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Although treatment wetlands can reduce pollutant loads, reliably predicting
their performance remains a challenge because removal processtsracemplex,
spatially heterogeneous, and incompletely understood. Although initially popular for
characterizing wetland performance, plug flow reactor models aresprabt
because their parameters exhibit correlation with hydraulic loading-didrensional

advective-dispersive-reactive (ADE) models are also inadequate bdoaggudinal



dispersion in wetlands is often non-Fickian as a result of steep velocity gsadient
Models that make use of residence time distributions have shown promise in
improving performance characterization, particularly when interdepeledenic
stream-tube scale velocities and reaction rate coefficients arelets(the “DND”
approach). However this approach is limited to steady-state conditions, and to a
assumption that transverse mixing is nil.

This dissertation investigates three aspects of wetland modeling and is
organized in a journal paper format. The first paper describes development of a DND
model which accommodates non-steady-state conditions. The model processes flow
and inlet concentration time series, and calculates as output effluent caticent
time series. A version of the code allows optimization of model parameters by
minimization of summed squared deviations between predicted and measured effluent
concentrations. In example comparisons, model results compare favorably with
measured data.

The second paper develops an analytical solution to a two-dimensional
advective-dispersive-reactive equation, in which all flux terms are egprasspower
functions of the transverse dimension. For uniform inlet concentration this idealized
heterogeneity model is similar to a DND model, but with the inclusion of tresesve
diffusion. An example is used to illustrate the beneficial impact that tnaesve
mixing has on reactor performance.

The third paper describes development of a model based upon a stochastic
interpretation of the ADE. The solution technique that is employed results in a

bicontinuum model that for steady-state conditions becomes a weighted sum of two



exponential decline functions. For low and intermediate degrees of mixing, model
results nicely match those of the corresponding idealized heterogewei¢y, mnd

for high mixing they match results of the corresponding one-dimensional ADE.
Comparisons against data suggest the bicontinuum model may represent wetland

performance better than the DND model in some but not all cases.
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Chapter lintroduction

1.1 Justification

Throughout our history human beings have relied upon aquatic resources for
survival. When settled agriculture first emerged, and alongside itvilizations
that agriculture enabled to flourish, it is no coincidence that it took root in major rive
valleys such as those of the Tigris and Euphrates, the Nile, the Yellow, dnduke
where plentiful water was available to support both direct consumptive needs and the
irrigation of crops (De Blij, 1981). As civilizations grew in sophistication and
organization, city dwellers built systems for both delivering drinkingenabm
clean, upstream sources, and disposing of sewage and runoff downstream. As long as
human population densities were small enough, this approach served the public
interest adequately: waste loads were small enough that ecosystenabledo
accommodate them without incurring excessive damage. Processes suciemis nut
cycling, plant uptake and microorganism predation that are now understood to occur
naturally in rivers, streams, and wetlands as well as in terrestoalystems, were
unknowingly being exploited to absorb nutrients and neutralize pathogens torgina
from human and domestic animal wastes. Eventually though, human populations
grew to the point that urban waste loads became too large to be assinyiltdted b
environment without overwhelming these natural processes and resulting in
objectionable impacts (e.g. loss of fisheries, offensive odors, diseaseigsiosino

receiving waters.



Even away from established urban centers the increasing scale of human
activities took a growing toll on aquatic resources. In North America, popula
growth and westward expansion in thd' t@ntury brought about nearly wholesale
conversion of what had been hundreds of millions of acres of native prasstagds
into agricultural land used almost entirely for growing a handful ohgnaips.
Where abundant wetlands had once adorned the land, ditches and tile drains were
used to alter hydrologic pathways so that surface water would not lingerogpead
acreage could be maximized (Prince, 1997). In other areas, marshes weratedtlite
by in-filling to create new land, for example adjacent to bays and nawgigaéfs,
thus allowing new cities to be built along shipping routes. From the 1780s to the
1980s about 53 percent of all the wetland acreage in the conterminous United States
is estimated to have been lost to such practices (Mitsch and Gosselink, 2000).
During recent decades development of modern agricultural methods and the
“green revolution” has meant that more pounds of food can be grown on a given acre
of land, but at the expense of much greater applications of fertilizer agsnekic
chemicals (pesticides), and consequently greater losses of thesalmtter
waterways. Similarly, development of cities has brought increased @mamand an
increased standard of living for many people, but at the expense of increased loads of
urban pollutants (both point and nonpoint source) to waterways. As one
consequence, estuarine and coastal waters around the world, including the
Chesapeake Bay and the Gulf of Mexico, are now impaired by summertime anoxic
“dead zones” fueled by excessive riverborne nutrient loads. The widespread

conversion of pollution-absorbing wetlands to pollution-generating urban and



agricultural lands can thus be seen as having caused inevitable damage to wate
guality in the United States and elsewhere.

Unfortunately while recognition of the need to limit discharges of pollutants
into waterways has been a driver of national environmental policy for denvades
widespread public recognition of the environmental benefits conferred by wetlands
has been slower in coming. By the late 1960s the impacts of unregulated sewage and
industrial effluents on rivers and lakes in the U.S. helped feed a growing sense of
public outrage over the declining state of the environment that led to creation of the
Environmental Protection Agency in 1970 and passage of the Clean Water Act in
1972, the objective of which was and is to “restore and maintain the chemical,
physical, and biological integrity of the Nation’s waters”. Paraddyjoantil as
recently as the late 1980s, when then-President George H.W. Bush issued his “no-ne
loss” policy, drainage and destruction of wetlands was an accepted practice in the
U.S. that was at times actively encouraged by government policies (Mitsich
Gosselink, 2000). Over most of American history the general public attitudedtowar
wetlands seems to have been that they were wastes of otherwise-usefid atrea
best, and sinister refuges or breeding grounds for dangerous creatures alad malar
spreading mosquitoes at worst. Although public attitudes toward wetlands have been
slow to change, since the latter half of th& 2entury a growing body of research has
demonstrated that wetlands provide a variety of environmental benefitslinac
fish and wildlife habitat, flood control and water quality improvement.

One application of the knowledge emerging from this work has been the

construction of wetlands (new or restored) for the express purpose of nigaterent,



i.e. pollutant removal. Although the study of treatment wetlands has become almost
discipline in itself, many crucial processes governing pollutant remowvedilands
remain imperfectly understood, and models used for characterizing performance
suffer from limitations that reflect this lack of knowledge. In light of ibssie, the

goal of this study is to identify modeling methodologies suitable for siages

treatment wetland performance.

This dissertation is organized as follows. Chapter 1 provides an introduction
that includes a literature review and a description of research objectivgsteiSta
through 4 consist of manuscripts written for publication in peer reviewed journals
The first of these, presented in Chapter 2 and published as Carleton and Montas,
2007, describes development and analysis of a hon-steady-state treedthard
model. The second manuscript, presented in Chapter 3 and published as Carleton and
Montas, 2009, describes development of a two-dimensional steady-state model for a
domain representing a wetland possessing idealized representationsaxfdretity
in governing attributes. The third manuscript, which details development of a
bicontinuum model for a domain with stochastic heterogeneity, is presented in
Chapter 4 and is in review as of this writing. Chapter 5 presents a comparison of
various wetland models against performance monitoring data. Chapter 6 provides a
summary and conclusions, with suggestions for future research. It should be noted
that because of the paper structure of this dissertation, the most spiecdicie
presentation on investigated topics is given in Chapters 2 to 4, while Chapter 1 serves

mainly to frame the overall analysis.



1.2 Literature Review
1.2.1 Wetland Treatment History

The use of wetlands for treating water pollution has enjoyed an explosion of
interest in recent decades, following experiments first conducted at the &eock Pl
Institute in Germany in the 1950’s that demonstrated a capacity for mac®phyte
enhance the degradation of high-strength phenolic wastes (Seidel, 1976), and spurred
later by a number of studies conducted in various locales which demonstrated that a
wide variety of natural wetland types can trap or transform pollutants, andythereb
help to preserve downstream water quality (e.g. Bartlett et al., 1979; &alis
1981;Fetter et al., 1978&rant and Patrick, 197Qge et al., 1973ovitzky, 1978;
Olsen, 1993; Simpson et al., 1983). As a consequence of this body of work, since
around the mid-1980’s manufactured or “constructed” wetlands have become popular
around the world as low-cost systems for treating a wide variety ofwstes,
including urban stormwater and agricultural runoff (Kadlec and Wallace, 2009).
Although treatment wetlands can reduce loads and/or concentrations of various
pollutants, predicting their performance reliably, or designing them in araeeet
effluent limits, remains a challenge in part because removal processEsyglex
and multifaceted, and because biological and physical features underl\@ag the
processes are heterogeneous spatially, and in some cases temporally as wel

The nutrients nitrogen and phosphorus in excess quantities are probably the
most pervasive water pollutants worldwide. In part because of the role thanagetl
play in naturally processing these substances, treatment wetlands haveaften be

built specifically to attenuate water borne nutrients. Mechanisms involvedlandet



processing of nutrients have been relatively thoroughly studied, and are thmerefor
better understood than mechanisms at work for most other pollutants. For these
reasons, this chapter includes a special focus on processes involved in wetland
nutrient attenuation and removal.
1.2.2 Treatment Wetland Types

Constructed treatment wetlands can be divided into the broad general
categories of free-water surface (FWS), and subsurface-flow ($8Ehs. FWS
wetlands contain macrophytes rooted in soil and partially submerged in standing
water typically less than 0.4 m deep. The surface of the water column in a FWS
wetland is open to the atmosphere, and flow occurs through and around stands of
emergent plant stems (Figure 1.1). SSF systems are similar, excepnpgrive
rooted in a more permeable substrate (e.g. gravel) through which flow primarily
occurs, bringing wastewater into contact with the substrate and plant r&s. S
systems may be further divided into the categories of vertical and horidontal f
systems (Kadlec and Wallace, 2009), depending upon the predominant direction of

water movement.
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Figure 1.1 Definition sketch for a FWS wetland.

1.2.3 Pollutant Processing in Wetlands

Compared with other kinds of ecosystems, wetlands have “higher rates of
biological activity” (Kadlec and Knight, 1996), which allows them to transform or
sequester many kinds of pollutants that occur in wastewater and runoff. Maesphyt
have adaptations (e.g. aerenchyma: porous tissue spaces that permoindoffiasi
from the atmosphere to the roots) that allow them to grow in anaerobic sediments,
and shallow water depths tend to limit the exhaustion of oxygen in the water column.
Thus eutrophication of wetlands via increased nutrient inputs does not typicalty res
in the kinds of hypoxic dead zones that have become common in lakes, reservoirs and
estuaries, although dissolved oxygen and redox potential may neverthelessdecreas
with depth through the water column (Tao et al., 2006). Within the otherwise
anaerobic sediments, local aerobic zones (the oxidized rhizosphere) surround the
roots of emergent macrophytes as a result of radial leakage of oxygenl@.
Unlike purely terrestrial or aquatic environments, wetlands thereforegmobsth
aerobic and anaerobic zones in close proximity and intimate contact with each othe
a circumstance which, uniquely among natural environments, allows the close

7



coupling of sequential oxidative and reductive processes that are necessagy for
complete removal of some constituents, notably nitrogen.

Also unlike terrestrial or aquatic environments, in wetlands the presence of
detrital litter and dense emergent plant stems brings water borne wemtstinto
close contact with epiphytic biofilms, increasing the efficiency of pngof labile
constituents like BOD (Tchobanoglous and Schroeder, 1987), dissolved phosphorus
(Pietro et al., 2006; Scinto and Reddy, 2003), and various forms of nitrogen
(Bastkiven et al., 2003; Eriksson, 2001; Eriksson and Weissner, 1997; Eriksson and
Weissner, 1999; Toet et al., 2003; Thoren, 2007). Macrophytes further appear to
increase the retention of suspended solids and associated pollutants (e.g. phosphorus,
metals) by impeding flow and enhancing sedimentation (Leonard and Luther, 1995;
Leonard and Croft, 2006; Thornton et al., 1997; Saiers et al., 2003), and perhaps by
inhibiting sediment resuspension (Braskerud, 2001), resulting in higher rates of
removal of such entities from the water column than tend to occur in open water
systems such as ponds.
1.2.4 Nutrient Removal

The mechanisms of nitrogen and phosphorus removal in wetlands are quite
different from each other. Nitrogen is removed primarily via a multipleticgac
pathway that proceeds from organic nitrogen through ammonia/ammonium
(NH3/NH4"), to nitrite (NQ), nitrate (NQ"), and finally molecular nitrogen ¢\
which is lost to the atmosphere. This complex series of reactions requires, among
other things, the presence of zones that are at different redox potentials, in close

contact with each other. Because the final step (denitrification) esyises one-way



loss of nitrogen from the system, the ability of wetlands to remove nitrogen is
theoretically inexhaustible: wetlands should be able to continue removing nitrogen
indefinitely. By contrast, the primary loss mechanisms for phosphorus are all
saturable, meaning that in the absence of active management, wetlands should
eventually reach a state of rough equilibrium between input and output phosphorus
loadings. Of course wetlands are open systems in constant contact with dthef pa
the biosphere, so the distributions of phosphorus and other elements within various
wetland compartments may also be affected by the activities of biolegitaés
(e.g. insects, muskrats, birds) capable of transporting these matenads out of a
wetland through processes such as predation and excretion.
1.2.5 Processing of Nitrogen

Total Kjeldahl nitrogen refers to the sum of reduced forms of nitrogen, that is
organic nitrogen-containing compounds (proteins, urea, etc.) plgdNNE. Within
wetlands, microbially-mediated transformation processes inter-convertisdorms
of nitrogen. A process called “ammonification” (or mineralization) refethe
decomposition of organic nitrogen, with consequent release ¢N#4". This can
occur under either aerobic or anaerobic conditions. Within most wetlands, the
ionized (NH;") form of ammonia tends to predominate (Kadlec and Knight, 1996).
This is a function of the ammonium ion’s acid dissociation constant (pKa), which has
a value of around 9.3 at typical ambient temperatures and of the fact thatifitits
wetlands usually fall below this level. Photosynthesis by phytoplankton and
macrophytes can in some cases however drive pH high enough during the day time

that substantial losses of Nhay occur by volatilization (Vymazal, 2007). The



NH," form may be lost from the water column by cation exchange onto negatively
charged binding sites on soil (especially clay) particles in the sedifhitssh and
Gosselink, 2000). Ammonia/ammonium is the preferred form of nitrogen as a
nutrient for most wetland plant species, and some loss from the water column occurs
via direct plant uptake and incorporation into organic matter.

Another important process affecting nitrogen in wetlands is nitrification,
which refers to the aerobic oxidation of BINH," first to relatively short-lived N
ions primarily via the actions of bacteria in the geNussomonasand then to the
more stable N© form via the actions of microbes in the geMisobacter.
Nitrification may happen partly within an oxidized sediment layer tylyidass than
1 cm thick at the surface of wetland soils, and may also occur within epiphytic
biofilms that coat submerged plant and litter surfaces in FWS wetlands (Baseti
al., 2003), or submerged substrate media in SSF wetlands (Bigambo and Mayo,
2005). Beneath the oxidized sediment layer, wetland sediments tend to be anaerobic.
Because it is an anion, NOs highly mobile in soils, and in addition to diffusive
transfer, is readily transported into the subsurface along with water edwei the
sediments as a result of groundwater recharge and the transpiration demands of
macrophytes (Martin et al., 2003). Although not the preferred nitrogen form for
plants, NQ can be taken up via the roots as a nutrient, in a process called
“assimilatory nitrate reduction”. More importantly, N@ subject to “dissimilatory
reduction”, primarily through a process known as “denitrification”, which occurs
under (at least locally) anaerobic conditions (e.g. within non-suniedand

sediments). In denitrification, the NGon serves as an alternate electron acceptor
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for heterotrophic microorganisms typically oxidizing labile organic mattesre
molecular oxygen is lacking. Denitrification converts Nidto gaseous forms ¢

and N), thus returning nitrogen to the atmosphere. A less-well understood process
called “anaerobic ammonia oxidation” or “anamox”, which involves the oxidation of
NH," coupled to reduction of NQ provides another potential dissimilatory
mechanism for nitrogen. Like denitrification, anamox generates galedrmsn
inorganic nitrogen forms, but with decreased labile carbon amb@&umption
requirements (Kadlec and Wallace, 2009). While anamox microorganisms have been
found in natural environments and wastewater treatment systems, the impoftance
anamox to nitrogen removal in treatment wetlands is as yet unknown (Vymazal,
2007).

Ammonification (the partial oxidation of organic matter, and concurrent
release of N)INH,") proceeds more rapidly than nitrification (Kadlec and Knight,
1996), potentially resulting in accumulation of MNH,4" within a wetland. The
ultimate loss of this material to the atmosphere via denitrification in thedats
can be envisioned as occurring through the following general sequence of steps
(Mitsch and Gosselink, 2000): N#H,4" diffuses from the water column to the
sediments (most importantly the aerobic surface layer and oxidized rhizosphere
zones), where it is oxidized to NO NO;s™ then diffuses from the aerobic zones into
anaerobic portions of the sediment matrix, where it is denitrifiegtavhich in turn
diffuses into the water column and escapes to the atmosphere through vadatilizat
As is the case in any diffusive process, the movements of various nitrogen species

between compartments are driven by the associated concentration graBesdase
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of its higher mobility, the mass transfer of NOetween sediments and water occurs
at a higher rate (i.e. with a larger effective diffusion coeffigirdn the mass

transfer of NH/NH;". Thus NH/NH," diffusion and nitrification tend to be the rate-
limiting processes governing total nitrogen loss within wetlands. Shalloer wa
depths enhance the transfer of Nidto the sediments, and therefore tend to increase
denitrification rates (Mitsch and Gosselink, 2000). A similar phenomenon has been
observed in stream environments (Alexander et al., 2008; Sjodin et al., 1997). For
denitrification and other reactions occurring in epiphytic biofilms, plant seirfa
density may have an analogous effect on reaction rates. Smith et al. (2000) found
denitrification rates to be proportional to the number of macrophyte shoots present in
wastewater treatment wetland sediments, demonstrating an importamwt role f
vegetation in denitrification, even when it takes place in the subsurface.

The ultimate loss of mineralized nitrogen to the atmosphere via denitaficati
occurs through a series of steps involving diffusive movement of various nitrogen
species between areas that are at different redox potentials. Bddfussen is a
function of temperature, the rate coefficient for remoka)) (nay be adjusted for

temperature using the Arrhenius relationship

Ky, =k, ©" (1.1)

whereT; is the current wetland temperature, dnds a reference temperature

(typically 20°C), kr2 is the rate constant &, and@ is a temperature coefficient
(Tchobanoglous and Schroeder, 1985). Ammonia removal rates in particular have
been found to be highly temperature sensitive, varying on a seasonal basis (Kadlec

and Wallace, 2009).
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Besides temperature, denitrification is sensitive to pH: optimal vataes a
between 6.5 and 7.5, and denitrification is particularly inhibited under acidic
conditions (e.g. pH4), such as occur in northern peat bogs (Mitsch and Gosselink,
2000). In wastewater treatment wetlands pHs are typically in the slagtidic to
circumneutral range, so that this is not usually a concern (Kadlec and Knight, 1996).
Alkalinity is consumed during nitrification, and released during denitribcaith the
form of bicarbonate (HC§). The balance between nitrification and denitrification
rates thus itself has some impact on wetland pH.

To enable denitrification, sufficient labile organic matter must be present
order to drive N@ reduction. Over time, death and senescence of plant materials
will contribute sufficient organic matter to create such conditions inetiiengnts
(Bastkiven et al., 2007; Rotkin-Ellman et al., 2004). For denitrification occurring in
epiphytic biofilms, phytoplankton exudates may serve as a labile carbon sboete (
et al., 2003). To avoid the need for a waiting period when starting up a new treatment
wetland, organic matter, for example in the form of compost or peat, is sometime
added to the sediments. One potential concern with this approach is that it may result
in a lowering of pH, as decay of these materials may result in thetfomud
organic acids. To mitigate this possibility, limestone may be added to wetlénd soi
to help buffer acidity.

1.2.6 Processing of Phosphorus

By contrast with nitrogen, wetland removal of phosphorus involves different

kinds of processes, none of which represents a one-way loss from the system. In

runoff-treatment wetlands, a substantial fraction of total phosphorus (TP) in the
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influent is typically found in the particulate form, i.e. sorbed to suspended sediments
(Carleton et al., 2000; Dierberg and DeBusk 2008; Maynard et al., 2009).
Sedimentation of particulates in these situations can represent an important
phosphorus removal pathway, at least for a time. By contrast, wastewataliyyp
contains little inorganic sediment, and a higher fraction of TP is found in niole la
forms, especially orthophosphate ion B@Bitton, 2005). A fraction of dissolved
phosphorus may be removed by sorption to wetland sediments (especially those high
in Fe and Al), however the capacity of wetland sediments to remove phosphorus this
way is eventually exhausted as binding sites are saturated. Phosphorus n@aymalso f
precipitates with cationic metals such as Fe, Al, Ca, and Mg, or may form co-
precipitates with other minerals such as Ca(@&u and Dreschel, 2008; Siong et al.,
2006). However such precipitates may re-dissolve later when conditions (e.g. pH,
temperature, redox potential) change (Vymazal, 2007).

Because phosphorus is usually the limiting nutrient for primary production in
freshwater wetlands, algae and plants are efficient at taking up then¢liero their
tissues. Most of this phosphorus is eventually returned to the water column, e.g.
when senescence occurs, however a portion may be incorporated into new sediments
in the form of incompletely decomposed plant litter. This process and sedioentat
represent the only long-term storage mechanisms for phosphorus in wetlanés (Kadl
and Knight, 1996). For wetlands to continue to function as phosphorus sinks into the
future, phosphorus removal capacity must eventually be regenerated, eantby pl
harvesting or sediment removal. Food chain transfer and/or predation by non-resident

organisms (e.g. wading birds), followed by excretion elsewhere may acsbrips
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task automatically to some degree. The conversion of labile phosphorus into less
biologically reactive organic forms (e.g. plant litter) may continue tefie
downstream ecosystems that receive this material, even when longeeilibrium
between phosphorus inputs and outputs has been reached.
1.2.7 Hydrodynamics and Flow Patterns in Wetlands

Flow patterns in wetlands and related vegetated environments may be quite
complex, with various phenomena influencing water movement at differdrelspa
and temporal scales. Open water zones may be susceptible to wind-drivea surfa
currents coupled to deeper-water return flows (Kadlec and Knight, 1996). Under a
longitudinal head gradient, mean velocities vary directly with depth aredsaly
with vegetation density (Kadlec and Knight, 1996; Leonard and Croft, 2006; Leonard
and Luther, 1995). Bed drag causes vertical variations in velocity, and pes sifa
the velocity profiles are influenced by the presence of plant stemd) wemid to
decrease turbulence intensity and the thickness of the benthic boundary (oear-ze
velocity) layer in proportion to their density (Nepf et al., 1997a). Verticaligmnés
in longitudinal velocity produce pressure gradients that induce verticalday
flows on the downstream sides of emergent stems, presumably leading tceithcreas
advective exchange between sediments and the water column (Nepf, 1999). Also on
the downstream sides of plant stems, laterally-recirculating “pyimnakes”
(vortices) of approximately stem diameter size, and larger “secon@&esiv(zones
of decreased velocity) form when stem-based Reynold’s numbers (&adex
magnitude of about 10. At Re values greater than about 100, the primary wakes

become unstable and begin to periodically shed vortices, which increaseatéefr r
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time-averaged exchange with the free stream (Nepf et al., 1997axityel
deviations in the secondary wake scale with the square root of Re, and decay
exponentially in the downstream direction, such that the secondary wakeseawend
an effective “attenuation length” that may be substantially largerttieastem
diameter scale (White and Nepf, 2003) (Figure 1.2). At sufficient stem @snsiti

wakes overlap and superimpose, creating a degree of randomness in thg fielidcit

primary wake

secondary wake

|

O|©\o

.4_
4

Figure 1.2Primary and secondary wakes downstream of emergent vegetation,
adapted from White and Nepf (2003).

Submerged plants tend to exert a greater influence than emergent plants on
vertical profiles of longitudinal velocity. Drag induced by submerged plant beds

effectively separates the flow field into a lower (slow) and an uppej daise (Nepf
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and Vivoni, 2000). An inflection in the velocity profile at the interface betweesethe
two zones may cause the formation of “large, coherent vortices”, whichteerve
enhance vertical inter-zonal mixing of fluid elements (Ghisalberti amd, 2602,
2005; Shi and Hughes, 2002). Analogous effects may also occur in the horizontal
plane, when boundaries occur between zones of open water and zones of relatively
high emergent plant density, e.g. “fringing vegetation” (White and Nepf, 2008).
Regardless of spatial orientation, variations in local drag caused byosssiatiplant
density and water column depth induce variations in velocity, which include a degree
of redirection of flow that serves to maintain continuity (Fonseca et al., 1982; Sand-
Jensen and Mebus, 1996).

At the whole-system scale longitudinal transport in wetlands is often
dominated by “short-circuiting”, or strong heterogeneity in velocityl€Dierberg
et al., 2005; Kjellin et al., 2007; Martinez and Wise, 2003; Werner and Kadlec, 2000),
which may be observed with the use of visible dye tracers (Figure 1.3grdPrél
flow pathways may occur as a result of decreased hydraulic resistadeeper areas
and/or where vegetation is less dense (Kadlec and Knight, 1996). Lightbody et al.
(2008, 2009) have pointed out that channelized flow paths may form essentially
automatically even in marshes with flat bathymetry, as a resulbddna minor non-
uniformities that become self-reinforcing as faster flows inhibit badinmsentation
and vegetation regrowth or colonization. In this sense, fast flow paths in freshwat
marshes may be analogous to tidal channels in salt marshes and flow chaseals i
grass beds, which form spontaneously apparently as a result of similarckeedba

mechanisms (D’Alpaos et al., 2006; Luhar et al., 2008; Mitsch and Jorgensen, 2004;
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Moore, 2004). If this is the case, then the presence of a degree of short-ciinuiting
FWS treatment wetlands may be all but inevitable. Results of modelinge&hd f
experiments suggest however that short-circuiting may be activaehtered by

design through structural engineering approaches such as constructiennaitialg
deeper and shallower zones oriented perpendicular to flow (Lightbody et al., 2009;

Thullen et al., 2005).
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Figure 1.3 Tracer isopleths in natural (left) and constructed (right) wetlands @tlapt
from Kadlec and Knight, 1996).
1.2.8 Evolving Longitudinal Dispersion

Classical shear-flow dispersion (Taylor, 1954) involves an interaction
between spatially non-uniform advection and solute diffusion in the transverse

direction. After sufficient time or travel distance, net longitudinal flayre
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separated into a mean advective flux and a “Fickian” dispersive flux, so-named

because it is characterized as if it were a diffusive process, i.e. octe fathows

Fick’s first law. For dispersion to be treated as Fickian implies the mesém

constant dispersion coefficient, so that the overall transport process is alyequate

represented using an advection dispersion equation (ADE). The dispersion

coefficient has been defined as half the rate of increase of spatial catioant

variance &) of an inert tracer following a pulse injection (Gelhar, 1993) (Figure

1.4):
2
D 1do,
2 dt
where
o 2
j(x— X) Cdx
o2 =2
dex
0
and
J'xCdx
X = 0
dex
0

(1.2)

(1.3)

(1.4)

Thus, for a transport system to be characterized as Fickian implies thattthle spa

variance of an inert tracer cloud increases linearly with time.
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X
Figure 1.4 Longitudinal spatial distribution of tracer, with mean and standard
deviation indicated, following pulse injection at x=0.

However, data from studies on FWS treatment wetlands and a surprisingly
wide array of other transport media have documented solute spreading that is not
adequately characterized by the ADE because longitudinal mixing only apmoache
Fickian behavior asymptotically if at all (e.g. Day, 1977; Gelhar, 1993; Werner and
Kadlec, 2000). Longitudinal dispersion in these systems is described as “pre-
asymptotic”, "non-Fickian”, or “scale-dependent” because the behaviorestnds
an increase in the apparent dispersion coefficient with the scale of transptbie. |
near-field limit of shear flow dispersion (the “stochastic-convective”)dagmpes to
zero, and longitudinal spreading occurs solely as a function of velocity
heterogeneities; i.e. transverse mixing is nil. If a PFR or an ADE nsahelorrectly

used to characterize a reactive transport environment that is stochasgctom) the
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result may be reaction rate coefficierksthat appear to increase with HLR, as
suggested by the analysis of Carleton (2002).

It must be noted that two fundamentally different kinds of solute
concentration in fluid are of relevance to work involving heterogeneous transport
systems including wetlands. As first suggested by Kreft and Zuber (1978)idor f
bed reactors, these may be referred to as “resident” and “flux” concentrafioas
first of these (resident), sometimes also referred to as “through thie wal
concentration, is simply the spatially-weighted mean concentration withiedbtor,
in the dimension(s) perpendicular to flow. The second (flux), sometimes referred to
as the “mixing cup” concentration, is the flow-weighted mean concemtratite
reactor, measured also in the dimension(s) perpendicular to flow. Thenteside
concentration is therefore a measure of mean concentration within the réactor a
particular distance from the inlet, while the flux concentration is a meaftire
mean concentration of the total effluent hypothetically exiting thetoeat that same
distance from the inlet.

