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Abstract

We develop an algorithm based on Infinitesimal Perturbation Analysis for online
optimization of a multi-product service facility composed of a network of multi-server
machines, modeled using multi-class M/M/m queues. Starting from the Robbins-Monro
stochastic approximation method, we first develop an online, local optimization algo-
rithm for a single multi-server machine. For the special case of Poisson arrivals and
exponentially distributed service times in a multi-machine network, local optimization
at individual machines leads to global optimization of the overall network. Simulation
results for a single machine are compared to the exact analytical results. Application
of the methodology for optimization of a simple flexible manufacturing system is also
presented.

1 Introduction

In this paper we consider the problem of online control of a flexible manufacturing system.!
A flexible manufacturing system is composed of a collection of multi-server machines, each
capable of performing a variety of operations on different sets of parts. The parts are
processed in a predefined operation sequence at different machines. The processing at
each machine can be either batch or continuous mode. Batch mode operation involves
processing a single part type over a given time interval (determined by the batch size), and
then switching to process another part type. Batch mode processing is used if there is a
significant setup time involved for the machine to switch from one part type processing
to another part type processing. Continuous mode processing is used in cases where the

*This work was supported by NSF Engineering Research Centers Program NSFD CDR 88003012
! Although we treat manufacturing systems, it should become apparent that the methodology is generic
and could be applied in many other cases involving control of multicommodity flows.



processing for different part types is very similar and changeovers do not require a significant
reconfiguration of the machine setup.

In certain cases (where sets of physical machines can be grouped together to form “virtual
machines” which process parts in tandem), manufacturing systems can also function in a
hybrid mode, i.e., use batch mode processing for inter-virtual-machine operation and con-
tinuous mode processing (single product) within each virtual-machine. Since manufacturing
systems typically exhibit variable production rates, random machine failures, unpredictable
part availability and inter-machine blockage, performance optimization involves process
models which are intrinsically stochastic.

In this paper we consider the problem of online control of the mean processing times for
different parts at different machines to maximize the operational performance, subject to
stability constraints, of a multi-machine manufacturing system operating under uncertainty.
We use the cumulative system time as the performance measure (cost function).

Our formulation of the optimization problem is partitioned into two sub-problems: (i)
estimation of the derivative of the performance measure with respect to the mean processing
times; and (ii) use of gradient approximation methods for finding the optimal values for
the parameters. To estimate the gradient of the performance measure, we use Perturbation
Analysis (PA) method. PA was developed for sensitivity analysis in linear continuous time
systems. Ho, Cao, Gong and Suri (8, 9, 4, 6, 7, 13, 15] have extended the basic ideas and
applied them to discrete event dynamic systems.

The basic idea in perturbation analysis is to estimate the gradient of a given objective
function, with respect to a parameter, for a stochastic dynamical system using a single
sample path. Although this involves extra computational overhead (in simulations), it is
more efficient than other finite difference based estimation techniques which involve separate
sample path generation for several different values of the design parameter. PA has the
added advantage that it permits gradient estimation with respect to several parameters
using the same sample path. Suri and Leung [14] have used perturbation analysis for
gradient estimation with respect to the processing and arrival rates for a single class G/G/1
queue. Fu and Hu [5] later extended the results to the single class GI/G/m queune and proved
consistency of the gradient estimates. A contribution of our work is the optimization of
multi-class queuing models.

The second step in the optimization is to use the gradient estimates for in stochastic op-
timization procedures. Two classical procedures used for stochastic optimization are the
stochastic gradient, Robbins-Monro method, and the finite difference gradient estimation,
Kiefer-Wolfowitz method. The Kiefer-Wolfowitz [10] procedure relies on gradient estima-
tion using finite differences between a pair of sample paths, each generated using a differ-
ent value of the design parameter. This involves dual sample path generation. Multiple
parameter optimization requires separate dual path generation for each parameter. The
Robbins-Monro [11] procedure, like perturbation analysis, uses a single sample path for
stochastic optimization. The Robbins-Monro algorithm typically converges faster than the



Keifer-Wolfowitz method. Hence, we use it in this work.

In the next section, we develop the notation for the queuing system model and present an
algorithm for derivative estimation using PA. We derive the optimization procedure based
on the Robbins-Monro stochastic gradient algorithm in Section III. In Section IV, we present
details of the implementation, typical simulation results, and comparisons with analytical
estimates. The validity of the scheme is also discussed in Section IV.

2 Gradient Estimation Using Perturbation Analysis

If we consider a multiple machine manufacturing system with continuous mode processing,
Poisson part arrivals, and exponentially distributed processing times, then global optimiza-
tion of the system (in our formulation) can be reduced to a set of local optimization problems
based on Burke’s theorem [3]:

Theorem 1 (Burke) The steady-state output of a queue with N channels in parallel, with
Poisson arrival statistics, and with lengths chosen independently from an exponential dis-
tribution is itself Poisson.

