
  

 

 

 

 

 

ABSTRACT 

 

 

Title of Dissertation: MODELING APPROACHES FOR 

TREATMENT WETLANDS 

  

 James Nagle Carleton, Doctor of Philosophy, 

2009 

  

Directed By: Professor Hubert J. Montas,  

Fischell Department of Bioengineering 

 

Although treatment wetlands can reduce pollutant loads, reliably predicting 

their performance remains a challenge because removal processes are often complex, 

spatially heterogeneous, and incompletely understood.  Although initially popular for 

characterizing wetland performance, plug flow reactor models are problematic 

because their parameters exhibit correlation with hydraulic loading.  One-dimensional 

advective-dispersive-reactive (ADE) models are also inadequate because longitudinal 



  

dispersion in wetlands is often non-Fickian as a result of steep velocity gradients.  

Models that make use of residence time distributions have shown promise in 

improving performance characterization, particularly when interdependencies of 

stream-tube scale velocities and reaction rate coefficients are considered (the “DND” 

approach).  However this approach is limited to steady-state conditions, and to an 

assumption that transverse mixing is nil.  

This dissertation investigates three aspects of wetland modeling and is 

organized in a journal paper format.  The first paper describes development of a DND 

model which accommodates non-steady-state conditions.  The model processes flow 

and inlet concentration time series, and calculates as output effluent concentration 

time series.  A version of the code allows optimization of model parameters by 

minimization of summed squared deviations between predicted and measured effluent 

concentrations.  In example comparisons, model results compare favorably with 

measured data. 

The second paper develops an analytical solution to a two-dimensional 

advective-dispersive-reactive equation, in which all flux terms are expressed as power 

functions of the transverse dimension.  For uniform inlet concentration this idealized 

heterogeneity model is similar to a DND model, but with the inclusion of transverse 

diffusion.  An example is used to illustrate the beneficial impact that transverse 

mixing has on reactor performance. 

The third paper describes development of a model based upon a stochastic 

interpretation of the ADE.  The solution technique that is employed results in a 

bicontinuum model that for steady-state conditions becomes a weighted sum of two 



  

exponential decline functions.  For low and intermediate degrees of mixing, model 

results nicely match those of the corresponding idealized heterogeneity model, and 

for high mixing they match results of the corresponding one-dimensional ADE.  

Comparisons against data suggest the bicontinuum model may represent wetland 

performance better than the DND model in some but not all cases. 
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Chapter 1: Introduction 

1.1 Justification 

Throughout our history human beings have relied upon aquatic resources for 

survival.  When settled agriculture first emerged, and alongside it the civilizations 

that agriculture enabled to flourish, it is no coincidence that it took root in major river 

valleys such as those of the Tigris and Euphrates, the Nile, the Yellow, and the Indus, 

where plentiful water was available to support both direct consumptive needs and the 

irrigation of crops (De Blij, 1981).  As civilizations grew in sophistication and 

organization, city dwellers built systems for both delivering drinking water from 

clean, upstream sources, and disposing of sewage and runoff downstream.  As long as 

human population densities were small enough, this approach served the public 

interest adequately:  waste loads were small enough that ecosystems were able to 

accommodate them without incurring excessive damage.  Processes such as nutrient 

cycling, plant uptake and microorganism predation that are now understood to occur 

naturally in rivers, streams, and wetlands as well as in terrestrial ecosystems, were 

unknowingly being exploited to absorb nutrients and neutralize pathogens originating 

from human and domestic animal wastes.  Eventually though, human populations 

grew to the point that urban waste loads became too large to be assimilated by the 

environment without overwhelming these natural processes and resulting in 

objectionable impacts (e.g. loss of fisheries, offensive odors, disease transmission) to 

receiving waters.   
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Even away from established urban centers the increasing scale of human 

activities took a growing toll on aquatic resources.  In North America, population 

growth and westward expansion in the 19th century brought about nearly wholesale 

conversion of what had been hundreds of millions of acres of native prairie grasslands 

into agricultural land used almost entirely for growing a handful of grain crops.  

Where abundant wetlands had once adorned the land, ditches and tile drains were 

used to alter hydrologic pathways so that surface water would not linger and cropped 

acreage could be maximized (Prince, 1997).  In other areas, marshes were obliterated 

by in-filling to create new land, for example adjacent to bays and navigable rivers, 

thus allowing new cities to be built along shipping routes.  From the 1780s to the 

1980s about 53 percent of all the wetland acreage in the conterminous United States 

is estimated to have been lost to such practices (Mitsch and Gosselink, 2000).   

During recent decades development of modern agricultural methods and the 

“green revolution” has meant that more pounds of food can be grown on a given acre 

of land, but at the expense of much greater applications of fertilizer as well as toxic 

chemicals (pesticides), and consequently greater losses of these materials to 

waterways.  Similarly, development of cities has brought increased commerce and an 

increased standard of living for many people, but at the expense of increased loads of 

urban pollutants (both point and nonpoint source) to waterways.  As one 

consequence, estuarine and coastal waters around the world, including the 

Chesapeake Bay and the Gulf of Mexico, are now impaired by summertime anoxic 

“dead zones” fueled by excessive riverborne nutrient loads.  The widespread 

conversion of pollution-absorbing wetlands to pollution-generating urban and 
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agricultural lands can thus be seen as having caused inevitable damage to water 

quality in the United States and elsewhere.   

Unfortunately while recognition of the need to limit discharges of pollutants 

into waterways has been a driver of national environmental policy for decades now, 

widespread public recognition of the environmental benefits conferred by wetlands 

has been slower in coming.  By the late 1960s the impacts of unregulated sewage and 

industrial effluents on rivers and lakes in the U.S. helped feed a growing sense of 

public outrage over the declining state of the environment that led to creation of the 

Environmental Protection Agency in 1970 and passage of the Clean Water Act in 

1972, the objective of which was and is to “restore and maintain the chemical, 

physical, and biological integrity of the Nation’s waters”.  Paradoxically, until as 

recently as the late 1980s, when then-President George H.W. Bush issued his “no-net-

loss” policy, drainage and destruction of wetlands was an accepted practice in the 

U.S. that was at times actively encouraged by government policies (Mitsch and 

Gosselink, 2000).  Over most of American history the general public attitude toward 

wetlands seems to have been that they were wastes of otherwise-useful acreage at 

best, and sinister refuges or breeding grounds for dangerous creatures and malaria-

spreading mosquitoes at worst.  Although public attitudes toward wetlands have been 

slow to change, since the latter half of the 20th century a growing body of research has 

demonstrated that wetlands provide a variety of environmental benefits, including 

fish and wildlife habitat, flood control and water quality improvement.   

One application of the knowledge emerging from this work has been the 

construction of wetlands (new or restored) for the express purpose of water treatment, 
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i.e. pollutant removal.  Although the study of treatment wetlands has become almost a 

discipline in itself, many crucial processes governing pollutant removal in wetlands 

remain imperfectly understood, and models used for characterizing performance 

suffer from limitations that reflect this lack of knowledge.  In light of this issue, the 

goal of this study is to identify modeling methodologies suitable for assessing 

treatment wetland performance.   

This dissertation is organized as follows.  Chapter 1 provides an introduction 

that includes a literature review and a description of research objectives.  Chapters 2 

through 4 consist of manuscripts written for publication in peer reviewed journals.  

The first of these, presented in Chapter 2 and published as Carleton and Montas, 

2007, describes development and analysis of a non-steady-state treatment wetland 

model.  The second manuscript, presented in Chapter 3 and published as Carleton and 

Montas, 2009, describes development of a two-dimensional steady-state model for a 

domain representing a wetland possessing idealized representations of heterogeneity 

in governing attributes.  The third manuscript, which details development of a 

bicontinuum model for a domain with stochastic heterogeneity, is presented in 

Chapter 4 and is in review as of this writing.  Chapter 5 presents a comparison of 

various wetland models against performance monitoring data.  Chapter 6 provides a 

summary and conclusions, with suggestions for future research.  It should be noted 

that because of the paper structure of this dissertation, the most specific literature 

presentation on investigated topics is given in Chapters 2 to 4, while Chapter 1 serves 

mainly to frame the overall analysis. 
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1.2 Literature Review 

1.2.1 Wetland Treatment History 

The use of wetlands for treating water pollution has enjoyed an explosion of 

interest in recent decades, following experiments first conducted at the Max Planck 

Institute in Germany in the 1950’s that demonstrated a capacity for macrophytes to 

enhance the degradation of high-strength phenolic wastes (Seidel, 1976), and spurred 

later by a number of studies conducted in various locales which demonstrated that a 

wide variety of natural wetland types can trap or transform pollutants, and thereby 

help to preserve downstream water quality (e.g. Bartlett et al., 1979; Davis et al., 

1981; Fetter et al., 1978; Grant and Patrick, 1970; Lee et al., 1975; Novitzky, 1978; 

Olsen, 1993; Simpson et al., 1983).  As a consequence of this body of work, since 

around the mid-1980’s manufactured or “constructed” wetlands have become popular 

around the world as low-cost systems for treating a wide variety of wastewaters, 

including urban stormwater and agricultural runoff (Kadlec and Wallace, 2009).  

Although treatment wetlands can reduce loads and/or concentrations of various 

pollutants, predicting their performance reliably, or designing them in order to meet 

effluent limits, remains a challenge in part because removal processes are complex 

and multifaceted, and because biological and physical features underlying these 

processes are heterogeneous spatially, and in some cases temporally as well. 

The nutrients nitrogen and phosphorus in excess quantities are probably the 

most pervasive water pollutants worldwide.  In part because of the role that wetlands 

play in naturally processing these substances, treatment wetlands have often been 

built specifically to attenuate water borne nutrients.  Mechanisms involved in wetland 
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processing of nutrients have been relatively thoroughly studied, and are therefore 

better understood than mechanisms at work for most other pollutants.  For these 

reasons, this chapter includes a special focus on processes involved in wetland 

nutrient attenuation and removal. 

1.2.2 Treatment Wetland Types 

Constructed treatment wetlands can be divided into the broad general 

categories of free-water surface (FWS), and subsurface-flow (SSF) systems.  FWS 

wetlands contain macrophytes rooted in soil and partially submerged in standing 

water typically less than 0.4 m deep.  The surface of the water column in a FWS 

wetland is open to the atmosphere, and flow occurs through and around stands of 

emergent plant stems (Figure 1.1).  SSF systems are similar, except plants may be 

rooted in a more permeable substrate (e.g. gravel) through which flow primarily 

occurs, bringing wastewater into contact with the substrate and plant roots.  SSF 

systems may be further divided into the categories of vertical and horizontal flow 

systems (Kadlec and Wallace, 2009), depending upon the predominant direction of 

water movement. 
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Figure 1.1 Definition sketch for a FWS wetland. 
 

1.2.3 Pollutant Processing in Wetlands 

 Compared with other kinds of ecosystems, wetlands have “higher rates of 

biological activity” (Kadlec and Knight, 1996), which allows them to transform or 

sequester many kinds of pollutants that occur in wastewater and runoff.  Macrophytes 

have adaptations (e.g. aerenchyma: porous tissue spaces that permit diffusion of air 

from the atmosphere to the roots) that allow them to grow in anaerobic sediments, 

and shallow water depths tend to limit the exhaustion of oxygen in the water column.  

Thus eutrophication of wetlands via increased nutrient inputs does not typically result 

in the kinds of hypoxic dead zones that have become common in lakes, reservoirs and 

estuaries, although dissolved oxygen and redox potential may nevertheless decrease 

with depth through the water column (Tao et al., 2006).  Within the otherwise 

anaerobic sediments, local aerobic zones (the oxidized rhizosphere) surround the 

roots of emergent macrophytes as a result of radial leakage of oxygen (Brix, 1997).  

Unlike purely terrestrial or aquatic environments, wetlands therefore possess both 

aerobic and anaerobic zones in close proximity and intimate contact with each other – 

a circumstance which, uniquely among natural environments, allows the close 
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coupling of sequential oxidative and reductive processes that are necessary for the 

complete removal of some constituents, notably nitrogen.  

Also unlike terrestrial or aquatic environments, in wetlands the presence of 

detrital litter and dense emergent plant stems brings water borne constituents into 

close contact with epiphytic biofilms, increasing the efficiency of processing of labile 

constituents like BOD (Tchobanoglous and Schroeder, 1987), dissolved phosphorus 

(Pietro et al., 2006; Scinto and Reddy, 2003), and various forms of nitrogen 

(Bastkiven et al., 2003; Eriksson, 2001; Eriksson and Weissner, 1997; Eriksson and 

Weissner, 1999; Toet et al., 2003; Thoren, 2007).  Macrophytes further appear to 

increase the retention of suspended solids and associated pollutants (e.g. phosphorus, 

metals) by impeding flow and enhancing sedimentation (Leonard and Luther, 1995; 

Leonard and Croft, 2006; Thornton et al., 1997; Saiers et al., 2003), and perhaps by 

inhibiting sediment resuspension (Braskerud, 2001), resulting in higher rates of 

removal of such entities from the water column than tend to occur in open water 

systems such as ponds. 

1.2.4 Nutrient Removal 

The mechanisms of nitrogen and phosphorus removal in wetlands are quite 

different from each other.  Nitrogen is removed primarily via a multiple-reaction 

pathway that proceeds from organic nitrogen through ammonia/ammonium 

(NH3/NH4
+), to nitrite (NO2

-), nitrate (NO3
-), and finally molecular nitrogen (N2), 

which is lost to the atmosphere.  This complex series of reactions requires, among 

other things, the presence of zones that are at different redox potentials, in close 

contact with each other.  Because the final step (denitrification) represents a one-way 
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loss of nitrogen from the system, the ability of wetlands to remove nitrogen is 

theoretically inexhaustible: wetlands should be able to continue removing nitrogen 

indefinitely.  By contrast, the primary loss mechanisms for phosphorus are all 

saturable, meaning that in the absence of active management, wetlands should 

eventually reach a state of rough equilibrium between input and output phosphorus 

loadings.  Of course wetlands are open systems in constant contact with other parts of 

the biosphere, so the distributions of phosphorus and other elements within various 

wetland compartments may also be affected by the activities of biological entities 

(e.g. insects, muskrats, birds) capable of transporting these materials into or out of a 

wetland through processes such as predation and excretion. 

1.2.5 Processing of Nitrogen 

Total Kjeldahl nitrogen refers to the sum of reduced forms of nitrogen, that is 

organic nitrogen-containing compounds (proteins, urea, etc.) plus NH3/NH4
+.  Within 

wetlands, microbially-mediated transformation processes inter-convert various forms 

of nitrogen.  A process called “ammonification” (or mineralization) refers to the 

decomposition of organic nitrogen, with consequent release of NH3/NH4
+.  This can 

occur under either aerobic or anaerobic conditions.  Within most wetlands, the 

ionized (NH4
+) form of ammonia tends to predominate (Kadlec and Knight, 1996).  

This is a function of the ammonium ion’s acid dissociation constant (pKa), which has 

a value of around 9.3 at typical ambient temperatures and of the fact that pH’s within 

wetlands usually fall below this level.  Photosynthesis by phytoplankton and 

macrophytes can in some cases however drive pH high enough during the day time 

that substantial losses of NH3 may occur by volatilization (Vymazal, 2007).  The 
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NH4
+ form may be lost from the water column by cation exchange onto negatively 

charged binding sites on soil (especially clay) particles in the sediments (Mitsch and 

Gosselink, 2000).  Ammonia/ammonium is the preferred form of nitrogen as a 

nutrient for most wetland plant species, and some loss from the water column occurs 

via direct plant uptake and incorporation into organic matter. 

Another important process affecting nitrogen in wetlands is nitrification, 

which refers to the aerobic oxidation of NH3/NH4
+ first to relatively short-lived NO2

- 

ions primarily via the actions of bacteria in the genus Nitrosomonas, and then to the 

more stable NO3
- form via the actions of microbes in the genus Nitrobacter.  

Nitrification may happen partly within an oxidized sediment layer typically less than 

1 cm thick at the surface of wetland soils, and may also occur within epiphytic 

biofilms that coat submerged plant and litter surfaces in FWS wetlands (Bastkiven et 

al., 2003), or submerged substrate media in SSF wetlands (Bigambo and Mayo, 

2005).  Beneath the oxidized sediment layer, wetland sediments tend to be anaerobic.  

Because it is an anion, NO3
- is highly mobile in soils, and in addition to diffusive 

transfer, is readily transported into the subsurface along with water advected into the 

sediments as a result of groundwater recharge and the transpiration demands of 

macrophytes (Martin et al., 2003).  Although not the preferred nitrogen form for 

plants, NO3
- can be taken up via the roots as a nutrient, in a process called 

“assimilatory nitrate reduction”.  More importantly, NO3
- is subject to “dissimilatory 

reduction”, primarily through a process known as “denitrification”, which occurs 

under (at least locally) anaerobic conditions (e.g. within non-surficial wetland 

sediments).  In denitrification, the NO3
- ion serves as an alternate electron acceptor 



 

 11 

 

for heterotrophic microorganisms typically oxidizing labile organic matter where 

molecular oxygen is lacking.  Denitrification converts NO3
- into gaseous forms (N2O 

and N2), thus returning nitrogen to the atmosphere.  A less-well understood process 

called “anaerobic ammonia oxidation” or “anamox”, which involves the oxidation of 

NH4
+ coupled to reduction of NO2

-, provides another potential dissimilatory 

mechanism for nitrogen.  Like denitrification, anamox generates gaseous N2 from 

inorganic nitrogen forms, but with decreased labile carbon and O2 consumption 

requirements (Kadlec and Wallace, 2009).  While anamox microorganisms have been 

found in natural environments and wastewater treatment systems, the importance of 

anamox to nitrogen removal in treatment wetlands is as yet unknown (Vymazal, 

2007). 

Ammonification (the partial oxidation of organic matter, and concurrent 

release of NH3/NH4
+) proceeds more rapidly than nitrification (Kadlec and Knight, 

1996), potentially resulting in accumulation of NH3/NH4
+ within a wetland.  The 

ultimate loss of this material to the atmosphere via denitrification in the subsurface 

can be envisioned as occurring through the following general sequence of steps 

(Mitsch and Gosselink, 2000): NH3/NH4
+ diffuses from the water column to the 

sediments (most importantly the aerobic surface layer and oxidized rhizosphere 

zones), where it is oxidized to NO3
- ; NO3

- then diffuses from the aerobic zones into 

anaerobic portions of the sediment matrix, where it is denitrified to N2, which in turn 

diffuses into the water column and escapes to the atmosphere through volatilization.  

As is the case in any diffusive process, the movements of various nitrogen species 

between compartments are driven by the associated concentration gradients.  Because 
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of its higher mobility, the mass transfer of NO3
- between sediments and water occurs 

at a higher rate (i.e. with a larger effective diffusion coefficient) than the mass 

transfer of NH3/NH4
+.  Thus NH3/NH4

+ diffusion and nitrification tend to be the rate-

limiting processes governing total nitrogen loss within wetlands.  Shallow water 

depths enhance the transfer of NO3
- into the sediments, and therefore tend to increase 

denitrification rates (Mitsch and Gosselink, 2000).  A similar phenomenon has been 

observed in stream environments (Alexander et al., 2008; Sjodin et al., 1997).  For 

denitrification and other reactions occurring in epiphytic biofilms, plant surface 

density may have an analogous effect on reaction rates.  Smith et al. (2000) found 

denitrification rates to be proportional to the number of macrophyte shoots present in 

wastewater treatment wetland sediments, demonstrating an important role for 

vegetation in denitrification, even when it takes place in the subsurface. 

The ultimate loss of mineralized nitrogen to the atmosphere via denitrification 

occurs through a series of steps involving diffusive movement of various nitrogen 

species between areas that are at different redox potentials.  Because diffusion is a 

function of temperature, the rate coefficient for removal (kT1) may be adjusted for 

temperature using the Arrhenius relationship 

 ( )21

21

TT
TT kk −Θ=  (1.1) 

where T1 is the current wetland temperature, and T2 is a reference temperature 

(typically 20°C), kT2 is the rate constant at T2, and Θ is a temperature coefficient 

(Tchobanoglous and Schroeder, 1985).  Ammonia removal rates in particular have 

been found to be highly temperature sensitive, varying on a seasonal basis (Kadlec 

and Wallace, 2009).  
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 Besides temperature, denitrification is sensitive to pH: optimal values are 

between 6.5 and 7.5, and denitrification is particularly inhibited under acidic 

conditions (e.g. pH §4), such as occur in northern peat bogs (Mitsch and Gosselink, 

2000).  In wastewater treatment wetlands pHs are typically in the slightly acidic to 

circumneutral range, so that this is not usually a concern (Kadlec and Knight, 1996).  

Alkalinity is consumed during nitrification, and released during denitrification in the 

form of bicarbonate (HCO3
-).  The balance between nitrification and denitrification 

rates thus itself has some impact on wetland pH. 

 To enable denitrification, sufficient labile organic matter must be present in 

order to drive NO3
- reduction.  Over time, death and senescence of plant materials 

will contribute sufficient organic matter to create such conditions in the sediments 

(Bastkiven et al., 2007; Rotkin-Ellman et al., 2004).  For denitrification occurring in 

epiphytic biofilms, phytoplankton exudates may serve as a labile carbon source (Toet 

et al., 2003).  To avoid the need for a waiting period when starting up a new treatment 

wetland, organic matter, for example in the form of compost or peat, is sometimes 

added to the sediments.  One potential concern with this approach is that it may result 

in a lowering of pH, as decay of these materials may result in the formation of 

organic acids.  To mitigate this possibility, limestone may be added to wetland soils 

to help buffer acidity.   

1.2.6 Processing of Phosphorus 

By contrast with nitrogen, wetland removal of phosphorus involves different 

kinds of processes, none of which represents a one-way loss from the system.  In 

runoff-treatment wetlands, a substantial fraction of total phosphorus (TP) in the 
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influent is typically found in the particulate form, i.e. sorbed to suspended sediments 

(Carleton et al., 2000; Dierberg and DeBusk 2008; Maynard et al., 2009).  

Sedimentation of particulates in these situations can represent an important 

phosphorus removal pathway, at least for a time.  By contrast, wastewater typically 

contains little inorganic sediment, and a higher fraction of TP is found in more labile 

forms, especially orthophosphate ion (PO4
-) (Bitton, 2005).  A fraction of dissolved 

phosphorus may be removed by sorption to wetland sediments (especially those high 

in Fe and Al), however the capacity of wetland sediments to remove phosphorus this 

way is eventually exhausted as binding sites are saturated.  Phosphorus may also form 

precipitates with cationic metals such as Fe, Al, Ca, and Mg, or may form co-

precipitates with other minerals such as CaCO3 (Gu and Dreschel, 2008; Siong et al., 

2006).  However such precipitates may re-dissolve later when conditions (e.g. pH, 

temperature, redox potential) change (Vymazal, 2007).   

Because phosphorus is usually the limiting nutrient for primary production in 

freshwater wetlands, algae and plants are efficient at taking up the element into their 

tissues.  Most of this phosphorus is eventually returned to the water column, e.g. 

when senescence occurs, however a portion may be incorporated into new sediments 

in the form of incompletely decomposed plant litter.  This process and sedimentation 

represent the only long-term storage mechanisms for phosphorus in wetlands (Kadlec 

and Knight, 1996).  For wetlands to continue to function as phosphorus sinks into the 

future, phosphorus removal capacity must eventually be regenerated, e.g. by plant 

harvesting or sediment removal.  Food chain transfer and/or predation by non-resident 

organisms (e.g. wading birds), followed by excretion elsewhere may accomplish this 
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task automatically to some degree.  The conversion of labile phosphorus into less 

biologically reactive organic forms (e.g. plant litter) may continue to benefit 

downstream ecosystems that receive this material, even when long-term equilibrium 

between phosphorus inputs and outputs has been reached. 

1.2.7 Hydrodynamics and Flow Patterns in Wetlands 

Flow patterns in wetlands and related vegetated environments may be quite 

complex, with various phenomena influencing water movement at different spatial 

and temporal scales.  Open water zones may be susceptible to wind-driven surface 

currents coupled to deeper-water return flows (Kadlec and Knight, 1996).  Under a 

longitudinal head gradient, mean velocities vary directly with depth and inversely 

with vegetation density (Kadlec and Knight, 1996; Leonard and Croft, 2006; Leonard 

and Luther, 1995).  Bed drag causes vertical variations in velocity, and the shapes of 

the velocity profiles are influenced by the presence of plant stems, which tend to 

decrease turbulence intensity and the thickness of the benthic boundary (near-zero 

velocity) layer in proportion to their density (Nepf et al., 1997a).  Vertical gradients 

in longitudinal velocity produce pressure gradients that induce vertical secondary 

flows on the downstream sides of emergent stems, presumably leading to increased 

advective exchange between sediments and the water column (Nepf, 1999).  Also on 

the downstream sides of plant stems, laterally-recirculating “primary wakes” 

(vortices) of approximately stem diameter size, and larger “secondary wakes” (zones 

of decreased velocity) form when stem-based Reynold’s numbers (Re) exceed a 

magnitude of about 10.  At Re values greater than about 100, the primary wakes 

become unstable and begin to periodically shed vortices, which increases their rate of 
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time-averaged exchange with the free stream (Nepf et al., 1997a).  Velocity 

deviations in the secondary wake scale with the square root of Re, and decay 

exponentially in the downstream direction, such that the secondary wake extends over 

an effective “attenuation length” that may be substantially larger than the stem 

diameter scale (White and Nepf, 2003) (Figure 1.2).  At sufficient stem densities, 

wakes overlap and superimpose, creating a degree of randomness in the velocity field. 

 

 

primary wake

secondary wake

 

Figure 1.2 Primary and secondary wakes downstream of emergent vegetation, 
adapted from White and Nepf (2003). 
 

Submerged plants tend to exert a greater influence than emergent plants on 

vertical profiles of longitudinal velocity.  Drag induced by submerged plant beds 

effectively separates the flow field into a lower (slow) and an upper (fast) zone (Nepf 
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and Vivoni, 2000).  An inflection in the velocity profile at the interface between these 

two zones may cause the formation of “large, coherent vortices”, which serve to 

enhance vertical inter-zonal mixing of fluid elements (Ghisalberti and Nepf, 2002, 

2005; Shi and Hughes, 2002).  Analogous effects may also occur in the horizontal 

plane, when boundaries occur between zones of open water and zones of relatively 

high emergent plant density, e.g. “fringing vegetation” (White and Nepf, 2008).  

Regardless of spatial orientation, variations in local drag caused by variations in plant 

density and water column depth induce variations in velocity, which include a degree 

of redirection of flow that serves to maintain continuity (Fonseca et al., 1982; Sand-

Jensen and Mebus, 1996). 

At the whole-system scale longitudinal transport in wetlands is often 

dominated by “short-circuiting”, or strong heterogeneity in velocity fields (Dierberg 

et al., 2005; Kjellin et al., 2007; Martinez and Wise, 2003; Werner and Kadlec, 2000), 

which may be observed with the use of visible dye tracers (Figure 1.3).  Preferential 

flow pathways may occur as a result of decreased hydraulic resistance in deeper areas 

and/or where vegetation is less dense (Kadlec and Knight, 1996).  Lightbody et al. 