1.2.9 Residence Time Distributions

The distribution of durations spent by water and tracer particles in andietla
under steady flow conditions can be characterized with a probability yl&msttion
referred to as a residence time distribution, or “RTD”. A wetland’s RTDgwilsi
analogous to a breakthrough curve in a soil column or fluid-bed reactor study, is
measured by injecting a pulse of inert tracer at the inlet of a wetlandy@mtbring
flux concentrations at the outlet as the tracer subsequently elutes. aRTDElely

used in wetland studies, and are important because they provide quantitative
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information that cannot be readily obtained in any other way, on transport and mixing
processes within wetlands. RTDs may also be used in performance rasdeil be
discussed. The RTD function itself is obtained by normalizing the flux otiati®n

vs. time curve so that the area under the curve equals unity. In examiningrBfDs f

a number of treatment wetlands with different geometries, Kadlec and Knight (1996)
noted that a tanks-in-series (TIS) pulse injection model appeared to fitahtdrem

well (Figure 1.5):

N (N Nt

whereE(t) is the RTD functionN refers to the number of (hypothetical) completely-
stirred tanks in the modet,is the system mean residence time, aisdime elapsed
since tracer injection. Carleton (2002) noted that eq. 1.5 is mathematicallgleqtii

to a gamma probability density function (pdf), and suggested the use of the gamma

pdf as a more general model formula for wetland RTDs:
ﬂ—ata—l t
E(t) = = exp —— (1.6)

wherea is known as a shape paramefkis a scale parameter, anaefers to the

gamma function. Parametein eq. 1.6 is the same as param#tan eqg. 1.5, and

mean residence time for a gamma RTD equaisiesp, thusp = r/a =7/N.

Equation 1.6 offers the advantage over eq. 1.5 that non-integer vaNes efare
accommodated. Given that most wetlands are not actually composed of linked well-
mixed “tanks”, this parameter really amounts to a simple empirical gescof the
degree of tracer spreading, thus there is no obvious physical reason to limit its

magnitude to integer values.
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Figure 1.5RTD plotted as a function of normalized residence time, for wetland EW3
at Des Plains, IL, with four-tank (i.e. gamma pdf wittd) model fit to data (adapted
from Kadlec and Knight, 1996).

In a related vein, Persson et al. (1999) proposed the use of a measure they
called “hydraulic efficiency”4) to simultaneously quantify the degree of utilization

of available treatment volume, and the degree of flow uniformity in stormwater

treatment wetlands and ponds:

A= (tij(l— é) - t—” (1.7)

In eq. 1.7z is the mean residence time as determined by an RT¥the nominal
detention time (volume divided by flowy,is the number of (hypothetical) CSTRs in
series, andl, is the residence time of the peak tracer concemrtra.e. the mode of
the RTD. Although eq. 1.7 includes a parametanftbe gamma-pdf RTD model,
use of the equation does not necessarily requiretiand RTD to be well-described

by this model: the term d/may be interpreted as equivalent to an RTD’s
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dimensionless variancexf/t%). The first bracketed term in eq. 1.7 quantifhes
fraction of wetland volume that is hydrodynamicadigtive, and the second term
guantifies the degree to which water movement retesmplug flow. Kadlec (2005)
examined data from a number of ponds and wetlamdsconcluded that wetlands
have slightly higher hydraulic efficiencies thamgds, which he speculated was due
to shallower water column depths in wetlands.
1.2.10 Continuous Injection Performance Models

Until recently a recommended approach to analyaimgredicting the
performance of treatment wetlands was to treaetbgstems as plug flow reactors
(PFRs) (Figure 1.6) (Kadlec and Knight, 1996). R¥D of a plug flow system is
simply a Dirac delta pulse at the mean residemse.tiThis approach, while
convenient due to its simplicity, ignores factdrattcause flow to be non-steady,
including varying influent, precipitation, evapaispiration, and exchanges with
subsurface water. Perhaps more importantly itrggmepatial flow non-uniformity,
which as previously mentioned can be substanfibk “k-C*” version of the PFR
model partially addresses this by employing a seé@arameterq*) besides the
reaction rate coefficient, to empirically accoumt fion-zero plateaus in
concentration:

C(y)-C*
C -C*

= expFkwy] (1.8)

In eq. 1.8C; is the inlet concentratiog(y) is concentration at dimensionless
longitudinal distancg, C* is background concentration (a fitting paramet@nygk is
a volumetric (units of inverse time) reaction redefficient. Kadlec and Knight

(1996) and Kadlec and Wallace (2009) note thatirSFsystems, and especially for
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constituents such as NQvhose removal involves diffusion into the subscef&

values often display an inverse correlation witrameater depthhj. In these cases

use of an alternative “areal” version of the raattiate coefficientk) with units of

length over time is advocated, in which depth issidered separately from the

coefficient. The two kinds of reaction coefficient related to each other as follows:
k, =kh, or k, =khe, (1.9)

where

&= (1.10)

n

is essentially effective porosity (see eq. 1.7)icwhs usually close to unity in FWS
wetlands. A version of the relation in eq. 1.8 éagjmg an areal reaction rate

coefficient is

Cy)-C* _ . K
c-c* = expl ] y] (1.11)

whereq is hydraulic loading rate (flow divided by wetlasdrface area). For
simplicity’s sake the remainder of the discussiond derivations in this study are

limited to consideration and use of volumetric teacrate coefficients.
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Figure 1.6 Plug-flow representation of flow through wetlandstocity and residence
time are uniform (mathematical representation is-dimensional).

As previously mentioned, the PFR model assumesTahwth a single
residence time. An expression akin to eq. 1.&faractor with a gamma distribution

of residence times is the following (Carleton, 2002

Cy)-C* (. ke " _ »
C o _(1+ - yj = (1+kpay) (1.12)

Equation 1.12 offers greater flexibility than e in terms of shapes that t6¢y) vs.
y curve can assume, even when parant@tds set to zero to produce a two
parameterk anda) model, which will be referred to as the “TIS mBde this study.

According to Kadlec and Wallace (200@}; is effectively zero for some
constituents- notably NH/NH,", NOs', and xenobiotics and non-zero for others,
including TP, TN and organics (BOD, COD, and TO®Gpn-zeroC* may result
from a variety of causes including release of dissband particulate plant biomass
to the water column, association of constituenhwibn-settling (fine) suspended

inorganic particulates, or release from distribuggternal source inputs, e.g.
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groundwater. An apparent non-z&bmay also occur as a result of short-circuiting
that mixes treated water with relatively untreateder at some distance from the
inlet. The phenomenon has been perhaps most decathasuggested by studies on
pathogen removal, where very rapid removal resuilgssharp concentration decline
near the inlet, followed by a leveling-off to a ldwt non-zero plateau for the
remainder of the wetland (Chendorain, 1998; Kadlet Wallace, 2009).

Although the PFR model has been widely used to tifydreatment wetland
performance, critical flaws with the approach hea@ently become apparent. Using
monitoring data and simulations, Kadlec (2000) destiated that calibratddvalues
tend to increase as hydraulic loading rate (HLR)eases (or as mean residence time
decreases), an observation that has since beeimeedfby other researchers (Black
and Wise, 2003; Coveney et al., 2002; Jamiesoh 20@7; Ran et al., 2004).
Kadlec's analysis also demonstrated that this effegot eliminated by inclusion of a
longitudinal dispersion term, i.e. use of the omaahsional ADE in place of the PFR
model. Expanding upon a conceptual model presdntéthdlec (2000), Carleton
(2002) suggested that wetlands could be simulaexdkiections of parallel, non-
interacting flow paths (a “stochastic-convectivepresentation — see Figure 1.7).
The flux concentration of a transported constituesditing such a wetland is a flow-
weighted average over a collection of stream tugsdifferent velocities. Carleton
demonstrated that eq. 1.12 is equivalent to a mafdeekeactor with uniforrk and a

stochastic-convective transport environment charaegtd by a gamma RTD.
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Figure 1.7 A stochastic-convective representation of flow iethands: velocity is
non-uniform, and transverse diffusion is ignored.

In contrast with the conceptual simplicity of unifok as represented by the
TIS model (eq. 1.12), Carleton (2002) proposedmnaach based on a wetland’s
Damkdohler numbera) distribution or “DND”, which incorporates a presption
thatk is not spatially uniform; rather, stream-tube soadlocities and values vary
spatially in such a fashion that they are inverselsgted to each other via functional
dependencies of each on vegetation surface ares#tyland/or inverse deptlX,
Specifically, Carleton presumed velocityand reaction rate coefficiekto be related

to X in the following manner

u= x71,2 (1.13)
and
k= X (1.14)
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respectively, wherg and{ are constants. Assuming a uniform flow path Iehgt
Damkohler number for stream tubié is estimated to be a power function of

residence time, by combining equations and eliminatiXg
Da=kr, :kiizc;(%)%f’ = Az’ (1.15)
u;

The Damkohler number represents the ratio of tteeaficonsumption by reaction to
the rate of transport by advection in the wetlablde of this relationship in an
integration over the RTD (e.g. eq. 1.6) producesxgression fo€(y) whose
parameters are unaffected by changes in HLR. $henaed underlying mechanism
(egs. 1.13 and 1.14) therefore implies an explandtr the HLR dependence lofn
PFR models. The apparent dependendeoof HLR can also arise from fitting a
zeroC* PFR model to a data set that exhibits a non-zac&dround, as Kadlec’s
(2000) analysis showed.

Another potential explanation for the dependenas provided by Kadlec
(2003), who suggested that water quality constigigrat lump multiple constituents
together (e.g. BOD, TSS, TP, and TN) are charasdrby distributions of reaction
rate coefficients, or “kVD”s. As transport throughwetland proceeds, such a
mixture becomes “weathered”, with the more reactim@ponents disappearing more
quickly, and the mean reaction rate coefficientth@ remaining mixture continually
decreasing. Kadlec noted that both non-uniforndesse times and distributions of
k values in constituent mixtures could contributedacentration declines that do not
follow the sort of behavior expected from the PF&del. In place of the PFR model,
Kadlec proposed the use of a “relaxed TIS” modkntical in form to eq. 1.12, but
in which the parameters (eqgandk) are treated solely as fitting parameters, and
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which “offers the ability to embody both (RTD) akdD effects”. Carleton’s
analysis (2002) demonstrated that a relaxed TI1Satnmh embody DND effects
(meaning spatially heterogeneous reaction ratesely related to local velocities)
as well (Figure 1.8), thus for lumped parameteesetfiects of constituent weathering
may be impossible to separate from the effectetdrbgeneous Damkoéhler numbers.
Wong et al. (2006) noted that in addition to wedlsnvarious stormwater
treatment practices display dependence of RRRIC* on HLR, and proposed use
of thek-C* TIS model as a “unified stormwater treatment moftel swales,
detention ponds, biofilters, and stormwater treatmeestlands, in which the value of
a can be back-calculated fragiand r measurements using eq. 1.7. Carleton (2002)
and Kadlec (2003) both noted thatalues derived from fitting data sets with eq.
1.12 would be expected to be different from thasmeiated with RTDs measured in
the same systems, because of the impacts thabdigins (spatial and temporal,
respectively) ok values have on net reaction dynamics. The DNDehaccounts
for the effects of HLR mechanistically, but theuief possible dependence of
parameters of the relaxed TIS model on HLR hagebbeen addressed in the

literature.
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Figure 1.8Gustine wetland cell BOD5 data and various besttitel
approximations, adapted from Carleton (2002).
1.3 Summary

Wetlands have been shown to be effective at trgativariety of water
pollution problems. Plug-flow models, which presummiform velocity, have been
widely used to characterize treatment wetland perémce. However, evidence
suggests that far from being uniform, velocitiethim wetlands are highly
heterogeneous as a result of spatial variationggetation density and water depth.
Longitudinal solute dispersion within wetlands agmseto be dominated by advective
velocity gradients, with the consequence that ftegimes may be best described as
pre-asymptotic (non-Fickian). One implication bistis that advection-dispersion
models cannot necessarily be assumed to adequlasdyibe constituent transport

within wetlands.
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Neither PFR nor advection-dispersion-reaction modet able to “explain”
dependencies of wetlakdsalues on hydraulic loading. The DND approachicivh
treats flow as stochastic-convective, is able ttant for the phenomenon by
treatingk and velocities as both spatially heterogeneousjrarersely interrelated to
each other (the TIS model of eq. 1.12 is equivai@a DND model with unifornk).
However, the DND approach is hampered by othempialdimitations, most notably
the steady-state flow and stochastic-convectivespart assumptions.

For water quality parameters that lump multiplestdnents together (e.g. TP,
TN, BOD, etc.), Kadlec (2003) has shown that “weatiy” of constituent mixtures
with corresponding enrichment in less reactive congnts can also account for the
HLR dependency of PFRvalues. Observation of HLR-dependkmnalues in
wetlands for constituents that do not fall intcstbategory would imply the presence
of DND effects, since the chemical properties alhsconstituents presumably do not
change with time. For constituents composed otumes, the phenomenon may
reflect a combination of DND and kVD effects theg anpossible to disentangle
from each other. For either category of water igpabnstituent (lumped or simple)
the relaxed-TIS model of eq. 1.12 (and therefotemqgally the DND model also,
since it is able to produce essentially identiesabits), may provide a decent
empirical fit to data, though the resulting backcatated parameters are not
necessarily physically interpretable. Specificalhe « value (apparent number of
tanks or inverse dimensionless variance) for atrgaconstituent’'s decay profile in
such a wetland will not be the same asdhalue estimated for the same system by

measurement of an inert tracer’s breakthrough c(RJ®).
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The DND approach of Carleton (2002) and the relegéaked-TIS approach
of Kadlec (2003) provide modeling methods that edybglausible mechanistic
explanations for documented inadequacies in mdebkshed wetland modeling
approaches. However both approaches presume sttdyflow conditions and
constant influent concentrations, neither of whigbically characterize real treatment
wetlands for long periods of time. Wetland effluahany given moment represents
an average of constituent elements that enterdiffatent times and potentially at
different concentrations, and that followed diff@rpaths in getting from the inlet to
the outlet. To fully account for these effectsagproach is needed that considers
both DND (and/or kVD) effects and time-varying flsvand influent concentrations.

An important deficit in current knowledge about laatl transport, and
therefore about appropriate choice of modeling watlogies, is the degree to which
longitudinal dispersion in wetlands is appropriatetharacterized as stochastic-
convective in nature, or alternatively as Fickianglse is intermediate between these
two extremes. In the face of uncertainty on thisggion, approaches are needed
which, like the DND approach, account for spatetinogeneity in velocity and
reaction rate coefficients, but which unlike the Dipproach, also take into account
transverse diffusive/dispersive flux, so that eugMongitudinal dispersion may be
properly accounted for. To this end there is adrffeenew general purpose
(“simple”) reactor transport models that can ac¢donkey processes determining
performance while employing a minimal number ofgpaeters or unknowns.
Because diffusive processes are to be includedremdaveraged over Representative

Elementary Volumes (REVS), the development of sucklels will involve
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mathematical approximations of higher order terahss(ires), thus these models will
constitute approximate solutions to governing tpanisequations. In order to
evaluate the accuracy of such models, particulaitly respect to the influence of
evolving dispersion, exact analytical solutiongéwerning equations are needed as
well, at least for some specific sets of conditiand/or parameters. Comparison of
simple model results against these exact solubwasa range of
conditions/parameters can be used to evaluatepthieeability of the simple model to
specific flow regimes.
1.4 Objectives

The primary objectives of this study are to develer modeling approaches
for wetlands that accomplish three specific aims:

1. Develop and evaluate a version of the DND modehbbgof accounting for
temporally-varying flow and influent concentrations

2. Develop and evaluate an analytical model of readti@nsport in a system
with spatially variable flow velocity and reactitmserve as a benchmark for
evaluating simplified models.

3. Develop and evaluate a wetland performance modektntains a minimal
number of parameters, but which uses stochasticiptes to account for the
influence of spatial heterogeneity on advection @adtion, and which
(unlike the DND model) accounts for transverseusiibn and the
development of shear flow dispersion.

The new models will be evaluated by examining thbifity to reproduce wetland

field data sets, and through comparisons of tlesinlts against those of other, more
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established treatment wetland models. Resultexgrected to advance our
understanding of the key processes that determatiamd transport behavior and
enhance our ability to both quantitatively analyzgland function and design FWS

wetland systems.
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Chapter 2:A Modeling Approach for Mixing and Reaction in

Wetlands with Continuously Varying Flow

2.1 Abstract

Prior investigations have examined steady-state iftosurface flow treatment
wetlands, with mixing modeled as advection-domidassd reaction calculated
using flow-weighted averages over collections oéatn tubes with different
velocities. This work extends these concepts testeady flow conditions and
temporally varying inlet concentrations. The esisénonstruct that makes the
approach feasible is definition of a set of refeee(steady) state conditions under
which the residence time distribution (RTD) ane@ain-tube specific rate constants
are defined. Residence time in any stream tuberumoh-steady flow is treated as a
linear function of its reference-condition residenicne, and the overall wetland
retention time under both mean and varying flowmesg. Outlet concentration is
found by convolution of the reaction term with ayrag inlet concentration function.
For real-world flow and concentration data collelcié discrete points in time,
integration for outlet concentration is approxintatising linear interpolation to
generate inlet concentrations and velocities armediate points in time. The
approach is examined using data from the literategetation density and depth

distributions are seen as central in determiningmgiand treatment performance.
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Notation

A, B parameters of power function relating Damokhlanbar to residence time
Ac vertical cross-sectional area orthogonal to dioacdf flow

Couf(t) flux concentration as a function of time

C* background concentration

D dispersion coefficient

Da  Damokhler number

E(r) residence time distribution function (RTD)

h water depth

k volumetric reaction rate decay coefficient

L wetland length

t chronological time

T residence time-upon-exit

Ui velocity along flow pathi®, temporally varying

Um mean water velocity over all flow paths, tempagrathrying

Ux; horizontal velocity ik andz directions

X dimension in the direction of flow (horizontal)

X vegetation-litter surface area densityreciprocal depth

y (residence time-on-exit)/(reference conditiondesce time)
z dimension in the horizontal direction orthogotwaflow

af  parameters relating stream tubandk to depth k)
¢ parameters relating stream tubandk to vegetation density]

o° variance of RTD
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T residence time for the reference RTD
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2.2 Introduction
2.2.1 Flow Through Wetlands

Surface water movement through wetlands resenalpless channel flow in
some respects, and saturated porous media flowher cespects. Stands of emergent
plants form a kind of porous medium in which toditpis forced upon flow paths by
the physical obstructions created by stems aret.liBiofilms adhering to these
surfaces may be largely responsible for removabafie solutes from the water
column, and thus for the acknowledged tendencyetfands to improve water
quality. Unlike in flow through soils, the relagily discontinuous nature of the
stationary media (plant stems and leaves) ancecelagh “porosity” (i.e. typically
90% or higher) in wetlands allows the formatiordofvnstream stem wakes (Nepf et
al., 1997a), the properties of which depend in parstem-based Reynold’s numbers.
While bulk wetland flow is typically in the laminar transitional range, local
turbulence (i.e. eddies) may therefore neverthelesar at the scale of stem wakes
(White and Nepf, 2003), resulting in dispersiort timay be locally Fickian, even
while bulk longitudinal mixing is non-Fickian.

Many aspects of flow and mixing in wetlands arerpoonderstood,
including the correct form of the force-balance aen governing bulk fluid flow.
According to Kadlec and Knight (1996), wetland sod flows consist of gradually
varying flow on very mild slopes, so that kinetiteegy changes are “usually
negligible compared to potential energy changegh the result that energy and
momentum balances simplify to statements of egenad between potential energy

and resulting frictional work, i.e. gravitationar€es balanced exactly by frictional
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forces. Bolster and Saiers (2002) and Feng ana K8197) developed two-
dimensional numerical models of surface wetland fbatterns, based in part upon
this assumption, i.e. that the momentum balancategusimplifies to a statement of
equivalence between the total energy siSped the water surface gradient:

_oh

S=——
OX

2.1)

whereh is water depth anxlis distance in the direction of flow. If preciiion,
evapotranspiration, and gains or losses to groutetvgaepage are ignored, for

steady-flow conditions the fluid continuity (magsjuation in two dimensions

becomes:
M M (2.2)
oxX oy

whereu, andu, represent fluid velocity in two orthogonal horizalndirections.

For flow in one predominant direction, one-dimensidriction equations
analogous to those for open channel flow may be@yag to characterize advection.
Manning’s equation is generally not suitable, gitle® non-turbulent nature of
wetland flow (Kadlec and Knight, 1996), thereforeadternative governing friction
equation is required. Two general possibilitiestdased upon different possible
relationships between velocity, water surface gnailidepth, and vegetation density.

Nepf (1999) employed the following friction-balane#ation to characterize

flow through emergent wetland vegetation:

(L1- Xd)C,U? +%CD Xd(gju 2 _ ghg—z 2.3)
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whereU is bulk velocity,d is stem diametelX is projected plant area per unit volume
(i.e. vegetation surface area density), @a@andCp are bed and bulk vegetation drag
coefficients, respectively. Nepf determined tlmatdulk flow, bed shear can be
considered negligible compared with shear prodigegegetation. In accordance
with this assumption, if the first term (bottom dgya@n the left side of the equation is
ignored, the result is a version of a formula agggested by Kadlec (1990) for

describing the relation between friction (i.e. wegerface) slope and stem drag:

1 h oh
~CyXd —|U?=gh— 2.4
5 =D (dj g ox (2.4)

Rearranging to solve for velocity produces:

2g(oh/ax))"”
U :(_9 Xj (2.5)
C, X
or
y
U =5 (2.6)
where
2g oh 1/2
_(290h 2.7
Y (CD 6xj (2.7)

Equations that describe the physical behavior démnat the stream-tube scale do not
necessarily also describe the bulk behavior oectibns of stream tubes considered
in aggregate at the whole-wetland scale. Equai6rdescribes bulk, rather than
stream tube scale flow properties. Howevet heasurements happen to follow a
lognormal distribution when sampled at a physicalescomparable to that

corresponding to flow heterogeneities, the equanay also be interpreted as
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describing stream tube scale properties: the metrealistribution oU values
obtained by substituting a lognormal distribution X into equation 2.6 is the same
as theU value derived with the mean valueXo§ubstituted into the equation.

It is also possible that rather than being propasl to the square root of
water surface gradient as in eq. 2.5, wetland fiui# velocity is directly
proportional to gradient. Kadlec and Knight (1996ygested the following
empirical governing equation based upon their aesf flow data from numerous

treatment wetlands:

U= ahb-l(a—hj (2.8)
OX

wherea, b andc are tentatively suggested to have the followingesta= 10’ m™*d*

for densely vegetated wetlands and 50" md™ for sparsely vegetated wetlands,

b=3, andc=1, so that for example = 107h2(2—hj for a densely vegetated systemm, (
X

in units of meters).
2.2.2 Dispersion and Mixing in Wetlands

In transport through porous media, shear-flow disipa, as defined by
Taylor (1954), arises from an interaction between-aniform advection and
transverse diffusion of solute across stream liffser some initial time period, the
net effect of this interaction is a kind of solgf@eading that is analogous to
diffusion, and appears to obey Fick’s first lawddfusion, in which diffusive mass
flux is proportional to the concentration gradi@@hapra, 1997) via a dispersion

(rather than diffusion) coefficient. For dispersio be treated as “Fickian” implies
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that the dispersion coefficient is constant. Wties is the case the overall transport
process can be modeled using standard advectipefdien equation approaches.

According to Gelhar (1993), the dispersion coedintiis proportional to the
rate of increase of spatial varianeg?} in concentration of an inert tracer following
pulse injection:

Dzldaf
2 dt

(2.9)

Thus, for a transport system to be characterizédicksan implies that the spatial
variance of an inert tracer cloud should increassally with time.

By contrast, limited published tracer curves fraodges on surface flow
treatment wetlands (Werner and Kadlec, 2000), s#iavensionless temporal
variance (variance divided by the square of retentiime) that appears to be
invariant with distance traveled. The variancéhese curves increases with the
square of distance traveled (or equivalently, tetepsed), rather than in direct
proportion to distance or time, as would be reqlfog D to be constant. This
general type of spreading, which has also beenrdented in situations as diverse as
laminar transport through soils (Gelhar, 1993) @adsport in turbulent streams
(Day, 1977), has been called by various authorms-gslymptotic”, “non-Fickian”,
“anomalous”, or “stochastic-convective” (Levy andrBowitz, 2003; Simmons et al.,
1995; Zou et al., 1996). This type of mixing ocur systems in which movement of
solute transverse to the predominant flow direcigorelatively negligible, so that
longitudinal solute spreading is dominated by ativecselocity gradients. In such
systems, solutes travel as if they were being paned through collections of
parallel stream tubes that do not interact withheztber.
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2.2.3 Explanations for Non-Fickian Mixing

Several authors have derived theoretical represenseof the gradual
development of longitudinal dispersion, from statl@aconvective to Fickian
regimes, in steady flow through various kinds ofous media. Gelhar et al. (1979)
used spectral analysis of hydraulic conductiviy fluctuations in a stationary
medium to develop the relationship reproduced gufé 2.1, wherey is transverse
dispersivity,U is mean velocity, anldis the correlation length scale fidr which is
assumed to possess a “hole-type” autocovariangetste. In Figure 2.1 longitudinal
dispersivity is expressed as a function of distareeeled multiplied by transverse
dispersivity, and normalized by a characteristngta scale. The latter is a function
of the sizes of heterogeneities in, and the natfitke autocorrelation structure of, the
medium. Dagan (1984) derived a similar relatiopsbr an isotropic medium with K
possessing an exponential autocovariance struc@nethe left side of Figure 2.1
(circled region), the quantig/A,, (i.e. the relative macro-scale dispersivity)
increases linearly with time; this region with eyt of 1:1 represents stochastic-
convective flow. Towards the right side of thigute the asymptotic dispersivity is
approached, wherein dispersion becomes Fickiaimt@vski and Wen (1993)
similarly examined the case of fractal permeabdistributions, in which the
variance irK is bounded only by the size of the system. lir #seample, flow
remains pre-asymptotic throughout the entire ran@anined. These examples
demonstrate theoretical bases for solute dispedsiang transport through porous

media manifesting non-Fickian, or asymptoticallgktn, character.
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Figure 2.1 Development of longitudinal dispersion in stratifimedium with hole-
type conductivity covariance structure (Gelharlgtl®79). Stochastic-convective
region is circled.

Strong transverse gradients in longitudinal velottiit presumably contribute
to non-Fickian mixing may also result from the etéeof local depth on vertically-
averaged velocity in surface flow, when depthssarengly correlated in the
downstream direction, i.e. when cross-sectiongbshiamains relatively constant in
the direction of flow. This may help explain whongitudinal mixing even in non-
vegetated streams has been observed to be nomukicki

Employing the assumption that mixing in surfacevflwetlands is stochastic-
convective, Carleton (2002) proposed that the dlomcentration of a solute exiting a
wetland can be treated conceptually as a flow-weajaverage over a collection of
stream tubes with differing velocities. This “Dadtter number distribution” (DND)
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approach also incorporated the presumption that kiceam tube velocity) and
volumetric constituent removal coefficiel) @re functions of vegetation surface area
density (X", for example with units of Am®). In this derivationX was assumed to
vary only in the plane perpendicular to flow, ande invariant (or perfectly
autocorrelated) in the flow direction. The primagvantage of this approach is that
it provides a quantitative method, derived fromaupible mechanistic explanation,
for characterizing the curious phenomena wherentien rate coefficients appear to
be functions of hydraulic loading rate (Kadlec, @00Important limitations of the
approach are that it is restricted to an assumticgteady flow, and that transverse
and diffusive mixing are ignored.

The primary objective of this work is to extend D modeling approach
to non-steady flow conditions, and to evaluate rhadequacy by comparing
predicted concentrations with monitored concerdregifrom field studies. A
secondary objective is to compare model results thibse generated using th€*
plug-flow model (PFR), which is commonly used t@clcterize wetland
performance (Kadlec and Knight, 1996).

2.3 Derivation of the Model
2.3.1 The Steady-Flow Case

The DND approach employs the following assumptiof®w is considered
to be two-dimensional in the sense that vegetatesity (and/or reciprocal deptk)
varies only in the horizontal direction transveieéow (dimensiore in this case),
and not in the direction of flowk). Therefore&k andu are functions of but not ofx.

