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Two policy goals dominate United States’ agricultural programs: voluntary

land retirement for environmental purposes and countercyclical income support.

Traditionally, these goals have been pursued with separate policies. This pol-

icy separation is efficient with perfect information regarding farm productivity.

A more realistic assumption, however, is that farmers have better information

regarding their own productivity than the government. The focus of the disser-

tation is to analyze least cost agricultural policy with this type of asymmetric

information.

I first use a mechanism design framework to show that it is optimal to have

a combined income support-land retirement program rather than separate pro-

grams. For land retirement, farmers have an incentive to overstate productivity



in order to receive a higher rental payment. For income support, farmers have

an incentive to understate productivity to receive a higher income support pay-

ment. With high output prices, the first effect dominates. With low prices, the

second dominates. Farmers’ ability to use private information to their advantage

increases the cost to the government of reaching its targets. If contract com-

mitment takes place when output prices are uncertain, the two incentives can

countervail each other, reducing the cost of the policy to the government.

In the second part of the dissertation, I extend the literature by showing how

one can implement the policy using actual data. I conduct a numerical simulation

to determine the exact payment and land set aside for each farmer. To calibrate

the simulation, I apply stochastic frontier analysis to a data set of US farmers.

I thus obtain consistent estimates of the key determinants of the contracts: the

farm profit function and the probability distribution of profitability levels across

the sector.

Simulation results show that unlike current programs, the least cost contract is

likely to involve pooling. Farmers with different profitability levels receive identi-

cal expected payments for idling identical acreage. The countervailing incentives

created by the least-cost policy almost eliminate the information advantage of

farmers, significantly reducing cost relative to current programs.
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Chapter 1

Introduction

The United States government spent over $92 billion on the agricultural sector in

the years of the Federal Agriculture Improvement and Reform (FAIR) Act (1996-

2002). The two largest objectives of these expenditures were income support

(over 75 percent) and environmental conservation (over 10 percent) (National

Agricultural Statistical Service 2003). Under the FAIR Act, there was little

linkage between these two objectives. Income support consisted primarily of

lump-sum payments per acre of production. Conservation payments were mostly

subsidies to remove land from production. Little has changed in these respects

with passage of the 2002 Farm Security and Rural Investment Act.

In this dissertation, I model “green-payments” programs that simultaneously

achieve environmental and income support goals. I show that properly linking

income support payments to land set aside for environmental purposes is the

least costly means of achieving both objectives. This result stands in contrast to

current practice and conventional intuition based on Tinbergen (1963) that the

number of policy instruments should equal the number of policy targets.

The combined program’s advantage comes from efficient use of information. A

producer’s willingness to participate in an environmental program reveals private
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information regarding production costs. A well-designed green payments program

takes advantage of this information to channel income support payments to less-

profitable producers. The cost-effectiveness of a green payments program depends

on timing with respect to output price uncertainty.

Contracts signed when prices are uncertain reduce the cost to the govern-

ment of inducing producers to reveal their information. The intuition behind

this result comes from the conflicting incentives created by a voluntary land set

aside program and an income support program. For a voluntary land set-aside

program, the higher the opportunity cost of the land, the more the government

needs to offer to induce a farmer to refrain from cultivating it. Since the opportu-

nity cost is essentially the foregone profit, farmers have an incentive to overstate

their profitability. For income support, farmers have the opposite incentive. If

the government’s objective is to administer payments such that all farmers at-

tain a minimum income level, farmers have an incentive to understate their true

profitability in order to receive a higher subsidy.

Output price is decisive in determining which of these incentives dominates.

When price is high, income support subsidies are low, so the dominant incentive

is to overstate profitability. When output price is low, the opposite occurs. If

contracting takes place after price is known, farmers know in which direction

they should misrepresent their true type. However, if contracting takes place

when prices are uncertain, the two incentives countervail each other. Since a

farmer cannot simultaneously over and under-state their type, his declaration of

profitability is closer to the truth. In fact, for some farmers the two incentives

may cancel out completely.

Although these results are robust to alternative specifications of producer
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technology, the precise allocation of payments and land set-asides for each pro-

ducer is not. An additional contribution of this dissertation is to develop a

methodology for empirically calibrating a mechanism design model using readily

available data. Two necessary ingredients for implementing the optimal green

payments program are profit functions for different types of producers and a

probability density function of producer types. Given that type is unobservable,

a key problem is how to infer this information from observed data.

To solve this problem, I borrow econometric approaches used to evaluate

differences in technical efficiency across firms. Specifically, I adapt the composed

error structure developed by Aigner, Lovell and Schmidt (1977) and Meeusen and

van den Broeck (1977). This structure is commonly used in stochastic frontier

analysis to estimate parameters of a cost function that explicitly incorporates

producer heterogeneity. The random error in the cost function is assumed to have

two components: symmetrically distributed, zero-mean statistical noise, and a

skewed, non-zero mean component representing producer type. The parameters

of a probability distribution for type are calculated from the residuals of the

cost function. I use the results of the cost function estimation to calculate the

corresponding profit function for each producer type. This profit function is

used with the estimated probability distribution of types to simulate the optimal

allocation of payments and land set-asides.

In the remaining sections of this introduction, I describe the stylized facts of

historical agricultural policy on which the model is based and present an outline

of the rest of the dissertation.
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1.1 Stylized Characteristics of United States’

Agricultural Policy

The analysis of the dissertation is based on agricultural income support and

environmental policies in the United States from 1985-2002.

1.1.1 Income Support

In the United States, agricultural income support policies from 1985-2002 share

the characteristic that payments are countercyclical, varying inversely with out-

put prices. The income support element of the model in this paper is based upon

this stylized fact. Government provides greater assistance to producers when

output prices are low than when prices are high. In addition, payments are based

upon acres under production, not output per se. Roughly speaking, acres eligible

for payments are those previously dedicated to production of a program crop,

less acres diverted to a land set aside program. Income support policies in this

period are deficiency payments, production flexibility contracts, and marketing

loss assistance payments.

Between 1985 and 1996 deficiency payments were the primary means of pro-

viding income support. Before each growing season, the government announced

a target price for a program crop. In exchange for participation in an acreage

reduction program (ARP), producers received payments equal to the difference

between the target price and the prevailing market price for the commodity,

multiplied by program yield (estimated yield per acre in 1985). Government pay-

ments decreased as market price increased, with no payments being made if the

market price was higher than the target price.
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The 1996 FAIR Act replaced deficiency payments with production flexibility

contracts. Under the new policy, producers received fixed payments per acre

of land previously eligible for deficiency payments. Unlike deficiency payments,

production flexibility contracts did not vary with output prices.

When prices reached low levels in 1998-2001, however, Congress responded

by approving supplemental marketing loss assistance payments (Gardner 2002).

This legislation effectively increased the amounts farmers received from produc-

tion flexibility contracts for each of those years. Thus, marketing loss assistance

effectively made income support countercyclical from 1996-2001 as had previously

been the case with deficiency payments, and as explicitly became the case with

the 2002 legislation.

1.1.2 Conservation

Paid land diversion programs can be classified in two groups, short-term and

long-term land retirement. For short-term programs such as the ARP, land was

idled for one year, and the decision for idling land was made at the beginning of

each planting season. For long-term programs such as the Conservation Reserve

Program (CRP), land is idled for periods of at least ten years.

To be eligible for commodity program payments such as deficiency payments,

producers could not grow program crops on a given percentage of their acres.

Each year the Secretary of Agriculture determined the proportion of land to be

idled. This figure was based upon anticipated supply and demand conditions.

Supply restriction, not conservation, was the primary motivation for the ARP.

The ARP was eliminated in the 1996 FAIR Act.

Since 1985 the largest land retirement program in the United States has been

5



the CRP. The CRP’s emphasis was originally to reduce soil erosion on highly

erodible land. The CRP has since been extended in the Food, Agriculture, Con-

servation, and Trade Act of 1990, the 1996 FAIR Act, and the 2002 farm legis-

lation. Over time, congress shifted emphasis from erosion control to achieving

more broadly defined environmental benefits.

Participating producers agree to retire land from production for a period of

10-15 years in exchange for annual rental payments. CRP enrollment is structured

as an auction. Producers propose an area of land to set aside and submit a bid for

annual rent. As of 2000, annual CRP payments amounted to about $1.8 billion

with an average rental payment of almost $50 per acre (Farm Services Agency

2002).

1.2 Organization of Dissertation

The dissertation is organized as follows. In Chapter 2, I develop the theory used

to describe the characteristics of a least cost agro-environmental program. The

analysis takes as given environmental and income support objectives drawn from

the preceding section. The interaction between the government and farmers is

modeled as a principal-agent problem under conditions of asymmetric informa-

tion. Asymmetric information exists inasmuch as producers are assumed to have

better information regarding the productivity of their land than the government.

The government’s objective is to assign a quantity of land to be idled and

a transfer payment for each agricultural producer that minimizes total govern-

ment expenditures subject to the policy constraints. The environmental policy is

modeled as a minimum amount of land that must be idled for the entire sector.

The income support policy is modeled as a minimum income level that must be
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received by each producer regardless of the level of randomly determined output

prices. In addition, producers must willingly participate in the program.

One conclusion of Chapter 2 is that the characteristics of the optimal land

and transfer allocation depends upon the government’s beliefs regarding the dis-

tribution of types and the nature of the profit function. In Chapters 3 and 4, I

develop and implement a methodology for empirically inferring this information

from a data set that does not contain producer types. In Chapter 3, I develop

the agricultural production technology used in later chapters to model policy de-

sign. I explicitly specify how type affects the set of feasible input-output decisions

available to each producer, and draw out the implications for producer cost and

profit functions. In Chapter 4, I describe the data set and the steps taken to

convert the raw data into input and output prices and quantities. I then conduct

the estimation and report the results.

In Chapter 5, I use the parameter estimates obtained in Chapter 4 to perform

a simulation of the optimal green-payments scheme derived in Chapter 2. The

purpose of this exercise is to illustrate how the techniques developed in the pre-

vious chapters can be put together to design an optimal contract under a given

set of assumptions.

Finally, Chapter 6 concludes by discussing policy implications of the disser-

tation. In addition, I recognize the limitations of the analysis, and explore pos-

sibilities for relaxing restrictive assumptions imposed in the preceding chapters.
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Chapter 2

An Optimal Green Payments Program

In this chapter, I consider the problem of minimizing the cost of achieving agri-

cultural income support and environmental objectives. The income support goal

is modeled as a minimum income threshold that all producers must attain, re-

gardless of output price. The environmental goal is a quantity of land that must

be retired from agricultural production. Producers are heterogeneous in terms of

profit earned from cultivating a given quantity of land, but otherwise identical.

Output price is uncertain at the time the policy is designed, but known when

production is undertaken.

As a baseline, I first characterize the optimal program under the assumption

that producer heterogeneity is common information. I then examine the policy

implications of relaxing this assumption. I first analyze the impact of timing

on the cost of the programs. Timing does not affect the cost of the program if

information is symmetric. However timing does affect the program cost under

asymmetric information. I show that an ex post mechanism in which contract

commitment takes place after output price is known is more costly than an ex ante

mechanism. Price uncertainty effectively reduces the value of private information

to producers. Next, I compare the optimal green payments program with a

8



stylized version of the separated income support and environmental policies under

the FAIR Act.

The analytical techniques are based upon the monopoly-regulation model de-

veloped by Baron and Myerson (1982) and generalized by Guesnerie and Laffont

(1994). Baron and Myerson (1982) deal with the problem of optimal regulation of

a monopolist when cost of production is private information to the firm. One of

the challenges of the regulator is to properly account for the underlying incentive

of a firm to overstate its true costs. Lewis and Sappington (1989a) and Lewis

and Sappington (1989b) expanded this analysis to include circumstances under

which the agent may have simultaneous “countervailing” incentives to overstate

and understate their private information. Maggi and Rodríguez-Clare (1995)

and Jullien (2000) show that the general characteristics of the optimal contract

vary greatly depending on the particular functional specification of the objective

function.

Another article influential in this analysis is Bontems and Bourgeon (2000).

These authors show how the contract designer can gain by using a random lottery

to introduce countervailing incentives where they would otherwise be absent.

Although the mechanics of the models presented here differ from Bontems and

Bourgeon (2000), random price fluctuations act as a natural randomization device

to introduce countervailing incentives.

In the next section, I model the government’s constrained objective. I also

illustrate the least cost program under symmetric information. In Section 2, I

relax the assumption of symmetric information and characterize optimal ex post

and ex ante programs. I then compare the optimal green payments program to

actual policy. In Section 3, I discuss implications of the results.
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2.1 The Model

Risk-neutral producers are characterized by identical observable fixed land en-

dowments a, and a productivity parameter θ ∈ Θ ≡ £
θ, θ
¤
. The value of θ is

referred to as a producer’s type. A producer’s type is private information, but

the probability distribution of types for the entire sector is common knowledge.

The probability density function and cumulative distribution functions of type

are denoted by f (θ) and F (θ), respectively.

Producers use a variable input vector x ∈ <n
+ to create aggregate output q ∈

<+. The variable input price vector is w ∈ <n
++, and output price is p. Output

price has a Bernoulli distribution with outcomes “low” (p�) with probability ρ ∈
(0, 1), and “high” (ph) with probability 1− ρ. Production takes place after price

uncertainty is resolved.

Maximum profit earned by a producer type θ from cultivating a ∈ [a, a] acres
at prices p and w is a thrice continuously differentiable function π (p, a, θ):

π (p, a, θ) ≡ sup
x,q
{pq −w0x : x can produce q given a, θ} . (2.1)

I assume the following regularity conditions:

(R1)
∂π (p, a, θ)

∂a
> 0;

(R2)
∂2π (p, a, θ)

∂a2
< 0;

(R3)
∂π (p, a, θ)

∂θ
> 0;

(R4)
∂2π (p, a, θ)

∂a∂θ
> 0;

(R5) f (θ) > 0, and
d

dθ

·
F (θ)− µ

f (θ)

¸
> 0 for µ ∈ [0, 1];

(R6)
∂3π (p, a, θ)

∂a2∂θ
and −∂3π (p, a, θ)

∂a∂θ2
≤ 0.

(R7) π (p, a, θ) = g (θ) π̃ (p, a) , where π̃ (p, a) ≡ π
¡
p, a, θ

¢
.
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Conditions (R1) and (R2) state that marginal returns to land are positive

but diminishing as land use increases. These restrictions can be interpreted in

various ways. For example, a fixed factor such as “management” causes dimin-

ishing marginal returns to land. Alternatively, soil quality can be thought of as

heterogeneous within a farm. In this case, a producer would set aside least pro-

ductive acres first. Condition (R3) indicates that a higher value of θ is desirable:

profit is always increasing in type. (R4) is the “Spence-Mirrlees” condition. This

condition indicates that higher types always need to be compensated more for a

marginal reduction in a than lower types.

Condition (R5) is a variant of the monotone hazard rate assumption. Con-

dition (R6) restricts the signs of the third derivatives of the profit function. Al-

though the intuition for (R5) and (R6) is not strong, variants on these assump-

tions are commonly used in the literature to prevent pooling equilibria arising

from technical characteristics of the probability distribution or third derivatives

of the value function. See, for example, Fudenberg and Tirole (1991), p. 263.

The rationale for imposing them here is to isolate the effect that incentives have

on policy design. For treatment of problems where these restrictions are relaxed,

consult Guesnerie and Laffont (1994).

Assumption (R7) implies θ is similar to the notion of non-biased technical

change in the sense that it does not affect relative input or output shares. That

is to say, employing Hotelling’s Lemma the profit-maximizing ratios of revenue

to total profit or the ratio of input expenditure to total profit are independent of

type:

∂π (p, a, θ)

∂p
· p

π (p, a, θ)
=

g (θ) pq∗

g (θ) π̃ (p, a)
=

pq∗

π̃ (p, a)
(2.2)

∂π (p, a, θ)

∂wi

· wi

π (p, a, θ)
=

g (θ)wix
∗
i

g (θ) π̃ (p, a)
=

wix
∗
i

π̃ (p, a)
, i = 1, ..., n (2.3)
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where q∗,x∗ are the optimal output and input vector for θ = 1.

Note that (R4) and (R6) imply g0 (θ) > 0 and g00 (θ) > 0, respectively. I

impose (R7) to focus the analysis on one specification of the way type affects

the technology. It is not essential, however. Analogous results can be obtained

for other specifications of π (p, a, θ). For a detailed treatment of other cases, see

Maggi and Rodríguez-Clare (1995) orJullien (2000).

The stylized agro-environmental policy has three features. First, the govern-

ment must ensure that each producer attains a minimum income level. Second,

the government must ensure that the sector idles enough land to achieve a min-

imum level of environmental benefits. Third, the program must be voluntary.

The task of the government is to design a policy that satisfies these constraints

at least cost to taxpayers.

Let the variables a (θ) , t (p�, θ) , t (ph, θ) indicate the terms of a contract for

type θ, where a (θ) is the amount of land cultivated and t (p, θ) is a price-

contingent transfer. Following Hueth (2000) and Bourgeon and Chambers (2000),

the income constraint is modeled as a requirement that all producers earn at least

minimum income m:

π (p, a (θ) , θ) + t (p, θ) ≥ m, for all θ, p. (2.4)

Following Smith (1995), the environmental constraint is a requirement that the

average quantity of land idled across all producers be at least A acres:Z
Θ

[a− a (θ)] dF (θ) ≥ A (2.5)

Environmental benefits accrue to land taken out of production for extended pe-

riods of time. Therefore the amount of land cultivated by a given type does not

change with output price.
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To ensure the program is voluntary, producers must be compensated for the

ex post opportunity cost of idled land. A contract cannot leave a producer worse

off ex post than he would have been in its absence. This participation constraint

is expressed:

π (p, a (θ) , θ) + t (p, θ) ≥ π (p, a, θ) , for all θ, p. (2.6)

One can partition Θ into three consecutive intervals based on the relative

importance of the income and participation constraints. Define ΘL as the interval

of types for which the income constraint binds if p = ph :

ΘL ≡ {θ : π (ph, a, θ) < m} . (2.7)

Define ΘM as the interval of types for which the income constraint binds if and

only if p = p�:

ΘM ≡ {θ : m ≤ π (ph, a, θ) } ∩ {θ : π (p�, a, θ) ≤ m } . (2.8)

Define ΘH as the interval of types for the income constraint does not bind if

p = p� :

ΘH ≡ {θ : m < π (p
�
, a, θ) } . (2.9)

Let θL and θH denote the lower and upper bounds of ΘM . These three intervals

are illustrated in Figure 2.1.

This partition of Θ simplifies treatment of the income and participation con-

straints. For ΘL, if the income constraint is satisfied then the participation

constraint is necessarily satisfied as well since:

π (ph, a (θ) , θ) + t (ph, θ) ≥ m > π (ph, a, θ) . (2.10)
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Figure 2.1: Minimum Income Threshold
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For ΘH , satisfaction of the participation constraint implies that the income con-

straint is also satisfied since:

π (p�, a (θ) , θ) + t (p�, θ) ≥ π (p�, a, θ) > m. (2.11)

Finally, for ΘM satisfaction of the income constraint implies the participation

constraint is satisfied for p = p�, and satisfaction of the participation constraint

implies that the income constraint is satisfied for p = ph:

π (p�, a (θ) , θ) + t (p�, θ) ≥ m > π (p�, a, θ) , (2.12)

π (ph, a (θ) , θ) + t (ph, θ) ≥ π (ph, a, θ) > m. (2.13)
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2.2 Symmetric Information

Let T (θ) ≡ ρt (p�, θ) + [1− ρ] t (ph, θ) denote expected transfers. If θ is common

knowledge, the government’s problem is to assign transfers t (p, θ) and land cul-

tivated a (θ) to each type so as to minimize the expected cost of satisfying the

income, participation, and environmental constraints:

min
t(p,θ),a(θ)

Z
Θ

T (θ) dF (θ) (2.14)

subject to: (2.4), (2.5), (2.6).

