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ABSTRACT

We consider the problem of dynamic scheduling of customers (messages) in time-critical envi-
ronments. First, we consider a single station (communication node) and assume that each customer
(message) must begin service (transmission) by an individually varying “extinction” time or, else,
it is lost. We are interested in minimizing, in the sense of stochastic order, the number of mes-
sages lost over any time interval. We prove a variety of results that establish the optimality of the
STE (Shortest-Time-to Extinction) policy under rather general conditions. Similar results are also
shown when messages have constraints on their complete transmission times. If the scheduler is
allowed to take decisions based only on the distribution of the deadlines (rather than their exact
values), similar but somewhat stronger results are proven. Finally, we consider a network of M sta-
tions in tandem under the hypothesis that a message is never lost and is scheduled irrespective of
whether its extinction time (also called due date in this case) has expired or not. Again,under fairly
general assumptions on the arrivals, deadlines and services, we show that the EDD (Earliest Due
Date) policy minimizes a form of average tardiness incurred over a finite operating horizon among
all nonidling, nonpremptive policies. We formulate these problems in the context of stochastic

dominance, and use simple interchange arguments to establish all our results.

* This work was supported by O N R Grants N00014-85G-0207 and N00014-88K-0712 and an N.SF' Grant
CDR-85-00108.



I. INTRODUCTION

We consider the problem of scheduling the transmission of messages over a single communi-
cation link when each message has constraints on its waiting time or complete transmission time.
This problem arises in applications that involve time-critical message contents. We wish to model
situations in which the penalty incurred when deadlines are not met implies either the complete loss
of the message or another form of tardiness cost. We are interested in characterizing the scheduling
strategy which minimizes a cost function that reflects the nature of the penalty incurred. The
models and the results of the paper apply equally well to numerous other applications that involve
service stations, queues and deadlines. Thus a much more general terminology could be used.
We choose to stick with the message transmission application in order to focus attention to the
important problem of real time communication.

First we consider the case in which the messages have constraints on their waiting times. Each
message upon its arrival at time #; “announces” a deadline d;, so that if by time ¢; = t; + d; (called
its “extinction time”), transmission does not commence, the message is considered lost and never
scheduled for service. The objective is to find a scheduling policy which minimizes the average
number of lost messages over any time interval. We show that under nonexplosive, but otherwise
arbitrary, arrival and arbitrary deadline processes, and for exponential service (i.e. transmission)
times that are independent of each other and of the arrival and deadline processes, the policy of
scheduling the eligible customer with the Shortest Time to Extinction (denoted by STE) is optimal
among all nonpreemptive and nonidling policies. In fact, we show the optimality in the sense of
stochastic order. When considered over the broader class of only nonpremptive policies, the optimal
policy, if it exists, can be found in the class of STEI policies, namely those that are allowed to idle,
but schedule according to the STE rule when they don’t idle. As a special case, in the situations
in which deadlines are deterministic and identical for all messages, the pure STE policy is optimal

within the class of nonpreemptive policies.

Next, we consider the case in which messages have constraints on their complete transmis-
sion times rather than on their waiting times prior to service commencement. A message is now
considered lost if it does not complete transmission by its extinction time. We assume that the
transmission of a message is aborted if its deadline expires while it is in the process of being trans-
mitted. Scheduling results that are similar to those of the previous case, are also obtained for this

case. Preliminary versions of these results were first presented in [15].

An interesting twist to the above problem is obtained if we assume that due to implementational
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difficulties, the scheduler doesn’t have information about the exact deadlines of the messages. In
addition to the knowledge of the past evolution of the system, only the knowledge of the distribution
of the deadlines is available for decision making. However the extinction times become known as
a message is read and the scheduler can act as before. We assume that the deadlines form a
sequence of i.i.d RV’s (that are also independent of the arrivals), and the common distribution has
non-decreasing failure rate. Service times are also assumed to form an i.i.d sequence of RV’s that
are independent of the arrivals and deadlines. When deadlines are to the beginning of service, the
policy of scheduling the message which has waited the most, is shown to be optimal within the class
of non-preemptive policies. Exponentiality of service times is needed further when the deadlines

are to the completion of service.

These results do not seem to be easily extendible beyond the case of a single link. However,
under a slightly different set of assumptions and operating conditions, some results can be obtained
for a tandem network of links. Specifically, we may assume that no messages are discarded or lost
and instead, all messages are scheduled, regardless of whether their deadlines have expired or not.
A penalty is, however, incurred when a deadline is missed. The penalty function is of the form
h(c; — e;) where c¢; is the time at which the message arriving at ¢; with deadline d; (and extinction
time e;, which in this case is also called due time) completes transmission in the network, and h
is a real valued continuous convex function with h(z) = 0Vz < 0. For this system, we consider
a finite operating time horizon and wish to obtain a scheduling policy that minimizes the total
penalty function (usually called tardiness). Under nonexplosive, but otherwise arbitrary, arrival
and arbitrary deadline processes, and independent identically distributed service times that are
also independent of the arrival and deadline processes, we show that the policy which schedules,
at each node, the message with the Earliest Due Time is optimal among all non-preemptive and

non-idling scheduling policies.