Transport in the vertical dimension is not consedeistream tube parameteksafd
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u) are taken to represent depth-weighted averaggth stream-tube specific
advection and reaction considered, and longitudirgdersion ignored, the governing
solute mass balance within a stream tube subjgoh&varying inlet boundary
conditions is:

oc 2 0C
- k(z)C —u(2) > (2.10)

If X represents vegetation density, as discussed pidyjdhen velocity and

reaction rate coefficierk are assumed to be relatedxtby (compare with eq. 2.6)

_7
U= G (2.11)
and
k=¢X (2.12)

respectively, wherg, £, andn are constants. With flow path lengthDamkdhler
number Da) for stream tubei” can be expressed as a power function of residence

time 7; by combining equations and eliminatiXg

Da: kiTi — ki L: g(%)l/nril/ml — AZ'-B (213)
Ui

Alternatively, if X is taken to represent the reciprocal of streare tidpth,
then we may assume that vertically-averaged vel@aeit reaction rate coefficients

are related tX by

(2.14)

and

k = pX (2.15)
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respectively, where,  andn are constants, with most likely <1 (see for example
velocity and depth profiles given in Bogle, 1997The sort of inverse dependence of
reaction rate on depth represented by eq. 2.15aoay particularly for constituents
that are removed via mass transfer from the watkeinan into the benthic layer, and
has been observed to occur both in wetlands (KaaiddKnight, 1996) and in stream
environments (Alexander et al., 2000, 2004). Bmbming equations 2.14 and 2.15

and eliminatingX, a relationship results which is identical in foronequation 2.13:

Da=kr = ﬁ(%)l/”ri”"” = Az® (2.16)

Confirmation of the validity of the essential coptinherent in this approach has
recently been provided through an investigatioa wfetland in Florida (Dierberg et
al., 2005). In the studied wetland, locally loweralues for Total Phosphorus (TP)
removal were found to characterize channels withénwetland that were both deeper
(faster flowing) and less densely vegetated thheradreas within the wetland.
WhetherX represents vegetation density or reciprocal depghassume that it
varies only in the plane orthogonal to flow, anthigariant in the flow direction.
High degrees of long-range autocorrelation in tinection of flow may be more
likely for depth than for vegetation density in sogystems. It is unfortunate that the
effects of vegetation and depth are indistinguitdh&dom each other in terms of their
relative contributions to coefficienfsandB in equation 2.13 or 2.16. In flowing
waters, vegetation density may itself also be ¢ated with depth (Chambers et al.,
1991), further complicating interpretationsfandB, and making it unlikely that
suitable values for these parameters can be degipeidri from quantifiable

characteristics or physical principles.
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With a pulse (Dirac delta) addition comprising thgstream (inlet) boundary
condition in stream tuba”, the solute mass balance equation includes sttahm
specific advective and reactive (but no dispersigens:

oc _ o

R_—kici —u (2.17)
B.C.:C (O,t) =5(t)

This equation has the general solution
C (x,t)=e™ . 5(x—ut) (2.18)

For more general boundary conditioBs(0,t) = g, (t , the concentration can be

found via convolution as follows
t
C(xt) =[e . 5(x-u(t-p))g (p)de , (2.19)
0

wherep =t — 7. This simplifies to

C(xt)y=e"" .g(t-1) (2.20)

X L . . .
wherer; = — , or r; = — at the outlet. Given a wetland’s residence time
u u,

distribution (RTD) functiorE(z), the outlet flux concentration for the wetlandsas
whole can then be found by integrating over alidesce times (i.e. stream tubes), as

first proposed by Danckwerts (1953), and later erqa by Levenspiel (1972):
C(t) = j g(t - 7)E(z)e™dr (2.21)
0

A power function relationship between Damkéhler bemand residence time

(eq. 2.13 or 2.16) can be incorporated into tHati@nship either by first converting
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the RTD into a distribution of Damkdhler numbersl amegrating over this
distribution (Carleton, 2002), or by simply incorpting the power function directly

into the reaction term:
C(t) :Tg(t—r)E(r)eA’Bdr (2.22)
2
or
C, (1) = Tcm (t—7)E(r)e™ dr (2.23)
0

whereCj, andC,, refer to concentrations at the inlet and outlahefwetland,
respectively. Explicit consideration of an irrethie background concentratioG¥)

can be incorporated as follows:
Cou() =C*+[(C,,(t—7) ~C*)E(r)e " dr (2.24)
0

Given data on percent removal of a pollutant frometland (or stream) under a
range of hydraulic loading rates, or concentratandifferent distances from the inlet
under constant flowA and/orB may be estimated using least-squares minimization
a suitably defined objective function.
2.3.2 The Non-Steady Flow Case

The approach is extended to non-steady conditigresriploying the
assumption that (unlike residence time) stream-kubenot a function of velocity,
and therefore does not vary over time. Wetlancemwablume is also assumed to be
constant: velocity changes are caused by gradiemges, and do not involve
changes in depth. The approach begins with coraida of flow during steady-state

conditions. Figure 2.2 shows a plan view of a lilgptical velocity profile of parallel
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stream tubes traversing a wetland under steady fléereu, ., refers to the mean
velocity (flow divided by cross-sectional area),, to the maximum stream tube
velocity, andy; to the velocity in stream tub&.’ Stochastic-convective mixing
implies that the ratio between the velocities ig Bmo stream tubes is constant, even
if the mean velocity changes due to an alteratiditow. If u,.,,changes by some
percentage, the velocities in all stream tubesasemed to simultaneously change
by the same percentage. Thus all stream tubeitiekscale to the instantaneous
mean velocity. The stream tube velocity scalir@des can be obtained from the
relative velocities implied by the RTD (for uniforftow path length) under steady
flow conditions. The non-steady DND approach tfeeeemploys a wetland’s RTD,

which is assumed to have been measured under stttdy'reference” conditions.

L

Umean

Umax

t;
Ui/Umea=CoONstar

Figure 2.2Hypothetical flow velocity profile (plan view) in\aetland or stream.

For the unsteady flow model, the calculation ofetutoncentrations employs

three different variables representing timérépresents residence times for the
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reference RTD. Inlet and outlet concentrationsexy@essed as functions ¢f
which represents true, or chronological time. Tl time variable T, is residence
time-upon-exit; that is to say, the amount of tittnat water exiting the wetland at
timet in any given stream tube has actually spent ingsidevetland. Using these
three interrelated time variables, the governingagign for outlet flux constituent

concentration is given by the following integralated to eq. 2.24:
Cou(t) =C* +[(C, (t—7y) —C*JE(r)e *dr (2.25)
0

wherey = T,/z;, or the ratio between residence time-on-exit afierence condition
residence time for flow patih Under steady flow conditions this definitionyof
becomes the same as ‘equivalgnas defined by Carleton (2002). Under
continuously varying flow conditiony,assumes a different value for each flow path,
and for each flow path also assumes a differentevat each point in timé&)( As in
the steady-state case, outlet concentration isdftwyrintegrating over the RTD,
however decay is calculated as a function of resiedeéime-upon-exitdy = T), rather
than (reference condition) residence time.

Flow and concentration data obtained from realamels are discrete rather
than continuous in nature. The following discrat@logue to equation 2.25 is
therefore used to evaluate outlet concentratiamengas input data inlet

concentrations and flow rates measured at dispagtes in time (e.g. daily):

Coalt) =C* + 3 [Co(t—1y) ~C*[E(r)e ™ (2.26)
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Interdependencies between stream tube spécifinaz that arise from their presumed
simultaneous dependence on vegetation density agelpth (eq. 2.13 or 2.16) are

then easily incorporated:

Cou() =C*+D[Co(t-71y) — CHE(z)e ™ (2.27)

i=1
To evaluate the summation in equation 2.27, ieisagsary to obtain values of

y for each stream tube. In other words, valu€g afe required which correspond
with each value of.. Under the stochastic-convective flow assumpt#on,
relationship betweei; andz; may be obtained directly from the temporally vagyi
mean velocity functionu,), as illustrated in Figure 2.3. Given a veloaigctor (e.qg.
daily flow values divided by mean cross-sectiomabaas in Figure 2.3d; is found

by integratingu,,, backward in time until travel distantds reached (Figure 2.3b),
making use of the assumption that for any flow path,,.,,iS constant, irrespective
of the instantaneous valuewf. T; is defined implicitly by the following equation:

T

jﬁm@wﬁ—awazL (2.28)
-

0 i
which may be rearranged to produce the followirgti@nship:

T
Jut-o)do =L =7, (2.29)

0 T

whereumeaniS mean velocity under reference conditions, amsla dummy variable
of integration. It should be noted that these egpions are closely related to the
concept of dimensionless timg) @s defined by Werner and Kadlec (1996), the

primary difference being thatis defined through a forward integration of vetgan

time:
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_ Vou(S)
#s) ==, (2.30)

sys
Using their notation for elapsed tins=t-1, these quantities can be defined as

follows:
Vou(8) = A;jum(a)da (2.31)
and
Voys = #\Tum(o)do (2.32)

whereA. is cross-sectional area in a plane orthogondigdlow direction.
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Figure 2.3 llustration of derivation of vs.T curve from temporally-varying mean
velocity (Un): a) example wetland,, for a 100 day period; ), integrated backward
in time over same period, with residence time-on{@y for flow lengthL shown; c)
y-axis shown scaled by ratio of flow-path residetwcess; d) y-axis divided by mean
velocity under reference conditions to produces. T; curve.

The curve in Figure 2.3b illustrates cumulativetaince as a function of
negative time (relative to some fixed value 9ffor an example mean wetland
velocity vector @), using linear interpolation to connect discretailf) data points.
Some value on the y axis corresponds Witthe travel distance from inlet to outlet.
As shown in Figure 2.3b, by reading over to thezedromL on the y-axis, and
sending a line down to the x-axis, one may findrdsdence time-on-exit for the
mean flow pathT,,. However, the curve is actually more useful tthas. Given a

continuous distribution of residence times, evealpg on the y axis corresponds with

L for some flow path. The y axis can be thoughasif scaled byt/zean (Figure
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2.3c). Since. andryeanare both constants whose quotientrisas the y axis in

Figure 2.3c can also be interpretediagean(€q. 2.29). Therefore if one divides all y-
axis values byinean the resulting curve representglotted as a function df

(Figure 2.3d)

The relationship embodied in this curve can thuadeal to calculate values
for anyi. These values can then be used in equation @.@valuateC, (t). This
approach was implemented by the authors in a MAT®ABuUtine given the working
designation “Wetloop”. Wetloop uses a daily-disizedd version of a gamma
distribution (truncated on the upper end at a @gyasenting95% of the cumulative
area under the theoretical curve) with user-saidetshape and scale parameters to
represent the RTD (Carleton, 2002). Note thatradiieve functional forms for the
RTD, such as would be produced by the velocityrithstions explored by Grismer
for subsurface flow wetlands (2005), could alsabeommodated through a simple
code change. Wetloop reads a text file of wetfémal velocities and inlet
concentrations arranged by date, and uses lineapoiation to fill in values for any
missing days. Beginning with the last date inftleeand working backward one day
at a time, Wetloop integrates the velocity vectackward in time from the given
date, and deriveszvs.T; curve specific for that value tfas in Figure 2.3d. With
each day in the RTD representing a separate flalv‘pathe program uses thevs.

T; curve to estimat@ for each value of in the RTD Following equation 2.27,
Wetloop computes the product®©f(t-T) (adjusted foC*), the RTD function, and
the fraction decay, calculates the stream tubecexitentration, then repeats the

process for all ni* values, and sums the result to give the estimatziet
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concentration for each dat® in the input file. As with the shape and scale
parameters of the RTD, flow path lengtland reaction-related parametérandB
are user-selectable parameters.

In contrast with the unsteady DND model, KR€* PFR model, which is
commonly applied to data from wetlands, employassumption that flow is
uniform as well as steady-state. Rather thanildigtons, a singl& and residence
time () are used to characterize constituent reactiortrandport:

Co-C* _ ox (2.33)
C -C*

whereC; andC, are inlet and outlet concentrations, respectivétighould be evident
that this model is equivalent to a simplified versof the DND model under uniform
residence time (plug-flow) conditions.
2.4 Methodology for Model Testing

To evaluate the non-steady DND approach and thgodfemodel, lengthy
time series flow and concentration (inlet and dytiata from published studies on
wetlands were sought. The goal was to evaluatpe¢hfermance of the model by
feeding inlet velocity and concentration time seir@o Wetloop, then comparing the
resulting predicted outlet concentrations againsasared concentrations, selecting
parameter values through a model error minimizgpimtess. An ideal data set for
this purpose would come from a wetland possessmpls (e.g. rectangular)
geometry, would include a well-characterized RTigd awould have both flow and
inlet concentration that change fairly dramaticallying the study, yet remain
relatively constant at various levels for long eglothat outlet concentrations have
time to periodically stabilize. Although no dastsmeeting these criteria were
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found, two data sets that each met some of thései@were obtained for model
evaluation purposes. Model evaluation employingéhaata sets focused primarily
on reasonableness of predicted outlet concenteatompared with measured ones.
Regression of predicted vs. measured outlet corat@nis was employed as a
guantitative measure of model adequacy. For otees#d, flow-related bias was also
evaluated by regressing model errors against fadest Results were compared
against the same kind of analysis conducted f6C4 PFR model fit to the same
data.
2.4.1 Example 1: The Gustine Wetlands

The Gustine wetlands are a series of five equabds rectangular, vegetated
cells used to provide secondary treatment of dameststewater in Gustine,
California. Walker and Walker (1990) measured B@&noval from the cells over a
13 month period, during which each cell was operatader a different mean
hydraulic loading rate (3.8 to 16.2 m/year). Kadl2000) reported that regression of
thek-C* PFR model against inlet/outlet data results imgparent dependencelof
on hydraulic loading rate among these wetlandgle€@a (2002) demonstrated that
this phenomenon can be understood as resultingrtrfrom an inverse square root
relationship between stream tube velocity and \&met surface area density, i.e.
n=1/2 andB=3 in equation 2.13. Using a spreadsheet methadrwerically integrate
the governing integral equation (eq. 21 in Carlei)02), an estimate for parameter
A of 0.00029 was derived by a least-squares proeeduth B constrained to a value
of 3. This approach essentially treats the fivste cells as if they were a single

wetland operated under five different, constantraytic loading rates.
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Although the mean hydraulic loading rates varietiveen the five cells, flow
rates also fluctuated continuously within each daling the duration of the
experiments (Figure 2.4). Flow rates and inlet amitiet concentrations for each cell

were measured on a weekly basis between March IiB®arch 1990.
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Figure 2.4 Weekly reported flow velocities in Gustine wetlarglls.
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2.4.2 Example 2: The Orlando Easterly Wetlands

The Orlando Easterly Wetlands (OEW) are a sefiesmstructed wetland
cells arranged in three separate treatment tramshiern, central, and southern) that
have provided tertiary treatment of domestic waatewin Orlando, Florida since
1987. Influent loadings have been approximategngvsplit between the three
trains except for a capacity test conducted betwéaich 1997 and March 1998,
during which time all flow was channeled through tiorthern train (Black and Wise,
2003). Daily measurements of flow and influent afftuent TP have been collected
at OEW by the City of Orlando since 1988, providagbbust data set for model
evaluation purposes. In analyzing TP input angpatudlata over a number of years,
Black and Wise (2003) documented an apparent pestilationship between
monthly-averaged plug-flok values (i.e. eq. 2.33) for TP, and monthly-avedage
flow rates between 1992 and 1999. Martinez and \(Z2863) also studied mixing at
the OEW, using pulse inputs of KBr tracer to measRifDs in each treatment train.
Their reported results include first and secondoral moments (mean and variance
of residence time) for each treatment train obthinem the tracer curves. After
several years of adequate performance, TP remboGH®W was observed to undergo
seasonal declines each year beginning in winté®88, apparently due to decreased
hydraulic efficiency and increased Phosphorus seléam sediments (Wang et al.,
2006). Because the DND approach is not designeakesuch factors into account,
Wetloop simulations were limited to the period fra®92 through 1999.

Quantitative model evaluation was further limitedhe 1992-1995 period, during
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which measured concentrations appeared to prok@enbst reliable check on model
output.
2.5 Results
2.5.1 Gustine Wetlands

With ana value of 3 again used to represent the RTD shapmmneter, and
the same values féxrandB (0.00029 and 3) as determined in the steady-state
analysis (Carleton, 2002), Wetloop was used toge®the temporally-varying input
data from each of the five Gustine cells, and &t outlet concentrations. Results
(Figure 2.5) show reasonable agreement betweerctgddnd monitored outlet
concentration trends over time for all five wetlaredls. Correlation coefficients’fr
between measured and simulated outlet B&@hcentrations were respectively 0.77,
0.59, 0.43, 0.62, and 0.70 for cells 1A, 1B, 1C, abd 2A. Despite the greater than
four-fold range in mean flow rates between thestesys, the same set of parameter
(A andB) values is able to provide representations ofebatbncentration time series
in all five Gustine cells that are generally cotesis with observed concentration

trends.
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Figure 2.5BODs concentrations at the Gustine wetlands: measuateti(diamonds),
measured outlet (squares), and modeled outlet (ohek

Variations in the apparent performance of the modelatching the data
from each individual cell are likely related toanicell variability. For example,
cells 1A and 1D were both operated at the samemadrfiLR (15.15 m/yr), but
outlet BOD concentrations from cell 1A were genlgrhaigher than those from cell
1D, as Figure 2.5 shows. Although the reasonghisrare not entirely clear, the

study report (Walker and Walker, 1990) indicates tell 1A also had substantially
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higher TSS effluent concentrations than did theotells (e.g. a mean concentration
of about 40 mg/L as compared with 21 mg/L for &), which the study authors
attributed to “more open area” in cell 1A than thers thus “encouraging algae
growth”. The elevated BOD in the cell 1A effluerauld therefore have been in part
a function of increased algal biomass export. Beedhe same model parameter set
was used to simulate all five Gustine cells, thecemtrations emanating from cell 1A
are slightly underestimated while the concentratiemanating from cell 1D are
slightly overestimated. In a similar way, the seatate analysis of mean data in
Figure 1.8 shows the best-fit model to slightly erestimate effluent concentration
from cell 1A, while it slightly overestimates efélut concentration from cell 1D
(these are the two data points with identical “eglant y” values of 0.25).
2.5.2 Orlando Easterly Wetlands

To simulate the OEW system with Wetloop, gammadbabdity density
functions with the same moments as those found hyilda and Wise were used to
represent the RTDs of the three flow trains (Figuf. Flow velocities were
estimated from daily flows (mgd) by dividing by astimated mean cross-sectional
area for each train. Total influent loadings wassumed to be evenly divided
between the three treatment trains, except foMhaeeh 1997 through March 1998
period, during which all influent loadings were @®®d to be applied to the northern
train (flow velocities for the central and southéains during this period were set to
the relatively insignificant value of 0.1 m/d inder to avoid model problems

associated with zero flow). Outlet concentratiotese calculated as the mean of the

63



effluent from the three trains, except for the Mat&7 through March 1998 period,

when they were set to equal the northern traimvefft concentration.
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0.014

0 éo 40 éo éo 100

Days
Figure 2.6 Approximations of the three OEW flow train ResideMime
Distributions, E(t),(RTDs) using gamma PDFs witham®& and variances matching
the observed. Compare with Martinez and Wise (206iglre 6.

Parameter#é andB were assumed to be the same for all three trBimsas
again fixed at a value of 3, corresponding to aeiige square root dependencé&Jof
onX, as in eq. 2.6 (this was primarily in order toabta fair comparison of results
with the PFR model, so that for each model, optatitn involved manipulation of a
single parameter, and not becaBss necessarily believed to optimally equal 3). An
optimized value for parametérof 1.57E-5 day was found (using MATLAB®
procedure ‘fminsearch’) by minimizing the summeda®d daily differences
between measured and modeled outlet concentratiemrsconsistency with the PFR
analysis employed by Black and Wise (20@¥,was set to zero, and parameter
optimization focused on the period beginning 01/@&like Black and Wise, in our

analysis the optimization period only extended tigio 10/31/95, because the daily
64



record suggests a change in quantitation limit alftis period, with a large number of
censored values (Figure 2.7¢) that might bias miideResults show predicted
concentrations that are, for the most part, inaeable agreement with measured
ones (Figure 2.7b, 2.7¢c) between 1992 and 199%lodfenotably underpredicted
performance during the capacity test (03/97-03@8)od, when all flow was routed
through the northern train.

For 1992-1995, monthly averaged Wetloop resultsvsimilar agreement
with measured concentrations as results obtained asbest-fik-C* PFR model
optimized for the same time period (Figure 2.8[FRAnodel optimization involved
selecting a value fdc (in eq. 2.33) that minimized the summed squareater
between simulated and measured outlet concentsattaficulated on an average

monthly basis using monthly-averaged flo@) o calculate residence time.
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Figure 2.7 Orlando Easterly Wetlands data from 1992 throu@®01 a) daily flow
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Figure 2.8 Comparisons between measured and modeled outlebidentrations at
the Orlando Easterly Wetlands for period 01/92-%0Both models employed the
same value fo€* (0.0 mg/L), and optimized values of just one patan(obtained
in each case by minimizing summed squared modeisgrra)A in the case of
Wetloop, and bk in the case of thke-C* plug-flow model.

Figure 2.9 displays model error correspondence flath for the Wetloop and
PFR models. The flow-correlated biaskithat was reported by Black and Wise

(2004) for a PFR model of the OEW system is evidethe scatter, and reflected in

the higher correlation coefficient of model errathaQ (r=0.24). As expected,
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because the DND approach is designed to addressffact as part of model

formulation, this bias is essentially eliminatedtie Wetloop results%0.01).
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Figure 2.9 Model error regression against flow rate: a) Wailawdel; b) k-C* plug-

flow model.

2.6 Discussion
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The modeling approach described in this papendorsteady flow conditions
presumes that a wetland’s RTD is a fixed entity tieees not evolve with time, and
that has the same shape (when non-dimensionalizespective of flow rate or other

conditions. Results of a recent investigation icatd question the validity of this
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assumption: in tracer studies on a stormwaterrreat wetland, Holland et al. (2004)
found that although flow rates by themselves hathsignificant effect, water depth
had a large impact on the shapes of normalized RTIbg approach proposed in this
paper does not explicitly take water depth intostderation in outlet concentration
calculations, except perhaps through variatior{spatially) mearcross-sectional

area if they are used in the calculation of ingtaabus bulk velocity,, from time-
varying flow rate, e.qum = Q/A., whereQ andA. are the instantaneous flow and
cross-sectional area, respectively. Water deptiseoss-sectional areas are not
typically monitored frequently enough in wetlanddies to provide the kind of time-
series information that would be useful in this w&pr example, in the OEW and
Gustine wetland examples presented in this papdy tibe approximate mean water
depths were available;, was therefore calculated fro@wunder an assumption of
fixed cross-sectional area and fixed depth. Tcetttent that these quantities actually
vary with time, this represents a weakness in tN®Rpproach.

Other weaknesses in the approach derive fromrgmimption of stochastic-
convective flow, which necessarily ignores molecdiffusion, transverse mixing,
and the random impacts of wind-induced mixing geets of solute transport. Under
very low flow conditions, the relative importancitioese effects may be magnified.
It should be noted that although the non-steady Rdproach is designed to handle
continuously-varying flows, it is not suitable foandling flow rates that fall to zero,
as this results in plateaus in thes. T, curve (Figure 2.3d), and therefore
indeterminacy ;. Use of the PFR model is of course also nottitrappropriate

for systems with periodically static or wildly flu@ating flow regimes, so this
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weakness in the DND approach does not represanrhparative advantage for the
PFR model.

The DND modeling approach, in both the steadyegi@arleton, 2002) and
non-steady state cases (this paper), derives tierpresumption that treatment
efficiency is a direct reflection of a wetland’sttibution of vegetation density and/or
depth. Many questions remain regarding the fund&sheature of the relationships
between vegetation density, depth, flow rate, watielace gradient, and constituent
removal kinetics in surface flow systems, includimgtlands and streams.

2.7 Conclusions

The assumption of non-Fickian or pre-asymptotigltudinal dispersion in
wetlands and streams leads to convolutional saistior flux concentrations. Stream
tube velocities and constituent removal coeffigany both be dependent on local
vegetation densities and/or local depths, in wiei$e outlet concentrations can be
determined through knowledge of a system’s RTDoimlgination with two
parameters that can be estimated through objefttination minimization. In this
paper an extension of the steady-state “Damkohlenidér Distribution” modeling
approach (Carleton, 2002) to cases of non-steaglydhd temporally varying inlet
concentration has been presented. DND-based wetiadeling addresses the
dependence of apparent removal rate constant®wndhd is in this respect an
improvement over thke-C* PFR model. In two example applications of thehodt
to existing wetland data sets, the approach previdee series estimates of outlet

constituent concentrations that appear to be soregble agreement with measured
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outlet concentration time series. Further workK feitus on explicitly incorporating

transverse mixing into prediction equations.
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Chapter 3:Reactive Transport in Stratified Flow Fields With

Idealized Heterogeneity

3.1 Abstract

A two-dimensional equation governing the steadtestpatial concentration
distribution of a reactive constituent within adreigeneous advective dispersive flow
field is solved analytically. The solution whichdsveloped for the case of a single
point source can be generalized to represent amadogjtuations with any number of
separate point sources. A limiting case of spentatest has a line source of
constant concentration spanning the domain’s ugstteoundary. The work has
relevance for improving understanding of reactrams$port within various kinds of
advection-dominated natural or engineered environsi@cluding rivers and
streams, and bioreactors such as treatment wetleé8idsulations are used to examine
guantitatively the impact that transverse disp@rgteviations from purely
stochastic-convective flow) can have on mean canagéon decline in the direction
of flow. Results support the contention that tiemse mixing serves to enhance the

overall rate of reaction in such systems.
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Notation
ab,f

A B, F

Ci(¥)
C(¥)
C(x.2
Dx

DZ! DZ

E(t)

F(t)

u, U

Ai

multipliers in velocity, dispersion and reacti@nms, respectively
multipliers in velocity, dispersion and reacti@nrhs, respectively in
dimensionless equation

flux concentration

resident concentration

concentration at a point

longitudinal dispersion coefficient (dimensionles®rdinates)
transverse dispersion coefficient in standarddingénsionless
coordinates, respectively

residence time distribution function (RTD)

tracer breathrough curve function

lateral and longitudinal extents of domain, resipety

reaction term in standard and dimensionless coates, respectively
effective plug-flow reaction rate coefficient

exponents in velocity, dispersion and reactiomggmrespectively
coordinates in direction of and transverse to flegpectively
dimensionless coordinates in direction of andsvanse to flow,
respectively

time

velocity in standard and dimensionless coordinaespectively
eigenvalues

eigenvalues, modified form
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3.2 Introduction

Recent decades have seen a growing recognitiomibtions inherent in
traditional methods of representing dispersivetediux in the direction of motion in
porous media and open channel flow. As first cefiby Taylor (1954), shear-flow
dispersion arises from an interaction between noferm advection and diffusion of
solute across stream lines. Fischer et al. (18XBain how various simplifying
assumptions are used to derive from this complicpke/sical picture a relatively
simple expression employing a bulk dispersion c¢oefit to represent longitudinal
dispersive flux in a manner analogous to the way tiolecular diffusion is described
by Fick’s first law. In other words, hydrodynandlispersive flux is treated as
proportional to the spatial gradient in mean cotregion. Inclusion of such a flux
term in a one-dimensional transport equation predile standard one-dimensional
advective-dispersive equation (ADE), for which simins under various initial and
boundary conditions are widely available (e.g. Geamuchten and Alves, 1982).
However, studies on solute transport in varioupaliagte media and environments
including soils, streams, and wetlands have doctedesolute spreading that is not
adequately characterized by the ADE because laigaéiimixing only approaches
Fickian behavior asymptotically, if at all, afteamsport has proceeded for a certain
duration or distance (e.g. Day, 1977; Gelhar, 1998rner and Kadlec, 2000). The
behavior typically manifests as an increase irahygarent dispersion coefficient with
the scale of transport. In the near-field limitgt‘'stochastic-convective” case),
longitudinal spreading occurs solely as a functibuelocity heterogeneities; i.e.

transverse mixing can be ignored.
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With general recognition that spatially heterogerseeelocities are at the
heart of failures of the ADE to describe real trgors regimes, researchers have
explored various alternative approaches to trangpmulation. These include
stochastic methods (Dagan, 1984; Gelhar et al9;1iatheron and DeMarsily,
1980; Montas et al., 2000), continuous time randaikiormulations (Berkowitz et
al., 2006; Dentz et al., 2004), and approacheshicwheterogeneity is represented
explicitly (Chen and Arce, 1997; Shapiro and Breant886; Uflyand, 1988).
Although some of these efforts have addressediogaas well as transport, they have
largely focused on responses to pulse additiorackts, rather than to the continuous
addition of reactive substances, such as wouldytype situation in a reactor.