Denote surplus payments in excess of the minimum necessary to satisfy (2.4)

and (2.6) by:

s (p, θ) ≡ π (p, a (θ) , θ) + t (p, θ)−max {m, π (p, a, θ)} , (2.15)

and expected surplus by

S (θ) ≡ ρs (p�, θ) + (1− ρ) s (ph, θ) . (2.16)

I can then replace (2.4) and (2.6) with:

s (p, θ) ≥ 0 for all θ, p. (2.17)

Let

Π (a, θ) ≡ ρπ (p�, a, θ) + (1− ρ) π (ph, a, θ) (2.18)

denote expected profit. Replace T (θ) in (2.14) by

T (θ) =


S (θ)− Π (a (θ) , θ) +m

S (θ)− Π (a (θ) , θ) + ρm+ [1− ρ]π (ph, a, θ)

S (θ)− Π (a, θ)

θ ∈ ΘL

θ ∈ ΘM

θ ∈ ΘH

, (2.19)
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to obtain the Lagrangian:

min
a(θ),s(p,θ),λ,τ(p,θ),α(θ)

Z
ΘL

[S (θ)− Π (a (θ) , θ) +m] dF (θ) (2.20)

+

Z
ΘM

[S (θ)−Π (a (θ) , θ) + ρm+ [1− ρ]π (ph, a, θ)] dF (θ)

+

Z
ΘH

[S (θ)−Π (a (θ) , θ) +Π (a, θ)] dF (θ)

−λ

Z
Θ

[a− a (θ)− A] dF (θ)

−
Z
Θ

[τ (p�, θ) s (p�, θ) + τ (ph, θ) s (ph, θ) + α (θ) [a− a (θ)]] dθ.

Here λ is the Lagrange multiplier for (2.5), τ (p, θ) are the Lagrange multipliers

for (2.17), and α (θ) is the Lagrange multiplier for the constraint a (θ) ≤ ā. From

pointwise optimization, the necessary conditions for an optimal land allocation

are:

Πa (a (θ) , θ)− α (θ)

f (θ)
− λ ≥ 0 (2.21)

a (θ) ≥ 0 (2.22)

a (θ) [Πa (a (θ) , θ)− α (θ)− λ] = 0 (2.23)

ā− a (θ) ≥ 0 (2.24)

α (θ) ≥ 0 (2.25)

α (θ) [ā− a (θ)] = 0 (2.26)Z
Θ

[a− a (θ)− A] dF (θ) ≥ 0 (2.27)

λ ≥ 0 (2.28)

λ

Z
Θ

[a− a (θ)− A] dF (θ) = 0 (2.29)

Equations (2.21) - (2.29) describe the optimal land allocation. For an interior

solution, the marginal profit of land is λ for each type. Condition (R2) ensures

that this solution is a minimum. Together with (R2) and (R4), (2.21) implies
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that for an interior solution land use is strictly increasing across types. Also,

note that condition (R1) and (2.21) require that λ be strictly positive for any

land to be idled by any type. Consequently, the environmental constraint must

be binding for any A > 0.

The necessary conditions for surplus payments are:

f (θ)− τ (p, θ) = 0 (2.30)

τ (p, θ) ≥ 0 (2.31)

s (p, θ) ≥ 0 (2.32)

τ (p, θ) s (p, θ) = 0. (2.33)

Equations (2.30) and (2.33) describe the optimal surplus allocation. By (R5),

equation (2.30) implies that τ (p, θ) is strictly positive. Therefore, by (2.33) no

type receives surplus payments in either price state.

Intuitively, since the government can observe type, it can make contracts

contingent on θ. The government can offer each producer a take-it-or-leave-it

contract such that environment, income and participation constraints are satisfied

with no surplus payments. The economically efficient amount of land idled by

each type satisfies the equimarginal principle: the amount of profit lost by idling

an additional acre is equal across all producers. With perfect information, this

outcome can be attained by separate environmental and income support policies

similar to those in the FAIR Act. A CRP based on a simple offer price for acres

idled ensures that the equimarginal principle is satisfied. Any difference between

the income and participation constraints and income earned from selling crops

and participating in the CRP could then be eliminated by lump sum transfers.
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2.3 Asymmetric Information

The first-best program allows the government to make payments contingent on

each producer’s actual type. This assumption can be relaxed by allowing pay-

ments to be contingent upon observable producer actions, i.e., the amount of land

each producer commits to idle. In this section I consider two classes of policies.

Ex post policies require producers to commit to a contract after p is known. Ex

ante policies require producers to commit to a contract before p is known. I then

compare the optimal policy to a stylized version of the FAIR Act.

Modeling is simplified by making use of the Revelation Principle (Myerson

1979). The Revelation Principle allows one to restrict attention to mechanisms

that are direct and truthful. In the context of this problem, a direct mechanism

is one in which producers report θ. For a truthful mechanism, producers do not

find it optimal to report θ falsely.

2.3.1 Ex Post Mechanism

The requirement that a mechanism be truthful restricts the set of feasible con-

tracts available to the government. Let a
³
θ̃
´
and t

³
p, θ̃
´
be the terms of a

contract a producer receives by reporting type θ̃. For an ex post policy, a truth-

ful mechanism requires that for all types, producer income (profit plus transfer)

be maximized by reporting the true type θ:

θ ∈ argmax
θ̃

n
π
³
p, a

³
θ̃
´
, θ
´
+ t
³
p, θ̃
´o

, ∀
³
θ, θ̃
´
∈ Θ2, p. (2.34)

For an interior solution, a necessary condition for satisfaction of (2.34) is:

πa (p, a (θ) , θ) a
0 (θ) + tθ (p, θ) = 0, ∀ θ, p. (2.35)
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At the optimum, the second order condition is:

πaa (p, a (θ) , θ) a
0 (θ)2 + πa (p, a (θ) , θ) a

00 (θ) + tθθ (p, θ) ≤ 0,∀ θ, p. (2.36)

Differentiating (2.35) implies:

πaa (p, a (θ) , θ) a
0 (θ)2+πa (p, a (θ) , θ) a

00 (θ)+ tθθ (p, θ)+πaθ (p, a (θ) , θ) a
0 (θ) = 0

(2.37)

Using (2.37), the second order condition simplifies to:

−πaθ (p, a (θ) , θ) a
0 (θ) ≤ 0, ∀ θ, p. (2.38)

Therefore, using (R4) a truthful ex post mechanism requires the land allocation

to be monotonically non-decreasing in type:

a0 (θ) ≥ 0. (2.39)

Using (2.35), differentiation of (2.15) for each price state and each interval

ΘL, ΘM , ΘH yields:

sθ (p, θ) = πθ (p, a (θ) , θ) , ∀ θ ∈ ΘL, p; (2.40)

sθ (p�, θ) = πθ (p�, a (θ) , θ) , ∀ θ ∈ ΘM ; (2.41)

sθ (ph, θ) = πθ (ph, a (θ) , θ)− πθ (ph, a, θ) ,∀ θ ∈ ΘM ; (2.42)

sθ (p, θ) = πθ (p, a (θ) , θ)− πθ (p, a, θ) , ∀ θ ∈ ΘH , p. (2.43)

A truthful mechanism imposes restrictions on the rate of change of surplus across

types. Surplus may increase or decrease in type depending on θ and p. For

ΘL, sθ (p, θ) > 0, whereas for ΘH , sθ (p, θ) < 0. For ΘM , sθ (p�, θ) > 0, and

sθ (ph, θ) < 0.

To illustrate the intuition behind this result, consider the situation faced by

types belonging to ΘM . Suppose producers are offered the first-best contract
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schedule. If price is low producers can only increase utility by mimicking a lower

type. To see this, recall that the first-best contract assigns a payment to each type

just sufficient to attain the minimum income level. A producer earns more profit

from cultivating a given quantity of land than any lower type. A producer could

take a contract intended for a lower type, cultivate the amount of land required

by the contract, and receive the transfer for the lower type. The size of the

transfer would be enough to bring the lower type to the minimum income level.

It would therefore bring a higher type above the minimum income level. Thus,

a higher type could profitably mimic a lower type if the government offered the

higher type a contract yielding zero surplus. A lower type could not improve his

utility by mimicking a higher type, however. By accepting a contract that gives

a higher type zero surplus, the lower type’s surplus would be negative. Surplus

payments are therefore required to make it incentive compatible for higher types

to pick the contract intended for them. The rate of change in surplus is given by

equation (2.41). Types in ΘL face this incentive structure even if price is high,

thus equation (2.40).

If price is high, the reverse occurs. The opportunity cost of land is increasing in

type. Suppose the government tried to pay all producers exactly the opportunity

cost of their land. A low type could profitably choose a contract for a higher

type. He would obtain a transfer larger than the opportunity cost of his idled

land. Surplus payments required to induce truth-telling are therefore decreasing

in type at the rate indicated in equation (2.42). Producers in ΘH face this

incentive even if price is low, thus equation (2.43).
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Combine equations (2.40)-(2.43) to obtain equations of motion for s (p, θ):

sθ (p�, θ) =

 πθ (p�, a (θ) , θ)

πθ (p�, a (θ) , θ)− πθ (p�, a, θ)

θ ∈ ΘL ∪ΘM

θ ∈ ΘH

; (2.44)

sθ (ph, θ) =

 πθ (ph, a (θ) , θ)

πθ (ph, a (θ) , θ)− πθ (ph, a, θ)

θ ∈ ΘL

θ ∈ ΘM ∪ΘH

. (2.45)

Surplus in both states initially increases in θ, reaches a peak, then decreases.

If price is low, the peak occurs at θH . If price is high, the peak occurs at θL.

These two functions are depicted in Figure 2.2. The two local minima for s (p, θ)

are located at the extreme types θ and θ̄.

Rewrite the first-best Lagrangian (2.20), to account for these constraints:
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Figure 2.2: Ex Post Surplus
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min
a(θ),s(p,θ),λ,τ(p,θ),γ(p,θ),α(θ)

Z
ΘL

n
S (θ)−Π (a, θ) +m

+
ρ {γ (p�, θ) [sθ (p�, θ)− πθ (p�, a (θ) , θ)]− τ (p�, θ) s (p�, θ)}

f (θ)

+
(1− ρ) γ (ph, θ) [sθ (ph, θ)− πθ (ph, a (θ) , θ)]

f (θ)

−(1− ρ) τ (ph, θ) s (ph, θ)

f (θ)

¾
dF (θ)

+

Z
ΘM

n
S (θ)−Π (a, θ) + ρm+ [1− ρ]π (ph, a, θ)

+
ρ {γ (p�, θ) [sθ (p�, θ)− πθ (p�, a (θ) , θ)]− τ (p�, θ) s (p�, θ)}

f (θ)

+
(1− ρ) γ (ph, θ) [sθ (ph, θ)− πθ (ph, a (θ) , θ) + πθ (ph, a, θ)]

f (θ)
(2.46)

−(1− ρ) τ (ph, θ) s (ph, θ)

f (θ)

¾
dF (θ)

+

Z
ΘH

n
S (θ)− Π (a, θ) +Π (a, θ)

+
ρ {γ (p�, θ) [sθ (p�, θ)− πθ (p�, a (θ) , θ) + πθ (p�, a, θ)]− τ (p�, θ) s (p�, θ)}

f (θ)

+
(1− ρ) γ (ph, θ) [sθ (ph, θ)− πθ (ph, a (θ) , θ) + πθ (ph, a, θ)]

f (θ)

−(1− ρ) τ (ph, θ) s (ph, θ)

f (θ)

¾
dF (θ)

−λ

Z
Θ

[a− a (θ)−A] dF (θ)−
Z
Θ

α (θ) [a− a (θ)] dθ.

subject to: (2.39).

Here γ (p, θ) is the Lagrange multiplier for (2.44) and (2.45), τ (p, θ) is the La-

grange multiplier for (2.17), and α (θ) is the Lagrange multiplier for the constraint

a (θ) ≤ ā. Following standard practice (e.g., Fudenberg and Tirole (1991)), I do

not explicitly include the monotonicity condition (2.39) in the Lagrangian. In-

stead, I solve for the optimal solution ignoring this constraint. Afterwards I check

to ensure that the solution satisfies (2.39).
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Integrating objective function (2.46) by parts yields:

min
a(θ),s(p,θ),λ,τ(p,θ),γ(p,θ),α(θ)

Z
Θ

{S (θ)− Π (a, θ)− λ [a− a (θ)−A]

−α (θ)

f (θ)
[a− a (θ)]− ργ (p�, θ)

f (θ)
πθ (p�, a (θ) , θ)− (1− ρ) γ (ph, θ)

f (θ)
πθ (ph, a (θ) , θ)

−ργθ (p�, θ) + τ (p�, θ)

f (θ)
s (p�, θ)

−(1− ρ) γθ (ph, θ) + τ (ph, θ)

f (θ)
s (ph, θ)

¾
dF (θ) (2.47)

+

Z
ΘL

mdF (θ) +

Z
ΘM

ρm+ [1− ρ]π (ph, a, θ) dF (θ) +

Z
ΘH

Π (a, θ) dF (θ)

+ρ
£
γ
¡
p�, θ̄

¢
s
¡
p�, θ̄

¢− γ (p�, θ) s (p�, θ)
¤

+(1− ρ)
£
γ
¡
ph, θ̄

¢
s
¡
ph, θ̄

¢− γ (ph, θ) s (ph, θ)
¤
.

The necessary conditions for optimal land cultivation are:

Πa (a (θ) , θ) +
ργ (p�, θ)

f (θ)
πaθ (p�, a (θ) , θ)

+
(1− ρ) γ (ph, θ)

f (θ)
πaθ (ph, a (θ) , θ)− λ− α (θ)

f (θ)
≥ 0. (2.48)

a (θ) ≥ 0 (2.49)

a (θ)

·
Πa (a (θ) , θ) +

ργ (p�, θ)

f (θ)
πaθ (p�, a (θ) , θ)

+
(1− ρ) γ (ph, θ)

f (θ)
πaθ (ph, a (θ) , θ)− λ− α (θ)

f (θ)

¸
= 0. (2.50)

ā− a (θ) ≥ 0 (2.51)

α (θ) ≥ 0 (2.52)

α (θ) [ā− a (θ)] = 0 (2.53)Z
Θ

[a− a (θ)− A] dF (θ) ≥ 0 (2.54)

λ ≥ 0 (2.55)

λ

Z
Θ

[a− a (θ)− A] dF (θ) = 0 (2.56)
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Note from (2.48) that unlike the full information case, the equimarginal principle

is not satisfied. For interior solutions, the marginal profit of land is equal to λ

minus the distortion ργ(p�,θ)
f(θ)

πaθ (p�, a (θ) , θ) +
(1−ρ)γ(ph,θ)

f(θ)
πaθ (ph, a (θ) , θ). Conse-

quently, this marginal profit is not equal across all types.

The necessary conditions for s (p, θ) are:

γθ (p, θ) + τ (p, θ)− f (θ) = 0 (2.57)

τ (p, θ) ≥ 0 (2.58)

s (p, θ) ≥ 0 (2.59)

τ (p, θ) s (p, θ) = 0 (2.60)

Unlike the full information case, (2.57) indicates that τ (p, θ) is not necessarily

strictly positive for all types. The necessary conditions for optimal endpoints

s (p, θ) and s
¡
p, θ̄
¢
are:

−γ (p, θ) ≥ 0 (2.61)

s (p, θ) ≥ 0 (2.62)

γ (p, θ) s (p, θ) = 0 (2.63)

γ
¡
p, θ
¢ ≥ 0 (2.64)

s
¡
p, θ
¢ ≥ 0 (2.65)

γ
¡
p, θ
¢
s
¡
p, θ
¢
= 0 (2.66)
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Integration of (2.57) implies:Z θ

θ

γθ (p, z) dz =

Z θ

θ

f (z) dz −
Z θ

θ

τ (p, z) dz (2.67)

γ
¡
p, θ
¢
+

Z θ

θ

τ (p, z) dz − 1 = γ (p, θ)−
Z θ

θ

τ (p, z) dz. (2.68)

Define:

µ (p, θ) ≡
Z θ

θ

τ (p, z) dz − γ (p, θ) . (2.69)

By construction, τ (p, θ) ≥ 0. Therefore, (2.105), (2.64), and (2.68) imply µ (p) ∈
[0, 1]. Integration of (2.57) for an interior type implies:Z θ

θ

γθ (p, z) dz =

Z θ

θ

f (z) dz −
Z θ

θ

τ (p, z) dz (2.70)

γ (p, θ)− γ (p, θ) = F (θ)−
Z θ

θ

τ (p, z) dz (2.71)

γ (p, θ) = F (θ)− µ (p, θ) . (2.72)

Note from Figure 2.2, that if it is optimal for any type in a given price state

to receive zero surplus it will be one of the endpoints θ or θ̄. For all other types

τ (p, θ) = 0. Next, observe that if one endpoint optimally receives strictly positive

surplus, the other must optimally receive zero surplus. To see this, consider the

contrary. If both extremes receive strictly positive surplus, then τ (p, θ) = 0 for all

types. In addition, (2.63) and (2.66) imply γ (p, θ) = γ
¡
p, θ
¢
= 0. Consequently,

(2.68) implies 0 = 1, which is clearly a contradiction.

If s
¡
p, θ
¢

> 0, the left hand side of (2.68) is −1 for all types, therefore
µ (p, θ) = 1 and γ (p, θ) = F (θ)− 1. If s (p, θ) > 0, the right hand side of (2.68)

is zero for all types, therefore γ (p, θ) = F (θ).

Let D� (γ (p�, θ) , γ (ph, θ)) and Dh (γ (p�, θ) , γ (ph, θ)) denote the differences
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in surplus between the extreme types in each state:

D� (γ (p�, θ) , γ (ph, θ)) ≡ s
¡
p�, θ̄

¢− s (p�, θ)

=

Z
Θ

πθ (p�, a
∗, θ) dθ −

Z θ̄

θH

πθ (p�, a, θ) dθ (2.73)

Dh (γ (p�, θ) , γ (ph, θ)) ≡ s
¡
ph, θ̄

¢− s (ph, θ)

=

Z
Θ

πθ (ph, a
∗, θ) dθ −

Z θ̄

θL

πθ (ph, a, θ) dθ, (2.74)

where a∗ ≡ a∗ (γ (p�, θ) , γ (ph, θ)) is the quantity of land that satisfies (2.48).

Note from (2.48) that for an interior solution:

∂a∗

∂γ (p�)
=

−ρπaθ (p�, a
∗, θ)

f (θ)

Πaa +
ργ (p�, θ) πaaθ (p�, a

∗, θ) + (1− ρ) γ (ph, θ) πaaθ (ph, a
∗, θ)

f (θ)

> 0; and (2.75)

∂a∗

∂γ (ph)
=

− (1− ρ)πaθ (ph, a
∗, θ)

f (θ)

Πaa +
ργ (p�, θ) πaaθ (p�, a

∗, θ) + (1− ρ) γ (ph, θ) πaaθ (ph, a
∗, θ)

f (θ)

> 0, (2.76)

due to (R2), (R4), and (R6). Therefore, bothD� andDh are decreasing in µ (p, θ).

Finally, denote the values of µ (p, θ) that give both extremes zero surplus as:

µ̂ (p�, θ) = {µ̂ : D� (F (θ)− µ̂, γ (ph, θ)) = 0} (2.77)

µ̂ (ph, θ) = {µ̂ : Dh (γ (p�, θ) , F (θ)− µ̂) = 0} . (2.78)

Note that since all interior types receive positive surplus,
R θ

θ
τ (p, z) dz = 0 for

all θ < θ̄. Consequently, referring to (2.69) µ̂ (p, θ) must be constant across all

types.

The values of µ (p, θ) that satisfy the necessary conditions for an optimum
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can therefore be characterized as follows:

µ (p�, θ) =



0 if D� (F (θ) , γ (ph, θ)) ≤ 0

µ̂ (p�, θ)
if D� (F (θ)− 1, γ (ph, θ)) < 0,

and 0 < D� (F (θ) , γ (ph, θ))

1 if 0 ≤ D� (F (θ)− 1, γ (ph, θ))

(2.79)

µ (ph) =



0 if Dh (γ (p�, θ) , F (θ)) ≤ 0

µ̂ (ph)
if Dh (γ (p�, θ) , F (θ)− 1) < 0,

and 0 < Dh (γ (p�, θ) , F (θ))

1 if 0 ≤ Dh (γ (p�, θ) , F (θ)− 1) .

(2.80)

It remains to verify that the solutions satisfy the monotonicity condition

(2.39). For an interior solution, differentiation of (2.48) yields:

da∗

dθ
= −

Πaθ + ρ
h

d
dθ

³
γ�

f

´
π�
aθ +

γ�

f
π�
aθθ

i
+ [1− ρ]

h
d
dθ

³
γh

f

´
πh
aθ +

γh

f
πh
aθθ

i
Πaa + ργ�

f
π�
aaθ + [1− ρ] γ

h

f
πh
aaθ

.