These problems fall in the category of single server queueing systems with impatient customers.
Such systems have received moderate attention in the queueing literature. Most of the work seems
to have focussed on the evaluation of various criteria of performance when service is assigned
according to a First-come-first-serve (FCFS) strategy. For example in [1,2], the authors are able
to compute various performance indices such as steady state probability of rejection of a customer,
average number of customers served before the loss of the first job etc. for a FCFS single server
queue. In 3], delay analysis is given for a single server queue with an interesting delay-dependent

service discipline; this models telephone call processing systems.
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While intuition suggests that assigning service according to a FCFS discipline is probably not
the best thing to do, attempts to discover better scheduling stragies have been rare. In [4,5], the
problem of optimally scheduling the service of impatient customers was posed and weaker versions of
some of our results were proved with a different technique and under different assumptions relative
to ours. In [6], the problem of optimal control of arrivals to a FCFS single-server queue was
considered with the objective of minimizing the discounted reward associated with the successful
departure of customers. An optimal control problem with interacting service stations and impatient
tasks was studied in [16]. The authors assumed that the extinction times are not known to the
controller and the residual time (until extinction) is exponential. The service assignment strategy
minimizing a (discounted) weighted average delay was characterized. Several researchers [7,8,9] in
the operations research area have considered scheduling impatient customers under various tardiness
criteria. In contrast to our formulation, these works assume that the arrival process is shut off after

the system has started the scheduling operations and prove results only for a single node.

The nature of the problem we consider makes it difficult to formulate a dynamic programming
recursion. Our approach, instead, involves interchange arguments together with the ideas of cou-
pling and stochastic dominance and is based on sample-path wise comparisons of the costs under
different policies. Somewhat similar arguments were given in [10,11] for queue-control problems of
a different nature. However, since results regarding the existence of optimal stationary policies are

not readily available for our problem, some additional care is needed.

The paper is organized as follows. In section II, we introduce the notation and consider the first
situation in which messages have constraints on their waiting times. The case in which constraints
are placed on their total transmission times is considered in section III. In section IV, we analyze
optimality under the reduced information structure. Finally in section V, we present the case of

the tandem network with tardiness cost.
II. CONSTRAINTS ON WAITING TIMES

We consider a single server queueing system with unlimited buffer space size that represents
a single link of a communication system. Let t; be the arrival instant of the i*" message whose
deadline is d;. We define by e; = t; + d; the extinction time of that message; that is, if by time
e;, the transmission does not commence, the message is considered lost and never scheduled for
service. At any instant ¢, a message with extinction time e; is termed eligible for transmission if

ei—1t>0. Let {T; =t; —t;-1}2, (withtg = 0) be the sequence of interarrival times and S; be
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the duration of the *" service time in the system. By service time, we mean the transmission time

of a message which may include processing and propagation times as well.

We make the following assumption throught the paper :

(A1) {S:;}2, is a sequence of independent identically distributed RV’s which are independent of
{T:}2, and {d;}{2,. Also, the arrival process is nonexplosive, that is, lim;jco t; = 00 with

probability 1.

Let E(t) denote the (increasing) ordered set of extinction times of eligible messages at time
t. Let H,(t) denote the set of all arrival instants by time t and H,(t) the set of corresponding
deadlines. Also, let Cy(t) be the expended portion of the service in progress at time t and i(t)
be the condition of the server at time ¢ (1 if busy, 0 if idle). Then, under assumption Al, 2(t) =
(E(t), Ho(t), Ha(t), Cs(t),i(t) ) is a useful description of the system. Let Z denote the allowable

range of values of z(t).

The control action is to decide, at appropriate decision instants, whether to transmit and, if
s0, which message out of the currently eligible pool of messages. First, we restrict attention to
nonanticipative policies throughout this paper. This means that the control action has to be based
only on the past evolution of the system, specifically, the knowledge of the service times of the
messages waiting in the queue is not available. Let I'y be the class of nonpreemptive and nonidling
policies and T'; be the class of nonpreemptive policies, while I' is the global class of all possible
scheduling policies.

For every policy in Ty, the decision instants are the instants of service completion (provided
that E(t) at these instants is nonempty) or of arrivals to an empty queue. Denote by STE, the
policy in T'o which at every decision instant schedules the eligible message with the shortest time
to extinction. Let STEI denote the class of policies in I'y which are allowed to possibly idle when
messages are waiting in the queue, but which schedule according to the STE mechanism when they

choose not to idle.

Following the standard notation, we say that a RV X is stochastically smaller than a RV Y,
and write X <, Y if P(X > 2) £ P(Y > z)Vz € IR. Order relations for stochastic processes can

be considered as an extension of the definitions for vector valued RV’s. Let X = {X(t),t € A}

and Y = {Y(¢),t € A} be two processes, where A C IR. Let D e Dg[0, 00), the space of right

continuous functions from IR, to IR with left limits at all ¢ € [0,00) be the space of their sample

paths. We say that the process X is stochastically smaller than the process Y, and write X <, Y
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if P{f(X)> 2} < P{f(Y) > z}Vz € IR, where f: D — IR is measurable and f(z) < f(y) whenever
z,y € D and z(t) < y(t) Vt € A. The following equivalence [12,13] often provides an easy way to

prove stochastic order relations without explicit computation of distributions:
1.X<nsY

2. P(g[X(t1), -+, X(tn)] > 2) £ P(g[Y(t1),---,Y(s)]) > 2)forall(t,---,t,), all z, all n, and for
all g: IR™ — IR, measurable and such that z; < y;,1 < j < n implies g(21,***,Zx) < 9(¥1,**» Un)-
3. There exists two stochastic processes X = {X(t),t € A} and ¥ = {¥Y(¢),t € A} on a common
probability space such that £(X) = L(X) , L(Y) = £(Y) and X(t) < Y(¢) Vt € Aa.s. Here L(.)

denotes the law of a process on the space of its sample paths.

Returning to our problem, let L™(2) denote the process {L}(z),t > 0}, where L7(2) is the
number of messages lost by time t when starting from state z at time 0 and applying the scheduling
policy .