(2008, 2009) have pointed out that channelized flow paths may form essentially 

automatically even in marshes with flat bathymetry, as a result of random minor non-

uniformities that become self-reinforcing as faster flows inhibit both sedimentation 

and vegetation regrowth or colonization.  In this sense, fast flow paths in freshwater 

marshes may be analogous to tidal channels in salt marshes and flow channels in sea 

grass beds, which form spontaneously apparently as a result of similar feedback 

mechanisms (D’Alpaos et al., 2006; Luhar et al., 2008; Mitsch and Jorgensen, 2004; 
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Moore, 2004).  If this is the case, then the presence of a degree of short-circuiting in 

FWS treatment wetlands may be all but inevitable.  Results of modeling and field 

experiments suggest however that short-circuiting may be actively countered by 

design through structural engineering approaches such as construction of alternating 

deeper and shallower zones oriented perpendicular to flow (Lightbody et al., 2009; 

Thullen et al., 2005). 

 

transversally-uniform
tracer addition

transversally-uniform
tracer addition

 

Figure 1.3 Tracer isopleths in natural (left) and constructed (right) wetlands (adapted 
from Kadlec and Knight, 1996). 
 

1.2.8 Evolving Longitudinal Dispersion 

Classical shear-flow dispersion (Taylor, 1954) involves an interaction 

between spatially non-uniform advection and solute diffusion in the transverse 

direction.  After sufficient time or travel distance, net longitudinal flux may be 
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separated into a mean advective flux and a “Fickian” dispersive flux, so-named 

because it is characterized as if it were a diffusive process, i.e. one which follows 

Fick’s first law.  For dispersion to be treated as Fickian implies the presence of a 

constant dispersion coefficient, so that the overall transport process is adequately 

represented using an advection dispersion equation (ADE).  The dispersion 

coefficient has been defined as half the rate of increase of spatial concentration 

variance (σx
2) of an inert tracer following a pulse injection (Gelhar, 1993) (Figure 

1.4): 
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Thus, for a transport system to be characterized as Fickian implies that the spatial 

variance of an inert tracer cloud increases linearly with time. 
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Figure 1.4 Longitudinal spatial distribution of tracer, with mean and standard 
deviation indicated, following pulse injection at x=0. 

 

However, data from studies on FWS treatment wetlands and a surprisingly 

wide array of other transport media have documented solute spreading that is not 

adequately characterized by the ADE because longitudinal mixing only approaches 

Fickian behavior asymptotically if at all (e.g. Day, 1977; Gelhar, 1993; Werner and 

Kadlec, 2000).  Longitudinal dispersion in these systems is described as “pre-

asymptotic”, ”non-Fickian”, or “scale-dependent” because the behavior manifests as 

an increase in the apparent dispersion coefficient with the scale of transport.  In the 

near-field limit of shear flow dispersion (the “stochastic-convective” case) D goes to 

zero, and longitudinal spreading occurs solely as a function of velocity 

heterogeneities; i.e. transverse mixing is nil.  If a PFR or an ADE model is incorrectly 

used to characterize a reactive transport environment that is stochastic-convective, the 
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result may be reaction rate coefficients (k) that appear to increase with HLR, as 

suggested by the analysis of Carleton (2002). 

 It must be noted that two fundamentally different kinds of solute 

concentration in fluid are of relevance to work involving heterogeneous transport 

systems including wetlands.  As first suggested by Kreft and Zuber (1978) for fluid-

bed reactors, these may be referred to as “resident” and “flux” concentrations.  The 

first of these (resident), sometimes also referred to as “through the wall” 

concentration, is simply the spatially-weighted mean concentration within the reactor, 

in the dimension(s) perpendicular to flow.  The second (flux), sometimes referred to 

as the “mixing cup” concentration, is the flow-weighted mean concentration in the 

reactor, measured also in the dimension(s) perpendicular to flow.  The resident 

concentration is therefore a measure of mean concentration within the reactor at a 

particular distance from the inlet, while the flux concentration is a measure of the 

mean concentration of the total effluent hypothetically exiting the reactor at that same 

distance from the inlet. 

1.2.9 Residence Time Distributions 

The distribution of durations spent by water and tracer particles in a wetland 

under steady flow conditions can be characterized with a probability density function 

referred to as a residence time distribution, or “RTD”.  A wetland’s RTD, which is 

analogous to a breakthrough curve in a soil column or fluid-bed reactor study, is 

measured by injecting a pulse of inert tracer at the inlet of a wetland, and monitoring 

flux concentrations at the outlet as the tracer subsequently elutes.  RTDs are widely 

used in wetland studies, and are important because they provide quantitative 
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information that cannot be readily obtained in any other way, on transport and mixing 

processes within wetlands.  RTDs may also be used in performance models, as will be 

discussed.  The RTD function itself is obtained by normalizing the flux concentration 

vs. time curve so that the area under the curve equals unity.  In examining RTDs from 

a number of treatment wetlands with different geometries, Kadlec and Knight (1996) 

noted that a tanks-in-series (TIS) pulse injection model appeared to fit many of them 

well (Figure 1.5): 
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where E(t) is the RTD function, N refers to the number of (hypothetical) completely-

stirred tanks in the model, τ is the system mean residence time, and t is time elapsed 

since tracer injection.  Carleton (2002) noted that eq. 1.5 is mathematically equivalent 

to a gamma probability density function (pdf), and suggested the use of the gamma 

pdf as a more general model formula for wetland RTDs: 
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where α is known as a shape parameter, β is a scale parameter, and Γ refers to the 

gamma function.  Parameter α in eq. 1.6 is the same as parameter N in eq. 1.5, and 

mean residence time for a gamma RTD equals α times β, thus β = τ /α =τ /N.  

Equation 1.6 offers the advantage over eq. 1.5 that non-integer values of N or α are 

accommodated.  Given that most wetlands are not actually composed of linked well-

mixed “tanks”, this parameter really amounts to a simple empirical descriptor of the 

degree of tracer spreading, thus there is no obvious physical reason to limit its 

magnitude to integer values.   
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E(t/τ)

t/τ  

Figure 1.5 RTD plotted as a function of normalized residence time, for wetland EW3 
at Des Plains, IL, with four-tank (i.e. gamma pdf with α=4) model fit to data (adapted 
from Kadlec and Knight, 1996). 
 

 In a related vein, Persson et al. (1999) proposed the use of a measure they 

called “hydraulic efficiency” (λ) to simultaneously quantify the degree of utilization 

of available treatment volume, and the degree of flow uniformity in stormwater 

treatment wetlands and ponds: 
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In eq. 1.7, τ is the mean residence time as determined by an RTD, tn is the nominal 

detention time (volume divided by flow), α is the number of (hypothetical) CSTRs in 

series, and tp is the residence time of the peak tracer concentration, i.e. the mode of 

the RTD.  Although eq. 1.7 includes a parameter from the gamma-pdf RTD model, 

use of the equation does not necessarily require a wetland RTD to be well-described 

by this model: the term 1/α may be interpreted as equivalent to an RTD’s 
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dimensionless variance (σt
2/τ2).  The first bracketed term in eq. 1.7 quantifies the 

fraction of wetland volume that is hydrodynamically-active, and the second term 

quantifies the degree to which water movement resembles plug flow.  Kadlec (2005) 

examined data from a number of ponds and wetlands, and concluded that wetlands 

have slightly higher hydraulic efficiencies than ponds, which he speculated was due 

to shallower water column depths in wetlands. 

1.2.10 Continuous Injection Performance Models 

Until recently a recommended approach to analyzing or predicting the 

performance of treatment wetlands was to treat these systems as plug flow reactors 

(PFRs) (Figure 1.6) (Kadlec and Knight, 1996).  The RTD of a plug flow system is 

simply a Dirac delta pulse at the mean residence time.  This approach, while 

convenient due to its simplicity, ignores factors that cause flow to be non-steady, 

including varying influent, precipitation, evapotranspiration, and exchanges with 

subsurface water.  Perhaps more importantly it ignores spatial flow non-uniformity, 

which as previously mentioned can be substantial.  The “k-C*” version of the PFR 

model partially addresses this by employing a second parameter (C*) besides the 

reaction rate coefficient, to empirically account for non-zero plateaus in 

concentration: 

 ]exp[
*

*)(
yk

CC

CyC

i

τ−=
−
−

 (1.8) 

In eq. 1.8 Ci is the inlet concentration, C(y) is concentration at dimensionless 

longitudinal distance y, C* is background concentration (a fitting parameter), and k is 

a volumetric (units of inverse time) reaction rate coefficient.  Kadlec and Knight 

(1996) and Kadlec and Wallace (2009) note that in FWS systems, and especially for 
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constituents such as NO3
- whose removal involves diffusion into the subsurface, k 

values often display an inverse correlation with mean water depth (h).  In these cases 

use of an alternative “areal” version of the reaction rate coefficient (ka) with units of 

length over time is advocated, in which depth is considered separately from the 

coefficient.  The two kinds of reaction coefficient are related to each other as follows: 

 khka = , or va khek =  (1.9) 

where 
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is essentially effective porosity (see eq. 1.7), which is usually close to unity in FWS 

wetlands.  A version of the relation in eq. 1.8 employing an areal reaction rate 

coefficient is 
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where q is hydraulic loading rate (flow divided by wetland surface area).  For 

simplicity’s sake the remainder of the discussion and derivations in this study are 

limited to consideration and use of volumetric reaction rate coefficients. 
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Influent EffluentInfluent Effluent

 

Figure 1.6 Plug-flow representation of flow through wetlands: velocity and residence 
time are uniform (mathematical representation is one-dimensional). 
 

As previously mentioned, the PFR model assumes an RTD with a single 

residence time.  An expression akin to eq. 1.8 for a reactor with a gamma distribution 

of residence times is the following (Carleton, 2002): 
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Equation 1.12 offers greater flexibility than eq. 1.8 in terms of shapes that the C(y) vs. 

y curve can assume, even when parameter C* is set to zero to produce a two 

parameter (k and α) model, which will be referred to as the “TIS model” in this study.   

 According to Kadlec and Wallace (2009), C* is effectively zero for some 

constituents − notably NH3/NH4
+, NO3

-, and xenobiotics − and non-zero for others, 

including TP, TN and organics (BOD, COD, and TOC).  Non-zero C* may result 

from a variety of causes including release of dissolved and particulate plant biomass 

to the water column, association of constituent with non-settling (fine) suspended 

inorganic particulates, or release from distributed external source inputs, e.g. 
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groundwater.  An apparent non-zero C* may also occur as a result of short-circuiting 

that mixes treated water with relatively untreated water at some distance from the 

inlet.  The phenomenon has been perhaps most dramatically suggested by studies on 

pathogen removal, where very rapid removal results in a sharp concentration decline 

near the inlet, followed by a leveling-off to a low but non-zero plateau for the 

remainder of the wetland (Chendorain, 1998; Kadlec and Wallace, 2009). 

Although the PFR model has been widely used to quantify treatment wetland 

performance, critical flaws with the approach have recently become apparent.  Using 

monitoring data and simulations, Kadlec (2000) demonstrated that calibrated k values 

tend to increase as hydraulic loading rate (HLR) increases (or as mean residence time 

decreases), an observation that has since been confirmed by other researchers (Black 

and Wise, 2003; Coveney et al., 2002; Jamieson et al. 2007; Ran et al., 2004).  

Kadlec’s analysis also demonstrated that this effect is not eliminated by inclusion of a 

longitudinal dispersion term, i.e. use of the one-dimensional ADE in place of the PFR 

model.  Expanding upon a conceptual model presented by Kadlec (2000), Carleton 

(2002) suggested that wetlands could be simulated as collections of parallel, non-

interacting flow paths (a “stochastic-convective” representation – see Figure 1.7).  

The flux concentration of a transported constituent exiting such a wetland is a flow-

weighted average over a collection of stream tubes with different velocities.  Carleton 

demonstrated that eq. 1.12 is equivalent to a model of a reactor with uniform k and a 

stochastic-convective transport environment characterized by a gamma RTD. 
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Influent EffluentInfluent Effluent

 

Figure 1.7 A stochastic-convective representation of flow in wetlands: velocity is 
non-uniform, and transverse diffusion is ignored. 

 

In contrast with the conceptual simplicity of uniform k as represented by the 

TIS model (eq. 1.12), Carleton (2002) proposed an approach based on a wetland’s 

Damköhler number (Da) distribution or “DND”, which incorporates a presumption 

that k is not spatially uniform; rather, stream-tube scale velocities and k values vary 

spatially in such a fashion that they are inversely related to each other via functional 

dependencies of each on vegetation surface area density and/or inverse depth, X.  

Specifically, Carleton presumed velocity u and reaction rate coefficient k to be related 

to X in the following manner 
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respectively, where γ and ζ are constants.  Assuming a uniform flow path length L, 

Damköhler number for stream tube “i” is estimated to be a power function of 

residence time τi by combining equations and eliminating X:  
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kkDa ττ
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The Damköhler number represents the ratio of the rate of consumption by reaction to 

the rate of transport by advection in the wetland.  Use of this relationship in an 

integration over the RTD (e.g. eq. 1.6) produces an expression for C(y) whose 

parameters are unaffected by changes in HLR.  The assumed underlying mechanism 

(eqs. 1.13 and 1.14) therefore implies an explanation for the HLR dependence of k in 

PFR models.  The apparent dependence of k on HLR can also arise from fitting a 

zero-C* PFR model to a data set that exhibits a non-zero background, as Kadlec’s 

(2000) analysis showed. 

 Another potential explanation for the dependence was provided by Kadlec 

(2003), who suggested that water quality constituents that lump multiple constituents 

together (e.g. BOD, TSS, TP, and TN) are characterized by distributions of reaction 

rate coefficients, or “kVD”s.  As transport through a wetland proceeds, such a 

mixture becomes “weathered”, with the more reactive components disappearing more 

quickly, and the mean reaction rate coefficient for the remaining mixture continually 

decreasing.  Kadlec noted that both non-uniform residence times and distributions of 

k values in constituent mixtures could contribute to concentration declines that do not 

follow the sort of behavior expected from the PFR model.  In place of the PFR model, 

Kadlec proposed the use of a “relaxed TIS” model, identical in form to eq. 1.12, but 

in which the parameters (e.g. α and k) are treated solely as fitting parameters, and 



 

 30 

 

which “offers the ability to embody both (RTD) and kVD effects”.  Carleton’s 

analysis (2002) demonstrated that a relaxed TIS model can embody DND effects 

(meaning spatially heterogeneous reaction rates inversely related to local velocities) 

as well (Figure 1.8), thus for lumped parameters the effects of constituent weathering 

may be impossible to separate from the effects of heterogeneous Damköhler numbers.   

Wong et al. (2006) noted that in addition to wetlands, various stormwater 

treatment practices display dependence of PFR k and C* on HLR, and proposed use 

of the k-C* TIS model as a “unified stormwater treatment model” for swales, 

detention ponds, biofilters, and stormwater treatment wetlands, in which the value of 

α can be back-calculated from tp and τ measurements using eq. 1.7.  Carleton (2002) 

and Kadlec (2003) both noted that α values derived from fitting data sets with eq. 

1.12 would be expected to be different from those associated with RTDs measured in 

the same systems, because of the impacts that distributions (spatial and temporal, 

respectively) of k values have on net reaction dynamics.  The DND model accounts 

for the effects of HLR mechanistically, but the issue of possible dependence of 

parameters of the relaxed TIS model on HLR has not yet been addressed in the 

literature. 

   



 

 31 

 

Relaxed-TIS model (best-fit )

DND model

 

Figure 1.8 Gustine wetland cell BOD5 data and various best-fit model 
approximations, adapted from Carleton (2002). 
 

1.3 Summary 

 Wetlands have been shown to be effective at treating a variety of water 

pollution problems.  Plug-flow models, which presume uniform velocity, have been 

widely used to characterize treatment wetland performance.  However, evidence 

suggests that far from being uniform, velocities within wetlands are highly 

heterogeneous as a result of spatial variations in vegetation density and water depth.  

Longitudinal solute dispersion within wetlands appears to be dominated by advective 

velocity gradients, with the consequence that flow regimes may be best described as 

pre-asymptotic (non-Fickian).  One implication of this is that advection-dispersion 

models cannot necessarily be assumed to adequately describe constituent transport 

within wetlands.   
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Neither PFR nor advection-dispersion-reaction models are able to “explain” 

dependencies of wetland k values on hydraulic loading.  The DND approach, which 

treats flow as stochastic-convective, is able to account for the phenomenon by 

treating k and velocities as both spatially heterogeneous, and inversely interrelated to 

each other (the TIS model of  eq. 1.12 is equivalent to a DND model with uniform k).  

However, the DND approach is hampered by other potential limitations, most notably 

the steady-state flow and stochastic-convective transport assumptions.   

For water quality parameters that lump multiple constituents together (e.g. TP, 

TN, BOD, etc.), Kadlec (2003) has shown that “weathering” of constituent mixtures 

with corresponding enrichment in less reactive components can also account for the 

HLR dependency of PFR k values.  Observation of HLR-dependent k values in 

wetlands for constituents that do not fall into this category would imply the presence 

of DND effects, since the chemical properties of such constituents presumably do not 

change with time.  For constituents composed of mixtures, the phenomenon may 

reflect a combination of DND and kVD effects that are impossible to disentangle 

from each other.  For either category of water quality constituent (lumped or simple) 

the relaxed-TIS model of eq. 1.12 (and therefore potentially the DND model also, 

since it is able to produce essentially identical results), may provide a decent 

empirical fit to data, though the resulting back-calculated parameters are not 

necessarily physically interpretable.  Specifically, the α value (apparent number of 

tanks or inverse dimensionless variance) for a reactive constituent’s decay profile in 

such a wetland will not be the same as the α value estimated for the same system by 

measurement of an inert tracer’s breakthrough curve (RTD). 
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The DND approach of Carleton (2002) and the related relaxed-TIS approach 

of Kadlec (2003) provide modeling methods that embody plausible mechanistic 

explanations for documented inadequacies in more established wetland modeling 

approaches.  However both approaches presume steady-state flow conditions and 

constant influent concentrations, neither of which typically characterize real treatment 

wetlands for long periods of time.  Wetland effluent at any given moment represents 

an average of constituent elements that entered at different times and potentially at 

different concentrations, and that followed different paths in getting from the inlet to 

the outlet.  To fully account for these effects, an approach is needed that considers 

both DND (and/or kVD) effects and time-varying flows and influent concentrations.  

An important deficit in current knowledge about wetland transport, and 

therefore about appropriate choice of modeling methodologies, is the degree to which 

longitudinal dispersion in wetlands is appropriately characterized as stochastic-

convective in nature, or alternatively as Fickian, or else is intermediate between these 

two extremes.  In the face of uncertainty on this question, approaches are needed 

which, like the DND approach, account for spatial heterogeneity in velocity and 

reaction rate coefficients, but which unlike the DND approach, also take into account 

transverse diffusive/dispersive flux, so that evolving longitudinal dispersion may be 

properly accounted for.  To this end there is a need for new general purpose 

(“simple”) reactor transport models that can account for key processes determining 

performance while employing a minimal number of parameters or unknowns.  

Because diffusive processes are to be included and then averaged over Representative 

Elementary Volumes (REVs), the development of such models will involve 
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mathematical approximations of higher order terms (closures), thus these models will 

constitute approximate solutions to governing transport equations.  In order to 

evaluate the accuracy of such models, particularly with respect to the influence of 

evolving dispersion, exact analytical solutions to governing equations are needed as 

well, at least for some specific sets of conditions and/or parameters.  Comparison of 

simple model results against these exact solutions over a range of 

conditions/parameters can be used to evaluate the applicability of the simple model to 

specific flow regimes.  

1.4 Objectives 

The primary objectives of this study are to develop new modeling approaches 

for wetlands that accomplish three specific aims: 

1. Develop and evaluate a version of the DND model capable of accounting for 

temporally-varying flow and influent concentrations. 

2. Develop and evaluate an analytical model of reactive transport in a system 

with spatially variable flow velocity and reaction to serve as a benchmark for 

evaluating simplified models. 

3. Develop and evaluate a wetland performance model that contains a minimal 

number of parameters, but which uses stochastic principles to account for the 

influence of spatial heterogeneity on advection and reaction, and which 

(unlike the DND model) accounts for transverse diffusion and the 

development of shear flow dispersion. 

The new models will be evaluated by examining their ability to reproduce wetland 

field data sets, and through comparisons of their results against those of other, more 
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established treatment wetland models.  Results are expected to advance our 

understanding of the key processes that determine wetland transport behavior and 

enhance our ability to both quantitatively analyze wetland function and design FWS 

wetland systems. 
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Chapter 2:  A Modeling Approach for Mixing and Reaction in 

Wetlands with Continuously Varying Flow 

2.1 Abstract 

Prior investigations have examined steady-state flow in surface flow treatment 

wetlands, with mixing modeled as advection-dominated, and reaction calculated 

using flow-weighted averages over collections of stream tubes with different 

velocities.  This work extends these concepts to non-steady flow conditions and 

temporally varying inlet concentrations.  The essential construct that makes the 

approach feasible is definition of a set of reference (steady) state conditions under 

which the residence time distribution (RTD) and stream-tube specific rate constants 

are defined.  Residence time in any stream tube under non-steady flow is treated as a 

linear function of its reference-condition residence time, and the overall wetland 

retention time under both mean and varying flow regimes.  Outlet concentration is 

found by convolution of the reaction term with a varying inlet concentration function.  

For real-world flow and concentration data collected at discrete points in time, 

integration for outlet concentration is approximated using linear interpolation to 

generate inlet concentrations and velocities at intermediate points in time.  The 

approach is examined using data from the literature.  Vegetation density and depth 

distributions are seen as central in determining mixing and treatment performance. 
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Notation 

A, B parameters of power function relating Damökhler number to residence time 

Ac vertical cross-sectional area orthogonal to direction of flow 

Cout(t) flux concentration as a function of time 

C* background concentration  

D dispersion coefficient  

Da Damökhler number 

E(τ) residence time distribution function (RTD) 

h water depth  

k volumetric reaction rate decay coefficient 

L wetland length  

t chronological time 

T residence time-upon-exit 

ui velocity along flow path ‘i’, temporally varying 

um mean water velocity over all flow paths, temporally varying 

ux,z horizontal velocity in x and z directions 

x dimension in the direction of flow (horizontal) 

X vegetation-litter surface area density, or reciprocal depth  

y (residence time-on-exit)/(reference condition residence time) 

z  dimension in the horizontal direction orthogonal to flow 

α,β  parameters relating stream tube u and k to depth (h) 

γ,ζ parameters relating stream tube u and k to vegetation density (X) 

σ2 variance of RTD 
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τ residence time for the reference RTD 
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2.2 Introduction 

2.2.1 Flow Through Wetlands 

 Surface water movement through wetlands resembles open channel flow in 

some respects, and saturated porous media flow in other respects.  Stands of emergent 

plants form a kind of porous medium in which tortuosity is forced upon flow paths by 

the physical obstructions created by stems and litter.  Biofilms adhering to these 

surfaces may be largely responsible for removal of some solutes from the water 

column, and thus for the acknowledged tendency of wetlands to improve water 

quality.  Unlike in flow through soils, the relatively discontinuous nature of the 

stationary media (plant stems and leaves) and related high “porosity” (i.e. typically 

90% or higher) in wetlands allows the formation of downstream stem wakes (Nepf et 

al., 1997a), the properties of which depend in part on stem-based Reynold’s numbers.  

While bulk wetland flow is typically in the laminar or transitional range, local 

turbulence (i.e. eddies) may therefore nevertheless occur at the scale of stem wakes 

(White and Nepf, 2003), resulting in dispersion that may be locally Fickian, even 

while bulk longitudinal mixing is non-Fickian.  

 Many aspects of flow and mixing in wetlands are poorly understood, 

including the correct form of the force-balance equation governing bulk fluid flow.  

According to Kadlec and Knight (1996), wetland surface flows consist of gradually 

varying flow on very mild slopes, so that kinetic energy changes are “usually 

negligible compared to potential energy changes”, with the result that energy and 

momentum balances simplify to statements of equivalence between potential energy 

and resulting frictional work, i.e. gravitational forces balanced exactly by frictional 
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forces.  Bolster and Saiers (2002) and Feng and Molz (1997) developed two-

dimensional numerical models of surface wetland flow patterns, based in part upon 

this assumption, i.e. that the momentum balance equation simplifies to a statement of 

equivalence between the total energy slope S and the water surface gradient: 
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where h is water depth and x is distance in the direction of flow.  If precipitation, 

evapotranspiration, and gains or losses to groundwater seepage are ignored, for 

steady-flow conditions the fluid continuity (mass) equation in two dimensions 

becomes: 
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where ux and uz represent fluid velocity in two orthogonal horizontal directions. 

For flow in one predominant direction, one-dimensional friction equations 

analogous to those for open channel flow may be employed to characterize advection.  

Manning’s equation is generally not suitable, given the non-turbulent nature of 

wetland flow (Kadlec and Knight, 1996), therefore an alternative governing friction 

equation is required.  Two general possibilities exist, based upon different possible 

relationships between velocity, water surface gradient, depth, and vegetation density. 

Nepf (1999) employed the following friction-balance relation to characterize 

flow through emergent wetland vegetation:  
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where U is bulk velocity, d is stem diameter, X is projected plant area per unit volume 

(i.e. vegetation surface area density), and CB and CD are bed and bulk vegetation drag 

coefficients, respectively.  Nepf determined that for bulk flow, bed shear can be 

considered negligible compared with shear produced by vegetation.  In accordance 

with this assumption, if the first term (bottom drag) on the left side of the equation is 

ignored, the result is a version of a formula also suggested by Kadlec (1990) for 

describing the relation between friction (i.e. water surface) slope and stem drag: 
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Rearranging to solve for velocity produces:  
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or  
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Equations that describe the physical behavior of water at the stream-tube scale do not 

necessarily also describe the bulk behavior of collections of stream tubes considered 

in aggregate at the whole-wetland scale.  Equation 2.6 describes bulk, rather than 

stream tube scale flow properties.  However if X measurements happen to follow a 

lognormal distribution when sampled at a physical scale comparable to that 

corresponding to flow heterogeneities, the equation may also be interpreted as 
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describing stream tube scale properties: the mean of the distribution of U values 

obtained by substituting a lognormal distribution for X into equation 2.6 is the same 

as the U value derived with the mean value of X substituted into the equation. 

It is also possible that rather than being proportional to the square root of 

water surface gradient as in eq. 2.5, wetland bulk fluid velocity is directly 

proportional to gradient.  Kadlec and Knight (1996) suggested the following 

empirical governing equation based upon their analyses of flow data from numerous 

treatment wetlands:  
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where a, b and c are tentatively suggested to have the following values: a= 107 m-1d-1 

for densely vegetated wetlands and 5 × 107 m-1d-1 for sparsely vegetated wetlands, 

b=3, and c=1, so that for example 







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x

h
hU 2710  for a densely vegetated system, (h 

in units of meters).   