(2.81)

Here, a superscript  or h indicates that the function is evaluated at p = p� or ph.

Regularity conditions (R2), (R4), (R5), and (R6) ensure that the right hand side

of this equation is strictly positive, hence the monotonicity condition is satisfied

for all of the above cases.

To further characterize the solution requires knowing the specific structure

of π (p, a, θ) and f (θ). Regardless of the optimal value of γ (p, θ), however, the

optimal ex post mechanism does not achieve the first best. No land allocation

indicated by a possible value of γ (p, θ) satisfies necessary condition (2.21) for

an optimal first best contract. Moreover, although at least one type receives

zero surplus ex post, it may be the case that all types receive positive expected

surplus. At most, only the two extreme types receives zero expected surplus.
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On the contrary, for the first-best mechanism all types receive zero expected

surplus. In the next section, I examine the effect of changing the time of contract

commitment on the green payments program.

2.3.2 Ex Ante Mechanism

Ex ante and ex post mechanisms differ in the implications of income, participa-

tion, and truth-telling constraints. Risk-neutrality of both the government and

producers implies that both parties are indifferent between contracts that yield

the same expected surplus with different combinations of ex post surplus. Thus,

any contract with weakly positive expected surplus can be implemented with

payouts such that ex post surplus is weakly positive in each state. Without loss

of generality, I replace the income and participation constraints (2.17) with the

expected surplus constraint:

S (θ) ≥ 0. (2.82)

Since this constraint is less restrictive than the two constraints (2.17), the optimal

ex ante mechanism cannot be more costly than the optimal ex post mechanism.

To see how the relaxed constraint affects the cost of the mechanism, it is necessary

to more fully characterize the optimal ex ante contract schedule.

For an ex ante policy to be truthful, expected producer income must be

maximized by reporting the true type θ:

θ ∈ argmax
θ̃

n
Π
³
a
³
θ̃
´
, θ
´
+ T

³
θ̃
´o

, ∀
³
θ, θ̃
´
∈ Θ2. (2.83)

This requirement has two implications for the set of feasible contract alloca-

29



tions. A necessary condition for satisfaction of (2.83) is:

Πa (a (θ) , θ) a
0 (θ) + Tθ (θ) = 0,∀ θ. (2.84)

At the optimum, the second-order condition is:

Πaa (a (θ) , θ) a
0 (θ)2 +Πa (a (θ) , θ) a

00 (θ) + Tθθ (θ) ≤ 0, ∀ θ. (2.85)

Differentiating (2.84) yields:

Πaa (a (θ) , θ) a
0 (θ)2 +Πa (p, a (θ) , θ) a

00 (θ) + Tθθ (θ) +Πaθ (a (θ) , θ) a
0 (θ) = 0

(2.86)

Consequently, the second order condition simplifies to:

−Πaθ (a (θ) , θ) a
0 (θ) ≤ 0. (2.87)

Using (R4), expression (2.87) implies that a truthful ex ante mechanism requires

the land allocation to be monotonically non-decreasing in type:

a0 (θ) ≥ 0. (2.88)

Using (2.84), differentiation of (2.16) for each price state and each interval

ΘL, ΘM , ΘH implies:

S 0 (θ) =


Πθ (a (θ) , θ) θ ∈ ΘL

Πθ (a (θ) , θ)− [1− ρ]πθ (ph, a, θ) θ ∈ ΘM

Πθ (a (θ) , θ)− Πθ (a, θ) θ ∈ ΘH

(2.89)

Rewriting the first-best Lagrangian (2.20) to account for these constraints

yields:
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min
a(θ),S(θ),λ,τ(θ),γ(θ),α(θ)

Z
ΘL

{S (θ)−Π (a, θ) +m

+
γ (θ) [S 0 (θ)−Πθ (a (θ) , θ)]− τ (θ)S (θ)

f (θ)

¾
dF (θ)

+

Z
ΘM

n
S (θ)−Π (a, θ) + ρm+ (1− ρ)π (ph, a, θ)

+
γ (θ) [S 0 (θ)−Πθ (a (θ) , θ) + (1− ρ) πθ (ph, a (θ) , θ)]

f (θ)
(2.90)

−τ (θ)S (θ)

f (θ)

¾
dF (θ)

+

Z
ΘH

{S (θ)− Π (a, θ) +Π (a, θ)

+
γ (θ) [S 0 (θ)−Πθ (a (θ) , θ) +Πθ (a, θ)]− τ (θ)S (θ)

f (θ)

¾
dF (θ)

−λ

Z
Θ

[a− a (θ)−A] dF (θ)−
Z
Θ

α (θ) [a− a (θ)] dθ.

subject to: (2.88).

Here γ (θ) and τL (θ) are the Lagrange multipliers for constraints (2.89) and

(2.82), and α (θ) is the Lagrange multiplier for the constraint a (θ) ≤ ā. The

monotonicity condition (2.88) is not explicitly included in the Lagrangian. In-

stead, I solve for the optimal solution ignoring this constraint, then check to

ensure it is satisfied.

Integrate (2.90) by parts to obtain:

min
a(θ),S(θ),λ,τ(θ),γ(θ),α(θ)

Z
Θ

{S (θ)− Π (a, θ)− λ [a− a (θ)− A]

−γ (θ)

f (θ)
Πθ (a (θ) , θ)− γ0 (θ) + τ (θ)

f (θ)
S (θ)− α (θ)

f (θ)
[a− a (θ)]

¾
dF (θ)(2.91)

+

Z
ΘL

mdF (θ) +

Z
ΘM

ρm+ (1− ρ)π (ph, a, θ) dF (θ)

+

Z
ΘH

Π (a, θ) dF (θ)− γ (θ)S (θ) + γ
¡
θ̄
¢
S
¡
θ̄
¢
.
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By pointwise optimization, the necessary conditions for optimal land cultiva-

tion are:

Πa (a (θ) , θ) +
γ (θ)

f (θ)
Πaθ (a (θ) , θ)− λ− α (θ)

f (θ)
≥ 0 (2.92)

a (θ) ≥ 0 (2.93)

a (θ)

·
Πa (a (θ) , θ) +

γ (θ)

f (θ)
Πaθ (a (θ) , θ)− λ− α (θ)

f (θ)

¸
= 0 (2.94)

ā− a (θ) ≥ 0 (2.95)

α (θ) ≥ 0 (2.96)

α (θ) [ā− a (θ)] = 0 (2.97)Z
Θ

[a− a (θ)−A] dF (θ) ≥ 0 (2.98)

λ ≥ 0 (2.99)

λ

Z
Θ

[a− a (θ)−A] dF (θ) = 0 (2.100)

As with the ex post mechanism, notice from (2.92) that asymmetric information

introduces a distortion in the optimal land allocation. The marginal profit of land

is not equated across types. It equals λ minus the distortion γ(θ)
f(θ)

Πaθ (a (θ) , θ).

The necessary conditions for expected surplus are:

γ0 (θ) + τ (θ)− f (θ) = 0 (2.101)

τ (θ) ≥ 0 (2.102)

S (θ) ≥ 0 (2.103)

τ (θ)S (θ) = 0 (2.104)

Similar to the the ex post case, (2.101) indicates that τ (θ) may not be strictly

positive for all types. Consequently some types may receive positive expected

surplus. Necessary conditions for the optimal endpoints of S (θ) are:
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−γ (θ) ≥ 0 (2.105)

S (θ) ≥ 0 (2.106)

S (θ) γ (θ) = 0 (2.107)

γ
¡
θ
¢ ≥ 0 (2.108)

S
¡
θ
¢ ≥ 0 (2.109)

S
¡
θ
¢
γ
¡
θ
¢
= 0 (2.110)

To characterize the solution, note the shape of S (θ) as described in (2.89).

For ΘL, expected surplus is always increasing in type, whereas for ΘH expected

surplus is always decreasing. For ΘM , expected surplus may be increasing or

decreasing, depending upon a (θ). For example, see the lower panels of Figures

2.3 - 2.9.

Define the allocation â (θ) as:

â (θ) ≡ {a : Πθ (a, θ) = [1− ρ]πθ (ph, a, θ)} . (2.111)

If a (θ) = â (θ) for some θ ∈ ΘM , then S 0 (θ) = 0. Note that (2.88) and (R4)

imply that if a (θ) < â (θ) , then S0 (θ) < 0, and if a (θ) > â (θ) , then S 0 (θ) > 0.

At this level of generality, there are many possible solutions to the government’s

problem.

Assumption (R7) simplifies the analysis by making â (θ) a constant â for all

θ. Under (R7)

Πθ (a, θ) = g0 (θ) Π̃ (a) , (2.112)

where

Π̃ (a) ≡ ρπ̃ (p�, a) + [1− ρ] π̃ (ph, a) . (2.113)
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Consequently, (2.111) simplifies to:

â (θ) = â =
n
a : Π̃ (a) = [1− ρ] π̃ (ph, a)

o
. (2.114)

Since the monotonicity condition (2.88) requires that the land allocation be

non-decreasing in type, (R7) implies that in the interval ΘM , S (θ) is roughly U-

shaped, achieving its minimum for any type(s) that cultivate â acres (see Figure

2.6). If no types in ΘM cultivate â, then S (θ) is monotonically increasing or

decreasing as follows:

S0 (θ) > 0 if a (θL) > â

S0 (θ) < 0 if a (θH) < â.
(2.115)

Denote the (possibly empty) subinterval of types within ΘM that cultivate â

as Θ̂M , with lower and upper bounds θ1 and θ2. Since θ, θ̄, and Θ̂M are all local

minima of S (θ), if it is optimal for any type(s) to receive zero expected surplus

it will be one of these.

First, note that it is optimal for at least one of these minima to receive zero

expected surplus. To see this, consider the contrary. Integration of (2.101) im-

plies: Z θ

θ

γ0 (θ) dθ =

Z θ

θ

f (θ) dθ −
Z θ

θ

τ (θ) dθ (2.116)

γ
¡
θ
¢− γ (θ) = 1−

Z θ

θ

τ (θ) dθ (2.117)

If all types strictly positive expected surplus, then τ (θ) = 0. In addition, (2.107)

and (2.110) imply γ (θ) = γ
¡
θ
¢
= 0. Consequently, (2.117) implies 0 = 1, clearly

a contradiction.

Consider the case in which no interior type receives zero expected surplus.

Rearranging expression (2.117) yields:
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γ
¡
θ
¢− 1+

Z θ

θ

τ (θ) dθ = γ (θ)−
Z θ

θ

τ (z) dz (2.118)

Define:

µ (θ) ≡
Z θ

θ

τ (z) dz − γ (θ) . (2.119)

Integration of (2.101) for an interior type implies:

Z θ

θ

γ0 (θ) dθ =

Z θ

θ

f (θ) dθ −
Z θ

θ

τ (θ) dθ (2.120)

γ (θ) = F (θ) + γ (θ)−
Z θ

θ

τ (θ) dθ (2.121)

γ (θ) = F (θ)− µ (θ) . (2.122)

The solution of the problem can take one of several qualitatively different

forms depending upon which of the local minima of S (θ) are global minima.

Which case applies cannot be determined a priori since it depends in turn upon

the particular specifications of π (p, a, θ) and f (θ).

If only the highest type receives zero surplus then S (θ) > 0 and γ (θ) = 0 by

(2.107) and µ (θ) = 0 for all types. If only the lowest type receives zero surplus

then S
¡
θ̄
¢
> 0, γ

¡
θ
¢
= 0, and µ (θ) = 1 for all types.

A third alternative is that only both extreme types receive zero surplus. Define

D (γ (θ)) ≡ S
¡
θ̄
¢− S (θ) (2.123)

=

Z
Θ

Πθ (a
∗ (θ, γ (θ) , λ) , θ) dθ

−
Z
ΘM

[1− ρ]πθ (ph, a, θ) dθ −
Z
ΘH

Πθ (a, θ) dθ,

where a∗ (θ, γ (θ) , λ) is the quantity of land that satisfies (2.92).
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From (2.92):

∂a∗

∂γ
=

−Πaθ (a
∗, θ)

f (θ)Πaa (a∗, θ) + γ (θ)Πaaθ (a∗, θ)

> 0, (2.124)

due to (R2), (R4), and (R6). Therefore, D is decreasing in µ (θ). For both

extremes to receive zero expected surplus it must be the case that

µ (θ) = µ̂ (θ) ≡ {µ̂ : D (F (θ)− µ̂) = 0} . (2.125)

Note that since expected surplus is positive for all interior types,
R θ̄

θ
τ (θ) dθ = 0

for all θ < θ. Consequently, µ̂ (θ) is constant across type.

If a central interval of types θ ∈ Θ̂M receive zero expected surplus, then

integration of (2.101) from θ to θ1 implies:Z θ1

θ

γ0 (θ) dθ =

Z θ1

θ

f (θ) dθ −
Z θ1

θ

τ (θ) dθ (2.126)

γ
¡
θ
¢− γ (θ) = F (θ1)−

Z θ1

θ

τ (θ) dθ (2.127)

Rearranging (2.127):

γ (θ1)− F (θ1) +

Z θ1

θ

τ (θ) dθ = γ (θ)−
Z θ

θ

τ (z) dz. (2.128)

Let

µ1 (θ) ≡
Z θ

θ

τ (z) dz − γ (θ) . (2.129)

If S (θ) > 0, then γ (θ) and µ1 (θ) = 0 for θ ∈ [θ, θ1] .
Alternatively, it may be the case that both θ and all θ ∈ Θ̂M receive zero

surplus. Define:

D1 (γ (θ)) ≡ S (θ1)− S (θ) (2.130)

=

Z θ1

θ

Πθ (a
∗ (θ, γ (θ) , λ) , θ) dθ −

Z θ1

θL

[1− ρ]πθ (ph, a, θ) dθ.
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In this case, D1 (γ (θ)) = 0 and

µ1 (θ) = µ̂1 (θ) ≡ {µ̂ : D1 (F (θ)− µ̂) = 0} , for θ ∈ [θ, θ1] .

Similarly, let

µ2 (θ) ≡ 1− γ
¡
θ̄
¢− Z θ̄

θ

τ (z) dz.

If S
¡
θ̄
¢

> 0, then γ (θ) = 0 and µ2 (θ) = 1 for θ ∈ £θ2, θ̄¤. It also may be the
case that θ̄ and all θ ∈ Θ̂M receive zero surplus.

Define:

D2 (γ (θ)) ≡ S
¡
θ̄
¢− S (θ2) (2.131)

=

Z θ̄

θ2

Πθ (a
∗ (θ, γ (θ) , λ) , θ) dθ −

Z θH

θ2

[1− ρ]πθ (ph, a, θ) dθ

−
Z
ΘH

Πθ (a, θ) dθ.

In this case D1 (γ (θ)) = 0 and

µ2 (θ) = µ̂2 (θ) ≡ {µ̂ : D2 (F (θ)− µ̂) = 0} , for θ ∈ £θ2, θ̄¤ .
Table 2.1 summarizes the possible optimal paths of a (θ). These land alloca-

tions and corresponding expected surplus paths are illustrated in Figures 2.3 -

2.9.

It remains to verify that these possible solutions satisfy the monotonicity

condition (2.39). Differentiation of (2.92) for an interior solution yields:

da∗

dθ
= −

Πaθ +Πaθ
d
dθ

³
γ(θ)
f(θ)

´
+ γ(θ)

f(θ)
Πaθθ

Πaa +
γ(θ)
f(θ)

Πaaθ

. (2.132)

Regularity conditions (R2), (R4), (R5), and (R6) ensure that the right hand side

of this equation is strictly positive, hence the monotonicity condition is satisfied

for all of the above cases.
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Table 2.1: Optimal Land Allocation

Land Allocation Interval Condition

1. a∗ (θ, F (θ)− 1, λ) θ ∈ Θ D (F (θ)− 1) , and D1 (F (θ)− 1) > 0

2. a∗ (θ, F (θ) , λ) θ ∈ Θ D (F (θ)) , D2 (F (θ)) < 0

3. a∗ (θ, F (θ)− µ̂ (θ) , λ) θ ∈ Θ

D1 (F (θ)− µ̂ (θ)) > 0,

D2 (F (θ)− µ̂ (θ)) < 0,

and D (F (θ)− µ̂ (θ)) = 0

4.

a∗ (θ, F (θ) , λ)

â

a∗ (θ, F (θ)− 1, λ)

θ < θ1

θ ∈ Θ̂M

θ > θ2

D1 (F (θ)) < 0,

and D2 (F (θ)− 1) > 0

5.

a∗ (θ, F (θ)− µ̂1 (θ) , λ)

â

a∗ (θ, F (θ)− µ̂2 (θ) , λ)

θ < θ1

θ ∈ Θ̂M

θ > θ2

D1 (F (θ)− µ̂1 (θ))

and D2 (F (θ)− µ̂2 (θ)) = 0

6.

a∗ (θ, F (θ)− µ̂1 (θ) , λ)

â

a∗ (θ, F (θ)− 1, λ)

θ < θ1

θ ∈ Θ̂M

θ > θ2

D1 (F (θ)− µ̂1 (θ)) = 0,

and D2 (F (θ)− 1) > 0

7.

a∗ (θ, F (θ) , λ)

â

a∗ (θ, F (θ)− µ̂2 (θ) , λ)

θ < θ1

θ ∈ Θ̂M

θ > θ2

D1 (F (θ)) < 0,

and D2 (F (θ)− µ̂2 (θ)) = 0
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Figure 2.3: Ex Ante Land Allocation 1
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Figure 2.4: Ex Ante Land Allocation 2
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Figure 2.5: Ex Ante Land Allocation 3
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Figure 2.6: Ex Ante Land Allocation 4
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Figure 2.7: Ex Ante Land Allocation 5
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Figure 2.8: Ex Ante Land Allocation 6
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Figure 2.9: Ex Ante Land Allocation 7

 

S 

θ  θ  

a  
a 

( )θâ  

( )θS

( )( )λθθ ,,* Fa

( )( )λθθ ,1,* −Fa  

(in bold) 

1θLθ  Mθ  

θ  θ  1θLθ  Mθ  

( )θa

2θ

( )( )λµθθ ,,* −Fa

2θ

45



None of the solutions listed in Table 2.1 can be ruled out a priori. Examining

Figures 2.3 - 2.9 we can observe several possible outcomes regarding expected

surplus. In each outcome at least one type receives zero expected surplus. How-

ever, it is also possible that both extreme types receive zero expected surplus,

an interval of interior types receives zero expected surplus, or some combination

thereof.

In Figure 2.3, the dominant incentive for all types is to mimic the lowest type.

As a result, only the lowest type receives zero surplus. The type (θ1) for which

the slope of expected surplus is zero is a local minimum and receives strictly

positive expected surplus. In Figure 2.4, this situation is reversed with only the

highest type receiving zero expected surplus. In Figure 2.5, all interior types

are indifferent between mimicking either extreme type. Note that this does not

mean that the incentive to overstate type exactly countervails the incentive to

understate type, leaving the producer without any incentive to misrepresent the

true type. Instead the producer might profitably imitate either a higher or lower

type, it turns out that the expected surplus received either way is exactly the

same. Consequently, only the two extreme types receive zero expected surplus. In

Figures 2.3 - 2.5, countervailing incentives are not strong enough to make pooling

optimal, either in land cultivated or surplus received.

In Figure 2.6, for Θ̂M the expected gain from overstating type if p = ph is

exactly countervailed by the expected loss should the realized price be p�. These

types require no expected surplus payments to state their true type. For types to

the left of Θ̂M the dominant incentive is to overstate type. The opposite is true

for those to the right. Figures 2.7 - 2.9 differ only in the respect that some types

not in Θ̂M are indifferent between overstating and understating type. Note again
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that these producers might profitably overstate or understate type, the expected

gain being the same. In each case depicted in Figures 2.6 - 2.9, countervailing

incentives result in an optimal pooling both in land use and land cultivated for

types belonging to Θ̂M .

Which solution applies depends on the specific functional form of Π (a, θ)

and f (θ) and the values of prices and other parameters in the model. The

characteristics of the various solutions differ greatly: some exhibit pooling in land

allocated to an interval of types, while others do not; some allow expected surplus

to be eliminated for several types, while others give positive expected surplus to

all types except one or two. Thus, even a general qualitative description of what

an optimal green payments mechanism looks like is impossible without specifying

Π (a, θ) and f (θ).