We first consider optimality within T'g.

Theorem II.1. Consider a single server queue under assumption Al. Assume further that the
common distribution of the service limes is exponential. Then, the STE policy minimizes in the
sense of stochastic order, the number of messages lost by any time among all policies in the class
T, that is,

L%(2) <ot L™(2) Vr€To,Vz€ Z.

Under the assumption of Poisson arrivals rather than exponential services, STE policy was
shown in [5] to maximize the long run expected fraction of successful messages among all stationary
policies. Using the fact that the initiation of busy periods are regeneration points, the conclusion
followed from a comparison of the quantities for the first busy period. Here, we prove a stronger

result using different techniques. We first need the following result:

Lemma I1.1. Consider a single server queue as in Theorem I1.1. Let an arbitrary policy € T'o act
on the system in [to, 00), where 1y is an arbitrary decision instant. Then there ezists a policy & € I'
that schedules the customer with the shortest time to extinction at time ty (and is appropriately

defined in [ty,0)) and satisfies

L¥Y2) < L™(2) Vze€Z.



Proof. Assume that 7 does not schedule the customer with the shortest time to extinction at time
to. If it does, the result follows trivially by letting # to be the same as 7. We drop z from LJ(z)
and L¥(z) for notational convenience.

The idea of the proof is to define # appropriately in [tg,00) and to construct two coupled pro-
cesses (LT, LT) on the same (given) probability space so that LT and L7 have the same distribution
and L¥ < LT a.sVt > t,.

Suppose E(tp) = {e1,* -, e,} with n > 2. We agree to denote by e; either the extinction time
or the message with that extinction time. Let 7 schedule ex (2 < k£ < n) at time 5. We will
construct # € T'g which schedules ex—; at time ¢y ( and is appropriately defined in [tg, 00))and
satisfies the assertion of the lemma. The required policy # can then be generated by induction on
k.

Consider the system evolving under policies 7 and . Couple the realizations by giving them the
same arrival and deadline processes in [to, 00). Let o be the completion instant of the service which
begins at time tp under #. Take the service under 7 to end at o as well. This is permissible since
the service times are independent and identically distributed. Three cases exhaust the possibilities:
Case 1:0 2> ¢

In this case, under both policies, all messages eligible at time ¢y, except ex for 7 and ex_
for # that have extinction times less than or equal to o are lost and so are all arrivals in (%o, 0]
whose extinction times are similarly less than or equal to 0. The states under 7 and # are therefore
matched at time . In [0,00), define # to be identical to x; this is possible since we may take
corresponding service times to be equal under 7 and #. Thus,

Ir - { L} if £ € [tg, ex-1) U [ex, 0);
LT +1 ifte€[ex—1,€x).
Case 2:0 < €x—

First it is clear that LT = LT Vt € [ty,0), and at time o, the sets of extinction times under
7 and # differ only in that ey.; is included in that set under 7 as compared to ex under 7. Let
# follow 7 for t > o except that it schedules e, when (and if) 7 schedules ex—;. Thus 7 is well
defined in [0, 7), where 7 is the end of the current busy period under .

Suppose 7 eventually schedules ex_1, that is, suppose that ex_; meets its deadline under =.
Since ex—1 < ek, ex will also meet its deadline under #; and the states under 7 and 7 are matched
at time 7. Letting # follow 7 in [r, 00), one thus obtains, LT = LT Vt € [0, ).

Suppose now that m does not manage to eventually schedule e;_; before its expiration. Since

7 is nonidling, we have necessarily that 7 > ex—y. If 7 > e, then e is lost under 7. Letting 7
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follow 7 in [r, 00), one obtains,

I = ? ifte [0’, ek_l) U [ek, OO);
¢ L? +1 ifte [ek_l,ek).

If however, 7 < e, then at time 7, the queue is empty under 7 and ey is the only eligible message
under 7. Let % begin serving e at time 7. We must now consider the following two sub-cases:
(a) Suppose there are no arrivals while e, is in service under #. The states are then matched from

the instant message ej, finishes service under #; thus,

- {,, feke

: €k—1,00).
(b) Suppose there is at least one arrival while ey, is in service under #. Let the arrival which begins
service first under 7 have extinction time e,. Take the service time of e, under 7 to be equal to the
residual service time of e; under #. This is possible because of assumption Al and the memoryless
property of the exponentially distributed service times. In this way, we ensure that e, and e; will
finish service at the same time instant ¢;. Suppose that o; > €. Then e, is lost under # and the

states under the two policies are matched at time o,. One thus concludes that,

I‘l;' - {L? ifte [U, ek—l) U [65,00);

= L?’ +1 ifte [ek_l,eb).

Suppose now that o7 < e;. Let # follow 7 for t > . Take the corresponding service times under
7 and 7 to be equal. Thus # is well defined in [0y, 71) where 7; is the end of this busy period under
7. If 11 > ey, we let ¥ follow 7 from time 7 onwards, and thus have, the same relations between
LT and LT as in the situation just described. If instead 7; < es, let 7 begin serving e, at time 7.
We are now back to a situation we have described previously. One easily repeats the arguments to
obtain,
Li= {L£,+ - EZ;e""i)i-

t ) -1,T1);
and LT > LT Vte€ [r,00).

Case 3 :¢ex.1 <0< ¢e.

It is clear that

ir = [ L ift € [to, €x-1);
S VLF+1, ift€ [est,0),
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and at time o, under #, message ey is eligible for service in addition to all messages that are eligible

under 7. Consequently, we can proceed as in case 2. We thus conclude that
IT> LT  Vte(o, ).

