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ABSTRACT

Title of Thesis: IMPROVING CLUSTER TOOL PERFORMANCE BY
FINDING THE OPTIMAL SEQUENCE AND CYCLIC
SEQUENCE OF WAFER HANDLER MOVES.

Degree candidate: Manh-Quan Tam Nguyen

Degree and year: Master of Science, 2000

Thesisdirected by:  Assistant Professor Jeffrey W. Herrmann

Department of Mechanical Engineering

The research aims to develop algorithms that can minimize the total lot
processing time (makespan) of cluster tools used for semiconductor manufacturing.
Previous research focuses on finding an optimal sequence of wafer handler movesin a
cluster tool that has one process chamber in each stage. In practice, if the number of
chambersin a stage is more than one, either a pre-specified sequence of movesis given
in advance or adispatching ruleis applied. No previous work has addressed the
problem of finding an optimal sequence of wafer handler moves to improve

performance of cluster tools with more than one chamber in a stage.



Cluster tools are highly integrated machines that can perform a sequence of
semiconductor manufacturing processes. The performance of cluster tools becomes
increasingly important as the semiconductor industry produces larger wafers with
smaller device geometry. Some factors that motivate the use of cluster tools, instead of
stand-alone tools, include increased yield and throughput, less contamination, and less

human intervention.

In this research, the cluster tool is modeled as a manufacturing system with a
material handling system (wafer handler). The model specifiesall constraints that a
feasible sequence of wafer handler moves must satisfy. The thesis develops two cluster
tool scheduling algorithms. Given the lot size, the wafer handler move time, the in-
chamber processing times, and the tool configuration the first algorithm, based on a
complete forward branch-and-bound algorithm, searches for an optimal solution from
the set of all feasible sequences of wafer handler moves. The second algorithm, a
truncated branch-and-bound algorithm, quickly searches for the best solution from the
set of feasible cyclic sequences of wafer handler moves. For ssmple tool configurations,
analytical makespan models are also derived.

The results show that, in many cases, the search algorithms can significantly
reduce the total ot processing time. This reducestool utilization, reduces

manufacturing cycle times, and increases tool capacity.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

This research aimsto develop algorithms that can minimize the total lot processing time
(makespan) of cluster tools used for semiconductor manufacturing. Previous research
focuses on finding an optimal sequence of wafer handler moves in a cluster tool that has
one process chamber in each stage. In practice, if the number of chambersin astageis
more than one, either a prespecified sequence of wafer handler movesis givenin
advance or a dispatching rule (push/pull) is applied to find the sequence of wafer
handler moves. Then the requisite performance metrics of the cluster tools may be
measured and evaluated. No previous work has addresses the problem of finding an
optimal sequence of wafer handler moves to improve performance of cluster tools with

more than one chamber in a stage.

Cluster tools are highly integrated machines that can perform a sequence of
semiconductor manufacturing processes. The performance of cluster tools becomes
increasingly important as the semiconductor industry produces larger wafers with
smaller device geometry. Some factors that motivate the use of cluster tools, instead of
stand-alone tools, include increased yield and throughput, Iess contamination, and less

human intervention.



In this research, the cluster tool is modeled as a manufacturing system with a material
handling system. The success of the work will play avital role in modeling the current
wafer fabrication facilities. The model also serves as a decision support tool for the
management to understand and be able to make decision on selecting the right tools to
achieve the goal equipment productivity, which is one of the keysto increasing the
overall factory productivity.

1.2 Resear ch Objective

The objective of thisresearch isto develop scheduling algorithms that can find the
optimal sequence of wafer handler moves for a given lot size, wafer handler move time,
and chamber processing times. Thisimproves cluster tool performance by reducing the
total time needed to processthelot. This can reduce cycle time, reduce tool utilization,
and increase tool capacity. Note that in cluster tools with two load locks, the tool can
be in steady state for long period of time by having different load locks be alternated
ready for processing. This can be achieved by readying one of the load lock to send
wafersinto the cluster tool, while wafers in the other load lock is currently being
processed. A cluster tool may have dual end effector handler to move wafers. This
implies dependent rotation; however, only one end effector can extend or retract to load
or unload awafer at any given instant. The research will consider only the single-load-

lock and single-wafer-handler tools.



To model the cluster tool, the wafer handler sequencing problem will be formulated in
standard scheduling form by providing framework and identifying all constraints that a
feasible sequence of wafer handler moves must follow. One algorithm that guarantees
to find an optimal sequence of wafer handler moves will be developed. Based on the
careful study on the cyclic behavior of the cluster tool in steady state, another algorithm

will be developed to find near optimal solutions.

1.3 Modelsand Insights

In thisthesis, two scheduling algorithms are introduced. These procedures give the
relationship between handler lot size, move time, and chamber processing times to the

lot makespan for a given tool configuration.

1. Thefirst algorithm is a complete branch-and-bound (BB) agorithm. This
procedure, when run completely, is guaranteed to find an optimal solution from all

possibly feasible sequences of wafer handler moves.

2. The second algorithm is a truncated branch-and-bound (TBB) algorithm. This
procedure will search for the best solution from feasible cyclic sequences of wafer

handler moves.

For two simple tool configurations, the two- and three-stage cluster tools that have one
chamber in each stage, analytical models for the makespan and average cycle time will

be derived.



The models allow one to perform the sensitivity analysis of ot makespan with respect

to process times, handler move time, and tool configuration. Given the relationship

between semiconductor process parameters (such as pressure, temperature, and so on)

to the processing times, one can also perform a sensitivity analysis of the tool

performance with respect to these process parameters. Insights gained from our results

included:

= The cluster tool performance can be greatly improved using Algorithm BB and
Algorithm TBB to schedule the wafer handler moves instead of using the current
dispatching rules. Thisimprovement was greater when the processing times are
approximately the same as or smaller than the move times.

= For the models that implement Algorithm BB, the computing effort increases as the
lot size, the number of chambersin each stage, and the number of stages increase.
Also conducting longer searches or using more complicated lower bounds did not
improve the search performance significantly.

=  The computing effort is significantly reduced and becomes less sensitive with
respect to the lot size, when Algorithm TBB isused. Although Algorithm TBB may
not be able to find optimal sequences of wafer handler moves in some instances, the
resulting sequences are still much better than the sequences found by the

dispatching rules.



1.4 Outline of Thesis Report

The remainder of the thesisis organized asfollows. Chapter 2 gives a brief overview
on semiconductor manufacturing, cluster tool structure, current dispatching rules and

background literature concerning both cluster tool and robot scheduling.

Chapter 3 formulates the problem, identifies al constraints that a feasible sequence of
wafer handler moves must follow. Also, the methodologies to determine the problem

size and lot makespan of a given sequence of wafer handler move are presented.

Chapter 4 presents aforward branch-and-bound algorithm that can be implemented to
any tool configuration to find an optimal sequence of wafer handler moves. The
algorithms for the push and pull dispatching rules are also presented. The attempt to
reduce the solution space by introducing three dominance criteria and sophisticated

lower bounds are also proposed.

The steady state behavior of the cluster tools processing finite lot sizesis studied in
Chapter 5. Analytical modelsfor CT1-1 and CT1-1-1 are derived to determine the
cycle time and lot makespan of the 1-unit cyclic sequence of wafer handler moves,
given lot size, handler move time, and chamber processing time. This Chapter presents

an efficient search algorithm, the truncated branch-and-bound algorithm.

Chapter 6 describes the basic requirements to implement the BB and TBB algorithms to

two- and three-stage cluster tool models. The Graphic User Interfaces are al'so



constructed. Chapter 7 tests the performance of the simulation models using the
branch-and-bound and truncated branch-and-bound algorithms by comparing two main
performance criteria, the lot makespan and CPU time, to that of the simulation models

using the dispatching rules. Chapter 8 summarizes the work and gives suggestions for

future research extension from this work.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Semiconductor Manufacturing Overview

Semiconductors contain numerous electrical pathways, which connect thousands or
even millions of transistors and other electronic components. These transistors store
information on the semiconductors, either by holding an electrical charge or by holding
little or no charge. Almost all of today’s computer chips are built on silicon wafers that

are made of highly purified sand.

The manufacturing of semiconductor devices involves three main steps: formation of p
and n-type regions of the required conductivity within the semiconductor chip by
doping; formation of reliable metal-semiconductor contacts on the surface of the chip;
and encapsulation and packaging of the chip to provide protection and a convenient
method of making electrical connection. In the first and second steps, the chips are
processed together as wafers. The two wafer fabrication steps can be decomposed into

nine small steps (International Sematech, 2000):

* Crystallize melted silicon to form ingots that are sliced into wafers.
» Polish one side of the wafer to remove the damage caused by dlicing; chips are built

on this side.



* Deposit alayer of silicon dioxide on the polished side of the wafer by subjecting the
wafers to oxygen or water vapor at high temperature. Thislayer iscalled dielectric.

» Use photolithography process to create images of multiple layers of circuit patterns
on achip. First the wafer is coated with alight-sensitive chemical called photo-
resist. Then light is shone through a patterned plate to expose the resist.

» Etch away the non-hardened resist and materials below it, then strip off the
hardened resist to form three-dimensional patterns on wafers.

* Repeat severa photolithography and etch steps to build multiple layers of circuit
patterns on a single chip.

» Diffuse or force dopant atoms into certain areas of the chips through chemical
exposure and heating or ion implantation to form p and n-type regions.

» Form microscopically thin lines of metal interconnects by first depositing alayer of
conducting metal on the entire wafer surface and then removing unwanted metal
using photolithography and etch processes. Thisincludes vertical interconnects
between layers and horizontal interconnects across each layer of the chip.

» Each chip on the completed wafer istested for electrical performance. Any failing
chips are marked so that they can be discarded when they are separated with wafer
saws.

Most operations process each wafer individually. However, identical wafers move

together from one process to the next. Each set of wafersisalot, and atypical lot has

20 wafers. The container used to move and store the wafersin alot is called a cassette.



2.2 Cluster tools

The term cluster tools describes a specific class of capital equipment used in

semiconductor manufacturing. The SEMI E21-96 standard defines a cluster tool as “An
integrated, environmentally isolated manufacturing system consisting of process,
transport, and cassette modules mechanically linked together.” Typical cluster tools
include load locks that store cassettes of wafers (cassette modules), process modules
that modify the properties of the wafers, and single or multiple wafer handler(s) that
transport the wafers (transport modules). These modules are linked together by an
evacuated transfer space. Because it has multiple chambers, a cluster tool can process

multiple wafers simultaneously.

After a lot enters the cluster tool, it may undergo additional operation such as pump
down or metrology. Each wafer must undergo a series of activities such as
orientation/degassing (OD), titanium physical vapor deposition (Ti PVD), or tungsten
chemical vapor deposition (W CVD). Such activities are performed in different
chambers. After processing wafers, chambers may become temporarily unavailable

during automated module cleaning operation.

The wafer handler transports each wafer from one chamber to another. For example,
the cluster tool shown in Figurel has one load lock (LL), which stores a cassette of
wafers, and three process stages. The first stage has one OD chamber, the second has

two Ti PVD chambers, and the third has two W CVD chambers. Each wafer, starting



PVD 2

CvD1
PVvD 1
1. Hand

oD CvD 2

LL

Note: OD = Orientation/Degassing chamber
PVD 1, PVvD 2 = first and second physical vapor deposition chambers
CVD 1, CVD 2 =first and second chemical vapor deposition chambers

Figure 1: Configuration of a 1-2-2cluster tool
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from LL, must visit the OD chamber, one of the two PV D chambers, one of the two

CVD chambers, and then returnto LL.

Sequential cluster tools integrate a sequence of processes, while other tools have two or
more identical chambersthat are used in parallel. A sequentia cluster tool can improve
yield and device performance since wafers are exposed to fewer contaminates between
process steps. Thetool can include an in-situ metrology step that provides real-time
feedback on process performance. A cluster tool with multiple parallel chambers can
increase capacity and reduce cycle times by reducing the total time needed to process a
lot of wafers. Moreover, such tool may be more reliable, since afailure of asingle
chamber does not necessarily stop production. The cluster tool in Figure 1isa

combination of sequential and parallel.

Semiconductor manufacturers are increasingly using cluster tools. Annual sales of
cluster tools are projected to increase from $11.2 billion in 1997 to $21.9 billion in 2000

(Semiconductor Business News, 1998).

2.3 Current Push and Pull Dispatching Rules

The sequence of wafers going to the cluster tool is not important, since the wafers are
identical, and an activity’s processing time is the same for every wafer. However, the
sequence of wafer handler moves will change the lot makespan. The lot makespan is

the total time needed to process a lot of wafers. An activity is either the handler moving

11



awafer from one chamber to another or a chamber processing a wafer (for example,
chemical vapor deposition in the CVD chamber). A different sequence of wafer handler
moves yields a different sequence of activities, and this sequence may have a different
lot makespan. Typically, the wafer handler waits until awafer is ready to move from
one chamber to another. Then, the wafer handler moves from its current location to the
chamber that has the wafer. Then the wafer handler moves the wafer to the next
chamber. After completing the move, the wafer handler will move another wafer if one
isready or will wait whereit isuntil another wafer isready. If multiple wafers are
ready to be moved at the same time, the cluster tool must decide which move the wafer

handler will perform. A dispatching ruleis often used.

Typical cluster tools use a push dispatching rule or a pull dispatching rule. The
dispatching rul e selects the next move when two or more different wafers are waiting
for the wafer handler. The pull rule gives priority to the wafer that has fewer remaining
process steps.  The push rule gives priority to the wafer that has more remaining
process steps. Consider the cluster tool in Figure 1. Suppose there are unprocessed
wafersinthe LL, thefirst stage chamber is empty, one of the second stage chambersis
holding a processed wafer, and the third stage chambers are empty. The pull rule will
give priority to the wafer in the second stage chamber. The push rule will give priority

to the next unprocessed wafer in LL that needs to visit the first stage chamber.

Although these rules help the cluster tool sequence the wafer handler moves, the push

and pull dispatching rules do not guarantee that the resulting sequence has the optimal

12



lot makespan for the given lot size, tool configuration, and activity processing times.
For instance, consider a two-stage cluster tool that has two first-stage chambers and
three second-stage chambers. Each first-stage activity requires 10 seconds, and each
second-stage activity requires 40 seconds. A wafer handler move requires 5 seconds.
Thelot has eight wafers. (We will ignore the time needed to pump down the central
chamber after the wafers enter the LL.) Figure 2 presents the Gantt charts of the
activities under the push and pull dispatching rules and under an optimal sequence.
Notice that the Gantt charts present activities that occur in the same chamber in the

Same row.

The sequence under the pull ruleisinferior in this case, since it abandons the third
second-stage chamber and the second first-stage chamber after 65 seconds. The push
rule sequence and the optimal sequence repeat different patterns after 65 seconds. The
pattern of the optimal sequence, unload second stage - load first stage — load second
stage, eliminates one unloaded move for loading first-stage chambers and is better than
the pattern of the push sequence, load first stage — unload second stage — |oad second
stage. The optimal sequence, in this case, follows neither dispatching rule throughout

the entirelot.

13



IF PUSH: MS=255s W3 W6

CvD3
CVD2 o
w1
cvDl.... EEEEE
W2 W4 W6 W8
oD2 ... = = =
Wl W3 W5 W7
opi.H.. . H = m
Robot Db R B B B BT L1 [ .
| | | | | | | | | | | | | | | time
| | | | | | | | | | | | | | |
0 40 80 120 160 200 240 280
IF PULL: MS=265s W3
CvD3

CVD2...r

w5 W6 w7 W8
5 N 5 O A

robot IEEEEEININET [ B B BRI B B L1 L. time
| |

0 40 80 120 160 200 240 280
OPTIMAL: MS=235s W3 W6
CvD3 HEE : fiH
CVD2.

time
| | | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
0 40 80 120 160 200 240 280

Note: Il |oad OD and OD activity [] UnloadCVD

Load CVD and CVD activity ~ Wj =thej" wafer (j = 1,..., L)
2. Figure 2. Sequences constructed following the push and pull dispatching rules and
3. theoptima sequence.
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2.4 Related Literature

Usually the purpose of operation research applied to cluster tools is to define metrics for
cluster tool performance, then develop models or methods for tracking cluster tool
performance. Such performance metrics include throughput, which is the average
number of wafers that the tool processes per unit time, and total ot processing time (or
lot makespan), which is the elapsed time from when a new lot of wafer isloaded into a

tool until the completed lot is unloaded.

2.4.1 Cluster tool scheduling

Kise et al. (1991) discuss new flow shop scheduling problems related to automated
manufacturing systems in which n jobs are processed on two machines. Jobs are
transported by a robot between an input/output station and a machine, or between two
machines. They provide an algorithm that find optimal sequences of n jobs with the

objective of minimizing the makespan under a specified move cyclein O(n®) time.