In one notable study, Yeh and Tsai (1976) devel@vednalytical solution for
the spatial distribution of a conservative constitiucontinuously released into a
steady-state two-dimensional flow field, in whiobthy velocity and transverse
dispersion coefficient are treated explicitly asvpofunctions of the transverse
dimension. The authors envisioned their transveéirsension as specifically
representing the vertical, and selected power fonstas approximations of more
complicated boundary layer equations in order t&enthe governing transport
equation tractable to solution. The work descrilpetthis Chapter closely follows
Yeh and Tsai’'s approach, but incorporates a reattion that is also governed by a
power law dependence on the transverse dimensigaré=3.1). By contrast with
Yeh & Tsali, the transverse dimension in this warkmvisioned as essentially
representing the horizontal (lateral) rather thenuertical dimension, with

heterogeneity envisioned to be a function of unylegl physical attributes. The
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resulting model is specifically intended to représgy/stems such as bioreactors that
incorporate spatially heterogeneous reaction fatked to local velocities, for
example as a result of mutual dependence on unaigdystributions in drag-
inducing reactive surface (e.g. vegetation) densiiyis work represents
advancement over previous modeling efforts foreéHesds of reactors, in which
flow was assumed to be stochastic-convective (€ar]2002; Carleton and Montas,
2007), because it explicitly incorporates transeahfusive/dispersive fluxes in the
governing equations. Although the functional repreations of velocity, reaction
and dispersion employed in this approach represerglifications of reality, our
results may be directly applicable to some pardickinds of problems, for example
depth-averaged transport in U-shaped channelsfunting vegetation that increases
in density toward the shallows.

Very few analytical solutions of two-dimensionahcéive transport equations
are known, which necessitates the use of numeapaioximation techniques to
simulate most cases of practical interest. Unfately, traditional numerical
techniques for simulating heterogeneous transmortaghs suffer from problems such
as instabilities that frequently make them difftawl solve, particularly for systems
that possess hyperbolic character (Herrera andcehilp2006; James and Jawitz,
2007). The solutions presented in this paper patydo systems with strongly
hyperbolic character. Despite limitations on thefs of the idealized profiles
governing velocity, reaction rate and transversedlision, these solutions may be
useful for a variety of purposes, including servasgexact answers against which the

accuracy of numerical simulations can be tested.
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Figure 3.1 Definition sketch of 2-D heterogeneous transpovirenments: a)
reactive regime, top view (this paper); and b) neaective regime (side view)
considered by Yeh and Tsai (1976). Spatially togieneous velocities),
transverse dispersion coefficienBs), and reaction rate coefficienty @re treated as
power functions of the transvers® dimension. Figure a indicates that
heterogeneities are manifestations of the undeglgpatial distribution of a
controlling variate, such as vegetation surfaca density in the case of a wetland.
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3.3 Model Formulation
3.3.1 General Solution
The mass-balance equation for concentrat@)rof a reactive constituent emanating

from a source in steady unidirectional flow is

—k(z)C—u(z)%+%(Dz(z)%j+S(x, 2)=0 (3.1

wherex andz are coordinates in the direction of and transversew respectively,
andSis a source function. Functioksu, andD; are reaction rate coefficient,
velocity, and dispersion coefficient respectivelor a rectangular bounded domain
of transverse and longitudinal extertandL respectively, we define normalized
coordinates in the longitudinal and transversectimas: Z=z/H, X=x/L, and defing,

u, andD, as power functions of the transverse coordinate:

k= fzP = fHPZP (3.2)
u=az"=aH"Z" (3.3)
D, =bz' =bH"Z" (3.4)

m

. a
Next we define constanta =

, B=bH"?, andF=fHP, and express eq. 3.1 in the

form

—KC—U£+i[DZ§j+S(X,Z):O (3.5)
oX oZ 0Z

whereU=az"™, Dz=BZ", andK=FZP are velocity, transverse dispersion, and reaction
rate terms respectively, expressed in terms of alsnoaless coordinates. Following
Yeh and Tsai (1976), a Neumann (no flux) boundanddion is imposed at the

“upper” (maximumz) transverse boundary:
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Z%—CZ::O,Z=1 (3.6)

The astute reader will recognize that a Neumanmdarty necessarily exists as well
at the “lower” transverse boundary by virtue of fhet thatD; equals zero there. The
domain can be envisioned as potentially represgtire half of a bilaterally
symmetric regime, in which the “upper” transverserdary represents the
centerline. Because transverse flux is zem=at (eq. 3.6), concentrations are
continuous across this line, though theDz, andK functions all exhibit cusps

(discontinuities in slope) there. This systemaaions can be solved using a

Green’s function approach:
1X
C = [ [G(X,Z, X4, Z4)S(X,,Z,)dX,dZ, (3.7)
00

whereG satisfiesG(X,Z,%,Zo) = 0,X < X,, and

U _ke+2|pE =5(X = X,)8(2-2,), X > X, (3.8)
X, 0Z,\ 0z,
thus
UaG—KG+ 0 DaG =0, X> X, (3.9a)
X, 0Z, .
XlimXUG=5(Z—ZO) (3.9b)

Employing a separation of variables technique, y@essG as
G=ZaiWi(X0)¢i (Zo) (3.10)
i=0

which upon substitution into equation 3.9 leadsigenfunction problems of the

following form:
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K19 (D Mj:@f (3.11)

U Ug oz,| 2oz,
and
oW
xO

whereQ; are eigenvalues. Rearrangement of eq. 3.11 pesduc

0 D, o9, +U¢§iQi2—K¢5i =0 (3.13)
0Z, 0Z,
or
%4, L 00 A _,_ . F_ o
- +nZ L+ —QZ""g ——Z "4 =0 3.14
625 0 aZoz B i 0 ¢| B 0 ¢| ( )

Parameters, B, andF are all assumed to be non-negative, and for daiubi
sake we requirp=n-2. When this is the case, eq. 3.14 is in the fofrfRaiton (1965)
eg. 3.6.2, and is therefore a Bessel equatiorfanna for which a solution can be
found (see Appendix B). His positive and smaller than two, this means phat
negative. For consistency with assumptions emplayg@revious wetland simulation
work (Carleton, 2002; Carleton and Montas, 2008 ane primarily interested in
situations in whictp is negative and m is positive, so tKais inversely related to.
In the current modeK decreases with increasidgand approaches infinity Zt0.
Although an infinite reaction rate is not physigatheaningful, velocity and
transverse dispersion both approach zero at thedaoy where this occurs, for the
kinds of domains in which we are primarily inteegb{i.e. withm and n both
positive). Thus this boundary is isolated from test of the domain in terms of

material exchange, and its influence on conceptrati the rest of the domain is
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finite. Despite the idealized nature of the trammspegime, the model is therefore
expected to be useful for providing insights irite behavior of some real physical

systems. Note that equation 3.14 is equivalefdrim to eq. 9.1.53 of Abramovitz
and Stegun (1965), i.&€2¢" + (1—2r)Z¢' + (fqzz2q +r2- V2q2)¢ =0, with
solutiong = Z'C,(1Z¢), and quantities 1 1242, 2 - 2, and® - v?¢? are equal to
n, %QZ, m—n, and-F/B respectively, using our nomenclature.

We next define the following two quantities in texaf existing parameters:

(el

B
= 3.15
¢ a—n) (3:15)
= s(-n) (3.16)
2+m-n
Employing these, the solution to eq. 3.14 can lpgessed in terms &, as
A 1/2 2,0 £(1-n)
(Z,) =282 (—j L7, 3.17
¢|( O) 0 v{ B 8(1-”) 0 ( )
Next, by using a modified form of the eigenvalues:
1/2
2 =(§j Q, (3.18)
B) &(-n)
eq. 3.17 can be expressed more compactly as
e(1-n)
$(Z2,)=28""%3 | 2vA.2, > (3.19)

Conditions at the “lower” transverse boundarysareh thatC=0 for all X, as
long asF is non-zero. Thus this is a Dirichlet (zero cortcation) boundary, in

addition to being a Neumann (zero flux) boundasypieviously mentioned. For this
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reason the orders)(of the Bessel functions in this work are speaificdefined as
positive, whereas Yeh and Tsai were able to empémpative values of in their
solution for the non-reactive case: according toafdovitz and Stegun, eq. 9.1.7
(1965), in the limit az goes to zero the Bessel terms approach zero Siy®ov, but
approach infinite magnitude for negative Because whep < 0 the reactive solution
must be zero =0, only positive order Bessel functions produgdgsically
sensible (i.e. non-negative concentration), boursddation. The conditiom > 0
imposes a constraint (through eq. 3.16) thatn - 2. However, because we limit
our focus to cases whemeandn are both non-negative and less than 2 (in the
interests of physical sensibility), this constraioes not come into play in our
analysis.

Equation 3.12 has the solution
W, (X,) = W, expl- Q2(X - X,)]= W,Oexp{—%g (1-np22(X - X )}

(3.20)
wherew o is the value oW at Xy asXp approacheX. We solve fom o as follows.

Combining egs. 3.9b and 3.10, we obtain

Jim ZU Zo o, w, (X0 )8, (20)=0(2 - Z,) (3.21)

Multiplying both sides by #(Zo) and integrating ovet, from O to 1 produces

S ety 02 (2 W (2002, = [ 0(2 -2, (2,)oz, @22

j=1 0

O'—.H

Because of orthogonality of the eigenfunctions,|dfieside is zero except wher |,

thus eq. 3.22 simplifies to
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Wi,oaiz_l[u (Zo )¢i2 (Zo )dzo =a,¢ (Z) (3.23)

The Bessel series coefficients are defined asvisllior the case of a Dirac delta inlet
boundary condition, equivalent to imposing a nornadion condition on the Sturm-

Liouville problem represented by eq. 3.14 (Boycd BiPrima, 2005):

2 1 1
%=1 - 1 e-n) T\?
V@ @dz | azl*"F"(J{Miz 2 D dz
0
0
) 1 (3.24)
L s-m) )2
| AZ“m‘”(J{Zv/%iZ 2v D dz
0
Thus eq. 3.23 simplifies to
W, = a4,(2) (3.25)
and eq. 3.10 becomes
G=> al¢(Z) (Zo)exp[—%gz @-n)2 A2 (X — xo)}
i=1
=Y 22002 [20a,z50 > | (3.26)
i=1
@-n)/2 e(@-n)/2v . B 20 ~\2 92 .
.28 M2y 12vA,Z¢ exp - ¢ @-n)® A2 (X - X,)
where the condition
2¢
J,[2v2,]= =23, .22, ] (3.27)
e+1
. . : 0G , « ,
applies, which derives from—| =0, in order to ensure that the “upper’£ 1)

Z=1

transverse boundary condition (eq. 3.6) is met.
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For a point source of strength located atXo,2o), the solution foC is

therefore:

C(X 2, X, Zo)= M i a2z Mg [Zv/rtizg(l—n)/&/]
i-1
2§ vzt | (3.28)

-exp[—%gz(l— n)> A7 (X — xo)} . X > X,
If we define the poink, to be zero on thX axis, eq. 3.28 becomes

C(X,Z,Z4)=M> a?Z®"'?] [2v4,Z°0012 ]
= 5 (3.29)
28023 [2va, 0 ]exp[— St n)zzﬁx}
3.3.2 Incorporating Longitudinal Dispersion
A solution for a governing equation that includtesgitudinal dispersion can
be developed in an analogous fashion, subject taditional constraint: that the

longitudinal dispersion coefficient is a power ftinn of Z with the same exponent as

that of the velocity function, i.e.

- K(Z)C—U(Z)%Jr%(DZ(Z)%}F Dx(z)%+ S(X,Z)=0

(3.30)

where
D, =1Z" (3.31)

The solution to this equation is
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C(X,Z,Z,)=M i[aiZZ(l—n)IZJV[Zvlizg(l—n)/b]
=

. Zél—n)lz‘]v[zvﬂizg(lfn)/ZV] (332)

'exﬂzﬁl‘[(ﬁf +|552(1— n)ufﬂx”, X > X,

Details of the derivation are presented in AppedixAs with eq. 12 in Yeh and
Tsai (1976), equations 3.29 and 3.32 can be thafghg general solutions in two
dimensions for situations in which a single pomtise exists, located at 73).
Solutions for cases of multiple sources can beiddaby integrating the relevant
equation (e.g. eqg. 3.26) over all sources.
3.3.3 Solutions for Non-Dimensionless Domains

Equations 3.29 and 3.32 are solutions to eqsardds3.30 respectively, when
X, =MAX)d(Z — %), i.e. the upstream boundary condition is a Ddelta
function of magnitude M, located along the upstrémmndary at position ().
Note that because the governing equations areeisame form (i.e. all coefficients
power functions of the transverse dimension), smhstfor non-dimensionless
versions of the equations are of the same forngas329 and 3.32, with non-
dimensionless versions of the coordinates and icoaits A, B, X, Z, etc.)
substituted in appropriate places. For examp&estiution to eq. 3.1 is

C(x,2,2,)=M i a2z, [2v2, 270" |

i=1

i (3.33)
28723 [2va,z 02 ]exp[— S5 - n)zﬂfx} L X> X

where in this case is defined by
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(3.34)

3.3.4 Reactor Model

A situation of particular interest for the purpagehis study is the case in
which the “inlet” concentration is constant acrtss width of the domain, i.e. instead
of a Dirac singularity atx,z) we have unifornC; atx, as a source function,
spanning the width of what can be thought of agsiream or inlet boundary, from
z=0 toz = Hatxy. This arrangement is geometrically comparabkbéostochastic-
convective or Damkdhler number distribution (DNIPpeoaches employed
previously to simulate wetland bioreactors (Care®002; Carleton and Montas,
2007). The governing equation with transverseeatispn included has the following
solution for transverse-mean resident concentrat@malized byC; and expressed

as a function ok

C.(X)= %i{exr{—%gz(l— n)z/lfx}

H 1+2m-n M
(J-OH Z(lfn)IZJV[ZVﬂi Zé’(lfn)/Zv ]dZ)(J' az 2 ‘]v|:2‘/2’iz 2v :|de
0
' H n s-n) 1)
J-azm(z 2 J{Zvﬂiz 2 D dz
0

(3.35)
The transverse variance of the above is then difise
j (C(x,2)-C, (x))dz
ol (X) =2 (3.36)

5L=4
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H 1+2m-n £(1-n) |
jaz 2 J{Zvﬂiz 2 }dz

5 z(l”)’ZJV[ZV/LZ‘E'“”)’Zv]exr{—ggz(l—n)z/lfx}
H 1-n £(1-n) a
jazm[ 2] [Zv/iz 2v D dz
0

M-

1,
N

(3.37)
is the concentration at any point4).
Similarly the normalized flux concentration is
C; (X)
H  1+2m-n [ £@-n) ] 2]
{ [az J2vaz > dz} (3.3
m+1 & ) 0 .
= exg ——&° (L-n)? A7x - =
aH ml §|: F{ ¢ ( ) JH 1-n B £(@-n) ] 2
J'a [ Jl2vdz sz
0 — - -
Its transverse-mean variance can be calculated as
[(C(x U@ ~C, (Npean) dz
cl=2 - (3.39)
J' u(z)dz
whereu, ., = iIH azdz= 21
H m+1

The corresponding expressions for resident anddtuncentrations in terms of

dimensionless coordinates are
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i=1

C.(X)= Z{exr{——g @A-n)? X }

1+2m-n &(1-n)
(J‘Olz(ln)IZJV[ZVﬂiZ&(ln)/2V j{IAZ 2] {21//1,2 B :|dz] (340)

1 in c-m T\2
jAzm{z 2 J{Zv/iiz 2v D dz
0

and

C,(X)= m+1 y {exr{—Egz(l— n)z/zfx}
— A
1 1+2m-n £(1-n) 2]
(I {ZV/LZ 2 }dzj (3.41)
0
1
[z

1-n £(-n) 2
(z 2 J{Zv/iiz 2 D dz

respectively, and the dimensionless-space analoigeg. 3.37 is

1 1+2m- £(1-n)
[az > J{Zvﬂiz 2 }dz

X Z =§ 1-n £(1-n) 2
IAZ’“(Z 2 J{Miz 2v D dz (3.42)
0

. Z(l—n)/ZJV [Zvﬂizf(l—n)/Zv ]exr{_%gj (1_ n)ZﬁIZXj|:|

3.4 Parameter Sensitivity Analysis

Because of the constramt= n - 2, the dimensionless model (egs. 3.29, 3.32,
3.40, 3.41, and 3.42) can be viewed as essengallgrned by only five parameters:
A, B, F, m, andp, (orn) (with the equations as written, exponems limited to values
other than unity in order that the solutions doproduce divide-by-zero errors At

0; however solutions can be developed for the spease oh = 1, as detailed in
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Appendix B). Figure 3.2a presents an example nlimethconcentration “surface”
for the dimensionless reactor model, calculated anéaryX-Z space on 20 by 20
point spacing using eq. 3.42 with the followinggraetersA=1,B=0.1,F =0.2,m
=1/7, ando = -13/7 (i.,en = 1/7). Figure 3.2b displays a result generatedgithe
same values foh, B, andF, but exponents = 4/7 andpb = -8/7 f = 6/7). For ease in
visualization, both figures are shown in the statdly equivalent bilaterally
symmetrical form over ak domain that extends from 0 to 2, with the cemnterkt
X=1, and the concentrations féivalues greater than 1 simply plotted as a mirror
image of those obtained firless than 1. The mean difference over the eXtize
domain between the two figures in terms of nornealizoncentration is 0.07, and the
maximum difference is about 0.25. The similarigpioeen the shapes of the response
surfaces, as well as with those produced using atirabinations of exponents (not
shown), suggests that model results are not versitsee to the magnitudes of the
exponents within the ranges of interest (meandn positive anc negative, witlp =

n-2).
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Figure 3.2 Dimensionless reactor model (eq. 3.42) results ¥v& space, with
advective, dispersive, and reactive term multipler 1,B=0.1,F = 0.2; and
exponents: an=1/7,n=1/7,p=-13/7; and bm=4/7,n=6/7,p = -8/7.

By contrast, model results seem to be relativehsgive to the magnitudes of
A, B, andF. Sensitivity to these parameters is examinedhgcafly in Figures 3.3a,
b, and c. The figures display outl&t£ 1) flux concentrations calculated using eq.
3.41, for combinations of all three parametersl. skhulations were conducted using
m=4/7,p = -8/7, anch = 6/7. Figure 3.3a demonstrates model resulttbatsto

various combinations d@ andF, with A fixed. Figure 3.3b similarly demonstrates

model sensitivity taA andB, with F fixed, and Figure 3.3c demonstrates sensitivity to
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A andF, with B fixed. As labeling of the axes indicates, anthasstructures of egs.
3.15 and 3.42 suggest, the relationships showmesetfigures all scale linearly with
the value of a single parameter — eitAeB, orF. The figures also show outlet
concentrations to be more sensitiveRothan toA or B, at least for the selected
values of the exponents. Model sensitivity to dtameous variations iA, B, andF

is examined further in Figure 3.4, which showsnptéated isocontours that represent
three different values (0.2, 0.5, and 0.8) of ndized flux concentration & = 1.

The figure shows a roughly linear increasé iwith A to be necessary in order to
attain a given outlet concentration. A generallbs$ sensitive decreasermwith B

for fixed outlet concentration is also indicatedtbhyg figure.
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Figure 3.30utlet X = 1) flux concentration reactor model (eq. 3.4a5gmeter
sensitivity plots, with: ap fixed, B andF variable; b)F fixed, A andB variable; c)B
fixed, A andF variable.
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Figure 3.4 Interpolated isosurfaces MB-F space, of outlet{ = 1) normalized flux
concentrations (eq. 3.41) equal to 0.2 (green)(l)ie), and 0.8 (red).
3.5 Treatment Wetland Simulations

Attempting to use a value of zero for dispersioafficient parameteb in
order to negate the transverse dispersion ternftsesila divide-by-zero error in the
calculation ofs (eq. 3.15), and theoretically infinite order fbetBessel functions (eq.
3.16), therefore the approaches developed in preg@aragraphs cannot be used to
simulate completely hyperbolic (zero dispersiorgtemns. However, for the case of a
“line” source (egs. 3.35, 3.38) this kind of systeam be simulated using the
stochastic-convective DND model approach (Carle2002). Rather than a Bessel
function series, this approach calculates flux eotr@tion by making use of the

system’s Residence Time Distribution (RTD), whieimde directly calculated from
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the power function velocity profile (eq. 3.3) aidws. The formula for a tracer

breakthrough curve (BTC) following a step conceidrainput at the inlet boundary

is:
(m+1)/m
F(t)=1- (Lr{1+a1)(m+l)/m I_m <t<o
HoH aH ] (3.43)
Ft)=0 t<
®) HT

DifferentiatingF(t) with respect td we derive the RTD as:

(m+1)/m
E(t) = (m+1)(L/n?+)1 t-@mm Lm <t<oo
E(t)=0 t<
() aHm

The DND is then derived from the RTD by employirg £9 from Carleton (2002) as
follows, in whichA andB refer in this case to parameters that relate Daeko
number kt) to residence time(rather than parameters relating advective and

dispersive terms to dimensionless coordiZjte

11
(m)/m A G* e —(1+B+1/m)
(m+1)(L/a2|m+lBA Da & (3.45)
m

DND = E(Da) =

Normalized flux concentration, defined as in e@83and expressed as a function of

fractional longitudinal distancg is then found by integrating over the DND:

11

% m/m Ag e’ —@B+l/m)

cy= | (m+1)(L’ag|m+lBA Da ® e dDa  (3.46)
m

ALB
aBH mB

An example serves to graphically illustrate thelmas. The parameters in this
example area = 0.005m = 4/7 (mearu = 0.015 m/min)f = 10°, p = -8/7 (flow-

weighted meait = 1.710* min); n = 6/7, and this timé is variable, for a variable
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mean dispersion coefficient. The exponentiq the velocity term is set so thais
inversely proportional to the square of velocity, éonsistency with assumptions
used in previous work (Carleton, 2002; Carleton slmhtas, 2007). The dimensions
of the domain are 15 m width1000 m length, which corresponds conceptually with
a treatment wetland of very long, thin dimensi@wgh as might be designed for the
purpose of attempting to minimize short-circuitengd attain a situation as close to
plug flow as possible. Figure 3.5 shows the RTxlics system calculated using eq.
3.44, and for comparative purposes a gamma-pdf pdd3essing the same first and
second moments. Figure 3.6 shows longitudinal ¢omxcentration profiles for the
two DND models that result from these two RTDs.e Blriking differences between
the shapes of the two curves, especiallyfealues greater than about 200 m,
illustrates that flux mean concentration for st@tltaconvective transport regimes is
sensitive to higher moments of the velocity (oidesce time) distribution, and is not

simply a function of the first and second momeiithe RTD.
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Figure 3.5RTDs associated with stochastic-convective trarigpgimes (b = 0), for
cases of: power function velocity profile (solidd), and traditional wetland gamma
pdf RTD (dashed line). Despite the differencehiafee, the two pdfs have the same
first and second central moments.
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Figure 3.6 Longitudinal flux-weighted concentrations from giastic-convective
(DND) reactive transport models, derived from RTd3sociated with: power
function velocity profile (solid line), and gammdf@RTD (dashed line).

The impact of transverse dispersion in the exampthe system governed by
a power function velocity profile is illustrated kigure 3.7, which shows longitudinal
flux concentration profiles for values of reactitenm parametdn ranging from zero
to 0.01. The figure shows thatlascreases, the apparent efficiency of the system a

a whole increases as well, with mean concentratiecening increasingly sharply

with distance.
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Figure 3.7 Comparison of longitudinal flux-weighted concentsas for transport
domain with various degrees of transverse disper&ic= 0 (solid line), b = 0.0001
(short dashes), b = 0.001 (long dashes), b = @o6ttdashes).

Figure 3.8 provides a view of transverse concepotrgirofiles at various
longitudinal distances, for the specific casé @fith a value of 0.0001. The changing
shape with distance of the concentration profile isflection of the impact of
transverse dispersion tending to move constitueaiydrom the less-reactive portion

of the domain (the centerline in a bilaterally syatrnt representation) and toward the

more-reactive areas (the boundaries) as transpmréeds.
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Figure 3.8 Transverse concentration profiles for simulatiomg$ = 0.0001 at
distances x = 2 m (solid line), x = 20 m (shorthees), x = 100 m (long dashes), and x
=500 m (dot-dashes).

Figure 3.9 shows equivalent plug-flow reactor (PkRalues Ker) plotted as
functions of longitudinal distance from the inlgt0). These values were back-

calculated from results of the simulations usirgftillowing rearrangement of the

plug-flow equation

keﬁzgln( G, J (3.47)

X (Cy(x)

whereu is mean velocity, an@; is inlet concentration (unity in this case). Aflthe
simulations show declinink:« with distance (especially near the inlet), corsist

with the observation théts in wetlands tends to increase with increasing &t
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loading rate (Kadlec, 2000). Most striking in figure is the effect ob, which shifts
the entirekess curve upward dramatically as it increases. Higladues ot also

apparently drivék¢ toward (low) asymptotic values more rapidly.
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Figure 3.9Effective plug-flow removal rate coefficients cdaied as functions of
longitudinal distance (eq. 3.43), for simulationshwarious degrees of transverse
dispersionb = 0 (solid line) b = 0.0001 (short dashe&)= 0.001 (long dashed),=
0.01 (dot-dashes).
3.6 Discussion

The simulation results demonstrate ways that thé&iens presented in
this paper can be used to gain insights into intemas of idealized advective,
dispersive, and reactive fluxes governing longmatliransport of constituents. The
example based on a conceptual treatment wetlarsdrdites that the equations
provide a framework for theoretical inquiries sashquantifying the impact of

transverse mixing on bulk removal rates. The authat transverse mixing
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increases performance in a simulated wetland iBtgtigely consistent with both
field observations on wetlands (Kadlec, 2008) dredresults of wetland simulations
by other researchers (Lightbody et al., 2007).n$varse mixing essentially works to
counter the effect of short-circuiting, whereiratelely untreated water passes
relatively quickly through what amount to zonepuaéferential flow, thereby
decreasing overall reactor performance.

The two-dimensional reactive transport equationtsmhs presented in this
paper represent an improvement in realism overique\stochastic-convective
modeling approaches developed to simulate heteemgsnbioenvironments
(Carleton, 2002; Carleton and Montas, 2007), insérese that they incorporate
transverse dispersion as an aspect of longitudinahg, in addition to
heterogeneous velocity. For comparison with resalthis analysis, future work will
investigate analogous stochastic representationslmdunded reactive transport
regimes in which velocity, reaction rate coeffidieand dispersion coefficient are all
treated as random, statistically stationary vaeslstead of simple functions of

geometry.
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Chapter 4:Stochastic Modeling of Reactive Transport in

Wetlands

4.1 Abstract

This study describes the development of a genevdeirof reaction and
performance in spatially heterogeneous bioreastach as treatment wetlands. The
modeled domain possesses local-scale velocitiastioa rates and transverse
dispersion coefficients that are functions of adartying heterogeneity variate
representing one or more controlling biophysictilaites, for example, reactive
surface area (submerged plant) density. Readtiencoefficients are treated as
related to local velocities in an inverse squashifan via their mutual dependence
upon the variate. The study focuses on the salidtiothe steady-state case with
constant inlet concentration. Results compare wighl exact solutions developed for
laterally-bounded systems in which the heteroggneitepresented explicitly.
Employing the bicontinuum analogue of the secoreomodel, an expression for an
effective longitudinal dispersion coefficient afuaction of travel distance is
developed using the method of moments. The rpsoMides insights into the
behavior of concentration as transverse mixingedrithe system asymptotically
toward Fickian longitudinal dispersion. The modely represent an improvement
over other approaches for characterizing treatrwetliand performance because it
accounts for evolving shear flow dispersion, anchliee parameters are few in

number, physically based, and invariant with mealoaity.
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Notation
ab,f
A

C1, C2

ol

DL,oo

K1, K2

ri, 2

1/2

XD1/2

multipliers in velocity, dispersion and reacti@nms, respectively
integrated covariance parameter

characteristic concentrations

mean (resident) concentration

mean (flux) concentration

fractions of continuum associated with each chargstic
concentration

exponents in velocity, dispersion and reactiom#erespectively
transverse dispersion coefficient

effective longitudinal dispersion coefficient

asymptotic effective longitudinal dispersion daént
transverse wetland dimension or period of hetemedy
reaction rate coefficient

velocity-independent decay coefficients in steaidyessolution
intra-continuum mixing coefficient

decay coefficients in steady-state solution

time

heterogeneity variate X&)

coordinate in the direction of flow

distance scale for decay

distance scale for transition to Fickian dispersion

vegetation-litter surface area density, and/oiprecal depth
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Pca

(1,02,¢1,¢2

2
Oc

2
Ot

2
Ox

6, &

coordinate transverse to direction of flow
proportionality constants fd@, k, andu respectively
zero-mean, unit-variance version of w, or eigéuna
longitudinal wetland dimension

correlation of ¢ withi

coefficients in steady-state solution

transverse variance of concentration

temporal variance of inert tracer pulse

spatial (longitudinal) variance of inert tracelge
mean residence time

composite coefficients in steady-state solution
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4.2 Introduction

Wetlands have become popular around the worldvastst systems for
treating various kinds of wastewaters (Kadlec arall&¢e, 2009). Macrophytes in
wetlands may enhance pollutant removal throughri@tyeof mechanisms, including
direct uptake, physical filtration, and enhancenadmhicrobially-mediated
processes. In free water surface wetlands andalaharshes, macrophytes strongly
influence water movement. Flow patterns througth @mund stands of rooted plants
can be quite complex, and may involve recirculaiones downstream of stems
(Nepf et al., 1997a), coherent vortices at therfate between plant canopies and
open water (White and Nepf, 2008), and signifidaterogeneity in magnitude and
direction of water velocities at various spatiadles (Nepf et al., 1997b; Nepf and
Koch, 1999; Green, 2004). In general, plants &served to increase frictional drag
that slows the movement of water passing in thieinity (Champion and Tanner,
2000; Fonseca et al., 1982; Sand-Jensen and ME®®B). Studies have documented
significant enhancement of sedimentation withimgsaof vegetation (Moore, 2004;
Thornton, 1997). Epiphytic biofilms coating subigedl leaves, stems and litter have
been shown to play key roles in processes includitndication (Bastkiven et al.,
2003), denitrification (Eriksson, 2001; Erikssordaieissner, 1997; Eriksson and
Weissner, 1999), and phosphorus uptake (Pietrb, &@006; Scinto and Reddy,
2003). For some chemical constituents then, mlansity distributions in wetlands
may be key influences on distributions of both laedocities and local reaction

rates.
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Because of the physical and biological complexityetlands, and the
general lack of detailed information about the iné workings in any particular
wetland, performance modeling for treatment wettanas tended toward semi-
empirical, black-box approaches that employ minimahbers of parameters to
characterize gross removal. Plug-flow reactor (PfBdels were initially popular
for this purpose (Kadlec and Knight, 1996), butevierund to suffer from systematic
problems, including apparent parameter dependamflew rate (Kadlec, 2000).
More recently, compartmentalized models based kstan-series (TIS) hydraulics
have been advocated as general descriptors thatrador velocity and/or reaction
rate heterogeneity in wetlands, using a minimal Ineinof parameters (Kadlec, 2003;
Kadlec and Wallace, 2009). However the questiontwdther the parameters of such
models are robust to alterations in hydraulic logdas yet to be fully addressed.