The observation that the processes L™and L™ have the same law now completes the proof.

We now proceed to the

Proof of Theorem II.1. Start with an arbitrary policy 7 € I's acting on the system in an initial
state z. By Lemma II.1, we can construct an alternative policy 7; € Iy which schedules according
to the STE-rule at the first decision instant along its trajectory and which satisfies the relation
L™ <,; L™. We proceed inductively; that is, by repeating the same construction n times we can
define a policy 7, € 'y which schedules according to the STE-rule at least at the first n decision

points along its trajectory and satisfies
L™ Sst L1 Sat e LT SGt L™,

Fix z € IR,a positive integerk and t; € [0,00),1 < i < k and pick g: IR*¥ = IR. Let A” denote the
event {g(L],---L] ) > «} for a policy ¥ € Ty. Let t; = max;<i<xt; and take {S,}{° to be the
service times of the messages in the system. Since the policies STE and =, agree on their first n

decisions, one has for all n,

P(A%*%) = P(A"*n {Zn: Si 2 t;}) + P(A™n {i Si <))

i=1 i=1

< P(A™ N {i Si2 D+ P(zn: Si <t;)

=1 =1

< P(A™)+ P(i Si < t;)

i=1

< P(A”) + P(i S; < tj).

i=1

Taking the limit as n /* 00, it now follows that P(A**¢) < P(A"), that is, L**® <, L”.

Remarks.

1. The theorem is not true when the assumption of exponential service times is relaxed.



Counterezample:

Consider a single server queueing system in which service times are deterministic and identically
equal to 5 units, and there are exactly 5 arrivals into the system at times 3, 4,12, 16, and 16.5 units
with corresponding deadlines 3,9,2,9 and 3.5 units. Let a message with extinction time 3 units
and residual service time 5 units be initially present in the system. Then a comparison of the

Last-Come-First-Served (LCFS) and STE policies shows
E[Ly7) = LT = 1(t 2 6),

E[L{*] = L™ = 1(t > 14) + 1(t > 20),

where 1(A) is the indicator function of the event A. Thus,
E[L¥*) < E[L?] Vit > 20.

2. A close look at the proof also shows that the exponentiality of the service times was used
only to match service completions of arrivals to those who have already started service (e.g case
2(b)). Also, idling doesn’t pay when there are no arrivals into the system after it has started
operation. So, if we consider a single server queue under assumption Al such that all the messages
are initially present in the system and there are no additional arrivals, following the same line of

reasoning as in the Theorem, we obtain the (stronger) result

L"(z) <o L™(2) VmeT, VzeZ

Next, we consider optimality within I';, the broader class of only nonpreemptive policies. Now,
the idling of the server is allowed. In this case, examples can be easily constructed to show that
the STE policy is no longer optimal; the basic intuition being that when all the messages awaiting
service have large extinction times, it pays to idle in expectation of a message with a very short
deadline. However, the philosophy of STE-scheduling still plays an important role as the following

result demonstrates.

Proposition II.1 Consider a single server queue under assumption Al. Then, for every policy

7 € I'1, there exists a policy # € STEI, such that

L*2) < L™(2) VzeZ.
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As in the previous theorem, the proof can be worked out in two steps. In the first step,
assuming that tp is arbitrary decision instant at which 7 schedules a message that is not the one
with the smallest time to extinction, we construct, using the knowledge of 7, a policy #, which
schedules the message with the smallest time to extinction and satisfies L* <,; L™. This then can
be used recursively to improve upon any given policy in 'y uﬁtil the improving policy belongs to
the class of STET policies. The key observation which in fact facilitates the arguments in the first
step is that when idling is permitted, the policy #, which we construct, can be chosen to follow
7 at all times beyond 5. Exponentiality of the service times is therefore not needed. We omit
the details. Under the same assumptions, [5] contains a different proof for the optimality of STEI

policies for long run expected fraction of successful customers.

Consider now a special case of interest that involves the following assumption:

(A2) The deadlines associated with the messages are deterministic and identical for all messages,
that is, d; = d for all 7. Also the messages initially present in the system all have extinction

times less than or equal to d.
As a simple consequence of the above proposition, one now has the following

Corollary II.1. Consider a single server queueing system under assumptions A1 and A2. Then

for every initial state z € Z, we have,
L**(2) <, L7™(2) Vr eT;.

Proof. First note that by Proposition IL.1, it suffices to prove the claim for r € STEI. We proceed
as before, Let fp be an instant at which a policy # € STEI chooses to idle. It now suffices to
construct # € I'y which schedules the customer with the shortest time to extinction at time 2, and
satisfies L* <, L”.

Let E(ty) = {e1---en} with n > 1. Because of assumption A2, it is clear that the arrivals
in (t9,00) have extinction times no smaller than e,. Let T be the first instant after ¢, at which =

decides to schedule a message. Consider the following two cases :

1). Suppose T < e;. Since # € STEI, 7 schedules e; at time 7. Take the first service time under
7 (which begins at time 7) to be the same as the service time of e; under 7.Following its own
trajectory, therefore, # can determine the instant of completion of service of e; under 7. Let 7 idle
from the time the service of e; is finished under # to the time of completion of service of e; under

7. Letting # follow 7 from this time onwards, one obtains LT = LT Vit > t,.
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2). Suppose T > e;. Let 7 schedule e* at time 7. Take the service time of e* under 7 to be equal
to that of e; under #. Let # never schedule e* and instead idle, if necessary, as in the previous
case, It is then clear that

I = LZ’ ift € [to,e1) U [e*, 00);
PTNLE 41 ift€[er,e”).

