for different networks. Even though the path
count depends on the network and value of �, its maximum
value for all cases is reasonably low. In the last column, we
have calculated maximum average number of paths per source-
destination pair. In all cases the average is below ���; hence,
robust routing does not require large numbers of alternate

9

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2
Final Link Weights for AS−3967

lin
k

w
ei

gh
t

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

lin
k

w
ei

gh
t alpha = 11

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

alpha = 21

Link index

lin
k

w
ei

gh
t

alpha = 5

Fig. 4. Exodus topology max. link weight for alpha = 5, 11, 21. In all
cases, the maximum link utilization is the same, but larger � results in larger
weights (sensitivity).

paths.
For all networks, the cost (max. link utilization) remains

constant if � crosses a threshold value. However, the sensi-
tivity of the optimal solution to the network parameters are
not the same. To illustrate this we focus on the link weights.
Recall that &���
� is negative of the corresponding shadow
price (dual variable) for the third set of constraints in (13).
We can rewrite the constraint as follows,

����
�

��
�
� �"��
� � #��
� � $���
�� � � (20)

Shadow prices reveal how much the optimal solution is
sensitive to the variations of the constant values of the linear
constraints [2]. Equivalently, for the constraint (20), shadow
prices show how sensitive is the cost function to the changes in
����
�*��
�. Therefore, larger values of &���
� indicate higher
sensitivity. Sensitivity is an important factor for practical
systems, since for instance it is not possible to set the flow
rates ����
� exactly to the optimal values and we have to check
how much the solution is sensitive to the deviations from the
optimal values.

Figure 4 shows maximum weight values for the Exodus
Network for � � �� ��� ��. For each link
 maximum of weight
&���
� overall source-destination pairs are plotted. Note that
the cost value for all three cases are the same. However, it is
clear from the plot that shadow prices, and hence sensitivities
are not the same. In fact, � � �� routing is 4 times more
sensitive than � � �.

We have observed similar sensitivity characteristics in all
networks solutions. However, due to lack of space, we do
not include results for the other topologies. This behavior
suggests that even if � is large enough such that the pipe
model constraints seems irrelevant, the pipe constraints can
still be helpful in providing a routing that is less sensitive to
the fluctuations of the flow rate.

0 5 10 15 20 25 30 35
0

0.5

1

1.5
Link Failure Recovery Data for AS 3967 with alpha = 3

M
ax

im
um

 L
in

k
U

til
iz

at
io

n

0 5 10 15 20 25 30 35
0

100

200

300

N
um

be
r

of
 N

ew
 P

at
hs

0 5 10 15 20 25 30 35
0

200

400

600

800

Failed Link Index

T
ot

al
 N

um
be

r
of

 P
at

hs

Fig. 5. Link failure recovery data for Exodus topology with alpha = 3. In
most (83%) cases, robust routing finds alternate routings with less than 10%
higher utilization.

3) Link Failure: In this section, we demonstrate how the
path-based formulation can be used to cope with failures in
a network. We consider single link failures. (In our model,
we assume links are full-duplex, and when a link fails,
communication in both directions is disrupted). Our goal is to
find an alternative routing after a failure, ideally minimizing
the number of extra paths added. We compute the alternate
routing for each failure as follows:

1) Remove the failed link from the graph.
2) Remove all paths involving the failed link.
3) For each source-destination pair with no remaining path,

find a minimum hop path and add it to the path set.
4) Use the obtained path set as the initial path set for the

path-based robust routing algorithm.
5) Repeat the iterative path-based algorithm until the cost

function is not more than 10% above the value when all
links were there, or when no new paths are added.

Figure 5 summarizes the result of running this algorithm
on the Exodus network with � � �. Again, we selected the
Exodus network since it has the highest utilization among the
simulated networks, but with a lower value of �, so that the
pipe model constraints are bounding too. The top plot shows
the maximum link utilization of the alternate routing after each
failure. The middle plot shows number of added paths for each
link failure and the bottom one shows the total number of paths
used for each link failure.