Since the optimal ex post mechanism is more constrained than the optimal

ex ante mechanism it cannot be less costly. However, this analysis goes farther,

showing that in some circumstances, the ex post contract must be more costly. To

see this, compare (2.79) and (2.80) with Table 2.1 and note that a land allocation

that satisfies the necessary conditions for the ex post contract does not satisfy the

necessary conditions for an optimal ex ante contract. For example, requiring an

interval of types to idle the same quantity of land is never optimal for an ex post

mechanism. As a result, an ex post mechanism cannot reduce costs to the level

of an ex ante contract when such pooling is optimal. Moreover, for the ex ante

mechanism at least one type always receives zero expected surplus. It may also

be the case that expected surplus payments can be completely eliminated for an

entire interval of types. For the ex post mechanism, however, at most two types

receive zero expected surplus, and in some cases no type receives zero expected
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surplus.

2.3.3 FAIR Act

For comparison, I examine a stylized version of the income support and land

set aside programs in the 1996 FAIR Act. As discussed in Chapter 1, income

support in the FAIR Act can be modeled as lump-sum payments conditional on

prevailing output price. Land set asides in the Conservation Reserve Program

(CRP) were conducted using a competitive auction. The land set asides were for

at least a 10-year period. Since farmers were not certain whether average output

prices would be high or low during that period this program is treated as an ex

ante mechanism.

The key difference between this policy and the optimal ex ante policy is that

the FAIR Act uses two policy instruments to attain two policy targets. This

structure contrasts with the optimal mechanism which essentially kills two birds

with one stone, using a single payment to achieve both income and environmental

goals.

It is impossible to capture all the detail of an actual policy in a simplified

model. I therefore focus attention on an “optimal” FAIR Act in the policy setting

described in Section 2.1. This policy seeks to minimize the cost of attaining

income and environmental objectives subject to the additional constraints that

equal lump-sum income support payments are made to all farmers.

First consider the government’s problem with respect to the environmental

program. The CRP is unconcerned with income support, however it still must

satisfy the participation constraint (2.6). Hence, it is as if all types belong to

ΘH . Smith (1995) has derived a least-cost CRP in a similar setting. Using the
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notation of previous sections, the government’s objective function for the CRP

is:

min
T (θ),a(θ)

Z
Θ

T (θ) dF (θ) (2.133)

subject to (2.5), (2.134), (2.135), and (2.136).

Expected CRP surplus payments, Sc (θ), are those received in excess of the

participation constraint:

Sc (θ) ≡ T (θ)− [Π (ā, θ)− Π (a (θ) , θ)] ≥ 0. (2.134)

In this case, incentive compatibility requires that expected surplus be decreasing

for all types:

S 0c (θ) = Πθ (a (θ) , θ)−Πθ (ā, θ) ≤ 0; (2.135)

and that land cultivated must be non-decreasing in type,

a0 (θ) ≥ 0. (2.136)

This problem is simplified by changing Sc (θ) for T (θ) in the objective function

and writing the Lagrangian temporarily ignoring constraint (2.136):

min
a(θ),S(θ),λ,τ(θ),γ(θ)

Z
Θ

{Sc (θ)− Π (a, θ) +Π (ā, θ)− λ [a− a (θ)−A]

−α (θ)
f (θ)

[a− a (θ)] (2.137)

+
γ (θ) [S 0c (θ)−Πθ (a (θ) , θ) + Πθ (a, θ)]− τ (θ)Sc (θ)

f (θ)

¾
dF (θ) ,

where λ is the Lagrange multiplier for (2.5), γ (θ) is the Lagrange multiplier for

(2.135), τ (θ) is the Lagrange multiplier for (2.134), and α (θ) is the Lagrange
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multiplier for the constraint a (θ) ≤ ā. After integration by parts this expression

becomes:

min
a(θ),S(θ),λ,τ(θ),γ(θ)

Z
Θ

{Sc (θ)− Π (a (θ) , θ) +Π (a, θ)− λ [a− a (θ)− A]

−α (θ)
f (θ)

[a− a (θ)]− γ (θ)

f (θ)
Πθ (a (θ) , θ)− γ0 (θ) + τ (θ)

f (θ)
Sc (θ)

¾
dF (θ)

−γ (θ)Sc (θ) + γ
¡
θ̄
¢
Sc

¡
θ̄
¢
. (2.138)

The necessary conditions for optimal land cultivation are:

Πa (a (θ) , θ) +
γ (θ)

f (θ)
Πaθ (a (θ) , θ)− λ− α (θ)

f (θ)
≥ 0. (2.139)

a (θ) ≥ 0 (2.140)

a (θ)

·
Πa (a (θ) , θ) +

γ (θ)

f (θ)
Πaθ (a (θ) , θ)− λ− α (θ)

f (θ)

¸
= 0 (2.141)

ā− a (θ) ≥ 0 (2.142)

α (θ) ≥ 0 (2.143)

α (θ) [ā− a (θ)] = 0 (2.144)Z
Θ

[a− a (θ)− A] dF (θ) ≥ 0 (2.145)

λ ≥ 0 (2.146)

λ

Z
Θ

[a− a (θ)− A] dF (θ) = 0 (2.147)

The necessary conditions for Sc (θ) are:

γ0 (θ) + τ (θ)− f (θ) = 0 (2.148)

τ (θ) ≥ 0 (2.149)

Sc (θ) ≥ 0 (2.150)

τ (θ)Sc (θ) = 0 (2.151)

Necessary conditions for optimal endpoints of Sc (θ) are:
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−γ (θ) ≥ 0 (2.152)

Sc (θ) ≥ 0 (2.153)

Sc (θ) γ (θ) = 0 (2.154)

γ
¡
θ
¢ ≥ 0 (2.155)

Sc

¡
θ
¢ ≥ 0 (2.156)

Sc

¡
θ
¢
γ
¡
θ
¢
= 0. (2.157)

Since S 0c (θ) ≤ 0 if any type receives zero surplus it will be θ. Suppose Sc

¡
θ
¢
> 0.

In that case τ (θ) = 0 for all types, and γ (θ) = γ
¡
θ
¢
= 0. Condition (2.148) can

be integrated to obtain:

γ (θ) = F (θ)− 1, and (2.158)

γ (θ) = F (θ) . (2.159)

Consequently, the conjecture is false that optimally Sc

¡
θ
¢
> 0. If Sc

¡
θ
¢
= 0,

then integration of (2.148) implies:

γ (θ) = F (θ) . (2.160)

Inserting (2.160) into first order condition (2.139) reveals that land cultivation

is increasing in type, with no pooling. Surplus is decreasing in type, with all

types receiving strictly positive surplus except for θ, which receives zero surplus.

Intuitively, since the CRP must compensate producers for the opportunity cost

of their land, all producers have an incentive to overstate type. Since lower types

have relatively greater scope to overstate their type, they must receive higher

surplus payments to induce truth-telling.
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In addition, notice that although surplus is decreasing in type, total income

is increasing in type. Total income is profit earned from production plus CRP

transfers. Using (2.134) we can rewrite total income in terms of surplus payments

rather than transfers:

T (θ) +Π (a (θ) , θ) = Sc (θ) + [Π (ā, θ)−Π (a (θ) , θ)] (2.161)

+Π (a (θ) , θ)

= Sc (θ) +Π (ā, θ) . (2.162)

The rate of change of total income across types is therefore:

S 0c (θ) +Πθ (ā, θ) = Πθ (a (θ) , θ)− Πθ (ā, θ) +Πθ (ā, θ) (2.163)

= Πθ (a (θ) , θ) , (2.164)

which is positive by (R3).

Now consider the income support program. Since it provides equal lump-

sum transfers to all farmers, it does not make payment contingent upon land set

aside. Suppose the expected lump-sum income support payments P are designed

to ensure that the lowest-type producer attains minimum income m. Further,

suppose that the agency administering the program knows that the CRP results

in a distribution of farm income that is increasing in type, with the lowest type

earning Sc (θ) +Π (ā, θ). The lowest lump-sum payment P is therefore:

P = m− Sc (θ)− Π (ā, θ) . (2.165)

Total expected surplus from CRP and income support is total payments received
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in excess of the amount necessary to satisfy the income constraint:

P + T (θ)− [m− Π (a (θ) , θ)] = P + Sc (θ) +Π (ā, θ)

−Π (a (θ) , θ)− [m−Π (a (θ) , θ)]

= P + Sc (θ) +Π (ā, θ)−m.

The rate of change of total expected surplus is therefore the same as the rate

of change of total income (2.164). Total expected surplus is increasing, with θ

receiving zero surplus.

The land allocation corresponding to (2.160) is that corresponding to the sec-

ond example in Table 2.1. Therefore, the FAIR land allocation may be equivalent

to that of an optimal ex ante mechanism, but not necessarily. Suppose that the

structure of Π (a, θ) and f (θ) are such that this land allocation is in fact optimal.

Even in this case the payment scheme of the FAIR contract is not identical to

the contract schedule of the optimal ex ante mechanism for the entire range of

types. From equation (2.89) we see that total expected surplus for the two mech-

anisms are the same for ΘL. However, expected surplus is growing at a faster rate

for the FAIR mechanism than the optimal mechanism for ΘM and ΘH . Hence,

even in the best of circumstances the FAIR Act provides excessive payments to

relatively high types, relative to an optimal ex ante mechanism. These excess

payments represent the cost of not properly using information obtained from the

environmental program to shape the income support program.

2.4 Discussion

In this chapter I have examined four mechanisms for achieving income support

and environmental objectives of agricultural policy. As a baseline I first consid-
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ered the first-best mechanism. This mechanism is only feasible if the government

directly observes the productivity of each producer’s land. With this policy there

is no pooling in terms of land set asides. The amount of land cultivated is strictly

increasing in land productivity such that the marginal profit from land is equal

for all types. Payments received by producers are exactly enough to ensure that

farmers voluntarily participate and that they attain the minimum income level.

Hence, no type receives surplus payments.

Next I considered two types of mechanisms that are feasible when productivity

is privately known to producers. The two types of mechanisms differ by when

contracting takes place. For an ex post mechanism contracting takes place after

output price is known. For an ex ante mechanism contracting takes place before

output price is known.

Even if beliefs regarding prices are commonly held, price uncertainty unam-

biguously helps the government. As in Bontems and Bourgeon (2000), the random

variable does this by creating countervailing incentives for producers. Intuitively,

price uncertainty weakens the incentive some producers have to misrepresent their

true type. Some producers have an incentive to over-state their type in one price

state and under-state their type in the other. Price uncertainty effectively adds a

cost to misrepresenting type if they guess output price incorrectly. Consequently,

they require less surplus to reveal their true type than if price were known. For

some types, countervailing incentives may be strong enough that all incentive to

misrepresent type is eliminated. In this case, surplus payments are eliminated

for all these types.

The intuition regarding the superiority of ex ante mechanism can be supported

mathematically. The objective function of the two mechanisms are identical.
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The only difference is that the ex post contract has an additional constraint.

Thus, the ex post contract can be no better than the ex ante contract. The

analysis in this chapter allows the stronger statement that the ex post mechanism

is unambiguously costlier than the ex ante mechanism. This conclusion can be

seen by noting that the optimal land allocation for the ex post mechanism does

not satisfy the necessary conditions for an optimal ex ante mechanism.

Finally, we compared an optimal ex ante green payments mechanism with a

stylized version of actual ex ante policies that treat income support and environ-

mental goals separately. Separate policies similar to those enacted in the 1996

FAIR legislation are not least cost. The land allocation resulting from separated

policies does not generally satisfy the necessary conditions for the optimal ex

ante mechanism. There is one special case in which the land allocation of the

FAIR Act does satisfy the necessary condition for an optimum. However, even

in this case expected surplus payments are higher than for the optimal ex ante

mechanism.

In a context of imperfect information it is not optimal to use separate policies

to achieve environmental and income support goals. The costs of achieving both

objectives are linked to hidden information regarding land productivity. A least

cost program uses information from participation in one program to determine

payments in the other. In addition, making contract commitment when output

price is uncertain reduces cost.

Finally, this chapter highlights the crucial role of empirical analysis in de-

signing an optimal green payments program. The characteristics of the optimal

contract schedule are highly sensitive to the government’s beliefs regarding pro-

ducer technology and the distribution of producer types. For example, for some
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sets of beliefs it is optimal for an interval of types to idle the same amount of

land, whereas for others it is not. The rest of the dissertation deals with the

problems of i) estimating a producer profit function and a probability density

function for types using readily available data, and ii) using these estimates to

calibrate an optimal green payments contract schedule.
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Chapter 3

Empirical Model: Theory

This chapter develops an empirically tractable model of agricultural production

that can be used to calibrate the optimal green payments program derived in the

previous chapter. The fundamental problem deals with how to estimate a model

of agricultural production that not only allows for unobservable heterogeneity in

productivity across observations, but provides an estimate of the distribution of

productivity levels (producer types) across the population.

The chapter begins by specifying a technology that defines type in terms of a

parameter that affects the set of inputs required to produce a given set of outputs.

I then draw out the implications of these technological assumptions for cost-

minimizing behavior. In the second section, I describe an econometric strategy for

estimating a cost function that includes the type parameter. Estimation results

provide structural estimates that can be used to generate a profit function for

each type as well as a function for the distribution of types across the population.
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3.1 Technology

3.1.1 Input Requirement Set

The data do not include any directly observable measure of productivity differ-

ences across farms. To infer this information, I first specify how type affects

production. Specifically, I assume type indicates the effectiveness with which in-

puts are used to produce output. All else equal, higher types require fewer inputs

to produce the same output as lower types.

Producers are characterized by two fixed factors, one observable and one not.

The observed factor is land, denoted a ∈ <++. The unobserved factor is the
producer’s type, θ. To make the model empirically tractable, I specify type as a

productivity index normalized over the supportΘ ≡ (0, 1]. Let x ∈ <n
+ denote the

variable-input vector and q ∈ <+ denote aggregate output. The variable-input
requirement set V (q, a, θ) is defined:

V (q, a, θ) ≡ {x : x can produce q given a, θ} . (3.1)

Assume V (q, a, θ) has the following properties:

(V1) V (q, a, θ) is closed;

(V2) V (q, a, θ) is a convex set;

(V3) x ∈ V (q, a, θ)⇒ λx ∈ V (q, a, θ) , λ ≥ 1.

(V4) V (q, a, λθ) = 1
λ
V (q, a, θ) , λ > 0.

Properties (V1) and (V2) are regularity conditions that allow exploitation of

duality theory to represent V (q, a, θ) with a variable cost function. Property

(V3) allows variable inputs to be weakly disposable. Inputs can expand along

a ray from the origin without reducing feasible output. Property (V4) specifies

the effect of θ on production. An increase in type implies a proportional radial

58



expansion of the input requirement set. For example, referring to Figure 3.1, if

θ2 is twice θ1, it can produce the same output with half of each variable input,

given a. Together with (V3), (V2) implies that a producer can do no worse than

a lower type since for any given output level its set of feasible input bundles

completely includes the set of feasible input bundles for all lower types.

3.1.2 Cost and Profit Functions

For a vector of variable input prices w ∈ <n
++ the minimum variable cost function

C (w, q, a, θ) is defined:

C (w, q, a, θ) ≡ inf
x
{w0x : x ∈ V (q, a, θ)} . (3.2)

It follows from (V4) that an increase in type by a factor λ > 0 implies a

proportional decrease in the minimum cost of producing q with a:

C (w, q, a, λθ) = inf
x
{w0x : x ∈ V (q, a, λθ)}

= inf
x

½
w0x : x ∈ 1

λ
V (q, a, θ)

¾
= inf

x
{w0x : xλ ∈ V (q, a, θ)}

=
1

λ
inf
xλ
{w0xλ: xλ ∈ V (q, a, θ)}

=
1

λ
C (w, q, a, θ) . (3.3)

Define the cost frontier C̃ (w, q, a) as the minimal cost function across all types:

C̃ (w, q, a) ≡ inf
θ
{C (w, q, a, θ)}

= C (w, q, a, 1) . (3.4)

59



Figure 3.1: Type and Productivity
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It follows directly from (3.3) that:

lnC (w, q, a, θ) = ln C̃ (w, q, a)− ln θ. (3.5)

When an interior solution exists, Shephard’s Lemma yields the following expen-

diture share equations for a cost-minimizing producer,:

wixi
∗

C (w, q, a, θ)
=

∂ lnC (w, q, a, θ)

∂ lnwi

=
∂ ln C̃ (w, q, a)

∂ lnwi

, i = {1, ..., n} , (3.6)

where xi∗ is the cost-minimizing quantity of input i.

For a given output price p ∈ <++, the maximum variable profit function

π (p,w, a, θ) is defined,

π (p,w, a, θ) ≡ sup
q

{pq − C (w, q, a, θ)} . (3.7)

Let q∗ be the profit maximizing output quantity.. For an interior solution, profit

maximization implies:

p =
∂C (w, q∗, a, θ)

∂q
. (3.8)

Algebraic manipulation of (3.8) yields the ratio of revenue to cost:

pq∗

C (w, q, a, θ)
=

∂C (w, q∗, a, θ)
∂q

· q∗

C (w, q∗, a, θ)

=
∂ ln C̃ (w, q∗, a)

∂ ln q
. (3.9)

3.2 Estimation Strategy

I use equations (3.5), (3.6) and (3.9) to estimate the technological parameters for

profit-maximizing producers (Diewert 1982). For the translog case, the system

of equations for a typical observation is:
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ln
C (w, q∗, a, θ)

wn

= β0 +
n−1P
i=1

βi ln
wi

wn

+ βq ln q
∗ + βa ln a

+
n−1P
i=1

n−1P
j=1

βij

2
ln

wi

wn

ln
wi

wn

+
n−1P
i=1

βqi ln q
∗ ln

wi

wn

+
n−1P
i=1

βai ln a ln
wi

wn

+
βqq

2
(ln q∗)2 + βqa ln q

∗ ln a

+
βaa

2
(ln a)2 − ln θ + ln v0 (3.10)

wixi
∗

C (w, q∗, a, θ)
= βi +

n−1P
j=1

βij ln
wi

wn

+ βqi ln q
∗ + βai ln a + vi , (3.11)

i = 1, ..., n− 1

pq∗

C (w, q∗, a, θ)
= βq +

n−1P
i=1

βqi ln
wi

wn

+ βqq ln q
∗ + βqa ln a + vn , (3.12)

where v ≡ (v0, v1, ..., vn)0 is a vector of statistical noise. I eliminate the nth expen-

diture share equation due to its linear dependence upon the other expenditure

share equations. I impose the symmetry condition βij = βji∀i, j. I also im-
pose positive linear homogeneity of the cost frontier in input prices through the

following restrictions:

βn = 1−
n−1P
i=1

βi; βin = −
n−1P
i=1

βij∀i; βqn = −
n−1P
i=1

βqi;βan = −
n−1P
i=1

βan. (3.13)

Since θ cannot be observed, it is treated as a random variable. I impose the

following assumptions upon the distributions of v and θ :

(A1) E [v|a, p,w, θ] = 0;
(A2) E [(v30) |a, p,w, θ] = 0;
(A3) ln θ has a normal distribution independent of all other variables

with a mean of zero truncated at zero from above (a half-normal distribution).

The probability density function of θ is:

f (θ) =


1

θσθ

q
2
π
exp

µ
−1
2

³
ln θ
σθ

´2¶
, θ ∈ (0, 1]

0 , otherwise
(3.14)
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(A4) θ is identically and independently distributed across observations.

By (A1), the vector v is assumed to be a mean-zero disturbance vector. I

do not make any assumption regarding a particular parametric family of distri-

butions for v. However, (A2) requires that the skewness of the statistical noise

for the cost equation (3.10) be zero, i.e., this disturbance is symmetrically dis-

tributed. This assumption allows us to attribute any observed skewness in the

residuals to the unobserved type parameter.