Wood (1996) derives formulas that relate the total lot processing time to the number of

wafers in the lot for ideal sequential and parallel tools. Note that in Wood's paper,

cycle time is defined the same as what we defined total lot processing time. The models
use two measurable parameters that aggregate tool operations: the incremental cycle
time, which is the average increase in total lot processing time resulting from a lot size
increment of one wafer, and the fixed cycle time, which is the independent-of-lot-size

portion of total lot processing time. Wood suggests using the empirically determined
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increment and fixed cycle times to predict the improvement in a cluster tool’'s maximum
throughput, or using analytical models of increment and fixed cycle times to predict the
impact of tool configuration on cycle time and throughput for a hypothetical integrated

tool.

Considering the transitions at the beginning and the end of the lot, Per&imon

(1996) derive a model that relates the total processing time to the number of wafers for
cluster tools that have single-wafer process chambers organized around a wafer
transport mechanism. Using timing diagrams, they derive the so-called fundamental
period, then determine throughput as inverse of the fundamental period. Peekinson

al. also suggest three ways to improve throughput. The look-ahead algorithms and
multi-speed transporters tempt to increase the net wafer handler speed by modifying the
action of the handler when it is moving a wafer; the incorporate dual load locks tempts
to minimize the lengths of the beginning and ending phases of processing a lot. They, as
well as Wood (1996), present linear models and identify two operating regions: in one
region, the total lot processing time is constrained by the wafer handling time; in the

other region, by the module process time.

Following Perkinson’s work, Venkateghal. (1997) analyze the steady state
throughput of a sequential cluster tool with a dual-blade robot. Their analysis shows
that, under the process-bound condition, a cluster tool with single-blade robot would

need to double the speed of the robot to achieve the similar throughput as the dual-blade
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cluster tool. In the transport-bound condition, the throughput is the same for both dual-

blade and single-blade cluster tools.

Srinivasan (1998) presents more detailed Petri net models for sequential and parallel
tools and uses these to determine the steady state throughput of the tool. His models
can be applied to atool with either single or dual-blade wafer handler, and with either
anticipatory or non-anticipatory handler moves. However, the sequence of wafer

handler moves must be dictated in advance.

Herrmann et al. (1999) study the impact of process changes on cluster tool

performance. They propose using a network model for a prespecified sequence of
wafer moves and cluster tool simulation software when the controller uses a dispatching
rule or scheduling algorithm to sequence the wafer moves. They choose the cluster tool
performance measure of interest is the lot makespan. None of the previous work
addresses the problem of reducing the total |ot processing time by sequencing the wafer

handler moves.

2.4.2 Robot scheduling

Jeng et al. (1993) study the problem of sequencing robot activities for a robot-centered
parallel-processor workcell, where n jobs and m identical processors exist in the cell.
They provide a branch-and-bound algorithm to find an optimal sequence of robot
activities, which minimizes the total completion times. This branch-and-bound

algorithm can find solutions for small and medium sized problems (refer to values of n
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and m) within reasonable times. For large sized problems, they proposed a heuristic for

finding a near optimal solution.

A state space approach is used in Sethi et al. (1992) to address the problem of
sequencing parts and robot moves in arobotic cell, which is defined as a flow-line
manufacturing system. Their objective isto maximize the long-run average throughput
of the system subject to the constraint that the parts are to be produced in proportion of
their demand. For the cell that has M machines producing a single part type, they show

in a constructive manner that the number of one-part cyclesis exactly M!.

Extending the results from Sethi’'s paper, Hakt al. (1997) provide an algorithm that
simultaneously finds sequences of parts and robot moves to minimize the steady state
cycle time, for multiple part-type problems in a two-machine cell. They also address a
conjecture about the optimality of repeating one-unit cycles for a three-machine cell

with general data and identical parts. Restricted to a special problem where the number
of machines is arbitrary, but all parts are of the same type, Crama and van de Klundert
(1997), relying on the concept of pyramidal permutation, present a dynamic
programming approach that finds an minimum one-unit cycle time ir’iiMe. Both
Crama and Hall address that many interesting related problems are still open, such as
the conjecture that one-unit cycles are optimal among all possible robot move

sequences.
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Kamoun et al. (1999), revisiting the problem dictated in Hall (1997), develop a heuristic
procedure that aims to maximize the long-run average throughput for part sequencing
problem under different robot move cycles in three-machine cell. They aso provide a
methodology for extending this heuristic to four-machine cell and even larger cell.

2.5 Summary

Semiconductor manufacturing is a complicated process involving many steps, which
require processing on highly automated and expensive equipment. This attracts
research into the performance of the cluster tools with respect to throughput and lot
makespan. Both analytical and simulation models for some simple tool configurations
have been developed. Asthe tool configuration becomes more complex, understanding

and improving cluster tool performance become more important.

However, due to the complexity of the problem, thereis currently no available model
for ageneral tool configuration that can obtain an optimal performance of a cluster tool,
given any set of processing parameters such as in-chamber process times and wafer

handler move time.
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CHAPTER 3

PROBLEM FORMULATION

3.1 Notation

The following notation is used in the thesis:

L =lot size.

S = number of stagesin the cluster tool.

| = stageindex,i=1,...,S.

j = wafer index, j=1,..., L.

S = stage .

Roj = move wafer j from LL to a chamber in.S

Ri; = move wafer j from a chamber int6 a chamber ini§ (i =1, ..., S-1).

Rsj = move wafer j from a chamber i ® LL.

m; = number of chambers in stage S

m;-m,-...-Mg = tool configuration, denoting that the tool has S stages and eachstage S
has mchambers.

h = number of wafer handlers.

pr = time that the wafer handler needs to travel from one chamber to another, from LL
to a chamber, or from a chamber to LL.

pi = time required for a wafer to be processed in a chamber in S

T = the total number of wafer moves. T = L(S+1).
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3.2 Problem statement

3.2.1 Assumptions

In this thesis, we make the following assumptions to simplify the problem:

* In a stage, the processing time includes chamber’s overhead time and is a
deterministic constant.

* The move time includes times for picking up, moving, and loading a wafer.

* The move time from a chamber to another, or from load lock to a chamber, or from
a chamber to load lock is a deterministic constant.

» Tool overhead time includes initial pumpdown and vent times of the lot.

» Breakdowns or failures of the components are rare and not considered.

* We will only consider the single load lock, single wafer handler cluster tools.

3.2.2 Objective

This research focuses on an S stage, single load lock cluster tool. The number of

chambers in any stage can be any positive integer. s the number of chambers in

stage $(i=1,..., S). Let M =m+ ... + ny be the total number of chambers. The

chambers are numbered 1 to M.

Each stage has a wafer processing timamu the wafer handler requirggime units

to move from one chamber to another. The lot has L wafers. The sequence of wafers
leaving LL is not important, since the wafers are identical, and the processing time at a
stage is the same for every wafer. We will number the wafers in the order they leave

LL. However, the sequence of wafer handler moves will change the lot makespan.
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The research studies the problem of minimizing the lot makespan C, the total time
required to process a lot of wafers. Reducing the total time needed to process the ot
can reduce cycle time, reduce tool utilization, and increase tool capacity. Moreover,

Cmax IS @anecessary component for calculating overall equipment effectiveness (OEE)
and cost-of-ownership (COO), which are usually used to evaluate cluster tool

performance (Murphy, 1996; Dance, 1998).

The problem isto find a feasible sequence of wafer handler moves that minimizes the
total time required to process all the wafers and return themto LL.

3.2.3 Constraints

A chamber at stage S begins processing wafer j assoon asmoveR;.;j ends (i =1, ... S).
Move R;; can begin after this chamber finishes processing wafer | and after the wafer
handler completes the previous move. R;; requires p; time unitsif the wafer handler is
aready at the chamber that processed wafer j (at LL if the moveisRyj). Rij requires
2p; time units otherwise, for the wafer handler must move to the correct chamber at S
before moving the wafer to achamber at stage Si+1 (to LL if the moveis Rs;). Inthis
work we assume that the wafer handler cannot move to the chamber before processing

ends. Thelot makespan is the time that the last move ends.

A feasible sequence must satisfy the following constraints.
» Constraints caused by nature of semiconductor manufacturing
a) Precedence constraints: All wafers must follow the fixed sequence of processing

steps. Rij must precede Ry fori =0, ..., S-1.
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b) No Preemption: An activity in achamber cannot be interrupted until the wafer is
finished its processing in that chamber. For example, if achamber in S starts
processing at timet, then the chamber is busy during theinterva [t, t + p;] and the
wafer cannot be unloaded during that time.

Constraints caused by the tool architecture

¢) Feasible move: The wafer handler cannot unload an empty or busy chamber and
cannot load a busy or full chamber. A full chamber has awafer that has completed
processing and is waiting to be moved.

d) Tool configuration: Since achamber can process only one wafer at atime, the
total number of wafersin a stage must be smaller than or equal to the number of
chambersin that stage.

€) Wafer handling: Since the cluster tool has a single wafer handler, then, at any
time, thereis at most one move occurring.

f) Non-anticipation: The wafer handler cannot anticipate the next move. That is, if
the next moveis R;; and the wafer handler isidle, the wafer handler must wait
whereit is until the busy chamber at S finishes processing wafer j. Only then can
the wafer handler move from its current location to the (now full) chamber to unload
the wafer and moveit.

Constraints caused by lot size

g) Lot size L: the wafer handler cannot move awafer from LL to achamber in S; if

there are no unprocessed wafersin LL.
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3.2.4 Permutation versus non-permutation

Permutation implies that the order in which the wafers enter the first stage is maintained
throughout the system. In the cluster tool environment, permutation means that wafer |
is always loaded to or unloaded from a stage before wafer j+1, i.e. R ; precedes R; j+1.
Obviousdly, this constraint must be satisfied if there is only one chamber at each stage.
However, it may be violated if atool has multiple chamber stages. For example,
consider a cluster tool that has two chambers, A and B, in the last stage Ss. Assume that
at timet, wafer j and j+1 are finished their processesin chamber A and B respectively.
Then move Rg j is prior to move Rg j+1 if the permutation constraint is active. But,

move Rs j+1 may be prior to move Rs,j since blocking at chamber A is allowed.

The introduction of non-permutation constraint complicates the problem since it
increases number of feasible sequences. In Chapter 4, we will prove that, for some
cases, violating the permutation constraint will not improve performance of the cluster

tool.

3.2.5 Problem notation
A scheduling problem is described by atriplet a |3 |y. The a field describes the

machine environment and contains asingle entry. Welet o = CTm;-my-...-ms.

The 3 field provides details of special processing characteristics and constraints and

may contain no entries, asingle entry, or multiple entries. All seven constraints

depicted in Section 3.2.2 are always active; hence they do not need to be introduced in
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the 3 field except for some special cases presented below. Notice that constraint d has

already been introduced in the a field and constraint g is an input parameter. The

following entries may appear in the 3 field.

e “permu.”, if “permu.” appears in thgfield, all sequences must follow the
permutation condition. If “permu.” is not in tifiefield, the permutation condition
may be violated.

* h, if there are more than one wafer handler in the tool, then the number of wafer
handler must be introduced. Otherwise, h equals to 1.

* anticipation, if anticipation appears in fBdield, the wafer handler must anticipates

the next move. Otherwise, all considering sequences are non-anticipatory.

They field contains the objective to be minimized and usually contains a single entry.

For our problemy = Gpax.

Thus, for example, CT1-2 | |& denotes the problem of finding the sequence of wafer
handler moves that minimizes the total lot makespan of a two-stage, single wafer
handler cluster tool. The first stage has one chamber and the second stage has two

chambers. The permutation condition may be violated.

3.3 Number of feasible sequences

Consider a general problem CTm.-mg | | Grax. According to the precedence
constraint, a wafer must follow a fixed order of processing steps, i.e., the wafer must

visit every single stage. This implies that each wafer requires (S+1) wafer handler

25



moves. Hence, there are atotal of L(S+1) times that the scheduler must select afeasible

wafer handler move. Except for the move Rs,;, follow each wafer handler move R;

thereis aprocess activity in achamber, i.e. there are L process activities occurring in

each stage’s chambers. As a result, there are a total of L(2S+1) activities that need to be

scheduled.

Excluding the activities in process chambers, we can construct a directed graph
representing all feasible sequences of wafer handler moves. The graph will have a form
of an outtree, a precedence graph wherein, the number of immediate predecessors of a
node is either zero or one. The number of levels of the directed graph equals to the
number of times the scheduler must make selection L(S+1). The state of the tool
changes according to the move. For instance, after mpyetfe number of

unprocessed wafers in LL decreases by one, and one free chamber in the first stage
becomes busy. Hence, the number of nodes atiaelegdends on the type and number

of nodes at previous levell. Starting with an empty tool and the wafer handler is at

LL, the move R; is located at level 1. Denote number of nodes at feasINf). We

can find the total number of nodes in a level of the outtree graph using the recursive

formulas.
IN@) =1
[l N(1-1) (1)
Ew(r) = 3 7 0t=2,.,L(S+)

Where z is the total number of feasible choices resulting from the state of the cluster

tool associated with the node k at levdl. Using the feasible move constraint, we can
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easily determine z;. Definel;x asthe number of wafersinstage S (i = 1,..., S) anddk

as the number of unprocessed wafers in LL after the move, representing by node k,

finishes. We can determine the number of choices in each move resulting from tool

state of node k as follow.

¢ Ro,j, move a wafer j from LL to the first stage: $1e number of choices for this
move is strictly depended on number of unprocessed wafers in LL and status of S
Since every unprocessed wafer is the same (we actually index a wafer when loading
it to ), the number of departure will be either one, if there is at least one
unprocessed wafer in LL, or zero. The number of destination is the number of free
chamber in the first stage (fh k). We can mathematically write the number of

choices for the moveas

m, =1y, if1<l , <L

_ , =lok =
=5 1 =0 @

¢ R, fori=1,..., S-1, load a stage other thantBe number of choices for these
moves depends on status of the departure stagen8 destination stage $he
number of departure is the number of wafers in the departure siag@d the
number of destination is the number of free chamber in the destination sthge m
Number of choices for loading these stage as

G =l (m =1,y fori=1,.,S-1 ®3)

¢ Rsj, unload the last stage: since the LL can store the whole lot of wafer, the number
of choice for this move only depends on status of the last stage. In fact, the number

of choice equals to the number departure, i.e. number of wafers in the las§stage |
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Thus, we can write

Z, = Zzi,k +lgy (4)

Using equations (1), (2), (3), and (4), we can determine the number of nodesin each
level 1. Starting at the single node in level 1 and going to one of the nodes in the last
level, the collection of all nodesin this path form afeasible sequence of wafer handler
moves. The number of feasible sequences equals to the number of nodesin the last
level L(S+1). Since the sequences under the push and pull dispatching rules are

feasible, they are including in the outtree graph.

For example, consider problem CT1-1-2 | | Cax. Let L equals 3. Denote S1 and S2 as
the names of chamber in the first and second stages respectively. Denote S31 and S32
as the names of the first and second chambersin the third stage. The number of times
that the scheduler must make selection isL(S+1) = 3(3+1) = 12. Table 1 presents
details on the numbers of wafersin each stage at each level T associated with the
selected move. Figure 3 presents a branch of the directed outtree that forms by
collecting selected feasible movesin Table 1. In Figure 3, each node is represented by a
circle. Departures and destinations of the moves are also given next to each node.
Wafer index at each nodeis aso given inside the parentheses. For example, at level 3,
S2-S31(1) means moving wafer 1 from stage 2 to the first chamber in stage 3. Noticing
that the number of dashed arrows outgoing the nodes is not exactly determined in
Figure 3. A complete exploration of all possible nodesin Appendix A shows that there
are 552 feasible sequences of wafer handler moves for a 1-1-2 cluster tool, processing 3

wafers per lot.
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Figure 3. Partial outtree of the 1-1-2 cluster tool.
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Table 1. Numbers of wafers in each stage at each level 1 associated with selected
moves.
m=1m=1m;=2.

selected z= .
T lo |11 1a|13]%|C1]T> Next feasible moves
move Cot (1t (o3

0 3/0/0(0|1]|]01|0O0 1 LL-S1

1 |LL-S1 211001010 1 S1-S2
LL-S1, S2-S31,

2 |S1-S2 2/10]1(0|11]0]2 3
S2-S32

LL-S1 1/1({1|10|0|0|2 2 S2-S31, S2-S32

4 |S2-S31 1/1({0|11|0j1(0 2 S1-S2, S31-LL
LL-S1, S2-S32, S31-

5 [S1-S2 170111101 3
LL

6 [LL-S1 0O|11/1(1({0(0]1 2 S2-S32, S31-LL
S1-S2, S31-LL, S32-

7 |S2-S32 0|1|0(2|0]|11|0 3
LL

8 [S31-LL 011/]0(1(0(1]0 2 S1-S2, S32-LL

9 |S1-S2 0|0|1(1(0|0]1 2 S2-S31, S32-LL

10 |S2-S31 0j]0|0|2|0|0]0O0 2 S31-LL, S32-LL

11 |S32-LL 0j0oj0j1(0|0]0O0 1 S31-LL

12 |S31-LL 0|0|0O0O|O0O|0O]|]0O]|O

3.4 Deter mining the lot makespan

The first task to solve this scheduling problem isto find the lot makespan for a given
cluster tool under a sequence of wafer handler moves. For avery simple tool
configuration and small lot size, one can easily construct a Gantt chart of all activities,

then determine the makespan asin Figure 2.
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The lot makespan under a fixed sequence of wafer handler moves can also be computed
by determining the critical path in a network model, a collection of nodes and directed
arcs (Herrmann et al. ,1999 and Chandrasekaran, 1999). Associated with an activity,
either handler move activity or process activity in a chamber, there is a node with a
weight that is equal to the processing time of the activity. The directed arcs, connecting
the nodes, describe the precedence constraint between activities. A path will start at the
first node, representing the move to load the first wafer from load lock to achamber in
thefirst stage, and end at the last node, representing the move to unload the last wafer
from the last stage. The total weight of the maximum weight path, or the length of the
longest path, corresponds to the makespan under the fixed sequence of wafer handler

moves.