Therefore, if the part arrival in the manufacturing system is Poisson, all constituent ma-
chines will also have Poisson part arrivals. If they also have exponentially distributed
processing times, local optimization at the machine level will lead to a global optimum
for the whole manufacturing system. Hence, we can focus on optimization of the mean
processing time for an M/M/m queue (multi-class case).

For each machine we define:

m = Number of servers in the machine.
K = Number of different customer types the machine is capable of processing.
Ai = The arrival rates for different customer types (i =1...K)
6; = The mean processing times for different customer types (i = 1...K)
pi = Machine workload due to customer type i. (= AT'—,f’i)
A = The net arrival rate of customers at the machine. (= 2{‘;1 A:)
K
6 = The average processing time for customers at the machine. (= Z-Ej\ig—’)
p = ;\—nq = YR | pi = average workload on the machine.

The objective function C used in our study is the total time through the system. It is
calculated as the sum of the respective cost functions C; for each part type being processed
at the machine (C = YK | ;). The individual cost components are defined in terms of the
average system time T and the mean processing time #;. The optimization problem is:
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min Y _ Ci(6;,T)
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To apply (stochastic) gradient optimization procedures, we need the gradient of C' with
respect to the individual mean processing times. The system time T can be written as the
sum of actual processing time X and the queue delay D. Computation of the cost derivative
can be reduced further using:
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The term dX /df represents the change in the actual processing time X due to the change
in the mean processing time 6. For a smooth distribution function F3(X) for the processing
time X, the derivative can be computed using the relation

= () ()

For the case of exponentially distributed service times, X with mean 8, the derivative is
X/6.

To understand the algorithm for derivative estimation, consider the simpler case of esti-
mating dD/df,. Suppose we have a single server with multi-part arrivals. Assume that we
only perturb the service parameter of a single part type (say part type 1). Under normal
conditions, for the nt® part arrival in a specific busy period, let D, and X, be the queue
delay and the processing time respectively. The new queue delay for the perturbed queue,
i.e., with 8; «— 6; + A6y, will be D,, plus the sum of the change in the processing times for
all the type 1 parts processed prior to the present part arrival, in the current busy period.
As discussed earlier, for each type 1 part, the change in the processing time, due to a change



in the parameter, is given by (dX/d8;) Af,. If we define type(s) as the type of the i*? part,
the change in the queue delay for the nt* customer is:

n—1
dX
AD, = —| Af
eX-_-; 01 ix, '
type(i)=1

If there are N part arrivals in an iteration interval (different from a busy period), the
derivative dD/df; can be estimated using

N n 1 N n—l dX
o, 7\72 - ]—V‘Z 8y |x

61 ~
typ ()

If we change the processing parameter for more than one part type (say for all part types),
then the respective partial derivatives can be computed using

OD 1 ADy(r) _ 1 s
b@“’ﬁz A9, Z Z b, | x

n=

type(z)

Here AD,(r) is the partial contribution in the net change in queue delay due to the change
in 6,.. This analysis is for a single server. For m servers, the net delay change tracking is
done separately for all servers and the derivative estimation is done over the whole m server
queue

N N n—1
ADS (r) 1 dX )
E~ T ']—V—Z—;l E EG—T-X r=1...K
n=— n= =1 t
type(i)=r

server(i)=s=server(n)

Here server(i) tepresents the server-id of the server processing the ¥ part and N is the
total number of parts processed by the m servers in the current iteration period.

Our problem is to estimate the cost derivatives dC/d#8,. For each part arrival in an iteration
period, we calculate the change in the cost and take the ensemble average at the end of the
iteration period. For the n'" arrival of type r, with X,, and D,, as the processing and the
queue delay respectively, the overall cost change is given by

5 8Ci(6;, X, D) ADI(r)+ 8C,(6,, X, D)

AC, =
=1 oD Xn,Dn 807‘ Xn,Dn

Af,



aC.(8,, X, D)
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This net cost change is split into the component changes AC], r = 1...K, each of which
can be attributed to the respective changes in the individual processing parameters (6,). At
the end of the iteration period, the average cost change is used as the derivative estimated.

Formalizing the procedure as an algorithm, we have:

INITIALIZE:
for ( server=1...m ) do
for ( type=1...K ) do
( ADse'rvcr(type) — 0 )

for (type=1...K ) do
( AC(type) — 0; Zype 0 )

AT COMPLETION OF PART(n) PROCESSING:

( s — server(n);r « type(n))
( Ype— 41 )

for (type=1...K ) do

(AC(type) — AC(type) + g o p AD(r))
si_C_: 4Cr axX
(AC() = AC() + B=|, |+ %el, , By

(AD(r) = AD*(r) + & l
if ( s idle ) then
for (type=1...K ) do
( AD*(type) < 0)
AFTER N COMPLETIONS:

for ( type =1...K )do
(de,y,,e z,y,,eAC(t?/Pe) )




3 Optimization Based on Stochastic Approximation

The Robbins-Monro procedure was developed initially as a root finding method for a random
function of a single variable. This procedure can be used as an stochastic optimization
method by applying it to find the root of the gradient function. The original Robbins-
Monro algorithm, as extended to the multi-dimensional case by Blum [2], permits treatment
of multi-dimensional stochastic optimization problems.