Combined with (A2), assumption (A3) provides the structure necessary to

infer the distribution of types from the residuals of (3.10). Following the stochas-

tic frontier analysis literature, see for example Kumbhakar and Lovell (2000),

I assume ln θ follows a half-normal distribution.1 The scale parameter of this

distribution, σθ, is the standard deviation of the corresponding non-truncated

normal distribution. The mean and skewness of ln θ are respectively:

E [ln θ] = −σθ

r
2

π
, (3.15)

and

E
£
(ln θ − E [ln θ])3

¤
= σ3θ

µ
1− 4

π

¶r
2

π
. (3.16)

Since θ is distributed independently of v0, E [v0 ln θ] = E [v0]E [ln θ] = 0.

The expected value of the composite disturbance v0− ln θ conditioned on the
exogenous variables is:

E [v0 − ln θ|a, p,w] = E [v0]− E [ln θ] = σθ

r
2

π
. (3.17)

To understand the effect of type on estimation, add σθ

q
2
π
to β0 and subtract

σθ

q
2
π
from the composite disturbance in equation (3.10) (Olson, Schmidt and

1Although the half-normal is the most commonly used specification, other alternatives in-

clude exponential, gamma, and binomial.
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Waldman 1980). The new composite disturbance has zero mean:

E

"
v0 − ln θ − σθ

r
2

π
|a, p,w

#
= E [v0]− E [ln θ]− σθ

r
2

π
= 0. (3.18)

Thus, an otherwise consistent regression technique that assumes a zero-mean

disturbance vector yields a biased estimate of the intercept. Rather than esti-

mating β0, it estimates β0+σθ

q
2
π
. All other parameter estimates are consistent,

however.

Estimation of the system proceeds in two steps. First, I estimate the entire

system assuming a mean zero disturbance vector. In the second step, I use

residuals from the first step to correct the bias in the intercept.

Due to the presence of the endogenous variable q∗ on the right-hand side

of (3.10), an ordinary least squares procedure yields inconsistent parameter es-

timates. One way to correct the endogeneity problem is to use a generalized

method of moments (GMM) approach. This approach effectively uses output

price as an instrument for q∗. Output price is well suited as an instrument since

it is theoretically be correlated with q∗ via equation (3.12), yet θ, v and p are

uncorrelated (assumptions (A1) and (A3)).

For producer s, represent equations (3.10)-(3.12) in stacked form as

Ys = Xsβ + ²s, (3.19)

where Ys is the (n+ 1× 1) vector of left-hand side variables

Ys ≡
µ
ln

Cs

wns

,
w1sx1s

Cs

, ...,
wn−1sxn−1s

Cs

,
psqs

Cs

¶0
, (3.20)

Xs is the (n+ 1× k) vector of right-hand side variables arranged so that cross-
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equation parameter restrictions are imposed

Xs ≡



1 ln w1s
wns

· · · ln wn−1s
wns

ln qs ln ai
1
2

³
ln w1s

wns

´2
...

0 1 0 0 0 ln w1s
wns

...

0 0 0 0 0 0 ...

...
...

0 0 1 0 0 0

0 0 0 0 1 0 0 ...


, (3.21)

β is the (k × 1) parameter vector

β ≡



β0 + σθ

q
2
π

β1
...

βn−1

βq

...


, (3.22)

and ²s is the (n+ 1× 1) disturbance vector

²s ≡



v0 + ln θ − σθ

q
2
π

v1

v2

v3

v4


.

Let zs be a vector of exogenous variables for observation s (substitute ps for qs

in the first row of Xs):

zs=

µ
1, ln

w1s

wns

, ..., ln
wn−1s
wns

, ln ps, ln a, ...

¶
. (3.23)
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Finally, Zs is a (n+ 1× k (n + 1)) block diagonal matrix of the zs vector:

Zs =



zs 0 ... 0 0

0 zs 0 0

...
. . .

...

0 0 zs 0

0 0 ... 0 zs


. (3.24)

For the ensuing analysis, assume that the rank condition is satisfied: rank Z0sXs

= columns of Xs.

By assumptions (A5) and (A6) E [²|z] = 0. Hence,

E [Z0s²s] = 0. (3.25)

Let es
³
β̂
´
denote the sample residuals obtained by an estimator β̂:

es
³
β̂
´
≡ Ys −Xsβ̂.

The sample analog to (3.25) for a given estimator is thus:

S−1
SP

s=1

Z0ses
³
β̂
´
. (3.26)

Following Hansen (1982), a consistent estimator of β minimizes the weighted

sum of squares of these sample analogs to the theoretical moment (3.25):

β̂ = argmin
β̃

(·
S−1

SP
s=1

Z0ses
³
β̃
´¸0

Ŵ

·
S−1

SP
s=1

Z0ses
³
β̃
´¸)

. (3.27)

Here Ŵ is a symmetric positive semidefinite matrix that converges in probability

to a nonrandom positive semidefinite matrixW as S →∞.
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Let the matrix X of dimensions (S · (n + 1)× k) denote the full sample equa-

tion by equation stacked form of Xs:

X =



1 ln w11
wn1

ln w21
wn1

...

...
...

...

1 ln w1S
wnS

ln w2S
wnS

...

0 1 0 ...

...
...

...
. . .


. (3.28)

Similarly, let matrix Z of dimensions (S · (n+ 1)× k · (n+ 1)) denote the full-

sample equation-by-equation stacked form of Zs:

Z =



z1 0 0 ...

...
...

...

zS 0 0 ...

0 z1 0 ...

...
...

...

0 zS 0 ...

0 0 z1 ...

...
...

...
. . .



. (3.29)

Since es (β) is linear in β, the solution to (3.27) is:

β̂ =
³
X0ZŴZ0X

´−1 ³
X0ZŴZ0Y

´
. (3.30)

The choice of weighting matrix depends upon the severity of the assumptions

one wishes to impose on heteroskedasticity and correlation between equations and

across observations. Any symmetric positive semidefinite matrix that converges in

probability to a nonrandom positive semidefinite matrix can be used to calculate

consistent parameter estimates (Hansen 1982). The efficiency of the model and
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the consistency of standard error estimates depends on the choice of weighting

matrix. This is essentially a generalized instrumental variables procedure. It

would be exactly two-stage least squares with a weighting matrix of (Z0Z)0.

If each observation s ∈ S is independent of the others, the optimal (least

variance) choice ofW is (Wooldridge 2002):

W−1= Λ =E [Z0s²s²
0
sZs] . (3.31)

Using this weighting matrix the asymptotic covariance matrix for β̂ is consistently

estimated by:

S

·
X0Z

h
Λ̂
i−1

Z0X
¸−1

, (3.32)

where Λ̂ is a consistent estimator of Λ (Wooldridge 2002).

A useful starting point for obtaining Λ̂ is the system two-stage least squares

(2SLS) weighting matrix:

h
Ŵ2SLS

i−1
= S−1

SP
s=1

Z0sZs. (3.33)

Since Ŵ2SLS is a symmetric positive semidefinite matrix that converges in prob-

ability, the estimator β̂2SLS is consistent.

This estimator is not efficient if there is any correlation in the errors across

equations. The residuals es
³
β̂2SLS

´
are useful, however, in calculating Λ̂ under

less restrictive assumptions.2 For example, the three-stage least squares (3SLS)

estimator is robust to homoskedastic correlation across equations. Suppose that

the conditional variance matrix of ²s is constant given Zs:

Ω ≡E [²s²0s] = E [²s²
0
s|Zs] . (3.34)

2The discussion regarding choice of weighting matrix is a brief summary of techniques de-

scribed by (Wooldridge 2002)
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By the Law of Iterated Expectations:

E [Z0s²s²
0
sZs] = E [Z0sE [²s²

0
s|Zs]Zs] (3.35)

= E [Z0sΩZs] , (3.36)

Then,

Ω̂ = S−1
SP

s=1

es
³
β̂2SLS

´
es
³
β̂2SLS

´0
. (3.37)

is a consistent estimator of Ω, and

Λ̂3SLS=S
−1 SP

s=1

Z0sΩ̂Zs. (3.38)

is a consistent estimator of Λ.

The estimator β̂3SLS calculated using Ŵ3SLS =
h
Λ̂3SLS

i−1
is not asymptot-

ically efficient for more general forms of Λ. An estimator robust to arbitrary

heteroskedasticity can be calculated by letting Ω vary by observation. In this

case, the consistent estimator for the heteroskedasticity robust weighting matrix

Λ̂HR is (Wooldridge 2002):

Λ̂HR=S
−1 SP

s=1

Z0ses
³
β̂2SLS

´
es

³
β̂2SLS

´0
Zs. (3.39)

Finally, in addition to arbitrary heteroskedasticity the researcher may wish

to allow for correlation in the errors for different observations in a given group

or cluster. For example, there may be unobserved factors commonly affecting

all producers in the same county in the same year. Similarly, one may believe

that the effects of an unobserved shock to a county persists through time. The

heteroskedasticity robust weighting matrix can be modified to provide asymptoti-

cally efficient parameter estimates in the presence of arbitrary correlation between

the errors of observations belonging to the same cluster (Wooldridge 2003).
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Suppose there are G independent clusters indexed g = 1, ..., G. Let members

of a cluster be indexedm = 1, ...,Mg, whereMg is the total membership of cluster

g. Let Zg denote the stacked matrices of exogenous variables for all members of

a cluster:

Zg =


Z1

...

ZMg

 . (3.40)

Let eg
³
β̂2SLS

´
denote the stacked 2SLS residuals for the members of cluster g:

eg
³
β̂2SLS

´
=


e1
³
β̂2SLS

´
...

eMg

³
β̂2SLS

´
 . (3.41)

In this case, Pepper (2002) shows the optimal weighting matrix (3.31) is replaced

by:

W−1= Λ =E
£
Z0g²g²

0
gZg

¤
. (3.42)

This matrix is consistently estimated by the heteroskedasticity and correlation

robust weighting matrix:

Λ̂HCR=S
−1 SP

s=1

Z0geg
³
β̂2SLS

´
eg

³
β̂2SLS

´0
Zg. (3.43)

If heteroskedasticity and clustering are not present in the data, the parameters

estimated by the weighting matrices Λ̂3SLS, Λ̂HR, and Λ̂HCR are asymptotically

equivalent. If heteroskedasticity is present, but there is no clustering, estimators

calculated with Λ̂HR and Λ̂HCR are asymptotically equivalent and more efficient

than those calculated with Λ̂3SLS. Finally, if heteroskedasticity and clustering

are present estimators calculated with Λ̂HCR are asymptotically more efficient
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than the other two weighting matrices. The finite sample implications of using a

more robust estimator than necessary are unclear, however (Wooldridge 2002).

Whichever estimator of β is ultimately chosen, it estimates

β0 + σθ

r
2

π
(3.44)

rather than β0. To estimate the intercept parameter consistently requires a con-

sistent estimate for σθ. Adapting Olson, Schmidt and Waldman (1980), one can

recover a consistent estimator for σθ from the residuals of a GMM regression.

Due to (A2) the skewness of v0 is zero. By (A3) the skewness of the composite

disturbance v0 +E [ln θ]− ln θ depends exclusively on θ:

E
£
(v0 − (ln θ − E [ln θ]))3

¤
= E

£
v30 − 3v20 (ln θ − E [ln θ])+

3v20 (ln θ −E [ln θ])2 − (ln θ −E [ln θ])3
¤

= −E £(ln θ − E [ln θ])3
¤

= −σ3θ
µ
1− 4

π

¶r
2

π
. (3.45)

Let e0s denote the residual from equation (3.10) for producer s using one of the

GMM estimators described above. Since moments of the residuals are consistent

estimators of the central moments of the population disturbances,

plim
SP

s=1

e30s
S
= E

£
v0 − (ln θ − E [ln θ])3

¤
= −σ3θ

µ
1− 4

π

¶r
2

π
. (3.46)

Rearranging terms yields σ̂θ, a consistent estimator for σθ:

σ̂θ = −

SP
s=1

e30s
S¡

1− 4
π

¢q
2
π

. (3.47)

Consequently, a consistent estimate of β0 is obtained by subtracting σ̂θ

q
2
π
from

the GMM estimate of the intercept.
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Recall from Chapter 2 that characterization of the optimal green payments

program requires two components: a profit function for each type of producer

and a probability distribution for type. The procedures described in this chapter

provide this information. The estimated technological parameters of the cost

function can be used to generate a parametric profit function for each type. In

addition, the estimator σ̂θ can replace σθ in (3.14) to obtain a consistent estimate

of the probability density function of producer types.

3.3 Discussion

In this chapter, I have developed an internally consistent methodology for esti-

mating a translog cost frontier for profit-maximizing producers with unobserv-

able heterogeneity. I began by explicitly specifying a heterogeneous technology.

Specifically, I assumed that different types of producers differ in the quantity

of observable inputs necessary to produce a given output. This specification is

convenient since the corresponding cost function is log-linear in the unobserved

technological productivity parameter representing producer type. As a result, by

assuming a parametric probability density function for types, I can treat type

as an additional stochastic disturbance in the regression. The problem then be-

comes one of inferring the parameters of both the cost function and the type

probability density function from the data. It is for this reason that I use a cost

function approach rather than estimating a profit function directly. Once the

parameters of the cost function are estimated it is straightforward to calculate

the corresponding profit function.

The estimation strategy proceeds in two steps. In the first step, the cost

function is estimated ignoring producer heterogeneity. Since output is endogenous
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for profit-maximizing producers, a GMM technique is employed, effectively using

output price as an instrument for output. The GMM estimator yields consistent

and asymptotically efficient estimates of all parameters in the cost function with

the exception of the intercept in the cost equation. This intercept is biased by

the expected value of the log of types.

In the second step, I eliminate this bias. To do so, I recognize that while the

white noise component of the disturbance is symmetric, the type component is

positively skewed. Producers can only have higher cost than the most productive

type. Any skewness in the residuals of the first step is attributed to type. I

use the empirical skewness of the residuals to estimate the scale parameter of

the probability distribution of producer types. This estimate allows consistent

estimation of the expected value of the natural log of the type parameter and

correction of the bias in the intercept of the cost function.

In the next chapter I use United States’ agricultural data to estimate the

parameters for a cost function with hidden information. These parameters are

then used to calibrate a simulation of the green payments mechanism of Chapter

2.
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Chapter 4

Empirical Model: Estimation

In this chapter, I implement the estimation strategy described in Chapter 3. I use

data from the United States Department of Agriculture (USDA) to estimate a

cost frontier and a probability distribution for producer types. The estimated pa-

rameters are then used to formulate a producer profit function that incorporates

type.

In the first section, I describe the data set and the manipulations taken to

transform the raw data into economically meaningful variables. In section two I

describe the estimation results.

4.1 Data

Producer cost and returns data come from 1997-2000 Agricultural Resource Man-

agement Study (ARMS) surveys conducted by the National Agricultural Statistics

Service (NASS) of the USDA. Each year’s survey is a stratified random sample of

agricultural producers. Among other items, surveys collect producer-level data

on input expenditures and output quantities.

With the exception of production acres, ARMS surveys only record input
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dollar amounts (expenditures or asset value), not prices and quantities. For

outputs, quantities are reported. Since price data are necessary to estimate a

cost system, I use other sources. Where possible, state-level price indexes are

used. However, for most inputs only national-level indexes are available. The

sources of disaggregated input and output prices are summarized in Tables 4.1

and 4.2.

The data contain information on producers across the continental United

States. The USDA Economic Research Service developed farm resource regions

to group farms with similar physiographic, soil, and climatic characteristics. To

model producers with similar characteristics, I limit the analysis to producers

located in the “Heartland” Farm Resource Region. The Heartland, illustrated in

Figure 4.1 consists of the entire states of Illinois, Indiana, and Iowa, as well as

portions of Kentucky, Minnesota, Missouri, Nebraska, Ohio, and South Dakota.

It is the region with most farms, most cropland, and greatest value of production

(Economic Research Service 2000). The breakdown of observations by state and

year is displayed in Table 4.3.

To account for the year in which an observation is surveyed I employ four

binary dummy variables, d97, ..., d00. The dummy variable assumes a value of

unity if an observation is surveyed in that year, a value of zero otherwise. For

example, if an observation occurs in 1997, then d97 = 1, d98 = d99 = d00 = 0.

Year dummies should capture systemic production shocks for the whole region

such as weather and technology.

The surveys record capital assets (producer-owned machinery and vehicles) as

estimated market value at year end. I calculate the price of capital as the implicit

user cost of capital services. Assuming perfect second-hand markets, this price
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Table 4.1: Sources for Input Prices
Input  Coverage Source
LaborLaborLaborLabor  State  BLS (2002)  
EnergyEnergyEnergyEnergy      
    Diesel  State  NASS (2004)  
    Gasoline  State  NASS (2004)  
    LP Gas  State  NASS (2004)  
    Electricity  State  NASS (2004)  
MaterialsMaterialsMaterialsMaterials      
    Seed  US  NASS (2002)  
    Fertilizer  US  NASS (2002)  
    Chemicals  US  NASS (2002)  
    Supplies  US  NASS (2002)  
    Feed  US  NASS (2002)  
    Livestock  US  NASS (2002)  
    Poultry  US  NASS (2002)  
    Custom Work  US  NASS (2002)  
    Vehicle/Machinery Repairs  US  NASS (2002)  
CapitalCapitalCapitalCapital      
    Vehicles owned  US  BLS (2002)  
    Machinery owned  US  BLS (2002)  
    Vehicle/Machinery lease  US  BLS (2002)  
    Investment expenditure  US*  Federal Reserve (2002)  
    *Interest rate on Moody’s Baa corporate bond  
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Table 4.2: Sources for Output Prices
Output  Coverage Source  
CropsCropsCropsCrops      
    Barley  State marketing year average NASS (2002)  
    Canola  State marketing year average NASS (2002)  
    Cotton  State marketing year average NASS (2002)  
    Fruit  State marketing year average NASS (2002)  
    Hay  State marketing year average NASS (2002)  
    Oats  State marketing year average NASS (2002)  
    Peanuts  State marketing year average NASS (2002)  
    Potatoes  State marketing year average NASS (2002)  
    Rice  State marketing year average NASS (2002)  
    Sorghum  State marketing year average NASS (2002)  
    Soybeans  State marketing year average NASS (2002)  
    Sugar Beets  State marketing year average NASS (2002)  
    Sugar Cane  State marketing year average NASS (2002)  
    Tobacco  State marketing year average NASS (2002)  
    Vegetables  State marketing year average NASS (2002)  
    Wheat  State marketing year average NASS (2002)  
LivestockLivestockLivestockLivestock      
    Cattle  State annual average  NASS (2002)  
    Dairy  State annual average  NASS (2002)  
    Eggs  State annual average  NASS (2002)  
    Hogs  State annual average  NASS (2002)  
    Poultry  US annual average  NASS (2002)  
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Figure 4.1: USDA “Heartland” Farm Resource Region

Source: ERS (2000).Source: ERS (2000).
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Table 4.3: Number of Observations by State and Year

Year

State 1997 1998 1999 2000 Total

IL 399 210 314 265 1,188

IN 222 130 176 184 712

IA 399 272 297 225 1,193

KY 86 37 36 27 186

MN 280 153 213 215 861

MO 193 86 136 139 554

NE 121 61 100 60 342

OH 162 85 131 91 469

SD 105 22 62 53 242

Total 1,967 1,056 1,465 1,259 5,747
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is what a producer could earn by renting capital equipment to others. Following

Hall and Jorgenson (1967), user cost reflects: i) opportunity cost of financial

resources locked into physical capital; ii) physical depreciation of capital; and iii)

change in price of new capital assets.1 The opportunity cost of capital in year

t, rt, is assumed to be the interest rate on Moody’s Baa rated corporate bonds

for the current year. Producers are assumed to have perfect foresight regarding

interest rates.

To calculate physical depreciation of capital, I employ the declining balance

method in a similar fashion to Chambers and Vasavada (1983). Bureau of Labor

Statistics (2001) estimates are used to approximate service lives of motor vehicles

(17 years), agricultural machinery except tractors (17 years), and farm tractors

(14 years). The depreciation rate is calculated by solving the following equation

for δ:

PS = PA (1− δ)L , (4.1)

where PS and PA are real salvage and acquisition prices and L is service life. I do

not have information for the salvage value. I assume that the value of equipment

at end of service life is one percent of acquisition price, so

δ = 1− (0.01) 1L . (4.2)

The change in the price of capital assets is the annual percent change in the

price indexes. I use Bureau of Labor Statistics producer price indexes for new

construction, motor vehicles, farm machinery, and tractors for the corresponding

categories. I assume that producers have perfect foresight regarding capital gains.