When the tool configuration is more complex, i.e. more than two processing stages or
more than two chambersin a stage, and the lot size is a large number, constructing the
Gantt chart and network model for such tools are time-consuming tasks. In such cases,
discrete-event simulation models should be developed. One example isthe Cluster
Tool Performance Simulator (CTPS) software that Lee Schruben (1999) developed at
Cornell University. The input of CTPS includes the tool configuration, the lot size, the
sequence of processes that each wafer should undergo, the duration time of each
operation (both wafer handler move and process activities), and arule (push or pull) for

moving the wafer within the tool. Limitations of the CTPS include:
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* Thetool configuration is not flexible; in fact, every stage cannot have more
than two chambers.

» Either push or pull dispatching rule must be used to generate the sequences.

We can easily develop ssmulation model that uses the dispatching rule (push or pull), to
generate a sequence of activities then determine its makespan for any given tool
configuration. Also, we can easily develop simulation model that determines the

makespan of a cluster tool under a pre-specified sequence of wafer handler moves.

3.5 Summary

This chapter has identified the main objective of the problem. That isfinding the
optimal sequence of wafer handler moves to minimize the lot makespan, given lot size,
handler move time, and chamber processing time, for single wafer hander and single
load lock cluster tool. Using the introduced framework, the problem can be formulated
as a standard scheduling problem. This chapter describes seven constraints for
constructing feasible sequences of handler moves and an additional permutation
constraint. It presented a methodology to construct an outtree graph for a given tool
configuration based on the constraints. Finally, it described methodol ogies to determine
the lot makespan from a given sequence of handler moves and to generate a schedule

and determine the ot makespan using current push and pull dispatching rules.
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CHAPTER 4

BRANCH-AND-BOUND ALGORITHM

Currently, thereis no available algorithm that generates an optimal sequence of wafer
handler moves for a multi-chamber, multi-stage cluster tool. In this chapter, we will
develop aforward branch-and-bound al gorithm for finding a sequence that minimizes

the lot makespan.

4.1 Theforward branch-and-bound algorithm

A branch-and-bound procedure is an enumeration scheme that can discard a partia
solution by showing that the objective value obtained with the partial solution is not
optimal. Thisinvolves computing alower bound on the value of any solution that uses
the partial solution and an upper bound on the value of the optimal solution. If the

partial solution’s lower bound is greater than optimal value’s upper bound, then the

partial solution cannot lead to an optimal solution, so it can be discarded.

The algorithm first generates two feasible sequences using the push and pull dispatching
rules and uses the better sequence’s lot makespan as the upper bound on the optimal lot
makespan. The better sequence is also used as an optimal sequence candidate. For a
partial solution, we use the completion time of the last scheduled activity as its lower

bound.
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Given my,...,ms, pr, P1,---,Ps, and L, the algorithm proceeds as follows.

Algorithm BB:
Step O:

Use the push and pull dispatching rules to generate two feasible sequences (see
Algorithm P). Take the better sequence as an optimal sequence candidate, and use its

makespan as an upper bound on the optimal value.

Step 1:
Initialize the cluster tool. All L unprocessed wafersarein LL, and the wafer
handler isat LL. All of the chambers are free. The current sequenceisa

sequence with no moves. Sett=0,n=L, and ty = O for all chambersk.

Step 2:
Based on the tool state, identify al feasible moves.
* Ryjisfeasibleif j = L+1-n and thereisafree chamber in S;. This can begin
at timet.
* Rj;j(0<i<Y9)isfeasbleif waferjisat chamber kin S and thereis afree
chamber in S41. Thiscan begin at max{t, t}.

* Rgjisfeasibleif wafer j isat chamber k in Ss. This can begin at max{t, t}.



Step 3:
For each feasible move, form anew sequence and calculate LB asfollows: add
the feasible move to the current sequence, compute the move’s completion time, and
update the tool state.
» If the feasible move wasgR then go to Step 3a.
» If the feasible move was;R0 <i < S, then go to Step 3b.
» Otherwise, go to Step 3c.
Step 3a:
Reduce n by one. If the wafer handler was at LL, then the move completion
time C =t + p Otherwise, the move completion time C =t + 2pet q be the
lowest-numbered free chamber in he wafer handler is now at chamber q,
which now has wafer j, and+ C + p. Let LB =¢. Go to Step 3d.
Step 3b:
Let k be the chamber in $hat was processing wafer j. If the wafer handler was
at chamber k, then the move completion time C = ma¥{t; p,. Otherwise,
the move completion time C = max{t} #2p,. Chamber k is now free. Let g
be the lowest-numbered free chamber;in. SThe wafer handler is now at
chamber g, which now has wafer j, ape IC + p+1. Let LB = . Go to Step 3d.
Step 3c:
Let k be the chamber ins$hat was processing wafer j. If the wafer handler was
at chamber k, then the move completion time C = max}t,d,. Otherwise,
the move completion time C = max {t}+ p,. Chamber k is now free. Go to

Step 3d.
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Step 3d:

Lett=C. If LB isgreater than or equal to the upper bound on the optimal
value, then discard this new sequence. If the new sequence includes all L(S+1) moves,
the lot makespan equals C. If the lot makespan is less than the upper bound, save the
new sequence as the current best sequence and set the upper bound equal to the lot

makespan.

Step 4:
If any incomplete new sequences remain, select one, identify the corresponding
tool state, and go to Step 2. Otherwise, stop. The current best sequence is an optimal

sequence.

For example, consider the problem CT1-1 | | Cax. The following information is given:
pr=>5, p1=10, p2 = 40, and L = 3. The push sequenceis Ry 1, R11, Ro2, R21, Ri2, Roz3,
R22, Ri3, R23. Thelot makespan is 185. Figure 4 shows a graph of all feasible
sequences. Any path from the top node (the first feasible move) to alower node
corresponds to afeasible partial sequence. Branch A corresponds to the push sequence.
Because the upper bound is 185, thisis the only branch fully explored. The other
branches are discarded when the partial sequences have eight moves because the lower

bounds are greater than or equal to 185 (C > 145. LB = C + p, > 185).
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Level 2 Ry 1 [15, 20]
Level 3 Ro, 2 [20, 30] R2,1[60, 65]
Leve 4 R2,1[60, 70] Ro, 2 [65, 70]
Level 5 Ry > [70, 80] Ry 2 [80, 85]

Level 6 (D Ry3[80,90] O R, ,[120,125] O Ry 585, 95] Rz, 2 [125, 130]

Y
L O R, 2120, 130] Q Ry 3[125, 130] O Ry, 1125, 1351 O Ry 5 [130, 135]

\d
Level 8 Ry 3[130,140] ORy 5[140, 145] O Ry 3[135, 145 OR, 4 [145, 150]

Leve 9 OR, ;[180, 185] -/ Ry 3[185, 190] - Ry 3 [185, 190] 'R, 5 [190, 195]
A B C D

Note Ri’j [#, #/-'/#]
completion time
start time

Figure 4. Outtree graph of the CT1-1 (3 wafers per lot).
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We now present an algorithm that uses the push (or pull) dispatching rule to construct a

feasible schedule.

Algorithm P:
Step 1:
Initialize the cluster tool. All L unprocessed wafersarein LL, and the wafer

handler isat LL. All of the chambersarefree. Sett=0andn=1L.

Step 2:
Based on the tool state, identify any feasible moves that could begin at timet.
Move Rpj can begin at timet if j = L+1-n and there isafree chamber in S;.
MoveR;; (0<i<S)canbeginattimetif wafer j isat chamber kin S, tx < t,
and thereis afree chamber in S+1. Move Rsj can begin at timet if wafer j isat
chamber kin Ssand t < t.
* If thereis exactly one feasible move, then perform that move. Go to Step 4.
» If thereis more than one feasible move and the dispatching rule is push, select the
feasible move R;; with the smallest value of i. Go to Step 4.
» If thereis more than one feasible move and the dispatching ruleis pull, select the
feasible move R;; with the largest value of i. Go to Step 4.

» Otherwise, go to Step 3.
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Step 3:

Step 4:

Among the busy chambersk in S, ..., Ss, identify the minimum value of ti. Let

t =tx. Goto Step 2.

Update the tool state.

If the selected move was Rgj, then reduce n by 1. If the wafer handler was at
LL, then the move completiontime C =t + p,. Otherwise, the move
completiontime C =t + 2p,. Let g be the lowest-numbered free chamber in
S;. Thewafer handler is now at chamber g, which now starts processing
wafer j, and tg = C + py.

If the selected movewas R;j, 0 <i < S, then let k be the chamber in S that
was processing wafer j. If the wafer handler was at chamber k, then the
move completion time C =t + p,. Otherwise, the move completion time C =
t +2p;. Chamber k isnow free. Let q be the lowest-numbered free chamber
in S+1. Thewafer handler is now at chamber g, which now starts processing
wefer j, and tg = C + pi+1.

Otherwise, let k be the chamber in Ss that was processing wafer j. If the
wafer handler was at chamber k, then the move completiontime C =t + p,.
Otherwise, the move completion time C =t + 2p,. Chamber k is now free.

The wafer handler isnow at LL.
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Step 5:
Lett=C. If n=0and al chambers are free, then stop. The lot makespan
equals C. Otherwise, go to Step 2.

Note that Algorithm P generates only non-delay schedules.

4.2 Dominancecriteria

Since al chambersin a stage are identical, move R; ; |oads the lowest-numbered free
chamber in S41 (i =0, ..., S-1). Doing thiswill eliminate the number of search
branches, thus reduce the solution space when the number of chambersin astageis

greater than one.

The permutation constraint states that each wafer must be moved inturn. That is, R
must precede R+ forall i =0, ..., S,andj =1, ..., L-1. If al stages have exactly one
chamber (all mi=1,i =1, ..., S), then all feasible sequences satisfy this constraint.
Otherwise, there may exist feasible sequences that violate this constraint. We will show
however, that, for some tool configurations, there exists an optimal sequence that does
satisfy this constraint. Thus, we can limit the branch-and-bound search to those

sequences. Thiswill improve our search performance.

Theorem 1. If, foreachi =1, ..., S,m; =1 or p; = p,, then there exists an optimal

sequence that satisfies the permutation constraint.
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Proof. Consider an optimal feasible sequence Q that violates the permutation
constraint. Then, find i such that Ry; precedes Ry j+ for k=0, ..., i-1, but R; j+, precedes

Ri;. Since Roj must precede Rpj+1, theni isat least 1.

If mi =1, Ri.1j+1 isinfeasible until R;; empties the chamber in S. R;; must precede R;.
1j+1 and Rjj+1, so Q isinfeasible. Thus, S must have multiple chambers (m; > 1) and p;

> pr.

Now, form a new sequence Q’ by interchangingdhd Rj.1 for k =1, ..., S. We will

show that Q' is a feasible sequence and that, sire@pit does not increase the lot
makespan. If Q' is not a permutation sequence yet, then we can repeat this construction
until we have a feasible permutation sequence that does not increase the lot makespan
of Q. Thus, this forms a feasible permutation sequence that is also optimal.

Q' is a feasible sequence because creating it only interchanges wafer | moves with
wafer j+1 moves. If there was a chamber free to accept wafer j+1, then it is still free to

accept wafer j (and vice versa).

Now consider two cases. In the first case, there is, in Q, a move betwegraRd
Rij+1. Thus, in Q, R+1 requires 2ptime units (since R +1 does not immediately
precede it). Also, Rrequires 2ptime units (since R; does not immediately precede
it). After the interchange, in Q’, both moves still requiretiftpe units. For k = i+1,...,
S, move R; in Q' requires the amount of time that;R required in Q (and vice versa).

Thus, all moves still require the same amount of time. Becaug@iecedes R+,
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wefer j iscomplete at S before wafer j+1. Thus, in Q’,; Rcan start at the time that
Rij+1 started in Q. R is delayed after the interchange and can certainly start in Q’
when R; started in Q. Thus Q' delays no moves other than those interchanged and they

can start at the same time, so the lot makespan is not increased.

In the second case, there is, in Q, no move betwegmRnd Rj+1. Thus, in Q’, there
is no move between;j+1 and R;. Let Q1 be the subsequence in Q that occurs
between Ryj and Ryj+1.

Now we need to consider the following sub-cases:

B1: Q1 empty or Q1 not empty and doesn’t end with; R

B2: Q1 ends with Rj+1.

Consider case B1l. Letdenote the time thatR.1 becomes feasible (because S
finishes processing wafer j+1 and there is a free chambegx. i€8nsider the move that
precedes R;+1. Let t denote the time that this move finishes. Thus,.Rbegins at
max{t;, ty}. Let ta be the time thatR; finishes. If Q1 is empty,t .. Otherwise,
because the first move in Q1 is ngf,R. = t;+2p. Note that B in Q and Rj+1 in Q’

both require 2ptime units. We need to show that, in Q; fhishes no later than;R;
finishes in Q. Then, Q' does not increase the lot makespan because no remaining
moves are delayed.

o Ifprsp st-ts+2p and § < L, then, in Q, R+1 completes at+3p+p. InQ’, R;

completes att+4p. Since p= p, R finishes earlier.
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o If pi = te-ta+2p, and ty < tg, then, in Q, Rij+1 completes at t+3p+pi. In Q', R
completes at#2p+p;.. Since ¢ > t,, R finishes earlier.

o If pi 2 t-ta+2p and ¢ < ty < ta+p-2p, then, in Q, R+1 completes at#3p+p. In Q’,
Rij completes at+2p+p. Sinced =t > t, R finishes earlier.

* Ifpizpandt<tgand§=t+p-2p, then, in Q, R+1 completes at#3p+p. In Q’,

Rij completes ait4p. Since p= p, R finishes earlier.

Consider Case B2. Letdenote the time that R+1 becomes feasible (becausg S

finishes processing wafer j+1 and there is a free chambegx il€8nsider the move that

precedes Rj+1. Let t denote the time that this move finishes. Because the last move

in QL is Raj+1, ta = t+pi1. Thus, Ryj+1 begins atdand ends attp. Let t be the time

that R.1; finishes. Because the first move in Q1 is ngt 8 t+2p. Note that R in

Q and Rj.1 in Q’ both require 2gtime units. We need to show that, in Q/; fishes

no later than R finishes in Q. Then, Q' does not increase the lot makespan because

no remaining moves are delayed.

o If pi 2 ty-tatpy, then, in Q, R+1 completes at#2p+p. In Q', Rj completes at
tat2p+p. Since § > t. > t, R finishes earlier.

o If pr < p < tgtatpr, then, in Q, R+1 completes ayt2p+p. In Q’, Rj completes at
te+3p. Since p= p,, R finishes earlier.

This completes the proof.



By limiting the branch-and-bound algorithm to permutation sequences, we limit the
number of sequences that need to be considered. We can abbreviate the search more

with the following dominance property.

Since wafer processing can happen concurrently in different chambers, a move can be
discarded if there exists another move at the same level that can be proceeded before the
first move without delaying the first move’s completion time and changing its

processing time. For instance, consider a scenario shown in Figure 5.

Assume that there are three moves (a, b, and c) available at time t, and the wafer handler
Is at chamber B. Both move a and move c takevBpe move b takes;p Both moves

b and c dominate move a, since they can finish before wafas @Available and move a

will always take 2p Even though move c can finish before wafey ig/available, it

does not dominate move b because the time required for move b will changé to 2p

move c precedes move b.



2p

W <t
8 move a
CHAMBE g

Wg move b

Chamber B
We Pr

Chamber C EN
2p; move C

Time
| -

: >
t
Figure 5. A scenario demonstrating the third dominance criterion.
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Let Q1 be afeasible partial sequence. R4 dominates R if, for any complete, feasible
permutation sequence Q that starts with Q1 and R;;, there is a complete, feasible

permutation sequence Q’ that starts with Q1 apgleRd the makespan of Q' is not
greater than the makespan of Q. Thus, the branch-and-bound algorithm will not find a

better sequence by searching the sequences that start with Q}.and R

Theorem 2. Given Q1, a feasible partial sequence that satisfies the permutation
constraint, move F, dominates R if both are feasible and the following conditions

hold: The last move in Q1 ends at time t. The wafer handler is at chamber k after this
move (k may be LL). Rcan begin at time & t and wafer j is at chambey, evhich is

not chamber k. f3 can begin at timg & t and wafer q is at chambey cEither g = k

and t+pr < ta Or G is not k andgt+2p < ta.