Because of Assumption Al, L™ and L™ have the same distribution, and so, L* <,, L™.

III. CONSTRAINTS ON COMPLETE TRANSMISSION TIMES

We now assume that messages have limitations on their entire sojourn times in the system.
Each message upon its arrival into the system at time ¢; declares a deadline d; such that, if by its
extinction time e; = t; + d; its transmission is not completed, the message is considered lost. If its
extinction time occurs while it is awaiting transmission, it is never scheduled. It may also happen
that the message is in the process of being transmitted when its extinction time occurs. We assume
in this case that its transmission is aborted at that moment and it is considered lost.

We first consider optimality within the class of nonpreemptive nonidling policies. The following

parallels Theorem II.1 closely. We provide the proof in its entirety but in a somewhat terser fashion.

Theorem III.1 Consider a single server queue under assumption A1 and exponential service time

distribution. Then for every initial state z € Z, we have,
L%(2) <o L™(2) VY7 €Ty,

Proof. To prove the result, we follow the same program as illustrated in Theorem II.1. With
E(to) = {e1---en} (n > 2), let # € Ty be a policy which schedules message ex (2 < k < n) at
time t5. Using the knowledge of 7, we construct # which schedules ey at time to and satisfies
L7 <, L™. First an induction on k and then an induction on the decision instants will provide the
final result.

Consider the systems evolving under policies 7 and #. Couple the realizations by giving them
the same arrival and deadline processes in [t9,00). Let o be the instant at which the service which
begins at time 3 under # would complete if uninterrupted. Take the service time of e; under 7 to
be equal to that of ex~; under #. Two cases exhaust the possibilities:

Case 1:0 2> .¢e,.1.

Consider the interval [¢g,ex—3]. All arrivals in this interval having extinction times less than

or equal to ex_; and messages €; - - -ex—3 (if k > 2) are all lost under both policies as none of them
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could commence transmission. Message ex—_; is lost under 7 as it could not begin transmission and
under # as'it could not complete transmission. At time ex_1, schedule e; under # and assign the
residual service time of e, under 7 to be equal to the new service time of e; under #. Again, this
becomes possible because service times are independent and exponentially distributed with the same

rate. Also, let # follow 7 hence onwards; clearly this leads to the conclusion that LT = LT V¢ > ¢,.

Case 2:0 < €—1.

At time o, the sets of extinction times under the two policies differ only in that ex—; is included
in that set under 7 as compared to e; under #. Let # follow 7 after o except that it schedules e
when (and if) 7 schedules ex—;. Thus # is well defined in [o, 7), where 7 is the end of the current
busy period under . We now have three cases to consider depending on whether 7 scheduled ex_4
or not, and whether, when scheduled, the service completed or not. In what follows, we treat only
the case in which 7 never managed to schedule ex_;. Other cases can be handled similarly and we
omit their discussion.

Suppose 7 never scheduled ex_; for service in [0, e1). Clearly 7 > ex—1 as 7 is nonidling. If

T > e as well, letting # follow 7 after time 7 , it follows that,
LT = LT + 1{ex—1 <t < ex} Vit > to.

Suppose now that 7 < ex. Schedule e under # at time 7. If there are no arrivals while e; is in

service under %, we let # follow 7 from time e; onwards and conclude
I:;r = L;.r +1{ex-1 <t < ex} +1{t > ex,01 < ek},

where o7 is the time at which ej leaves the system under .

Consider now the case in which there is at least one arrival in [7,07) and the first message that
starts service under 7 has extinction time e,. Assign the service of e, under = to be equal to the
residual service time of e under #. Let oy be the instant at which the above service would have
completed if uninterrupted. Consequently we have to discuss the following cases:

1) Suppose e; < e, and o3 > ex. Then upon scheduling e, under % at time e and assigning the
remaining service time under 7 to be equal to the new service time of e, under #, and letting 7

follow 7 hence onwards, we obtain,

pro [ L€ [to,ex-1)Ulex,00),
t LT +1 ift€ [ex—1,€k)
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2) Suppose now that e, < ex and o3 > e,. Then, at time e, the message e, is lost under both
policies. If no messages begin service under r in [ey, 03), letting # follow 7 from time o, onwards,
we have,

':r = L? +1{ex-1 <t < ex} + 1{t > ex,02 < ex}.

On the other hand, suppose a message begins service under = in [ey, 7). This is a situation we have

already discussed. By repeating the arguments in an obvious way, we are led to LT > LT Vt > t,.

3) Consider the case 0; < min(es,ex). Let # follow 7 for ¢ > o, and assume again that the
corresponding services are of equal duration. Thus # is well defined in [o3,71), where now 7y ‘is the

end of this current busy period under #. If 7, > e}, one has

Fro_ L if t € [to, ex~1) U [es, 00);
¢ LT +1 ift€ [ex—1,€).

For 1y < ey, schedule e, under # and proceed as discussed before to obtain L > LF Vt > t,.

4) If e, = ex and 03 > ey = e , letting # follow 7 from time e, = e; onwards, one has LT =

LT Yt > to.

Remarks.

1. The theorem is not true without the exponential service assumption.

Counterexample: Consider a single server queueing system in which two messages with extinction
times 2 and 6 units are initially present in the system. The service times form a renewal process
with the common distribution: P($; = 0) = p, P($1 =5) = ¢=1-p. Assume also that 0 < p < ¢.
Let LTE be the policy which serves the message with the largest time to extinction. Elementary

calculations show that for all ¢ > 6,

0 with prob. p? + pg;

. , 1 with prob. pg;
Lt e - L: € =
—1 with prob. ¢%.

where L¢ is obtained by coupling the service times to those for L**¢. Since L'*® has the same law

as L', it follows that for all ¢ > 6,
E(L{] - E[L{*]=pq—¢" = (p— ¢9)a < 0.