2.2.2 Dispersion and Mixing in Wetlands 

In transport through porous media, shear-flow dispersion, as defined by 

Taylor (1954), arises from an interaction between non-uniform advection and 

transverse diffusion of solute across stream lines.  After some initial time period, the 

net effect of this interaction is a kind of solute spreading that is analogous to 

diffusion, and appears to obey Fick’s first law of diffusion, in which diffusive mass 

flux is proportional to the concentration gradient (Chapra, 1997) via a dispersion 

(rather than diffusion) coefficient.  For dispersion to be treated as “Fickian” implies 
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that the dispersion coefficient is constant.  When this is the case the overall transport 

process can be modeled using standard advection-dispersion equation approaches.   

According to Gelhar (1993), the dispersion coefficient is proportional to the 

rate of increase of spatial variance (σx
2) in concentration of an inert tracer following 

pulse injection: 

 
dt

d
D x

2
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1 σ
=  (2.9) 

Thus, for a transport system to be characterized as Fickian implies that the spatial 

variance of an inert tracer cloud should increase linearly with time. 

By contrast, limited published tracer curves from studies on surface flow 

treatment wetlands (Werner and Kadlec, 2000), show dimensionless temporal 

variance (variance divided by the square of retention time) that appears to be 

invariant with distance traveled.  The variance of these curves increases with the 

square of distance traveled (or equivalently, time elapsed), rather than in direct 

proportion to distance or time, as would be required for D to be constant.  This 

general type of spreading, which has also been documented in situations as diverse as 

laminar transport through soils (Gelhar, 1993) and transport in turbulent streams 

(Day, 1977), has been called by various authors “pre-asymptotic”, “non-Fickian”, 

“anomalous”, or “stochastic-convective” (Levy and Berkowitz, 2003; Simmons et al., 

1995; Zou et al., 1996).  This type of mixing occurs in systems in which movement of 

solute transverse to the predominant flow direction is relatively negligible, so that 

longitudinal solute spreading is dominated by advective velocity gradients.  In such 

systems, solutes travel as if they were being transported through collections of 

parallel stream tubes that do not interact with each other.   
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2.2.3 Explanations for Non-Fickian Mixing 

Several authors have derived theoretical representations of the gradual 

development of longitudinal dispersion, from stochastic-convective to Fickian 

regimes, in steady flow through various kinds of porous media.  Gelhar et al. (1979) 

used spectral analysis of hydraulic conductivity (K) fluctuations in a stationary 

medium to develop the relationship reproduced in Figure 2.1, where αT is transverse 

dispersivity, U is mean velocity, and l is the correlation length scale for K, which is 

assumed to possess a “hole-type” autocovariance structure.  In Figure 2.1 longitudinal 

dispersivity is expressed as a function of distance traveled multiplied by transverse 

dispersivity, and normalized by a characteristic length scale.  The latter is a function 

of the sizes of heterogeneities in, and the nature of the autocorrelation structure of, the 

medium.  Dagan (1984) derived a similar relationship for an isotropic medium with K 

possessing an exponential autocovariance structure.  On the left side of Figure 2.1 

(circled region), the quantity A/A¶  (i.e. the relative macro-scale dispersivity) 

increases linearly with time; this region with a slope of 1:1 represents stochastic-

convective flow.  Towards the right side of this figure the asymptotic dispersivity is 

approached, wherein dispersion becomes Fickian.  Kemblowski and Wen (1993) 

similarly examined the case of fractal permeability distributions, in which the 

variance in K is bounded only by the size of the system.  In their example, flow 

remains pre-asymptotic throughout the entire range examined.  These examples 

demonstrate theoretical bases for solute dispersion during transport through porous 

media manifesting non-Fickian, or asymptotically Fickian, character. 
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Figure 2.1 Development of longitudinal dispersion in stratified medium with hole-
type conductivity covariance structure (Gelhar et al., 1979).  Stochastic-convective 
region is circled. 

 

Strong transverse gradients in longitudinal velocity that presumably contribute 

to non-Fickian mixing may also result from the effects of local depth on vertically-

averaged velocity in surface flow, when depths are strongly correlated in the 

downstream direction, i.e. when cross-sectional shape remains relatively constant in 

the direction of flow.  This may help explain why longitudinal mixing even in non-

vegetated streams has been observed to be non-Fickian. 

Employing the assumption that mixing in surface flow wetlands is stochastic-

convective, Carleton (2002) proposed that the flux concentration of a solute exiting a 

wetland can be treated conceptually as a flow-weighted average over a collection of 

stream tubes with differing velocities.  This “Damköhler number distribution” (DND) 
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approach also incorporated the presumption that local stream tube velocity (u) and 

volumetric constituent removal coefficient (k) are functions of vegetation surface area 

density (“X”, for example with units of m2/m3).  In this derivation, X was assumed to 

vary only in the plane perpendicular to flow, and to be invariant (or perfectly 

autocorrelated) in the flow direction.  The primary advantage of this approach is that 

it provides a quantitative method, derived from a plausible mechanistic explanation, 

for characterizing the curious phenomena wherein reaction rate coefficients appear to 

be functions of hydraulic loading rate (Kadlec, 2000).  Important limitations of the 

approach are that it is restricted to an assumption of steady flow, and that transverse 

and diffusive mixing are ignored.   

The primary objective of this work is to extend the DND modeling approach 

to non-steady flow conditions, and to evaluate model adequacy by comparing 

predicted concentrations with monitored concentrations from field studies.  A 

secondary objective is to compare model results with those generated using the k-C* 

plug-flow model (PFR), which is commonly used to characterize wetland 

performance (Kadlec and Knight, 1996). 

2.3 Derivation of the Model 

2.3.1 The Steady-Flow Case 

The DND approach employs the following assumptions.  Flow is considered 

to be two-dimensional in the sense that vegetation density (and/or reciprocal depth) X 

varies only in the horizontal direction transverse to flow (dimension z in this case), 

and not in the direction of flow (x).  Therefore k and u are functions of z but not of x.  

Transport in the vertical dimension is not considered: stream tube parameters (k and 
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u) are taken to represent depth-weighted averages.  With stream-tube specific 

advection and reaction considered, and longitudinal dispersion ignored, the governing 

solute mass balance within a stream tube subject to time-varying inlet boundary 

conditions is: 
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If X represents vegetation density, as discussed previously, then velocity u and 

reaction rate coefficient k are assumed to be related to X by (compare with eq. 2.6) 
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respectively, where γ, ζ, and n are constants.  With flow path length L, Damköhler 

number (Da) for stream tube “i” can be expressed as a power function of residence 

time τi by combining equations and eliminating X:  
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Alternatively, if X is taken to represent the reciprocal of stream tube depth, 

then we may assume that vertically-averaged velocity and reaction rate coefficients 

are related to X by 
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respectively, where α, β and n are constants, with n most likely <1 (see for example 

velocity and depth profiles given in Bogle, 1997).  The sort of inverse dependence of 

reaction rate on depth represented by eq. 2.15 may occur particularly for constituents 

that are removed via mass transfer from the water column into the benthic layer, and 

has been observed to occur both in wetlands (Kadlec and Knight, 1996) and in stream 

environments (Alexander et al., 2000, 2004).  By combining equations 2.14 and 2.15 

and eliminating X, a relationship results which is identical in form to equation 2.13: 
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Confirmation of the validity of the essential concepts inherent in this approach has 

recently been provided through an investigation of a wetland in Florida (Dierberg et 

al., 2005).  In the studied wetland, locally lower k values for Total Phosphorus (TP) 

removal were found to characterize channels within the wetland that were both deeper 

(faster flowing) and less densely vegetated than other areas within the wetland. 

Whether X represents vegetation density or reciprocal depth, we assume that it 

varies only in the plane orthogonal to flow, and is invariant in the flow direction.  

High degrees of long-range autocorrelation in the direction of flow may be more 

likely for depth than for vegetation density in some systems.  It is unfortunate that the 

effects of vegetation and depth are indistinguishable from each other in terms of their 

relative contributions to coefficients A and B in equation 2.13 or 2.16.  In flowing 

waters, vegetation density may itself also be correlated with depth (Chambers et al., 

1991), further complicating interpretations of A and B, and making it unlikely that 

suitable values for these parameters can be derived a priori from quantifiable 

characteristics or physical principles.   
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With a pulse (Dirac delta) addition comprising the upstream (inlet) boundary 

condition in stream tube “i”, the solute mass balance equation includes stream-tube 

specific advective and reactive (but no dispersive) terms: 
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This equation has the general solution 
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For more general boundary conditions )(),0( tgtC ii = , the concentration can be 

found via convolution as follows 
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where τϕ −= t .  This simplifies to 
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where 
i

i u

x
=τ  , or 

i
i u

L
=τ  at the outlet.  Given a wetland’s residence time 

distribution (RTD) function E(τ), the outlet flux concentration for the wetland as a 

whole can then be found by integrating over all residence times (i.e. stream tubes), as 

first proposed by Danckwerts (1953), and later explored by Levenspiel (1972): 
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A power function relationship between Damköhler number and residence time 

(eq. 2.13 or 2.16) can be incorporated into this relationship either by first converting 
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the RTD into a distribution of Damköhler numbers and integrating over this 

distribution (Carleton, 2002), or by simply incorporating the power function directly 

into the reaction term: 
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or 
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where Cin and Cout refer to concentrations at the inlet and outlet of the wetland, 

respectively.  Explicit consideration of an irreducible background concentration (C*) 

can be incorporated as follows: 
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Given data on percent removal of a pollutant from a wetland (or stream) under a 

range of hydraulic loading rates, or concentrations at different distances from the inlet 

under constant flow, A and/or B may be estimated using least-squares minimization of 

a suitably defined objective function. 

2.3.2 The Non-Steady Flow Case 

The approach is extended to non-steady conditions by employing the 

assumption that (unlike residence time) stream-tube k is not a function of velocity, 

and therefore does not vary over time.  Wetland water volume is also assumed to be 

constant: velocity changes are caused by gradient changes, and do not involve 

changes in depth.  The approach begins with consideration of flow during steady-state 

conditions.  Figure 2.2 shows a plan view of a hypothetical velocity profile of parallel 
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stream tubes traversing a wetland under steady flow.  Here umean refers to the mean 

velocity (flow divided by cross-sectional area), umax to the maximum stream tube 

velocity, and ui to the velocity in stream tube ‘i’.  Stochastic-convective mixing 

implies that the ratio between the velocities in any two stream tubes is constant, even 

if the mean velocity changes due to an alteration in flow.  If umean changes by some 

percentage, the velocities in all stream tubes are assumed to simultaneously change 

by the same percentage.  Thus all stream tube velocities scale to the instantaneous 

mean velocity.  The stream tube velocity scaling factors can be obtained from the 

relative velocities implied by the RTD (for uniform flow path length) under steady 

flow conditions.  The non-steady DND approach therefore employs a wetland’s RTD, 

which is assumed to have been measured under steady-state “reference” conditions. 

 

umean 

umax 

L 

ui 
ui/umean=constant 

 

Figure 2.2 Hypothetical flow velocity profile (plan view) in a wetland or stream. 
 

For the unsteady flow model, the calculation of outlet concentrations employs 

three different variables representing time: ‘τ’ represents residence times for the 
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reference RTD.  Inlet and outlet concentrations are expressed as functions of ‘t’, 

which represents true, or chronological time.  The third time variable ‘T’, is residence 

time-upon-exit; that is to say, the amount of time that water exiting the wetland at 

time t in any given stream tube has actually spent inside the wetland.  Using these 

three interrelated time variables, the governing equation for outlet flux constituent 

concentration is given by the following integral, related to eq. 2.24:  
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 (2.25) 

where y = Ti/τi, or the ratio between residence time-on-exit and reference condition 

residence time for flow path i.  Under steady flow conditions this definition of y 

becomes the same as ‘equivalent y’, as defined by Carleton (2002).  Under 

continuously varying flow conditions, y assumes a different value for each flow path, 

and for each flow path also assumes a different value at each point in time (t).  As in 

the steady-state case, outlet concentration is found by integrating over the RTD, 

however decay is calculated as a function of residence time-upon-exit (τy = T), rather 

than (reference condition) residence time. 

 Flow and concentration data obtained from real wetlands are discrete rather 

than continuous in nature.  The following discrete analogue to equation 2.25 is 

therefore used to evaluate outlet concentrations, given as input data inlet 

concentrations and flow rates measured at discrete points in time (e.g. daily): 
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Interdependencies between stream tube specific k and τ that arise from their presumed 

simultaneous dependence on vegetation density and/or depth (eq. 2.13 or 2.16) are 

then easily incorporated:  
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To evaluate the summation in equation 2.27, it is necessary to obtain values of 

y for each stream tube.  In other words, values of Ti are required which correspond 

with each value of τi.  Under the stochastic-convective flow assumption, a 

relationship between Ti and τi may be obtained directly from the temporally varying 

mean velocity function (um), as illustrated in Figure 2.3.  Given a velocity vector (e.g. 

daily flow values divided by mean cross-sectional area) as in Figure 2.3a, Ti is found 

by integrating um backward in time until travel distance L is reached (Figure 2.3b), 

making use of the assumption that for any flow path, ui/umean is constant, irrespective 

of the instantaneous value of um.  Ti is defined implicitly by the following equation: 

 ( )∫ =−
iT

m
i

mean Ldtu
0

σσ
τ
τ

 (2.28) 

which may be rearranged to produce the following relationship: 

 ( ) meani
mean

i
T

m uLdtu
i

τ
τ
τ

σσ ==−∫
0

 (2.29) 

where umean is mean velocity under reference conditions, and σ is a dummy variable 

of integration.  It should be noted that these expressions are closely related to the 

concept of dimensionless time (φ) as defined by Werner and Kadlec (1996), the 

primary difference being that φ is defined through a forward integration of velocity in 

time:   
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Using their notation for elapsed time, s=t-λ, these quantities can be defined as 

follows: 

 ∫=
t

mcout duAsV
λ

σσ )()(  (2.31) 

and 

 ∫
∞

=
λ

σσ duAV mcsys )(  (2.32) 

where Ac is cross-sectional area in a plane orthogonal to the flow direction. 
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Figure 2.3 Illustration of derivation of τ vs. T curve from temporally-varying mean 
velocity (um): a) example wetland um for a 100 day period; b) um integrated backward 
in time over same period, with residence time-on-exit (T) for flow length L shown; c) 
y-axis shown scaled by ratio of flow-path residence times; d) y-axis divided by mean 
velocity under reference conditions to produce τ i vs. Ti curve. 
 

 The curve in Figure 2.3b illustrates cumulative distance as a function of 

negative time t (relative to some fixed value of t) for an example mean wetland 

velocity vector (um), using linear interpolation to connect discrete (daily) data points.  

Some value on the y axis corresponds with L, the travel distance from inlet to outlet.  

As shown in Figure 2.3b, by reading over to the curve from L on the y-axis, and 

sending a line down to the x-axis, one may find the residence time-on-exit for the 

mean flow path, Tm.  However, the curve is actually more useful than this.  Given a 

continuous distribution of residence times, every value on the y axis corresponds with 

L for some flow path.  The y axis can be thought of as L scaled by τi/τmean  (Figure 
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2.3c).  Since L and τmean are both constants whose quotient is umean, the y axis in 

Figure 2.3c can also be interpreted as τiumean (eq. 2.29).  Therefore if one divides all y-

axis values by umean, the resulting curve represents τi plotted as a function of Ti 

(Figure 2.3d).   

The relationship embodied in this curve can thus be used to calculate y values 

for any i.  These values can then be used in equation 2.27 to evaluate Cout(t).  This 

approach was implemented by the authors in a MATLAB® routine given the working 

designation “Wetloop”.  Wetloop uses a daily-discretized version of a gamma 

distribution (truncated on the upper end at a day representing ≥95% of the cumulative 

area under the theoretical curve) with user-selectable shape and scale parameters to 

represent the RTD (Carleton, 2002).  Note that alternative functional forms for the 

RTD, such as would be produced by the velocity distributions explored by Grismer 

for subsurface flow wetlands (2005), could also be accommodated through a simple 

code change.  Wetloop reads a text file of wetland flow velocities and inlet 

concentrations arranged by date, and uses linear interpolation to fill in values for any 

missing days.  Beginning with the last date in the file and working backward one day 

at a time, Wetloop integrates the velocity vector backward in time from the given 

date, and derives a τi vs. Ti curve specific for that value of t, as in Figure 2.3d.  With 

each day in the RTD representing a separate flow path ‘i’, the program uses the τi vs. 

Ti curve to estimate T for each value of τ in the RTD.  Following equation 2.27, 

Wetloop computes the product of Cin(t-T) (adjusted for C*), the RTD function, and 

the fraction decay, calculates the stream tube exit concentration, then repeats the 

process for all n ‘i’ values, and sums the result to give the estimated outlet 
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concentration for each date (t) in the input file.  As with the shape and scale 

parameters of the RTD, flow path length L and reaction-related parameters A and B 

are user-selectable parameters. 

 In contrast with the unsteady DND model, the k-C* PFR model, which is 

commonly applied to data from wetlands, employs an assumption that flow is 

uniform as well as steady-state.  Rather than distributions, a single k and residence 

time (τ) are used to characterize constituent reaction and transport: 

 τk

i

o e
CC

CC −=
−
−

*

*
 (2.33) 

where Ci and Co are inlet and outlet concentrations, respectively.  It should be evident 

that this model is equivalent to a simplified version of the DND model under uniform 

residence time (plug-flow) conditions. 

2.4 Methodology for Model Testing 

 To evaluate the non-steady DND approach and the Wetloop model, lengthy 

time series flow and concentration (inlet and outlet) data from published studies on 

wetlands were sought.  The goal was to evaluate the performance of the model by 

feeding inlet velocity and concentration time series into Wetloop, then comparing the 

resulting predicted outlet concentrations against measured concentrations, selecting 

parameter values through a model error minimization process.  An ideal data set for 

this purpose would come from a wetland possessing simple (e.g. rectangular) 

geometry, would include a well-characterized RTD, and would have both flow and 

inlet concentration that change fairly dramatically during the study, yet remain 

relatively constant at various levels for long enough that outlet concentrations have 

time to periodically stabilize.  Although no data sets meeting these criteria were 
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found, two data sets that each met some of these criteria were obtained for model 

evaluation purposes.  Model evaluation employing these data sets focused primarily 

on reasonableness of predicted outlet concentrations compared with measured ones.  

Regression of predicted vs. measured outlet concentrations was employed as a 

quantitative measure of model adequacy.  For one data set, flow-related bias was also 

evaluated by regressing model errors against flow rates.  Results were compared 

against the same kind of analysis conducted for a k-C* PFR model fit to the same 

data.  

2.4.1 Example 1: The Gustine Wetlands  

 The Gustine wetlands are a series of five equally sized, rectangular, vegetated 

cells used to provide secondary treatment of domestic wastewater in Gustine, 

California.  Walker and Walker (1990) measured BOD5 removal from the cells over a 

13 month period, during which each cell was operated under a different mean 

hydraulic loading rate (3.8 to 16.2 m/year).  Kadlec (2000) reported that regression of 

the k-C* PFR model against inlet/outlet data results in an apparent dependence of k 

on hydraulic loading rate among these wetlands.  Carleton (2002) demonstrated that 

this phenomenon can be understood as resulting in part from an inverse square root 

relationship between stream tube velocity and vegetation surface area density, i.e. 

n=1/2 and B=3 in equation 2.13.  Using a spreadsheet method to numerically integrate 

the governing integral equation (eq. 21 in Carleton, 2002), an estimate for parameter 

A of 0.00029 was derived by a least-squares procedure, with B constrained to a value 

of 3.  This approach essentially treats the five Gustine cells as if they were a single 

wetland operated under five different, constant hydraulic loading rates. 
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Although the mean hydraulic loading rates varied between the five cells, flow 

rates also fluctuated continuously within each cell during the duration of the 

experiments (Figure 2.4).  Flow rates and inlet and outlet concentrations for each cell 

were measured on a weekly basis between March 1989 and March 1990. 
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Figure 2.4 Weekly reported flow velocities in Gustine wetland cells. 
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2.4.2 Example 2: The Orlando Easterly Wetlands 

 The Orlando Easterly Wetlands (OEW) are a series of constructed wetland 

cells arranged in three separate treatment trains (northern, central, and southern) that 

have provided tertiary treatment of domestic wastewater in Orlando, Florida since 

1987.  Influent loadings have been approximately evenly split between the three 

trains except for a capacity test conducted between March 1997 and March 1998, 

during which time all flow was channeled through the northern train (Black and Wise, 

2003).  Daily measurements of flow and influent and effluent TP have been collected 

at OEW by the City of Orlando since 1988, providing a robust data set for model 

evaluation purposes.  In analyzing TP input and output data over a number of years, 

Black and Wise (2003) documented an apparent positive relationship between 

monthly-averaged plug-flow k values (i.e. eq. 2.33) for TP, and monthly-averaged 

flow rates between 1992 and 1999.  Martinez and Wise (2003) also studied mixing at 

the OEW, using pulse inputs of KBr tracer to measure RTDs in each treatment train.  

Their reported results include first and second temporal moments (mean and variance 

of residence time) for each treatment train obtained from the tracer curves.  After 

several years of adequate performance, TP removal at OEW was observed to undergo 

seasonal declines each year beginning in winter of 1999, apparently due to decreased 

hydraulic efficiency and increased Phosphorus release from sediments (Wang et al., 

2006).  Because the DND approach is not designed to take such factors into account, 

Wetloop simulations were limited to the period from 1992 through 1999.  

Quantitative model evaluation was further limited to the 1992-1995 period, during 
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which measured concentrations appeared to provide the most reliable check on model 

output. 

2.5 Results 

2.5.1 Gustine Wetlands 

With an α value of 3 again used to represent the RTD shape parameter, and 

the same values for A and B (0.00029 and 3) as determined in the steady-state 

analysis (Carleton, 2002), Wetloop was used to process the temporally-varying input 

data from each of the five Gustine cells, and to predict outlet concentrations.  Results 

(Figure 2.5) show reasonable agreement between predicted and monitored outlet 

concentration trends over time for all five wetland cells.  Correlation coefficients (r2) 

between measured and simulated outlet BOD5 concentrations were respectively 0.77, 

0.59, 0.43, 0.62, and 0.70 for cells 1A, 1B, 1C, 1D, and 2A.  Despite the greater than 

four-fold range in mean flow rates between these systems, the same set of parameter 

(A and B) values is able to provide representations of outlet concentration time series 

in all five Gustine cells that are generally consistent with observed concentration 

trends.   
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Figure 2.5 BOD5 concentrations at the Gustine wetlands: measured inlet (diamonds), 
measured outlet (squares), and modeled outlet (dark line). 
 

Variations in the apparent performance of the model in matching the data 

from each individual cell are likely related to inter-cell variability.  For example,  

cells 1A and 1D were both operated at the same nominal HLR (15.15 m/yr), but 

outlet BOD concentrations from cell 1A were generally higher than those from cell 

1D, as Figure 2.5 shows.  Although the reasons for this are not entirely clear, the 

study report (Walker and Walker, 1990) indicates that cell 1A also had substantially 
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higher TSS effluent concentrations than did the other cells (e.g. a mean concentration 

of about 40 mg/L as compared with 21 mg/L for cell 1D), which the study authors 

attributed to “more open area” in cell 1A than in others thus “encouraging algae 

growth”.  The elevated BOD in the cell 1A effluent could therefore have been in part 

a function of increased algal biomass export.  Because the same model parameter set 

was used to simulate all five Gustine cells, the concentrations emanating from cell 1A 

are slightly underestimated while the concentrations emanating from cell 1D are 

slightly overestimated.  In a similar way, the steady-state analysis of mean data in 

Figure 1.8 shows the best-fit model to slightly underestimate effluent concentration 

from cell 1A, while it slightly overestimates effluent concentration from cell 1D 

(these are the two data points with identical “equivalent y” values of 0.25). 

2.5.2 Orlando Easterly Wetlands 

 To simulate the OEW system with Wetloop, gamma probability density 

functions with the same moments as those found by Martinez and Wise were used to 

represent the RTDs of the three flow trains (Figure 2.6).  Flow velocities were 

estimated from daily flows (mgd) by dividing by an estimated mean cross-sectional 

area for each train.  Total influent loadings were assumed to be evenly divided 

between the three treatment trains, except for the March 1997 through March 1998 

period, during which all influent loadings were assumed to be applied to the northern 

train (flow velocities for the central and southern trains during this period were set to 

the relatively insignificant value of 0.1 m/d in order to avoid model problems 

associated with zero flow).  Outlet concentrations were calculated as the mean of the 
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effluent from the three trains, except for the March 1997 through March 1998 period, 

when they were set to equal the northern train effluent concentration. 
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Figure 2.6 Approximations of the three OEW flow train Residence Time 
Distributions, E(t),(RTDs) using gamma PDFs with means and variances matching 
the observed.  Compare with Martinez and Wise (2003), Figure 6. 
 

Parameters A and B were assumed to be the same for all three trains: B was 

again fixed at a value of 3, corresponding to an inverse square root dependence of U 

on X, as in eq. 2.6 (this was primarily in order to obtain a fair comparison of results 

with the PFR model, so that for each model, optimization involved manipulation of a 

single parameter, and not because B is necessarily believed to optimally equal 3).  An 

optimized value for parameter A of 1.57E-5 day-3 was found (using MATLAB® 

procedure ‘fminsearch’) by minimizing the summed squared daily differences 

between measured and modeled outlet concentrations.  For consistency with the PFR 

analysis employed by Black and Wise (2004), C* was set to zero, and parameter 

optimization focused on the period beginning 01/92.  Unlike Black and Wise, in our 

analysis the optimization period only extended through 10/31/95, because the daily 
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record suggests a change in quantitation limit after this period, with a large number of 

censored values (Figure 2.7c) that might bias model fit.  Results show predicted 

concentrations that are, for the most part, in reasonable agreement with measured 

ones (Figure 2.7b, 2.7c) between 1992 and 1995.  Wetloop notably underpredicted 

performance during the capacity test (03/97-03/98) period, when all flow was routed 

through the northern train. 

For 1992-1995, monthly averaged Wetloop results show similar agreement 

with measured concentrations as results obtained using a best-fit k-C* PFR model 

optimized for the same time period (Figure 2.8).  PFR model optimization involved 

selecting a value for k (in eq. 2.33) that minimized the summed squared errors 

between simulated and measured outlet concentrations, calculated on an average 

monthly basis using monthly-averaged flow (Q) to calculate residence time. 
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Figure 2.7 Orlando Easterly Wetlands data from 1992 through 1999; a) daily flow 
rate (average of inlet and outlet); b) TP concentrations measured daily at inlet and 
outlet, and modeled at outlet; c) expanded view of measured and modeled outlet 
concentration. 
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Figure 2.8 Comparisons between measured and modeled outlet TP concentrations at 
the Orlando Easterly Wetlands for period 01/92-10/95. Both models employed the 
same value for C* (0.0 mg/L), and optimized values of just one parameter (obtained 
in each case by minimizing summed squared model errors): a) A in the case of 
Wetloop, and b) k in the case of the k-C* plug-flow model. 
 