Proof. Consider a complete feasible permutation sequence Q that begins with Q1 and
Rij. Since gis not k, R;j requires 2ptime units. Form a new sequence Q' by moving
Ry q before R;. Because F, remained feasible from the end of Q1 to its position in Q,
Q' is also a feasible permutation sequence q # k and §+p; < t, the wafer handler

can complete g, at +p: and still begin i at t. Otherwise, gis not k andg#-2p < ta.

Still, the wafer handler can completgfat 1,+2p and still begin R at t. Thus, no

move must be delayed, and the lot makespan of Q’ is not worse than the lot makespan

of Q.
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Note that using this criterion limits the branch-and-bound algorithm to the set of active

schedules. In summary, the solution space of the problem can be reduced by applying

three dominance criteria

1) Thewafer handler should always load the lowest-numbered free chamber in a stage.

2) The permutation constraint, which forces the wafer handler to unload wafer j before
wafer j+1 in the same stage (R;; should precede R; j+1).

3) Theactive constraint, which prohibits amove R;; if there exists another move R4

that can be done first without delaying the completion of R ;.

4.3 Number of feasible sequence under thefirst and second dominance criteria
Applying dominance criteria 1 and 2 and defining the function d(x) as

o ifx=l
=Ly itx=o ©

we can rewrite the number of choicesin each wafer handler move for the permutation
problem as follows.
* Ry, load S: number of choices
Ciw =0(l_ )d(m, =1, ),00i =1,...,S (6)
* Rs, unload Ss, unload the last stage: number of choiceswill be either one, if thereis
at least awafer in the last stage, or zero, which mathematically expresses as &(Isy).
Thus, we can write the total number of feasible choices resulting from the state of the

cluster tool associated with the nodek at level T-1.

2, = ié(li-l,k)ami ~1) + 8(15,). @

a7



For instance, revisit the 1-1-2 cluster tool, processing 3 wafers per lot. If applying the
first and second criteria, the number of feasible sequences reduces to 69 from 552
sequences. (See Appendix A for details on determining the number of feasible

sequences).

The third criterion involves processing times of the activities, hence, it may be active
for some instants and inactive for others. The dominance criteria can be applied to the

algorithm BB while finding all feasible movesin Step 2.

4.4 Better lower bounds
In section 4.1, the completion time of the last scheduled activity is used as lower bound
LB for apartial solution. Let o be the partial sequence. Denote LB(o) as lower bound of
0. Let C, bethe completion time of the last activity in 0. Then,

LB1(c) =C, 8
Although this lower bound is very easy to determine, it will not detect a bad sequence
(one that has partial makespan greater than or equal to the upper bound) until the search

iIsamost at the end of a searching branch. Three better lower bounds proposed below

can be applied to improve the search performance of the Algorithm BB.

1) Let C bethe completion time of the last movein o. Let ng be the total number of
moves that have been performed in . Theremaining moveisL(S-1) - ng. Neglect

all activities in the process chambers, and assume that all remaining moves require

pr. Then,
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LB2(0) =C+(L(S-1) -n,)p, ©)

Thus, LB2(0) will likely help the algorithm discard poor solutions when movetime p; is

long compared to processing time p;.

2)

3)

From o, determine number of wafers has been started W1(o), which equalsto the
number of moves Ry, in 0. Then to complete a branch starting with o, there will be
(L-W1(0o)) move(s) needed to load the unprocessed wafer(s) to S;. Assume that all
moves require pr. Total time needed to completed these movesis (L-W1(0))p:.
Neglect all activities in the process chambers that happen between Ry, | .w1(s) and

RoL. Hence, if W1(0) <L,

S

LB3(0) = C+ (L - Wi(0))p, + Z (o +p.) (10)

Let Wi(o) be numbers of wafer(s) that have started processingin S (i=1, ..., S).
Notice that Wi¢) equals to the number of moves;Rin 0. Each chamber in Si

will be loaded (L - Wi@))/m; times. Assume that all moves require phen,

LB4i(0)2C+(L*‘W))(pi +p,) Oi=1..S (11)

Thus, LB36) and LB4(o) will likely help the algorithm discards poor sequences when

move time pis short compared to processing times p

For a givero, we can check whetheris a bad sequence by first determining the

maximum value of all quantities in the right hand side in the Equations 9, 10, 11, and
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12. Then, if thisvalueis greater than or equal to the upper bound, o is a bad sequence,

hence, o can be discarded.

4.5 Summary

This chapter presents aforward branch-and-bound algorithm that can be implemented
to any tool configuration to find an optimal sequence of wafer handler moves with the
objective of minimizing the lot makespan. The better sequence between the push and
pull sequenceisinitialy used as candidate of the solution and its makespan is used as
an upper bound, which is updated whenever a better solution isfound. For apartial
solution, we use the completion time of the last scheduled activity asits lower bound.
The algorithm searches all possibly feasible sequences of wafer handler moves for
single wafer handler and single load lock cluster tools; hence it guarantees the
optimality of the solution. The algorithms for the push and pull dispatching rules are

also presented.

Three dominance criteria are introduced to greatly reduce the solution space to improve
the search performance. A numerical example shows that the solution space can be
greatly reduced by using the first and second criteria. We have proved that, in cases
when the handler move time is not greater than the chamber processing times, there
exists an optimal solution that satisfy three dominance criteria. Sophisticated lower

bounds are proposed and will be numerically evaluated in Chapter 7.
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CHAPTER 5

THE CYCLIC BEHAVIOR OF THE CLUSTER TOOLSAND

TRUNCATED BRANCH-AND-BOUND ALGORITHM

5.1 Performance of a cluster tool processing a finite lot size

Normally, if the lot size L islarge enough, the performance of a cluster tool might be
separated into three phases: filling-up, steady state (or cyclic), and completion. The tool
Is empty when processing begins. Until the first wafer is completed, the tool isfilling
up with wafers. Then thetool isin a steady-state phase as it completes wafers and loads
new wafers. Then when there are no more wafersto start, the tool enters the completion
phase. Processing ends when the last wafer is unloaded from the last stage. Starting
with an empty tool and the wafer handler is at load lock ready to pick up awafer, after
some number of events (wafer handler moves) the tool will converge to a steady state.
Just after the last unprocessed wafer isloaded to a chamber of the first stage, the tool

orderly beginsto flush wafers out until the last wafer is unloaded from the last stage.

Let us define a A-unit cycle as a subsequence during which each stage is loaded and
unloaded A times (A wafers are completed). The resulting sequence formed by
repeating a cycle in the steady state and completion phase is called the A-unit cyclic

sequence. Note that the cycle does not define the filling-up phase, which ends with the

first wafer being compl eted.
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This chapter presents an efficient search algorithm that can quickly find the best A-unit
cyclic sequence of wafer handler moves. The a gorithm requires less computational
effort than a complete branch-and-bound algorithm. The problem isto find the A-unit
cyclic sequence of wafer handler moves that minimizes the total time required to

process all the wafers and return themto LL.

Srinivasan (1998) observes that “during steady state operation in a typical cluster tool,
there is a certain sequence of events that occurs recurrently, forming a cycle.” Figure 6
presents the Gantt charts of the push sequence and optimal sequence for a tool that has
two chambers in the first stage and two chambers in the second stage. Based on
Srinivasan’s observation, we can say that the cyclic phases in the push and optimal
sequences start at time 65. The cyclic phase of the push sequence consists of four 1-unit

cyclesal, while the optimal sequence consists of two 2-unit cya2esvhereol = R,

- Rl, pr2 — F\’o p+4 (p = 1,...,L-4), an@?2 = Rz,q - Rl, q+2 — Rz g+l — Rl, q+3 — I:\>0 q+d — F"0 a+5

Actually, there are many ways to define the starting point of a cyclic cycle. For
example, we can say that the first cyclic cycle of the push sequence in Figure 6 starts at
time 75 ands1 will be Ry p11 — Ry pra — R, p (P = 2,..., L-3). And so on. Hence, for
convenience, we may sometimes consider different starting events for different

sequences.
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Figure 6. Gantt charts of push and optimal sequencesfor CT2-2 (L = 8).
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Another important observation is that the order of eventsin the completion phase

resembles that in the cyclic phase. In Figure 6, the six events in the completion phase

of the optimal sequence can be divided into two incompl ete cycles: the first includes Ry,

13— R, 11— R 12— Ry ; the second includes;R1 — R, .. The reason for lacking an

event in an incomplete cycle is such event has become infeasible. For example, the first
incomplete cycle lacks the load &vents, since there is no wafer in load lock after time

185; hence, load;Ss infeasible.

There may exist more than one feasible filling-up sequence, we will begin by studying

two special cases: CT1-1 and CT1-1-1.

5.2TheCT1-1 Problems

In this section, we analyze cycle time and makespan of the two 1-unit sequences for a
two-stage cluster tool following two 1-unit cycle that Sethal. (1992) provide. For a
tool that has M machines, S = M stages, each 1-unit cycle can be exactly described by
M+1 wafer handler moves: Mmove a wafer to machine;Nl = 1,..., S) and M" move
a wafer from M. For the CT1-1 environment, M = 2, and the corresponding wafer
handler moves of the two 1-unit cycles are:

0l: Rj1—Ryj—R;j—Rj(j=2,..., L),

02: Rj1—Ryj—Ryj+s1—Rj(=2,..., L).
Each cycle has only one feasible filling-up phaseofbthat is B 1 — R;, 1 and foro2

thatisR1—- R 1—- R 2



Theorem 3. For CT1-1, the 1-unit cycle time P, and makespan MS, (x = 1, 2) of the 1-

unit cyclic sequences ox is given by:

P1=3p +p1+ P2, (12a)
MS, = LPy, (12b)
P2 = 4p; + max{2pr, py, P}, (13a)
MS; = 3p; + p1 + p2 + (L-1)Pa. (13b)

Proof. The cycle time P, and makespan M S, are evaluated in Appendix B.

Theorem 4. For CT1-1, if p, = p; and p; = pp, then P, > P and MS, > MS;.

Proof. Assumethat p, = psand pr = p, O P, =4p, + max{2p;, p1, P2} = 6pr, and P, = 3p,
+pp+p2<5pr 0 P, > Py. Clearly that when P, >P;, then MS, >MS; since MS; -

MS;=(L-1)(P,-Py1) > O.

5.3 The CT1-1-1 problems

In this section, we derive cycle times and makespans of the 1-unit sequences for athree-
stage cluster tool. There are six 1-unit cyclesthat Sethi et al. (1992) provide. For the
CT1-1-1 problems, M = 3, the corresponding wafer handler moves of the six 1-unit

cyclesare:
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0l: R3j1— Ryj — Ry — Rj — Rsj.
02: Rsj.1— Roje1 — Roj — Rujs1 — Ry
03: Rsjii— Roj — Roj+1 — Ryj+1 — Ry
04: Rsj1 — Ryj— Rj— Rojs1 — Rsj.
05: Rgj.1— Ryj— Ryji1 — R — Rsj.

06: Rsj.i— Rj— Ryjy1 — Rojeo — Rsj.

Forol, there is just one feasible filling-up phase. For the other five cycles, there are

two feasible filling-up phases. Thus, there are eleven feasible cyclic sequences for

CT1-1-1.

Theorem 5. For CT1-1-1, the cycle times and lot makespans of the 1-unit cyclic

sequences that use cyoe (x = 1, 3, 4, and 5) are given in Table 2.

Proof. The cycle times and makespans are evaluated in Appendix C.
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Table 2. Cycletime and lot makespan of the 1-unit cyclic sequences that use cycle ox (x

=1, 3, 4, and 5).
. Equation
Cycle | Cycletime Filling-up phase t | Lot makespan
number
P, =4p, + p; + MS, = LP: = 4p.+D:+Do+
ol 1= 4Pt Pa - S 1= 4prtPatpP2 (14a.)
P2+ Ps pst+(L-1)Py
M=Roi- R | M = ApT P ot b (15a,b)
P:=4p + Roi—Rz2—Ri2 | +(L-1)Ps
o3 max{3p + pi, MSg =9p+ pi+ pst
f2=Ry1—Ri1—
P, P+ Prt+ P2} max{p., 2p}+ max{pa, (16a,b)
Ro2—Rei1—Ri2
P2, Ps, 2p}+ (L-2)P3
fl=Ri1—R1— |MSsu=4p+p+p+
1— kR 4= 4Rt et P2t B3 (17a.b)
Ro1—Ro2 + (L-1)Py
Ps=5p+ p+
o4l MSp=8p+pL+ P+ ps
max{2p, ps, pi} | f2=Ro1—Ru1—
+ max{p, pr + 3+ (18a,b)
Ro2— R
max(p, 2m}+ (L - 2)P4
fl=Ry1—Rii— |MSs;=4p+p+p+
1— R 51 = 4Rt Dt P2t B3 (19a.b)
Ps=4p+ Ro2— R + (L-1)Ps
o5 max{p; + p2 + MSs2 = 9p+ P+ 2P+ s
f2=Ry1—Ri1—
Ps, 3p+ P, P} + max{py, ps, 2p}+ (L - | (20a,b)
Ro1—Ro2 2P,

t Note filling-up phase has been adjusted in Appendix C.

Theorem 6. For CT1-1-1, the cycle time and lot makespan of the 1-unit cyclic

sequences that use cyd2are given by:

e Filling-up phase fl=R;-R,1 - Ry 2-R1— Ry 2

1 L-1 21
P21 = m JZ P21]- . ( a)

MSy; =13p+p+m+a+b +c+(L-2) B+ max(e-2p —G.1, 0) (21b)
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Where: fordl j =2,..., (L-1)

Pnj=7p+g+0h+g, (21c)
bj = max(p - 3p — G-1, 0) (21d)
g = max(p - 2p —Nh, 0) (21e)
¢ =max(p-2p—3, 0) (211)
by = max(p - 2p, 0) = max(p, 2p) - 2p (219)
a = max{p - max(p, 2p), 0} (21h)
ct=max(p-2p-a,0) (21i)

Filling-up phase f2=R1 - R 1 - R 1—Ry2— Ry 2

L-2
P, = 1 Z P, (22a)
L-24&4 #

MS;; =8p+ pr+ P+ ps + max{ps, 3p+ pu} +max{p2—2p—g.2 0} +

+ (L —-2)Rx». (22b)
Where:
Poj=7p+d+g+g,forallj=1, .., (L-2) (22c)
o j=1
e1 = max{p + p — max(p, p. + 3p), 0} (22d)
di1 = max{p. — 2p — &, 0} (22e)
o1 = max{p; — 2p — ¢, O} (22f)
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o 1<j<(L-2)

g = max{pz — 3p — g.1, 0} (229)
d; = max{p. — 2p — g, 0} (22h)
g = max{p —2p —d, 0} (22i)

Proof. The cycle times and makespans are evaluated in Appendix D.

Theorem 7. For CT1-1-1, the cycle time and lot makespan of the 1-unit cyclic

sequences that use cyd@ are given by:

» Filling-upphasefl=R1-R1-R2-R1-R2-R 3
1 L-2
P, = L——?:,Z Pey; - (23a)

MSe1 = 13p+ pr+ 3+ W2+ max(2p, pu, B2) + max{4p, pz, pz- max[0, p —

- max(2p, p)I} + max{2pr, P2, Pz~ Wi} + (L =3)Pes (23b)
Where:
Psyj = 4p+ w; +max{p, pz-w;, 4p}, forallj =2, ..., (L-2) (23c)
w, = max{p. - max{4p, P, p3- max[0, p - max(2p, p.)]}, 0} (23d)
Wi+ = max{p-max(p, ps— W, 4p), 0}, for all j = 3,..., (L-2). (23e)

* Filling-upphasef2=R1-R1-R1—-R2-R.2— Ry 3
1 L-2
Pe g e o

MSez = 120+ pr+ P2 +ps+Vi2+ max{p + pr+ Pe, Pz, Sp+ pPu}+

+ max{2p, P2, Ps- VL-2}+(L - 3)Ps2. (24b)
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Where: Peyj = 4p, + vj + max{ pz, ps-vj, 4pi}, forall j = 2, ..., (L-2) (24c)
Vo = maX{ p1— maX[Q’ 4pﬁ Pz—PL— p]’ O} (24d)

Vj+1 = max{pi-max(p, pz — Vv, 4p), 0}, forall j =3, ..., (L-2). (24e)

Proof. The cycle times and makespans are evaluated in Appendix E.

Hall et al. (1997) show that, for a mobile-robot cell, which has 3 machines and 3 stages,
processing single part-type, there is a unique formula for cycle time if the tool follows
02. However, this is not applicable to our tool structure. For example, consider the
problem CT1-1-1 | | Gx- Table 3 and 4 present cycle times and makespast of
sequence, using filling-up f1 and f2 respectively, for some instances, + &t p =5,

and p = 10.

Table 3. Cycle time and makesparo@fsequence, usingfl sR—- R 1—- Ry 2— R 1

— Ry, 2, for some instances.