2. Consider now the situation, as in Remark 2 following Theorem IIL1, of a single server queue

under assumption Al when arrivals into the system are disallowed after the system has started
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operation. Following the proof of Theorem IIL1, it is clear that under the additional assumption of
exponential service times, STE is optimal in the class I'; of nonpreemptive policies. The example
in the previous remark shows the necessity of this additional assumption. This is in contrast to the

result in section II.

We now consider optimality within Iy, the broader class of nonpreemptive policies that permit
idling. A careful examination of the previous example shows that with only assumption Al, the
optimal policy need not belong to the class of STEI policies. Also, a slight modification of the
above example shows that the STE policy need not be optimal under assumptions Al and A2.
These observations should be compared to the conclusions of Proposition IL.1 and its Corollary.

However, we can prove the following:

Proposition III.1 For a single server queue under assumptions A1 and exponential service time
distributions, for every m € I'y, there ezists # € STEI such that for each initial state z € Z,
L*(2) <g L7™(2).

Corollary III.1 For a single server queue as above and the added assumption A2, we have,

L**(2) <, L™(2) Vr € T4, Vz € Z.

The proofs are almost verbatim versions of those of Proposition II.1 and its Corollary with

minor modifications and hence are omitted.

Let us now consider policies that are allowed to preempt messages if necessary, and consider
optimality within T, the class of arbitrary (nonanticipative) policies. Let STE(P) denote a pre-
emptive version of the STE policy, that is, a policy in ' which always transmits the message with
the shortest time to extinction; it interrupts current transmission when there is an arrival with an
earlier extinction time and commences transmission of this message.

We have the following result :

Theorem III.2 Consider a single server queue under assumption Al. Assume also that the

common distribution of the service times is exponential. Then, for each initial state z € Z, we have
L**e(P)(2) <,y L™(2) V7 € T.

Proof. To avoid repetitiveness, we will only outline the proof. Consider any policy # € I'. Let
E(to) = {e1--+e,} where to is an arbitrary decision instant. Assume that at to, either n > 2 and
n schedules ex (2 < k < n) or n > 1 and 7 chooses to idle . We will construct # which schedules
€1 at time ¢, takes the next action only at an event epoch (i.e. at an instant of an arrival, service

completion or the loss of a message) and satisfies L* <,, L™. Usual induction arguments then
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complete the proof.

Consider the parallel evolution of the system under the two policies # and 7 and couple the
realizations by giving them the same arrival and deadline processes.

Consider the case when n > 2 and 7 schedules e; (2 < k < n).Depending on the nature of the

next event, the following cases have to be discussed:

(a) The next event is a service completion (under both = and #). Let # follow 7 henceforth, except
that (7) it schedules e; when (and if) x schedules e;, and (i%) it either never schedules or preempts
and never reschedules e if e; is lost under #. The usual arguments then lead to the relation
LT < LT vt > 1.

(b) The next event is either the loss or the arrival of a message (under = and #). Letting # to be

identical to = hence onwards, we have LT = LT Vt > t,.

(c) Suppose that = simply preempts e, without any other event happening. If 7 schedules e;, define
# from this instant onwards to follow 7. Otherwise, we are in a situation similar to that at time
%o, and the arguments can be repeated.

Consider now the case when n > 1 and 7 decides to idle. The important point here is that the
because of the coupling, the first time 7 decides to schedule a message can be determined following
the realizations of #. The proper actions of # can then be stipulated to lead to the desired result.
The accounting is straight forward but very repetitive and hence is omitted.

The proof is then completed by noting that LT was chosen to have the same distribution as
L7.

Remarks.

1. The counterexample following Theorem III.1 demonstrates the necessity of the assumption of
exponential service time distribution.

2. From the proof it is clear that idling never pays under assumption A1 when premption is allowed.
3. Let T™(2) = {T7(2),k =1,2,---} where T[ (z) @ inf{t >0:L7(2) > k}.fork=1,2,---be the
discrete time process representing the instants at which messages are lost under a policy = when

starting from state z at time 0. Since
T™(2) 2, T™(2) < L™(2) <, L™(2),

for any two policies 71 and 9, all results in Sections II and III are valid for the cost T with the
obvious modifications. In reliability applications [2], the system is often considered to have failed

when the first deadline is missed. The problem of stochastically maximizing the RV Ty (2) is then
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appropriate. It is interesting to observe that for the optimality of STE in this case, exponentiality

of service times is not needed in Theorem II.1 and in all the results of this section.

Weaker versions of some of the results above were presented in [4]. In that paper, optimality
with respect to the long run expected number of successful customers was considered. A theorem
analogous to our Theorem III.1 was proven when arrivals are Poisson and optimality is considered
within the class of stationary policies. Statements analogous to our Proposition III.1 and Theo-
rem II1.2 are also given under an additional hypothesis (Assumption 4.2 in [4], Page 71), which
seems difficult to verify. Furthermore, the arguments and methodology used there are substantially

different from ours.
IV. SCHEDULING UNDER A REDUCED INFORMATION STRUCTURE

In this part, we re-examine the problem considered in the last two sections. We assume
that due to implementational difficulties, the scheduler does not have precise knowledge of the
extinction times of the messages. The information regarding the distribution of the deadlines is
however available and there is a mechanism which informs the scheduler when messages are lost,.
Furthermore, the extinction times become available as soon as a message begins service and actions
can be taken as in the previous sections. Interestingly enough, providing the scheduler with less
detailed information tends to simplify the situation. Under some reasonable assumptions on the
deadlines, idling policies and the exponentiality of service times play a less important role in the
analysis and reasonably complete results are obtained.