Let pkt denote the asset price of capital for year t. I base the user cost

1I do not have data on capital taxes, thus my user cost calculations may be biased downwards.

80



of capital services for that year (wkt) on the Berndt (1991) adaptation of the

formula presented in Hall and Jorgenson (1967):

wkt = pkt

µ
rt + δ − pkt − pkt−1

pkt

¶
. (4.3)

BLS provides asset price and depreciation information for the categories of trac-

tors and other farm machinery. However, ARMS survey responses group these

two assets together. I calculate user cost of this component of capital using a

weighted average of the “tractors and machinery” response. The weights (60

and 40 percent, respectively) correspond to the average weights employed in the

USDA’s monthly Agricultural Prices to calculate their Prices Paid index.

I calculate capital stock in each category by dividing value of assets by the

corresponding cost of capital services. I assume flow of capital services is propor-

tional to capital stock.

I aggregate outputs into a single category comprising all crop and livestock

production. Aggregate inputs are capital, labor, energy, materials, and land. A

sufficient condition for input aggregation is homothetic separability of the pro-

duction function of the aggregate input in its constituent components (Chambers

1988). Williams and Shumway (1998) found that this condition was satisfied for

similar agricultural input aggregations in the United States. Similar aggregate

inputs are commonly used in agricultural research, see for example O’Donnell,

Shumway and Ball (1999) and Ball, Gollop, Kelly-Hawke and Swinnand (1999).

Although sufficient, homothetic separability is not a necessary condition for

aggregation. The generalized composite commodity theorem (GCCT) is an al-

ternative sufficient condition (Lewbel 1996). Use of the GCCT can justify ag-

gregation when homothetic separability does not hold. Specifically, the GCCT

states that commodities may be consistently aggregated if “the relative difference
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between the individual commodity price and the aggregate commodity price [is]

independent of the aggregate commodity price” (Davis, Lin and Shumway 2000).

Davis, Lin and Shumway (2000) provide evidence that the GCCT allows aggre-

gation of US agricultural output commodities into a single composite category.

I calculate a multilateral Tornqvist price index based on Caves, Christensen

and Diewert (1982) for each aggregate commodity for each state and year. Cal-

culation of the multilateral Tornqvist index proceeds in two steps. I first create

a hypothetical entity. For this entity, the price and quantity for each component

of the aggregate commodity is the geometric mean of that component’s price

and quantity for all states and years. For example, for the “energy” input the

components are gasoline, diesel, natural gas, liquid propane gas, and electricity.

The price of gasoline for the hypothetical entity is the geometric mean gasoline

price for the entire sample.

In the second step, I calculate a bilateral Tornqvist index between each actual

state-year combination and the hypothetical entity. The bilateral Tornqvist price

index between state-year i and the hypothetical entity h is denoted Iih. It is

defined as:

Iih =
Y
j

µ
wji

wjh

¶Sj

. (4.4)

It is a weighted geometric mean of the ratio of the price of component j in state-

year i (wji) to price of the same component in h (wjh) for all components of the

aggregate input. For inputs, the weights Sj correspond to the arithmetic mean

(across the state-year and hypothetical entity) of expenditure on component j

as a proportion of expenditure on all components of the aggregate input. For

outputs the weight is a function of revenues rather than expenditures. For each
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component:

Sj =
1

2

"
wjixjiP
j wjixji

+
wjhxjhP
j wjhxjh

#
. (4.5)

Here xji is the quantity of component j in state-year i and wjh is the price of the

same component in the hypothetical entity.

Table 4.4 presents descriptive statistics for the final variables used in the

regressions.

4.2 Estimation Results

I first estimate a translog cost frontier. The goal of this exercise is to provide the

parameters necessary to simulate the optimal green payments program. There-

fore, some trade-offs are necessary, sacrificing flexibility of the cost function for

the sake of computational tractability and theoretical consistency. Specifically, I

impose restrictions on some of the parameters in order to obtain a closed-form

for a well-behaved profit function. It is the results from this second round of

estimations of the less-flexible cost function that I use to calibrate the simulation

in Chapter 5.

I first estimate equations (3.10)-(3.12) using Λ̂3SLS, Λ̂HR, and Λ̂HCR. In each

case, I run four separate regressions, eliminating a different expenditure share

equation each time. Ideally, the estimated cost function would satisfy a num-

ber of theoretical and practical requirements. Theoretically, a well-behaved cost

function is monotonically increasing and concave in input prices for all observa-

tions. In order to obtain an analytical solution for profit-maximizing output from

equation (3.12) βqq must equal zero. A priori, there is no theoretical reason for

βqq to have a particular value. Imposing this restriction forces size elasticity to
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Table 4.4: Descriptive Statistics
Variable  Minimum Maximum Mean  Std. Dev.
Cost  2,272 206,149,050 433,150  2,813,276 
Revenue  253 207,941,362 528,745  2,974,676 
Output  258 190,164,314 525,530  2,743,266 
Land  2 18,000 988  984 
Prices          
  Capital  0.97 1.06 1.00  1.03 
  Labor  0.78 1.13 1.00  1.09 
  Energy  0.80 1.30 1.00  1.13 
  Materials  0.96 1.03 1.00  1.03 
  Output  0.89 1.18 1.01  0.10 
Expenditure Shares   
  Capital  0.00 0.82 0.17  0.11 
  Labor  0.00 0.46 0.04  0.03 
  Energy  0.00 0.98 0.41  0.16 
  Materials  0.00 0.91 0.38  0.15 
 

be independent of output quantity.

Appendix A.1 reports the results for these 12 regressions. The results do not

satisfy either the theoretical or practical requirements stated above. Monotonicity

and concavity are not satisfied for a majority of the observations for any regression

(Table A.4). I therefore use a less flexible formulation. I impose homotheticity

(βqi = βqa = 0; i = 1, ..., n), and constant factor expenditure shares (βij = βia =

0; i, j = 1, ..., n) and βqq = 0.

The resulting cost function is a slight modification of the Cobb-Douglas form

that allows the elasticity of cost to land to vary with land use:

C (w, q, a, θ) = θ−1 exp (
P

i δidi) q
βq
Q

j w
βj

j aβa+βaa ln a. (4.6)

This specification does not guarantee monotonicity and concavity will be satisfied.

However, if monotonicity is satisfied, this cost function is concave in input prices.

Appendix A.2 reports the results for the 12 regressions run with specification

(4.6). All the parameter estimates from all 12 regressions result in Cobb-Douglas
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cost functions that satisfy monotonicity and concavity in input prices. I tested

how well the data support these restrictions. To do so, I designed a (14× 24)
matrix of ones and zeros, R, such thatRβ = 0 for the 14 parameters that appear

in the translog specification but do not appear in (4.6). Let β̂ be the vector of

translog parameter estimates and Ŵ be the asymptotic covariance matrix (3.32).

Under the null hypothesis that the cost function has the form (4.6), the statistic

Rβ̂
0 ³
RŴR

0´
Rβ̂ is asymptotically distributed as a χ2 random variable with 14

degrees of freedom (Wooldridge 2002). Unfortunately, the data do not support the

null hypothesis. This test rejects the null at a 99 percent level for each regression

(see Table A.4). Although this specification is restrictive, more flexible forms do

not ensure monotonicity and concavity are satisfied for a majority of the data

points.

With the exception of the parameters associated with the dummy variables,

the parameter estimates for specification (4.6) are of the same sign and simi-

lar magnitude across all 12 regressions. The four 3SLS sets of parameter esti-

mates are practically identical. Except the dummy parameters, almost all the

heteroskedasticity-robust sets of parameter estimates are within .01 units of each

other and the respective 3SLS estimates. The clustering-robust estimates dif-

fer more greatly depending upon which input share equation was eliminated.

Each set of parameter estimates for this error specification is typically with .02

units, again with the exception of the dummy variables. For eleven of the regres-

sions, the residuals to equation (3.10) have a positive skewness as desired, the

exception being the clustering-robust specification with the capital share equa-

tion eliminated. A negative skewness of these residuals is not consistent with

assumption (A3). If the residuals show were to show a negative skewness, alter-
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native specifications of f (θ), such as a binomial distribution, would be appro-

priate (Carree 2002). For the purpose of calibrating the simulation, I chose the

estimates obtained using the clustering-robust weighting matrix eliminating the

labor expenditure share equation. The parameter values used in the simulation

are displayed in Table 4.5.

The bias in the dummy parameters is corrected by subtracting E [ln θ] from

each term. The corrected dummy parameters are listed in Table 4.6.

The estimates provide a reasonably good fit for the cost equation (4.6) with

an R2 of 0.80. The predicted expenditure shares βk, β�, βe, βm are also close to

the average input expenditure shares for the data set of 38, 17, 4, and 41 percent

respectively.

It is difficult to compare these results with those of previous research due

to differences in data and model specification. The closest published example

in terms of methodology is the translog cost system estimated by Ray (1982).

Ray estimated a system of equations similar to (3.10)-(3.12), without correcting

for output endogeneity. His data set consisted of national aggregates from 1939-

1977. Inputs and outputs were defined slightly differently. Most notably, his

capital input included land, he had three input categories (fertilizer; feed, seed

and livestock; and miscellaneous) rather than the energy and materials categories

employed here, and he had two outputs (crops and livestock) rather than one. His

own-price elasticities, ηii, were calculated using the following formula for input i:

ηii =
βii + S2i − Si

Si

,

where Si is the expenditure share equation for input i. My elasticities are calcu-

lated by the same formula (where βii = 0).

Table 4.7 compares input own-price elasticities calculated from βk, β�, βe, βm,
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Table 4.5: Parameter Estimates

Parameter Value std. error

δ97 + σθ

q
2
π

0.9918 1.4290

δ98 + σθ

q
2
π

1.0431 1.4306

δ99 + σθ

q
2
π

0.9795 1.4319

δ00 + σθ

q
2
π

0.6430 1.4259

βk 0.3906 0.0079

β� 0.1652 0.0141

βe 0.0442 0.0095

βm 0.3999 0.0084

βa -0.8756 0.4438

βq 1.2021 0.0079

βaa 0.1000 0.0680

σθ

q
2
π

0.3359 ...

Table 4.6: Corrected Dummy Parameter Values

Parameter Value

δ97 0.6559

δ98 0.7072

δ99 0.6436

δ00 0.3071
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with these Ray (1982).

Using equation (3.8) and the parameter estimates above, profit maximiz-

ing output q∗ (p,w, a, θ) is:

q∗ (p,w, a, θ) =


βq exp

µ
00P

i=97

δidi

¶
nQ

j=1

w
βj

j aβa+βaa ln a

θp


1

1−βq

. (4.7)

Substituting this expression for q∗ in the right hand side of (3.7) yields the profit

function:

π (p,w, a, θ) =
£
βq − 1

¤ ·

β
βq
q exp

µ
00P

i=97

δidj

¶
nQ

j=1

w
βj

j aβa+βaa ln a

θpβq


1

1−βq

. (4.8)

This profit function is used to simulate the optimal green payments program in

the next chapter.

4.3 Discussion

Ideally, one would like an estimated cost function to be flexible. This property

allows the data to determine technological characteristics such as elasticities of

Table 4.7: Input Own-Price Elasticities

Input Sheriff (2004) Ray (1982)

k -0.61 -0.53

0 -0.83 -0.84

e -0.96 -0.16a

m -0.60 -0.34b

amiscellaneous inputs. bfeed, seed, and livestock.
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substitution among inputs. Unfortunately, the data can generate technological

characteristics that are inconsistent with economic theory. In the present case,

the translog cost functions were not well-behaved in two respects for many obser-

vations in the sample. Cost was decreasing in input prices for many observations.

In addition, input own-price elasticities were positive for many observations, in-

dicating that input demands were increasing in price.

Rather than use a theoretically inappropriate cost function, I chose to use

a more restrictive functional form. The modified Cobb-Douglas specification re-

sulted in the monotonicity property being satisfied for all inputs and observations.

As a result, all input own-price elasticities are negative, as desired. The price of

obtaining such a well-behaved cost function is that all input substitution elas-

ticities are forced to unity. Nonetheless, this specification can be considered a

first-order approximation to the “true” underlying cost function.

Applying the estimation techniques described in the previous chapter to the

Cobb-Douglas cost function was straightforward. The parameter estimates are

robust to arbitrary heteroskedasticity and correlation of errors within counties.

In the next chapter I use these estimates to calibrate a simulation of the optimal

green payments mechanism.
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Chapter 5

Simulation

In this chapter I conduct a simulation combining the mechanism design model of

Chapter 2 with the empirical results of Chapter 4. The objective is to demonstrate

how a cost-minimizing green payments program can be implemented. Using the

structural parameters estimated in Chapter 4, I show how one can characterize

the optimal contract schedule in terms of amount of land idled by each type

of producer and payments received. One can see if pooling occurs, and if so,

over what range of types. Further, we can compare the costs of alternative

mechanisms. A priori, we know that the ex ante green payment mechanism

dominates an ex post mechanism and a stylized version of actual farm programs,

but by how much? This simulation provides estimates of the magnitude of the

benefits that could be obtained were policy to switch from existing programs

to the ex ante green payments mechanism. In addition, the difference in cost

between the ex ante and first best programs provides an estimate of the value of

attempting to collect detailed information regarding producer productivity levels.

Before proceeding, there are some caveats. The simulation relies on actual

farm production data to estimate the parameters. However, as in any mod-

eling endeavor there are still several simplifying assumptions. Many of these
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assumptions have been noted in previous chapters. I will not catalog every such

assumption, but would like to draw attention to a few that figure prominently in

this simulation.

First is the assumption that all farms are of equal size. The data set used to

estimate the parameters of the simulation contains farms ranging from 2 to 18,000

acres. This analysis makes no attempt to explain why some farms are larger than

others. I assume that farm size is exogenous during the time-frame of interest.

To keep calculations tractable, I restrict attention to a hypothetical group of

farms of 2,000 acres each.1 This assumption is largely made for convenience. In

principle, if farm size is observable, separate contract menus could be offered to

different farm sizes.

I also assume outputs can be combined into one aggregate, and that it is

the price index of this aggregate with which policy-makers are concerned. This

may not be such a strong assumption since prices of agricultural commodities

tend to be positively correlated (Gardner 2002). Since three out of four years in

the sample had below average output price, I assign a probability of 0.75 to the

low-price state. The two output price levels are calculated as the mean of the

three low price years and the mean of the high price year. In reality output price

does not follow such a binomial distribution. An extension of this model could

account for a smoother distribution of a continuous range of output prices. I

also assume input prices are fixed. In actuality of course input prices vary.

Income support and environmental goals are chosen somewhat arbitrarily.

However, the simulation programming easily allows experimentation with differ-

1The expected farm-size for any randomly chosen acre of land in the sample was approxi-

mately 1,970 acres.
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ent values for these parameters.

Finally, the simulation differs from the theoretical analysis in one key aspect.

The theoretical analysis takes the land set-aside target, A, as given. One of the

outputs is the optimal shadow price, λ, associated with this constraint. To solve

the system numerically in this manner is quite expensive in terms of computer

time. Therefore I adopt an alternative approach. I begin with an assumed shadow

value for idled land, and from that obtain the optimal amount of land to idle.

The interpretation of the results differs from the theoretical section as follows.

Rather than comparing the costs of achieving the policy targets, I compare the

net benefits, assuming that the marginal value of idled land is constant over the

relevant range. I conduct the simulation using two values for this shadow value.

In the first simulation, this value is set at zero. The results tell us if some land

idling should occur even if there is no environmental benefit to doing so. Such

idling may be optimal if it reduces income support payments by inducing different

type farmers to select different contracts. In the second simulation, the constant

shadow value of idled land is set equal to the average CRP rental rate for the

region.

The next section details how the simulation is designed. In Section 2, I provide

results for the four policy alternatives when there is are no environmental benefits.

In Section 3, I provide results for the four alternatives when idled land produces

a constant marginal benefit. I compare the results of the simulations and provide

policy implications in Section 4.
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5.1 Simulation Design

I programmed the simulation using Gauss for Windows, 5.0 (Aptech, 2002). The

program solves nonlinear equations by numerical iteration and approximates in-

tegrals with Riemann sums.

The simulation shows how four policy alternatives would perform on a sample

of 2,000-acre farms. These farms are located in the geographic region of the

United States denoted as the “Heartland” resource region by the USDA Economic

Research Service. I assume that farm type enters each producer’s profit function

as described in equation (4.8).

Table 5.1 displays the values of the input price indexes. Table 5.2 displays

values of the output price index, with the corresponding probability of each price

state occurring.

The lower bound of ln θ with a half-normal distribution function is −∞. To
make the model tractable, I truncate the distribution from below at -1, assum-

ing that the government is not concerned with land cultivated or profit earned

by these types. This truncation excludes roughly 1 percent of farms. The re-

maining farm types are assumed to be distributed with a mean-zero log-normal

Table 5.1: Input Prices

Price Value

wk 0.999

w� 0.998

we 1.005

wm 1.001
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Table 5.2: Output Prices

Price Value Probability

p� 0.887 0.75

ph 1.183 0.25

distribution truncated from above by zero:

f (θ) =


1

θσθ

√
2π
exp

µ
−1
2

³
ln θ
σθ

´2¶
Φ (0)− Φ

³
−1
σθ

´ , θ ∈ [e−1, 1]

0 , otherwise

. (5.1)

Here, Φ (·) is the standard normal cumulative distribution function. Type
is measured with a precision of 0.001. The distribution of types is depicted in

Figure 5.1.

Table 4.5 displays the parameters of the profit frontier. Figure 5.2 depicts the

corresponding expected profit frontier Π
¡
a, θ̄
¢
. Decreasing returns to land begin

at about 400 acres, after which profit is strictly concave in land.

In the simulations I analyze two policy scenarios. In the first, there is no

environmental constraint. In the second, there are both environmental and in-

come constraints.2 As pointed out by Bourgeon and Chambers (2000) in the

case of two producer types, information asymmetry may make it optimal for the

government to require producers to idle land even if there are no environmental

benefits. I analyze this scenario to see if any such idling is optimal, and if so for

what range of types. The second scenario examines the case discussed in Chapter

2 wherein both environmental and income constraints bind. For each scenario, I

2The case of an environmental constraint without an income constraint has already been

examined by Smith (1995).
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Figure 5.1: Distribution of Types
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Figure 5.2: Expected Profit Frontier, Π
¡
a, θ̄
¢
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compare four alternatives: the first-best, ex ante, ex post, and stylized FAIR Act

programs.

In both scenarios, the income support objective is defined as ensuring that

all types above e−1 earn at least $50 per acre.3 Profit earned by type when

cultivating all 2,000 acres is illustrated in Figure 5.3. The types corresponding to

θL and θH are e−0.468 and e−0.240, respectively. For the first scenario the marginal

environmental benefit from idling a unit of land is assumed to be zero. For the

second scenario, the marginal environmental benefit is based upon average CRP

rental payments. In 2002, the average CRP rental payment per acre for the nine

states considered here was about $71 per acre (Farm Service Agency 2002). For

lack of better information, I assume that the marginal benefit for an acre of idled

land is constant at $71. The environmental objective is defined such that the

shadow price of land idled is $71. In other words, for the first scenario the value

of the Lagrange multiplier λ for each program is set to 0, while for the second

scenario it is set to 71.

5.2 Scenario 1: No environmental constraint

In this section, I model the case where idling land does not bring any benefits

of its own. Bourgeon and Chambers (2000) showed that even in this case some

idling may be optimal. Intuitively, requiring lower types to idle land has two

effects. It increases the cost of the policy by requiring larger transfers to ensure

that these types achieve the income constraint. Since it is more costly for higher

types to idle land than lower types, land idling reduces the incentive of higher

3This value is approximately the expected profit per acre of the mean type.
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Figure 5.3: Profit per acre by type and output price, no land idled
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types to mimic lower types. This second effect reduces the cost of the policy by

reducing surplus payments to higher types. This scenario is interesting since the

environmental constraint does not bind if the average number of acres idled, A,

is less than the average idled with no environmental constraint.

To perform the simulation, I set the value of the Lagrange multipliers λ for

the first best, ex ante, ex post, and FAIR Act programs equal to zero.

5.2.1 First Best Program

From equation (2.21), the first order condition for optimal land allocation is:

Πa (a (θ) , θ) = λ, (5.2)

for an interior solution. By (R1) the left-hand-side of (5.2) is always positive.