Figure 2.9 displays model error correspondence with flow for the Wetloop and 

PFR models.  The flow-correlated bias in k that was reported by Black and Wise 

(2004) for a PFR model of the OEW system is evident in the scatter, and reflected in 

the higher correlation coefficient of model error with Q (r2=0.24).  As expected, 
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because the DND approach is designed to address this effect as part of model 

formulation, this bias is essentially eliminated in the Wetloop results (r2=0.01).  
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Figure 2.9 Model error regression against flow rate: a) Wetloop model; b) k-C* plug-
flow model. 
 
 
2.6 Discussion 

 The modeling approach described in this paper for non-steady flow conditions 

presumes that a wetland’s RTD is a fixed entity that does not evolve with time, and 

that has the same shape (when non-dimensionalized) irrespective of flow rate or other 

conditions.  Results of a recent investigation call into question the validity of this 
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assumption: in tracer studies on a stormwater treatment wetland, Holland et al. (2004) 

found that although flow rates by themselves had an insignificant effect, water depth 

had a large impact on the shapes of normalized RTDs.  The approach proposed in this 

paper does not explicitly take water depth into consideration in outlet concentration 

calculations, except perhaps through variations in (spatially) mean cross-sectional 

area if they are used in the calculation of instantaneous bulk velocity um from time-

varying flow rate, e.g. um = Q/Ac, where Q and Ac are the instantaneous flow and 

cross-sectional area, respectively.  Water depths and cross-sectional areas are not 

typically monitored frequently enough in wetland studies to provide the kind of time-

series information that would be useful in this way.  For example, in the OEW and 

Gustine wetland examples presented in this paper, only the approximate mean water 

depths were available; um was therefore calculated from Q under an assumption of 

fixed cross-sectional area and fixed depth.  To the extent that these quantities actually 

vary with time, this represents a weakness in the DND approach. 

 Other weaknesses in the approach derive from the presumption of stochastic-

convective flow, which necessarily ignores molecular diffusion, transverse mixing, 

and the random impacts of wind-induced mixing as aspects of solute transport.  Under 

very low flow conditions, the relative importance of these effects may be magnified.  

It should be noted that although the non-steady DND approach is designed to handle 

continuously-varying flows, it is not suitable for handling flow rates that fall to zero, 

as this results in plateaus in the τi vs. Ti curve (Figure 2.3d), and therefore 

indeterminacy in Ti.  Use of the PFR model is of course also not strictly appropriate 

for systems with periodically static or wildly fluctuating flow regimes, so this 
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weakness in the DND approach does not represent a comparative advantage for the 

PFR model. 

 The DND modeling approach, in both the steady-state (Carleton, 2002) and 

non-steady state cases (this paper), derives from the presumption that treatment 

efficiency is a direct reflection of a wetland’s distribution of vegetation density and/or 

depth.  Many questions remain regarding the fundamental nature of the relationships 

between vegetation density, depth, flow rate, water surface gradient, and constituent 

removal kinetics in surface flow systems, including wetlands and streams.   

2.7 Conclusions 

 The assumption of non-Fickian or pre-asymptotic longitudinal dispersion in 

wetlands and streams leads to convolutional solutions for flux concentrations.  Stream 

tube velocities and constituent removal coefficients may both be dependent on local 

vegetation densities and/or local depths, in which case outlet concentrations can be 

determined through knowledge of a system’s RTD in combination with two 

parameters that can be estimated through objective function minimization.  In this 

paper an extension of the steady-state “Damköhler Number Distribution” modeling 

approach (Carleton, 2002) to cases of non-steady flow and temporally varying inlet 

concentration has been presented.  DND-based wetland modeling addresses the 

dependence of apparent removal rate constants on flow, and is in this respect an 

improvement over the k-C* PFR model.  In two example applications of the method 

to existing wetland data sets, the approach provides time series estimates of outlet 

constituent concentrations that appear to be in reasonable agreement with measured 
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outlet concentration time series.  Further work will focus on explicitly incorporating 

transverse mixing into prediction equations. 

 

 



 

 72 

 

Chapter 3:  Reactive Transport in Stratified Flow Fields With 

Idealized Heterogeneity 

3.1 Abstract 

A two-dimensional equation governing the steady state spatial concentration 

distribution of a reactive constituent within a heterogeneous advective dispersive flow 

field is solved analytically. The solution which is developed for the case of a single 

point source can be generalized to represent analogous situations with any number of 

separate point sources.  A limiting case of special interest has a line source of 

constant concentration spanning the domain’s upstream boundary.  The work has 

relevance for improving understanding of reactive transport within various kinds of 

advection-dominated natural or engineered environments including rivers and 

streams, and bioreactors such as treatment wetlands.  Simulations are used to examine 

quantitatively the impact that transverse dispersion (deviations from purely 

stochastic-convective flow) can have on mean concentration decline in the direction 

of flow.  Results support the contention that transverse mixing serves to enhance the 

overall rate of reaction in such systems. 
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Notation 

a, b, f multipliers in velocity, dispersion and reaction terms, respectively  

A, B, F multipliers in velocity, dispersion and reaction terms, respectively in 

dimensionless equation 

Cf(x)  flux concentration 

Cr(x)  resident concentration 

C(x,z)  concentration at a point 

DX longitudinal dispersion coefficient (dimensionless coordinates) 

Dz, DZ transverse dispersion coefficient in standard and dimensionless 

coordinates, respectively 

E(t)  residence time distribution function (RTD) 

F(t)  tracer breathrough curve function 

H, L lateral and longitudinal extents of domain, respectively 

k, K reaction term in standard and dimensionless coordinates, respectively 

keff effective plug-flow reaction rate coefficient 

m, n, p exponents in velocity, dispersion and reaction terms, respectively 

x, z coordinates in direction of and transverse to flow, respectively 

X, Z dimensionless coordinates in direction of and transverse to flow, 

respectively 

t  time 

u, U velocity in standard and dimensionless coordinates, respectively 

Ωi  eigenvalues 

λi  eigenvalues, modified form 
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3.2 Introduction 

Recent decades have seen a growing recognition of limitations inherent in 

traditional methods of representing dispersive solute flux in the direction of motion in 

porous media and open channel flow.  As first defined by Taylor (1954), shear-flow 

dispersion arises from an interaction between non-uniform advection and diffusion of 

solute across stream lines.  Fischer et al. (1979) explain how various simplifying 

assumptions are used to derive from this complicated physical picture a relatively 

simple expression employing a bulk dispersion coefficient to represent longitudinal 

dispersive flux in a manner analogous to the way that molecular diffusion is described 

by Fick’s first law.  In other words, hydrodynamic dispersive flux is treated as 

proportional to the spatial gradient in mean concentration.  Inclusion of such a flux 

term in a one-dimensional transport equation produces the standard one-dimensional 

advective-dispersive equation (ADE), for which solutions under various initial and 

boundary conditions are widely available (e.g. van Genuchten and Alves, 1982).  

However, studies on solute transport in various disparate media and environments 

including soils, streams, and wetlands have documented solute spreading that is not 

adequately characterized by the ADE because longitudinal mixing only approaches 

Fickian behavior asymptotically, if at all, after transport has proceeded for a certain 

duration or distance (e.g. Day, 1977; Gelhar, 1993; Werner and Kadlec, 2000).  The 

behavior typically manifests as an increase in the apparent dispersion coefficient with 

the scale of transport.  In the near-field limit (the “stochastic-convective” case), 

longitudinal spreading occurs solely as a function of velocity heterogeneities; i.e. 

transverse mixing can be ignored.  
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With general recognition that spatially heterogeneous velocities are at the 

heart of failures of the ADE to describe real transport regimes, researchers have 

explored various alternative approaches to transport simulation.  These include 

stochastic methods (Dagan, 1984; Gelhar et al., 1979; Matheron and DeMarsily, 

1980; Montas et al., 2000), continuous time random walk formulations (Berkowitz et 

al., 2006; Dentz et al., 2004), and approaches in which heterogeneity is represented 

explicitly (Chen and Arce, 1997; Shapiro and Brenner, 1986; Uflyand, 1988).  

Although some of these efforts have addressed reaction as well as transport, they have 

largely focused on responses to pulse addition of tracers, rather than to the continuous 

addition of reactive substances, such as would typify the situation in a reactor.  

In one notable study, Yeh and Tsai (1976) developed an analytical solution for 

the spatial distribution of a conservative constituent continuously released into a 

steady-state two-dimensional flow field, in which both velocity and transverse 

dispersion coefficient are treated explicitly as power functions of the transverse 

dimension.  The authors envisioned their transverse dimension as specifically 

representing the vertical, and selected power functions as approximations of more 

complicated boundary layer equations in order to make the governing transport 

equation tractable to solution.  The work described in this Chapter closely follows 

Yeh and Tsai’s approach, but incorporates a reaction term that is also governed by a 

power law dependence on the transverse dimension (Figure 3.1).  By contrast with 

Yeh & Tsai, the transverse dimension in this work is envisioned as essentially 

representing the horizontal (lateral) rather than the vertical dimension, with 

heterogeneity envisioned to be a function of underlying physical attributes.  The 
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resulting model is specifically intended to represent systems such as bioreactors that 

incorporate spatially heterogeneous reaction rates linked to local velocities, for 

example as a result of mutual dependence on underlying distributions in drag-

inducing reactive surface (e.g. vegetation) density.  This work represents 

advancement over previous modeling efforts for these kinds of reactors, in which 

flow was assumed to be stochastic-convective (Carleton, 2002; Carleton and Montas, 

2007), because it explicitly incorporates transverse diffusive/dispersive fluxes in the 

governing equations.  Although the functional representations of velocity, reaction 

and dispersion employed in this approach represent simplifications of reality, our 

results may be directly applicable to some particular kinds of problems, for example 

depth-averaged transport in U-shaped channels with fringing vegetation that increases 

in density toward the shallows. 

Very few analytical solutions of two-dimensional reactive transport equations 

are known, which necessitates the use of numerical approximation techniques to 

simulate most cases of practical interest.  Unfortunately, traditional numerical 

techniques for simulating heterogeneous transport domains suffer from problems such 

as instabilities that frequently make them difficult to solve, particularly for systems 

that possess hyperbolic character (Herrera and Valocchi, 2006; James and Jawitz, 

2007).  The solutions presented in this paper can apply to systems with strongly 

hyperbolic character.  Despite limitations on the forms of the idealized profiles 

governing velocity, reaction rate and transverse dispersion, these solutions may be 

useful for a variety of purposes, including serving as exact answers against which the 

accuracy of numerical simulations can be tested. 
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Figure 3.1 Definition sketch of 2-D heterogeneous transport environments: a) 
reactive regime, top view (this paper); and b) non-reactive regime (side view) 
considered by Yeh  and Tsai (1976).  Spatially heterogeneous velocities (u), 
transverse dispersion coefficients (Dz), and reaction rate coefficients (k) are treated as 
power functions of the transverse (z) dimension.  Figure a indicates that 
heterogeneities are manifestations of the underlying spatial distribution of a 
controlling variate, such as vegetation surface area density in the case of a wetland. 
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3.3 Model Formulation 

3.3.1 General Solution 

The mass-balance equation for concentration (C) of a reactive constituent emanating 

from a source in steady unidirectional flow is 

 0),()()()( =+







∂
∂

∂
∂

+
∂
∂

−− zxS
z

C
zD

zx

C
zuCzk z  (3.1) 

where x and z are coordinates in the direction of and transverse to flow respectively, 

and S is a source function.  Functions k, u, and Dz are reaction rate coefficient, 

velocity, and dispersion coefficient respectively.  For a rectangular bounded domain 

of transverse and longitudinal extents H and L respectively, we define normalized 

coordinates in the longitudinal and transverse directions: Z=z/H, X=x/L, and define k, 

u, and Dz as power functions of the transverse coordinate: 

 ppp ZfHfzk ==  (3.2) 

 mmm ZaHazu ==  (3.3) 

 nnn
z ZbHbzD ==  (3.4) 

Next we define constants 
L

aH
A

m

= , B=bHn-2, and F=fHp, and express eq. 3.1 in the 

form 

 0),( =+
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−− ZXS
Z
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where U=aZm, DZ=BZn, and K=FZp are velocity, transverse dispersion, and reaction 

rate terms respectively, expressed in terms of dimensionless coordinates.  Following 

Yeh and Tsai (1976), a Neumann (no flux) boundary condition is imposed at the 

“upper” (maximum z) transverse boundary:  
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 0=
∂
∂

z

C
DZ , 1=Z  (3.6) 

The astute reader will recognize that a Neumann boundary necessarily exists as well 

at the “lower” transverse boundary by virtue of the fact that DZ equals zero there.  The 

domain can be envisioned as potentially representing one half of a bilaterally 

symmetric regime, in which the “upper” transverse boundary represents the 

centerline.  Because transverse flux is zero at z=H (eq. 3.6), concentrations are 

continuous across this line, though the U, DZ, and K functions all exhibit cusps 

(discontinuities in slope) there.  This system of equations can be solved using a 

Green’s function approach: 

 ∫ ∫=
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0 0
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dZdXZXSZXZXGC  (3.7) 

where G satisfies G(X,Z,X0,Z0) = 0, X < X0, and 
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thus 
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Employing a separation of variables technique, we express G as 

 ∑
∞

=

=
0

00 )()(
i

iii ZXwG φα  (3.10) 

which upon substitution into equation 3.9 leads to eigenfunction problems of the 

following form: 
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and 
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where Ωi are eigenvalues.  Rearrangement of eq. 3.11 produces 
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or 
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Parameters A, B, and F are all assumed to be non-negative, and for solubility’s 

sake we require p=n-2.  When this is the case, eq. 3.14 is in the form of Relton (1965) 

eq. 3.6.2, and is therefore a Bessel equation in a form for which a solution can be 

found (see Appendix B).  If n is positive and smaller than two, this means that p is 

negative.  For consistency with assumptions employed in previous wetland simulation 

work (Carleton, 2002; Carleton and Montas, 2007), we are primarily interested in 

situations in which p is negative and m is positive, so that K is inversely related to U.  

In the current model, K decreases with increasing Z, and approaches infinity at Z=0.  

Although an infinite reaction rate is not physically meaningful, velocity and 

transverse dispersion both approach zero at the boundary where this occurs, for the 

kinds of domains in which we are primarily interested (i.e. with m  and n  both 

positive).  Thus this boundary is isolated from the rest of the domain in terms of 

material exchange, and its influence on concentration in the rest of the domain is 
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finite.  Despite the idealized nature of the transport regime, the model is therefore 

expected to be useful for providing insights into the behavior of some real physical 

systems.  Note that equation 3.14 is equivalent in form to eq. 9.1.53 of Abramovitz 

and Stegun (1965), i.e. ( ) ( ) 021 2222222 =−++′−+′′ φνλφφ qrZqZrZ q , with 

solution ( )qr ZCZ λφ ν= , and quantities 1 - 2r, λ2q2, 2q - 2, and r2 - ν2q2  are equal to 

n, 2Ω
b

a
, m – n, and -F/B respectively, using our nomenclature. 

We next define the following two quantities in terms of existing parameters: 
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Employing these, the solution to eq. 3.14 can be expressed in terms of Z0 as 
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Next, by using a modified form of the eigenvalues: 
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eq. 3.17 can be expressed more compactly as 
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 Conditions at the “lower” transverse boundary are such that C=0 for all X, as 

long as F is non-zero.  Thus this is a Dirichlet (zero concentration) boundary, in 

addition to being a Neumann (zero flux) boundary, as previously mentioned.  For this 
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reason the orders (ν) of the Bessel functions in this work are specifically defined as 

positive, whereas Yeh and Tsai were able to employ negative values of ν in their 

solution for the non-reactive case: according to Abramovitz and Stegun, eq. 9.1.7 

(1965), in the limit as z goes to zero the Bessel terms approach zero for positive ν, but 

approach infinite magnitude for negative ν.  Because when p < 0 the reactive solution 

must be zero at Z=0, only positive order Bessel functions produce a physically 

sensible (i.e. non-negative concentration), bounded solution.  The condition ν ¥ 0 

imposes a constraint (through eq. 3.16) that m ¥ n - 2.  However, because we limit 

our focus to cases where m and n are both non-negative and less than 2 (in the 

interests of physical sensibility), this constraint does not come into play in our 

analysis.  

 Equation 3.12 has the solution 
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where wi,0 is the value of wi at X0 as X0 approaches X.  We solve for wi,0 as follows.  

Combining eqs. 3.9b and 3.10, we obtain  
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Multiplying both sides by αiφi(Z0) and integrating over Z0 from 0 to 1 produces 
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Because of orthogonality of the eigenfunctions, the left side is zero except when i = j , 

thus eq. 3.22 simplifies to 



 

 83 

 

 ( ) ( ) ( )∫ =
1

0

00
2

0
2

0, ZdZZZUw iiiii φαφα  (3.23) 

The Bessel series coefficients are defined as follows for the case of a Dirac delta inlet 

boundary condition, equivalent to imposing a normalization condition on the Sturm-

Liouville problem represented by eq. 3.14 (Boyce and DiPrima, 2005): 
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Thus eq. 3.23 simplifies to 

 ( )Zw iii φα=0,  (3.25) 

and eq. 3.10 becomes 
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where the condition 
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applies, which derives from 0
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∂
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G
, in order to ensure that the “upper” (Z = 1) 

transverse boundary condition (eq. 3.6) is met. 
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 For a point source of strength M, located at (X0,Z0), the solution for C is 

therefore:  
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If we define the point X0 to be zero on the X axis, eq. 3.28 becomes 
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3.3.2 Incorporating Longitudinal Dispersion 

 A solution for a governing equation that includes longitudinal dispersion can 

be developed in an analogous fashion, subject to an additional constraint: that the 

longitudinal dispersion coefficient is a power function of Z with the same exponent as 

that of the velocity function, i.e.  
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where  

 m
X IZD =  (3.31) 

The solution to this equation is 
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Details of the derivation are presented in Appendix A.  As with eq. 12 in Yeh and 

Tsai (1976), equations 3.29 and 3.32 can be thought of as general solutions in two 

dimensions for situations in which a single point source exists, located at (0,Z0).  

Solutions for cases of multiple sources can be obtained by integrating the relevant 

equation (e.g. eq. 3.26) over all sources. 

3.3.3 Solutions for Non-Dimensionless Domains 

 Equations 3.29 and 3.32 are solutions to eqs. 3.5 and 3.30 respectively, when  

S(X,Z) = Mδ(X)δ(Z – Z0), i.e. the upstream boundary condition is a Dirac delta 

function of magnitude M, located along the upstream boundary at position (0,Z0).  

Note that because the governing equations are in the same form (i.e. all coefficients 

power functions of the transverse dimension), solutions for non-dimensionless 

versions of the equations are of the same form as eqs. 3.29 and 3.32, with non-

dimensionless versions of the coordinates and coefficients (A, B, X, Z, etc.) 

substituted in appropriate places.  For example, the solution to eq. 3.1 is 
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where in this case ε  is defined  by  
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3.3.4 Reactor Model 

A situation of particular interest for the purpose of this study is the case in 

which the “inlet” concentration is constant across the width of the domain, i.e. instead 

of a Dirac singularity at (x0,z0) we have uniform Ci at x0 as a source function, 

spanning the width of what can be thought of as an upstream or inlet boundary, from 

z = 0  to z = H at x0.  This arrangement is geometrically comparable to the stochastic-

convective or Damköhler number distribution (DND) approaches employed 

previously to simulate wetland bioreactors (Carleton, 2002; Carleton and Montas, 

2007).  The governing equation with transverse dispersion included has the following 

solution for transverse-mean resident concentration normalized by Ci and expressed 

as a function of x: 
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The transverse variance of the above is then defined as  
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is the concentration at any point (x,z). 

 Similarly the normalized flux concentration is  
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Its transverse-mean variance can be calculated as  
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 The corresponding expressions for resident and flux concentrations in terms of 

dimensionless coordinates are 
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and 
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respectively, and the dimensionless-space analogue of eq. 3.37 is 
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3.4 Parameter Sensitivity Analysis 

 Because of the constraint p = n - 2, the dimensionless model (eqs. 3.29, 3.32, 

3.40, 3.41, and 3.42) can be viewed as essentially governed by only five parameters: 

A, B, F, m, and p, (or n) (with the equations as written, exponent n is limited to values 

other than unity in order that the solutions do not produce divide-by-zero errors at Z = 

0; however solutions can be developed for the special case of n = 1, as detailed in 
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Appendix B).  Figure 3.2a presents an example normalized concentration “surface” 

for the dimensionless reactor model, calculated over unitary X-Z space on 20 by 20 

point spacing using eq. 3.42 with the following parameters: A = 1, B = 0.1, F = 0.2, m 

= 1/7, and p = -13/7 (i.e. n = 1/7).  Figure 3.2b displays a result generated using the 

same values for A, B, and F, but exponents m = 4/7 and p = -8/7 (n = 6/7).  For ease in 

visualization, both figures are shown in the statistically equivalent bilaterally 

symmetrical form over an X domain that extends from 0 to 2, with the centerline at 

X=1, and the concentrations for X values greater than 1 simply plotted as a mirror 

image of those obtained for X less than 1.  The mean difference over the entire X-Z 

domain between the two figures in terms of normalized concentration is 0.07, and the 

maximum difference is about 0.25.  The similarity between the shapes of the response 

surfaces, as well as with those produced using other combinations of exponents (not 

shown), suggests that model results are not very sensitive to the magnitudes of the 

exponents within the ranges of interest (i.e. m and n positive and p negative, with p = 

n - 2). 
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Figure 3.2 Dimensionless reactor model (eq. 3.42) results over X-Z space, with 
advective, dispersive, and reactive term multipliers A = 1, B = 0.1, F = 0.2; and 
exponents: a) m = 1/7, n = 1/7, p = -13/7; and b) m = 4/7, n = 6/7, p = -8/7. 
 

 By contrast, model results seem to be relatively sensitive to the magnitudes of 

A, B, and F.  Sensitivity to these parameters is examined graphically in Figures 3.3a, 

b, and c.  The figures display outlet (X = 1) flux concentrations calculated using eq. 

3.41, for combinations of all three parameters.  All simulations were conducted using 

m = 4/7, p = -8/7, and n = 6/7.  Figure 3.3a demonstrates model result sensitivity to 

various combinations of B and F, with A fixed.  Figure 3.3b similarly demonstrates 

model sensitivity to A and B, with F fixed, and Figure 3.3c demonstrates sensitivity to 
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A and F, with B fixed.  As labeling of the axes indicates, and as the structures of eqs. 

3.15 and 3.42 suggest, the relationships shown in these figures all scale linearly with 

the value of a single parameter – either A, B, or F.  The figures also show outlet 

concentrations to be more sensitive to F  than to A or B, at least for the selected 

values of the exponents.  Model sensitivity to simultaneous variations in A, B, and F 

is examined further in Figure 3.4, which shows interpolated isocontours that represent 

three different values (0.2, 0.5, and 0.8) of normalized flux concentration at X = 1.  

The figure shows a roughly linear increase in F with A to be necessary in order to 

attain a given outlet concentration.  A general but less sensitive decrease in F with B 

for fixed outlet concentration is also indicated by the figure. 
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Figure 3.3 Outlet (X = 1) flux concentration reactor model (eq. 3.41) parameter 
sensitivity plots, with: a) A fixed, B and F variable; b) F fixed, A and B variable; c) B 
fixed, A and F variable. 
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Figure 3.4 Interpolated isosurfaces in A-B-F space, of outlet (X = 1) normalized flux 
concentrations (eq. 3.41) equal to 0.2 (green), 0.5 (blue), and 0.8 (red). 
 

3.5 Treatment Wetland Simulations 

Attempting to use a value of zero for dispersion coefficient parameter b in 

order to negate the transverse dispersion term results in a divide-by-zero error in the 

calculation of ε (eq. 3.15), and theoretically infinite order for the Bessel functions (eq. 

3.16), therefore the approaches developed in preceding paragraphs cannot be used to 

simulate completely hyperbolic (zero dispersion) systems.  However, for the case of a 

“line” source (eqs. 3.35, 3.38) this kind of system can be simulated using the 

stochastic-convective DND model approach (Carleton, 2002).  Rather than a Bessel 

function series, this approach calculates flux concentration by making use of the 

system’s Residence Time Distribution (RTD), which can be directly calculated from 
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the power function velocity profile (eq. 3.3) as follows.  The formula for a tracer 

breakthrough curve (BTC) following a step concentration input at the inlet boundary 

is: 
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Differentiating F(t) with respect to t we derive the RTD as: 
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The DND is then derived from the RTD by employing eq. 19 from Carleton (2002) as 

follows, in which A and B refer in this case to parameters that relate Damköhler 

number (kt) to residence time t (rather than parameters relating advective and 

dispersive terms to dimensionless coordinate Z): 
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Normalized flux concentration, defined as in eq. 3.38 and expressed as a function of 

fractional longitudinal distance y, is then found by integrating over the DND: 
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An example serves to graphically illustrate these ideas.  The parameters in this 

example are: a = 0.005, m = 4/7 (mean u = 0.015 m/min); f = 10-3, p = -8/7 (flow-

weighted mean k = 1.7×10-4 min-1); n = 6/7, and this time b is variable, for a variable 
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mean dispersion coefficient.  The exponent (m) in the velocity term is set so that k is 

inversely proportional to the square of velocity, for consistency with assumptions 

used in previous work (Carleton, 2002; Carleton and Montas, 2007).  The dimensions 

of the domain are 15 m width × 1000 m length, which corresponds conceptually with 

a treatment wetland of very long, thin dimensions, such as might be designed for the 

purpose of attempting to minimize short-circuiting and attain a situation as close to 

plug flow as possible.  Figure 3.5 shows the RTD for this system calculated using eq. 

3.44, and for comparative purposes a gamma-pdf RTD possessing the same first and 

second moments.  Figure 3.6 shows longitudinal flux concentration profiles for the 

two DND models that result from these two RTDs.  The striking differences between 

the shapes of the two curves, especially for x values greater than about 200 m, 

illustrates that flux mean concentration for stochastic-convective transport regimes is 

sensitive to higher moments of the velocity (or residence time) distribution, and is not 

simply a function of the first and second moments of the RTD. 
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Figure 3.5 RTDs associated with stochastic-convective transport regimes (b = 0), for 
cases of: power function velocity profile (solid line), and traditional wetland gamma 
pdf RTD (dashed line).  Despite the difference in shape, the two pdfs have the same 
first and second central moments. 
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Figure 3.6 Longitudinal flux-weighted concentrations from stochastic-convective 
(DND) reactive transport models, derived from RTDs associated with: power 
function velocity profile (solid line), and gamma pdf RTD (dashed line). 

 

The impact of transverse dispersion in the example of the system governed by 

a power function velocity profile is illustrated in Figure 3.7, which shows longitudinal 

flux concentration profiles for values of reaction term parameter b ranging from zero 

to 0.01.  The figure shows that as b increases, the apparent efficiency of the system as 

a whole increases as well, with mean concentrations declining increasingly sharply 

with distance.   
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Figure 3.7 Comparison of longitudinal flux-weighted concentrations for transport 
domain with various degrees of transverse dispersion: b = 0 (solid line), b = 0.0001 
(short dashes), b = 0.001 (long dashes), b = 0.01 (dot-dashes). 