The cost for the Exodus topology without any failure when
� � � is ����. For ��� of single link failures, the cost of
the alternate routing is less than 10% above the no failure
cost. Failure of � critical links results in maximum utilization
larger than 1 (shown by the vertical bars crossing the red 100%
utilization in the figure). For ��� of link failures, the number
of added paths is less than ��� of the initial number of paths.
As expected, the cases with larger number of added paths
coincide with the cases with high cost value. The total number

10

of paths used for ��� of link failures is less than 500 and
the maximum number of paths used is ���. The paths in the
optimal robust routing for the network without failures was
480. Hence, even in this difficult case, the number of paths in
the solution for each link failure is reasonable.

In summary, these preliminary results suggest that path-
based formulation is a promising framework that can provide
reasonable solution in terms of complexity and performance
to compute alternate routings after link failures.

VIII. CONCLUSION AND FUTURE WORK

Static routing schemes have obvious and tangible practical
benefits in terms of stability (no load-based fluctuations) and
ease of deployment (no need for online monitoring/control).
However, static schemes are useful only if they are robust to
all variations in traffic load.

We have introduced a fixed-size LP formulation for multi-
path source based fixed robust routing. Our scheme computes
a routing that minimizes maximum cost as long as traffic is
bounded within a region specified by linear constraints derived
from hose and pipe model constraints. We believe our path-
flow-based formulation is more useful and practical than what
had been considered in earlier literature.

Path-based solution gives the network designer/operator
unique and direct control over key path characteristics. For
instance, our scheme can be used to limit the hop count, force
paths to visit (or not to visit certain node) or use only disjoint
paths. We have also described a simple mechanism to find
alternate paths to cope with link failures.

Our simulation results show that robust routing generates
reasonable path sets (often using less than 3 paths between
source-destination pairs in average) that are immune to traffic
variations. Our parameter sweeps show that as the pipe-
model bounds increase, the maximum utilization increases
until a threshold value is attained (as mandated by the hose
constraints). However, even in the hose-model regime, the
pipe-model constraints mandate how sensitive the solution is
to different routing parameters.

Our experiments also lead us to the following conjecture: In
a recent paper [16], authors compare robust direct path routing
with two phase routing. Their simulation results suggests that
the two phase routing performance is very close to the direct
path routing. This result is highly counter intuitive since two
phase routing sends each packet twice through the network.
Some of the results that we present in this paper provides
further insight. In [16] only hose model constraints are con-
sidered, therefore the original traffic matrices can be very non-
uniform. The two-phase routing creates more uniform traffic
patterns in the network. Therefore, we conjecture that if we
consider both pipe and hose model constraints together, the
performance difference between direct and two phase routing
will increase. As the pipe model constraints become tighter
the performance gap will become larger.

There are a number of interesting avenues for future work.
Study and performance comparison between direct path and
two phase routing and effect of pipe model constraints on
their performance gap is an interesting topic. Finding routing

solutions that can tolerate both traffic variations and partial
failures in the network is another interesting topic. The pre-
liminary solutions for link failure that we present here suggest
that path-based formulation provides appropriate framework to
address this problem as well.

REFERENCES

[1] Abilene “http://www.abilene.internet2.edu”
[2] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, “Network FLows”, Prentice-Hall,

New Jersey, 1993.
[3] D. Applegate, E. Cohen, “Making intra-domain routing robust to changing

and uncertain traffic demands: understanding fundamental tradeoffs”,
ACM SIGCOMM’03, pp. 313-324, Aug. 2003.

[4] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, H. Racke, “Optimal oblivious
routing in polynomial time”, Proceedings of the 35th ACM symposium
on Theory of computing, pp. 383-388, Aug. 2003.

[5] W. Ben-Ameur, H. Kerivin, “Routing of Uncertain Traffic Demands”,
Optimization and Engineering, vol.6, no.3, pp. 283-313, Sep. 2005.

[6] N. G. Duffield, P. Goyal, A. G. Greenberg, P. P. Mishra, K. K. Ramakrish-
nan, J. E. van der Merwe, “A Flexible Model for Resource Managemant
in Virtual Private Network”, ACM SIGCOMM’99, August 1999.