Consider the following single server queueing system. Customers arrive at times {¢;} and depart
at times {¢; + d;} if service doesn’t begin (or isn’t completed). Only the common distribution F(.)
of {d;} is available to the scheduler, but the scheduler is also aware of the departures of customers

when they occur. Assume that F(.) has a density f(.); it is well known that the failure rate

function A(t) %' f(t)/(1 — F(t)) (defined for all those values of t for which F(t) < 1) has a useful
probabilistic interpretation; namely A(t)dt is the probability that the RV having d.f F(.) takes value
in {t,t + dt] given that it is greater than ¢. It seems natural to assume that beyond a certain time,

the impatience of the customers doesn’t decrease. We, therefore, make the following assumption :

(A3) {d;}%2, is a sequence of i.i.d RV’s which are independent of {T3}{2,. Furthermore the common
distribution has a non-decreasing failure rate function.
We first consider the situation when deadlines are to the beginning of service. A customer is

termed eligible at time ¢ if it has arrived but neither begun service nor reneged by t. Let W(t)
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denote the (decreasing) ordered set of waiting times of the eligible customers at time t. In Renewal
Theoretic terminology, W(t) is the ordered set of their ages.With H,(t), C,(t), and i(¢) as defined
in Section II, z(t) = (W (1), Ha(2), Cs(t),4(t)) is a suitable state description under assumptions A1l
and A3. Let Z be its allowable range of values.

Let E A denote the policy in I'g which schedules, at every decision instant, the eligible customer
with the earliest arrival instant. This differs from the well known FCFS policy because of possible
non-zero initial conditions. Let EAI denote the class of policies in I'; which are allowed to idle
when customers are waiting, but which schedule according to FA mechanism when they choose

not to idle.

We approach our main results (Theorems IV.1 and IV.2) through the following results. The
first lemma indicates the way in which the non-decreasing failure rate assumption on the deadline
distribution is going to be used.

To state the result, we introduce some notation. For a nonnegative RV X, let X; denote its

residual life after ¢ units, that is,
PX: >2)=P(X>z+t| X >1).

Let {X(}%, be a sequence of i.i.d nonnegative RV’s. It is easy to show that Xt(ll ),Xt(f ). -Xfr)

are independent (and identically distributed if t; = ¢ ¥3). If {X()}7_, is independent of a o-algebra

of events F, then so is {Xt(:)}?=1' Furthermore,

Lemma IV.1 [14, Prop. 8.1.3] If the common distribution has nondecreasing failure rate, then for

everyty 2ty 2 - 2 ty,

XV < XP <o < X,

The next lemma, in the same spirit as Propositions II.1 and III.1, characterizes a good set of

scheduling policies within the class of admissible ones.

Lemma IV.2 Consider a single server queue under assumptions A1 and A3. Then for every policy

7 € 'y, there ezists a policy # € EAI, such that

L*(2) <, L™(2) Vz € Z.
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Propf. Since the arguments closely parallel those in the Section II, we will only point out the
essential differences. Let W(to) = {wy,ws, - wn} (n > 2) and suppose that 7 schedules wy
(2 £ k < n) at an arbitrary decision instant 7. We first construct # € I'; which schedules wy_; at
time #y and satisfies Ly <,; L. Couple the realizations under = and % so that

a) the arrivals are the same,

b) &l = e* Vi# k,k—1,8_; < ex® a.s. and €]_, =, e]_,, where ¢;” is the extinction time
of w; under policy ,

and c) the deadlines (and hence the extinction times) are the same for all arrivals in (%o, 00).

Note that the construction as stated in b) is possible because of Lemma IV.1 and the obser-
vations stated before the lemma. The coupling for service times and the suitable definition for ¥
in (29, 00) can now be given using the ideas in Section II and the rest of the argument also follows

easily.

We show next that idling doesn’t help. This will then further reduce the good set of scheduling
strategies to the F'A strategy. Towards this end, start with a policy » € EAI and let fp be an
instant at which 7 idles. With W(#) = {wy, - -w,} (n > 1), let # be another policy which
schedules w; at time #5. Let 7 be the the first instant after o at which 7 schedules a customer
and o be the time at which w; completes service under #. Couple the realizations under = and #
to have the same arrival and deadline processes. Note that 7 can then be determined observing
the realization of #. Now, if 7 > o, letting ¥ follow 7 from o onwards (by inserting idle periods if

necessary), one concludes, Vt > 1o, that
LT =L*+1(t>e1,e0 < 7).

When 7 < o, the argument proceeds as follows. Let 7 begin serving w* (with extinction time e*)
at 7. Take the first service time under 7 and # to be equal. Also, let % idle in [0, 0 + 7], and follow
7 from (o + ) onwards, except that it never serves w* in [o + 7,00). Recalling that 7 € EAI, it
follows that, Vt > 1o,

IT = L +1(e; <t < €*,wy # w*).

We have thus shown the following

Theorem IV.1 For a single server queue under assumptions Al and A3,

L%(2) < L™(2) Vrely,VzeZ
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When deadlines are to the completion of service, the following can be easily shown combining
the ideas given so far.
Theorem IV.2 Consider a single server queue under assumptions A1 and AS3. Assume further

that the common distribution of the service times is exponential. Then

L*%(2) <4t L™ (2) Vr eI, Vze Z.