 

Figure 3.8 provides a view of transverse concentration profiles at various 

longitudinal distances, for the specific case of b with a value of 0.0001.  The changing 

shape with distance of the concentration profile is a reflection of the impact of 

transverse dispersion tending to move constituent away from the less-reactive portion 

of the domain (the centerline in a bilaterally symmetric representation) and toward the 

more-reactive areas (the boundaries) as transport proceeds. 
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Figure 3.8 Transverse concentration profiles for simulation using b = 0.0001 at 
distances x = 2 m (solid line), x = 20 m (short dashes), x = 100 m (long dashes), and x 
= 500 m (dot-dashes). 
 

Figure 3.9 shows equivalent plug-flow reactor (PFR) k values (keff) plotted as 

functions of longitudinal distance from the inlet (x = 0).  These values were back-

calculated from results of the simulations using the following rearrangement of the 

plug-flow equation 
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where u is mean velocity, and Ci is inlet concentration (unity in this case).  All of the 

simulations show declining keff with distance (especially near the inlet), consistent 

with the observation that keff in wetlands tends to increase with increasing hydraulic 
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loading rate (Kadlec, 2000).  Most striking in the figure is the effect of b, which shifts 

the entire keff curve upward dramatically as it increases.   Higher values of b also 

apparently drive keff toward (low) asymptotic values more rapidly. 
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Figure 3.9 Effective plug-flow removal rate coefficients calculated as functions of 
longitudinal distance (eq. 3.43), for simulations with various degrees of transverse 
dispersion: b = 0 (solid line), b = 0.0001 (short dashes), b = 0.001 (long dashes), b = 
0.01 (dot-dashes). 
 
3.6 Discussion 

 The simulation results demonstrate ways that the solutions presented in 

this paper can be used to gain insights into interactions of idealized advective, 

dispersive, and reactive fluxes governing longitudinal transport of constituents.  The 

example based on a conceptual treatment wetland illustrates that the equations 

provide a framework for theoretical inquiries such as quantifying the impact of 

transverse mixing on bulk removal rates.  The outcome that transverse mixing 
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increases performance in a simulated wetland is qualitatively consistent with both 

field observations on wetlands (Kadlec, 2008) and the results of wetland simulations 

by other researchers (Lightbody et al., 2007).  Transverse mixing essentially works to 

counter the effect of short-circuiting, wherein relatively untreated water passes 

relatively quickly through what amount to zones of preferential flow, thereby 

decreasing overall reactor performance.   

The two-dimensional reactive transport equation solutions presented in this 

paper represent an improvement in realism over previous stochastic-convective 

modeling approaches developed to simulate heterogeneous bioenvironments 

(Carleton, 2002; Carleton and Montas, 2007), in the sense that they incorporate 

transverse dispersion as an aspect of longitudinal mixing, in addition to 

heterogeneous velocity.  For comparison with results in this analysis, future work will 

investigate analogous stochastic representations of unbounded reactive transport 

regimes in which velocity, reaction rate coefficient, and dispersion coefficient are all 

treated as random, statistically stationary variables instead of simple functions of 

geometry. 
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Chapter 4:  Stochastic Modeling of Reactive Transport in 

Wetlands 

4.1 Abstract 

This study describes the development of a general model of reaction and 

performance in spatially heterogeneous bioreactors such as treatment wetlands.  The 

modeled domain possesses local-scale velocities, reaction rates and transverse 

dispersion coefficients that are functions of an underlying heterogeneity variate 

representing one or more controlling biophysical attributes, for example, reactive 

surface area (submerged plant) density.  Reaction rate coefficients are treated as 

related to local velocities in an inverse square fashion via their mutual dependence 

upon the variate.  The study focuses on the solution for the steady-state case with 

constant inlet concentration.  Results compare well with exact solutions developed for 

laterally-bounded systems in which the heterogeneity is represented explicitly.  

Employing the bicontinuum analogue of the second-order model, an expression for an 

effective longitudinal dispersion coefficient as a function of travel distance is 

developed using the method of moments.  The result provides insights into the 

behavior of concentration as transverse mixing drives the system asymptotically 

toward Fickian longitudinal dispersion.  The model may represent an improvement 

over other approaches for characterizing treatment wetland performance because it 

accounts for evolving shear flow dispersion, and because parameters are few in 

number, physically based, and invariant with mean velocity. 
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Notation 

a, b, f multipliers in velocity, dispersion and reaction terms, respectively  

A integrated covariance parameter 

c1, c2  characteristic concentrations 

c   mean (resident) concentration 

cf  mean (flux) concentration 

f1, f2 fractions of continuum associated with each characteristic 

concentration  

m, n, p exponents in velocity, dispersion and reaction terms, respectively 

D  transverse dispersion coefficient  

DL  effective longitudinal dispersion coefficient  

DL,∞  asymptotic effective longitudinal dispersion coefficient  

H  transverse wetland dimension or period of heterogeneity  

k  reaction rate coefficient  

κ1, κ2  velocity-independent decay coefficients in steady-state solution 

L  intra-continuum mixing coefficient 

r1, r2  decay coefficients in steady-state solution 

t  time 

w  heterogeneity variate (=X-1/2) 

x  coordinate in the direction of flow 

xk
1/2  distance scale for decay 

xD
1/2  distance scale for transition to Fickian dispersion 

X  vegetation-litter surface area density, and/or reciprocal depth 
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z   coordinate transverse to direction of flow 

α, β, γ  proportionality constants for D, k, and u respectively 

λ  zero-mean, unit-variance version of w, or eigenvalue 

Λ  longitudinal wetland dimension  

ρcλ  correlation of c with λ 

ζ 1, ζ 2, ξ 1, ξ 2 coefficients in steady-state solution  

σc
2  transverse variance of concentration 

σt
2  temporal variance of inert tracer pulse 

σx
2  spatial (longitudinal) variance of inert tracer pulse  

τ  mean residence time 

θ1, θ2  composite coefficients in steady-state solution  
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4.2 Introduction 

Wetlands have become popular around the world as low-cost systems for 

treating various kinds of wastewaters (Kadlec and Wallace, 2009).  Macrophytes in 

wetlands may enhance pollutant removal through a variety of mechanisms, including 

direct uptake, physical filtration, and enhancement of microbially-mediated 

processes.  In free water surface wetlands and natural marshes, macrophytes strongly 

influence water movement.  Flow patterns through and around stands of rooted plants 

can be quite complex, and may involve recirculation-zones downstream of stems 

(Nepf et al., 1997a), coherent vortices at the interface between plant canopies and 

open water (White and Nepf, 2008), and significant heterogeneity in magnitude and 

direction of water velocities at various spatial scales (Nepf et al., 1997b; Nepf and 

Koch, 1999; Green, 2004).  In general, plants are observed to increase frictional drag 

that slows the movement of water passing in their vicinity (Champion and Tanner, 

2000; Fonseca et al., 1982; Sand-Jensen and Mebus, 1996).  Studies have documented 

significant enhancement of sedimentation within stands of vegetation (Moore, 2004; 

Thornton, 1997).  Epiphytic biofilms coating submerged leaves, stems and litter have 

been shown to play key roles in processes including nitrification (Bastkiven et al., 

2003), denitrification (Eriksson, 2001; Eriksson and Weissner, 1997; Eriksson and 

Weissner, 1999), and phosphorus uptake (Pietro et al., 2006; Scinto and Reddy, 

2003).  For some chemical constituents then, plant density distributions in wetlands 

may be key influences on distributions of both local velocities and local reaction 

rates. 
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Because of the physical and biological complexity in wetlands, and the 

general lack of detailed information about the internal workings in any particular 

wetland, performance modeling for treatment wetlands has tended toward semi-

empirical, black-box approaches that employ minimal numbers of parameters to 

characterize gross removal.  Plug-flow reactor (PFR) models were initially popular 

for this purpose (Kadlec and Knight, 1996), but were found to suffer from systematic 

problems, including apparent parameter dependence on flow rate (Kadlec, 2000).  

More recently, compartmentalized models based on tanks-in-series (TIS) hydraulics 

have been advocated as general descriptors that account for velocity and/or reaction 

rate heterogeneity in wetlands, using a minimal number of parameters (Kadlec, 2003; 

Kadlec and Wallace, 2009).  However the question of whether the parameters of such 

models are robust to alterations in hydraulic loading has yet to be fully addressed. 

As an aspect of hydraulic complexity, researchers have noted the existence of 

“short-circuiting” in treatment wetlands, which allows some fraction of influent to 

pass through relatively untreated (Dierberg et al., 2005; Kjellin et al., 2007; Martinez 

and Wise, 2003), thereby adversely impacting reactor efficiency.  In an extreme 

example, a recent study of a wetland in Georgia found a residence time distribution 

(RTD) that was essentially binary in nature, such that two very different velocities 

were judged to be “sufficient to describe water movement” in the wetland (Lightbody 

et al., 2008).  Carleton (2002) and Carleton and Montas (2007) developed wetland 

models based upon the concept of broad distributions of flow paths whose velocities 

are precisely those implied by the transit times in a wetland’s RTD.  The main 
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limitation of this “stochastic-convective” approach is the absence of mass-transfer 

between stream lines. 

 Adequate characterization of longitudinal mixing may be crucial to 

developing simple yet robust models of treatment wetland performance.  As defined 

by Taylor (1954) shear-flow dispersion arises from spatially heterogeneous advection 

in combination with scalar diffusion across stream lines.  The early-time behavior of 

such a system is stochastic-convective, which corresponds to that of models described 

above.  After sufficient transverse mixing has occurred, and with proper velocity 

autocorrelation systems exhibit an effective longitudinal dispersive flux that may be 

modeled as proportional to the mean concentration gradient (Berentsen et al., 2005; 

Gelhar et al., 1979; Matheron and DeMarsily, 1980).  In the large-time regime 

dispersion is Fickian and transport can be represented by the classical one-

dimensional advective dispersion equation (ADE).  Like the PFR model, the ADE 

model is appealing because of its simplicity, which is also its weakness.  Studies on 

transport in various media and environments, including wetlands, have documented 

solute spreading that cannot be properly characterized by the ADE, apparently 

because the observed longitudinal mixing corresponds not to the large-time 

asymptotic regime (ADE), but to either the early-time asymptotic regime (stochastic-

convective), or to the transition between them (Day, 1977; Gelhar, 1993; Werner and 

Kadlec, 2000).  A model which incorporates the full range of shear-flow dispersive 

behavior, from the stochastic-convective extreme to the advective-dispersive one, 

should be better able to approximate constituent dynamics, including reaction, in such 

systems that exhibit intermediate or evolving dispersive character. 
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The objective of this paper is to develop and evaluate a model of reactive 

solute transport applicable to treatment wetlands that overcomes the limitations of 

prior approaches by representing the full range of transport dynamics from early 

advective, through transitional, to large-time Fickian.  The model is developed by 

volume-averaging of local transport equations where a variable related to vegetation 

density is taken as the primary heterogeneity variate due to its governing role in flow 

(obstruction and bypass) as well as reaction (e.g. biofilms and plant uptake) 

processes.  The results of the theoretical analysis presented in this study are consistent 

with the general observations of Lightbody et al. (2008) but suggest that two 

distinctly observable velocities, or groupings of similar velocities, need not comprise 

the flow field in order for two flow paths to adequately represent a heterogeneous 

system.  Rather, we will show that two characteristic velocities (and other, related key 

properties) derived via canonical transformation of a second-order system of 

governing transport equations can serve to represent the transport and reaction 

dynamics of a system possessing broad distributions of velocities and reaction rate 

coefficients. 

 To our knowledge mobile-mobile models have not previously been used to 

represent transport-reaction dynamics in wetlands or other heterogeneous ecological 

systems.  Advantages of the approach are the flexibility it appears to offer for 

representing spatially complex domains using only a few, physically-based 

parameters, and for simulating systems that range from stochastic-convective, to 

evolving pre-asymptotic, to Fickian in terms of their bulk longitudinal dispersion 

characteristics.  Although the theoretical work described in this paper is loosely 
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focused on free water surface wetlands, the approach is intended to be general enough 

to apply to other kinds of environmental systems, possibly including streams, soils, 

aquifers, and subsurface flow treatment wetlands.  

This paper is arranged in the following fashion.  We begin with development 

of a correlation-based second-order approximation of transport dynamics in a 

stochastic domain, and proceed to transformation of the resulting system of equations 

into bicontinuum form.  The resulting mobile-mobile model is compared with mass-

transfer models of biofilm-based reaction in wetlands, and then steady-state solutions 

for resident and flux concentrations are derived for the case of constant inlet 

concentration (a reactor model).  For the corresponding pulse-loaded system a 

moment analysis based on input of a non-reacting constituent (tracer) is next used to 

develop an expression for the effective longitudinal dispersion coefficient as a 

function of travel time and distance.  The model is then evaluated by comparing 

simulation results with the predictions of a two-dimensional transport model in which 

heterogeneity is specified as an explicit function of geometry.  Lastly, conclusions are 

presented on the improvements that the proposed model offers over prior approaches. 

4.3 Model Development 

The transport of solutes within a treatment wetland is assumed to be correctly 

described at the local (stream tube) scale by a mathematically longitudinally 

hyperbolic (no longitudinal dispersion) and transversally parabolic (no transverse 

velocity), two-dimensional advective-dispersive-reactive equation of the form: 

 ( ) ( ) ( ) 



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∂
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∂
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−−=
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zuczk
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where c represents solute concentration, k, u, and D are randomly varying reaction 

rate, longitudinal flow velocity, and transverse diffusion coefficients, respectively, t is 

time, x is longitudinal position from wetland inlet to outlet, and z is the transverse 

spatial coordinate.  The transport parameters, k, u, and D are assumed to form 

stationary fields that result from the combined presence of wetland vegetation and of 

a uniform hydraulic gradient from inlet to outlet.  The available reactive surface area 

for solutes, X, is assumed to be directly proportional to vegetation density and to form 

a stationary random field.  This quantity is higher where plants which harbor 

microbiota are more abundant and smaller in the zones between such plants.  It is 

further assumed that reaction rate coefficients, k, are locally proportional to the 

density of reactive surfaces and that flow velocity, u, is inversely proportional to k as 

flow is fastest in between plant stands.  Based on the prior work of Carleton (2002) 

and Carleton and Montas (2007), u and k are assumed to be interrelated via functional 

dependencies of each on spatially variable reactive surface area density as: 

 2/1X
u

γ
=  (4.2) 

 Xk β=  (4.3) 

Following prior studies, it is expected that flow field variability has a 

dominant effect on transport dynamics, and consequently we define the related 

primary heterogeneity variate as follows: 

 2/1−= Xw  (4.4) 

The statistics of w (mean, variance and skewness) as well as its characteristic length 

(from its spatial autocorrelation function) are assumed known, from appropriate 

sampling of wetland vegetation density or possibly from design specifications for a 
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constructed wetland.  For convenience, and in accordance with common statistical 

practice, the primary variate is normalized to zero-mean, unit-variance to produce: 

 w
w

ww
ww

λσ
σ

λ +=
−

= ;  (4.5) 

where w  is the mean of 2/1−X (overbars indicate spatial averaging), and σw is the 

standard deviation.  By definition then, 0=λ  and 12 =λ .  Substituting a change of 

variables into eq. 4.2, we express u in terms of λ: 

 ( ) λγσγλσγγ ww wwwu +=+==  (4.6) 

This has the more general form 

 λρ λuuu +=  (4.7) 

where in this case wu γ≡ , and the correlation of u with λ is 

denoted uwu u σγσλρ λ =≡≡ .  We similarly express k in terms of λ as follows: 

 ( ) 2−+= λσβ wwk  (4.8) 

and expand it in a second-order Taylor series approximation 
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32
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k wwww  (4.9) 

Truncation at second-order is accurate in this case when the coefficient of variation of 

w (i.e. ww /σ ) is small.  In similarity to eq. 4.6, this is of the general form 

 2
0 2λρλρ

λλ kkkk ++=  (4.10) 

where k0 and the correlation terms are defined by equating eqs. 4.9 and 4.10 term by 

term.  Using the nomenclature of eq. 4.10, the approximate mean reaction rate is 

calculated as 
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 20 λ
ρ

k
kk +=  (4.11) 

since 12 =λ .  This is an approximation of k because of the Taylor series expansion 

used in the derivation.  To both simplify the analysis and render (in a later step) 

coefficient matrices diagonalizable, we next employ the assumption that skewness 

and kurtosis of heterogeneity are not independent, but are linked by the relation (eq. 

46, Montas et al., 2000)  

 1
2

34 += λλ   (4.12) 

This assumption is a necessary limitation related to the fact that in the derived model, 

a continuous distribution of λ values will be approximated by a binary distribution.  

With eq. 4.12 the following expression for the variance of k is derived, employing the 

assumption that the mean of a sum is approximately equal to the sum of the mean of 

individual component terms: 
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  (4.13) 

and a corresponding expression for the standard deviation of k: 

 3
2 λρρσ
λλ kkk +≈  (4.14) 

The transverse dispersion coefficient can be expressed using the same general 

functional dependence upon λ and λ2 as assumed for k: 

 2
0 2λρλρ

λλ DDDD ++=  (4.15) 
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where mean D is given by 

 20 λ
ρ

D
DD +=  (4.16) 

since 12 =λ .  Using the same approach as for k, the standard deviation of D is 

derived to be: 

 3
2 λρρσ
λλ DDD +=  (4.17) 

Depending upon the nature of the relationship between D and u (or k), the 

relationship between D and λ may correspond with a truncated Taylor series as in eq. 

4.9, or an exact expression as in eq. 4.7.  Either way the general form is 

 ( )qwwD λσα +=  (4.18) 

where q is a constant, the magnitude of which determines the functional forms of the 

constant, and correlation terms in eq. 4.15.  For example if q=3/2, then Taylor series 

expansion of eq. 4.17 gives 2/3
0 wD α= , 

2

3 2/1
w

D

w σα
ρ λ = , and 

2/1

2

8

3
2

w
w

D

ασ
ρ

λ
= .  For 

other values of q, other definitions of these quantities result.  If we choose q=1, then 

D is simply proportional to u, in accordance with common practice in groundwater 

modeling. 

4.3.1 Correlation-Based Approximation 

Given the definition of λ in eq. 4.5, concentration can be decomposed into the 

sum of a transverse mean and a spatially-fluctuating component (c’), which is 

approximated in terms of its correlation with the heterogeneity variate 

 λλρ ccccc +≅+= '  (4.19) 
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where ρcλ is the correlation between 'c  and λ.  With this representation, transverse 

concentration variance can be estimated from the correlation variable as (Montas et 

al., 2006): 

 ( ) ( ) ( )222222 ' λλλ ρρλλρσ cccc c ==≈=  (4.20) 

This is only an estimate since concentrations could vary spatially with other variates, 

orthogonal to λ, as well but has proven to be a good first approximation in prior 

studies (Montas et al., 2000; Montas, 2003).   

Substituting the preceding decompositions for c, k, u, and D into equation 4.1 

produces the decomposed version of the transport equation 
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 (4.21) 

Averaging eq. 4.21 then produces the mean transport equation 
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in which the following approximations are used 
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Multiplying equation 4.21 by λ and averaging similarly produces the following 

expression for correlation of concentration with the heterogeneity variate: 
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in which the additional approximations are used 
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along with the following first-order closure, equivalent to eq. 9 of Montas et al. 

(2000): 
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The approximations in eq. 4.23 and 4.25 are justified under the assumption that λ 

varies mildly in the z-direction, and can therefore be treated as a constant within the 

spatial derivative terms.  Equation 4.26 approximates a dispersive heterogeneity-
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concentration perturbation correlation term with the sum of a mean dispersive process 

and a local first-order decay process for ρcλ.  The parameter A (see Appendix C for 

derivation) represents a characteristic scale of the heterogeneity field w, and may be 

obtained as a function of the spatial autocorrelation function of w using eq. C11, C15, 

or C19. 

Next, employing eq. 4.12 again, we express equations 4.22 and 4.24 together 

in the matrix form 
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Using relations 4.11, 4.14, 4.16, and 4.17 this is expressed more compactly as 
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Equation 4.28 indicates substantial interactions between the transport dynamics of 

c and ρcλ.  Reactive, advective and dispersive fluxes of mean concentration are partly 

functions of the concentration-heterogeneity correlation.  Dynamics governing the 

heterogeneity correlation are similarly functions of mean concentration flux terms.  

The magnitudes of these interactions are proportional to the standard deviations of 
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stochastic parameters u, D and k.  In the case of homogeneous values of these entities 

the interaction terms in eq. 4.28 would disappear, leaving a simple system of two 

separate ADE-type transport equations. 

4.3.2 Bicontinuum Form 

The extensive cross-interactions between c  and ρcλ somewhat complicate 

analysis and solution of the system of equations in eq. 4.28.  However, the appearance 

of the common coefficient matrix in the advective, dispersive and reactive terms 

offers the opportunity for a linear transformation to convert c  and ρcλ into an 

equivalent pair of ‘canonical’ concentrations whose dynamics are (except for first-

order exchange) independent of each other.  The transformation method is detailed in 

Montas et al. (2000), and produces an equivalent bicontinuum form from a second-

order system of equations such as eq. 4.28.  Following this approach, the eigenvalues 

of the coefficient matrix in the advective and dispersive terms of eq. 4.28 are first 

calculated to be 
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The corresponding eigenvector matrix can then be expressed as 
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where f1 and f2 are interpreted as fractions of the medium corresponding to each of the 

two canonical concentration variables in a bicontinuum approximation of the second-

order system (Montas et al., 2000).  The inverse eigenvector matrix is then 
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The canonical variables c1 and c2 are obtained from the original variables by 

multiplying from the left by the inverse eigenvector matrix 
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and the original variables may be obtained from the canonical ones by the inverse 

process 
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Multiplication of eq. 4.28 from the left by P-1 then results in the canonical form of the 

transport equation matrix, with diagonalized advection, dispersion, and reaction 

coefficient matrices, and a full mixing matrix in the first-order terms: 
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 (4.34) 

When written in the form of two equations, it becomes obvious that eq. 4.34 

constitutes a bicontinuum transport model with first-order mass exchange between 

continua: 
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 (4.35) 

In eq. 4.35 the following notation is employed: 
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 2,12,1 λσ kkk +=  (4.36a) 

  2,12,1 λσ uuu +=  (4.36b) 

 2,12,1 λσ DDD +=  (4.36c) 

Defining the mixing coefficient (a new quantity)
A

D
ffL 0

21= , eq. 4.35 may be 

expressed as 
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 (4.37) 

Equation 4.37 is the canonical version of the statistically-based second-order 

transport model (eq. 4.28) and is fully equivalent to it, expressing all of the same 

fluxes and interactions in a form that arguably lends itself more fully to intuitive 

comprehension.  The model recasts the correlation-based system in the form of two 

advective-dispersive-reactive continua that interact with each other through a first-

order mass-transfer exchange.  The two forms are fully interchangeable: eq. 4.28 may 

be obtained from eq. 4.37 by multiplying from the left by eigenvector matrix P, just 

as eq. 4.37 was obtained from eq. 4.28 by multiplying from the left by P-1. 

4.3.3 Comparison with Boundary Layer Mass-Transfer Models 

 The approach described above employs a system of two linked continua, each 

having its own characteristic properties, to approximate the dynamics of a single 

stratified, multi-dimensional reactive transport domain.  The terms in eq. 4.37 

involving differences between c1 and c2 are analogous in form to expressions of 
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diffusive mass transfer between continua separated by a boundary layer, as will be 

shown. 

Fick’s first law for diffusion along a concentration gradient (Chapra, 1997) is 
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where J is mass flux and D is an effective diffusion/dispersion coefficient.  This can 

be approximated with the following finite-difference equation 

 )( 21 cc
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 (4.39) 

in which δ is the mixing length, c1 is concentration in the medium of interest, and c2 is 

the concentration on the other side of the boundary layer.  The quantity D/δ comprises 

an effective velocity, which is in this case a mass-transfer coefficient.  Kadlec and 

Knight (1996) offer the following analogous expression for removal of constituents in 

wetlands via mass-transfer through boundary layers surrounding biofilms adhered to 

stationary surfaces (e.g. plant stems and litter)  

 )( 21 cc
A

A
J

w

b −= ϕ  (4.40)
 

where c2 in this case is concentration at the biofilm surface, Ab is total biofilm area, 

Aw is wetland surface area, and φ is a proportionality constant.  Equating eqs. 4.39 

and 40, we find 
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where Vw is wetland volume and h is depth.  Rearrangement produces 
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If biofilms are assumed to uniformly coat all vegetation surfaces, then the quantity 

Ab/Vw is equivalent to X in our notation (vegetation surface area density, m2/m3), 

therefore 
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In wetlands δ may be interpreted as half the inverse of vegetation density 

(representing the effective mean distance between bulk solution and reactive surface), 

which leads to 
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=ϕ  (4.45) 

A simple expression for removal of constituent during advective transport in a system 

governed by a reaction coefficient of this nature would be a mobile-immobile model, 

for example of the form 
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where subscripts 1 and 2 refer to mobile and immobile zones, respectively, and ε is 

defined as the ratio of the mobile zone volume to the immobile zone (biofilm) volume 

(i.e. f1/f2).  If reaction inside the immobile zone is sufficiently fast (i.e. k2 sufficiently 

high) that c2 is negligible compared with c1, then eqs. 4.46 simplify approximately to 

a single advection-reaction equation for the mobile zone: 
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where quantity 
h

DX2
 comprises an effective reaction rate coefficient. 

For the case of shallow flow over a biofilm-coated substrate, such as an algal 

turf scrubber® (Adey and Loveland, 1998), a reasonable value for δ would be half of 

the water column depth (i.e. the mean diffusive transport length from water column to 

reactive surface).  This leads to an expression analogous to eq. 4.46: 
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where ε is again the ratio of the mobile zone volume to the immobile zone (biofilm) 

volume.  Again if k2 is sufficiently high that c2 can be considered negligible, then eqs. 

4.48 simplify to a single advection-reaction equation for the mobile zone: 
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where 
2

2

h

D
 represents an effective reaction rate coefficient. 

 The similarity between the forms of eqs. 4.46 and 4.35 is noteworthy.  

Equating the two expressions, we find that the quantity A/f2 (see eq. C23) corresponds 

with the quantity h/(2X).  Both of these terms have units of length squared.  For eq. 

4.48, A/f2 equates with h2/2, and correspondence with the form of C23 is again 

evident.  Each of these expressions describes diffusive/dispersive mass transfer 

between separate continua or regions.  Equations 4.46 and 4.48 describe mobile phase 

concentration in mobile-immobile bicontinuum models, in which transport occurs 



 

 123 

 

solely in the mobile phase and reaction solely in the immobile phase.  By contrast, the 

mobile-mobile bicontinuum model of eq. 4.35 quantifies a situation in which 

transport and reaction both occur in each phase, though at different rates in each.   

The mobile-mobile approach of this study has the advantage of providing a 

means to address dynamics that result from distributions of governing parameters.  It 

has the disadvantage that one may perceive the physical interpretation of each 

continuum as less straightforward than in the mobile-immobile approach, where a 

single mobile phase representing the water column in its entirety interacts with an 

immobile phase that represents “transient storage”, “dead zone”, or a biofilm layer 

within which reaction occurs.  However in wetlands, as in other fluid systems, it has 

been challenging to identify what fraction of the flow volume should be ascribed to a 

non-flowing “immobile” zone (e.g. within boundary layers), and the present model 

provides a mathematical answer to this difficult question based on the characteristics 

(eigenvalues) of heterogeneity statistics.  More precisely, it indicates that a purely 

immobile zone, while conceptually appealing at first sight, results from mathematical 

analysis in particular cases only and is not a generally applicable concept. 