As an aspect of hydraulic complexity, researchaxgemoted the existence of
“short-circuiting” in treatment wetlands, which@Ns some fraction of influent to
pass through relatively untreated (Dierberg et2&805; Kjellin et al., 2007; Martinez
and Wise, 2003), thereby adversely impacting reaffeciency. In an extreme
example, a recent study of a wetland in Georgiadoairesidence time distribution
(RTD) that was essentially binary in nature, suet two very different velocities
were judged to be “sufficient to describe water eraent” in the wetland (Lightbody
et al., 2008). Carleton (2002) and Carleton anahtel® (2007) developed wetland
models based upon the concept of broad distribsitidrilow paths whose velocities

are precisely those implied by the transit timea wetland’s RTD. The main
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limitation of this “stochastic-convective” approaishithe absence of mass-transfer
between stream lines.

Adequate characterization of longitudinal mixingynbe crucial to
developing simple yet robust models of treatmeritame performance. As defined
by Taylor (1954) shear-flow dispersion arises frgpatially heterogeneous advection
in combination with scalar diffusion across strdarmas. The early-time behavior of
such a system is stochastic-convective, which spmeds to that of models described
above. After sufficient transverse mixing has ooed, and with proper velocity
autocorrelation systems exhibit an effective lamgjihal dispersive flux that may be
modeled as proportional to the mean concentratiadignt (Berentsen et al., 2005;
Gelhar et al., 1979; Matheron and DeMarsily, 198@)the large-time regime
dispersion is Fickian and transport can be repteddny the classical one-
dimensional advective dispersion equation (ADEkelthe PFR model, the ADE
model is appealing because of its simplicity, whghlso its weakness. Studies on
transport in various media and environments, inalgidvetlands, have documented
solute spreading that cannot be properly charaet@ty the ADE, apparently
because the observed longitudinal mixing correspaomd to the large-time
asymptotic regime (ADE), but to either the earlypdiasymptotic regime (stochastic-
convective), or to the transition between them (O&y7; Gelhar, 1993; Werner and
Kadlec, 2000). A model which incorporates the falige of shear-flow dispersive
behavior, from the stochastic-convective extremghéoadvective-dispersive one,
should be better able to approximate constituenanhycs, including reaction, in such

systems that exhibit intermediate or evolving dispe character.
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The objective of this paper is to develop and es&@a model of reactive
solute transport applicable to treatment wetlahds dvercomes the limitations of
prior approaches by representing the full rangearfsport dynamics from early
advective, through transitional, to large-time kack The model is developed by
volume-averaging of local transport equations wiaevariable related to vegetation
density is taken as the primary heterogeneity t@dae to its governing role in flow
(obstruction and bypass) as well as reaction feafilms and plant uptake)
processes. The results of the theoretical angbyssented in this study are consistent
with the general observations of Lightbody et 2008) but suggest that two
distinctly observable velocities, or groupings iofigar velocities, need not comprise
the flow field in order for two flow paths to adexjaly represent a heterogeneous
system. Rather, we will show that two characteriglocities (and other, related key
properties) derived via canonical transformatioa second-order system of
governing transport equations can serve to reptéisertransport and reaction
dynamics of a system possessing broad distribubbmslocities and reaction rate
coefficients.

To our knowledge mobile-mobile models have notionesly been used to
represent transport-reaction dynamics in wetlamageer heterogeneous ecological
systems. Advantages of the approach are the iliéxib appears to offer for
representing spatially complex domains using orfevg physically-based
parameters, and for simulating systems that raroge $tochastic-convective, to
evolving pre-asymptotic, to Fickian in terms ofitHaulk longitudinal dispersion

characteristics. Although the theoretical workadded in this paper is loosely
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focused on free water surface wetlands, the appnsaiatended to be general enough
to apply to other kinds of environmental systenasgibly including streams, soils,
aquifers, and subsurface flow treatment wetlands.

This paper is arranged in the following fashione Wégin with development
of a correlation-based second-order approximatfdraasport dynamics in a
stochastic domain, and proceed to transformatidheofesulting system of equations
into bicontinuum form. The resulting mobile-mobmedel is compared with mass-
transfer models of biofilm-based reaction in wedlrand then steady-state solutions
for resident and flux concentrations are derivedtie case of constant inlet
concentration (a reactor model). For the corredpmnpulse-loaded system a
moment analysis based on input of a non-reactingtdaent (tracer) is next used to
develop an expression for the effective longitutdispersion coefficient as a
function of travel time and distance. The modehen evaluated by comparing
simulation results with the predictions of a tworénsional transport model in which
heterogeneity is specified as an explicit funcidgeometry. Lastly, conclusions are
presented on the improvements that the propose@lmifdrs over prior approaches.
4.3 Model Development

The transport of solutes within a treatment wetlsnassumed to be correctly
described at the local (stream tube) scale by &enatically longitudinally
hyperbolic (no longitudinal dispersion) and tranrsedly parabolic (no transverse

velocity), two-dimensional advective-dispersiveatege equation of the form:
oc oc 0 oc
—=-k(z)c-u(z)—+—| D(z)— 4.1
k- ud o D)% @)
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wherec represents solute concentratikny, andD are randomly varying reaction
rate, longitudinal flow velocity, and transverséuBion coefficients, respectivelyjs
time, x is longitudinal position from wetland inlet to ¢ett andz is the transverse
spatial coordinate. The transport parametens, andD are assumed to form
stationary fields that result from the combinedsprece of wetland vegetation and of
a uniform hydraulic gradient from inlet to outleEhe available reactive surface area
for solutes X, is assumed to be directly proportional to vegatatiensity and to form
a stationary random field. This quantity is highdrere plants which harbor
microbiota are more abundant and smaller in theztetween such plants. Itis
further assumed that reaction rate coefficientsyé,locally proportional to the
density of reactive surfaces and that flow velqaityis inversely proportional toas
flow is fastest in between plant stands. Basetherprior work of Carleton (2002)
and Carleton and Montas (200@d)andk are assumed to be interrelated via functional

dependencies of each on spatially variable reastiviace area density as:

__ 7
u= NEE 4.2
k= pX (4.3)

Following prior studies, it is expected that flowld variability has a
dominant effect on transport dynamics, and consgtuere define the related
primary heterogeneity variate as follows:

w= X2 (4.9)
The statistics ofv (mean, variance and skewness) as well as its deaistic length
(from its spatial autocorrelation function) arewased known, from appropriate

sampling of wetland vegetation density or possitiyn design specifications for a

110



constructed wetland. For convenience, and in a@ecme with common statistical

practice, the primary variate is normalized to zex@an, unit-variance to produce:

W;W:v_v+/1<yw (4.5)

w

A=

(o}
wherew is the mean ofX ™ (overbars indicate spatial averaging), ands the

standard deviation. By definition thea,=0 and 2 =1. Substituting a change of

variables into eq. 4.2, we express u in terms of
u :})W:;/(V_v+aw/1)=7v_v+7/aw/1 (4.6)
This has the more general form
u=u+p, 4 4.7)
where in this cas@ = yw, and the correlation af with 1 is
denotegp,, = ui = yo,, =o,. We similarly expreskin terms off as follows:
k=pW+o,1)° (4.8)

and expand it in a second-order Taylor series aqmiation

2 2 2
k=B _2Pou ,  3hou 12+...zﬁ{1—2@1+3f—g12} 4.9)
W W

Truncation at second-order is accurate in this edsm the coefficient of variation of

w (i.e. o, /W) is small. In similarity to eq. 4.6, this is dfet general form
k=Ko + P A+ p A (4.10)

whereky and the correlation terms are defined by equataqsy 4.9 and 4.10 term by
term. Using the nomenclature of eq. 4.10, the@pprate mean reaction rate is

calculated as
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K=k +p, (4.11)

since 2 =1. Thisis an approximation df because of the Taylor series expansion
used in the derivation. To both simplify the as&yand render (in a later step)
coefficient matrices diagonalizable, we next empleyassumption that skewness
and kurtosis of heterogeneity are not independwerttare linked by the relation (eq.

46, Montas et al., 2000)

2= 41 4.12)
This assumption is a necessary limitation relabethé fact that in the derived model,
a continuous distribution of values will be approximated by a binary distributi
With eq. 4.12 the following expression for the aade ofk is derived, employing the
assumption that the mean of a sum is approximatghal to the sum of the mean of
individual component terms:
Sy S Y O P
(P S 22+ 296, P g 2 = 2Py 2+ o F 24 = 2y 7 + (0 F
(

P ) 2P X+ f (FZ + 1) ~(p.f

o

Q

~(ow + P P
(4.13)

and a corresponding expression for the standariitav of k:
O % P + P (4.14)

The transverse dispersion coefficient can be espreasing the same general

functional dependence uparandi®as assumed fd

D =Dy + pp A+ pp o A (4.15)
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where meai is given by

D=Dy+p,, (4.16)
since 22 =1. Using the same approach asKothe standard deviation Bfis
derived to be:

O = Py + P (4.17)
Depending upon the nature of the relationship beteandu (or k), the

relationship betweeb and/ may correspond with a truncated Taylor series &si

4.9, or an exact expression as in eq. 4.7. Ewlagrthe general form is
D=ca(W+o,4) (4.18)
whereq is a constant, the magnitude of which determihedunctional forms of the

constant, and correlation terms in eq. 4.15. kanmgple ifq=3/2, then Taylor series

. . 3w’ 2
expansion of eq. 4.17 gives = ow®'?, p,, ZTJW, andp_ . =g%%. For

other values ofj, other definitions of these quantities resultwé# choose=1, then
D is simply proportional tai, in accordance with common practice in groundwater
modeling.
4.3.1 Correlation-Based Approximation

Given the definition of in eq. 4.5, concentration can be decomposed lieto t
sum of a transverse mean and a spatially-fluctgatomponentd’), which is
approximated in terms of its correlation with thetdrogeneity variate

c=C+cC'=C+1p,, (4.19)
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wherep; is the correlation betweeri andi. With this representation, transverse
concentration variance can be estimated from theletion variable as (Montas et

al., 2006):

0l =¢?~(3p. ) = Z(p ) = (pe,f (4.20)
This is only an estimate since concentrations ceatg spatially with other variates,
orthogonal tat, as well but has proven to be a good first appnaxion in prior
studies (Montas et al., 2000; Montas, 2003).

Substituting the preceding decompositionscids, u, andD into equation 4.1

produces the decomposed version of the transpodtien

ot ot
—KoC —kodpe;, — AP C - ﬂzpmpcz_ﬂzpmze - ﬂ’apkfpc/l
=0C 0Py € _ 2 OPu (4.21)
—u —un e g S c :
ox ox o TP oy
0% %(Ap,,) a{ 86} ol ,a(ip,,)
+D +D Lt o, —| A— |+ pp, —| A —2
®oz2 0 oz? N oz
o[ ,,0c o[ ., 0(4pe,)
tp o, —| = |+ p_ | AL
Po; az{ 62} Po; az{ 0z

Averaging eq. 4.21 then produces the mean transpastion

ac - _oc op, o°c
_E_[ko"'pk;;]é_[pm+/13pk/12l0cﬂ,_u__pu,1 Pe +Dy—

02
ot e . OX OX 0z (4.22)
pc _3 IOC
+'0Dﬂza?+le azz/1 DA? P 2}“
in which the following approximations are used
2 1 A2
0 (&Zc&)z A0 fcﬂ -0 (4.23a)
0z 0z
AT AST A2
ﬁ[lﬁ}z °C_o (4.23b)
0z| o0z 0z
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r "2 2
2 ﬂ'a(ﬁ“pcﬂ)} z£|:ﬂ,2 8100/1:|z 12 6 pcﬂ _ 8 pcﬂ (423C)

oz| oz 0z 0z 0z° 0z°

AT A~1 _ A2= 2

% 7 %} ~ 12‘2 o =‘2—f (4.23d)
L z z

2_12 a(ﬂ'pcﬂ) zi 13 apci :Fazpcl (4239)

oz| 0z 0z oz 0z*

Multiplying equation 4.21 by and averaging similarly produces the following

expression for correlation of concentration with tteterogeneity variate:

0P, ey ey v D
8—{12_['0“ +ﬁ“3pk}~2k_{k0+ﬁ“3pkﬂ +ﬂ’4p|¢2 +70pcﬂ}pcl

86 _ U apcl E apcﬂ

_puA& ox ul ox
0%p. ’C —0°C —0°p. — 0°p,
+ Dy 822/1 + Pp; 072 + Py 13g+,004/13 2 A

in which the additional approximations are used

AT AT A2e 9
0|,0€| 7z0¢C_o¢c (4.25a)
0z| oz

N2
gi 1% z;ﬁ% (4.25Db)
oz| 0z

along with the following first-order closure, eqalgnt to eq. 9 of Montas et al.

(2000):

azpcﬂ
02°

—
Doﬂwz_&%ﬂ +D,

4.26
02° A ( )

The approximations in eq. 4.23 and 4.25 are jestifinder the assumption that
varies mildly in thez-direction, and can therefore be treated as a aohgiithin the

spatial derivative terms. Equation 4.26 approxesat dispersive heterogeneity-
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concentration perturbation correlation term with fum of a mean dispersive process
and a local first-order decay processdgr The parametek (see Appendix C for
derivation) represents a characteristic scale@httterogeneity field,, and may be
obtained as a function of the spatial autocorrefatiinction ofw using eq. C11, C15,
or C109.

Next, employing eq. 4.12 again, we express equada?? and 4.24 together

in the matrix form
o] ¢ = N OD + 0 1 + I+EO ! ¢
a| o, = 0 k0+TO o 1 7 Pz 1 7 o,
ul + 0 1 o|¢
Pty 2 ox| oo,
0 1 -0 1 0’| C
+: Dol + pp,; L F + Py, | + 4 L ; 8? o

Using relations 4.11, 4.14, 4.16, and 4.17 thexjgressed more compactly as
ol c k O ..o 1][e
2 —_ _ o =
at pcl O k+_0 “ 1 2'3 pcl
A L
_ 0 1]ls|cC — [0 1]l 82| C
—ul +o, = lr= +<Dl +0, ==
1 2| ox| pe 1 A7) oz° | pg,

Equation 4.28 indicates substantial interactiorte/ben the transport dynamics of

(4.27)

(4.28)

Ccandpy. Reactive, advective and dispersive fluxes ofmmmcentration are partly
functions of the concentration-heterogeneity catreh. Dynamics governing the
heterogeneity correlation are similarly functiofisreean concentration flux terms.

The magnitudes of these interactions are propatitinthe standard deviations of
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stochastic parameteusD andk. In the case of homogeneous values of theseeantit
the interaction terms in eq. 4.28 would disapplearing a simple system of two
separate ADE-type transport equations.
4.3.2 Bicontinuum Form

The extensive cross-interactions betw&eandp.; somewhat complicate
analysis and solution of the system of equatiorexjir4.28. However, the appearance
of the common coefficient matrix in the advectidespersive and reactive terms
offers the opportunity for a linear transformattorconvertc andpc; into an
equivalent pair of ‘canonical’ concentrations whdgaamics are (except for first-
order exchange) independent of each other. Theftranation method is detailed in
Montas et al. (2000), and produces an equivaleanbinuum form from a second-
order system of equations such as eq. 4.28. Fuoifpthis approach, the eigenvalues
of the coefficient matrix in the advective and @isgive terms of eq. 4.28 are first

calculated to be

_ 1/2 — 1/2
/13+(/13 +4) /13—(/13 +4j
,and 4, = (4.29)

A=

The corresponding eigenvector matrix can then Ipeessed as

_/12 /11

— /11_12 /11_12 _ f1 fz

" 1 -1 _|:ﬂ‘lfl ﬂ*zfj (4.30)
Lh=4 -4

wheref; andf, are interpreted as fractions of the medium cooedimg to each of the
two canonical concentration variables in a bicanim approximation of the second-

order system (Montas et al., 2000). The invergereiector matrix is then
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|1 A
P _L /’tj (4.31)

The canonical variables andc, are obtained from the original variables by

multiplying from the left by the inverse eigenveactoatrix

C| 4 C
LJ—P Locj (4.32)

and the original variables may be obtained fromctr@onical ones by the inverse

process

MEN
=P (4.33)
Pca C,

Multiplication of eq. 4.28 from the left By then results in the canonical form of the
transport equation matrix, with diagonalized adwexgtdispersion, and reaction

coefficient matrices, and a full mixing matrix imet first-order terms:

L DO DO -
ofe] ||kt —fon Lo [A olfe
ale |77 D, - . D,|"%
at C2 f_O k+ _0 0 /12 C2_

foeals Al Eeels Al
0 4,||ox|c, 0 4,]]oz°[c,

When written in the form of two equations, it be@mobvious that eq. 4.34

constitutes a bicontinuum transport model withtfosder mass exchange between

continua:
oc D oc 0%c
El: _fz TO(Cl _CZ)_klcl _ul_l+ D1 6221
oc D oc o%c 4.35)
#:_flf(cz Cl)_kzcz U2—2+D2§22

In eq. 4.35 the following notation is employed:
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k1’2 =k + O-k/11,2
u,=U+o,4,,

D,, =D +0p4y,

(4.36a)
(4.36D)

(4.36¢)

Defining the mixing coefficient (a new quantity} f, f, % eg. 4.35 may be

expressed as

ac, L ac o%c,

—t=—-—(¢,-¢,)-kc, —u—=++D,—=*

at f1( 1 2) 1Cy 1 ax 1 072

o L ac o%c (4.37)
C2 2 2
—2=-—(c,-¢)-k,c,-u,—2+D,—=

ot fz( 2 Cl) 2L2 2 ax 2 022

Equation 4.37 is the canonical version of the stigally-based second-order
transport model (eq. 4.28) and is fully equivalenit, expressing all of the same
fluxes and interactions in a form that arguablhyderself more fully to intuitive
comprehension. The model recasts the correlaté@ed system in the form of two
advective-dispersive-reactive continua that intewath each other through a first-
order mass-transfer exchange. The two forms diseifilerchangeable: eq. 4.28 may
be obtained from eq. 4.37 by multiplying from tle& by eigenvector matriR, just
as eq. 4.37 was obtained from eq. 4.28 by multigljiom the left by,
4.3.3 Comparison with Boundary Layer Mass-Transfer Models

The approach described above employs a systenodfriiied continua, each
having its own characteristic properties, to apprate the dynamics of a single
stratified, multi-dimensional reactive transportdhon. The terms in eq. 4.37

involving differences between andc; are analogous in form to expressions of
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diffusive mass transfer between continua sepatatedboundary layer, as will be
shown.
Fick’s first law for diffusion along a concentratigradient (Chapra, 1997) is

bl

J= —
OX

(4.38)

whereJ is mass flux an® is an effective diffusion/dispersion coefficierthis can

be approximated with the following finite-differemequation
J= %(cl -C,) (4.39)

in whicho is the mixing length¢; is concentration in the medium of interest, ants
the concentration on the other side of the bounl#smr. The quantitid/é6 comprises
an effective velocity, which is in this case a mtaassfer coefficient. Kadlec and
Knight (1996) offer the following analogous expiiessfor removal of constituents in
wetlands via mass-transfer through boundary lagen®©unding biofilms adhered to

stationary surfaces (e.g. plant stems and litter)
J= (o%(cl -C,) (4.40)

wherec; in this case is concentration at the biofilm scefd\, is total biofilm area,
Ay is wetland surface area, apds a proportionality constant. Equating egs. 4.39

and 40, we find

(p% -2 (4.41)
or
(phvi - % (4.42)

w

120



whereV,, is wetland volume anlis depth. Rearrangement produces

A_D
(ov Y (4.43)

w
If biofilms are assumed to uniformly coat all veag&in surfaces, then the quantity
A,V is equivalent toX in our notation (vegetation surface area densitym?),

therefore
o _x- P (4.44)

In wetlands) may be interpreted as half the inverse of vegwtadensity
(representing the effective mean distance betwetndolution and reactive surface),

which leads to
X =—2 (4.45)

A simple expression for removal of constituent dgradvective transport in a system
governed by a reaction coefficient of this natuoalg be a mobile-immobile model,

for example of the form

%6 _ _2DX (¢ ¢ )-udl

1

(’58(;[ SDX > (4.46)
_2—_5—(02 _Cl)_kZCZ

ot h

where subscripts 1 and 2 refer to mobile and imiedtuines, respectively, ands
defined as the ratio of the mobile zone voluméeitmmobile zone (biofilm) volume
(i.e.fy/fy). If reaction inside the immobile zone is sufticily fast (i.ek, sufficiently
high) thatc, is negligible compared witty, then egs. 4.46 simplify approximately to

a single advection-reaction equation for the mobaee:
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%z_ZD_xcl_ua_Cl (447)
ot h OX

.. 2DX . . . -
where quantltyT comprises an effective reaction rate coefficient.

For the case of shallow flow over a biofilm-coasedbstrate, such as an algal
turf scrubber® (Adey and Loveland, 1998), a reabtaalue foro would be half of
the water column depth (i.e. the mean diffusivagport length from water column to

reactive surface). This leads to an expressiologaas to eq. 4.46:

oc 2D oc

—= __2(C1 - Cz)_ u—>

ot h OX (4.48)
oc, 2D '
at = _gF(CZ - Cl)_ k,C,

wheregis again the ratio of the mobile zone volume ®ithmobile zone (biofilm)
volume. Again ifk; is sufficiently high that, can be considered negligible, then egs.
4.48 simplify to a single advection-reaction equafior the mobile zone:

o, __ 2D _ oo

o __ P 4.49
ot h2 & ox (4.49)

2D . . .
WhereF represents an effective reaction rate coefficient.

The similarity between the forms of eqs. 4.46 &85 is noteworthy.
Equating the two expressions, we find that the tityaA/f, (see eq. C23) corresponds
with the quantityn/(2X). Both of these terms have units of length sqiiafeor eq.
4.48, NI, equates witth?/2, and correspondence with the form of C23 isragai
evident. Each of these expressions describessdiffldispersive mass transfer
between separate continua or regions. Equatidiisahd 4.48 describe mobile phase

concentration in mobile-immobile bicontinuum modétswhich transport occurs
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solely in the mobile phase and reaction solelyhaitnmobile phase. By contrast, the
mobile-mobile bicontinuum model of eq. 4.35 quaesifa situation in which
transport and reaction both occur in each phasegthat different rates in each.

The mobile-mobile approach of this study has theaathge of providing a
means to address dynamics that result from digioibsi of governing parameters. It
has the disadvantage that one may perceive thecghysterpretation of each
continuum as less straightforward than in the nesisimobile approach, where a
single mobile phase representing the water columts ientirety interacts with an
immobile phase that represents “transient stordge’ad zone”, or a biofilm layer
within which reaction occurs. However in wetlands,in other fluid systems, it has
been challenging to identify what fraction of th@x volume should be ascribed to a
non-flowing “immobile” zone (e.g. within boundargyers), and the present model
provides a mathematical answer to this difficulesfion based on the characteristics
(eigenvalues) of heterogeneity statistics. Moexisely, it indicates that a purely
immobile zone, while conceptually appealing attfaight, results from mathematical
analysis in particular cases only and is not a ggilyeapplicable concept.

4.3.4 Steady-State Analysis

The steady-state case of the transport model (8@),4vith constant inlet
concentration, corresponds conceptually with adaiotor such as a treatment
wetland. In this case, the system is loaded coatisly and the interest is in the level
of load attenuation as a function of distance fiolet for a given set of flow and
reaction parameters. Additionally, for a given laed length, effluent (flux)

concentration provides an indication of the systetréatment performance and the
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level to which it helps mitigate impacts to dowesim aquatic environments. The
results of this type of steady-state analysis @amberted for design purposes to
select the required length, flow rate, and vegetadiensity characteristics that meet a

specified loading rate and effluent concentratidhe steady-state form of eq. 4.37

is:
L oc 0?
0=- 1C1__(C1_C2)_u1_1+D1 (Zl
f, OX 0z (4.50)
0=—k,C —L(c -c,)-u %, p o,
2v2 f2 2 1 2 ox 2 822

Assuming transversally-uniform inlet boundary cdimhs, within-continuum
concentrations must be laterally homogeneous; filier¢he transverse spatial
derivatives of canonical concentrations are zerbtha corresponding terms are
dropped. The influence @, is (importantly) however still present within thexing
termL, which is used to approximate the sum of all tvanse fluxes across the
original two-dimensional domain with an inter-contum first-order mass-transfer

process

(4.51)

This system of two equations and two unknownarn(dc,) is readily solved
using direct substitution, which produces a secom®r ordinary differential

equation for one of the unknowns, e.g.

o°c,

oc
aleLaza—xzwLascz =0 (452)
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where

(4.53a)

o = kl f2U2 + f2U2 U+ k2 fzul Z%{U‘kDA(kluZ +k2ul)j| (453b)
1

a, = kl+@+ﬁ=i E+A(k1k2)
L f, f,

The roots of equation 4.52 are:

1/2
-a, +(a22 —40(1053)
rl =
20,
1/2
ro= —, _(azz _40‘10‘3)
, =
20,

Whena,? > 4ay03 both roots are real, and we have the solutions

{Cl = e +£,e™

C, = ;1erlx + gzerzx

where the constants are interrelated as follows:

51 = (1+f_|_2(k2 + uzrl)jgl

$r = (1+f_|_2(k2 + uzrz)jgz

Applying spatially uniform constant concentratidrilee inlet

{E(O) =C,
Pei (O) =0

allows us to solve faf; and{,
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(4.53c)

(4.54)

(4.55)

(4.56a)

(4.56b)

(4.57)



kK, +u,r

itk s

$,=C—-¢; (4.58b)
These in turn give us values@fandé; using egs. 4.56.

With the values of the four constants in the bicarum solution determined
using egs. 4.56 and 4.58, the resident mean caatien(c) and heterogeneity
variate correlationg:,) are calculated as weighted sums of the concérsatvithin
the two continua, which simplify as shown assuntireg ¢ equals 1 (i.e. solutions

for concentrations normalized to the inlet concaidn):

= fic + f,6, = (f.6 + F,8 )™ + (.8, + 1,4, )

X A X
( D_ k +u2r1)jéllel "'D_(kz"'uzrz)(l_ézl)e2
0
1+ 2 (k, +u,r,) Ko Ul erlx+i(k ruyr, [ 1- Ke U2 o
D, = uz(rz _rl) D, i o uz(rz _rl)

(4.59a)
P =4 T16 +4,1,0, = (/11 fi& + 4, fzé/l)erlx + (/11 fi&o + 2, 1.0, )erzx
A X A X
= 2’1D_(k2 + uzrl)élel + 2’1D_(k2 + uzrle_gl)e ‘
0

0

K Kk
_ ﬂli(kﬁuzrl)(Luzerem LA (k2+u2r2)(1— T, ]e
DO 1) Do

uz(rz —r uz(rz - rl)
(4.59b)
Flux mean concentration is derived as the flow-Wwiad sum of concentrations in the

two continua:
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(s e (s o

u, A o u A IpX
1+ElD_O( +Ur)j§1 ' (1+ElD—(szruzrz)j(l—gl)e2

( 0
u, A K, +u,r u, A K, +u,r

=1+ =2""(k 222 eyl 1 T (e 1_ 2T Hol2 |onx

[ ot v G Bt a2

(4.60)
This model thus consists of a weighted sum of twmoaential decline functions that
represent concentration as a function of (longrafjitravel distance. The multipliers
(weights) of the two exponential terms in eq. 5@0e the property that they sum to
unity. Careful analysis of the components of e§04eveals that; andr; are the
only terms that vary witlu , and that they are inversely proportional toTihe flux
concentration expression (eq. 4.60) can therefenestated in the general form

K;
1 -—2x

cf_eeux+eeu (4.61)
where6, + & = 1.