Additional P2yj
: : : : . : : : Par | MSz

data j=2|j=3|j=4| j=5 j=6| j=7] j=8 |j=9
P2 = 20,

24 24 24 24 24 24 24 - 24 232
L=9
P2 = 20,

24 24 24 24 24 24 24 24 24 256
L=10
P2 = 10,
L=9 15 17 15 17 15 17 15 - 15.86 158
P2 = 10,
L =10 15 17 15 17 15 17 15 17 16 173
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Table 4. Cycle time and makespan of 02-sequence, usingf2=Rp1—- R 1—- R 1—- Ry 2

— Ry, 2, for some instances.

Additional P2y

. . . . . . : : Py | MSy
data j=1]1j=2])=3|]j=4| j=5| j=6 j=7 j=8
p2 = 20,
L=9 30 24 24 24 24 24 24 - 24.85 237
p2 = 20,

30 24 24 24 24 24 24 24 27.75 261
L=10
p2 = 10,
L=9 20 15 17 15 17 15 17 - 16.57 160
p2 = 10,
L =10 20 15 17 15 17 15 17 15 16.38 177

The following Corollaries are direct results from Theorem 5.

Corollary 1. For a CT1-1-1, if P= R, then M§1 = MSy, for all x, y = 1, 3, 4, and 5.

Proof. By comparing formulas of MSMS;;, MSy1, and MS;.

Corollary 2. For a CT1-1-1, there is no guarantee thaiMSMS,, for all x = 2, 3, 4,

5, and 6.

Proof. By considering the following instance. LetL = 157A3,p=18,p=14,p
= 37. Table 5 presents the cycle times and lot makespans of the eleven sequences

dictating in Theorems 5, 6, and 7.
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Table 5. Cycle time and makespan of the 1-unit cyclic sequenceswhen L = 15, p, = 13,

p1 =18, p2 =14, p3 = 37.

X 1 2 3 4 5 6
121 109 116 128
Py2 102 104
MS« 1815 1561 1647 1745 1913 1587
MS:2 1556 1652 1757 1901 1593

Note that in thisinstance, MS,; is the makespan of the best 1-unit cyclic sequence.

Lemma 1. Repetition of the best 1-unit wafer hander moves cycle does not guarantee

optimality for the problem CT1-1-1 | | Cax.

Proof. We will prove thislemma by providing a counterexample. Let L = 10, p, = 16,
p1 = 20, p2 = 11, and p3 = 18. Then 02 isthe optimal steady state cycle whose P21 = Py,
= 112. The makespans of the 02-sequences with different filling-up phase f1 and f2 are
MS;; = 1142 and MS,, = 1141. However, the optimal makespan is of the sequence that

forms by repeating 01 whose P; = 113, and MS; = 1130.

However, we expect that if L is large enough then repeating of the optimal 1-unit cycle
will lead to an optimal 1-unit cyclic sequence. For instance, revisit the counterexample
inLemmal, if L greater than 21, then MS,; isoptimal. Table 6 showsMS; and MSy,

asfunctionsof lot size L. Inthisexample, MS; equals MS,, when L equals 21.
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Table6. MS; and MSy, asfunctions of L.

L (wafers) 19 20 21 22 23 24 25
MS; (unit times) 2147 | 2260 | 2373 | 2486 | 2599 | 2712 | 2825
M S, (unit times) 2149 | 2261 | 2373 | 2485 | 2597 | 2709 | 2821

Hall et al. (1997) prove that, for amobile-robot cell, which has M machines and M
stages, processing single part-type, the repetition of 1-unit cycles dominates more
complicated policies that produce 2-unit cycles. However, thisis not applicable to the

problem CT1-1-1 | | C.

Theorem 8. The 1-unit cycles do not dominate 2-unit cycle for the problems CT1-1-1 | |

Proof. We will prove this theorem by providing a counterexample. Let L =8, p; = 10,

p1 = 30, p2 = 25, p3 = 5. Then the optimal 1-unit cycleis o5 whose Ps = 80. The best 1-

unit cyclic sequence is formed by repeating o5 with filling-up phasefl=Rp 1 — R 1 —

Ro2— R, 1. MSs; = 660 time units. However, the optimal sequence forms by repeating
2-unit cycle, Bj — Ry j+2 — R, j+1 — Rg j+1 — Ry j+2 — Ry, j+3 — Re,j+2 — Ry j+3, Which has an
average cycle time of 77.5 time units. The optimal makespan is 645. Figure 7 presents
the Gantt charts of the optimal sequence and the sequence formed by repeuaiitng

filling-up phase f1.
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OPTIMAL: MS=645

Figure 7. Two-unit cycle versus one-unit cycle.



54 THE CTmy-...-Ms | | Cmax PROBLEM S

In general a stage may have more than one chamber; the number of chambersin a stage

can be any integer. Although the branch-and-bound algorithm can find an optimal

sequence of wafer handler moves, its main limitation is the computing effort increases
asthelot size, the number of chambersin each stage, and the number of stages

increases. In such complicated problems, we propose an a gorithm that can find the

best solution among the A-unit cyclic schedules, A = min{m;y, ..., mg}. As a result from
Corollary 2, this best schedule must have the best filling-up phase associated with the

best cyclic phase. The following assumptions are used to identifyuhg cycle:

* The cyclic phase starts with the first move that unloads a finished wafer from the
last stage (and returns it to the load lock).

» The cyclic phase of a cluster tool can be divided into complete cycles. In each
complete cycle, the number of unprocessed wafer(s) leaving the load lock must
equal the number of finished wafer(s) returning to the load lock. Furthermore, this
number must be greater than or equal.to

* The occurring order of events in an incomplete cycle of the completion phase

resembles the occurring order of events in a complete cycle.

The first assumption guarantee that all possibly feasible filling-up phase will be
considered. We now present a truncated branch-and-bound algorithm to find the best

unit cyclic schedule. This algorithm is a modified version of the branch-and-bound
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algorithm proposed in Chapter 4. The algorithm first generates two feasible sequences
using the push and pull dispatching rules and uses the better sequence’s lot makespan as
the upper bound on the optimal lot makespan. For a partial solution, we use the

completion time of the last scheduled activity as its lower bound.

Given m,...,ms, B, Pu-.,ps and L, the algorithm proceeds as follows.

Algorithm TBB:

Step O:
Use the push and pull dispatching rules to generate two feasible sequences.

Take the better sequence as an optimal sequence candidate, and use its makespan as an

upper bound on the optimal value.

Step 1:

Initialize the cluster tool. All L unprocessed wafers are in LL, and the wafer
handler is at LL. All of the chambers are free. The current sequence is a

sequence with no moves. Sett=0, n =L, ardQ for all chambers k.

Step 2:
Based on the tool state, identify all feasible moves;.if¥easible if j = L+1-n
and there is a free chamber in Shis can begin attime t.;R0<i<S) is

feasible if wafer j is at chamber k in&hd there is a free chamber i S This
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can begin at max{t, t}. Rsjisfeasibleif wafer j isat chamber k in Ss. Thiscan

begin at max{t, t}.

Step 3:
For each feasible move, form anew sequence and calculate LB asfollows: add
the feasible move to the current sequence, compute the move’s completion time,
and update the tool state.
* |f the feasible move wasyR then go to Step 3a.
* |f the feasible move was;R0 < i< S, then go to Step 3b.
=  Otherwise, go to Step 3c.

Step 3a:
Reduce n by one. If the wafer handler was at LL, then the move completion
time C =t + p Otherwise, the move completion time C =t + 2pet q be the
lowest-numbered free chamber in She wafer handler is now at chamber q,
which now has wafer j, and+ C + p. LetLB =t. Go to Step 3d.

Step 3b:

Let k be the chamber in $hat was processing wafer j. If the wafer handler was
at chamber k, then the move completion time C = ma3}{t; p,. Otherwise,

the move completion time C = max{t} #2p,. Chamber k is now free. Let g

be the lowest-numbered free chamber;in. SThe wafer handler is now at

chamber g, which now has wafer j, ape IC + p+1. Let LB = . Go to Step 3d.
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Step 3c:

Let k be the chamber in Ss that was processing wafer j. If the wafer handler was

at chamber k, then the move completion time C = max{t, ti} + p,. Otherwise,

the move completion time C = max{t, ty} + p,. Chamber k isnow free. Goto

Step 3d.

Step 3d:

Lett=C.

Step 3e:

If LB isgreater than or equal to the upper bound on the optimal value, then
discard this new sequence. Go to Step 4.

If the new sequence includes all L(S+1) moves, the lot makespan equals C.
If the lot makespan is less than the upper bound, save the new sequence as
the current best sequence and set the upper bound equal to the lot makespan.
Go to Step 4.

If the number of finished wafersis greater than A, go to Step 3e.

Otherwise, go to Step 4.

If aA-unit cycle exist in the steady state phase, then repeat this A-unit cycle until

n =0 and al chambers are free. The lot makespan equals C. If the ot makespan

Is less than the upper bound, save the new sequence as the current best sequence

and set the upper bound equal to the lot makespan. Go to Step 4.

Otherwise, discard this new sequence. Go to Step 4.
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Step 4:
If any incomplete new sequences remain, select one, identify the corresponding
tool state, and go to Step 2. Otherwise, stop. The current best sequence is an optimal

sequence.

Note that Algorithm TBB also appliesto the CT1-1 || Cax and CT1-1-1 | | Crax
problems. Figure 8 presents the search tree of a CT1-2 using the Algorithm TBB. The
search found four 1-unit cyclic sequences.

Qlrepeats 01 = Ry j — Ry, j+1 — Ro,j+2,

Q2 repeats 02 = Ry, j — Ry, j+2 — Ro,j+3,

Q3 repeats 03 = Ry, j — Ro,j+2 — Ry, j+2, and

Q4 repeats 04 = Ry j — Ro j+1 — Ry j+1.
Notethat ol issimilar to 62 and o3 issimilar to 04. Neither Q1 nor Q4 usesthe

second chamber of S,. Table 7 compares results of the search with the push/pull

dispatching rule for some instances of aCT1-2 when L = 10.

Table7. TBB, push, and pull sequencesfor CT1-2.

TBB push pull
Pr P1 P2
MS cycle MS cycle MS cycle
10 5 5 400 o4 580 ol 580 ol
5 10 20 315 02 315 02 405 ol
3 5 10 177 03 222 ol 222 ol

69




<000>
Ro, 1
<100>
I:21, 1
<010>
RO, 2 RZ, 1
<110> <000>
Rg, 1 Rl, 2 Ro, 2
<100> ‘/<011>\A <100>
I:21, 2 I:20, 3 RZ, 1 Rl, 2
<010> <111> <001> <010>
Ro,3 Rz 2 Ra1 Ro,3 R, > Ro,3 R,
<110> <000> <101> <101> <000> <110> <000>
4
¢\; $ ¢\L ¢ $ ¢\LO’
Rl, 3 RZ, 2 R1, 3 RZ, 2 Rl, 3 Rl, 3 RZ, 2
<011> <100> <011> <100> <011> <011> <100>
Ro, 4 Rz Rz Ro, 4 Ry, 2 Ro, 4 Ro,4 Ry, 2
<111> <001> <010> <111> <010> <111> <111> <010>
{ $ $ { 03 { { $
RZ, 2 RZ, 2 RZ, 2 RZ, 2
<101> <110> <110> <110>
$ 02 $ $
Termination criteria: Ri,j
- Pattern found: <110> where: 1 = busy
01:R2,j-R1,j+1-Ro,j+2 M All_»M 0 =free
02=Ryj- Ry j+2- Ro j+3 1 3
03=Rzj- Roj+2- Ry j+2 M,

04 =Ry - Roj+1- Ry j+

- Pattern not found: $

Figure 8. Search tree of afgl'1-2 using Algorithm TBB.



Theorem 9. The A-unit cyclic schedule is not necessarily optimal for the problem

CTml-...-mS| | Grax-

Proof: We will again prove this theorem by providing a counterexample. Consider
CT1-2 || Ga Withp =1, p=p=5,L=9. Here) = min{l1, 2} = 1. The best 1-unit

cyclic sequence is Q2. This has a lot makespan of 85. The optimal schedule repeats 2-
unit cycle in its steady state phase. The optimal makespan is 81. Figure 9 presents

Gantt charts of the sequence Q2 and the optimal sequence.
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Best 1-unit cyclic sequence Q2: MS = 85.

M3 ] [ [ ]
My [ ::5:1 ::5:1 ::5:1 ::5:1

e e s e O s s O s

Robotl :l 517 .............. EZI _______ 0.

; ”T F‘TT‘T’TP L.

0 70 80 85

Optimal sequence: MS = 81.

Ms e [ [ [
M, [ [ [ [ [
VP e s s s s s s ) s
Robotl ____________ :l ............ (Tl mza M O 1
I:IEIII:.I]I I:T]II — >

|
1
0 10 20 30 40 50 60 70 80 85

Note IRo; [ Ry [ Ry

Figure 9. The best 1-unit cyclic sequence and the optimal sequence for CT1-2.
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5.5 Summary

The steady state behavior of the cluster tools processing finite lot sizesis studied in this
chapter. Normally, if thelot size L islarge enough, the performance of a cluster tool
might be separated into three phases: filling-up, steady state (or cyclic), and completion.
Until the first wafer is completed, the tool isfilling up with wafers. During steady state
operation in atypical cluster tool, there is a certain sequence of events that occurs
recurrently, forming acycle. The order of eventsin the completion phase resembles

that in the cyclic phase.

The analytical modelsfor CT1-1 and CT1-1-1 are derived to determine the cycle time
and lot makespan of the 1-unit cyclic sequence of wafer handler moves, given lot size,
handler move time, and chamber processing time. We have found counterexamples
showing that the 1-unit cyclic sequence may not be optimal even when thereis only one
chamber in each stage. Also, counterexamples have been found to show the need of

searching both filling-up and cyclic phases.

This chapter presents an efficient search algorithm, Algorithm TBB, that can quickly
find the best A-unit cyclic sequence of wafer handler moves (A = min{ m,..., mg}). The
algorithm requires less computational effort than a complete branch-and-bound
algorithm; however, it will not find the optimal solutions. Algorithm TBB, whichisa
modified version of Algorithm BB, searches all possibly feasible filling-up phases and

cyclic phases to find the best A-unit cyclic sequence. A partial branch is truncated
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either when a cycleis found or when the branch islong enough. Algorithm BB can be
implemented to build models of single wafer handler and single load lock cluster tools

for any tool configuration.
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CHAPTER 6

IMPLEMENTATION

This chapter describes the implementation of the cluster tool models as software that
can generate, for any given tool configuration and lot size, a sequence of wafer handler
moves and then determine the makespan of the resulting sequence of all activities.
Although the cluster tool models can be applied to any cluster tool configuration, we

have implemented them for two- and three-stage cluster tools.

6.1 Introduction

For implementing the cluster tools models, the software was written in Java, since it
provides many advantages over C/C++ such as automatic garbage collection, pure
object orientation with multiple inheritance, and multi-threading. One of the
advantages is the concept of avector, a changeably sized array of objects, which will be

used very frequently in the programs.

Before introducing the Java code to implement Algorithm BB and Algorithm TBB for
the two and three stage cluster tools, it is necessary to introduce some main variables
and their construction in the programs. There are two main objects that will be used,
the Job and Machine, which allow us to store some information. Each basic object can
store several information such as a String, an Integer, a Double, or a Vector of other

Objects; that is aJob can store aVector of Machines and vice versa (see Appendix F for
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construction of a Job and a Machine). Table 8 presents the variables used to build

cluster tool models.

Table 8. Variables used to build cluster tool models.

Variables Storing information Construction
I number of unprocessed wafersin LL integer
Robot position | name of stage and index of chamber in stage, | Job
orLL
Global timer | completion time of the latest move Machine
Chamber index and completion time of wafer being Machine
processed
Stage list of the chambersin the stage Vector of Machines
Handler move | = typeof move Job
activity * index of wafer being moved
* index of activity
In-chamber » type of processing (stage name) Job
processing » index of chamber that processed the
activity activity
» index of wafer being processed
* index of activity
Sequence list of activities Vector of Jobs
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Hence, the |, Stages, Robot position, and Global timer variables provide information
regarding to the current cluster tool status, while the Sequence variable provides
information regarding to the history of activities. For instance, we need to determine
whether amove Raj+ which moves awafer from stage S, to stage Sa+1, takes p; or 2p.
R, j+ isfeasible only if S; contains at |east one wafer and S+ has at least one free
chamber. We assume that the wafer handler should always load the lowest-numbered
free chamber in a stage, and the permutation constraint isactive. Let S, ¢ (kK =1,..., my)
be the name of the chamber in S, which processes the wafer j*, that has the smallest
completion time. Let S;+1_k be the name of the lowest-numbered free chamber in Sa4a.
If robot position is different from S, i, then R, j- takes 2p; (otherwise, pr). Two activities
Ra, j and Sa+1_k, j+ Will be added to the Sequence. The wafer handler isnow at Sas1 k-

The global time is reset to completion time of R, j.