4.3.4 Steady-State Analysis 

The steady-state case of the transport model (eq. 4.37), with constant inlet 

concentration, corresponds conceptually with a bioreactor such as a treatment 

wetland.  In this case, the system is loaded continuously and the interest is in the level 

of load attenuation as a function of distance from inlet for a given set of flow and 

reaction parameters.  Additionally, for a given wetland length, effluent (flux) 

concentration provides an indication of the system’s treatment performance and the 
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level to which it helps mitigate impacts to downstream aquatic environments.  The 

results of this type of steady-state analysis can be inverted for design purposes to 

select the required length, flow rate, and vegetation density characteristics that meet a 

specified loading rate and effluent concentration.  The steady-state form of eq. 4.37 

is: 
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Assuming transversally-uniform inlet boundary conditions, within-continuum 

concentrations must be laterally homogeneous; therefore the transverse spatial 

derivatives of canonical concentrations are zero and the corresponding terms are 

dropped.  The influence of D0 is (importantly) however still present within the mixing 

term L, which is used to approximate the sum of all transverse fluxes across the 

original two-dimensional domain with an inter-continuum first-order mass-transfer 

process 
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This system of two equations and two unknowns (c1and c2) is readily solved 

using direct substitution, which produces a second-order ordinary differential 

equation for one of the unknowns, e.g. 
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where  
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The roots of equation 4.52 are: 
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When α2
2 > 4α1α3 both roots are real, and we have the solutions 
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where the constants are interrelated as follows: 
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Applying spatially uniform constant concentration at the inlet 

 




=

=

0)0(

)0( 0

λρc

cc
 (4.57) 

allows us to solve for ζ1 and ζ2 
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These in turn give us values of ξ1 and ξ2 using eqs. 4.56. 

 With the values of the four constants in the bicontinuum solution determined 

using eqs. 4.56 and 4.58, the resident mean concentration )(c and heterogeneity 

variate correlation (ρcλ) are calculated as weighted sums of the concentrations within 

the two continua, which simplify as shown assuming that c0 equals 1 (i.e. solutions 

for concentrations normalized to the inlet concentration): 
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Flux mean concentration is derived as the flow-weighted sum of concentrations in the 

two continua: 
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  (4.60) 

This model thus consists of a weighted sum of two exponential decline functions that 

represent concentration as a function of (longitudinal) travel distance.  The multipliers 

(weights) of the two exponential terms in eq. 4.60 have the property that they sum to 

unity.  Careful analysis of the components of eq. 4.60 reveals that r1 and r2 are the 

only terms that vary with u , and that they are inversely proportional to it.  The flux 

concentration expression (eq. 4.60) can therefore be restated in the general form 
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where θ1 + θ2 = 1. 

Recognizing that u =Λ/τ, where Λ is the length of the domain, and τ is mean 

residence time measured at this location, eq. 4.61 can be rewritten as 
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where y is fractional distance from inlet to outlet.  Equation 4.62 is a model of flux 

concentration for this heterogeneous system in just three parameters (θ1,κ1,κ2), and 

they are all invariant with flow velocity.  A properly chosen set of these parameters 

should therefore produce a model that continues to characterize the decline of flux 

concentration with distance, even when hydraulic loading rate is changed.  This 
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contrasts with the situation for PFR models (comprising a single exponential decline 

function), which exhibit a well-documented dependence of decay coefficient on 

hydraulic loading rate when calibrated against wetland performance data (Kadlec, 

2000).  

Because the formulas for mean concentration (resident and flux) that result 

from the preceding analysis are sums of two separate exponential decay functions, net 

decline curves (concentration vs. longitudinal distance) can adopt more complex 

shapes than result from a PFR model.  Nevertheless, the distance for decay of resident 

concentration to half the inlet concentration (c0) – kx 2/1  – a pseudo characteristic 

distance scale for reaction, may be a useful metric for characterizing early field bulk 

decay within these systems.  We calculate this metric using 
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which leads to 
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Employing the definition of the roots in eq. 4.54, we define 
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and therefore 
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Because α2
’ is positive the second term on the left hand side is relatively small.  

Dropping it leads to 
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and therefore 
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Although bulk decay is not first order in concentration, and therefore a true ‘half-life’ 

cannot be said to exist (unless θ1 or θ2 equals zero), equation 4.69 defines the distance 

for decay of flux concentration to half the inlet concentration.  In the next subsection 

we will develop an expression for a similar metric to quantify the degree of transition 

toward Fickian dispersion.  Comparisons between values of the two metrics provide a 

rough quantitative indication of the importance of longitudinal dispersion as a 

potential influence on decay dynamics. 

4.3.5 Development of Longitudinal Dispersion 

 When solute is introduced as a Dirac delta pulse at the inlet of a bicontinuum 

system, it travels initially as two separate pulses; all solute molecules move at one of 

the two velocities that characterize the continua.  This is an example of stochastic-

convective transport.  As flow proceeds however, dispersive exchange between the 

continua immediately begins to produce an increasing fraction of total solute that 

travels at velocities intermediate between the two characteristic velocities.  



 

 130 

 

Asymptotically the system approaches a state in which all introduced solute has spent 

some time in each of the continua.  At the Fickian asymptote, longitudinal solute 

spreading appears to occur in proportion to the mean concentration gradient. 

At any point during the progression toward the Fickian asymptote, an 

instantaneous effective longitudinal dispersion coefficient (DL) can be calculated from 

the time rate of change of the spatial variance of an inert tracer cloud (Gelhar, 1993): 
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where spatial variance (2xσ ) may be defined for a semi-infinite domain as follows 
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where c is transversally-averaged (resident) concentration, x is longitudinal position, 

and x  is the spatial centroid of the tracer: 
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The solution to the one-dimensional ADE with initial condition )()0,( xxc δ= is 
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while the formula for a Gaussian probability density function is 
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where µ = x .  Equations 4.73 and 4.74 are the same if Dtx 22 =σ , or 
t
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where 2
tσ  is the temporal variance of an inert tracer cloud, defined as follows: 
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where τ is the time centroid, or nominal residence time: 
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This implies, at least for solutions to the one-dimensional ADE, that 
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Therefore an approximate expression for an effective longitudinal dispersion 

coefficient is 
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where u corresponds with the mean velocity (u ) in a bicontinuum model. 

 The following expression for tracer temporal variance as a function of travel 

distance (x) is derived in Appendix D using the method of moments: 
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where 
2211
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ufufm +=λ  (eq. D10).  Expanding the exponential term in a Taylor 

series produces 
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Substituting this approximation into eq. 4.79, we derive an expression that shows 

concentration variance at small values of x proportional to the square of x: 

 
( )

2

2

21

2
12212

u

x

uu

uuff
t

−
≈σ  (4.81) 

Noting that mean residence time (τ) for distance x equals 
u

x
, we then calculate 

dimensionless variance (e.g. for an RTD) for the near-field transport situation as  
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As x increases, the magnitude of the exponential term in eq. 4.79 declines, and 

the variance approaches linear dependence on x.  The transition from stochastic-

convective to Fickian spreading is thus characterized by tracer cloud variance that 

changes in a first-order fashion from proportionality with the square of travel distance 

to direct proportionality with distance.  The effective “decay” coefficient governing 

this transition from stochastic-convective to Fickian spreading is Lλ2m, and a 

corresponding distance scale for the mid-point of the transition is therefore 
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 Taking the derivative of eq. 4.79 and substituting it into eq. 4.78, we derive 

the following expression for the effective longitudinal dispersion coefficient: 
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As x goes toward infinity, DL approaches a constant value asymptotically: 
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The asymptotic dispersion coefficient is proportional to the near-field dimensionless 

variance, as eq. 4.85 indicates.  Employing an expression for closure parameter ‘A’, 

for periodic heterogeneity represented using a cosine Fourier series expansion 

(Appendix C, eq. C19), the asymptotic longitudinal dispersion coefficient can be 

expressed in the form 

 
( )

∑
∞

=
∞

−
=

1
2

2

2120

2
12

2

,

2

n n

n

m
L

r

b

uuD

uuuH
D

λ
 (4.86) 

where H is the period of the domain, bn are Fourier coefficients, and rn are associated 

wave numbers. 

4.4 Model Evaluation 

 In related work, Carleton and Montas (2009) developed analytical solutions 

for a two-dimensional steady-state advective-dispersive-reactive transport equation, 

in which velocities, reaction rate coefficients, and transverse dispersion coefficients 

are all treated explicitly as power functions of the transverse (z) dimension: 

 pfzk =  (4.87) 

 mazu =  (4.88) 

 nbzD =  (4.89) 
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Solutions, which employ a Fourier-Bessel series approach, include the following 

expressions for normalized resident and flux concentrations respectively, when inlet 

concentration is uniform across the width of the domain: 
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The corresponding transverse variances of resident and flux concentration are given 

by 
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where 
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  (4.94) 

Results using the bicontinuum model (eqs. 4.59 and 4.60) can be compared 

with results for systems such as these (eqs. 4.90 and 4.91) with identical low-order 

moments, but in which the heterogeneity is made explicit.  Three related examples 

serve to illustrate comparisons between results generated using the two models (i.e. 

explicit and stochastic heterogeneity) for various values of the transverse dispersion 

coefficient D0.  For consistency with an example explored in Carleton and Montas, 

2009, we employ the following parameters in the explicit heterogeneity case: 

a=0.005, m=4/7 (u =0.015 m/min); f=10-3, p=-8/7 (flow-weighted mean k=1.7×10-4 

min-1); n=6/7, and b varies between the three examples, spanning a range of two 

orders of magnitude between example 1 and example 3.  The domain of the 2-D 

simulations is 15 m in width by 1000 m in length.  Velocities, reaction rate 

coefficients, and dispersion coefficients all vary in the z (transverse) dimension, while 

transport occurs in the x direction.  For the stochastic/bicontinuum model, the 

previously stated parameters correspond to the following: w =8.954×10-4; wσ =3.495 

× 10-4; 3λ =-0.445; γ =16.7; β=8.96×10-11.  The value of closure parameter A is 21.72 

m2, as calculated using eq. C19, and for the first example  

(b=10-4) we have α=19.3 and D0 =5.17×10-4 m2/min.   
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For this example, as Figure 4.1a illustrates, the simulated transverse-mean 

resident concentration from the stochastic model (eq. 4.59) is nearly identical to the 

corresponding result obtained using the explicit model (eq. 4.90) over the length of 

the domain.  Flux concentration curves for this example (not shown) trace nearly 

identical trajectories for the two models as well.  Standard deviations of transverse 

concentration in the two models are also very similar to each other, as shown in 

Figure 4.1b.  Effective longitudinal dispersion during the course of the stochastic 

simulation within the given domain remains pre-asymptotic, as seen in the continual 

growth of DL (Figure 4.1c).  Values of kx 2/1  and Dx 2/1  in this example are 56.7 and 293 

m respectively, indicating that early concentration decay happens at about five times 

the rate of the transition from stochastic-convective to Fickian dispersion. 
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Figure 4.1a Transverse resident mean concentrations from 2-D steady-state reactive 
transport simulations as functions of transport dimension (x) for: model with 
heterogeneity explicitly specified (dashed line); and heterogeneity modeled 
stochastically (solid line).  Governing transport parameters are u =1.50×10-2 m/min, 
k =1.63×10-4 min-1, D0=5.17×10-4 m2/min; uσ = 5.84×10-3, kσ =-1.10×10-4,  

Dσ =-3.73×10-2.  First through third moments of heterogeneity variate λ are the same 
in both models.  
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Figure 4.1b Transverse standard deviation of resident concentration as a function of 
transport distance (x) for the same systems as shown in Figure 4.1a: model with 
heterogeneity explicitly specified (dashed line); and with heterogeneity modeled 
stochastically (solid line).  For the latter, the curve is equivalent to correlation of local 
concentration with the heterogeneity variate λ. 
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Figure 4.1c Effective longitudinal dispersion coefficient (m2/min) for the stochastic 
transport system as a function of travel distance (x) when D0=5.17×10-4 m2/min, 
determined using eq. 4.84. 

 

 System eigenvalues λ1 and λ2 (which equal 0.8021 and -1.2467 respectively in 

this example) represent characteristic values of heterogeneity variate λ.  These values 

of λ can be mapped directly onto values of the z-coordinate in the explicit 

heterogeneity model as follows, using λ1 for illustrative purposes.  Equating the 

expressions for velocity (u) as a function of w and as a function of z (eq. 4.6 and eq. 

4.88 respectively), we express z in terms of w: 

 mw
a

z /1






=
γ

   (4.95) 

Employing eq. 4.5 expressed in terms of eigenvalue λ1 
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 www σλ11 +=  (4.96) 

equation 4.95 becomes a relation between a characteristic value of the heterogeneity 

variate in the stochastic model, and the corresponding transverse spatial position in 

the model with explicit heterogeneity: 

 ( ) m
ww
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 += σλ
γ

 (4.97) 

Using eq. 4.97, the values of z1 and z2 corresponding with λ1 and λ2 in this case are 

found to be 10.9549 and 2.1174 respectively.  Longitudinal (x dimension) 

concentration transects taken along these values of z in the explicit model are 

expected to correspond reasonably closely with characteristic concentrations c1 and 

c2, which are of course associated with λ1 and λ2 in the stochastic model.  Figure 4.1d 

shows that close concordance of this kind does occur in this example.  Differences 

that do exist between the curves can be attributed in part to the influences of 

transverse boundary conditions in the explicit heterogeneity model that are absent 

from the stochastic model, where lateral periodicity is assumed.  The greater the 

magnitude of transverse dispersion relative to the width of the domain, the more these 

boundary conditions (Neumann at maximum z, and joint Dirichlet/Neumann at 

minimum z) are likely to influence transverse mean concentrations, and the more one 

might expect the two models to produce different results. 
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Figure 4.1d For D0=5.17×10-4 m2/min case: canonical (stochastic model) 
concentrations (c1 and c2), and corresponding longitudinal (x-dimension) transects 
(explicit model) for z-dimension values corresponding with eigenvalues λ1 and λ2, 
according to eq. 4.97.  For each model the less rapidly-declining curve corresponds 
with λ1, and the more rapidly-declining curve corresponds with λ2. 

 

When the strength of transverse dispersion is increased by an order of 

magnitude (b=10-3, thus α =193 and D0 =5.17×10-3 m2/min) and advective and 

reactive parameters are kept the same, the result is an even better match between the 

two models in terms of mean concentration (Figure 4.2a), but a slightly worse match 

of concentration standard deviation (Figure 4.2b).  Notably in this case in contrast 

with the previous one, as a result of the greater transverse dispersive flux, 

longitudinal dispersion essentially reaches the Fickian limit by about a fifth of the 

distance along the transport domain (Figure 4.2c).  The asymptotic value of DL is 
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substantially lower in this example than values attained in the first example.  This is 

consistent with expectations based on eqs. 4.63 and 4.64, as well as with results of 

related analyses by other researchers (Fischer, 1979; Gelhar et al., 1979; Matheron 

and deMarsily, 1980), who have also found coefficients of longitudinal dispersion to 

be inversely related to coefficients of transverse diffusion/dispersion in shear flow.  

Values of kx 2/1  and Dx 2/1  in this second example are 68.3 and 29.3 m respectively, 

indicating that net concentration decay happens at about half the rate of the transition 

to Fickian dispersion. 

As in the first example, concentration transects along the x-dimension for z 

values that correspond with the eigenvalues closely match the bicontinuum 

characteristic concentration (c1 and c2) longitudinal decline curves (Figure 4.2d).  

These first and second examples illustrate how the dynamics of two-dimensional 

heterogeneous reactive-advective-dispersive transport fields can be closely 

approximated by much simpler two-path representations, by making use of the 

equivalence between second-order and mobile-mobile bicontinuum models (Montas 

et al., 2000).  Examples 1 and 2 demonstrate that this correspondence between models 

is robust under a range of varying “Fickian-ness” in longitudinal spreading. 
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Figure 4.2a Transverse resident mean concentrations from 2-D steady-state reactive 
transport simulations as functions of transport dimension (x) for mean transverse 
D0=5.17×10-3 m2/min: model with heterogeneity explicitly specified (dashed line); 
and heterogeneity modeled stochastically (solid line).  First through third moments of 
heterogeneity in the two systems match each other. 
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Figure 4.2b Transverse standard deviation of resident concentration as a function of 
transport distance (x) for the same systems as shown in Figure 4.2a: model with 
heterogeneity explicitly specified (dashed line); and with heterogeneity modeled 
stochastically (solid line). 
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Figure 4.2c Effective longitudinal dispersion coefficient (m2/min) for the stochastic 
transport system as a function of travel distance (x) when D0=5.17×10-3 m2/min, 
determined using eq. 4.84. 
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Figure 4.2d For D0=5.17×10-3 m2/min case: canonical (stochastic model) 
concentrations (c1 and c2), and corresponding longitudinal (x-dimension) transects 
(explicit model) for z-dimension values corresponding with eigenvalues λ1 and λ2, 
according to eq. 4.97.  For each model the less rapidly-declining curve corresponds 
with λ1, and the more rapidly-declining curve corresponds with λ2. 

 

In the third example, transverse dispersion is increased by another order of 

magnitude (b =10-2, α =1930 and D0 =5.17×10-2 m2/min).  The resulting matches 

between the stochastic and explicit models in terms of mean concentration (Figure 

4.3a) and concentration standard deviation (Figure 4.3b) are notably poorer in this 

example than in the first two.  This may be a result of the approximate representation 

of k (eq. 4.8), which as compared with the explicit heterogeneity model, tends to 

underestimate reaction rates at values of λ that correspond with very low velocities 

(i.e. the region of space where k approaches infinity in the latter case).  Larger values 
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of transverse mixing tend to move more constituent into this zone, increasing net 

reaction in the explicit model more than in the stochastic one.   

Matches between the characteristic concentrations c1 and c2, and concentration 

transects along z values corresponding to the eigenvalues (Figure 4.3d), are also much 

poorer in this example than in the previous two.  However an ADE model with fixed 

inlet concentration boundary conditions (solution “C1” of vanGenuchten and Alves, 

1982), and employing the asymptotic DL value of 0.0143 m2/min (eq. 4.85), matches 

the bicontinuum model results for resident mean concentration quite closely (Figure 

4.3a).  It should be noted that for the first two examples, analogous ADE model 

results (not shown) are not especially close to bicontinuum model results, an 

observation which illustrates the limitations of the ADE in pre-asymptotic situations.  

Values of kx 2/1  and Dx 2/1  in example 3 are 65.6 and 2.9 m respectively, indicating that 

early field concentration decay happens at about one twentieth the rate of the 

transition to Fickian dispersion; as Figure 4.3c shows, asymptotic dispersion is 

attained almost instantly.  Evidently the quick transition to the Fickian regime in this 

example allows the ADE to provide an adequate approximation of the 

transport/reaction dynamics that are presumably more fully represented by the 

bicontinuum model. 
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Figure 4.3a Transverse resident mean concentrations from 2-D steady-state reactive 
transport simulations as functions of transport dimension (x) for mean transverse 
D0=5.17×10-2 m2/min: model with heterogeneity explicitly specified (long dashes); 
heterogeneity modeled stochastically (solid line); and 1-D ADE solution (short 
dashes).  Figure displays only the first 500 m of the transport domain for clarity. 
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Figure 4.3b Transverse standard deviation of resident concentration as a function of 
transport distance (x) for the same systems as shown in Figure 4.3a: model with 
heterogeneity explicitly specified (dotted line); and with heterogeneity modeled 
stochastically (solid line). 
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Figure 4.3c Effective longitudinal dispersion coefficient (m2/d) for the stochastic 
transport system as a function of travel distance (x) when D0=5.17×10-2 m2/min, 
determined using eq. 4.84. 
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Figure 4.3d For D0=5.17×10-2 m2/min case: canonical (stochastic model) 
concentrations (c1 and c2), and corresponding longitudinal (x-dimension) transects 
(explicit model) for z-dimension values corresponding with eigenvalues λ1 and λ2, 
according to eq. 4.97.  For each model the less rapidly-declining curve corresponds 
with λ1, and the more rapidly-declining curve corresponds with λ2. 

 

Results from the bicontinuum model simulations using the transverse 

dispersion coefficients of Figures 4.1 through 4.3 (D0 =5.17×10-4, 5.17×10-3, and 

5.17×10-2 m2/min) are displayed together for comparative purposes in Figure 4.4.  

Resident concentrations are shown in Figure 4.4a, in which the three simulations are 

seen to produce similar results for about the first half of net decay, and then to 

diverge from each other for the remainder of the simulations, with greater transverse 

dispersion resulting in more rapid decline.  By contrast, flux concentrations from the 

three simulations and a stochastic-convective example, which are shown in Figure 
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4.4b, begin to diverge from each other immediately at the ‘inlet’ (x=0) end of the 

transport regime, with greater transverse dispersion also resulting in more rapid 

concentration decline.  This result is qualitatively the same as results obtained using 

the explicit heterogeneity model.  These examples demonstrate that the 

stochastic/bicontinuum model developed in this paper is capable of approximating 

reactive transport quite well in systems that range from essentially stochastic-

convective to essentially Fickian in terms of their longitudinal dispersive 

characteristics.  Figure 4.4b can be directly compared with Figure 3.7 in Chapter 3, 

which shows results from the explicit model for the same set of governing 

parameters.   
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Figure 4.4a Resident concentration from stochastic/bicontinuum model with same 
parameters as used in Figures 4.2-4.3, and D0=5.17×10-4 m2/min (solid line), 
D0=5.17×10-3 m2/min (dashed line), D0=5.17×10-2 m2/min (dot-dashes). 
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Figure 4.4b Flux concentration from stochastic/bicontinuum model with same 
parameters as used in Figures 4.1-4.3, and D0@0 (solid line), D0=5.17×10-4 m2/min 
(short dashes), D0=5.17×10-3 m2/min (long dashes), D0=5.17×10-2 m2/min (dot-
dashes). 
 

4.5 Summary and Conclusions 

A second-order representation of two-dimensional porous medium transport 

governed by correlations between flux parameters (advective, dispersive and reactive) 

and domain biophysical attributes, was used to develop an equivalent mobile-mobile 

bicontinuum model representing a spatially heterogeneous environment such as a 

treatment wetland.  Model solutions, developed for the case of steady-state flow and 

constant inlet concentration, comprise a weighted sum of two exponential decay 

functions for describing mean concentration as a function of distance in the direction 

of flow.  An expression was also developed to quantify the spread of an inert tracer in 



 

 155 

 

the same system, allowing model results to be examined in light of evolving shear 

flow dispersion.  When pre-asymptotic longitudinal dispersion predominated, model 

results compared well with solutions generated by another model in which 

heterogeneity (in a direction perpendicular to flow) was treated as an explicit, rather 

than stochastic, function of domain geometry.  By contrast, when effective 

longitudinal dispersion approached the Fickian asymptote early, model results were 

similar to those obtained using a one-dimensional ADE.  The model thus appears well 

suited for characterizing reactive transport in heterogeneous environments exhibiting 

a range of longitudinal dispersive characteristics.  

  The second-order stochastic/bicontinuum model employed in this study 

approximates a continuous distribution of λ values with a binary distribution (Montas 

et al., 2000), and constrains higher moments (eq. 4.11) to values defined in terms of 

the 0th through 3rd moments.  An analogous approach employing a tricontinuum 

approximation to a third-order system can be envisioned, which would similarly 

approximate the λ (or X-1/2) distribution with a ternary distribution, thereby increasing 

the accuracy of the approximation, and permitting the 4th and 5th moments of the 

distribution to also be accurately represented (Montas, 2003).  In this approach a 

second heterogeneity field, orthonormal to λ, is defined using orthogonal 

polynomials, and terms representing correlations of system variables with this second 

field are employed.  A mass-balance expression representing correlation of 

concentration with the second field constitutes a third governing equation, and 

canonical transformation produces equations for three characteristic concentrations, 

with mass-transfer interactions occurring between each pair of continua.  Solution of 
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such a system of three equations would produce a more complete representation of 

the distribution of λ than the bicontinuum approach allows, and correspondingly 

better approximations of transverse mean concentration and variance as D0 increases.  

The difficulties in solving such a system of equations may be daunting however, 

including the challenges of diagonalizing 3 x 3 matrices for unconstrained 

parameters, and of defining approximate dispersive flux closure terms for such a 

system.  This task and inclusion of longitudinal heterogeneity remains areas for future 

investigation. 

 Models typically used to characterize treatment wetland performance tend to 

be of a fairly simple, black-box variety because chemical processes occurring in 

wetlands are often complex and incompletely understood, and because information on 

biophysical attributes that affect these processes is often lacking.  A key challenge for 

simulating treatment wetlands would seem to be to employ models that contain the 

minimum number of parameters necessary to adequately embody the key processes 

that determine performance.  Although initially popular as empirical descriptors of 

wetland performance, PFR models have been found to be of limited usefulness 

because their reaction rate coefficients often exhibit positive correlation with 

hydraulic loading.  ADE models are also of questionable value because longitudinal 

spreading in wetlands appears to often be of a pre-asymptotic variety as a result of 

preferential flow paths or short-circuiting.  Recent approaches that consider internal 

spatial heterogeneity (Carleton, 2002; Carleton and Montas, 2007) and temporal 

chemical heterogeneity (Kadlec, 2003) have shown promise in circumventing the 

parameter flow-dependence issue.  However, these approaches are potentially limited 
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in their usefulness because they embody inherent assumptions of strictly stochastic-

convective flow, and a retreat from mechanistic representation and toward pure 

empiricism, respectively.  To be of maximum utility, models should employ 

parameters that are in theory independently measurable, whenever possible.  The 

mobile-mobile model developed in this study may be appealing for this purpose 

because it is physically-based and contains a limited number of parameters. 

Significantly, mean velocity is a component of the composite governing parameters 

(i.e the exponents in eq. 4.61), making it possible to consider its effects separately, 

and therefore leaving as potential unknowns only parameters that should be invariant 

with flow.  Evaluation of the adequacy of this model for the purpose of analyzing 

wetland performance data remains an area for future study, as does comparison of 

model results with those of DND and TIS-based approaches.  
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Chapter 5:  Further Model Analyses and Comparisons 

5.1 Introduction 

The bicontinuum wetland reactor model developed in Chapter 4 was evaluated 

against analytical solutions for idealized transport regimes governed by equivalent 

parameters, and found to produce similar results.  A remaining task is to compare the 

bicontinuum model against the relaxed-TIS model in terms of the ability of each 

model to match data measured in actual wetlands.  This Chapter is organized as 

follows.   Section 5.2 explores mathematical relationships between bicontinuum 

model unknowns within the context of constraints imposed by information that may 

be obtained from an RTD, and reduces the list of unknowns to a total of three 

essential underlying model parameters.  Section 5.3 compares the bicontinuum and 

relaxed-TIS models to each other in terms of their abilities to match concentration 

decline curves from two FWS wetland case study examples in the literature.  Section 

5.4 presents a discussion of the results.  