[7] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive
Traffic Engineering,” IEEE INFOCOM 2001, Anchorage, Alaska, 2001.

[8] T. Erlebach, M. Ruegg “Optimal Bandwidth Reservation in Hose-Model
VPNs with Multip-Path Routing”, IEEE INFOCOM’04, March 2004.

[9] B. Fortz, M. Thorup, “Robust Optimization of OSPF/IS-IS Weights”,
INOC’03, 2003.

[10] B. Grotschel, L. Lovasz, A. Schriver, “Geometric Algorithms and
Combinatorial Optimization”, Springer-Verlag, New York, 1988.

[11] T. Guven, C. Kommaredy, R. J. La, M. A. Shayman, B. Bhattacharjee,
“Measurement based optimal multi-path routing,” IEEE Infocom 2004 ,
Hong Kong, 2004.

[12] ILOG CPLEX, http://www.ilog.com/
[13] R. Hettich, K.O. Kortanek, “Semi-Infinite Programming: Theory, Meth-

ods, and Applications”, SIAM Review, vol. 35, no. 3, pp. 380-429, Sep.
1993.

[14] S. Kandula, D. Katabi, B. Davie, A. Charny, “Walking the Tightrope:
Responsive Yet Stable Traffic Engineering”, ACM SIGCOMM’05, vol.
35, no.4, pp. 253-264, August 2005.

[15] M. Kodialam, T.V. Lakshman, S. Sengupta, “Efficient and Robust
Routing of Highly Variable Traffic”, HOT-NETS-III, Nov. 2004.

[16] M. Kodialam, T.V. Lakshman, S. Sengupta, “Maximum Throughput
Routing of Traffic in the Hose Model”, IEEE INFOCOM’06, April 2006.

[17] O. L. Mangasarian, “Linear and Nonlinear Separation of Patterns by
Linear Programming ”, Operations Research, vol. 13, no.3, pp. 444-452,
May-Jun. 1965.

[18] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, C. Diot, “Traffic
Matrix Estimation: Existing Techniques and New Directions”, SIGCOMM
Comput. Commun. Rev., vol. 32, no. 4, pp. 161-174, 2002.

[19] D. Mitra, K. G. Ramakrishna, “A Case Study of Multiservice Multi-
priority Traffic Engineering Design”, GLOBECOMM’99, pp. 1077-1083,
1999.

[20] A. Nucci, A. Sridharan, N. Taft, “The Problem of Synthetically Gen-
erating IP Traffic Matrices: Initial Recommendations”, ACM Computer
Communication Review, vol. 35, no. 3, pp. 19-32 ,July 2005.

[21] Position statements on key routing issues for the next 10 years, Work-
shop of Internet routing Evolution and design(WIRED), oct. 2003.

[22] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, H.J. Sips, “The BitTorrent
P2P File-Sharing System: Measurements and Analysis”, IPTPS’05, 2005.

[23] G. Prasanna, A. Vishwanath, et al., “Traffic Constraints Instead of Traffic
Matrices: Capabilities of a New Approach to Traffic Characterization”,
Proc. of the 18th Int. Teletraffic Congress, 2003.

[24] N. Spring, R. Mahajan, D. Wetherall, T. Anderson, “Measuring ISP
Topologies with Rocketfuel”, IEEE/ACM Transcation on Networking,
vol. 12, no.1, pp. 2-16, Feb. 2004.

[25] M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y.
Zhang, “Experience in Measring Backbone Traffic Variability: Models,
Metrics, Measurements and Meaning”, Proc. of the 18th Int. Teletraffic
Congress, 2003.

[26] C. Zhang, Z. Ge, J. Kurose, Y. Liu, D. Towsley, “Optimal Routing
with Multiple Traffic Matrices Tradeoff between Average and Worst Case
Performance”, IEEE ICNP’05, pp. 215-224, Nov. 2005.

[27] R. Zhang-Shen, N. McKeown, “Designing a Predictable Internet
Backbone Network”, HOT-NETS-III, Nov. 2004.