6.2 Implementation as executables

The input to the Java executable is a string of (2S + 3) numbers, separated by white
spaces. Thefirst number isthelot size L. Next S numbers are the tool configuration
(my, ..., mg). Then, S+1 numbersare py, ps,..., Pps. Thelast number is the overhead time.
For example, the string 251 25 10 40 400 isinput for aCT1-2, processing 25 wafers

per lot. pr =5, p1 =10, pz =40, and OH = 400.

The output of a cluster tool model isalist of activities. From thislist, we can find the

lot makespan and the utilization of each chamber in the tool and of the wafer handler
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per lot, which isthe ratio of production time compared to total available time. For each
chamber, the utilization is the total time that the wafers are actually processed in the
chamber divided by the makespan. Note that the waiting or blocking timein the
chamber will not be included when determining the chamber utilization. For the wafer
handler, the utilization is the sum of unloaded move times and |oaded move times

divided by the makespan.

While writing the computer codes to implement Algorithm BB, we will make use the

automatic garbage collection ability of Javato simplify the codes. In fact, while

generating a trial list, the tool’s status changes whenever a move is added to the trial
list. Therefore, information of tool’'s status must be recovered when generating the next
trial list. Using Java language, we can easily overcome this difficulty by creating

temporary tool environment whenever a move is added to the trial list.

For instance, consider an arbitrary outtree graph in Figure 10. There are four branches
in this graph. After searching the first branch A-B-C1-D1-E1-F1, the status of the tool
associates with the last node F1. To search the next branch A-B-C1-D1-E2-F2, we need
to delete nodes E1 and F1 from the trial list and to recover the tool’s status to the one
associated with node D1, then add nodes E2 and F2. And so on. This means
information of the tool’s status associated with every single node in the graph must be
permanently stored. If we create temporary trial list and tool environment any time a
node is added, then when jumping to the next branch, the first trial list and tool’'s status

associated with the last nodes become garbage and will be automatically destroyed.
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D3
:’ E3 E4
5 F2 F3 (OFa

Figure 10. An arbitrary outtree graph.

In details, this procedureisfollows. Start at the first node A, when adding node B, alist

A-B and associated tool's environments have created (the dashed line 1 in Figure 10).
And so on. The first branch A-B-C1-D1-E1-F1 representing by the dashed line 4, after
being evaluated its length, becomes garbage and will be destroyed. The second branch
A-B-C1-D1-E2-F2, representing by the dashed line 3, will start from the end of the
dashed line 2. And so on. Note that the best list and upper bound will be updated

whenever a better branch is found.
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6.2.1 Cluster tool models using Algorithm BB

Figure 11 shows the flow chart for Algorithm BB to find an optimal sequence of wafer
handler moves for given lot size, tool configuration, processing times required at each

stage, and wafer handler move time. Example 1 in Appendix F presents the main

portion of the Java codes, the “search ()" method, for a three-stage cluster tool model
using Algorithm BB. Note that in this model, all three dominance criteria are active.
The first and second criteria are applied when making the move; in fact, the wafer
handler will move the earliest completed wafer frantoShe lowest-numbered free
chamber in §;. The third dominance criterion is applied when finding the feasible

moves.
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Start

Get ml1---1mS1 ph pla---apSa L |

\
Using push/pull rules, find:

- Upper bound UB and

- Candidate of the optimal sequence BL

Y
Trial list TL

I
Q

Y
Set up tool environment CTE

Y
Find all feasible moves FM

Y
Call Search(FM, CTE, TL,ppa,..., s L)

End

Figure 11. Flow chart for program BB (to be continued).
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@arch (FM, CTE, TL, :ppu.... Q:,,D

i=0

P

Create TLi=TL

'

I+Li = # of completed wafers in TLi

'

Create CTEi = CTE

» Update UB
» Update BL

 Add move i to TLi
» Update CTEi
» Compute lower bound LB

No
LB = UB?

¢ Yes
Delete CTEi and TLi No l

Find all feasible moves FMi

) i

i=i+1 call Search (FMi, CTEi, TLi,
B P1,.. B L)

Return BL, UB

Figure 11 continued.
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6.2.2 Cluster tool models using Algorithm TBB

The flow chart for Algorithm TBB to find an optimal sequence of wafer handler moves
for given lot size, tool configuration, processing times required at each stage, and wafer
handler move timeis presented in Figure 12. Since Algorithm TBB isamodified
version of Algorithm BB, we will only discus on how to modify the BB model.
Example 2 in Appendix F presents the main portion of the Java code, the smart_search()

method, for athree-stage cluster tool model using Algorithm TBB.



Start

Y
GEt mla---amSa pra pl1---1pS1 L

\i
Using push/pull rules, find:

- Upper bound UB and

- Candidate of the optimal sequence BL

\
Trial list TL=&

Y
Set up tool environment CTE

Find all feasible moves FM

A
Call smart_search(FM, CTE, TL;, 1,..., [, L)

End

Figure 12. Flow chart for program TBB (to be continued).
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@art_search (FM, CTE, TL,,,®1...., & L)

]
=0

"y
Create TLi=TL
v

ITLi = # of completed wafers in TLi

v
Create CTEi =CTE

L]
* Add move ito TLi
» Update CTEi
» Compute lower bound LB

LB >UB?

Yes

Call smart_search (FMi, CTEi, TLi,,p1,..., & L)

|

Find all feasible moves FMi

. T

Yes

Delete CTEi and TLi

\/

* Update UB Call GCCS(TLIi,CTEi, BL,UB)
» Update BL

=i+l |4

No




Given atrial sequence o in which its number of completed wafersis smaller than L but
greater than A = min(m;), Algorithm GCCS can generate a complete cyclic sequence if
there exists acomplete cyclein o. Figure 13 shows the flow chart for Algorithm

GCCS.

Algorithm GCCS

=  Get departure list DL, which includes the departure stages of all movesin the trial
sequence. For example, the departure stage of Ry j iSLL, the departure stage of R; ;
isS(@=1,..,59).

= From DL, check whether&unit cycle exists and to determine the starting and
ending position of the cycle in DL (Algorithm CheckCycle). Then,

» If the A-unit cycle does not exist, discard the trial sequenc&o to the next trial
sequence.

» If the A-unit cycle exists, collect the departures of moves in the filling-up phase and
the first cycle from DL. The collected departures of moves as well as other input
information (lot size, move time and so on) are used as input to the fixed sequence
cluster tool model to generate a complete sequence of all activities, Q. Then
determine the makespan of Q and compare it to the current upper bound value.
Update candidate upper bound and candidate best sequence if necessary. Discard

both Q andy and go to the next trial sequence.
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v

» Get partial sequence
» Get tool environment CTE
» Get best list BL and upper bound UP

v

Get departure list DLA)

v

Call CheckCycle (DL, m) ..., n%)

No

Deleteo

¢ Yes

FSL = departures in filling-up phase articycle

\
List Q = Call PS (FSL, m)...,ns, B, Puy--ps L)

Yes ¢ No

» Update BL

» Update UP Delete Q

End

Figure 13. Flow chart for program GCCS.
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We now present the algorithm CheckCycle, given the departurelist DL. Let Wi be the
number of wafer(s) that have started processingin S (i =1, ..., S). Let OUT be the
number of completed wafers in DL. Lef;rbe total numbers of departures in DL.
Denote START and END as starting and ending points of the cyclic cycle. Figure 14

shows the flow chart for Algorithm CheckCycle.

Algorithm CheckCycle
Letx =0, Wi(DL) =0, OUT =0, START =0, and END = 0.
Step 1:
Find the position x of the firsts3n DL (the first wafer is completed). Set START
to (x-1).
Step 2:
For x = (START+1) to (p.-1), denote DL(x) as théxdeparture stage in DL.
e If DL(X) = LL, add one to W1. If DL(x) =Si (i =1,..., S-1), add one to W(i+1).
Otherwise, add one to OUT.
* LetEND =x.
e IfWi 2Aand Wi=Wj=0UT, forall#}, (i,j=1, ..., S), then
- If DL(x+1) = DL(START+1), then STOP, the cyclic cycle is found
as well as its starting and ending points in DL.
- Otherwise, increase START by one and reset Wi = OUT = 0.
e If W1 = A but Wiz Wj for at least one pair i and j or WiOUT for at least one i,
then increase START by one and reset Wi = OUT =0

e Ifx=(np.-1), then STOP, the cyclic cycle is not found. Otherwise, next x.
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Get departure list DL, my, ..., Mg
v

START, END, OUT, W1, ..,WS=0,x=0

A =min(my,..., ms), Np. = # departuresin DL

v

START = 1% position of Sgin DL - 1

x=START +1

yi

Yes

_|W1=W1+1

DL(x) = LL?

Wi=Wi+1
OUT=OUT +1 x=x+1
END = x
| No
\J
Wiz a2 No - X = NpL - 17
Yes Yes
NO M START = START + 1
Wi=OUT =END = 0

Yes ‘
No

DL(x+1) =
DL(START+1)?

Yes
Note: End 1 = cycle found

End 2 = cycle not found

Figure 14. Flow chart for program CheckCycle.
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6.2.3 Cluster tool models using the push and pull dispatching rules

Algorithm P in Chapter 4 can be implemented to any tool configuration. In this section,
we will introduce the cluster tool models using Algorithm P for atwo- and three-stage
cluster tool. Table 9 and Table 10 present the status of two-stage cluster tools using the
push and pull dispatching rules to sequence the wafer handler moves respectively. Table
11 and Table 12 present the status of three-stage cluster tools using the push and pull
dispatching rules to sequence the wafer handler moves respectively In Table 9 and
Table 10, the status of a chamber is defined as follows.

Free, F: thereis no wafer in the chamber

Done, D: wafer isfinished processing, ready to unload

Busy, B: wafer is still in process at the chamber

For a stage, we also define its status as follows.

F: thereis at least one free chamber.
D: thereis at least one done chamber.
B: all chambers are busy.

Figure 15 shows the flow chart for Algorithm P. Example 3 and Example 4 in
Appendix F present the main portion of the Java codes for athree-stage cluster tool

model using the push and pull rules respectively.
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Table 9. Status of atwo-stage tool using the push dispatching rule

Case Status of stage Priority Resulting Action
St S
1 F F
5 = D 1 Load S§;
3 F B
4 D F 2 Load S,
D 3
5 D Unload S,
6 D B otherwise | Unload S,
Check S; and S,
E B F 4 o jfoneof S,isdonefirst: unload S,
 jfoneof S;isdonefirst or at the
sametime asoneof the S,: load S,
8 b 3 Unload S,
B otherwise | Unload S,

Table 10. Status of atwo-stage tool using the pull dispatching rule

Status of stage . Resulting Action
Case S, S, Priority

1 F D .

> 5 5 Unload S,

3 B D

4 F F 3 Load S,

5 D F 2 Load S,
Check S; and S,

6 B = 4 * f oneof S, donefirst or at the

sametime asoneof S;: unload S,

e foneof S; donefirst: load S,

7 F 3 Load S,

8 D B )

9 B B otherwise | Unload S,
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Table11. Status of athree-stage tool using the push dispatching rule.

Case Status of stage Priority Resulting Action and Priority
S S S
1 F F F
2 F F D
3 F F B
4 F D F
5 F D D 1 Load S;
6 F D B
7 F B F
8 F B D
9 F B B
10 D F F
11 D F D 2 Load S,
12 D F B
13 D D F 3 Load S3
14 D D D 4 Unload S;
15 D D B otherwise | Unload S3
Check S; and S3
16 D B F 5 - If S, donefirst, load S3
- if Ssdonefirst, unload S;
17 D B D 4 Unload S3
18 D B otherwise | Unload S;
Check S, S, and Sz
- if S, donefirgt, load S,
19 B F F 6 | ifs,donefirst, load S5
- if Ssdonefirst, unload S;
20 B F D 4 Unload S;
Check S; and S3
21 B F B 7 - If S; donefirst, load S;
- if Sgdonefirst, unload S3
22 B D F 3 Load S3
23 B D D 4 Unload S3
24 B D B otherwise | Unload S3
Check S; and S3
25 B B F 5 - If S, donefirst, load S3
- if S donefirst, unload S3
26 B B D 4 Unload S3
27 B B B otherwise | Unload S3
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Table 12. Status of a three-stage tool using the pull dispatching rule.

Status of stage

Case s, S, S, Priority Resulting Action
1 F F F 4 Load S;
2 D F F 3 Load S,
Check S, S, and Sz
- if Ssdonefirst, unload S;
3| B F F 6 1. ifs, donefirst, load S,
- if S donefirgt, load S,
4 F D F
5 D D F 2 Load S3
6 B D F
7 F B F 4 Load S;
8 D B F Check S; and S3
5 - if Ssdonefirst, unload S;
9 B B F - if S, donefirst, load Sg
10 F F D
11 D F D
12 B F D
13 F D D
14 D D D 1 Unload S;
15 B D D
16 F B D
17 D B D
18 B B D
19 F F B 4 Load S;
20 D F B 3 Load S,
Check S, and S3
21 B F B 7 - if Ssdonefirst, unload S;
- If S; donefirst, load S;
22 F D B 4 Load S;
52 B B g otherwise | Unload S;
25 F B B 4 Load S;
gg B S g otherwise | Unload S3
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Figure 15. Flow chart for program P.
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6.2.4 Cluster tool models using the prespecified sequence of wafer handler moves

The cluster tool model using the prespecified sequence of wafer handler movesisthe

simplest model. The prespecified sequence includes of two parts: the first part isthe list

of starting and destination of moves in the filling-up phase, the second isthe list of that

in a steady state cycle. These two parts are separated by a signal phrase “begin loop”.
For example, the text file containing the prespecifed sequence for a CT1-2-2 is follows.

LL S1
S1S2
LL S1
S1S2
LL S1
S2 S3
S1S2
LL S1
S2 S3
S1S2
begin loop
LL S1
S3LL
S2 S3
S1S2

Figure 16 shows the flow chart for Algorithm prespecified sequence (PS). Example 5
in Appendix F presents a main portion of the Java codes for a three-stage cluster tool
model using the prespecified sequence of wafer handler moves. After creating all

moves in the filling-up phase, method get_fixed_sequence_for_3S_tool() repeats the

moves of the cycle until all wafers are completed.
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Figure 16. Flow chart for program PS.
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6.3 The graphic user interfacefor the two- and three-stage cluster tool models

After building the simulation models using the prescribed sequence, the dispatching
rules, the BB and TBB algorithms, we created the GUI (graphic user interface) for the
two- and three-stage cluster tool models. Both GUIs are written using Delphi and
compiled into executables. They will work as stand-al one decision-support tools on any
personal computer (running Microsoft Windows). The system requirement to execute
these GUIs includes the Delphi 4 package and Java Runtime (version 1.2.2). Figure 13
presents the interaction between GUI and the cluster tool models for either two- or
three-stage cluster tool. Figures 14 and 15 show the GUI for the two-stage and three-
stage cluster tools. The information passed between the GUI and the models are in the

format of Strings.

( Model using
GUI < > BB agorithm
(Delphi) (Java)
Model using
truncated BB
algorithm
(Java)
Model using Model using Model using
Push rule Pull rule fixed sequence
(Java) (Java) (Java)

Figure 17. Interaction of GUI and cluster tool models.
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* Two-Stage Cluster Tool

Caution: Optimal may take long time!

Figure 18. GUI for two-stage cluster tools.

* Three Stage Cluster Tool

Figure 19. GUI for three-stage cluster tools.
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From GUI to cluster tool models, the Strings include (2S + 3) numbers (L, my,..., Mg, pr,

P1,---, Ps, OH If the fixed sequence model is used, the file name of the pre-specified

sequence must aso be appended to the String. For instance, if the user clicks the

“Cyclic?” button in the default window of the two-stage cluster tool GUI, a String “20 1
2 5 10 30 400" will pass to the cluster tool model that uses Algorithm TBB. This model
will generate a cyclic sequence and then determine the makespan of a CT1-2,

processing 20 wafers per lot, with=5, p = 10, p = 30, and OH = 400.

After generating the list of all activities, the cluster tool model determines the lot
makespan and utilization of the wafer handler and every chamber in the tool. The
selected cluster tool model will return to the GUI a String affm..+ ng + 2)

numbers separated by white spaces. These numbers are the lot makespan, utilization of
the wafer handler, utilization of every chamber in the first to the last stage, which are
then appropriately displayed by the GUI. The GUI also presents the histogram of the
runs. For example, Figure 16 displays the GUI for two-stage cluster tool after three

runs using push, pull, and cyclic scheduling algorithms. Similarly, Figure 17 shows the
GUI for three-stage cluster tool after four runs using different scheduling algorithms:
push, pull, fixed-sequence, and cyclic. In each run, the user uses the same lot size, tool

configuration, move time, in-chamber processing times, and overhead time.
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* Two-Stage Cluster Tool

I

Caution: Optimal may take long time!

Figure 20. GUI for two-stage cluster tools after 3 runs.

* Three Stage Cluster Tool

| [ |

sequence] 23.dat

Caution: Optimal may take long time!

Figure 21. GUI for three-stage cluster tools after 4 runs.
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6.4. Integration into subfactory model

The cluster tool models has also been integrated successfully into a subfactory model.
This subfactory model integrated operational and process modelsin asingle platform,

which allows us to investigate co-optimization of scheduling and process parameters.