5.2 Bicontinuum Reactor Model Parameters 

For wetlands in which inert tracer studies have been conducted and an RTD 

measured, the mean velocity (u ) may be readily determined as Λ/τ, where Λ is 

wetland length and τ is “detention time”, i.e. the first moment of the RTD (eq. 4.76).  

A second key characteristic property which may be determined from an RTD is 

“dimensionless variance”, obtained by dividing the variance (second central moment) 

of the RTD (eq. 4.75) by the square of τ.  For a gamma-pdf shaped RTD, the 
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dimensionless variance equals 1/α and is therefore invariant with distance, implying a 

longitudinal dispersive mixing process that is stochastic-convective.   

By contrast, for the bicontinuum model developed in Chapter 4, dimensionless 

variance ( 22 /τσ t ) varies with distance (x) according to  
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In the near-field limit this becomes (eq. 4.82) 
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Upon substituting into eq. 5.2 the relations 2,12,1 λρ λuuu +=  (eq. 4.36b) and the 

relations (see eq. 4.30) 
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eq. 2 becomes 
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By expanding the denominator in eq. 5.5 we exploit measurement of near-field 

dimensionless variance to develop an expression that relates the unknowns ρuλ and 

3λ to each other: 
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and therefore 
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Rearranging eq. 5.7 we derive the following quadratic expression for ρuλ: 
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the roots of which are 
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Because ρuλ  is a positive quantity, only the positive root produces a physically 

sensible solution, therefore we have 
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All of the parameters in the derived expressions for c , ρcλ , and cf  (eqs. 4.59 

through 4.62) can be expressed entirely as functions of unknowns f1, f2, u1, u2, k1, k2 

and L, and therefore ultimately of u , ρuλ , 
3λ , k , σk, and L.  Of these six variables, 

mean velocity u is presumably known (for example determined from the RTD as 

described above), and ρuλ  can be expressed using eq. 5.10 as a function of3λ  if near-

field dimensionless variance is also known, reducing the total number of unknowns to 

four: 3λ ,k , σk, and L. 

Another relation between variables may be exploited in the following fashion, 

in order to reduce the total number of unknowns to three.  Equating the expressions 
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for k and σk in eqs. 4.11 and 4.14 term-by-term with the corresponding terms in the 

Taylor series expansion (eq. 4.9), we find 
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Dividing eq. 5.12 by eq. 5.11 eliminates β and produces the following 
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Making use of the relations wu γ=  and wu γσρ λ = , eq. 5.13 becomes 
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Eq. 5.14 expresses kσ  as a function of k , 3λ , and u , and thus reduces the total 

number of unknowns to three, e.g.3λ , k , and L.  This is the same as the number of 

unknowns in eq. 4.62, however as this analysis has shown, the latter parameters are 

entirely functions of the former.  Further, while3λ ,k , and L are essentially 

unconstrained (except that k and L are non-negative), θ1,κ1, and κ2 are constrained by 

the relations in eqs. 5.10 and 5.14.  Dimensionless variance thus serves to essentially 

impose limits on allowable values for parameters θ1, κ1, and κ2.  If dimensionless 

variance is known, it would thus be an inappropriate use of eq. 4.62 to optimize 

parameters by fitting the model against a data set using an error minimization routine 

such as the Solver function in Excel (which uses a generalized reduced gradient 
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algorithm (http://support.microsoft.com/kb/214115)), or lsquonlin in MATLAB® 

(which uses either an interior-reflective Newton method, or a Levenberg-Marquardt 

method (http://dali.feld.cvut.cz/ucebna/matlab/toolbox/optim/lsqnonlin.html)).  

Rather, a more defensible approach constructs θ1, κ1, and κ2 from unknowns 3λ , k , 

and L, and then minimizes model error by optimizing selections of the latter 

parameters. 

5.3 Evaluation 

5.3.1 Comparisons Between Wetland Models 

 The “weathering” phenomenon suggested by Kadlec (2003) to be at least 

partially responsible for PFR parameter dependence in water quality constituents that 

aggregate multiple chemical entities together, complicates attempts to develop simple 

but mechanistically sound models of constituent removal in wetlands.  Kadlec’s 

analysis suggested that if constituent weathering and heterogeneous velocities occur 

concurrently, their effects will be indistinguishable from each other, leaving empirical 

models as essentially the only option.  For this purpose Kadlec proposed the use of a 

“relaxed parameter” TIS model (eq. 1.12) in which the parameters are determined 

solely by curve fitting.  Carleton (2002) also demonstrated that even for a simple 

(non-aggregated) water quality constituent, a TIS model with empirically-determined 

parameters can generate results nearly identical to those of a stochastic-convective 

model derived from a gamma RTD and incorporating DND effects (kt proportional to 

t3).  The bicontinuum model of Chapter 4 also incorporates these kinds of DND 

effects, but within the context of a mechanistic derivation.  The parameters of this 

model ( 3λ ,k , and L) may be unknown or difficult to measure, but they are physically 
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based and constrained, at least to some extent, by the degree of short-circuiting 

reflected in the measured dimensionless variance.  Rather than making use of known 

RTD variance to constrain parameter selection in some way, the relaxed TIS model 

ignores such information, with the only constraint being that an α value obtained by 

fitting outlet concentrations against fractional distance or residence time (eq. 1.12) 

will be less than an α value for the same system obtained from an RTD (eq. 3.1).   

Because constituent weathering confounds the results of short-circuiting and 

DND effects, to evaluate the performance of a bicontinuum or DND model (Carleton, 

2002) compared with that of a TIS or relaxed-TIS model, preferred water quality 

constituents are those that are simple rather than aggregated, and therefore do not 

“weather”.  Constituents that may be suitable for this purpose include NH3/NH4
+, 

NO3
-, OP, xenobiotics (e.g. pesticides, personal care products), and certain biological 

entities such as viruses.  To avoid confounding affects related to simultaneous 

production of these entities, concentrations of potential precursors should be minimal.  

For example in systems treating NH3/NH4
+, minimal organic nitrogen should be 

present.  When this is the case, the possible causes of non-zero background 

concentration C* (see Chapter 1) are limited to hydraulic short-circuiting, assuming 

that external sources of the constituent are negligible.  The DND and bicontinuum 

models are both designed to directly address short-circuiting mechanistically, thus the 

inclusion of C* as a (non-zero) parameter is unnecessary as well as potentially 

confounding for model interpretation.  Apparent concentration plateaus may arise in 

these models entirely through selection of suitable parameters. 
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 The two parameters of the TIS model (eq. 1.12) are reflections of flow 

velocity heterogeneity (α) and net reaction (k).  Similarly the three “ultimate” 

parameters of the bicontinuum model are measures of flow velocity heterogeneity 

( 3λ ) and net reaction (k ), along with a third parameter (L) that reflects net transverse 

mixing, a process not considered in the TIS model.  The bicontinuum model may thus 

be expected to provide a better match to wetland performance data than the relaxed-

TIS model, to the extent that transverse mixing influences mean concentration 

decline. 

5.3.2 Texel Treatment Wetlands 

 Toet et al. (2005) studied the effect of retention time (wetland water volume 

divided by mean flow rate) on nutrient removal in parallel FWS wetland cells treating 

tertiary wastewater effluent in Holland.  The wastewater was not nitrified, so roughly 

equivalent concentrations of NO3
- and NH4

+ were present in the effluent.  Retention 

times of 0.3, 0.8, 2.3, and 9.3 days were studied in eight cells: for each retention time, 

one each planted with Phragmites and Typha.  Biweekly grab samples collected over 

the course of a year at the inlets and outlets were used to calculate annual mean % 

removals of various conventional pollutants, including NO3
- and NH4

+.   

Figures 5.1a and 5.1b show the removal data, for NO3
- and NH3 respectively, 

as functions of retention time (i.e. from multiple cells), along with best-fit TIS, 

relaxed-TIS and bicontinuum models.  Because3λ and L are system properties they 

should be the same irrespective of constituent, thus the parameter optimization 

routine (Excel Solver) was used to select a single value for each of these, while 

choosing parameter-specific values of k (one each for NO3
- and NH4

+) that 
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minimized the total model error summed for both constituents.  The relaxed-TIS 

model parameters were optimized in the same manner, with a single α value used to 

represent the decline curves of both constituents, and optimization used to select k 

values for both constituents simultaneously.  No tracer data were reported, so the 

bicontinuum model employed the default assumption of RTD dimensionless variance 

= 1/3, equivalent to α = 3 in the TIS model.  All three models provided fair 

representations of both data sets, however the bicontinuum model produced the 

smallest total summed-squared-error across both constituents: approximately 0.020, 

as compared with 0.021 for the relaxed-TIS model, and 0.030 for the TIS model. 
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Figure 5.1 Toet et al. (2005) data plotted as a function of retention time (τ), and best-
fit bicontinuum (solid line), TIS (long dashes), and relaxed-TIS (short dashes) 

models, for a) NH3, and b) NO3
-.  Bicontinuum model has system parameters3λ = -

0.303 and L = 1.94×10-7, with k = 0.917 d-1 and 0.638 d-1 for NH3 and NO3
- 

respectively, while relaxed-TIS model has “shape” parameter α = 1.188, and k = 
0.622 d-1 and 0.439 d-1 for NH3 and NO3

- respectively.  TIS model has α = 3 and k = 
0.501 d-1 and 0.339 d-1 for NH3 and NO3

- respectively. 
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5.3.3 The San Jacinto Wetland 

Chendorain et al. (1998) studied the removal of MS2 coliphage virus in a 

California surface flow constructed wetland with alternating zones of vegetation and 

open water.  Cell dimensions were 70 m in length, 15.5 m wide, and 0.46 m deep.  

The one-dimensional ADE was found to produce a good fit to bromide tracer RTD 

data using a Peclet number (Pe = Λu /D, where Λ is wetland length, u is mean 

velocity, and D is longitudinal dispersion coefficient) of 5.8.  Using the following 

equation (Dierberg et al., 2005), we calculate from this information a value of 0.3496 

for the RTD dimensionless variance: 

 ( )Pet e
PePet

−−−= 1
22

22

2σ
 (5.15) 

Phage concentrations were measured at six distances from the inlet along the 

main flow path of the wetland.  These data demonstrate strongly non-first order 

decay, with a steep decline in concentration near the inlet, relatively gradual decline 

thereafter, and therefore “a large discontinuity” between apparent PFR removal rate 

constants for the first 3 m, and for the rest of the wetland.  Presumably there are no 

edaphic processes capable of generating enteric viruses within the wetland, thus the 

concentration plateau may result solely from hydrodynamic short-circuiting within 

the wetland.  Alternatively the steep early decline may be the result of phage 

inactivation or aggregation caused by chemical differences (e.g. osmotic potential or 

pH) between the stock solution and the wetland water, as the authors speculate.   

Figure 5.2 displays this data, along with best-fit TIS, relaxed-TIS and 

bicontinuum models.  Figure 5.2a shows the data and model results plotted as a 

function of travel distance x, and Figure 5.2b shows the same information for ln-
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transformed data and model results.  In this comparison only the relaxed-TIS model 

provides a decent fit to the data set beyond the first 3 m of travel, where the 

concentration plateau is found.   
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Figure 5.2 Chendorain et al. (1998) data and best-fit bicontinuum (solid line), TIS 
(long dashes), and relaxed-TIS (short dashes) models with a) concentrations and b) 
ln-transformed concentrations, plotted as functions of travel distance (x).  
Bicontinuum and TIS models have dimensionless variance = 0.3496, in accordance 
with inert tracer study results. 
 

 The preceding comparison suggests that the relaxed-TIS model provides an 

unambiguously better representation of the Chendorain data set than the bicontinuum 
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model is able to.  However, the apparent linearity of the data displayed in log space in 

Figure 5.2b suggests another possible interpretation.  The domain may be envisioned 

as composed of two non-interacting continua (i.e. with mixing parameter L equal to 

zero), one of which has zero velocity, e.g. u2=0.  If this is the case then the input 

concentration never “enters” the second domain, instead remaining at the inlet, and as 

a consequence( ) 1/0 1 ≠=+ fCC i .  Solution of eq. 4.50 in this case reduces to a PFR 

equation of the following form: 

 ]exp[ 111 ykfc τ−=  (5.16) 

Figure 5.3 displays the same results as Figure 5.2, except that in this case the 

“bicontinuum” model fit to the data is eq. 5.16, with optimized values of parameters 

f1 and k1.  This model, with f1=0.16 and k1=0.043 d-1, produces the lowest summed 

squared errors of any of the models tested, and therefore a better representation of the 

data than the relaxed-TIS model. 
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Figure 5.3 Chendorain et al. (1998) data and best-fit bicontinuum (solid line), TIS 
(long dashes), and relaxed-TIS (short dashes) models with a) concentrations and b) 
ln-transformed concentrations, plotted as functions of travel distance (x).  
Bicontinuum model in this case is a single PFR model of the form in eq. 5.16. 
 

5.4 Discussion 

 In the Texel wetland example the bicontinuum model is seen to produce a 

slightly better overall representation of NH3 and NO3
- decline curves (as a function of 

retention time), than produced by either the (fixed α) TIS or relaxed-TIS models (eq. 

1.12).  Given that the bicontinuum model includes an additional parameter, this is 

perhaps not surprising.  However the optimized L value of 1.94×10-7 reflects a 

negligible degree of transverse mixing: the associated Dx 2/1 is approximately 9 × 106 m, 
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so the system is essentially stochastic-convective.  Thus the inclusion of an extra 

parameter to quantify transverse mixing is superfluous in this example: the two-

parameter relaxed-TIS model apparently incorporates sufficient information to 

account for the shapes of the concentration decline curves, without the need to invoke 

transverse mixing.  The effect of transverse dispersion on the shapes of mean 

concentration decline curves may in fact be fairly subtle, as the results in Figure 4.4a 

and 4.4b suggest.  Unlike in comparisons against theoretical models with exact 

solutions, such as the one developed in Chapter 3, real wetland monitoring data are 

often noisy enough to confound unambiguous parameter interpretation.  Thus it may 

be difficult in practice to accurately “measure” values of 3λ and L through inverse 

modeling, or even to ascertain when the bicontinuum model provides a better 

representation of performance data than other models in such systems.  One important 

difference between the bicontinuum and TIS models is in the shape of the tails at 

large time/distance, which exhibit exponential declines in the former case, and power 

law declines in the latter.  This may enable the relaxed-TIS model to better represent 

concentration plateau effects arising from short-circuiting.  However, alternative 

interpretations of the bicontinuum model may allow it to provide superior 

representation of wetland dynamics for some situations, as the Figure 5.3 example 

demonstrates.  In this example, the immobile continuum may be envisioned as 

corresponding to a portion of the medium in which immediate phage 

inactivation/aggregation occurs, in concurrence with the mechanistic interpretation of 

their data offered by the authors of the study (Chendorain et al., 1998). 
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Chapter 6: Summary and Conclusions 

6.1 Summary 

 The primary objectives of the work described in this study were to develop 

new modeling approaches for wetlands that accomplish three specific aims: 1) 

develop and evaluate a version of the DND model capable of accounting for 

temporally-varying flow and influent concentrations, 2) develop and evaluate an 

analytical model of reactive transport in a system with spatially variable flow velocity 

to serve as a benchmark for evaluating simplified models, and 3) develop and 

evaluate a wetland performance model that contains a minimal number of parameters, 

but which uses stochastic principles to account for the influence of spatial 

heterogeneity on advection and reaction, and which accounts for transverse diffusion 

and the development of shear flow dispersion.  Chapter 2 addressed the first of these 

goals, Chapter 3 addressed the second, and Chapter 4 addressed the third.  In Chapter 

2, an RTD measured under steady conditions was made use of, and presumed to apply 

under varying flow conditions as well, but with spatially-local velocities scaled by the 

temporally-varying bulk flow rate, such that residence time-on-exit and 

corresponding net reaction are calculated within individual stream tubes, and then 

summed to produce mean exit concentration expressed as a function of time.  The 

approach, as implemented in MATLAB® program “Wetloop” (Appendix E), 

successfully simulated effluent TP and BOD5 time series from wastewater treatment 

wetlands in California and Florida respectively, and eliminated the flow-related bias 

in model errors produced by a PFR model of one of these wetlands. 
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The PFR model commonly used for simulating treatment wetland 

performance suffers from limitations related to spatial heterogeneity in controlling 

biophysical attributes.  Wetland flow velocities are heterogeneous as a result of 

vegetation density and/or depth variations, and wetlands are thus characterized by a 

degree of hydraulic short-circuiting.  For some water quality constituents, the same 

variables (vegetation density, water column depth) that affect flow velocities on a 

local scale also affect local removal rates.  The combined effect of these two 

influences is net reaction that does not necessarily manifest as simple exponential 

decline of mean concentration with distance or retention time.   

When heterogeneous velocities are accounted for, but not transverse 

diffusive/dispersive fluxes, the result is a DND model (Carleton, 2002) that can 

essentially explain PFR parameter dependence on flow, and non-exponential mean 

decline curves.  However the DND model (and its more empirical analogue, the 

relaxed-TIS model) are potentially hampered by another limiting simplification: that 

flow is stochastic-convective.  Like plug flow, stochastic-convective flow is a 

conceptual idealization that is never completely attained in reality, because diffusion 

is never zero when concentrations are non-uniform.  In its original incarnation, the 

DND model was also limited to steady-state flow conditions with constant influent 

concentration, another idealization that does not correspond with the general situation 

in real wetlands. 

 In Chapter 3 an analytical solution to a two-dimensional time-invariant 

advective-dispersive-reactive transport equation was generated for a rectangular 

domain in which advection, dispersion, and reaction terms were all specified as 
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simple power functions of the transverse dimension.  Solutions for transverse-mean 

resident and flux concentrations for domains with uniform inlet concentration 

(spanning the upstream boundary) were examined as idealized representations of a 

treatment wetland possessing something like a U-shaped depth profile with fringing 

vegetation whose density increases toward the shallows.  Simulations were used to 

demonstrate the beneficial impact that transverse mixing has on reactor performance 

as a function of distance from the inlet.  In other words, it was demonstrated that in a 

system with a heterogeneous flow field and reactions, the presence of transverse 

diffusion can improve removal efficiencies compared to systems that lack such 

transverse mixing. 

In Chapter 4, analogous representations for laterally unbounded, periodically 

heterogeneous domains were developed by volume-averaging of stochastic versions 

of two-dimensional transport equations.  Corresponding bicontinuum (mobile-mobile) 

representations were generated by canonical transformation of the governing system 

of equations.  Expressions for transverse concentration variance, as well as RTD 

variance and effective longitudinal dispersion coefficient as a function of travel 

distance were also derived.  The bicontinuum model was shown to closely reproduce 

results from the idealized heterogeneity (Chapter 3) wetland model under pre-

asymptotic conditions, and of a one-dimensional ADE under nearly-asymptotic 

(Fickian) dispersive conditions.   

In Chapter 5, bicontinuum model results were compared against TIS and 

relaxed-TIS (and therefore by implication, also DND) model results in matching 

effluent concentration data from two real world wetlands treating inorganic nitrogen 
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and coliphage, respectively.  In the former example the bicontinuum model gave a 

slightly better match to the data, though optimized parameter results suggested that 

flow was essentially stochastic-convective.  In the latter example only the relaxed-TIS 

model produced a reasonable match to the concentration decline curve, unless the 

bicontinuum model was reinterpreted as specifically a non-interacting mobile-

immobile model, in which case the model produced the best fit to the data.   

Despite the limitations that these two examples illustrate, the bicontinuum 

model may prove valuable as a simple (three parameter) model for application to 

wetlands or other bioreactors that are adequately characterized by neither stochastic-

convective nor Fickian dispersion models.  The model would be most practically 

applicable to long wetlands where the transition from a stochastic-convective to a 

transitional and possibly near-Fickian mixing regime is more likely to become 

important.  The bicontinuum model is distinguished from the DND model by being 

physically based and entirely derived from first principles, with parameters that are in 

theory (if somewhat difficultly in practice) independently measurable rather than 

strictly empirical in nature.  By contrast, the DND model is semi-empirical in nature, 

requiring either a measured or an assumed RTD which is presumed to derive entirely 

from a distribution of advective velocities.  However, velocity distributions alone 

cannot account for the classical skewed bell curve shape of a wetland RTD 

(especially for the fastest moving tracer particles), again because some diffusion must 

occur, even within transport systems dominated by advective velocity gradients.   

The relaxed-TIS model (eq. 1.12) appears to be capable of matching nearly 

perfectly the decline curves produced by a DND model, however with parameters 
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interpreted as empirical, which must be selected via inverse modeling.  For complex 

constituents, Kadlec’s analysis (2003) suggests that this model can account for 

concurrent “weathering” and DND effects.  Successful application of the non-steady 

version of the DND model to BOD5 simulation in the Gustine wetland example 

(Chapter 2) implies that the non-steady DND model can handle complex constituents, 

though associated parameters should be interpreted cautiously, i.e. as more empirical 

than mechanistic in nature, in the absence of other confirmatory information.  For 

simple (non-weatherable) constituents, successful fitting of the relaxed-TIS model to 

concentration decline curves in the Chapter 5 examples, and of the non-steady DND 

model to effluent TP (essentially composed entirely of dissolved P) data in the 

Orlando Easterly Wetlands example in Chapter 2, imply that the DND construct can 

provide an adequate mechanistic explanation for observed concentration decline 

curves.  However, connections between the parameters of the relaxed-TIS model (eq. 

1.12 with C* = 0) and the parameters of RTDs for the same wetlands have yet to be 

elucidated in a quantitative way, either theoretically or with data.  This task remains 

an area for further study.  Further evaluation of both the bicontinuum and DND 

models, by fitting each of them against data sets from additional wetlands and 

perhaps other kinds of reactive transport systems (e.g. streams, rivers) is also called 

for, to better determine the sorts of conditions under which each model might provide 

the most useful and/or accurate representations of reactive constituent removal.  

There are however at present very few published experimental studies that provide 

the necessary quantitative data for FWS wetlands. 
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6.2 Conclusions 

The following specific conclusions were obtained from this work: 

o In a non-steady-state version of the DND model, results compared reasonably 

well with measured wetland effluent time series.  The model presumes flow to 

be entirely stochastic-convective (transverse diffusion/dispersion is assumed 

nil). 

o Unlike a PFR model fit to monthly-averaged data, there was no correlation 

between non-steady-DND model error and hydraulic loading rate.  However, 

magnitudes of errors (deviations from measured values) were about the same 

for both models. 

o An analytical model of an idealized two-dimensional advective-dispersive 

reactor with space-varying coefficients was developed, representing perhaps a 

wetland with a roughly “U shaped” depth profile and fringing vegetation.  In 

simulations, increasing transverse diffusion/dispersion resulted in improved 

reactor performance (lower mean concentrations). 

o An analytical model of an advective-dispersive reactor with stochastic 

heterogeneity was developed by using various closures to approximate higher-

order correlation terms.  For steady-state conditions, in bicontinuum form the 

model reduces to a weighted sum of two exponential decline curves governed 

by a total of three parameters representing mean system attributes (essentially 

velocity heterogeneity, net reaction rate, and transverse mixing, respectively).   

o For low and intermediate degrees of transverse mixing, wherein the effective 

longitudinal dispersion coefficient either continually increases, or essentially 
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reaches its asymptotic limit about a fifth of the way through the transport 

domain, bicontinuum model results (including resident concentration and 

transverse standard deviation), nicely matched those from the corresponding 

idealized heterogeneity model. 

o For a high degree of transverse mixing, wherein the effective longitudinal 

dispersion coefficient essentially reaches its asymptotic value early in the 

transport domain, resident concentrations matched the results of a one-

dimensional ADE employing the asymptotic longitudinal dispersion 

coefficient. 

o Comparisons of model output against real wetland data suggested the 

bicontinuum model may represent wetland performance better than the 

relaxed-TIS model in some cases, but not in all.  The relaxed-TIS model 

appears to be more flexible in terms of concentration curve shapes that it can 

assume, however the model has the disadvantage of being entirely empirical 

in nature.  By contrast, the bicontinuum model has parameters that are 

physically meaningful and therefore potentially independently measurable.  

Unlike the relaxed-TIS model, measured dimensionless variance can be used 

to potentially constrain allowable values of bicontinuum model parameters. 

 

As environmental conditions worsen in the 21st century, restoration and/or 

construction of wetlands grows in importance as a potential method for halting the 

general loss of ecosystem and hydrologic functions, while simultaneously improving 

water quality.  This study has focused on theoretical aspects of reaction and 
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hydrodynamics in wetlands.  The resulting developments contribute to understanding 

of processes that determine wetland transport behavior, and should enhance the 

ability to quantitatively analyze wetland function, and to design treatment wetland 

systems.  It is hoped that these developments will lead to improved ability to 

construct or restore wetlands that meet multiple ecological management objectives, 

including treatment of polluted water. 

6.3 Recommendations for Future Research 

The results of this study highlight the need for further research in both 

experimental and theoretical fields related to wetlands.  In the area of field research, 

more concurrent flow and concentration data collected at multiple locations within 

individual wetlands are needed, to better elucidate fundamental relationships between 

these entities.  Correlations between flow and concentration and measurable variables 

presumed to directly affect each of them, especially vegetation surface area density, 

would further permit investigation of assumptions (e.g. eqs. 4.2 and 4.3) used in 

developing the models in this study.  A related area of potentially fruitful 

investigation is development of methods for measuring spatial distributions of 

vegetation density in detail via remotely sensed image analysis.  If this can be done, 

then it may also be possible to estimate parameters such as integrated covariance 

measure “A” (Chapter 4) through analysis of the same sorts of images.  An obvious 

next step would then be to investigate the potential temporal dependence of such 

parameters. 

The model-data comparisons of Chapter 5 highlight a pressing need for 

additional effluent concentration data collected from individual wetlands operated 
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under ranges of hydraulic loading rates, to allow more thorough evaluation of models 

such as those developed and/or discussed in this study.   This sort of data would be 

especially useful for water quality constituents that are of a simple nature, so that 

constituent weathering is eliminated as a potentially confounding factor in 

concentration decline.   In addition to FWS wetlands, application of models explored 

in this study to SSF wetlands (both horizontal and vertical flow) may prove to be a 

worthwhile endeavor.  The bicontinuum model in particular may have application to 

naturally biphasic systems, such as wetlands characterized by significant advection in 

both free water and underlying porous medium phases. 