Recognizing thati =A/ 7, whereA is the length of the domain, ants mean

residence time measured at this location, eq. @aflbe rewritten as

—rclr —KoT

c, =6 *+0,e §=@éW+a—@kﬂ” (4.62)
wherey is fractional distance from inlet to outlet. Etjoa 4.62 is a model of flux
concentration for this heterogeneous system inthuse parametergs(xi,x»), and
they are all invariant with flow velocity. A propg chosen set of these parameters

should therefore produce a model that continuesidénacterize the decline of flux

concentration with distance, even when hydraubaliog rate is changed. This
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contrasts with the situation for PFR models (cosipg a single exponential decline
function), which exhibit a well-documented deperaeaf decay coefficient on
hydraulic loading rate when calibrated against aretlperformance data (Kadlec,
2000).

Because the formulas for mean concentration (resaled flux) that result
from the preceding analysis are sums of two sepa&gtonential decay functions, net
decline curves (concentration vs. longitudinalahse) can adopt more complex

shapes than result from a PFR model. Neverthelesslistance for decay of resident
concentration to half the inlet concentratiog) ¢ x, — a pseudo characteristic

distance scale for reaction, may be a useful migricharacterizing early field bulk

decay within these systems. We calculate thisimesing

Co

S(ip) = = (fid + 1oy Je™ + (11, + o8, Jo™ (4.63)

which leads to

A+B'
2

A'erlelz + B'erlek/z —

(4.64)

where

A= (1+ flsz (kz + uzrl)jgl
(4.65)

LT

Employing the definition of the roots in eq. 4.9 define

.«
a,'=—2
20,

(azz _ 4ala3 )1/2
20,

(4.66)

a, =
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and therefore

2
A+B'

[meewic | prerete |- gt (4.67)

Because, is positive the second term on the left hand idelatively small.
Dropping it leads to

2
A+B'

( A g ); ez (4.68)

and therefore

XY, = ( 1 ,jm( A*?j (4.69)
a,—a, 2A

Although bulk decay is not first order in concetitra, and therefore a true *half-life’

cannot be said to exist (unle@sor & equals zero), equation 4.69 defines the distance
for decay of flux concentration to half the inleihcentration. In the next subsection
we will develop an expression for a similar metaguantify the degree of transition
toward Fickian dispersion. Comparisons betweenesbf the two metrics provide a
rough quantitative indication of the importancdarfgitudinal dispersion as a
potential influence on decay dynamics.
4.3.5 Development of Longitudinal Dispersion

When solute is introduced as a Dirac delta pulskeainlet of a bicontinuum
system, it travels initially as two separate pulsdissolute molecules move at one of
the two velocities that characterize the contintihis is an example of stochastic-
convective transport. As flow proceeds howeveapeélisive exchange between the
continua immediately begins to produce an incrgpiaction of total solute that

travels at velocities intermediate between the ¢haracteristic velocities.
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Asymptotically the system approaches a state irchvall introduced solute has spent
some time in each of the continua. At the Ficlaagmptote, longitudinal solute
spreading appears to occur in proportion to themneeacentration gradient.

At any point during the progression toward the Eokasymptote, an
instantaneous effective longitudinal dispersionfitccient (D) can be calculated from

the time rate of change of the spatial variancaohert tracer cloud (Gelhar, 1993):

2
D, zldax
2 dt

(4.70)

where spatial variances{ ) may be defined for a semi-infinite domain asdals

T(x—i) cdx
o2=20 (4.71)

X 0

jcdx
0

wherec is transversally-averaged (resident) concentrati@longitudinal position,

and X is the spatial centroid of the tracer:

jxcdx
X=2

— (4.72)
jcdx
0

The solution to the one-dimensional ADE with iditandition c(x,0) = 6(X) is

—(x-ut)?

e P! (4.73)

c(x,t) =

1
2,/D
while the formula for a Gaussian probability depsiinction is

—(x-u)

e > (4.74)

1

f(x):ax@
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2

wherep = X . Equations 4.73 and 4.74 are the samelif= 2Dt , or D =%o;x :

2
According to Hunt (19992 = 22X 182" =~ 2% yhen x5 4P
u u u u

where o/ is the temporal variance of an inert tracer clalefined as follows:

2

[(t-7) cdt
ol =" (4.75)
J' cdt

whererzis the time centroid, or nominal residence time;:

[tcdt
r=== (4.76)
j cdt
This implies, at least for solutions to the one-girsional ADE, that
ol =u’c} 4.77)

Therefore an approximate expression for an effedongitudinal dispersion

coefficient is

u®do? u?do’ dx u®do?

2 dt 2 dx dt 2 dx

DL

I

(4.78)

whereu corresponds with the mean velocity)in a bicontinuum model.
The following expression for tracer temporal vadga as a function of travel

distanceX) is derived in Appendix D using the method of maoise

1o (gt 4 L, x-1) (4.79)
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where 4,,, = 1 + 1

1™~ 2u2

(eq. D10). Expanding the exponential term in gda

series produces

2 3
e—LEZmX =1— L/lZmX'i‘ (L//i’ZmX) _ (L/lZmX) +...
2 3

, (4.80)
~1- le X+M

Substituting this approximation into eq. 4.79, vegivk an expression that shows

concentration variance at small valuex proportional to the square xf

J— 2 2
O_t2 ~ f1 fZ(UZ ul) 5_2 (481)
u,u, u

. . . . X
Noting that mean residence tim@ for distancex equals—, we then calculate
u

dimensionless variance (e.g. for an RTD) for thar+ieeld transport situation as

G_tzz fl fz(uz —U1)2 (482)
t? u,u,

As x increases, the magnitude of the exponential taregi 4.79 declines, and
the variance approaches linear dependence die transition from stochastic-
convective to Fickian spreading is thus charaaterizy tracer cloud variance that
changes in a first-order fashion from proportiotyavith the square of travel distance
to direct proportionality with distance. The efige “decay” coefficient governing
this transition from stochastic-convective to Faskspreading ikl,n, and a

corresponding distance scale for the mid-pointefttansition is therefore

o _In@) _[ A | Uy,
Xy)p = A _(DOJ( = jln(Z) (4.83)
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Taking the derivative of eq. 4.79 and substituttrigto eq. 4.78, we derive

the following expression for the effective longitoal dispersion coefficient:

_ 2
L “12) Wl (CLg, et 1 Lay,) (4.84)
(LZ’Zm) u1u2

As x goes toward infinityD, approaches a constant value asymptotically:

—3 2 _ 2 — 2 2
p,, =L 9o _ Ll mufO_Auufol) g f0f) gy
2 dx ‘X:m uu,LA,, D, t

t2
The asymptotic dispersion coefficient is proporéibto the near-field dimensionless
variance, as eq. 4.85 indicates. Employing anesgmon for closure parametéy,’

for periodic heterogeneity represented using aneoBourier series expansion
(Appendix C, eq. C19), the asymptotic longitudid&lpersion coefficient can be

expressed in the form

_2H%0(u, —u,)’ & bf

4.86
DOJ’Zmuluz n=1 rn2 ( )

L,00

whereH is the period of the domaih, are Fourier coefficients, amgare associated
wave numbers.
4.4 Model Evaluation

In related work, Carleton and Montas (2009) depetbanalytical solutions
for a two-dimensional steady-state advective-dsiperreactive transport equation,
in which velocities, reaction rate coefficientsgdransverse dispersion coefficients

are all treated explicitly as power functions o transversez) dimension:

k= fzP (4.87)
u=az" (4.88)
D =bZ (4.89)
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Solutions, which employ a Fourier-Bessel series@ggh, include the following
expressions for normalized resident and flux cotreéinns respectively, when inlet
concentration is uniform across the width of thendm:

¢ () =

H H 1+2m-n £(1-n)
(J'O z(l‘“)’ZJV[Zv/lizg(l‘”)’zv]dzj jaz 2 J{Zv/liz 2 }dz
0

1-n £(1-n) 2
J'az (ZZJ {2\//12 2v D dz

(4.90)

—Zex;{ —ei(1- n)zﬂ,z}

and

Ci(X) =

1+2m— B e@-n) ]

H 2
j az J2vdz ¥ |dz
0 i (4.91)

Z ——8 (1 n)z/lz ( L
I

L r c-n) )2
az"|z?2J,|2viz ¥ dz

m+1
aH m+1

The corresponding transverse variances of resatahflux concentration are given

by
T(C(X' 2)-c, (X))’ dz
o (=" (4.92)
z,-7
and
T(C(X 2)u(2) -, (X)umean) dz
O-ﬁux = 2 z, (493)
Iu(z)dz

where
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c(x,2) =

H 1+2m-n £(-n)
jaz 2 J{Zvﬂiz 2 }dz
Z 0
| in sa-n) T\?
J'azm(z 2 J{Zvﬂiz v D dz

0

Il
=

£(1-n) b
2"y | 2vaz exr{——gz(l— n)z/lizx}
a

(4.94)

Results using the bicontinuum model (egs. 4.594a6d) can be compared
with results for systems such as these (eqs. 48@ ®1) with identical low-order
moments, but in which the heterogeneity is maddéi@xpThree related examples
serve to illustrate comparisons between resultergéed using the two models (i.e.
explicit and stochastic heterogeneity) for varigakies of the transverse dispersion
coefficientDy. For consistency with an example explored in €arl and Montas,
2009, we employ the following parameters in theliekgheterogeneity case:
a=0.005,m=4/7 (' =0.015 m/min)f=10°3, p=-8/7 (flow-weighted meak=1.7x10*
min™); n=6/7, ancb varies between the three examples, spanning @ ®@rtw/o
orders of magnitude between example 1 and exampléh& domain of the 2-D
simulations is 15 m in width by 1000 m in lengWelocities, reaction rate
coefficients, and dispersion coefficients all varyhez (transverse) dimension, while
transport occurs in thedirection. For the stochastic/bicontinuum moties,

previously stated parameters correspond to theviillg: W =8.954<10: c,=3.495

x 10% 2 =-0.445; y=16.7;$=8.96<10". The value of closure paramefeis 21.72

m?, as calculated using eq. C19, and for the firangxe

(b=10" we haver=19.3 andDy=5.1710* m*min.
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For this example, as Figure 4.1a illustrates, ilmeikgated transverse-mean
resident concentration from the stochastic modgl4€59) is nearly identical to the
corresponding result obtained using the explicileldeq. 4.90) over the length of
the domain. Flux concentration curves for thisnegke (not shown) trace nearly
identical trajectories for the two models as wétandard deviations of transverse
concentration in the two models are also very sintd each other, as shown in
Figure 4.1b. Effective longitudinal dispersion idigrthe course of the stochastic

simulation within the given domain remains pre-agiotic, as seen in the continual
growth of D, (Figure 4.1c). Values otl,, and x>, in this example are 56.7 and 293

m respectively, indicating that early concentrati@cay happens at about five times

the rate of the transition from stochastic-conwecto Fickian dispersion.
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Figure 4.1aTransverse resident mean concentrations from 2adgtstate reactive
transport simulations as functions of transportefision X) for: model with
heterogeneity explicitly specified (dashed linejd dneterogeneity modeled
stochastically (solid line). Governing transpaatgmeters ar@ =1.50<10° m/min,

k =1.63<10" min™, Dp=5.1%10" m?/min; o,= 5.84<10°, &,=-1.10<10",
Op =-3.73<10% First through third moments of heterogeneityaterl are the same
in both models.
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Figure 4.1bTransverse standard deviation of resident condamtras a function of
transport distance) for the same systems as shown in Figure 4.1aehwath
heterogeneity explicitly specified (dashed linajd avith heterogeneity modeled
stochastically (solid line). For the latter, thee is equivalent to correlation of local
concentration with the heterogeneity variate
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0 200 400 600 800 1000
x (m)

Figure 4.1cEffective longitudinal dispersion coefficient #min) for the stochastic
transport system as a function of travel distanf@henDy=5.17%10* m?/min,
determined using eq. 4.84.

System eigenvalués andi; (which equal 0.8021 and -1.2467 respectively in
this example) represent characteristic values td@rbgeneity variaté. These values
of A can be mapped directly onto values of#fomordinate in the explicit
heterogeneity model as follows, usihgor illustrative purposes. Equating the

expressions for velocityf as a function olvand as a function af(eq. 4.6 and eq.

4.88 respectively), we expresf terms ofw:
,_ (ij m (4.95)

Employing eq. 4.5 expressed in terms of eigenvalue
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W, =W+ 4o, (4.96)
equation 4.95 becomes a relation between a chasdici®alue of the heterogeneity

variate in the stochastic model, and the correspgrtdansverse spatial position in

the model with explicit heterogeneity:

2= (g(m ﬂm)} (4.97)
Using eq. 4.97, the values afandz corresponding witl; andi; in this case are
found to be 10.9549 and 2.1174 respectively. Logial & dimension)
concentration transects taken along these valuesdhe explicit model are
expected to correspond reasonably closely withathearistic concentratiorgg and

C2, Which are of course associated wittand/, in the stochastic model. Figure 4.1d
shows that close concordance of this kind doesrandhis example. Differences
that do exist between the curves can be attribuatedrt to the influences of
transverse boundary conditions in the explicit togieneity model that are absent
from the stochastic model, where lateral periogidtassumed. The greater the
magnitude of transverse dispersion relative toatitith of the domain, the more these
boundary conditions (Neumann at maximgnand joint Dirichlet/Neumann at

minimum2) are likely to influence transverse mean concéoing, and the more one

might expect the two models to produce differestilis.
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Figure 4.1d For Dy=5.17<10* m?min case: canonical (stochastic model)
concentrationsgf andc,), and corresponding longitudinatdimension) transects
(explicit model) forz-dimension values corresponding with eigenvayesnd/,,
according to eq. 4.97. For each model the lesdlgageclining curve corresponds
with 1;, and the more rapidly-declining curve corresponis 7.

When the strength of transverse dispersion is asze by an order of
magnitude =103, thus & =193 andD=5.17%10° m?/min) and advective and
reactive parameters are kept the same, the resauit @ven better match between the
two models in terms of mean concentration (Figuga)} but a slightly worse match
of concentration standard deviation (Figure 4.2%dtably in this case in contrast
with the previous one, as a result of the greatersverse dispersive flux,

longitudinal dispersion essentially reaches théigrclimit by about a fifth of the

distance along the transport domain (Figure 4.Z¢)e asymptotic value @, is
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substantially lower in this example than valueaia#id in the first example. This is
consistent with expectations based on eqs. 4.63 &4d as well as with results of
related analyses by other researchers (Fische®, Balhar et al., 1979; Matheron
and deMarsily, 1980), who have also found coeffitseof longitudinal dispersion to

be inversely related to coefficients of transveligision/dispersion in shear flow.
Values of x{,, and xJ, in this second example are 68.3 and 29.3 m resphgt

indicating that net concentration decay happedaiit half the rate of the transition
to Fickian dispersion.

As in the first example, concentration transeatm@lthex-dimension foiz
values that correspond with the eigenvalues claselich the bicontinuum
characteristic concentration;, (@ndcy) longitudinal decline curves (Figure 4.2d).
These first and second examples illustrate hovdyimamics of two-dimensional
heterogeneous reactive-advective-dispersive trahfplals can be closely
approximated by much simpler two-path represematiby making use of the
equivalence between second-order and mobile-mblmtntinuum models (Montas
et al., 2000). Examples 1 and 2 demonstrate hitbrrespondence between models

is robust under a range of varying “Fickian-nessloingitudinal spreading.
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Figure 4.2aTransverse resident mean concentrations from 2&dgtstate reactive
transport simulations as functions of transportatision X) for mean transverse
Do=5.17%10" m*min: model with heterogeneity explicitly specifiedashed line);
and heterogeneity modeled stochastically (solig)lirFirst through third moments of
heterogeneity in the two systems match each other.
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Figure 4.2bTransverse standard deviation of resident condamtras a function of
transport distance) for the same systems as shown in Figure 4.2aehwath
heterogeneity explicitly specified (dashed linajd avith heterogeneity modeled

stochastically (solid line).
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0 200 400 600 800 1000
x (m)
Figure 4.2cEffective longitudinal dispersion coefficient #min) for the stochastic

transport system as a function of travel distanf@vhenDy=5.17%10° m?/min,
determined using eq. 4.84.
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Figure 4.2d For Dy=5.17<10° m?min case: canonical (stochastic model)
concentrationsgf andc,), and corresponding longitudinatdimension) transects
(explicit model) forz-dimension values corresponding with eigenvayesnd/,,
according to eq. 4.97. For each model the lesdlyageclining curve corresponds
with 1;, and the more rapidly-declining curve corresponis 7.

In the third example, transverse dispersion isgased by another order of
magnitude i =102, & =1930 and=5.17%102 m?/min). The resulting matches
between the stochastic and explicit models in teohmean concentration (Figure
4.3a) and concentration standard deviation (Figusb) are notably poorer in this
example than in the first two. This may be a restithe approximate representation
of k (eg. 4.8), which as compared with the expliciehegeneity model, tends to

underestimate reaction rates at valuestbft correspond with very low velocities

(i.e. the region of space wheét@pproaches infinity in the latter case). Largaues
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of transverse mixing tend to move more constitu@otthis zone, increasing net
reaction in the explicit model more than in thechstic one.

Matches between the characteristic concentratipasdc,, and concentration
transects alongvalues corresponding to the eigenvalues (Figuge)4are also much
poorer in this example than in the previous twawdver an ADE model with fixed
inlet concentration boundary conditions (soluti@1" of vanGenuchten and Alves,
1982), and employing the asymptdiic value of 0.0143 Rimin (eq. 4.85), matches
the bicontinuum model results for resident mearceotration quite closely (Figure
4.3a). It should be noted that for the first twxamples, analogous ADE model
results (not shown) are not especially close toritiacuum model results, an

observation which illustrates the limitations o tADE in pre-asymptotic situations.
Values of x, and x, in example 3 are 65.6 and 2.9 m respectivelycititig that

early field concentration decay happens at aboettaentieth the rate of the
transition to Fickian dispersion; as Figure 4.3ove$, asymptotic dispersion is
attained almost instantly. Evidently the quicks#@ion to the Fickian regime in this
example allows the ADE to provide an adequate aqymation of the
transport/reaction dynamics that are presumablyeriudly represented by the

bicontinuum model.
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Figure 4.3aTransverse resident mean concentrations from 2adgtstate reactive
transport simulations as functions of transportatision X) for mean transverse
Do=5.17%10? m*min: model with heterogeneity explicitly specifiddng dashes);
heterogeneity modeled stochastically (solid lire)] 1-D ADE solution (short
dashes). Figure displays only the first 500 mheftransport domain for clarity.
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Figure 4.3bTransverse standard deviation of resident condamtras a function of
transport distance) for the same systems as shown in Figure 4.3aehwaith
heterogeneity explicitly specified (dotted linefdawith heterogeneity modeled
stochastically (solid line).
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Figure 4.3cEffective longitudinal dispersion coefficient td) for the stochastic
transport system as a function of travel distanf@henDy=5.17%10% m?/min,
determined using eq. 4.84.
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Figure 4.3d For Dy=5.1710% m?/min case: canonical (stochastic model)
concentrationsgf andc,), and corresponding longitudinatdimension) transects
(explicit model) forz-dimension values corresponding with eigenvayesnd/,,
according to eq. 4.97. For each model the lesdlyageclining curve corresponds
with 43, and the more rapidly-declining curve corresponis A,.

Results from the bicontinuum model simulations gghe transverse
dispersion coefficients of Figures 4.1 through@8=5.17%10%, 5.1%10°, and
5.17x10% m?min) are displayed together for comparative puegds Figure 4.4.
Resident concentrations are shown in Figure 4mahich the three simulations are
seen to produce similar results for about the fiedt of net decay, and then to
diverge from each other for the remainder of tineusations, with greater transverse

dispersion resulting in more rapid decline. Bytecast, flux concentrations from the

three simulations and a stochastic-convective ex@amich are shown in Figure
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4.4b, begin to diverge from each other immedia&¢lghe ‘inlet’ k=0) end of the
transport regime, with greater transverse disperaiso resulting in more rapid
concentration decline. This result is qualitatpvitle same as results obtained using
the explicit heterogeneity model. These exampéssahstrate that the
stochastic/bicontinuum model developed in this pépeapable of approximating
reactive transport quite well in systems that raingen essentially stochastic-
convective to essentially Fickian in terms of tHemgitudinal dispersive
characteristics. Figure 4.4b can be directly caegbavith Figure 3.7 in Chapter 3,
which shows results from the explicit model for H#ane set of governing

parameters.
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Figure 4.4aResident concentration from stochastic/bicontinumadel with same
parameters as used in Figures 4.2-4.3,ywb.1710% m?min (solid line),
Do=5.17%10° m*min (dashed line)Dy=5.17102 m*min (dot-dashes).
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Figure 4.4bFlux concentration from stochastic/bicontinuum maodiéh same
parameters as used in Figures 4.1-4.3,@pad (solid line),Dy=5.1710* m%min
(short dashesPo=5.17x10° m%min (long dasheso=5.17x102 m*min (dot-
dashes).
4.5 Summary and Conclusions

A second-order representation of two-dimensionabp® medium transport
governed by correlations between flux parametatgggetive, dispersive and reactive)
and domain biophysical attributes, was used toldpwen equivalent mobile-mobile
bicontinuum model representing a spatially hetemeges environment such as a
treatment wetland. Model solutions, developedtiercase of steady-state flow and
constant inlet concentration, comprise a weighted ef two exponential decay
functions for describing mean concentration asnatian of distance in the direction

of flow. An expression was also developed to gitite spread of an inert tracer in
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the same system, allowing model results to be exaanin light of evolving shear
flow dispersion. When pre-asymptotic longitudidapersion predominated, model
results compared well with solutions generatedrmtizer model in which
heterogeneity (in a direction perpendicular to flavas treated as an explicit, rather
than stochastic, function of domain geometry. Bytrast, when effective
longitudinal dispersion approached the Fickian gstpte early, model results were
similar to those obtained using a one-dimensiod2EA The model thus appears well
suited for characterizing reactive transport irehegeneous environments exhibiting
a range of longitudinal dispersive characteristics.

The second-order stochastic/bicontinuum model eyl in this study
approximates a continuous distributionofalues with a binary distribution (Montas
et al., 2000), and constrains higher moments (dd.)40 values defined in terms of
the 0" through %' moments. An analogous approach employing a tiilcoam
approximation to a third-order system can be eamisd, which would similarly
approximate thé (or X‘“Z) distribution with a ternary distribution, therelmgreasing
the accuracy of the approximation, and permittireg4” and %' moments of the
distribution to also be accurately represented ({sl®2003). In this approach a
second heterogeneity field, orthonormal tas defined using orthogonal
polynomials, and terms representing correlationsysftem variables with this second
field are employed. A mass-balance expressioresgmiting correlation of
concentration with the second field constitutekialtgoverning equation, and
canonical transformation produces equations faelwharacteristic concentrations,

with mass-transfer interactions occurring betweschepair of continua. Solution of
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such a system of three equations would producera ommplete representation of
the distribution oft than the bicontinuum approach allows, and cornesipgly

better approximations of transverse mean concémtrahd variance &3, increases.
The difficulties in solving such a system of eqaas may be daunting however,
including the challenges of diagonalizing 3 x 3 meas for unconstrained
parameters, and of defining approximate disperfdieclosure terms for such a
system. This task and inclusion of longitudinakenegeneity remains areas for future
investigation.

Models typically used to characterize treatmerttamel performance tend to
be of a fairly simple, black-box variety becauseroital processes occurring in
wetlands are often complex and incompletely undedstand because information on
biophysical attributes that affect these processeften lacking. A key challenge for
simulating treatment wetlands would seem to beripley models that contain the
minimum number of parameters necessary to adeguatddody the key processes
that determine performance. Although initially ptgr as empirical descriptors of
wetland performance, PFR models have been foubd tf limited usefulness
because their reaction rate coefficients oftenlakppsitive correlation with
hydraulic loading. ADE models are also of questlila value because longitudinal
spreading in wetlands appears to often be of apyeiptotic variety as a result of
preferential flow paths or short-circuiting. Retapproaches that consider internal
spatial heterogeneity (Carleton, 2002; CarletonMpodtas, 2007) and temporal
chemical heterogeneity (Kadlec, 2003) have showmpge in circumventing the

parameter flow-dependence issue. However, thgaeaghes are potentially limited
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in their usefulness because they embody inhersongstions of strictly stochastic-
convective flow, and a retreat from mechanistiagespntation and toward pure
empiricism, respectively. To be of maximum utilitgodels should employ
parameters that are in theory independently meblsynahenever possible. The
mobile-mobile model developed in this study mayppealing for this purpose
because it is physically-based and contains adunitumber of parameters.
Significantly, mean velocity is a component of toenposite governing parameters
(i.e the exponents in eq. 4.61), making it posdibleonsider its effects separately,
and therefore leaving as potential unknowns ontampaters that should be invariant
with flow. Evaluation of the adequacy of this mbfie the purpose of analyzing
wetland performance data remains an area for figtuety, as does comparison of

model results with those of DND and TIS-based agpgines.
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Chapter 5:Further Model Analyses and Comparisons

5.1 Introduction

The bicontinuum wetland reactor model develope@hapter 4 was evaluated
against analytical solutions for idealized transpegimes governed by equivalent
parameters, and found to produce similar reslteemaining task is to compare the
bicontinuum model against the relaxed-TIS modéerms of the ability of each
model to match data measured in actual wetlantiss Ghapter is organized as
follows. Section 5.2 explores mathematical relaghips between bicontinuum
model unknowns within the context of constraintpased by information that may
be obtained from an RTD, and reduces the list &awns to a total of three
essential underlying model parameters. Sectiomd@n@ares the bicontinuum and
relaxed-TIS models to each other in terms of thbilities to match concentration
decline curves from two FWS wetland case study gtesnn the literature. Section
5.4 presents a discussion of the results.

5.2 Bicontinuum Reactor Model Parameters

For wetlands in which inert tracer studies havenbmmducted and an RTD
measured, the mean velocity Y may be readily determined Az, whereA is
wetland length and is “detention time”, i.e. the first moment of tR&D (eq. 4.76).

A second key characteristic property which may éenined from an RTD is
“dimensionless variance”, obtained by dividing tlagiance (second central moment)

of the RTD (eq. 4.75) by the squarerofFor a gamma-pdf shaped RTD, the
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dimensionless variance equala &nd is therefore invariant with distance, implyang
longitudinal dispersive mixing process that is btstic-convective.

By contrast, for the bicontinuum model develope@apter 4, dimensionless

variance @/ /%) varies with distancex| according to

2 2
or A WS By (v ) (5.1)
v (Lﬂzm) U, x*

In the near-field limit this becomes (eq. 4.82)

J_t2 _ f1 fz(uz — U1)2

r? u,u,

(5.2)

Upon substituting into eq. 5.2 the relatiamg =0+ p,1,, (€g. 4.36b) and the
relations (see eq. 4.30)

A4

Ay

f, = A and f, = -7, (5.3)
where (eq. 4.29)

A, = 5 (5.4)
eg. 2 becomes

o _lw) (5.5)

T u,u,
By expanding the denominator in eqg. 5.5 we expl@asurement of near-field

dimensionless variance to develop an expressidndlaes the unknowns,; and

2%to each other:
u,u, = (U + pulﬂ’l)(U + Puts ) =u*+ :OMUE - (pul )2 (5.6)
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and therefore

O-_t2 — (pul )2 (57)

4 u’ +puAUE_(puﬂ )2

Rearranging eq. 5.7 we derive the following quadrmtpression fop,,:

1 _3 _
(1+(ﬁ)j(pul )2 _u;tspul -u?=0 (58)
o It

the roots of which are

Ui+ U\/(?)z + 4(1+ ol /rz)
2(1+ atzlrz)

Pur = (59)

Becausepy, is a positive quantity, only the positive root pucds a physically

sensible solution, therefore we have

_ UE+U\/(?)2 + 4(1+ ol /rz)
Pu = 2(1+ atzlrz)

(5.10)

All of the parameters in the derived expressiomsfpo.;, andc: (egs. 4.59

through 4.62) can be expressed entirely as furetdmnknownsds, f, W, W, ki, k

andL, and therefore ultimately af , py;, ? k , o, andL. Of these six variables,

mean velocityu is presumably known (for example determined fromRTD as

described above), ang, can be expressed using eq. 5.10 as a functigh ibhear-

field dimensionless variance is also known, redgitihe total number of unknowns to

four: 2% K , o, andL.