In the subfactory models, the cluster tool models take the same input (a String) as that
of the stand-alone GUI presented in the previous section. However, the ot makespan is
the only required output from the cluster tools models. From GUI of the subfactory
model, the user input process parameters (temperature, pressure, and other relevant
parameters), lot size, wafer handler move time, overhead time, configuration for each

tool, and the preferred scheduling algorithm.

Through a process model, the raw process time is determined from process parameters.
The raw processtime aswell aslot size, wafer handler move time, overhead time, and
tool configuration isthen fed to a preferred tool simulator to calculates the lot
makespan. Thislot makespan is then the input to a factory operations simulator. The
user is then presented with the factory performance measures, such as work-in-process
inventory (WIP) and cycle time, for the process case chosen. Communication between
these different models is accomplished by an administrator, which also provides the
user interface. Figure 22 summarizes the information flow in the integrated subfactory

model.
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USER Process parameters,
Cycletime lot size, movetime

WIP overhead time, tool
configuration

FaCtory — GUI / \> Process
Simulator .« | Administrator|— Simulators

Lot mak
ot makespan \\ / Raw process time,

Tool-Level lot size, movetime,
00 -I v overhead time, tool
Simulators configuration.

Figure 22. Information flow in the integrated subfactory model.

6.5 Summary

This chapter presented the cluster tool models using Algorithm BB, Algorithm TBB, the
push and pull dispatching rules, and the prespecifed sequence of wafer handler moves.
The methodology to construct Java codes for these models are also introduced.

Examples of the codes are shown in Appendix F.

After building the simulation models, methodology to construct GUIs for the two- and
three-stage cluster tool models are presented. Both GUIs are written using Delphi and
compiled into executables that worked as stand-al one decision-support tools on any

personal computer (running Microsoft Windows), which allow the user to accessto all

cluster tool models of the same type (two- or three-stage). From GUIs, one can
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compute the lot makespan and chamber utilization for any tool configuration, move

time, in-chamber processing times, overhead time, and ot size.

The integration of cluster tool models into a subfactory model allows one to investigate
co-optimization of scheduling and process parameters. Typically this means revisiting
scheduling algorithms and estimating changes in cycle time when process changes are
demanded. In some cases this could also mean identifying situations where significant
operational improvements could result from changing process parameters without

sacrificing quality.
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CHAPTER 7

RESULTS AND DISCUSSION

In this chapter, we compare the performance of the optimization models (the BB and
TBB agorithms) on two main performance criteria (the lot makespan and CPU time,) to

that of the simulation models using the push and pull dispatching rules.

7.1 Performance of the search using Algorithm BB

Wetested Algorithm BB on 72 problem sets of two- and three-stage tool configurations.
Each problem set included ten randomly generated instances. See Tables 13 and 14 for
the parameters used to generate the instances. The problem sets were chosen to
determine how the tool configuration and processing time affect algorithm performance.
The problem sets cover three cases. short move time and long processing times,
approximately equal move and processing times, and along move time and short
processing times. For each instance, we used the branch-and-bound algorithm
(Algorithm BB), the push dispatching rule (Algorithm P), and the pull dispatching rule
(Algorithm P) to find solutions. On all instances, Algorithm BB halted if it reached

100,000 nodes and reported the best solution found.

Table 15 and Tablel6 report the performance of Algorithm BB. Table 15 and 16
present, for each problem set, the average CPU time that the branch-and-bound search

required, the number of instances that Algorithm BB can completely solved within
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100,000 nodes. The fourth, fifth, and sixth columns show the average |ot makespan
achieved using the branch-and-bound algorithm, the push dispatching rule, and the pull
dispatching rule respectively. The last two columns of these tables show the average

percent improvement from the push and pull sequences to the best sequence found.

Table 13. Two-stage problem sets.

: Range for Range for
Problem Sets TOOI . Assoq ated movetimep, processing
Configuration | Lot SizeL © ' times
P, P2 (S)
1,2,and 3 CT1-1 5, 10, and 15 [1, 10] [20,40]
4,5, and 6 CT1-2 5,10, and 15 [1, 10] [20,40]
7,8,and 9 CT2-1 5, 10, and 15 [1, 10] [20,40]
10, 11, and 12 CT2-2 5, 10, and 15 [1, 10] [20,40]
13, 14, and 15 CT1-1 5, 10, and 15 [10, 20] [10, 20]
16, 17, and 18 CT1-2 5, 10, and 15 [10, 20] [10, 20]
19, 20, and 21 CT2-1 5, 10, and 15 [10, 20] [10, 20]
22,23, and 24 CT2-2 5, 10, and 15 [10, 20] [10, 20]
25, 26, and 27 CT1-1 5, 10, and 15 [20, 40] [1, 10]
28, 29, and 30 CT1-2 5, 10, and 15 [20, 40] [1, 10]
31, 32, and 33 CT2-1 5, 10, and 15 [20, 40] [1,10]
34, 35, and 36 CT2-2 5, 10, and 15 [20, 40] [1, 10]
Table 14. Three-stage problem sets.
. Range for Range 1_‘or
Tool Lot SizeL . processing
Problem Sets : . move time )
Configuration or (9 times
r P1. P2, P ()
37,38, and 39 CT1-1-1 5, 10, and 15 [1, 10] [20,40]
40, 41, and 42 CT1-2-2 5, 10, and 15 [1, 10] [20,40]
43, 44, and 45 CT2-2-1 5, 10, and 15 [1, 10] [20,40]
46, 47, and 48 CT2-2-2 5, 10, and 15 [1, 10] [20,40]
49, 50, and 51 CT1-1-1 5, 10, and 15 [10, 20] [10, 20]
52, 53, and 54 CT1-2-2 5, 10, and 15 [10, 20] [10, 20]
55, 56, and 57 CT2-2-1 5, 10, and 15 [10, 20] [10, 20]
58, 59, and 60 CT2-2-2 5, 10, and 15 [10, 20] [10, 20]
61, 62, and 63 CT1-1-1 5,10, and 15 [20, 40] [1, 10]
64, 65, and 66 CT1-2-2 5, 10, and 15 [20, 40] [1,10]
67, 68, and 69 CT2-2-1 5, 10, and 15 [20, 40] [1, 10]
70, 71, and 72 CT2-2-2 5, 10, and 15 [20, 40] [1, 10]
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Table 15. Computing time and percentage improvement of Algorithm BB over the push

and pull sequences for some two-stage cluster tool configurations (OH = 0).

Tool CPU timel . # Average makespan (sec) | % improvement
configuration L min:sec Instances BB push | pull push pull
solved
Case 1: short moves, long processing times.
5 0:01 10/10 | 303.1 3031 303.1 0 0
CT1-1 10| 0:02 10/10 | 585.6 585.6 585.6 0 0
15| 0:28 10/10 | 868.1 868.1 868.1 0 0
5 0:01 10/10 | 280.9 294.1 2941 | 418 4.18
CT1-2 10| 0:46 7/10 | 536.2 564.6 5646 | 465  4.65
15| 113 0/10 | 789.3 8351 835.1 | 5.08 5.08
5 0:01 10/10 | 2983 306.1 306.1 | 2.29 2.29
CT2-1 10| 057 7/10 | 5759 589.6 589.6 | 212 212
15| 132 0/10 | 8594 8731 8731 | 143 1.43
5 0:01 10/10 216 2217 2317 | 213 6.43
CT2-2 10| 051 4/10 | 3782 4015 406.9 | 4.79 6.21
15| 1:.31 0/10 | 559.7 588.7 609.4 | 4.32 8.02
Case 2: move time and processing times are approximately equal .
5 0:01 10/10 | 372.7 420.3 420.3 | 10.33 10.33
CT1-1 10 | 0:.02 10/10 | 7452 8523 8523 | 1141 1141
15 1:13 0/10 |1117.7 1284.3 1284.3| 11.76 11.76
5 0:01 10/10 | 401.3 468 468 | 13.64 13.64
CT1-2 10 1:16 0/10 811 951 951 1419 14.19
15 | 1:36 0/10 1294 1434 1434 | 941 9.41
5 0:01 10/10 383 4512 4512 | 1471 1471
CT2-1 10 | 1:16 0/10 | 775.6 919.2 919.2 | 1531 1531
15 | 1.27 0/10 |1134.4 1387.2 1387.2| 18.93 18.93
5 0:03 10/10 382 4466 4198 | 1384 852
CT2-2 10 | 1:20 0/10 | 8189 908.6 847 9.73 3.17
15 | 1:39 0/10 |1263.8 1370.6 1263.8| 7.72 0.00
Case 3: long move time, short processing times.
5 0:01 10/20 | 5105 8125 8125 | 37.15 37.15
CT1-1 10 | 0:.02 10/10 | 1021 1700.5 1700.5| 39.94 39.94
15 | 0:22 10/10 |1531.5 2588.5 2588.5| 40.81 40.81
5 0:01 10/10 | 4785 767.7 767.7 | 3759 37.59
CT1-2 10 | 0:44 10/10 957 1607.7 1607.7| 40.38 40.38
15 | 1.34 0/10 |1803.7 2447.7 2447.7| 26.23 26.23
5 0:01 10/10 547 897.7 897.7 | 38.87 38.87
CT2-1 10 | 055 9/10 |1098.9 1884.7 1884.7| 41.34 41.34
15 | 1:33 0/10 |2083.6 2871.7 2871.7| 27.29 27.29
5 0:02 10/10 | 4715 7946 697.1 | 40.13 31.87
CT2-2 10 1:15 0/10 1210 1616.6 1507 | 24.71 19.23
15 | 1:35 0/10 2032 24386 2204.1| 1638 7.52
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Table 16. Computing times and percentage improvement of Algorithm BB over the
push and pull sequences for some three-stage cluster tool configurations (OH = 0).

Tool CPU # Average makespan (sec) | % improvement
configuration L t_ime instances BB push | pull push pull
min:sec| solved

Case 1: short moves, long processing times.

5 0:01 10/10 369 369 3711 0 0.44
CT1-1-1 10 | 1.04 5/10 | 6775 6775 683.1 0 0.62
15 | 144 0/10 986 986 995.1 0 0.68

5 0:17 10/10 | 3349 3499 350.8 | 3.97 4.32
CT1-2-2 10 | 1:34 0/10 | 6135 6384 6411 | 3.64 4.24
15 | 2:00 0/10 | 8894 9269 9305 | 381 4.38

5 0:34 7/10 | 3492 359.6 356 2.58 1.85
CT12-2-1 10 | 1:38 0/10 | 638.8 6446 6416 | 0.78 0.51
15 | 2:05 0/10 | 9238 929.6 9266 | 0.54 0.35

5 0:49 6/10 | 2901 296.1 3181 | 1.73 8.52
CT2-2-2 10 | 142 0/10 | 549.3 5639 578.6 | 2.68 4.67
15 | 210 0/10 | 817.3 8319 8395 | 1.83 2.72

Case 2: move time and processing times are approximately equal .

5 0:03 10/20 | 521.7 591.8 591.8 | 11.10 11.21
CT1-1-1 10 | 1:37 0/10 1083 11958 1195.8| 9.07 9.07
15 | 2:10 0/10 1687 1799.8 1799.8| 6.03  6.06

5 1:13 0/10 | 515.6 5737 5775 | 9.63 10.52
CT1-2-2 10 | 1:43 0/10 |1107.9 1161.7 11645| 4.42 4.74
15 | 215 0/10 16959 1749.7 17535| 2.93 3.25

5 1:14 0/10 | 537.3 600.6 600.6 | 10.27 10.21
CT2-2-1 10 | 1:50 0/10 1158 1216.6 1216 | 4.71 4.64
15 | 219 0/10 1774 1832.6 1832.6| 3.12 311

5 1:12 0/10 | 5344 5772 5499 | 7.11 2.80
CT2-2-2 10 | 1:40 0/10 |1027.5 1169.2 1110 | 1456 10.00
15 | 1.57 0/10 15352 1630.3 1535.2| 5.18 0.00

Case 3: long move, short processing times.

5 0:01 10/10 670 10954 1071.6| 38.63 37.29
CT1-1-1 10 | 1:28 0/10 |1585.6 2267.4 2267.4| 29.84 29.84
15 | 1.54 0/10 |2757.6 34394 3415.6| 19.67 19.12

5 0:35 10/10 | 694.5 11524 1105.3| 39.28 36.75
CT1-2-2 10 | 1:40 0/10 |1984.7 2360.4 2337.1| 15.70 14.86
15 | 2:06 0/10 |3192.7 35684 3521.3| 10.38 9.21

5 0:50 10/10 650 1047.2 1069.6| 37.53 38.81
CT2-2-1 10 | 1:40 0/10 |1836.3 2167.2 2167.4| 15.02 15.04
15 | 2:09 0/10 |2961.7 3287.2 3309.6| 9.77 10.37

5 1:09 0/10 780 1092 968.2 | 28.19 19.08
CT2-2-2 10 | 144 0/10 |1946.2 2212 2100 | 11.85 7.15
15 | 2211 0/10 |3049.8 3332 3066.4| 841 051
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To test the performance of Algorithm BB with additional search time and with more
sophisticated lower bounds, we used problem sets 52, 53, and 54: CT1-2-2 and the
move and processing times are approximately equal. Table 17 compares the search
performances for these problems in three cases: A) the search halted at 100,000 nodes,
B) the search halted at 1,000,000 nodes, and C) the search halted at 100,000 nodes and

used better lower bounds.

From Tables 15, 16, and 17 we can draw some insights as follows.

= Exceptfor CT1-1and CT1-1-1in Case 1, the search was able to find better
sequences. Thisimprovement was greater when the processing times are
approximately the same as or smaller than the movetimes. Thisis true even though
the optimal sequence may not satisfy the permutation constraint when the
processing times are small.

» The computing effort increases as the lot size, the number of chambersin each
stage, and the number of stagesincrease.

= Conducting longer searches or using more sophisticated lower bounds did not

improve the search performance significantly.
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Table 17. Computing time and |ot makespan of a CT1-2-2 when increasing number of
nodes and applying better lower bounds.

if #nodes=10° | if # nodes= 10° It LBs _and5#

nodes = 10

L |pr |p1 |p2 |p3 .qg) o g .qg) o g .qg’ o g

=B% & 58§ & =B% &

ac|2 ) ac|2 ) T g2 )

OCER |= |OE® |= |OE R |=
MA@ GGG |OM]I® O (10111213 | 149
5 118 * 497 | 1.41 480 | 1:11 480
1015|1114 |11 | 142 * 1105|1700 * 1086|3:11 * 1101
15 211 * 1705(22.00 * 1686|426 * 1701
5 1:.12 * 396 | 1:43 396 | 1.25 396
1011|1117 |19 | 143 = 836 [17:11 * 836 | 250 * 836
15 220 * 1276(22:.02 * 1276|357 * 1276
5 110 * 638 | 1:47 615 | 1:38 615
1019 13| 17|17 |1:43 * 1406(16:48 * 1389|314 * 1404
15 222 * 2166|21:44 * 2149|423 * 2164
5 118 * 364 | 1:44 364 | 1:37 364
10|10 |12 | 13| 18 | 1:142 * 764 116:49 * 4 | 2254 * 764
15 2220 * 1164|121:58 * 1154|428 * 1164
5 1:16  * 635 | 1:43 605 | 1:20 605
1019|116 |11 |18 |1:45 * 1404|1654 * 1384|256 * 1401
15 222 * 2164|2155 * 2144|1435 * 2161
5 113 * 442 | 1:45 442 | 1:18 442
1012, 20| 14|19 (145 ~* 928 16:50 * 916 | 3.08 * 928
15 2:22 * 1408 (21:47 * 139|431 * 1408
5 111 * 690 | 1:57 670 | 1:51 * 690
10/ 2015|2019 148 * 1491700 * 1489|313 * 1495
15 2210 *  2296(|21:46 * 2289|4:.00 * 2295
5 111 * 435 | 1:51 435 | 1:50 435
1012 14|13 |20 (140 * 916 |17:11 * 916 | 311 * 916
15 2210 * 1396|2222 * 1396|401 * 1396
5 111 * 580 | 1:58 580 | 1:47 * 580
1016|120 |18 |16 | 1:43 * 1224|1659 * 1224|313 * 1224
15 2210 * 1864|2145 * 1864|401 * 1864
5 110 * 479 | 1:.45 479 | 1:.29 479
1013119 20|18 | 142 * 1000(16:59 * 987 | 3:13 * 1000
15 2209 * 1520|121:44 * 1507|4:.00 * 1520

Note: * means the problem is not completely solved within the number of nodes
specified.
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7.2 Performance of the search using Algorithm TBB

We tested Algorithm TBB on the same 72 problem sets of two- and three-stage tool
configurations as in the previous section. Each problem set included ten randomly
generated instances. See Tables 13 and 14 for the parameters used to generate the

instances. TBB halted if it reached 50,000 nodes.