For a given cost functional J(Y'), the optimization problem reduces to finding the root
of Vy J(Y*) = 0. Here Y = {y1,...yx} is the vector of random parameters, over which
the optimization is carried out. The optimization is done by recursive reassignment of the
control parameter vector Y to the series of random vectors {Y,}3%,. The series {Y,,}52, is
generated using the recursive relation

Srn-l-l =YY" + Aﬂ%y](yn)
. Here Vy J(Y™) is the estimate of the noisy gradient and A, = diag[al,...ak].

n

Blum [1, 2] proved that if we define the sequences {a}}%%,, i=1...k such that

lim @, = 0 Vi
Ya, = o Vi
n=1

0 .

z:(a;)2 < 00 Vi

n=1

and VyJ(Y™) is an unbiased estimate of Vy J(Y), then the sequence {Y "}, converges
a.s. to Y*.

4 Implementation and Results

To measure the performance of a multi-machine facility, we use component cost functions
of the form:

b;m

Ci((),-,X, D) = ai(X + D) +

1

For a fixed number of servers (m) the cost function is convex, and for 0 < p < 1, it has
a unique minimum. The first term is proportional to the average system time (X + D)



while the second term is proportional to the speed of each server (1/6;). The tradeoff
between costly, but faster servers, and longer system times creates a unique minimum for
appropriate choices of the coefficients a; and b;. The average queue delay D is itself a
function of {6;}/{,. The gradients can be computed for this cost functional by solving the
following set of equations:

dE[C] & dE[D] | dE[X] bm i
a0, ‘0“;“‘ o, e, g r=l. K

substitutingE [X] = 6,, we have

defc] E dED] bym B .
2. —O—Ea, 0. +a, — 02 r=1...K

T

For the multiple class, multi-server case we can define
K 1 K 1 K
A=) A, ==Y \b; and =—=> A\b;

From queuing theory, for a m server queue with intensity p and total arrival rate A, the
average queue delay is given by

_p (mp)™  p
T (i PY

where

m—1 1
_ (mp) | _(mp)™
Fo= Z(:) ! + mli(1—p)

The optimization problem can be reduced to solving the following set of equations for
{6: 15,

dE[C) K. 4E[D) bym
:0: ; r — == 4
a0, gaz . 02 r=1...K
B S TSP L i
/\',- 012. r| = consian -——/\i=1a, a6 r=1...1A



These equations can be readily solved for the theoretical optimal values. To test the on-
line algorithm, a single m-server queue, with two different part types was simulated using
QNAP2 (Queuing Network Analysis Package). Figures 2 and 3 represent online optimiza-
tion for the two cases of m = 5 and m = 10. In both cases we had A = 12, the cost
parameters [aj,az] = [20.0,0.1] and [b1,b2] = [1.0,1.0]. In both cases we started with
A1 = 8 and Ap = 4. After each 25000 time units (< 300,000 part arrivals < 150 parameter
updates) the arrival rates for the two types were interchanged. The solid lines represent the
analytical, optimal values for the two mean processing times during each interval. Clearly,
our scheme performs well, in the sense that the mean processing times converge quickly to
the theoretical optimum values.

The validity of our scheme also follows from the results of De Smit [12], Fu and Hu [5] and
Blum [1, 2]. Specifically, De Smit [12] proved that the multiple class, multi-server queue
with Poisson arrivals and exponentially distributed times is equivalent to the GI/Hg/m
queue. Here Hg denotes the hyperexponentially distributed service times, with distribution
function of the form:

. TK A1 T X>0
Fo(X) =1 =12 X <0

Fu and Hu [5] proved consistency of the gradient estimates for a GI/G/m queue. Those
results are directly applicable to the GI/Hg /m queue; and so, the gradient estimates are
consistent. By an appropriate choice of the sequence a! for all i, our optimization parame-
ters {67}52,,(i = 1...K) will converge to the optimum 6%(¢ = 1...K). For our simulation
we chose a!, = a}/n, Vi which satisfies all the stochastic approximation conditions discussed
earlier.

We also applied the algorithm to online optimization of a small manufacturing system.
Figure 1 shows a flow diagram for a four machine, two-product manufacturing system. This
system was simulated using QNAP2; and online optimization was done over all machines.
The simulation was started with A\; = 8 and Ay = 4. At time = 50,000 units, the two arrival
rates were interchanged. Figures 4-6 show the online optimization for the four machines
respectively. The mean processing time, for each part type, at each machine converges
to the optimum value. This demonstrates global optimization of the system performance
via local optimization at the machine level. Of course, this result holds only under the
assumptions on Poisson arrivals that we set out earlier.
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