Another relation between variables may be explaitetie following fashion,

in order to reduce the total number of unknownthtee. Equating the expressions
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fork andok in egs. 4.11 and 4.14 term-by-term with the cqoesling terms in the

Taylor series expansion (eq. 4.9), we find

= B 3pBo’ W’ +302
k:k0+pk,12:?+ W4 :ﬂ W4 (511)
and
—  2Bo, 3Pol 20, W—3021°
Oy = P+ P A= e 28 = /{— = (5.12)

Dividing eq. 5.12 by eq. 5.11 eliminatésnd produces the following

o, 30;‘;? -20,W

Making use of the relations = yw andp,, = yo,,, €q. 5.13 becomes
ﬁ_s(puﬂ)zls_zpulﬁ (5 14)
< uteap,) |
pul

Eq. 5.14 expresses, as a function ok , E andu, and thus reduces the total

number of unknowns to three, ed), k , andL. This is the same as the number of

unknowns in eq. 4.62, however as this analysishawn, the latter parameters are

entirely functions of the former. Further, whi_Fe k , andL are essentially

unconstrained (except thiatandL are non-negativeys,«1, andx are constrained by

the relations in egs. 5.10 and 5.14. Dimensionlassance thus serves to essentially

impose limits on allowable values for parametrsa, andx». If dimensionless

variance is known, it would thus be an inapproprizde of eq. 4.62 to optimize

parameters by fitting the model against a datasieg an error minimization routine

such as the Solver function in Excel (which usgsereralized reduced gradient
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algorithm qttp://support.microsoft.com/kb/2141))50r Isquonlin in MATLAB®

(which uses either an interior-reflective Newtontinogl, or a Levenberg-Marquardt

method fttp://dali.feld.cvut.cz/ucebna/matlab/toolbox/optisgnonlin.htmy).

Rather, a more defensible approach constijcts;, andx, from unknowns?, k,
andL, and then minimizes model error by optimizing sets of the latter
parameters.
5.3 Evaluation
5.3.1 Comparisons Between Wetland Models

The “weathering” phenomenon suggested by Kadle@3R® be at least
partially responsible for PFR parameter dependeneater quality constituents that
aggregate multiple chemical entities together, darages attempts to develop simple
but mechanistically sound models of constituentoeshin wetlands. Kadlec’s
analysis suggested that if constituent weathenthheeterogeneous velocities occur
concurrently, their effects will be indistinguistalirom each other, leaving empirical
models as essentially the only option. For thigppse Kadlec proposed the use of a
“relaxed parameter” TIS model (eq. 1.12) in whikh parameters are determined
solely by curve fitting. Carleton (2002) also derswated that even for a simple
(non-aggregated) water quality constituent, a Ttleh with empirically-determined
parameters can generate results nearly identi¢hbse of a stochastic-convective
model derived from a gamma RTD and incorporating®Déffects kt proportional to
t%). The bicontinuum model of Chapter 4 also incoapes these kinds of DND

effects, but within the context of a mechanistiodgion. The parameters of this

model (F,IZ, andL) may be unknown or difficult to measure, but tlaeg physically
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based and constrained, at least to some extettielegree of short-circuiting
reflected in the measured dimensionless variaRaher than making use of known
RTD variance to constrain parameter selection mesway, the relaxed TIS model
ignores such information, with the only constrdiaing that am value obtained by
fitting outlet concentrations against fractionadtdnce or residence time (eq. 1.12)
will be less than an value for the same system obtained from an RTD34q.
Because constituent weathering confounds the sestithort-circuiting and
DND effects, to evaluate the performance of a iicolmm or DND model (Carleton,
2002) compared with that of a TIS or relaxed-TISdelppreferred water quality
constituents are those that are simple ratherdaggregated, and therefore do not
“weather”. Constituents that may be suitable fos purpose include NgNH,",
NOs3, OP, xenobiotics (e.g. pesticides, personal caréyets), and certain biological
entities such as viruses. To avoid confoundingci$f related to simultaneous
production of these entities, concentrations oépbél precursors should be minimal.
For example in systems treating MNH,", minimal organic nitrogen should be
present. When this is the case, the possible sais®n-zero background
concentratiorC* (see Chapter 1) are limited to hydraulic shortwiting, assuming
that external sources of the constituent are nib{gig The DND and bicontinuum
models are both designed to directly address si@uiting mechanistically, thus the
inclusion ofC* as a (non-zero) parameter is unnecessary as svedtantially
confounding for model interpretation. Apparent@amtration plateaus may arise in

these models entirely through selection of suitphbl@meters.
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The two parameters of the TIS model (eq. 1.12)elftections of flow
velocity heterogeneity and net reactiork]. Similarly the three “ultimate”

parameters of the bicontinuum model are measurfievefvelocity heterogeneity

(E) and net reactionk(), along with a third parametdr)(that reflects net transverse
mixing, a process not considered in the TIS modéle bicontinuum model may thus
be expected to provide a better match to wetlamfpeance data than the relaxed-
TIS model, to the extent that transverse mixintugrices mean concentration
decline.
5.3.2 Texel Treatment Wetlands

Toet et al. (2005) studied the effect of retentiore (wetland water volume
divided by mean flow rate) on nutrient removal aragdlel FWS wetland cells treating
tertiary wastewater effluent in Holland. The wastter was not nitrified, so roughly
equivalent concentrations of NGnd NH," were present in the effluent. Retention
times of 0.3, 0.8, 2.3, and 9.3 days were studiezight cells: for each retention time,
one each planted withhragmitesandTypha Biweekly grab samples collected over
the course of a year at the inlets and outlets wsed to calculate annual mean %
removals of various conventional pollutants, inahgoNO;” and NH,".

Figures 5.1a and 5.1b show the removal data, foy Bt NH respectively,

as functions of retention time (i.e. from multigiells), along with best-fit TIS,

relaxed-TIS and bicontinuum models. BecalismdL are system properties they
should be the same irrespective of constitueng the parameter optimization

routine (Excel Solver) was used to select a singlae for each of these, while

choosing parameter-specific valueskofone each for N@ and NH*) that
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minimized the total model error summed for bothstitnents. The relaxed-TIS
model parameters were optimized in the same mawntitéra singlex value used to
represent the decline curves of both constituamid,optimization used to seldct
values for both constituents simultaneously. Modr data were reported, so the
bicontinuum model employed the default assumptfdRD dimensionless variance
=1/3, equivalent te. = 3 in the TIS model. All three models provided f
representations of both data sets, however thextineoum model produced the
smallest total summed-squared-error across botstiteents: approximately 0.020,

as compared with 0.021 for the relaxed-TIS moded, @030 for the TIS model.
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Figure 5.1 Toet et al. (2005) data plotted as a function t#neon time ¢), and best-
fit bicontinuum (solid line), TIS (long dashes)damelaxed-TIS (short dashes)
models, for a) Nkl and b) N@. Bicontinuum model has system parametérs-
0.303 and. = 1.94<10”, with k = 0.917 & and 0.638 d for NHs; and NQ'
respectively, while relaxed-TIS model has “shaperameter = 1.188, andk =

0.622 d" and 0.439 dfor NHs and NQ' respectively. TIS model has= 3 andk =
0.501 d" and 0.339 d for NH; and NQ' respectively.
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5.3.3 The San Jacinto Wetland

Chendorain et al. (1998) studied the removal of M&8ibhage virus in a
California surface flow constructed wetland witkeahating zones of vegetation and
open water. Cell dimensions were 70 m in lengbh’ In wide, and 0.46 m deep.
The one-dimensional ADE was found to produce a dad bromide tracer RTD
data using a Peclet numbé&e(=Au /D, whereA is wetland lengthu is mean
velocity, andD is longitudinal dispersion coefficient) of 5.8.sidg the following
equation (Dierberg et al., 2005), we calculate ftbms information a value of 0.3496

for the RTD dimensionless variance:

S

2
2 2 pe
= e (1-eP) (5.15)

—+|

Phage concentrations were measured at six disténoceshe inlet along the
main flow path of the wetland. These data demartesstrongly non-first order
decay, with a steep decline in concentration rfeairtlet, relatively gradual decline
thereafter, and therefore “a large discontinuitgtiieen apparent PFR removal rate
constants for the first 3 m, and for the rest efwetland. Presumably there are no
edaphic processes capable of generating enteusesrwithin the wetland, thus the
concentration plateau may result solely from hyginaanic short-circuiting within
the wetland. Alternatively the steep early dechmay be the result of phage
inactivation or aggregation caused by chemicakd#fices (e.g. osmotic potential or
pH) between the stock solution and the wetland ivatethe authors speculate.

Figure 5.2 displays this data, along with best8, relaxed-TIS and
bicontinuum models. Figure 5.2a shows the datanaodkl results plotted as a
function of travel distance and Figure 5.2b shows the same information for In
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transformed data and model results. In this corsparonly the relaxed-TIS model

provides a decent fit to the data set beyond tise3im of travel, where the

concentration plateau is found.
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Figure 5.2Chendorain et al. (1998) data and best-fit bicantm (solid line), TIS
(long dashes), and relaxed-TIS (short dashes) med#t a) concentrations and b)
In-transformed concentrations, plotted as functioitsavel distancex].
Bicontinuum and TIS models have dimensionless mada 0.3496, in accordance

with inert tracer study results.

The preceding comparison suggests that the refak&dnodel provides an

unambiguously better representation of the Chemdldiaa set than the bicontinuum
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model is able to. However, the apparent lineaftthe data displayed in log space in
Figure 5.2b suggests another possible interpretafidfve domain may be envisioned
as composed of two non-interacting continua (iiéh wixing parametek equal to
zero), one of which has zero velocity, aigr0. If this is the case then the input

concentration never “enters” the second domaineatsremaining at the inlet, and as
a consequenqe(o* )/c;i = f, = 1. Solution of eq. 4.50 in this case reduces to a PFR

equation of the following form:

c, = f, explk;zy] (5.16)
Figure 5.3 displays the same results as FigureeXc&pt that in this case the
“bicontinuum” model fit to the data is eq. 5.16thvoptimized values of parameters
f, andk.. This model, witt;=0.16 and;=0.043 &', produces the lowest summed
squared errors of any of the models tested, andftire a better representation of the

data than the relaxed-TIS model.
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Figure 5.3Chendorain et al. (1998) data and best-fit bicantm (solid line), TIS
(long dashes), and relaxed-TIS (short dashes) med#i a) concentrations and b)
In-transformed concentrations, plotted as functioitsavel distancex].
Bicontinuum model in this case is a single PFR rhotithe form in eq. 5.16.

5.4 Discussion

In the Texel wetland example the bicontinuum masisken to produce a
slightly better overall representation of Blahd NQ' decline curves (as a function of
retention time), than produced by either the (fixgd'1S or relaxed-TIS models (eq.
1.12). Given that the bicontinuum model includeséditional parameter, this is
perhaps not surprising. However the optimizadlue of 1.9410" reflects a

negligible degree of transverse mixing: the assedid, is approximately & 1P m,
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so the system is essentially stochastic-convecfilaus the inclusion of an extra
parameter to quantify transverse mixing is supetfuin this example: the two-
parameter relaxed-TIS model apparently incorporsuéfecient information to
account for the shapes of the concentration declinees, without the need to invoke
transverse mixing. The effect of transverse dsparon the shapes of mean
concentration decline curves may in fact be fatiptle, as the results in Figure 4.4a
and 4.4b suggest. Unlike in comparisons agaimstrétical models with exact
solutions, such as the one developed in ChapteaByetland monitoring data are

often noisy enough to confound unambiguous paranmm@grpretation. Thus it may

be difficult in practice to accurately “measure’lues of 2 andL through inverse
modeling, or even to ascertain when the bicontinnuwdel provides a better
representation of performance data than other readeluch systems. One important
difference between the bicontinuum and TIS modeis the shape of the tails at
large time/distance, which exhibit exponential dexd in the former case, and power
law declines in the latter. This may enable thaxed-TIS model to better represent
concentration plateau effects arising from shaidtsting. However, alternative
interpretations of the bicontinuum model may alib¥o provide superior
representation of wetland dynamics for some sibuatias the Figure 5.3 example
demonstrates. In this example, the immobile comitin may be envisioned as
corresponding to a portion of the medium in whitimediate phage
inactivation/aggregation occurs, in concurrencé e mechanistic interpretation of

their data offered by the authors of the study (Clogain et al., 1998).
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Chapter 6Summary and Conclusions

6.1 Summary

The primary objectives of the work described iis gtudy were to develop
new modeling approaches for wetlands that accomfitiee specific aims: 1)
develop and evaluate a version of the DND modehloipof accounting for
temporally-varying flow and influent concentratiop23 develop and evaluate an
analytical model of reactive transport in a systeith spatially variable flow velocity
to serve as a benchmark for evaluating simplifiediets, and 3) develop and
evaluate a wetland performance model that coneamaimal number of parameters,
but which uses stochastic principles to accountHerinfluence of spatial
heterogeneity on advection and reaction, and wédounts for transverse diffusion
and the development of shear flow dispersion. @hdpaddressed the first of these
goals, Chapter 3 addressed the second, and CHagtelressed the third. In Chapter
2, an RTD measured under steady conditions was oeslef, and presumed to apply
under varying flow conditions as well, but with §pHy-local velocities scaled by the
temporally-varying bulk flow rate, such that reside time-on-exit and
corresponding net reaction are calculated withiividual stream tubes, and then
summed to produce mean exit concentration expressadunction of time. The
approach, as implemented in MATLAB® program “Wepdg¢Appendix E),
successfully simulated effluent TP and B§ine series from wastewater treatment
wetlands in California and Florida respectivelyd atiminated the flow-related bias

in model errors produced by a PFR model of ondede wetlands.
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The PFR model commonly used for simulating treatmestland
performance suffers from limitations related tote&ddneterogeneity in controlling
biophysical attributes. Wetland flow velocitieg &reterogeneous as a result of
vegetation density and/or depth variations, andamnds are thus characterized by a
degree of hydraulic short-circuiting. For someeavajuality constituents, the same
variables (vegetation density, water column deftta) affect flow velocities on a
local scale also affect local removal rates. Tdmlzined effect of these two
influences is net reaction that does not necegsaahifest as simple exponential
decline of mean concentration with distance ontge time.

When heterogeneous velocities are accounted fondiuransverse
diffusive/dispersive fluxes, the result is a DNDdaweb(Carleton, 2002) that can
essentially explain PFR parameter dependence on dlod non-exponential mean
decline curves. However the DND model (and itsev@empirical analogue, the
relaxed-TIS model) are potentially hampered by la@olimiting simplification: that
flow is stochastic-convective. Like plug flow, shastic-convective flow is a
conceptual idealization that is never completelgiaed in reality, because diffusion
is never zero when concentrations are non-unifdmmts original incarnation, the
DND model was also limited to steady-state flowditons with constant influent
concentration, another idealization that does naoespond with the general situation
in real wetlands.

In Chapter 3 an analytical solution to a two-disienal time-invariant
advective-dispersive-reactive transport equatios generated for a rectangular

domain in which advection, dispersion, and reactesms were all specified as
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simple power functions of the transverse dimensialutions for transverse-mean
resident and flux concentrations for domains witifarm inlet concentration
(spanning the upstream boundary) were examinedkeadized representations of a
treatment wetland possessing something like a \peshdepth profile with fringing
vegetation whose density increases toward theahsll Simulations were used to
demonstrate the beneficial impact that transvelgexghhas on reactor performance
as a function of distance from the inlet. In othverds, it was demonstrated that in a
system with a heterogeneous flow field and reastitime presence of transverse
diffusion can improve removal efficiencies compat@dystems that lack such
transverse mixing.

In Chapter 4, analogous representations for ldyamabounded, periodically
heterogeneous domains were developed by volumeaginer of stochastic versions
of two-dimensional transport equations. Correspanticontinuum (mobile-mobile)
representations were generated by canonical tnanafmn of the governing system
of equations. Expressions for transverse condamtraariance, as well as RTD
variance and effective longitudinal dispersion @ogfnt as a function of travel
distance were also derived. The bicontinuum muaeal shown to closely reproduce
results from the idealized heterogeneity (Chap}evetland model under pre-
asymptotic conditions, and of a one-dimensional AIDEer nearly-asymptotic
(Fickian) dispersive conditions.

In Chapter 5, bicontinuum model results were comgbagainst TIS and
relaxed-TIS (and therefore by implication, also DNiodel results in matching

effluent concentration data from two real world Metls treating inorganic nitrogen
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and coliphage, respectively. In the former exantipdebicontinuum model gave a
slightly better match to the data, though optimipadameter results suggested that
flow was essentially stochastic-convective. Inldteer example only the relaxed-TIS
model produced a reasonable match to the concemntidecline curve, unless the
bicontinuum model was reinterpreted as specificalhon-interacting mobile-
immobile model, in which case the model producedhbst fit to the data.

Despite the limitations that these two examplessithte, the bicontinuum
model may prove valuable as a simple (three paexnetodel for application to
wetlands or other bioreactors that are adequatelyacterized by neither stochastic-
convective nor Fickian dispersion models. The rhadarild be most practically
applicable to long wetlands where the transitiamfra stochastic-convective to a
transitional and possibly near-Fickian mixing regirea more likely to become
important. The bicontinuum model is distinguisiiexn the DND model by being
physically based and entirely derived from firghpiples, with parameters that are in
theory (if somewhat difficultly in practice) indepagently measurable rather than
strictly empirical in nature. By contrast, the DMibdel is semi-empirical in nature,
requiring either a measured or an assumed RTD wsiplesumed to derive entirely
from a distribution of advective velocities. Hoveeyvelocity distributions alone
cannot account for the classical skewed bell cshape of a wetland RTD
(especially for the fastest moving tracer partiglagain because some diffusion must
occur, even within transport systems dominateddweetive velocity gradients.

The relaxed-TIS model (eq. 1.12) appears to beltamd matching nearly

perfectly the decline curves produced by a DND rhdumvever with parameters
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interpreted as empirical, which must be selectadnwerse modeling. For complex
constituents, Kadlec’s analysis (2003) suggeststtiamodel can account for
concurrent “weathering” and DND effects. Succedssfylication of the non-steady
version of the DND model to BOZimulation in the Gustine wetland example
(Chapter 2) implies that the non-steady DND model ltcandle complex constituents,
though associated parameters should be interpcatgwusly, i.e. as more empirical
than mechanistic in nature, in the absence of abefirmatory information. For
simple (non-weatherable) constituents, successfuld of the relaxed-TIS model to
concentration decline curves in the Chapter 5 exasnpnd of the non-steady DND
model to effluent TP (essentially composed enticélglissolved P) data in the
Orlando Easterly Wetlands example in Chapter 2]yrtifat the DND construct can
provide an adequate mechanistic explanation foervesl concentration decline
curves. However, connections between the paramet¢he relaxed-TIS model (eq.
1.12 withC* = 0) and the parameters of RTDs for the sameands have yet to be
elucidated in a quantitative way, either theordiyoar with data. This task remains
an area for further study. Further evaluationathithe bicontinuum and DND
models, by fitting each of them against data gets fadditional wetlands and
perhaps other kinds of reactive transport systengs §treams, rivers) is also called
for, to better determine the sorts of conditiondamwhich each model might provide
the most useful and/or accurate representatiorsagfive constituent removal.
There are however at present very few publishegmxental studies that provide

the necessary quantitative data for FWS wetlands.
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6.2 Conclusions
The following specific conclusions were obtaineahfrthis work:

o0 In a non-steady-state version of the DND modeljlitesompared reasonably
well with measured wetland effluent time seriesie Thodel presumes flow to
be entirely stochastic-convective (transverse diffn/dispersion is assumed
nil).

o Unlike a PFR model fit to monthly-averaged dataréhwas no correlation
between non-steady-DND model error and hydrauldilog rate. However,
magnitudes of errors (deviations from measuredeglwere about the same
for both models.

0 An analytical model of an idealized two-dimensioadVective-dispersive
reactor with space-varying coefficients was devethpepresenting perhaps a
wetland with a roughly “U shaped” depth profile &ndging vegetation. In
simulations, increasing transverse diffusion/disjmar resulted in improved
reactor performance (lower mean concentrations).

0 An analytical model of an advective-dispersive teawith stochastic
heterogeneity was developed by using various obsstar approximate higher-
order correlation terms. For steady-state conuitian bicontinuum form the
model reduces to a weighted sum of two exponedéeline curves governed
by a total of three parameters representing mestersyattributes (essentially
velocity heterogeneity, net reaction rate, andsvarnse mixing, respectively).

o For low and intermediate degrees of transversenmgjxvherein the effective

longitudinal dispersion coefficient either contiiyancreases, or essentially
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reaches its asymptotic limit about a fifth of thaywthrough the transport
domain, bicontinuum model results (including residsoncentration and
transverse standard deviation), nicely matchecetlfrosn the corresponding
idealized heterogeneity model.

o For a high degree of transverse mixing, whereireffective longitudinal
dispersion coefficient essentially reaches its gugiic value early in the
transport domain, resident concentrations matchedesults of a one-
dimensional ADE employing the asymptotic longitwadidispersion
coefficient.

o Comparisons of model output against real wetlard slaggested the
bicontinuum model may represent wetland performdatter than the
relaxed-TIS model in some cases, but not in afle fielaxed-TIS model
appears to be more flexible in terms of concemnatiurve shapes that it can
assume, however the model has the disadvantagengf éntirely empirical
in nature. By contrast, the bicontinuum model pa@smeters that are
physically meaningful and therefore potentiallyepeéndently measurable.
Unlike the relaxed-TIS model, measured dimensieesiance can be used

to potentially constrain allowable values of biacontim model parameters.

As environmental conditions worsen in thé'2&ntury, restoration and/or
construction of wetlands grows in importance astemial method for halting the
general loss of ecosystem and hydrologic functiamsle simultaneously improving

water quality. This study has focused on theocaktispects of reaction and
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hydrodynamics in wetlands. The resulting developimeontribute to understanding
of processes that determine wetland transport behaand should enhance the
ability to quantitatively analyze wetland functi@nd to design treatment wetland
systems. It is hoped that these developmentdeaidl to improved ability to
construct or restore wetlands that meet multiptdaggical management objectives,
including treatment of polluted water.
6.3 Recommendations for Future Research

The results of this study highlight the need fotHar research in both
experimental and theoretical fields related to areds. In the area of field research,
more concurrent flow and concentration data cadi@ett multiple locations within
individual wetlands are needed, to better elucifladamental relationships between
these entities. Correlations between flow and entration and measurable variables
presumed to directly affect each of them, espgciadyetation surface area density,
would further permit investigation of assumptioagy( eqgs. 4.2 and 4.3) used in
developing the models in this study. A relatechakpotentially fruitful
investigation is development of methods for meaguspatial distributions of
vegetation density in detail via remotely sensedgeanalysis. If this can be done,
then it may also be possible to estimate paramstefs as integrated covariance
measure A’ (Chapter 4) through analysis of the same sorimafjes. An obvious
next step would then be to investigate the potetgmporal dependence of such
parameters.

The model-data comparisons of Chapter 5 highlighreasing need for

additional effluent concentration data collecteahifrindividual wetlands operated
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under ranges of hydraulic loading rates, to allowrerthorough evaluation of models
such as those developed and/or discussed in thig.stThis sort of data would be
especially useful for water quality constituentattare of a simple nature, so that
constituent weathering is eliminated as a potdgta@nfounding factor in
concentration decline. In addition to FWS wetkrapplication of models explored
in this study to SSF wetlands (both horizontal edical flow) may prove to be a
worthwhile endeavor. The bicontinuum model in jgatar may have application to
naturally biphasic systems, such as wetlands cteaizaed by significant advection in
both free water and underlying porous medium phases

In the area of theoretical research, incorporaiogorption into transport
equations represents one relatively straightfornimgtovement. Application of the
bicontinuum model to time-series inputs (as oppdsedeady-state), with
appropriate solution of the full time-varying eqoat(e.g. eq. 4.37) is also a potential
next step. Another possible improvement, as sugdes Chapter 4, would be
development of a tricontinuum approximation vihiad-order equation system,
thereby increasing the accuracy of the approximatiger that of the bicontinuum,
and permitting the2and %" moments of the heterogeneity variate distributimhe
accurately represented. Based upon the outcoi@bapter 4, one suspects that the
results for steady-state might be a weighted suthret exponential decline curves,
though this remains to be seen. Regardless, thease in accuracy and flexibility
provided by such a model would in all likelihoodrbere than offset by the increased

number of parameters requiring values for fittiogvietland data sets.
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The derivation of stochastic models with transvenséang whose early-time
behavior is similar to that of the DND or relaxetsTmodel also remains as an area
of future study. In the bicontinuum model develdpethis work, transverse mixing
is represented by first-order interactions betwaartinua, which lead to the dual-
exponential form of the steady-state concentratiofile. Alternative inter-continua
transfer formulations that may lead to a power4amn of these distributions should

be investigated.
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Appendix A: Incorporation of Longitudinal Dispersion

The governing mass-balance equation includinghgitodinal dispersion term
is obtained by employing eq. 3.31 in eq. 3.30, @larth the definitions used

previously for other transport parameters:

2
—FZPC—Azm§+i(BZ”§j+|ZmaE+S(x,2):o (AL)
oX oz 6z oX

Boundary condition (eq. 3.6) is assumed to apply,tae Green’s function approach

of eq. 3.7 is employed, which in this case produces

2
Azr 6 _rzpc+ 2| Bz2r C | iznfC Lo, x5 x, (A2)
X 0z 07 0

7=
0 0 0 ><0

in place of eq. 3.9a. The eigenfunction problemesponding with eq. 3.12 is

2
a +('—Ja - WO (A3)
X, \A)ax?

This is a second-order ordinary differential equativith roots

_ A+ A1+407
A (A4)

21

I,r =

Only the root with the positive sign produces agtglly sensible result, therefore

the solution fow; corresponding with eq. 3.20 becomes

A AV A 2 12
W, (X,) = W ; X {Elz(z—lj +I—Qi} ](XXO) (A5)
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Expressing the eigenvalue in the form of eq. 3at8l recognizing again that,

equalsy g (Z), A5 is written as

wi<xo>ai¢i<z>ex{§{[§jz+,ﬁeza )’ iﬂ ](x—xa}

(A6)
and therefore
G= Z'Ol:aiz¢i (Z)¢,(Z, )ex [%‘H%) +|—A82(1 n)’ ilz} }(X - X,)

_ iaizz(l—n)/sz [zvlzizg(l—n)/&/]

i=1

1/2
-n e(l-n)/2v A A ’ A B
2§23, Jova, 25> Jex [EKE] et ”)zxﬂ }(X_X(’)

(A7)

which leads directly to equation 3.32.
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Appendix B: Solution when n=1

Relton (1965) provides the following comprehengen of the Bessel

equation

1- 2« a’—v?¥

y”+Ty’+|:(ﬂyx71)2 +T}y= 0 (B1)
whose general solution in terms of the same paemet given as

y=x"C,(px) (82)

Comparing eq. 3.14 with (B1), we see that 1_Tn y = 2+—r;1—n , and

A 1/2 ZQ
p= [—J — "' which leads directly to eq. 3.17 whes 1. Whem =1 we
B 2+m-n

have

m+1 A2 20
a=0,y= ,andpg = [—J '_. The analogue of eq. 3.17 for this case is
2 B m+1

#(20) = J{(?) 02, } ®3)

and modified eigenvalues are defined using thevotig alternative to eq. 3.18:

A = (ﬁJl ZQi (B4)

In place of egs. 3.19 and 3.20 we have

#(Z,) = JV[V/% Zorm7 } (BS)
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and
F o
Wi(xo):Wi,o exf{_xii (X_Xo):l (B6)
The expression for concentration, analogous t@ &9, is therefore

o mi1
Cc(X,z,2,)=M Zaﬁa{vziz 2 }

i=1

m+1 (87)
-J{v/lizoz}exp{—%/if(x - xo)} X > X,
with coefficients given by
1
al = (B8)

1 m1 T2
jAzm(J{vziz 2 D dz
0
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Appendix C: Normalized dispersive flux closure calalation

We begin by considering the perturbed mean-remegedtion with

transverse dispersion:

% 522

oc'

oc
—=—-Ap,0(t)—+D C1
6t pul ()aX ( )

wherec'= 4p.,. We define the normalized transverse coordin&te/H, whereH is
half the period of lateral heterogeneity, or thdtwiof the domain for a bounded

2 2
system. Thusa—c—i a(i and 0 gz 12 0 2 . Expressing C1 in terms of the
0z Hoz 0z H* 0z

normalized coordinate we obtain

% - —lpuﬂé'(t)% +% 62202 (C2)
Employing Duhamel’s theorem, the solution to trgsiaion is

. ox Faz) e

c(z.t) =—pul&H jme ¢ dz (C3)

The dynamics of the heterogeneity correlation ascdbed by

e He(z,-2 f
2l T (Z )/1(2 ) - 4Dyt
U T

po(Z. 1) = AC(Z 1) = puﬂ dZdZ (C4)

We define the normalized lag distarsce- 2 — z: and reverse the order of integration

to obtain
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* 86 wl * * * *e *
G (Z )=—p, —H? || [A(Z)A(Z +s)dz ds
Pz D) ==pu— Lh(l)(l )l}m

H2s'2
T aDyt

(C5)

e

JAmDt

where Coy(s*) is the covariance dfin terms of normalized lag distance units.

ds

_ 86 2 % *
=Py H j Cov, (s)

For calculation of the closure we compare the alesealt to an analogous
result obtained from the perturbed mean-removedteguwhen a first-order

approximation is used in place of the transverspatsion term:

oc' oc D
—=-Ap,0(t)—-—2cC C6
8t puﬂ ( ) 8X A ( )
The solution of this equation is
- Do
C(@0) = —pu S HDe N (€7)
X

Similar to eq. C4, the dynamics of the heteroggreatrelation are given by

- . PYIIOVETN oc ., Dt o, o
P (Z D= AZ)C(Z ) =-p, 2 He * [a(z 2 Joz
OX 5
] (c8)
o, o
= —py —He A
puﬂ 6)(

The difference between C5 and C8 is minimized tiveg in an integrated sense by

setting
[lpu (2 .0 - poa(Z )bz =0 (C9)

which leads to

H2s™
A T Loe P
o= HJ;:[OCOVA(S )———dsdr (C10)

0 \ArD,T
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. * D * D 2 *
We next definer =H—°Zr, and thereforalr :H—‘;dr, anddr:H—dr .
0

Substitution leads to

S2

A=H ZT TCovl(s*) e’
0 -

Narr

We definemy,(r) as the unnormalized spectral density of

dsdz’ (C11)

m, (1) = — [e* cov,(s')as (C12)
2r ¥
thus
Cov,(s) = j €' m,, (r)dr (C13)

Substituting C13 into C11 and changing the ordenteigration, we obtain

SZ

A= szmM (r)”e"s* © 47* ds'dz dr (C14)
S 0w \arr

which simplifies to

2 ©
R LU QR (C15)
27z r?