In the area of theoretical research, incorporation of sorption into transport 

equations represents one relatively straightforward improvement.  Application of the 

bicontinuum model to time-series inputs (as opposed to steady-state), with 

appropriate solution of the full time-varying equation (e.g. eq. 4.37) is also a potential 

next step.  Another possible improvement, as suggested in Chapter 4, would be 

development of a tricontinuum approximation via a third-order equation system, 

thereby increasing the accuracy of the approximation over that of the bicontinuum, 

and permitting the 4th and 5th moments of the heterogeneity variate distribution to be 

accurately represented.  Based upon the outcome in Chapter 4, one suspects that the 

results for steady-state might be a weighted sum of three exponential decline curves, 

though this remains to be seen.  Regardless, the increase in accuracy and flexibility 

provided by such a model would in all likelihood be more than offset by the increased 

number of parameters requiring values for fitting to wetland data sets. 
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The derivation of stochastic models with transverse mixing whose early-time 

behavior is similar to that of the DND or relaxed-TIS model also remains as an area 

of future study.  In the bicontinuum model developed in this work, transverse mixing 

is represented by first-order interactions between continua, which lead to the dual-

exponential form of the steady-state concentration profile.  Alternative inter-continua 

transfer formulations that may lead to a power-law form of these distributions should 

be investigated. 
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Appendix A: Incorporation of Longitudinal Dispersion 

 

 The governing mass-balance equation including a longitudinal dispersion term 

is obtained by employing eq. 3.31 in eq. 3.30, along with the definitions used 

previously for other transport parameters: 
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Boundary condition (eq. 3.6) is assumed to apply, and the Green’s function approach 

of eq. 3.7 is employed, which in this case produces 
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in place of eq. 3.9a.  The eigenfunction problem corresponding with eq. 3.12 is 
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This is a second-order ordinary differential equation with roots 
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Only the root with the positive sign produces a physically sensible result, therefore 

the solution for wi corresponding with eq. 3.20 becomes 
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Expressing the eigenvalue in the form of eq. 3.18, and recognizing again that wi,0 

equals αiφi(Z), A5 is written as 
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which leads directly to equation 3.32. 
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Appendix B: Solution when n=1 

 

 Relton (1965) provides the following comprehensive form of the Bessel 

equation 
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whose general solution in terms of the same parameters is given as 
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and modified eigenvalues are defined using the following alternative to eq. 3.18: 
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In place of eqs. 3.19 and 3.20 we have 
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The expression for concentration, analogous to eq. 3.29, is therefore 
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with coefficients given by 
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Appendix C: Normalized dispersive flux closure calculation 

 

We begin by considering the perturbed mean-removed equation with 

transverse dispersion: 
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where λλρ cc =' .  We define the normalized transverse coordinate z*=z/H, where H is 

half the period of lateral heterogeneity, or the width of the domain for a bounded 
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Employing Duhamel’s theorem, the solution to this equation is 

 

( )
*4

0

*
* 0

2**
1

2

1 4

)(
),(' dze

tD

z
H

x

c
tzc tD

zzH

u

−
−∞

∞−
∫∂

∂
−=

π
λ

ρ λ  (C3) 

The dynamics of the heterogeneity correlation are described by 
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We define the normalized lag distance ***

1
zzs −= and reverse the order of integration 

to obtain 
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where Covλ(s*) is the covariance of λ in terms of normalized lag distance units.   

For calculation of the closure we compare the above result to an analogous 

result obtained from the perturbed mean-removed equation when a first-order 

approximation is used in place of the transverse dispersion term: 
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The solution of this equation is 
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Similar to eq. C4, the dynamics of the heterogeneity correlation are given by 
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The difference between C5 and C8 is minimized over time in an integrated sense by 

setting 
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We next define ττ
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We define mλλ(r) as the unnormalized spectral density of λ 
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Substituting C13 into C11 and changing the order of integration, we obtain 
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which simplifies to 
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If λ is periodic, and can be represented by a cosine Fourier series of the form 
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as in Montas et al. (2000), then  

 ∑
∞

−∞=

=
n

nn srbsCov )cos()( *2*
λ  (C18) 

Substituting C18 into C11 and integrating over space and time, we obtain the 

following additional definition of A: 
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Appendix D: Temporal moment calculations 

 

Following the procedure of Valocchi (1989), the behavior of the system 

following pulse introduction of a non-reactive tracer at the upstream boundary is 

investigated by first considering transformation of the appropriate boundary 

conditions to corresponding conditions for the canonical equation system, i.e.: 
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where δ is the Kronecker delta function.  Substitution into eq. 4.32 produces 
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or 
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The governing transport equations for a non-reactive tracer within the 

canonical version of the heterogeneous system of interest are: 
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The temporal moment operator is [ ]dtt n∫
∞

0

.  Temporal moments, of order n, of the 

flux mean concentration are defined as weighted averages of the corresponding 
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moments in the two continua.  Applying the moment operator to the left hand side of 

one of the equations in D4 we have 
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which simplifies to 
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Applying the moment operator to the right hand side of D4 for the case of n=0 

produces: 

 

( )

( )











∂

∂
−−−=−

∂

∂
−−−=−

x

m
umm

f

L
c

x

m
umm

f

L
c

)2(
0

2
)1(

0
)2(

0
2

2

)1(
0

1
)2(

0
)1(

0
1

1

)0(

)0(

 (D7) 

Rearranging and expressing D7 in matrix form we obtain the following system of 

linked equations governing the ‘zeroth’ moment: 
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The eigenvalues and eigenvectors of coefficient matrix A are: 

 








+=

=

2211
2

1

11

0

ufufm

m

λ

λ
 (D10) 



 

 192 

 

and 
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The inverse eigenvector matrix is: 
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Defining transformed versions of the moments and initial conditions respectively, we 

have: 
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or 
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The diagonalized version of D8 is therefore: 

 







+















−=









∂
∂

2

1

2

1

2

1

2

1

0

0

w

w

v

v
L

v

v

x m

m

λ
λ

 (D17) 
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For n=0, we have initial conditions: 
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therefore 
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and 
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This has solutions 
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where g1 and g2 are constants.  To find the values of these constants we employ the 

initial conditions )0()0( 1MSV −= : 
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This leads to 
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and therefore 
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In other words, 
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and the zero-order moment of the flux concentration is 
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 With the zero-order moments given by eq. D27, first-order moments are then 

calculated using 
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therefore 
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where in this case 
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which leads to 
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where g1 and g2 again represent constants of integration.  As in the zero-order case, 

we find the values of these by making use of the initial conditions 
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where 0)0()0( )2(
1

)1(
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and the first-order moments are derived through matrix multiplication: 
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leading to 
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and therefore the first moment is 
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The mean residence time (first central moment) is then calculated as 
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Second-order moments are calculated using the same approach as first-order 

moments, but in this case starting with 
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As before, we use the diagonalized version of the moment equation matrix 
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where V is again redefined, this time as 
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Skipping some tedious arithmetic, use of D40 with D39 in the same process that 

produced D35 from D29 and D30 produces in this case: 
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and therefore 
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The second moment is then calculated as 
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and the residence time variance (second central moment) is
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Appendix E: MATLAB® Wetloop code 

 

function  wetloop1(Cstar)  
%By James N. Carleton, 2006  
%Reads dates, velocities, inlet & outlet concentrat ions from a text 
%file, interpolates to daily values and based on us er-defined 
%reference RTD/DND parameters, computes wetland out let 
%concentration as a function of time.  RTD is assumed to be a gamma 
%pdf, with parameters defined by user  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%user entry section for reference RTD conditions  
u_ref = input( 'Enter mean velocity (m/day) under reference conds> ' );  
L = input( 'Enter wetland length (m)>' );  
tau_m= L./u_ref  %retention time (mean residence time) under ref. 
(RTD) conds.  
alpha = input( 'Enter alpha for RTD>' );  %RTD parameters  
beta = tau_m./alpha  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%User entry section for Da relationship to res. tim e (Tau)  
A = input( 'Enter A>' );  %enter the relationship btwn. Da and t  
B = input( 'Enter B>' );  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Section for reading in raw data and interpolating for missing days  
%read in the text file of dates and 'concentrations ':  
[date,v,C,Cend]= textread( 'Gustine2a.txt' , '%8c %f %f %f' );  
%convert dates into integer day from reference date =1/1/0000:  
datex=datenum(date);   
d=length(date);  %number of dates in file  
%create vector of sequential integers covering span  of days:  
dayints=[datex(1):1:datex(d)];    
dl=length(dayints)  
dayindex=[1:1:dl];  
u_btwn=interp1(datex,v,dayints, 'linear' ); %interpolate velocities  
C_btwn=interp1(datex,C,dayints, 'linear' ); %interpolate inlet conc.  
Cout_btwn=interp1(datex,Cend,dayints, 'linear' ); %interp outlet conc.  
%concatenate integer day and interpolated value vec tors:  
dataint=[dayindex;dayints;u_btwn;C_btwn;Cout_btwn];   
data=dataint.';  %transpose concatenated matrix  
save data.txt  data  -ASCII   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Section for determining Ttrunc  
const1 = (beta.^(-alpha))./gamma(alpha); %calculate const in pdf  
%create test RTD to determine res time correspondin g to 99% of  
%total area under curve:  
RTDtst = const1.*dayindex.^(alpha-1).*exp(-dayindex ./beta);  
X=0;   %dummy variable  
for  k=1:dl  
    if  X<0.95  
    X=X+RTDtst(k);  
    flusht=k;  %number of days covering >95% of the reference RTD  
end  
end  



 

 199 

 

%travel distance associated with 95% flushing of we tland under ref.  
%conds.:  
flushl=flusht.*u_ref;   
X=0;   %dummy variable  
for  k=1:dl  
    if  X<flushl  
    X=X+u_btwn(k);  
%number of days from start for cumulative discharge  to equal 
%discharge  for 95% flush under ref. conds.:  
    Ttrunc=k;   
end  
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Section for calculating daily outlet concentration s  
Cor=zeros(dl-Ttrunc,1);   
for  j=0:dl-(Ttrunc+2)   
    [days,dints,u,Ci,outC]= textread( 'data.txt' , '%f%f%f%f%f' ,dl-j);   
    %read in the flow file, one fewer day for each iter ation:  
    d=length(days); %the number of days in each iteration  
    a=[d:-1:1];     %create reverse-time vector of flow, R  
    R=u(a);  
    R(1)=0;  
    Rcum=cumsum(R); %create vector of cum. flow in reverse time   
    Tau=Rcum./u_ref;  %convert cum. distance to equivalent tau_i     
    Taumax=max(Tau);   %find maximum value in tau vector  
    Taumax=fix(Taumax); %truncate at integer value  
    Tauints=[1:1:Taumax];   
%Create vector of T values (days) at integer values  of Tau:  
    Ti=interp1(Tau,(days-1),Tauints, 'linear' );   
    RTD = const1.*(Tauints).^(alpha-1).*exp(-(Tauin ts)./beta);     
    y_i=Ti./Tauints;   %calculate y for each integer value of Tau      
%create reverse-time vector of inlet conc (Ci), Cir  corrected for  
%background conc.:  
    Cir=Ci(a)-Cstar;       
    Cirint=interp1(days-1,Cir,Ti, 'linear' );      
%interpolate Cir (inlet conc) for (noninteger) valu es of Ti:     
    XTD = Cirint.*RTD.*exp((-A.*(Tauints).^B).*y_i) ;   
%the expression to be integrated (summed, actually) :  
    sum XTD;  
%vector of outlet concentrations, in reverse time:  
    Cor(j+2)=Cor(j+2)+sum(XTD)+Cstar;       
end  
save Cor.out  Cor  -ASCII  -TABS;  
save y_i.out  y_i  -ASCII  -TABS;  
Co=ones(dl,1); %create dummy vector to hold outlet concs. in corre ct 
time order  
for  k=1:Ttrunc %backfill first entries with first real value  
    Co(k)=Co(k).*Cor(dl-Ttrunc);  
end  
  
for  k=Ttrunc+1:dl  %fill in rest of vector with outlet C values  
    Co(k)=Co(k).*Cor(dl+1-k); %outlet concs in correct time  
end  
  
Co(dl)=Co(dl-1);  %fill in last day's value so it isn't zero  
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Cz=interp1(dayints,Co,datex); %get outlet values for only the 
sampled days  
tickint=fix((dayints(dl)-dayints(1))./4); %determine interval for 
plot ticks  
plot(dayints,C_btwn, 'b' );    %plot interpolated inlet conc.  
set(gca, 'XTick' ,dayints(1):tickint:dayints(dl));  
%label x axis with dates:  
set(gca, 'XTickLabel' ,datestr(dayints(1):tickint:dayints(dl),2));  
hold on;  
plot(datex,C, 'bo' );  %plot measured inlet conc.  
hold on;  
plot(datex,Cend, 'ro' );  %plot measured outlet conc.  
hold on;  
plot(dayints,Co, 'k' );   %plot modeled outlet conc.  
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Appendix F: MATLAB® code for plotting comparisons 
between idealized heterogeneity and bicontinuum model 

results 
 
function  Cres  
global  H n f nu alpha Li Li2 a b m Cr numzer xk coef  
% James N. Carleton, 2008  
% Plots resident concentrations, std devs, and effe ctive  
% longitudinal dispersion coefficient for idealized  heterogeneity  
% model and bicontinuum model comparisons.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Idealized Heterogeneity Model  
numzer=30; %number of eigenfunctions to sum  
a = 0.005;  
b = 0.0001;  
f = 0.001;  
m = 4/7  
p = -2*m %to ensure inverse square dependence of k on u  
n = p+2 %to ensure equation is expressible using a Bessel f unction  
H = 15; %domain width  
x=1000; %domain length  
xpts=x+1; %longitudinal discretization of domain  
xx = linspace(0,x,xpts)';  
Cres = zeros(length(xx),1);  
sigma = zeros(length(xx),1);  
sdev = zeros(length(xx),1);  
Crplus = zeros(length(xx),1);  
Crminus = zeros(length(xx),1);  
alpha = (sqrt(((1-n)^2)+4*f/b))/(1-n);  
nu = alpha*(1-n)/(2+m-n);  
aa = alpha/((alpha+1)*nu);  
% multiplier of lambda inside Bessel terms:  
zeromult2 = 2*nu*H^((alpha*(1-n))/(2*nu));   
estzeros = besselzero(nu+1,numzer,1); % the function we need zeros 
for:  
g=@(y)(besselj(nu,y)-(y*aa)*besselj(nu+1,y));  
root=zeros(length(estzeros),1);  
for  i=2:numzer;  
    root(i)=fzero(g,estzeros(i-1));  %zeros to function of interest  
end  
eig1=root(2)-(root(3)-root(2));  
root(1)=fzero(g,eig1);  
% Find all the x-independent exponential term multi pliers for each  
% eigenfunction:  
coefplus=zeros(numzer,1);  
for  i=1:numzer;  
    Li2 = root(i)/zeromult2;  
    ai = quadl(@phi_int2,0,H)/quadl(@phi_int3,0,H);   
    terma2=quadl(@phi_int,0,H);  
    coefplus(i)=ai *terma2;  % for determination of Cres  
    coef(i)=ai; % for determination of sigma  
    Li(i)=Li2;  
end  
% 
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% Calculate Cres for each point along the x-transec t  
for  j=1:length(Cres)  
    sumG2=0;  
    theta2=0;  
    for  i=1:length(estzeros)  
        Li2 = root(i)/zeromult2;  
        termc2=exp(-((Li2^2)*(b/a)*(((1-n)^2)+4*f/b ))*xx(j));  
        sumi2=coefplus(i)*termc2;  
        sumG2=sumG2+sumi2;  
    end  
    G2 = sumG2/H;  
    Cres(j)=G2;  
end  
% 
% Calculate std dev of C  
for  k=1:length(Cres)  
    xk=xx(k); % xk is the x coordinate for auxiliary program sig_ int  
    Cr = Cres(k);  
    sigma(k)=quadl(@sig_int,0,H)/H; % variance of C  
    sdev(k)=sqrt(sigma(k));  
end  
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Bicontinuum Model  
% Parameters of the model:  
gamma=16.7;  
alpha=b*(gamma/a)^(n/m);  
beta=f*(gamma/a)^-2;  
wbar=(a/gamma)*(H^m)/(m+1);  
sigw=(a/gamma)*(H^m)*(1/(2*m+1)-1/(m+1)^2)^0.5;  
A=21.7242; % the dissipative closure parameter  
D=alpha*wbar^(3/2);  
% % 
lamb3=-0.444552; % this is mean of lambda cubed  
% % 
lam1=(lamb3+(lamb3^2+4)^0.5)/2; % eigenvalue 1  
lam2=(lamb3-(lamb3^2+4)^0.5)/2; % eigenvalue 2  
f1=-lam2/(lam1 - lam2);  
f2=lam1/(lam1 - lam2);  
ubar=gamma*wbar;  
rho_u_lambda=gamma*sigw;  
u1_star=ubar + rho_u_lambda*lam1;  
u2_star=ubar + rho_u_lambda*lam2;  
L=f1*f2*D/A;  
kbar=beta/(wbar^2);  
rho_k_lambda=-2*beta*sigw/(wbar^3);  
rho_k_lambda2=3*beta*(sigw^2)/(wbar^4);  
kbar_star=kbar+rho_k_lambda2;  
k1_bar_star=kbar_star+(rho_k_lambda+rho_k_lambda2*l amb3)*lam1;  
k2_bar_star=kbar_star+(rho_k_lambda+rho_k_lambda2*l amb3)*lam2;  
alpha1=u1_star*u2_star*f2/L;  
alpha2=(k1_bar_star*u2_star+k2_bar_star*u1_star)/(f 1*L*(lam1-
lam2)^2)+ubar/f1;  
alpha3=k1_bar_star*k2_bar_star/(f1*L*(lam1-lam2)^2)  + kbar_star/f1;  
r1=(-alpha2+(alpha2^2-4*alpha1*alpha3)^0.5)/(2*alph a1);  
r2=(-alpha2-(alpha2^2-4*alpha1*alpha3)^0.5)/(2*alph a1);  
C0=1;  
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zig1=((lam1*f1*L+lam1*f1*f2*k2_bar_star+lam1*f1*f2* u2_star*r2+f2*L*l
am2)/(lam1*f1*(f2^2)*u2_star*(r2-r1)))*(C0/(1-lam2/ lam1));  
zig2=C0/(f2*(1-lam2/lam1))-zig1;  
zug1=(1+(f2/L)*(k2_bar_star+u2_star*r1))*zig1;  
zug2=(1+(f2/L)*(k2_bar_star+u2_star*r2))*zig2;  
c1_star=zug1*exp(r1*xx) + zug2*exp(r2*xx);  
c2_star=zig1*exp(r1*xx) + zig2*exp(r2*xx);  
cbar=f1*c1_star + f2*c2_star;  
rho_c_lambda=f1*lam1*c1_star + f2*lam2*c2_star;  
%  
figure(1)  
plot(xx,Cres, '--k' ) % plots idealized heterogeneity model  
hold on 
plot(xx,cbar, 'k' );  % plots stochastic/bicontinuum model  
xlabel( 'x (m)' , 'FontName' , 'Times New Roman' );  
set(get(gca, 'YLabel' ), 'Rotation' ,0.0)  
ylabel( 'C_r' , 'FontName' , 'Times New Roman' ); % the underscore makes 
'r' a subscript  
ylim([0 1]);  
legend( 'explicit' , 'stochastic' )  
% 
lam2m=1/(f1*u1_star) + 1/(f2*u2_star);  
RTDmult=((u2_star-u1_star)^2)*f1*f2/(((L*lam2m)^2)* u1_star*u2_star);  
DL=ubar*RTDmult*(-L*lam2m*exp(-L*lam2m*xx) + L*lam2 m); % 
figure(2)  
plot(xx,sdev, '--k' ); % plots idealized heterogeneity model std dev  
hold on 
plot(xx,rho_c_lambda, 'k' ); % plots bicontinuum model std dev  
xlabel( 'x (m)' , 'FontName' , 'Times New Roman' );  
set(get(gca, 'YLabel' ), 'Rotation' ,0.0)  
ylabel( '\sigma_c' , 'FontName' , 'Times New Roman' );  
legend( 'explicit' , 'stochastic' )  
% 
figure(3)  
plot(xx,DL, 'k' )  
xlabel( 'x (m)' , 'FontName' , 'Times New Roman' );  
set(get(gca, 'YLabel' ), 'Rotation' ,0.0)  
ylabel( 'D_L' , 'FontName' , 'Times New Roman' );  
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function  Cflux  
global  H n f nu alpha Li Li2 a b m Cf numzer xk coef  
% James N. Carleton, 2008  
% Plots resident concentrations for idealized heter ogeneity  
% model and bicontinuum model comparisons.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% Idealized Heterogeneity Model  
numzer=30;  
a = 0.005;  
b = 0.0001;  
f = 0.001;   
m = 4/7;  
p = -2*m; %to ensure inverse square dependence of k on u  
n = p+2; %to ensure equation is expressible using a Bessel f unction  
H = 15;  
x=1000;  
xpts=x+1;  
xx = linspace(0,x,xpts)';  
Cflux = zeros(length(xx),1);  
% 
alpha = (sqrt(((1-n)^2)+4*f/b))/(1-n);  
nu = alpha*(1-n)/(2+m-n);  
aa = alpha/((alpha+1)*nu);  
% multiplier of lambda inside Bessel terms:  
zeromult2 = 2*nu*H^((alpha*(1-n))/(2*nu));   
% vector of zeros to besselj(v+1,z):  
estzeros = besselzero(nu+1,numzer,1);  
% the function we need zeros for:  
g=@(y)(besselj(nu,y)-(y*aa)*besselj(nu+1,y));  
root=zeros(length(estzeros),1);  
for  i=2:numzer;  
    root(i)=fzero(g,estzeros(i-1));  %zeros to function of interest  
end  
eig1=root(2)-(root(3)-root(2));  
root(1)=fzero(g,eig1);  
% Find all the x-independent exponential term multi pliers for each  
% eigenfunction:  
coefplus=zeros(numzer,1);  
for  i=1:numzer; %length(estzeros)  
    Li2 = root(i)/zeromult2;  
    ai = ((quadl(@phi_int2,0,H))^2)/quadl(@phi_int3 ,0,H);  
    coefplus(i)=ai; %for determination of Cflux  
    terma2=quadl(@phi_int,0,H);  
    coef(i)=ai; % for determination of sigma  
    Li(i)=Li2;  
end  
%  
% Calculate Cflux for each point along the x-transe ct  
for  j=1:length(Cflux)  
    sumG2=0;  
    theta2=0;  
    for  i=1:numzer  
        Li2 = root(i)/zeromult2;  
        termc2=exp(-((Li2^2)*(b/a)*(((1-n)^2)+4*f/b ))*xx(j));  
        sumi2=coefplus(i)*termc2;  
        sumG2=sumG2+sumi2;  
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    end  
    G2 = sumG2*(m+1)/(a*H^(m+1));  
    Cflux(j)=G2;  
end  
% % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
% Stochastic Bicontinuum Model  
gamma=16.7;  
alpha=b*(gamma/a)^(n/m);  
beta=f*(gamma/a)^-2;  
wbar=(a/gamma)*(H^m)/(m+1);  
sigw=(a/gamma)*(H^m)*(1/(2*m+1)-1/(m+1)^2)^0.5;  
A=21.7242; % the dissipative closure parameter  
D=alpha*wbar^(3/2);  
lamb3=-0.444552; % this is mean of lambda cubed  
lam1=(lamb3+(lamb3^2+4)^0.5)/2; % eigenvalue 1  
lam2=(lamb3-(lamb3^2+4)^0.5)/2; % eigenvalue 2  
f1=-lam2/(lam1 - lam2);  
f2=lam1/(lam1 - lam2);  
ubar=gamma*wbar;  
rho_u_lambda=gamma*sigw;  
u1_star=ubar + rho_u_lambda*lam1;  
u2_star=ubar + rho_u_lambda*lam2;  
L=f1*f2*D/A;  
kbar=beta/(wbar^2);  
rho_k_lambda=-2*beta*sigw/(wbar^3);  
rho_k_lambda2=3*beta*(sigw^2)/(wbar^4);  
kbar_star=kbar+rho_k_lambda2;  
k1_bar_star=kbar_star+(rho_k_lambda+rho_k_lambda2*l amb3)*lam1;  
k2_bar_star=kbar_star+(rho_k_lambda+rho_k_lambda2*l amb3)*lam2;  
alpha1=u1_star*u2_star*f2/L;  
alpha2=(k1_bar_star*u2_star+k2_bar_star*u1_star)/(f 1*L*(lam1-
lam2)^2)+ubar/f1;  
alpha3=k1_bar_star*k2_bar_star/(f1*L*(lam1-lam2)^2)  + kbar_star/f1;  
r1=(-alpha2+(alpha2^2-4*alpha1*alpha3)^0.5)/(2*alph a1);  
r2=(-alpha2-(alpha2^2-4*alpha1*alpha3)^0.5)/(2*alph a1);  
C0=1;  
zig1=((lam1*f1*L+lam1*f1*f2*k2_bar_star+lam1*f1*f2* u2_star*r2+f2*L*l
am2)/(lam1*f1*(f2^2)*u2_star*(r2-r1)))*(C0/(1-lam2/ lam1));  
zig2=C0/(f2*(1-lam2/lam1))-zig1;  
zug1=(1+(f2/L)*(k2_bar_star+u2_star*r1))*zig1;  
zug2=(1+(f2/L)*(k2_bar_star+u2_star*r2))*zig2;  
c1_star=zug1*exp(r1*xx) + zug2*exp(r2*xx);  
c2_star=zig1*exp(r1*xx) + zig2*exp(r2*xx);  
cf=f1*(u1_star/ubar)*c1_star + f2*(u2_star/ubar)*c2 _star;  
% 
figure(1)  
plot(xx,Cflux, '--k' ); % plots idealized heterogeneity model  
hold on 
plot(xx,cf, 'k' );  % plots stochastic/bicontinuum model  
xlabel( 'x (m)' , 'FontName' , 'Times New Roman' );  
set(get(gca, 'YLabel' ), 'Rotation' ,0.0)  
ylabel( 'C_f' , 'FontName' , 'Times New Roman' ); % the underscore makes 
'r' a subscript  
ylim([0 1]);  
legend( 'explicit' , 'stochastic' )  
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function  phi1 = phi_int(y)  
global  H n f nu alpha Li2  
% 
% % Expression of phi(z0) for integration  
phi1=y.^((1-n)/2).*besselj(nu,Li2*2*nu*y.^((alpha*( 1-n))/(2*nu)),1);  
 
 
function  phi2 = phi_int2(y)  
global  H n f nu alpha Li2 a m  
% 
% % Expression of phi(z0) for integration  
% numerator  
phi2=a*y.^((1-n+2*m)/2).*besselj(nu,Li2*2*nu*y.^((a lpha*(1-
n))/(2*nu)),1);  
 
 
function  phi3 = phi_int3(y)  
global  H n f nu alpha Li2 a m  
% 
% % Expression of phi(z0) for integration  
% denominator  
p1 = a*y.^(1+m-n);  
p2 = (besselj(nu,Li2*2*nu*y.^((alpha*(1-n))/(2*nu)) ,1));  
p3 = p2.*p2;  
phi3 = p1.*p3;  
 
 
function  sig1 = sig_int(y)  
global  a b f n nu2 alpha Li Cr numzer xk coef  
% 
sigsum=0;  
for  j=1:numzer  
    sub1 = coef(j)*y.^((1-
n)/2).*besselj(nu2,Li(j)*2*nu2*y.^((alpha*(1-n))/(2 *nu2)),1)*exp(-
((Li(j)^2)*(b/a)*(((1-n)^2)+4*f/b))*xk);    
    sigsum=sigsum+sub1;  
end  
size(sigsum);  
sig1=(sigsum-Cr).*(sigsum-Cr);  
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