Consequently, for λ = 0 there is a corner solution for all types such that a (θ) = a.

The first-best land allocation is depicted in Figure 5.4. If information is

symmetric, idling land increases transfers necessary to ensure that the income

support is met without any corresponding benefit in terms of reducing surplus

payments to higher types. As a result, it is never optimal to idle land without

an environmental constraint. The expected cost of the first best mechanism

is simply the cost of ensuring that all types meet the income constraint while

cultivating all land in each price state. Expected payments necessary to satisfy

this constraint are depicted in Figure 5.5. Expected surplus payments are zero

for all types. Expected transfers are gradually decreasing until θH . There is a

kink in the allocation of expected transfers at θL since types between θL and

θH require transfers only if output price is p�, whereas types below θL require

transfers in both price states. No transfers are necessary for types above θH . The

average cost per producer of this program is approximately $27,800.

99



Figure 5.4: First-Best Program, No Environmental Constraint, Acres Cultivated

by Type

( )θln

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

0

500

1000

1500

2000

2500

A
cr

es
 C

u
lt

iv
at

ed

100



Figure 5.5: First-Best Program, No Environmental Constraint, Expected

Payments by Type
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5.2.2 Ex Ante Program

From equation (2.92), the first-order condition for an interior solution for the

optimal ex ante land allocation is:

Πa (a (θ) , θ) +
γ (θ)

f (θ)
Πaθ (a (θ) , θ) = λ. (5.3)

Since the sign of the left-hand side of (5.3) does not depend upon a due to

conditions (R1) and (R4) a bang-bang solution results if λ = 0. If the left-hand-

side of (5.3) is negative, land cultivated will be at the minimum, whereas if it is

positive, land cultivated will be at the maximum. It may be the case that the land

allocation is constant at â for an interior interval of types if the left-hand-side of

(5.3) evaluated at a (θ) = â for this interval is equal to zero.

To calculate γ (θ), I first compute the value of â using equation (2.111). For

the profit frontier specified in (4.8), â solves:

âβa+
βaa
2
ln â =

"
āβa+

βaa
2
ln ā

p
βq

h

# (1− ρ)

ρp

−βq
1−βq

� + (1− ρ) p

−βq
1−βq

h


1−βq

. (5.4)

For the parameter estimates in Table 4.5, â is approximately 845 acres.

The next step is to solve first-order condition (5.3). A priori, the value of

the Lagrange multiplier γ (θ) is unknown. Consulting Table 2.1, I check to see if

there is a value for µ1 ∈ (0, 1) such that for a∗ (θ, F (θ)− µ1, λ), both the lowest

type and an interior type idling â acres receive zero expected surplus. For λ = 0,

there is: µ1 = 0.50503, for interior type ln (θ1) = −0.353. Next, I check to see
if there is a value for µ2 ∈ (µ1, 1) such that for a∗ (θ, F (θ)− µ2, λ) the both the

highest type and an interior type idling â acres receive zero expected surplus. In

this case, µ2 = 0.70047, for ln (θ2) = −0.240.
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The land allocation for the program is depicted in Figure 5.6. A central

pooling interval does exist, with bounds θ1 and θ2. All types below θ1 cultivate

425 acres, all types in the pooling interval cultivate 845 acres, and all types above

θ2 cultivate 2,000 acres. Intuitively, by requiring a producer to idle an additional

acre of land, the government increases the cost of meeting the income constraint

of that type, while reducing the cost of surplus payments to all higher types. For

all types below θ1, this calculation always favors idling an additional acre. For

all types above θ2, this calculation never favors idling. For types in the pooling

interval, the cost of the program does not depend upon the number of acres idled.

However, the only way it is incentive compatible for a pooling interval to exist is

if all types idle â.

Expected payments are depicted in Figure 5.7. To be incentive compatible,

two producers cannot be offered different transfers for idling the same quantity of

land. There are three tiers of payments: all producers idling 1,325 acres receive

about $99,000, all types idling 1,115 acres receive about $75,000, and all types

idling zero acres receive zero payments. Expected surplus increases until θL.

From θL to θ1, expected surplus decreases since the opportunity cost of the idled

land is higher than the minimum income constraint if output price is ph for these

types. For all types above θ1, there are no expected surplus payments. The

average amount of land idled is 812 acres, and the average cost of the program

per producer is approximately $51,500.
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Figure 5.6: Ex Ante Program, No Environmental Constraint, Acres Cultivated

by Type
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Figure 5.7: Ex Ante Program, No Environmental Constraint, Expected

Payments by Type
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5.2.3 Ex Post Program

From equation (2.48), the first-order condition for an interior solution for the

optimal ex post land allocation is:

Πa (a (θ) , θ) +
ργ (p�, θ)

f (θ)
πaθ (p�, a (θ) , θ) +

(1− ρ) γ (ph, θ)

f (θ)
πaθ (ph, a (θ) , θ) = λ

(5.5)

For λ = 0, this is another bang-bang solution since the sign of the left-hand side

of (5.5) does not depend upon a. If the left-hand-side of (5.5) is negative, land

cultivated will be at the minimum, whereas if it is positive, land cultivated will

be at the maximum. Unlike the ex ante case, however there can be no central

pooling interval for the ex post mechanism.

To calculate γ (p�, θ) and γ (ph, θ), I conjecture that optimally s (p�, θ) =

s
¡
ph, θ̄

¢
= 0. These Lagrange multipliers then take the following values:

γ (p�, θ) = F (θ)− 1 (5.6)

γ (ph, θ) = F (θ) . (5.7)

Figure 5.9 depicts surplus in each price state as well as expected surplus arising

from these values for the costate variables. No type receives less than zero surplus

in either state, so income and participation constraints are satisfied. Hence, the

conjectured solution is optimal.

The land allocation for this program is depicted in Figure 5.8. There are

pooling equilibria around two corner solutions. All types less than e−0.362, idle

the maximum acres, while all higher types idle no acres. Expected payments are

depicted in Figure 5.10. There are two payment tiers. Producers idling 1,375
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acres receive approximately $107 thousand, while producers idling no acres re-

ceive about $43 thousand. All types receive positive expected surplus. Expected

surplus increases until θL, then decreases after the participation constraint be-

comes binding for ph. Expected surplus reaches its minimum for ln (θ) = −0.363
where idled acreage switches from 1,375 to zero. After this point expected sur-

plus increases again until θL, where the income constraint ceases to be binding

for p�. The average number of acres idled per producer is 595. The average cost

per producer of the ex post mechanism is $67,200.

5.2.4 FAIR Act

Since the purpose of the CRP is to idle land for environmental benefits, I model

the actual program in this scenario as consisting only of lump-sum production

flexibility contracts paid equally to all farms. The land allocation is illustrated

in Figure 5.11. As in the first-best case, no acres are idled.

The amount of the expected payment is simply:

m− [ρπ (p�, ā, θ) + (1− ρ) π (ph, ā, θ)] . (5.8)

Figure 5.12 depicts expected payments. All types receive an identical lump sum

payment of about $96,500. The lowest type receives zero expected surplus. Ex-

pected surplus is weakly increasing for all types. There are two kinks in the

expected surplus path. The first occurs at θL when the income constraint ceases

to be binding for ph and the second occurs at θH when the income constraint

ceases to bind for p�. The average cost of this program is approximately $96,500.
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Figure 5.8: Ex Post Program, No Environmental Constraint, Acres Cultivated

by Type
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Figure 5.9: Ex Post Program, No Environmental Constraint, Surplus by Type
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Figure 5.10: Ex Post Program, No Environmental Constraint, Expected

Payments by Type
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Figure 5.11: FAIR Act, No Environmental Constraint, Acres Cultivated by Type
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Figure 5.12: FAIR Act, No Environmental Constraint, Expected Payments by

Type
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5.3 Scenario 2: Environmental Constraint

In this section, I model the case where idling land creates a marginal social

benefit of $71 per acre. A priori, it is impossible to know if the optimal program

exhibits any pooling, and if so, over which interval of types. I first characterize the

first-best program, determining the land allocation and payments per producer.

I then calculate average cost per producer and average environmental benefits.

I compare these results to those for the ex ante, ex post, and stylized actual

programs.

To perform the simulation, I set the value of the Lagrange multipliers λ for

the first-best program in equation (2.21), the ex ante program in equation (2.90),

the ex post program in equation (2.46), and the FAIR Act in equation (2.137)

equal to 71. As before, the income constraint is defined as ensuring that all types

above e−1 earn at least $50 per acre.

5.3.1 First-Best Program

The land allocation of the first best contract is calculated by solving first-order

condition (2.21) to obtain the optimal amount of land cultivated by each type

for λ = 71. Since there are no information asymmetries, there are no surplus

payments. Expected transfers are simply the payments necessary to ensure that

income and participation constraints are met for each type, given the amount of

land idled.

Figure 5.13 illustrates the land cultivated and expected transfer received by

each type with the first-best contract allocation. There are two sets of corner

solutions for land allocations. All types below -0.326 idle the maximum amount

of land, and all types above -0.142 idle no land. Intuitively, efficiency requires that
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the equimarginal principle be satisfied. That is to say, the marginal opportunity

cost of idling an additional acre should be equal for all producers. For the two

corner solutions this condition would require that very low types idle more than

the maximum acreage permissible, and very high types idle less than zero acres.

Figure 5.14 depicts expected payments. No type receives expected surplus.

Expected transfers decrease gradually for ΘL. Expected transfers begin to rise

after θL since the participation constraint becomes binding for ph. However, since

land cultivation is increasing in type above e−0.326, expected transfers decline

again after that point. The rate of decline of expected transfers slows after θH

since the income constraint no longer binds. Once type e−0.142 is reached all

transfers cease since none of these producers idles any land. The average amount

of land idled per farm is 882 acres for an average environmental benefit of $62,600.

The average cost per producer is about $53,600.

5.3.2 Ex Ante Program

The first step to characterize this program is to solve first-order condition (2.92).

As for the scenario with no environmental benefits, the value of the Lagrange

multiplier γ (θ) is initially unknown. Consulting Table 2.1, I check to see if there

is a value for µ1 ∈ (0, 1) such that for a∗ (θ, F (θ)− µ1, λ), the lowest type and

an interior type θ1 idling â acres both receive zero expected surplus. For λ = 71,

there is: µ1 = 0.36336, for an interior type ln (θ1) = −0.346. Next, I check to
see if there is a value for µ2 ∈ (µ1, 1) such that for a∗ (θ, F (θ)− µ1, λ), both

the highest type and an interior type θ2 idling â acres both receive zero expected

surplus. In this case, µ2 = 0.54940, for ln (θ2) = −0.260.
The land allocation corresponding to this solution is depicted in Figure 5.15.
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Figure 5.13: First-Best Program, With Environmental Constraint, Acres

Cultivated by Type
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Figure 5.14: First-Best Program, With Environmental Constraint, Expected

Payments by Type
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There are three pooling intervals. All types below e−0.359 idle the maximum

amount of land. Land cultivated increases until a central interval of types from

θ1 to θ2. These types cultivate 845 acres. Land use then increases until type

e−0.211.

Expected payments are depicted in Figure 5.16. Expected transfers are a

decreasing function of acres cultivated, and can be divided into four intervals.

All types lower than e−0.359 idle 1,675 acres and receive about $99,200. Land

idled and transfer received is decreasing in type from e−0.359 until θ1. From θ1 to

θ2 all types idle 1,155 acres and receive an expected transfer of about $75,000.

Land idled and transfer received again is decreasing in type from θ2 until e−0.211,

after which no land is idled and no transfer received. Expected surplus begins at

zero for θ, increases until θL, then decreases to zero for θ1. From θ1 to θ2 all types

receive zero expected surplus. Expected surplus increases from θ2 to θH , then

decreases to zero at e−0.211, after which no type receives expected surplus. The

average amount of land idled per farm is 816 acres for an environmental benefit

of $58 thousand per producer. The average cost per producer is about $51,570.

5.3.3 Ex Post Program

A necessary condition for an interior solution of the optimal ex post contract is

that the land allocation for each type satisfy equation (2.48). As in the first sce-

nario, one cannot determine the values of γ (p�, θ) and γ (ph, θ) a priori. Instead,

I conjecture that optimally s (p�, θ) = s
¡
ph, θ̄

¢
= 0. The Lagrange multipliers

take the corresponding values:
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Figure 5.15: Ex Ante Program, With Environmental Constraint, Acres

Cultivated by Type
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Figure 5.16: Ex Ante Program, With Environmental Constraint, Expected

Payments by Type
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γ (p�, θ) = F (θ)− 1 (5.9)

γ (ph, θ) = F (θ) . (5.10)

I then calculate the amount of land idled per farm by solving (2.48) using these

values and setting λ = 71. Figure 5.18 depicts surplus in each price state as well

as expected surplus arising from these values for the Lagrange multipliers. No

type receives less than zero surplus in either state, so income and participation

constraints are satisfied. Hence, this solution is optimal.

The land allocation for this program is depicted in Figure 5.17. There are

pooling equilibria around two corner solutions. All types less than e−0.294 idle

the maximum acres, while all types above e−0.234 idle no acres. Acres cultivated

are strictly increasing in type for all other types. Unlike the ex ante mechanism,

there is no pooling across an interior interval of types.

Figure 5.19 depicts expected payments. As in the case with no environmen-

tal constraint, all types receive strictly positive expected surplus. The average

amount of land idled is 809 acres, for an environmental benefit of about $54,400

per producer. The average cost per producer is $76,100.

5.3.4 FAIR Act

For the program based on the FAIR Act, I calculate acres idled per farm in the

CRP by solving (2.139) with λ = 71. Figure 5.20 depicts the land allocation for

the CRP. Maximum acreage is idled for all types below e−0.576. Acres cultivated

are then strictly increasing in type until e−0.424 after which no idling takes place.

Expected lump-sum production flexibility contract payments are based upon

the additional transfers necessary to ensure that θ meets the minimum income
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Figure 5.17: Ex Post Program, With Environmental Constraint, Acres

Cultivated by Type
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Figure 5.18: Ex Post Program, With Environmental Constraint, Surplus by

Type
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Figure 5.19: Ex Post Program, With Environmental Constraint, Expected

Payments by Type
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constraint once surplus payments from the CRP are factored in:

m− [ρπ (p�, ā, θ) + (1− ρ)π (ph, ā, θ)]− Sc (θ) .

Figure 5.12 depicts expected payments. All types below -0.576 receive an ex-

pected transfer of about $99,200. All types above e−0.424 receive an expected

transfer of about $69 thousand. Expected transfers are strictly decreasing in

type for all other types. As in the first scenario, the lowest type receives zero

expected surplus. Expected surplus is weakly increasing for all types. There are

two kinks in the expected surplus path. The first occurs at θL when the income

constraint ceases to be binding for ph and the second occurs at θH when the

income constraint ceases to bind for p�. The average idled is 342 acres, for an

average environmental benefit of $24,300 per producer. The average cost of this

program is approximately $75,500 per producer.

5.4 Discussion

The simulations undertaken in this chapter compared four policy alternatives for

achieving environmental and income targets in the agricultural sector under two

scenarios regarding environmental benefits. Under the first, land idled yields no

environmental benefits, while under the second, each acre of idled land yields $71

of benefits.

The simulations run under the first scenario generalize the results of Bourgeon

and Chambers (2000) from two types of producers to a continuum of types and

more than one output price. Since the problem considered by Bourgeon and

Chambers (2000) considers a single output price, their solution corresponds most

closely to the ex post mechanism considered here. For this case, extending the
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Figure 5.20: FAIR Act, With Environmental Constraint, Acres Cultivated by

Type
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Figure 5.21: FAIR Act, With Environmental Constraint, Expected Payments by

Type
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analysis to a continuum of types does not alter the qualitative results. The

optimal program consists of two contracts: either idle the maximum amount of

land for a high payment, or idle no land for a lower payment. Types lower than

-0.362 will accept the former, while higher types will accept the latter. Similar

to Bourgeon and Chambers (2000) I obtain the result that some land idling is

optimal, and “stop-and-go” agricultural policies are cost minimizing.

Allowing for two output prices changes the qualitative results. If contracting

takes place before output price is known, the optimal program consists of three

contracts. As before, lower-type farmers idle the maximum amount of land, and

higher types idle no land. In this case, however, a central interval of types idles

less than the maximum amount of land. The failure to successfully harness the

countervailing incentives created by price uncertainty raises the expected cost of

attaining the income target by about $15,800 per farm (about 30 percent).

Because either program allows land idling to offset the information costs of

the policy, both the ex ante and ex post programs are superior to a single contract

lump-sum payment scheme. Production flexibility contracts required by the FAIR

Act to attain the same income target in the absence of a CRP imply an average

expected cost per producer approximately $45,300 (88 percent) higher than the

ex ante program.

With no environmental benefits, the ex ante program is about $23,400 (85

percent) more expensive than a first-best program. However, if an accurate gov-

ernmental survey of growing conditions could completely eliminate information

asymmetries, it would be worth paying no more than $11.70 per acre to conduct

it.

Allowing for positive environmental benefits changes the qualitative nature of
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the programs. Rather than having one, two, or three contracts all three programs

require a continuum of contracts ranging from zero to 1,575 acres idled. If idled

acres yield a constant environmental benefit of $71 per acre, the net benefits to

the non-farm sector of attaining environmental and income targets range from

−$51, 200 per producer for the FAIR Act to $9, 000 for the first-best. With

the higher environmental benefits the difference between the ex ante and first

best programs narrows significantly. The net benefits of the first best are about

$2,600 (41 percent) higher than the ex ante program, implying a potential gain

of only $1.3 per acre of collecting data that eliminates asymmetric information.

The difference in benefits between the FAIR Act and the first-best, however

could justify spending as much as $30.10 an acre to collect the same data. The

simulation indicates that the expected benefits to be gained by switching from

the FAIR Act to an ex ante green payments program may be in the magnitude

of $56,600 per farm, or $28.30 per acre.

It is also interesting to note the welfare effects of switching from the FAIR

Act to an ex ante program. With or without environmental benefits, the FAIR

Act gives the highest expected surplus payments to the more profitable produc-

ers. Under the ex ante program, however, expected surplus is eliminated for the

higher types. (Compare Figures 5.7, 5.12, 5.16, and 5.21.) Therefore, from a

political economy standpoint, one would expect opposition from the most prof-

itable producers to proposals to switch from current policy to an ex ante green

payments program.
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Chapter 6

Conclusion

The objectives of this dissertation are twofold. The first is to apply modern

mechanism design theory to agricultural policy. The second is to develop and

implement an econometric framework through which mechanism design models

can be evaluated empirically.

Regarding the first objective, I have shown that it is optimal for the gov-

ernment to link income support payments to participation in environmental pro-

grams. This result is contrary to current practice in the United States. Cur-

rent policies seem to take a Tinbergen (1963) style two-objective, two-instrument

approach. For the environmental objective, an auction process is used to idle

environmentally sensitive land at least cost. For the income support objective

non-distortionary lump sum payments are issued to farmers.

I have shown that this type of decoupled policy squanders information. Less-

profitable producers have a lower opportunity cost of land. Therefore the degree

to which a producer is willing to participate in a land set aside program can

reveal information about his relative profitability. A decoupled program does not

take advantage of this information.

However, it is not enough simply to link income support payments to land set
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aside. The relative importance of the two objectives changes with output price.

A high output price increases the amount that must be paid to induce producers

to idle land. At the same time, it reduces the amount that must be paid to ensure

producers attain the minimum income threshold. If the income support objective

is dominant, producers have an incentive to understate their profitability. If the

environmental objective is dominant producers have an incentive to overstate

their profitability (and hence the opportunity cost of idling land).

Uncertainty regarding future prices reduces the expected payoff to a producer

of misrepresenting his true type. I have shown that a green payments program

that takes place after price uncertainty is resolved does not take advantage of the

countervailing incentives provided by price uncertainty. In order to minimize total

expected cost, it is important that contracting take place before price uncertainty

is resolved.

Although these theoretical results can give policy makers general guidance,

they are not helpful in providing the details necessary to actually implement such

a program. This lack of specific guidance is particularly worrisome given the

multiplicity of possible solutions to the optimal contracting problem examined in

Chapter 2. A gap in the literature exists with respect to how a policy maker can

empirically evaluate a mechanism when some information is inherently hidden.