—00

If 1 is periodic, and can be represented by a cosingd¥series of the form

M(Z')= Y b,cosf,z) (C16)
in whichr, = n% and the Fourier coefficients are obtained using

b, = Jl'/l(z*)cos(rn Z)dz (C17)
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as in Montas et al. (2000), then

Cov, (s') = ibﬁ cos(,s’) (C18)

N=—ow

Substituting C18 into C11 and integrating over spaed time, we obtain the

following additional definition ofA:

2~ by 2 by
A=H _zr—2=2H er—z (C19)
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Appendix D: Temporal moment calculations

Following the procedure of Valocchi (1989), the &gbr of the system
following pulse introduction of a non-reactive tea@t the upstream boundary is
investigated by first considering transformatioriled appropriate boundary
conditions to corresponding conditions for the cacal equation system, i.e.:

c(0) == 5(x)
u

(D1)
Pei (O) =0

whered is the Kronecker delta function. Substitutioroiet). 4.32 produces

O] 1 472X
LZ«»Hl zj 0

0

(D2)
or

6.(0)=c, (0 = 2N

(D3)
The governing transport equations for a non-readtacer within the

canonical version of the heterogeneous systemterfast are:

ocC L oc

—1=——(C1—C2)—U1—1

ot f, OX (D4)
%L —c)-u

ot £, 2 Y%

The temporal moment operatorﬁs“[ t. Temporal moments, of order n, of the
0

flux mean concentration are defined as weightedaaes of the corresponding
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moments in the two continua. Applying the momepgrator to the left hand side of

one of the equations in D4 we have
Tt“%dt:t“c . —nTt”‘lc dt=t"c| —nm® (D5)
! at 1 0 ) 1 0 -1

which simplifies to

forn=0:¢| =-c(t=0
Gl =—¢(t=0) 06)
forn>0:¢|  =-nm?

Applying the moment operator to the right hand sitiB4 for the case af=0

produces:
L omg’
6@ = (m -m?)-u, =
|i omg? ®7
e (0 =——(m? _mo)_y. Lo
2 (0) == (m? -m?)-u, =2

Rearranging and expressing D7 in matrix form weaobthe following system of

linked equations governing the ‘zeroth’ moment:

1 -1 c, (0)
o|m| | fu fu | m u,
&Lnéz) "N 1 e |60 (b8)
f2u2 f2u2 u2
or
M _ I aM=cC (D9)
OX

The eigenvalues and eigenvectors of coefficientimatare:

D10
1+1 (D10)
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and

S 1 -f,u, (D11)
1 fu

The inverse eigenvector matrix is:

f f
gt :l{ 1 2u2} (D12)

ul -1 1

Defining transformed versions of the moments aitéalrconditions respectively, we

have:
1
gl
or
S'™M =V (D14)
and
¢ (0)
u,
or
S'C=w (D16)

The diagonalized version of D8 is therefore:
V. A 0 ||V W,
e I Y T (D17)
OX| V, 0 AV W,

N LAV +W (D18)
OX

or:
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Forn=0, we have initial conditions:

¢ | |as(x)
— u1 — UIU
= c,(0) | | as(x) (D19)
u, u,u
therefore
ao(x)
1 fu,  fou, u,a
} u{ 11 | a5 (b20)
u,a
and
oV ao(x)
a_xl =-LA, Vv, +W, = 2
%: -LA,.V, +W, =-L 1 + 1 v, + aa;(zx) )
ox fu,  fou, u U U
(D21)
This has solutions
a
57 +0;
‘o [ftft}{a(l 1} } (022)
e ™ 242 __2 o + gz
uslu, u

whereg; andg, are constants. To find the values of these cotstae employ the

initial conditionsV (0) = S™M (0) :

vivO | _ 1]fu fu, % _ % (D23)
vO] al-1 1 ]3| |0

This leads to
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0

V = {% } (D24)

and therefore

s LA

In other words,

Q) _ @ _
m{’ =m{ =8/ (D26)

and the zero-order moment of the flux concentragon

- 1s). o 1) o2

uy u u u

With the zero-order moments given by eq. D27{-frsler moments are then

calculated using

1 -1 mg”
® T0 tu mo o
%ma}—t Myt ma} o (D28)
fzuz fzuz u,
therefore
A 0
e I B (D29)
OX| V, 0 AV, W,
m?
[ u
where in this cas¥ =S| |, |. We also re-defin& = m(()lz) , and therefore
m,

U,
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a
Wl = U_Z
. a i_i (D30)
2 o?lu, u
which leads to
a
U_2X+ 91
V = o a 1 1 (D31)
g,€ Tt | T
LA, U0 (U, U

whereg; andg, again represent constants of integration. Akénzero-order case,

we find the values of these by making use of titelrconditions

wO] 1ty fum?
[vz«»}‘u{—l 1 L&‘Z’ <o>} (5%2)

wherem® (0) =m® (0) = @ Therefore

=X
V=
—a i_i (e—lemx _1) (D33)
LA, 0% \u, u,

and the first-order moments are derived throughiratultiplication:

2 x
1 -f,u, TR
|\/|:SV:{1 ‘y } _a 1 1Y) . (D34)
1-1 - - |- _ - (e 2m _1)
LA, 0% \u, u,
leading to
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f (D35)
ml(z) :% X — M1 1 (e—uzmx _1)
] LA, (u, u

ax
m(") = = (D36)
The mean residence time (first central moment)es tcalculated as
(f)
rep ==X (D37)
my u

Second-order moments are calculated using the appreach as first-order

moments, but in this case starting with

1 -1 2ml(1)
o | m{ fu fu || MY u
. :_L 1+ 11 2 + 1 D38
fzuz fzuz u,

As before, we use the diagonalized version of tbenent equation matrix
V. A 0 || v W,
i 1 — _L 1m 1 + 1 (D39)
OX| V, 0 A,V W,

2m®
) }

. : . gl M . _ u,
where V is again redefined, this time 88  |»and C is redefined 52ml(2)
m2

u,

We have in this case
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W = 2ax 2atf Ju—u)(1 1 (e‘”ZmX—l)
ool Li,0°  (u, u

(D40)
‘e 2a(f Ve + fV )(i ij(eu”“x _1)
u’u,u,

LA, 0°uu, (u, u,

Skipping some tedious arithmetic, use of D40 wiB8[n the same process that

produced D35 from D29 and D30 produces in this:case

m® :%Xz _ 2af1f2(u2_3— ul) 1 1 X — Zaflfz(uzz_ul) 1 1 (e—umx _1)
U LA, u, u (LA, Yo® \u, u
~ 2afu,(u, -u,) s 2af,v,(f,v2 + f,v2) 1 1

LA, T%u,u,

xe e
LA, 0%u,u, u, U
méz) == 2_2af1f2(u2_3_u1) i_i X_zaflfz(uzz_ul) i_i (efu"z’“x—l)
U LA,,,U u, u (LA, )?a® (u, u
_ 2af1ul(u2 — ul)

« 2af1vl(1‘lu12 + fzuzz) 1 1 e Lian
/A ATATR LA, T°u,u u, u

and therefore

(D41)
méf) — (flVljzfzvzj_ Za(uz — )(f f U1+ flfz U2 i_i
u u LA, 0" u, Uu
2a(u, —U,)(, » > Y1 1Y)
——= 2 fu +ffu ] ———|e " -1
Lﬂzmuél(l 2+ 122u2 ul( )
(D42)
The second moment is then calculated as
Q)
m%f) :(ij + ( ) ( Xy L/12mX—1) (D43)
my a) (LA, ) u?uu,
and the residence time variance (second centralengrs
) méf) r-n:Ef) (u _ul) f ( Uiy )
O =0 | D +LAnx-1 (D44)
m" \m” ) T (L4, Puuu,
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Appendix E: MATLAB® Wetloop code

function  wetloop1(Cstar)
%By James N. Carleton, 2006

%Reads dates, velocities, inlet & outlet concentrat ions from a text
%file, interpolates to daily values and based on us er-defined
%reference RTD/DND parameters, computes wetland out let
%concentration as a function of time. RTD is assumed to be a gamma

%pdf, with parameters defined by user

%9%%%%% %% %% %% %% %% % % %% %% %% %% %% %% %% % %
%%%6%6%%%%% %% %% %% % % % % %% %% %% %% %% %% %% %
%user entry section for reference RTD conditions

u_ref = input( 'Enter mean velocity (m/day) under reference conds> ");
L =input(  'Enter wetland length (m)>' );

tau_m=L./u_ref %retention time (mean residence time) under ref.

(RTD) conds.

alpha = input( 'Enter alpha for RTD>' ); %RTD parameters

beta = tau_m./alpha

%9%%%%% %% %% %% %% %% % % % %% %% %% %% %% %% %% %
%User entry section for Da relationship to res. tim

A=input( 'Enter A>" ), %enter the relationship btwn. Da and t
B =input( 'Enter B> ),

%9%%%% %% %% %% %% %% %% % %% %% %% %% %% %% %0 %% %%

%Section for reading in raw data and interpolating for missing days
%read in the text file of dates and 'concentrations "
[date,v,C,Cend]= textread( 'Gustine2a.txt' , '%8c %f %f %f'  );
%convert dates into integer day from reference date =1/1/0000:
datex=datenum(date);

d=length(date); %number of dates in file

%create vector of sequential integers covering span of days:

dayints=[datex(1):1:datex(d)];
di=length(dayints)
dayindex=[1:1:dl];

u_btwn=interpl(datex,v,dayints, 'linear' );  %interpolate velocities
C_btwn=interpl(datex,C,dayints, 'linear' );  %interpolate inlet conc.
Cout_btwn=interpl(datex,Cend,dayints, 'linear' );  %interp outlet conc.
%concatenate integer day and interpolated value vec tors:
dataint=[dayindex;dayints;u_btwn;C_btwn;Cout_btwn];

data=dataint."; %transpose concatenated matrix

save data.txt data -ASCII
%9%%6%%%%%% %% %% %% % % % %% %% %% %% %% %0 %0 %% % %%
%Section for determining Ttrunc
constl = (beta.*(-alpha))./gamma(alpha); %calculate const in pdf
%create test RTD to determine res time correspondin g to 99% of
%total area under curve:
RTDtst = constl.*dayindex.”(alpha-1).*exp(-dayindex Jbeta);
X=0; %dummy variable
for k=1:dl
if X<0.95

X=X+RTDtst(k);

flusht=k; %number of days covering >95% of the reference RTD
end
end
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%travel distance associated with 95% flushing of we tland under ref.
%conds.:
flushl=flusht.*u_ref;
X=0; %dummy variable
for k=1:dl
if X<flushl

X=X+u_btwn(k);
%number of days from start for cumulative discharge to equal
%discharge  for 95% flush under ref. conds.:

Ttrunc=k;
end
end
%9%%6%6%%%%%% %% %% % % % % % %% %% %% %% %% %% % % %
%Section for calculating daily outlet concentration S
Cor=zeros(dI-Ttrunc,1);
for j=0:dl-(Ttrunc+2)

[days,dints,u,Ci,outC]= textread( 'data.txt' , '%f%f%f%f%f" ,dl-));
%read in the flow file, one fewer day for each iter ation:

d=length(days); %the number of days in each iteration
a=[d:-1:1]; %create reverse-time vector of flow, R
R=u(a);
R(1)=0;
Rcum=cumsum(R); %create vector of cum. flow in reverse time
Tau=Rcum./u_ref; %convert cum. distance to equivalent tau_i
Taumax=max(Tau); %find maximum value in tau vector
Taumax=fix(Taumax); %truncate at integer value
Tauints=[1:1:Taumax];

%Create vector of T values (days) at integer values of Tau:
Ti=interp1(Tau,(days-1), Tauints, 'linear' );
RTD = constl.*(Tauints).”(alpha-1).*exp(-(Tauin ts)./beta);
y_i=Ti./Tauints; %calculate y for each integer value of Tau

%create reverse-time vector of inlet conc (Ci), Cir corrected for

%background conc.:
Cir=Ci(a)-Cstar;
Cirint=interp1(days-1,Cir,Ti, 'linear' );

%interpolate Cir (inlet conc) for (noninteger) valu es of Ti:
XTD = Cirint.*RTD.*exp((-A.*(Tauints).”B).*y_i) ;

%the expression to be integrated (summed, actually) :
sum XTD,

%vector of outlet concentrations, in reverse time:
Cor(j+2)=Cor(j+2)+sum(XTD)+Cstar;

end

save Cor.out Cor -ASCIl -TABS;

save y iout y i -ASCIl -TABS;

Co=ones(dl,1); %create dummy vector to hold outlet concs. in corre ct

time order

for k=1:Ttrunc %backfill first entries with first real value
Co(k)=Co(k).*Cor(dI-Ttrunc);

end

for k=Ttrunc+1:dl %fill in rest of vector with outlet C values
Co(k)=Co(k).*Cor(dl+1-k); %outlet concs in correct time

end

Co(dl)=Co(dI-1); %fill in last day's value so it isn't zero
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Cz=interpl(dayints,Co,datex); %get outlet values for only the
sampled days

tickint=fix((dayints(dl)-dayints(1))./4); %determine interval for
plot ticks
plot(dayints,C_btwn, b ), %plot interpolated inlet conc.

set(gca, 'XTick' ,dayints(1):tickint:dayints(dl));

%label x axis with dates:

set(gca, 'XTickLabel' ,datestr(dayints(1):tickint:dayints(dl),2));
hold on;

plot(datex,C, 'bo" ); %plot measured inlet conc.

hold on;

plot(datex,Cend, ro' ); %plot measured outlet conc.
hold on;

plot(dayints,Co, k), %plot modeled outlet conc.
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Appendix F: MATLAB® code for plotting comparisons
between idealized heterogeneity and bicontinuum mad
results

function  Cres

global Hnfnualpha LiLi2 a b m Cr numzer xk coef

% James N. Carleton, 2008

% Plots resident concentrations, std devs, and effe ctive

% longitudinal dispersion coefficient for idealized heterogeneity
% model and bicontinuum model comparisons.

%%%% % %% %% %% % % %% % %% %% %% %% %% %% %% %% %%
% ldealized Heterogeneity Model

numzer=30; %number of eigenfunctions to sum

a = 0.005;

b =0.0001;

f=0.001;

m = 4/7

p=-2*m  %to ensure inverse square dependence of k on u

n=p+2 %to ensure equation is expressible using a Bessel f unction

H=15; %domain width
x=1000; %domain length
xpts=x+1;  %longitudinal discretization of domain
xx = linspace(0,x,xpts)’;
Cres = zeros(length(xx),1);
sigma = zeros(length(xx),1);
sdev = zeros(length(xx),1);
Crplus = zeros(length(xx),1);
Crminus = zeros(length(xx),1);
alpha = (sgrt(((1-n)"2)+4*f/b))/(1-n);
nu = alpha*(1-n)/(2+m-n);
aa = alpha/((alpha+1)*nu);
% multiplier of lambda inside Bessel terms:
zeromult2 = 2*nu*H”((alpha*(1-n))/(2*nu));
estzeros = besselzero(hu+1,numzer,1); % the function we need zeros
for:
g=@(y)(besselj(nu,y)-(y*aa)*besselj(nu+1,y));
root=zeros(length(estzeros),1);
for i=2:numzer;
root(i)=fzero(g,estzeros(i-1)); %zeros to function of interest
end
eigl=root(2)-(root(3)-root(2));
root(1)=fzero(g,eigl);
% Find all the x-independent exponential term multi pliers for each
% eigenfunction:
coefplus=zeros(humzer,1);
for i=l:numzer;
Li2 = root(i)/zeromult2;
ai = quadl(@phi_int2,0,H)/quadl(@phi_int3,0,H);
terma2=quadl(@phi_int,0,H);

coefplus(i)=ai *terma2; % for determination of Cres
coef(i)=ai; % for determination of sigma
Li(i)=Li2;

end

%
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% Calculate Cres for each point along the x-transec t
for j=1:length(Cres)
sumG2=0;
theta2=0;
for i=1:length(estzeros)
Li2 = root(i)/zeromult2;
termc2=exp(-((Li2*2)*(b/a)*(((1-n)"2)+4*f/b )*xx());
sumi2=coefplus(i)*termc2;
sumG2=sumG2+sumiz2;
end
G2 = sumG2/H;
Cres(j))=G2;
end
%
% Calculate std dev of C
for k=1:length(Cres)

xk=xx(K); % xk is the x coordinate for auxiliary program sig_ int
Cr = Cres(k);
sigma(k)=quadl(@sig_int,0,H)/H; % variance of C
sdev(k)=sqrt(sigma(k));
end

%

%%%% % %% %% %% % % %% % % %% % % %% % % %% % % %% % % %%
% Bicontinuum Model

% Parameters of the model:

gamma=16.7,

alpha=b*(gamma/a)*(n/m);

beta=f*(gamma/a)*-2;
wbar=(a/gamma)*(H"m)/(m+1);
sigw=(a/gamma)*(H"m)*(1/(2*m+1)-1/(m+1)"2)"0.5;
A=21.7242; % the dissipative closure parameter
D=alpha*wbar”(3/2);

% %

lamb3=-0.444552; % this is mean of lambda cubed

% %

lam1=(lamb3+(lamb372+4)"0.5)/2; % eigenvalue 1
lam2=(lamb3-(lamb3"2+4)"0.5)/2; % eigenvalue 2

fl=-lam2/(laml - lam2);
f2=laml/(lam1 - lam2);
ubar=gamma*wbar;
rho_u_lambda=gamma*sigw;
ul_star=ubar + rho_u_lambda*laml;
u2_star=ubar + rho_u_lambda*lam2;
L=f1*f2*D/A;

kbar=beta/(wbar"2);
rho_k_lambda=-2*beta*sigw/(wbar’3);
rho_k_lambda2=3*beta*(sigw”"2)/(wbhar™4);
kbar_star=kbar+rho_k lambda2;

k1 _bar_star=kbar_star+(rho_k_lambda+rho_k_lambda2*| amb3)*lam1;
k2_bar_star=kbar_star+(rho_k lambda+rho_k_lambda2*| amb3)*lam2;
alphal=ul_star*u2_star*f2/L;

alpha2=(k1_bar_star*u2_star+k2_bar_star*ul_star)/(f 1*L*(lam1-
lam2)"2)+ubar/f1;

alpha3=k1_bar_star*k2_bar_star/(f1*L*(lam1-lam2)"2) + kbar_star/f1;
rl=(-alpha2+(alpha2~2-4*alphal*alpha3)"0.5)/(2*alph al);
r2=(-alpha2-(alpha2"2-4*alphal*alpha3)"0.5)/(2*alph al);

C0=1;

202



zigl=((lam1*f1*L+lam1*f1*f2*k2_bar_star+lam1*f1*f2* u2_star*r2+f2*L*|
am2)/(lam1*f1*(f2"2)*u2_star*(r2-r1)))*(C0/(1-lam2/ lam1));
zig2=CO0/(f2*(1-lam2/lam1))-zig1;

zugl=(1+(f2/L)*(k2_bar_star+u2_star*rl))*zig1;
zug2=(1+(f2/L)*(k2_bar_star+u2_star*r2))*zig2;

cl_star=zugl*exp(rl*xx) + zug2*exp(r2*xx);

c2_star=zigl*exp(rl*xx) + zig2*exp(r2*xx);

cbar=fl*cl_star + f2*c2_star;

rho_c_lambda=f1*laml*cl_star + f2*lam2*c2_star;

%

figure(1)

plot(xx,Cres, '--k' ) % plots idealized heterogeneity model
hold on

plot(xx,cbar, k), % plots stochastic/bicontinuum model
xlabel( 'x(m)' ,'FontName' , 'Times New Roman' );

set(get(gca, 'YLabel' ), 'Rotation’ ,0.0)

ylabel( 'C r' ,'FontName' , 'Times New Roman' ); % the underscore makes
'r" a subscript

ylim([0 1]);

legend( ‘explicit’ , 'stochastic' )

%

lam2m=1/(f1*ul_star) + 1/(f2*u2_star);

RTDmult=((u2_star-ul_star)*2)*f1*f2/(((L*lam2m)"2)* ul_star*u2_star);
DL=ubar*RTDmult*(-L*lam2m*exp(-L*lam2m*xx) + L*lam2 m); %
figure(2)

plot(xx,sdev, --k' ); % plots idealized heterogeneity model std dev
hold on

plot(xx,rho_c_lambda, k' ); % plots bicontinuum model std dev
xlabel( 'x(m)' ,'FontName' , 'Times New Roman' );

set(get(gca, 'YLabel' ), 'Rotation’ ,0.0)

ylabel( ‘\sigma_c' ,'FontName' , 'Times New Roman' );

legend( ‘explicit’ , 'stochastic' )

%

figure(3)

plot(xx,DL, k')

xlabel( 'x(m)' ,'FontName' , 'Times New Roman' );

set(get(gca, 'YLabel' ), 'Rotation’ ,0.0)
ylabel( 'D_L' ,'FontName' , 'Times New Roman' );

203



function  Cflux

global Hnfnualpha LiLi2 a b m Cf numzer xk coef

% James N. Carleton, 2008

% Plots resident concentrations for idealized heter ogeneity
% model and bicontinuum model comparisons.

%9%%%%% %% %% %% %% %% % % %% %% %% %% %% %% %% % %
%%%%% %%

% |dealized Heterogeneity Model

numzer=30;

a = 0.005;

b = 0.0001;

f=0.001;

m = 4/7;

p =-2*m; %to ensure inverse square dependence of k on u

n=p+2; %to ensure equation is expressible using a Bessel f unction
H = 15;

x=1000;

Xpts=x+1;

xx = linspace(0,x,xpts)’;

Cflux = zeros(length(xx),1);

%

alpha = (sgrt(((1-n)"2)+4*f/b))/(1-n);

nu = alpha*(1-n)/(2+m-n);

aa = alpha/((alpha+1)*nu);

% multiplier of lambda inside Bessel terms:

zeromult2 = 2*nu*H”((alpha*(1-n))/(2*nu));

% vector of zeros to besselj(v+1,z):

estzeros = besselzero(nhu+1,numzer,1);

% the function we need zeros for:

g=@(y)(besselj(nu,y)-(y*aa)*besselj(nu+1,y));

root=zeros(length(estzeros),1);

for i=2:numzer,;
root(i)=fzero(g,estzeros(i-1)); %zeros to function of interest

end

eigl=root(2)-(root(3)-root(2));

root(1)=fzero(g,eigl);

% Find all the x-independent exponential term multi pliers for each

% eigenfunction:

coefplus=zeros(humzer,1);

for i=1l:numzer; %length(estzeros)
Li2 = root(i)/zeromult2;
ai = ((quadl(@phi_int2,0,H))"2)/quadl(@phi_int3 ,0,H);
coefplus(i)=ai; %for determination of Cflux
terma2=quadl(@phi_int,0,H);
coef(i)=ai; % for determination of sigma
Li(i)=Li2;
end
%
% Calculate Cflux for each point along the x-transe ct
for j=1:length(Cflux)
sumG2=0;
theta2=0;

for i=1l:numzer

Li2 = root(i)/zeromult2;

termc2=exp(-((Li2*2)*(b/a)*(((1-n)"2)+4*f/b )*xx());
sumi2=coefplus(i)*termc2;

sumG2=sumG2+sumi2;
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end

G2 = sumG2*(m+1)/(a*H(m+1));

Cflux(j)=G2;
end
% %
%%%%% %% %% %% % % %% % % %% % % %% % % %% % % %% % % %%
%%%%%%%
% Stochastic Bicontinuum Model
gamma=16.7;
alpha=b*(gamma/a)*(n/m);
beta=f*(gamma/a)"-2;
wbar=(a/gamma)*(H"m)/(m+1);
sigw=(a/gamma)*(H"m)*(1/(2*m+1)-1/(m+1)"2)"0.5;
A=21.7242; % the dissipative closure parameter
D=alpha*wbar”(3/2);
lamb3=-0.444552; % this is mean of lambda cubed
lam1=(lamb3+(lamb372+4)"0.5)/2; % eigenvalue 1
lam2=(lamb3-(lamb3"2+4)"0.5)/2; % eigenvalue 2
fl=-lam2/(laml - lam2);
f2=laml/(lam1 - lam2);
ubar=gamma*wbar;
rho_u_lambda=gamma*sigw;
ul_star=ubar + rho_u_lambda*lami;
u2_star=ubar + rho_u_lambda*lam2;
L=f1*f2*D/A;
kbar=beta/(wbar"2);
rho_k_lambda=-2*beta*sigw/(wbar’3);
rho_k_lambda2=3*beta*(sigw"2)/(wbar™4);
kbar_star=kbar+rho_k lambda2;

k1l bar_star=kbar_star+(rho_k lambda+rho_k_lambda2*| amb3)*lam1l;
k2_bar_star=kbar_star+(rho_k lambda+rho_k_lambda2*| amb3)*lam2;
alphal=ul_star*u2_star*f2/L;

alpha2=(k1_bar_star*u2_star+k2_bar_star*ul_star)/(f 1*L*(lam1-
lam2)"2)+ubar/f1;

alpha3=kl_bar_star*k2_bar_star/(f1*L*(lam1-lam2)"2) + kbar_star/f1;
rl=(-alpha2+(alpha2~2-4*alphal*alpha3)"0.5)/(2*alph al);
r2=(-alpha2-(alpha2"2-4*alphal*alpha3)"0.5)/(2*alph al);

C0=1;

zigl=((lam1*f1*L+lam1*f1*f2*k2_bar_star+lam1*f1*f2* u2_star*r2+f2*L*|
am2)/(lam1*f1*(f2"2)*u2_star*(r2-r1)))*(C0/(1-lam2/ lam1));

zig2=CO0/(f2*(1-lam2/lam1))-zig1;
zugl=(1+(f2/L)*(k2_bar_star+u2_star*rl))*zigl;
zug2=(1+(f2/L)*(k2_bar_star+u2_star*r2))*zig2;
cl_star=zugl*exp(rl*xx) + zug2*exp(r2*xx);
c2_star=zigl*exp(rl*xx) + zig2*exp(r2*xx);

cf=f1*(ul_star/ubar)*cl_star + f2*(u2_star/ubar)*c2 _star;
%

figure(1)

plot(xx,Cflux, --k' ); % plots idealized heterogeneity model

hold on

plot(xx,cf, k), % plots stochastic/bicontinuum model

xlabel( 'x(m)' ,'FontName' , 'Times New Roman' );

set(get(gca, 'YLabel' ), 'Rotation’ ,0.0)

ylabel( 'C_f' ,'FontName' , 'Times New Roman' ); % the underscore makes
'r" a subscript

ylim([0 1]);

legend( ‘explicit’ , 'stochastic' )
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function  phil = phi_int(y)

global H nfnualpha Li2

%

% % Expression of phi(z0) for integration
phil=y.”~((1-n)/2).*besselj(nu,Li2*2*nu*y.”((alpha*(

function  phi2 = phi_int2(y)

global Hnfnualphali2am

%

% % Expression of phi(z0) for integration

% numerator
phi2=a*y.~((1-n+2*m)/2).*besselj(nu,Li2*2*nu*y.”((a
n))/(2*nu)),1);

function  phi3 = phi_int3(y)

global Hnfnualphali2am

%

% % Expression of phi(z0) for integration

% denominator

pl = a*y.~(1+m-n);

p2 = (besselj(nu,Li2*2*nu*y.*((alpha*(1-n))/(2*nu))
p3 = p2.*p2;

phi3 = p1.*p3;

function  sigl = sig_int(y)
global ab fnnu2 alpha Li Cr numzer xk coef
%
sigsum=0;
for j=l:numzer
subl = coef(j)*y.~((1-
n)/2).*besselj(nu2,Li(j)*2*nu2*y.~((alpha*(1-n))/(2
((LiG)"2)*(b/a)*(((1-n)"2)+4*f/b))*xk);
sigsum=sigsum-+sub1;
end
size(sigsum);
sigl=(sigsum-Cr).*(sigsum-Cr);
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