Finally, we observe that in sections II, III and IV, one could also have considered the problem
of maximizing the number of successful customers. With obvious modifications, the optimality

results extend to this situation as well.
V. RESULTS FOR A TANDEM NETWORK

In this section we consider a network of M communication links in tandem. Messages arrive
at times {¢;}{2, at the first link with corresponding deadlines {d;}{2,; thus they carry extinction
times {e; = #; + d;}?2; which become known to the scheduler upon arrival. We make the crucial
assumption that each message must be transmitted in all of the M tandem links, even if its extinction
time expires while in transit or prior to transmission. Therefore messages are not lost and it seems

more appropriate to refer to extinction times as due dates as we will do in the rest of this section.

Let the various classes of scheduling policies be as defined in section II. The control action
involves deciding at appropriate decision instants at each of the links which message to transmit,

if at all, out of the pool of currently available messages at that link.

Consider operating the above system over the time interval [0,T). Let C be the time at
which the message arriving at time ¢; with deadline d; completes service, under policy 7, at the
last of the M links and departs from the network. Set CT = T if the message does not depart by
time T. Let h : IR — IR be a continuous convex function with h(z) = 0 Vz < 0. When starting

from state z, the total average cost incurred by operating the system [0,7] under policy = is thus

E[ZN h(CT(z) — e;)] where N = N(T) def

i=1 max{i:t; < T} is the number of arrivals by time T.

We are interested in characterizing the scheduling policy which minimizes the above cost.

We make the following assumption :
(A4) The service times at each node form a sequence of i.i.d RV’s that are independent of each
other, of the arrivals at the first node, and of the deadlines. Also, the arrival process to the

first node is nonexplosive.
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We only consider optimality within Ty, the class of nonpreemptive and nonidling policies. Let
the Earliest Due Date (EDD) policy denote the policy in I'g, which at a decision instant at any
node in the network schedules the message with the smallest due time.

Our main result is the following
Theorem V.1. Consider the tandem network as described above under assumption A4. Let

h: IR~ IR be a continuous conver mapping with h(z) = 0 Yz < 0. Then
N N
E [Eh (Ced(z) - e.-)] <E [Zh(C}'(z) - e;)] Vr € T.
=1 i=1

Proof. The proof again uses essentially the same ideas as in Sections II and III. Let E(ty) =
{e1::-en} be the set of due times of the messages awaiting service at node I (1 < I < M),
and suppose that 7 schedules e; (2 < k < n) at time g, an arbitrary decision instant at that
node. We will construct # which schedules e;_; at time ?y and satisfies J*(z) < J™(2),where
J'(z)=E [Ef_ﬁ_l h(CT(2)—e€;)]. Usual induction arguments will then complete the proof. We drop
z for notational convenience.

Couple the realizations of the system evolving under 7 and # by giving them the same arrival
and deadline processes. Take the service time of e, at node I under r to be the same as that of
ex—1 at node I under #.

Consider first the case I < M. Let # follow hence onward all actions of = at nodes 1,2,---,I
except that at node I, ¥ serves e,y while 7 serves e;. Consider the actions of 7 at the subsequent
nodes I+1,---, M. Let ¥ follow all actions of 7 regarding messages other than e, and ex—;. About

actions regarding e; and ex_1, consider the following two subcases:

1. Suppose that at the J* node (I + 1 < J < M), 7 prefers to schedule ex_; when e is waiting
at the same node. Let # then follow 7 regarding messages ex and ex—; as well; this will result in

equal costs incurred under the two policies.

2. Suppose, on the other hand, that = prefers to schedule e, before e;y_; at each of the nodes

I+1<J< M. Let % serve ex_; when 7 serves e; and viceversa. First note that CT = CrVi#

def

o CT =C}F_, <V = CI_, = CF for all sample paths and hence

kk—1land U =

N
A=Y [(CF - &) - h(CT - )]

=MV - ex—1)+ h(U — ex) — h(U - ex—1) — MV — eg).
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The assumed properties of h imply that h is nonnegative and nondecreasing and that

h(z) + h(y) 2 h(z1) + k()

for any 21, z; € [z, y] such that min(z1,2;) — ¢ < y — max(21,2;). This immediately shows that

A > 0.

When I = M, the policy 7 is defined in a similar fashion; we omit the details since the
discussion will be verbatim. Since CT has the same distribution as C7 for each i, the conclusion

follows.

Remarks.

The optimal scheduling policy just obtained has a nice distributed implementation; actions which
are globally optimal can be taken at each queue based just on the due times of the messages waiting

at that queue only.
VI. CONCLUSIONS

We have considered the problem of dynamically scheduling the transmission of messages in
situations where messages have individual constraints on either théir waiting time or complete
transmission times. First, a single node was considered in which the messages were lost if the
constraints were not met. Different classes of admissible policies were considered. Under nonex-
plosive, but otherwise arbitrary, arrival and completely arbitrary deadline processes, but under
some restrictions on service times, the intuitively appealing policy of scheduling the “most urgent”
message was shown, in many cases, to minimize the number of messages lost in a strong pathwise
sense. A tandem network of M nodes was then considered. We assumed that messages are never
lost, but a penalty is incurred if a message doesn’t complete service in the tandem by its extinction
time (also called due time in this case). Under fairly general restrictions on arrival, deadline and
service processes, the intuitive policy of scheduling, at each node, the message which is “earliest
due” is shown to minimize a tardiness cost over a finite operating horizon among all nonidling,
nonpreemptive policies. Simple interchange arguments were used to establish all our results. As is
clear in the development of the paper, the particular application on which we concentrated is only
incidental in that the entire approach (model formulation and solution) is quite general and applies

to abstract queueing systems with customers and services of unspecified application features.
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