In Chapters 3 and 4, I develop and implement an approach to solving this

problem by adapting techniques from stochastic frontier analysis. I start with a

simple model of how a producer’s type (profitability) explicitly enters the pro-

duction process. From there I develop the implied cost frontier. Borrowing from

stochastic frontier analysis, I choose a parametric family for the distribution of

producer types. I then use generalized method of moments to econometrically
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estimate the parameters of the cost function and the parameters of the distribu-

tion of types. These estimates are used to simulate an optimal green payments

mechanism and derive the optimal schedule of contracts.

The simulation in Chapter 5 shows that it is likely that a least-cost program is

likely to involve pooling over a central interval of types. Such a result is impossible

to achieve with the separated policies currently in use. For the region studied,

the FAIR Act may be in the magnitude of 88 percent more expensive than the

ex ante green payments program, even when idling land yields no environmental

benefits. With environmental benefits of $71 per acre of land idled, the difference

in net benefits between the FAIR act and the ex ante program are estimated to

be about $56,600 per farm. Moreover, the ex ante program does a reasonable

job of approximating the perfect information policy. Under the scenario of $71

per acre environmental benefits, it would only be worth $1.30 per acre to collect

information regarding farm profits. Finally, the simulation shows that it is the

most profitable farms that stand to lose from a switch from current policy to the

optimal program.

The work in this dissertation represents a first approach to empirically evalu-

ating mechanism design models. Restrictive assumptions were imposed in order

to simplify the analysis. Work remains to be done with respect to generaliz-

ing the results enough to make it possible to design an optimal green payments

mechanism at the detail necessary for actual policy implementation.

For example, a significant assumption is that all farms are the same size. It

is obvious that this is not the case in reality. More work can be done to take

farm size into account. Differing farm size can complicate the problem since size

affects the marginal product of land. A policy that does not take this into account
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can give producers an incentive to change the size of their farm in order to get

more government payments. It is of interest to see how allowing farm size to be

endogenous might change the results of this analysis.

A second significant assumption is that input prices are constant and output

price follows a simple binomial distribution. Since the optimal contract offers

price contingent payments, practical implementation would require extending the

model to a continuum of possible price states.

Finally, this work has possibilities to be extended to other fields outside of

agricultural policy. Often, environmental objectives come into conflict with the

welfare of politically important interest groups. For example, consider the case of

a fishery. The government may wish to reduce fishing capacity, while protecting

economically vulnerable fishermen. The analysis in the dissertation indicates that

providing income support through payments not to fish may be a cost efficient

way to achieve both objectives. Further gains in efficiency could be made if ex

ante contracts make payments contingent upon fluctuations in the price of fish.

This dissertation can provide guidance to these types of policy problems in

two ways. First, it is straightforward to extend the theoretical results to develop

a general outline of the qualitative characteristics of an optimal solution. Second,

it shows how one may use data available from producer surveys to empirically

tailor a program that specifically fits the characteristics of the specific economic

agents involved.
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Appendix A

Empirical Results

A.1 Translog Cost Function
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Table A.1: Translog Estimates Robust to Heteroskedasticity and County

Clusters

 
Expenditure Share Equation 

Eliminated  
Expenditure Share Equation 

Eliminated 

 

K 
Estimate 
Std. Err. 

L 
Estimate 
Std. Err. 

E 
Estimate
Std. Err.

M 
Estimate
Std. Err.  

K 
Estimate
Std. Err.

L 
Estimate 
Std. Err. 

E 
Estimate 
Std. Err. 

M 
Estimate
Std. Err.

97δ  8.8173 11.1062 6.7709 7.0002 LLβ  0.0611 -0.5942 0.0386 0.0458
 1.8229 1.9099 1.8755 1.7443  0.0638 0.2674 0.0538 0.0532

98δ  8.7557 11.0432 6.7404 6.9847 LEβ  -0.2116 0.0322 -0.1421 -0.3585
 1.8219 1.9092 1.8730 1.7430  0.0746 0.0901 0.0841 0.0695

99δ  8.7301 11.0296 6.6905 6.9341 LMβ -0.0227 0.2817 0.1874 0.4377
 1.8216 1.9094 1.8727 1.7417  0.1354 0.1524 0.1057 0.1334

00δ  8.4505 10.7533 6.4196 6.6562 LAβ  0.2232 0.4539 0.2416 0.1586
 1.8192 1.9090 1.8744 1.7420  0.0524 0.0771 0.0368 0.0397

Aβ  1.3088 2.9313 0.3415 0.6862 LQβ  -0.3084 -0.5369 -0.3502 -0.2305
 0.6498 0.6822 0.5623 0.5817  0.0633 0.0845 0.0458 0.0484

Qβ  -1.2024 -2.4340 -0.3668 -0.5833 EEβ  -0.0092 -0.0065 -0.5225 -0.0515
 0.4572 0.5022 0.4105 0.4152  0.0436 0.0396 0.2590 0.0409

Kβ  0.5541 -0.4916 0.6942 0.5979 EMβ -0.0205 -0.0794 0.2031 0.1633
 0.7175 0.4742 0.4583 0.4566  0.0815 0.0702 0.1038 0.1207

Lβ  2.5646 3.9057 2.9790 2.0183 EAβ  -0.1830 -0.1677 -0.3774 -0.2077
 0.4759 0.6234 0.3638 0.3676  0.0376 0.0397 0.0494 0.0404

Eβ  -1.7295 -1.2569 -4.0618 -1.6435 EQβ  0.2356 0.1915 0.5237 0.2436
 0.3234 0.3275 0.5145 0.3694  0.0433 0.0446 0.0572 0.0484

Mβ  -0.3892 -1.1572 1.3886 0.0273 MMβ 0.1196 0.3437 0.3153 0.1873
 0.4583 0.4487 0.4157 0.6304  0.1221 0.0996 0.1025 0.2854

KKβ  -0.3381 0.2121 0.3282 0.6667 MAβ  -0.1213 -0.2232 0.0694 -0.0089
 0.3509 0.1209 0.1312 0.1691  0.0521 0.0515 0.0424 0.0729

KLβ  0.1731 0.2803 -0.0839 -0.1250 MQβ 0.1272 0.2428 -0.1134 0.0348
 0.1537 0.1166 0.1174 0.1221  0.0621 0.0609 0.0526 0.0846

KEβ  0.2413 0.0537 0.4616 0.2466 AAβ  0.0774 0.1118 0.0886 0.0706
 0.1263 0.0806 0.1570 0.0928  0.0326 0.0333 0.0327 0.0317

KMβ  -0.0764 -0.5460 -0.7058 -0.7883 AQβ  -0.1965 -0.3616 -0.1341 -0.1416
 0.1926 0.2013 0.2154 0.1684  0.0505 0.0570 0.0446 0.0461

KAβ  0.0811 -0.0631 0.0663 0.0580 QQβ  0.1460 0.2387 0.0970 0.1072
 0.0827 0.0528 0.0498 0.0514  0.0305 0.0339 0.0268 0.0277

KQβ  -0.0544 0.1026 -0.0600 -0.0480    
 0.0962 0.0632 0.0601 0.0613    
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Table A.2: Translog Estimates Robust to Heteroskedasticity

 
Expenditure Share Equation 

Eliminated  
Expenditure Share Equation 

Eliminated 

 

K 
Estimate 
Std. Err. 

L 
Estimate 
Std. Err. 

E 
Estimate
Std. Err.

M 
Estimate
Std. Err.  

K 
Estimate
Std. Err.

L 
Estimate 
Std. Err. 

E 
Estimate 
Std. Err. 

M 
Estimate
Std. Err.

97δ  8.6454 9.3070 8.8522 9.0151 LLβ  0.2232 0.2379 0.2232 0.2013
 0.6686 0.6834 0.6618 0.6715  0.0196 0.0323 0.0208 0.0200

98δ  8.5267 9.1868 8.7381 8.8910 LEβ  -0.1445 -0.1025 -0.2011 -0.1482
 0.6683 0.6827 0.6616 0.6710  0.0127 0.0164 0.0195 0.0128

99δ  8.4944 9.1495 8.7017 8.8545 LMβ 0.0962 0.0054 0.1655 0.1445
 0.6672 0.6815 0.6606 0.6698  0.0185 0.0201 0.0196 0.0199

00δ  8.2544 8.9098 8.4830 8.6056 LAβ  0.1747 0.2810 0.2301 0.1833
 0.6670 0.6823 0.6599 0.6699  0.0082 0.0146 0.0103 0.0086

Aβ  1.0119 1.3326 1.0424 1.1748 LQβ  -0.2698 -0.4096 -0.3412 -0.2798
 0.1882 0.1907 0.1871 0.1894  0.0098 0.0171 0.0121 0.0102

Qβ  -1.0004 -1.2853 -1.0537 -1.1492 EEβ  -0.0629 -0.0682 -0.0966 -0.0791
 0.1809 0.1845 0.1791 0.1816  0.0132 0.0105 0.0258 0.0118

Kβ  -0.2206 -1.0857 -0.3903 -0.8133 EMβ 0.0688 0.1139 0.1157 0.1157
 0.0716 0.0848 0.0704 0.0759  0.0149 0.0136 0.0184 0.0160

Lβ  2.4128 3.4653 2.9449 2.4817 EAβ  -0.1105 -0.1133 -0.2183 -0.0993
 0.0735 0.1292 0.0917 0.0767  0.0073 0.0078 0.0130 0.0066

Eβ  -1.0788 -1.1029 -2.1677 -0.9825 EQβ  0.1471 0.1506 0.2901 0.1335
 0.0646 0.0688 0.1166 0.0587  0.0085 0.0091 0.0152 0.0078

Mβ  -0.1135 -0.2768 0.6131 0.3141 MMβ 0.4195 0.4070 0.4424 0.4255
 0.0640 0.0640 0.0776 0.0717  0.0436 0.0436 0.0459 0.0477

KKβ  0.6208 0.6102 0.7292 0.7717 MAβ  -0.0368 -0.0540 0.0357 0.0023
 0.0499 0.0513 0.0492 0.0510  0.0069 0.0070 0.0083 0.0077

KLβ  -0.1750 -0.1407 -0.1876 -0.1976 MQβ 0.0604 0.0825 -0.0353 0.0060
 0.0221 0.0248 0.0215 0.0224  0.0085 0.0086 0.0102 0.0095

KEβ  0.1386 0.0569 0.1821 0.1116 AAβ  0.1835 0.1987 0.1849 0.1950
 0.0150 0.0146 0.0156 0.0155  0.0193 0.0196 0.0192 0.0194

KMβ  -0.5844 -0.5264 -0.7237 -0.6857 AQβ  -0.1875 -0.2206 -0.1906 -0.2061
 0.0419 0.0434 0.0426 0.0453  0.0210 0.0213 0.0208 0.0210

KAβ  -0.0274 -0.1137 -0.0475 -0.0862 QQβ  0.2700 0.3108 0.2761 0.2919
 0.0078 0.0093 0.0077 0.0083  0.0241 0.0246 0.0239 0.0242

KQβ  0.0623 0.1764 0.0864 0.1403    
 0.0096 0.0113 0.0094 0.0101    
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Table A.3: Translog Estimates Using 3SLS

 
Expenditure Share Equation 

Eliminated  
Expenditure Share Equation 

Eliminated 

 

K 
Estimate 
Std. Err. 

L 
Estimate 
Std. Err. 

E 
Estimate
Std. Err.

M 
Estimate
Std. Err.  

K 
Estimate
Std. Err.

L 
Estimate 
Std. Err. 

E 
Estimate 
Std. Err. 

M 
Estimate
Std. Err.

97δ  9.3502 9.0243 8.8744 9.6131 LLβ  0.2364 0.2591 0.2507 0.2523
 0.7831 0.7896 0.7700 0.7860  0.0205 0.0367 0.0220 0.0214

98δ  9.2453 8.9248 8.7757 9.5031 LEβ  -0.1676 -0.1024 -0.2254 -0.1619
 0.7822 0.7882 0.7693 0.7850  0.0142 0.0193 0.0216 0.0141

99δ  9.1896 8.8706 8.7203 9.4441 LMβ 0.1354 0.0493 0.1990 0.1576
 0.7803 0.7861 0.7675 0.7830  0.0201 0.0213 0.0213 0.0213

00δ  8.9548 8.6108 8.5024 9.1878 LAβ  0.1873 0.2697 0.2295 0.1913
 0.7824 0.7893 0.7693 0.7854  0.0073 0.0133 0.0093 0.0076

Aβ  1.4284 1.3301 1.2950 1.5135 LQβ  -0.2840 -0.3893 -0.3393 -0.2893
 0.2033 0.2074 0.1979 0.2046  0.0088 0.0160 0.0111 0.0092

Qβ  -1.3352 -1.2314 -1.1891 -1.4225 EEβ  -0.0527 -0.0712 -0.0606 -0.0738
 0.2109 0.2145 0.2058 0.2121  0.0153 0.0122 0.0303 0.0136

Kβ  -0.5558 -1.2414 -0.6564 -1.0536 EMβ 0.0863 0.1332 0.1142 0.1408
 0.0683 0.0785 0.0663 0.0702  0.0157 0.0142 0.0200 0.0174

Lβ  2.5081 3.2873 2.9243 2.5479 EAβ  -0.1133 -0.1033 -0.2105 -0.1022
 0.0676 0.1229 0.0854 0.0706  0.0068 0.0073 0.0123 0.0062

Eβ  -1.0398 -0.9459 -1.9839 -0.9352 EQβ  0.1454 0.1327 0.2715 0.1313
 0.0627 0.0676 0.1128 0.0574  0.0082 0.0088 0.0146 0.0075

Mβ  0.0875 -0.1000 0.7161 0.4410 MMβ 0.4216 0.3497 0.3907 0.3224
 0.0662 0.0660 0.0781 0.0734  0.0463 0.0462 0.0484 0.0504

KKβ  0.7135 0.6977 0.7562 0.7738 MAβ  -0.0141 -0.0342 0.0514 0.0232
 0.0562 0.0557 0.0548 0.0551  0.0071 0.0071 0.0084 0.0079

KLβ  -0.2042 -0.2060 -0.2243 -0.2480 MQβ 0.0327 0.0581 -0.0517 -0.0150
 0.0240 0.0266 0.0232 0.0238  0.0088 0.0088 0.0103 0.0097

KEβ  0.1340 0.0404 0.1719 0.0949 AAβ  0.1741 0.1648 0.1613 0.1816
 0.0160 0.0156 0.0162 0.0161  0.0178 0.0181 0.0174 0.0179

KMβ  -0.6433 -0.5322 -0.7038 -0.6208 AQβ  -0.2171 -0.2051 -0.2000 -0.2277
 0.0455 0.0461 0.0455 0.0472  0.0224 0.0229 0.0218 0.0225

KAβ  -0.0599 -0.1323 -0.0704 -0.1124 QQβ  0.3133 0.2992 0.2928 0.3259
 0.0073 0.0085 0.0071 0.0075  0.0267 0.0272 0.0259 0.0268

KQβ  0.1060 0.1984 0.1194 0.1730    
 0.0091 0.0103 0.0088 0.0093    
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Table A.4: Translog Curvature Results
Error specification 

and expenditure 
share eliminated 

 
Monotonicity satisfied 
(percent observations) 

Probability of falsely rejecting 
Cobb-Douglas 

(Wald test) 
HCR   
    K 0.26 <0.01 
    L 0.27 <0.01 
    E 0.23 <0.01 
    M 0.45 <0.01 
HR   
    K 0.44 <0.01 
    L 0.39 <0.01 
    E 0.28 <0.01 
    M 0.45 <0.01 
3SLS   
    K 0.43 <0.01 
    L 0.41 <0.01 
    E 0.29 <0.01 
    M 0.45 <0.01 
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A.2 Cobb-Douglas Cost Function

Table A.5: Cobb-Douglas Estimates Robust to Heteroskedasticity and County

Clustering

 
Expenditure Share Equation 

Eliminated 

 

K 
Estimate
Std. Err.

L 
Estimate
Std. Err.

E 
Estimate
Std. Err.

M 
Estimate
Std. Err.

97δ  1.5821 0.9918 0.8914 0.8426
 1.4357 1.4290 1.4352 1.4175

98δ  1.6160 1.0432 0.9500 0.9035
 1.4371 1.4307 1.4368 1.4180

99δ  1.5883 0.9795 0.8596 0.8060
 1.4384 1.4319 1.4377 1.4198

00δ  1.2321 0.6430 0.5602 0.5002
 1.4316 1.4259 1.4319 1.4139

Aβ  -1.0627 -0.8756 -0.8557 -0.8331
 0.4465 0.4438 0.4455 0.4395

Qβ  1.2023 1.2021 1.2072 1.2079
 0.0080 0.0079 0.0079 0.0065

Kβ  0.3983 0.3906 0.3901 0.3974
 0.0149 0.0079 0.0082 0.0073

Lβ  0.1593 0.1652 0.1500 0.1469
 0.0080 0.0141 0.0095 0.0074

Eβ  0.0480 0.0443 0.0580 0.0422
 0.0093 0.0095 0.0133 0.0064

Mβ  0.3944 0.3999 0.4019 0.4135
 0.0084 0.0084 0.0085 0.0128

AAβ  0.1289 0.1000 0.0958 0.0909
 0.0684 0.0680 0.0683 0.0674

θσ  … 0.4210 0.4252 0.3161
 

138



Table A.6: Cobb-Douglas Estimates Robust to Heteroskedasticity

 
Expenditure Share Equation 

Eliminated 

 

K 
Estimate
Std. Err.

L 
Estimate
Std. Err.

E 
Estimate
Std. Err.

M 
Estimate
Std. Err.

97δ  0.5323 0.4967 0.4659 0.5376
 0.2880 0.2868 0.2856 0.2883

98δ  0.4209 0.3877 0.3557 0.4259
 0.2883 0.2871 0.2859 0.2886

99δ  0.3922 0.3598 0.3286 0.3978
 0.2876 0.2863 0.2852 0.2879

00δ  0.1454 0.1099 0.0764 0.1513
 0.2866 0.2853 0.2841 0.2869

Aβ  -0.6492 -0.6429 -0.6332 -0.6508
 0.0875 0.0871 0.0867 0.0876

Qβ  1.1727 1.1742 1.1740 1.1727
 0.0068 0.0068 0.0068 0.0068

Kβ  0.3743 0.3751 0.3734 0.3734
 0.0019 0.0019 0.0019 0.0019

Lβ  0.1706 0.1674 0.1703 0.1706
 0.0012 0.0012 0.0012 0.0012

Eβ  0.0401 0.0411 0.0415 0.0401
 0.0003 0.0003 0.0003 0.0003

Mβ  0.4150 0.4164 0.4149 0.4159
 0.0020 0.0020 0.0020 0.0020

AAβ  0.0721 0.0709 0.0696 0.0724
 0.0133 0.0132 0.0132 0.0133

θσ  0.6748 0.6764 0.6825 0.6740
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Table A.7: Cobb-Douglas Estimates Using 3SLS

 
Expenditure Share Equation 

Eliminated 

 

K 
Estimate
Std. Err.

L 
Estimate
Std. Err.

E 
Estimate
Std. Err.

M 
Estimate
Std. Err.

97δ  0.6646 0.6645 0.6643 0.6650
 0.1437 0.1437 0.1437 0.1437

98δ  0.5666 0.5665 0.5661 0.5669
 0.1441 0.1441 0.1442 0.1441

99δ  0.5082 0.5081 0.5077 0.5086
 0.1434 0.1434 0.1434 0.1434

00δ  0.3136 0.3136 0.3136 0.3138
 0.1446 0.1446 0.1446 0.1446

Aβ  -0.6464 -0.6463 -0.6462 -0.6465
 0.0368 0.0368 0.0368 0.0368

Qβ  1.1686 1.1686 1.1686 1.1686
 0.0105 0.0105 0.0105 0.0105

Kβ  0.3802 0.3802 0.3802 0.3802
 0.0020 0.0020 0.0020 0.0020

Lβ  0.1739 0.1739 0.1739 0.1739
 0.0015 0.0015 0.0015 0.0015

Eβ  0.0417 0.0417 0.0417 0.0417
 0.0004 0.0004 0.0004 0.0004

Mβ  0.4042 0.4042 0.4042 0.4042
 0.0021 0.0021 0.0021 0.0021

AAβ  0.0693 0.0693 0.0693 0.0693
 0.0059 0.0059 0.0059 0.0059

θσ  0.6352 0.6353 0.6355 0.6351
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