Table 18 and Table 19 report the performance of Algorithm BB. In Tables 18 and 19,
for each problem set, the third and fourth columns present the average CPU times that
Algorithm BB and Algorithm TBB required. The fifth and sixth columns are the
number of instances that Algorithm BB completely solved and Algorithm TBB
completely solved. The seventh and eighth columns show the average ot makespan
achieved using Algorithms BB and TBB respectively. The last four columns of these
tables show the average percent improvement from the push and pull sequences to the
best sequence found. Note that the results from Table 15 and 16 about the performance
of Algorithm BB are repeated here to enable comparison between the Algorithm BB

and Algorithm TBB.
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Table 18. Computing times and percentage improvement of Algorithm TBB over the push and pull sequences for some two-stage

cluster tool configurations (OH = 0).

Tool CPU time # instances Average makespan| % improvement % improvement
configuration| L min:sec solved (sec) over push over pull
BB TBB BB TBB BB TBB BB TBB BB TBB
1) (@) (©) (4) ©) (6) () 8 (©) (10) (11) (12)
Case 1: short move time, long processing times.
5 0:01 0:01 10/10 10/10 303.1 303.1 0 0 0 0
CT1-1 10 0:02 0:01 10/10 10/10 585.6 585.6 0 0 0 0
15 0:28 0:01 10/10 10/10 868.1 868.1 0 0 0 0
5 0:01 0:01 10/10 10/10 280.9 285.3 4.49 2.99 4.49 2.99
CT1-2 10 0:46 0:01 7/10 10/10 536.2 546.6 5.03 3.19 5.03 3.19
15 1:23 0:01 0/10 10/10 789.3 807.1 5.48 3.35 5.48 3.35
5 0:01 0:01 10/10 10/10 298.3 302.4 2.55 121 2.55 1.21
CT2-1 10 0:57 0:01 7/10 10/10 575.9 585.7 2.32 0.66 2.32 0.66
15 1:32 0:01 0/10 10/10 859.4 869.2 1.57 0.45 1.57 0.45
5 0:01 0:01 10/10 10/10 216 216.3 2.57 2.44 6.78 6.65
CT2-2 10 0:51 0:01 4/10 10/10 378.2 377.1 5.80 6.08 7.05 7.32
15 1:31 0:01 0/10 10/10 559.7 543.3 4.93 7.71 8.16 10.85
Case 2: move time and processing times are approximately equal.
5 0:01 0:01 10/10 10/10 372.7 372.7 11.33 11.33 11.33 11.33
CT11 10 0:02 0:01 10/10 10/10 745.2 745.2 12.57 12.57 12.57 12.57
15 1:13 0:01 0/10 10/20 | 1117.7 11317 | 12.97 11.88 12.97 11.88
5 0:01 0:01 10/10 10/10 401.3 401.3 14.25 14.25 14.25 14.25
CT1-2 10 1:16 0:01 0/10 10/10 811 798.3 14.72 16.06 14.72 16.06
15 1:36 0:01 0/10 10/10 1294  1194.8 9.76 16.68 0.76 16.68
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Table 18 continued.

“m @ & | ®» | 6 | 66 | o | 6 | @ | w | w | @
5 0:01 0:01 10/10 10/10 383 383 15.12 15.12 15.12 15.12
CT2-1 10 1:16 0:01 0/10 10/10 775.6 761.2 15.62 17.19 15.62 17.19
15 1:.27 0:01 0/10 10/20 | 11344 11382 | 18.22 17.95 18.22 17.95
5 0:03 0:02 10/10 10/10 382 382 14.46 14.46 9.00 9.00
CT2-2 10 1:20 0:02 0/10 10/10 818.9 753.7 9.87 17.05 3.32 11.02
15 1:39 0:03 0/10 10/10 | 1263.8 1126.6 7.79 17.80 0.00 10.86
Case 3. long move time, short processing times.
5 0:01 0:01 10/10 10/10 510.5 510.5 37.17 37.17 37.17 37.17
CT1-1 10 0:02 0:01 10/10 10/10 1021 1021 39.96 39.96 39.96 39.96
15 0:22 0:01 10/10 10/20 | 15315 15315 | 40.83 40.83 40.83 40.83
5 0:01 0:01 10/10 10/10 478.5 478.5 37.67 37.67 37.67 37.67
CT1-2 10 0:44 0:01 10/10 10/10 957 957 40.47 40.47 40.47 40.47
15 1:34 0:01 0/10 10/20 | 1803.7 1386 26.31 43.38 26.31 43.38
5 0:01 0:01 10/10 10/10 547 547 39.07 39.07 39.07 39.07
CT2-1 10 0:55 0:01 9/10 10/20 | 10989 1094 41.69 41.95 41.69 41.95
15 1:33 0:01 0/10 10/10 | 2083.6 1641 27.44 42.86 27.44 42.86
5 0:02 0:02 10/10 10/10 471.5 471.5 40.66 40.66 32.36 32.36
CT2-2 10 1:15 0:03 0/10 10/10 1210 943 25.15 41.67 19.71 3743
15 1:35 0:04 0/10 10/10 2032 14145 | 16.67 42.00 7.81 35.82
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Table 19. Computing times and percentage improvement of the Algorithm TBB over the push and pull sequences for some three-stage

cluster tool configurations (OH = 0).

Tool L CPU time # instances Average makespan| % improvement % improvement
configuration min:sec solved (se0) over push over pull

BB TBB BB TBB BB TBB BB TBB BB TBB

1) @ 4) ®) (6) () 8 9) (10) (11) (12)

Case 1: short move time, long processing times.

5 0:01 0:01 10/20  10/10 369 369 0 0 0.57 0.57

CT1-1-1 10 1.04 0:01 5/10 10/20 | 6775 677.5 0 0 0.82 0.82
15 1:44 0:01 0/10 10/10 986 986 0 0 0.91 0.91

5 0:17 0:02 10/210 10/10 | 3349 3378 4.29 3.46 4.53 371

CT1-2-2 10 1:34 0:03 0/10 10/20 | 6135 616.8 3.90 3.38 4.31 3.79
15 2:00 0:04 0/10 10/20 | 889.4 8954 4.05 3.40 4.42 3.77

5 0:34 0:03 7/10 10/20 | 349.2  350.3 2.89 2.59 191 1.60

CT2-2-1 10 1:38 0:05 0/10 10/20 | 638.8 634.1 0.90 1.63 0.44 1.17
15 2:05 0:07 0/10 10/20 | 9238 9181 0.62 1.24 0.30 0.92

5 0:49 0:46 6/10 5/10 290.1 294 2.03 0.71 8.80 7.58

CT2-2-2 10 1:42 1.27 0/10 0/10 5496 5249 2.54 6.92 5.01 9.28
15 2:10 1:44 0/10 0/10 817.3 760.3 1.76 8.61 2.64 9.43

Case 2: move time and processing times are approximately equal.

5 0:03 0:01 10/20 10/10 | 521.7  521.7 11.85 11.85 11.85 11.85
CT1-1-1 10 1:37 0:01 0/10 10/10 1083  1032.2 9.43 13.68 9.43 13.68
15 2:10 0:01 0/10 10/10 1687  1541.7 6.27 14.34 6.27 14.34
5 1:13 0:04 0/10 10/20 | 5156  509.2 10.13 11.24 10.72 11.83
CT1-2-2 10 1:43 0:06 0/10 10/20 | 11079 1005.2 4.63 13.47 4.86 13.68
15 2:15 0:08 0/10 10/20 | 16959 1501.2 3.07 14.20 3.28 14.39
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Table 19 continued

W @/l el e le el o | 6 | @ | w [ @ [ J12
5 1:14 0:06 0/10  10/20 | 539.3 525.2 10.21 12.55 10.21 12.55
CT2-2-1 10 1:50 0:09 0/10 10/10 1158 1044.5 4.82 14.15 477 14.10
15 | 219 0:11 0/10 10/20 | 1774 14465 3.20 21.07 3.20 21.07
5 1:12 1:17 0/10 0/10 5344 5379 7.42 6.81 2.82 2.18
CT2-2-2 10 | 151 1:25 0/10 0/10 1110 1077.8 5.06 7.82 0.00 2.90
15 | 210 1:42 0/10 0/10 | 1659.9 1595.8 5.75 9.39 0.00 3.86

Case 3: long move time, short processing times
5 0:01 0:01 | 10/20 10/10 670 670 38.84 38.84 37.48 37.48
CT1-1-1 10 | 1:28 0:01 0/10  10/20 | 1585.6 1340 30.07 40.90 30.07 40.90
15 | 154 0:01 0/10 10/20 | 27576 2010 19.82 41.56 19.26 41.15
5 0:35 0:04 | 10/20 10/10 | 6945 6945 39.73 39.73 37.17 37.17
CT1-2-2 10 | 1:40 0:06 0/10  10/20 | 1984.7 1389 15.92 41.15 15.08 40.57
15 | 2:.06 0:08 0/10 10/20 | 3192.7 20835 | 10.53 41.61 9.33 40.83
5 0:50 0:06 | 10/20 10/10 650 650 37.93 37.93 39.23 39.23
CT2-2-1 10 | 1:40 0:10 0/10  10/20 | 1836.3 1300 15.27 40.01 15.28 40.02
15 | 2:09 0:12 0/10  10/20 | 2961.7 1950 9.90 40.68 10.51 41.08
5 1:09 1:15 0/10 0/10 780 883.3 28.57 19.11 19.44 8.77
CT2-2-2 10 | 144 1:25 0/10 0/10 | 1946.2 19032 | 12.02 13.96 7.32 9.37
15 | 211 1:42 0/10 0/10 | 3049.8 2819.3 8.47 15.39 0.54 8.06




From Table 18 and 19, we can draw some insights as follows.

= Except for CT1-1 and CT1-1-1 when move time is short comparing to processing
times (Case 1), the searches were able to find better sequences. Thisimprovement
was greater when the processing times are approximately the same as or smaller
than the move times.

= If the number of searching nodesis less than 100,000, Algorithm TBB can find
better solutions than Algorithm BB when the lot sizeis alarge number in most
instances. In other words, the computing effort is significantly reduced and
becomes |ess sensitive with respect to the lot size L, when Algorithm TBB is used.
However, Algorithm BB is ableto find better results than the Algorithm TBB in

Case 1.

7.3 Summary

This chapter compares the performance of Algorithm BB and Algorithm TBB on two
criteria, lot makespan and CPU time, to that of the simulation models using the push
and pull dispatching rules. The results suggest that the push and pull dispatching rules
only perform well on asmall set of problems (1, 2, 3, 37, 38 and 39). That is, the push
and pull dispatching rules should be used when the move time is smaller than in-
chamber process times and each stage has one chamber. Algorithm BB performs well
on two-stage problems when lot sizeis smaller than 10. Otherwise, Algorithm TBB is
the best candidate even though it will not guarantee the optimality of the solutions,

because it requires much less computational effort.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

This research aimsto optimize the total 1ot processing time (makespan) in cluster tool
scheduling for semiconductor manufacturing. Previous research focuses on finding an
optimal sequence of wafer handler movesin a cluster tool that has one process chamber
in each stage. None of the previous work addresses the problem of finding an optimal
sequence of wafer handler moves to improve performance of cluster tools whose
number of chambers in each stage can be any integer. Lot makespan is used asthe
performance measure for the analysis of the cluster tools. Theinverse of makespan is
an upper bound on the tool throughput; hence, makespan is an important performance

measure for the tool in the analysis of the entire system of tools

In this research, the wafer handler sequencing problem are formulated in standard
scheduling form. All constraints that a feasible sequence of wafer handler moves must
follow areidentified. Two cluster tool models have been developed in the research: one
model, implementing the forward branch-and-bound algorithm, can find the optimal
solution and the other, implementing the truncated branch-and-bound agorithm, can
find the best A-unit cyclic solution. The models attempt to find the optimal or near
optimal sequence of wafer handler moves for agiven lot size, wafer handler move time,
and chamber processing times. Thisimproves cluster tool performance by reducing the

total time needed to processthelot. This can reduce cycle time, reduce tool utilization,
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and increase tool capacity. However, the research considers only the single-load-lock

and single-wafer-handler tools due to the complexity of the problems.

Three dominance criteria are used to reduce the solution space of the problem and
improve the search performance. Although Algorithm BB requires additional
computational effort, our results show that the tool performance can improve
significantly when the wafer handling moves follow the optimal sequence instead of a
simple push (or pull) dispatching rule. Thisis especially true when the move time and
processing times are approximately equal and when the move time islonger than
processing times. Like other branch-and-bound agorithms, the computational effort is
sensitive to the problem size. Increasing the number of chambers in a stage, the number
of stagesin the tool, or the lot size increases the search space. Because programming
the wafer handler can be done off-line, the extra computational effort should be

acceptable.

The truncated branch-and-bound algorithm significantly eases computational effort that
a complete branch-and-bound al gorithm faces, although it does not guarantee the
optimality of the solution. Moreover, our results show that the tool performance can
still improve significantly when the wafer handling moves follow the cyclic sequence
instead of asimple push (or pull) dispatching rule. When the lot sizeis alarge number,
Algorithm TBB can find better solutions than Algorithm BB in most instances. The
computing effort is significantly improved and becomes less sensitive with respect to

thelot sizeL, if using the Algorithm TBB instead of Algorithm BB.
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These models can serve as stand-al one decision support tools that will help the
managers select the right tool configuration for given ranges of processing time. They
can also be integrated into an integrated simulation model of a semiconductor wafer fab.
The integrated simulation will alow engineers to determine how factory performance

(such as cycle time) depends upon process parameters and tool configurations.

Future work should consider scheduling anticipatory moves, which position the wafer
handler at the next chamber before the chamber finishes the wafer. Such anticipatory
moves will further improve the cluster tool performance. Other research direction
would be a study on the influence of overhead (pumpdown/vent and so on) associated
with stop and start of a process in the wafer handler move time. Thisimmediately leads

to variability in handler move times.
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APPENDIX A

In this Appendix, we will determine the number of feasible sequences of wafer handler
moves for a 1-1-2 cluster tool with and without using the first and second dominance

criteria

To keep track of the moves easily, define the state variable as <ABCDE>. Where A is
the number of unprocessed wafersin LL. B and C are numbers of wafer in the first and
second stage respectively. D and E are numbers of wafer in the first and second
chamber of thelast stage. B, C, C, and D are binary variables with O indicated that the
chamber is empty and 1 indicated that a wafer occupies the chamber. Thus, the state

variable at level zero is <30000> and at the last level is <00000>.

Actually, we do not need to explore all branches. If state variable of anodein a
searching branch is the same as one in the previous branches, we can determine the
number of branches from the node as the previous cases. For example, at level 10,
when node <00011> is repeated to the same state variable as node a, the search is
terminated and number of possible sequencesistwo. If thefirst and second dominance
criteria are not applied, we can find 552 feasi ble sequences using the graphsin Figure
A-1. If applying the first and second dominance criteria, there are 69 feasible sequences
(see Figure A-2).
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<30000> Leve O

l

<21000> Level 1
<20100> Level 2
<11100> <20010> <20001> Leve 3

AN

<11001> <11010> <11010><20000> <11001> <20000> Leve 4

+124 (n) 0 +124 (0) l +124 l
<11000>  <10110> <11000> <11000> Level 5
+28 (1) m +28 (1) +28 (1)
<10011>  <01110> <10100> Leve 6
+36 (j) +28 (k)
<01011> <01100> Level 7
h i
<01010>  <00111> <01001>  <01010> <01001> Level8

f g +6 (f) +6 (Q)

<00110 <01000> <00101>  <00110>  <00101>  <01000> [ evel 9

+4 (d) +2(e) c d +4 (c) e
<00011> <00100> <00011> <00100> <00100> Level 10
/\ b +2(@  *+2(b) +2(b)
<00001> <OOlOlO> <00010>  <00001> Leve 11
<00000> <00000> <00000>  <00000> Level 12

THUS, THERE ARE 552 FEASIBLE

Figure A-1. Complete outtree graph of aCT1-1-2 (L = 3) when thefirst
and second dominance criteria are not active.
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Nodej <10011>

<01011> <10001> <10010>

#20() __—] —

<01001> <10000> <01010>
+6 (Q) ¢ +6 (f)
<01000>
+2 (e)
Node k <10100>
<01100> <10010> <10001>
+12 (i)
<01010> <10000> <01001:
+6 (f) ¢ +6 (Q)
<01000>
+2 (e)
Node <11000>
<10100>
+28 (k)
Noden <11001>
»

<10101>  <11000>

‘/l\f% ()

<10011> <01101> <10100>
+36 (k)‘/\ +28 (k)

<01011>  <01100>
+20 (h) +12 (i)

Figure A-1 (cont’d).
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<30000>

<21000>
<20100>
<11100> <20010>
<11010> <11010> <20000>
I +31 (1) ¢

<10110> <11000> <11000>

— & +7(K)

<01110> <10011> <10100> <10100>

J +7())

<01011> <01100> <01011> <10001> <01100>  <10010>

<00111> <01001> <01010> <01001>  <10000> <01010> <10000>
+3 () g +3 (f) +1(0)

R —

<00101> <00101> <01000> <00110> <01000>  <01000>

c +2(c) d +1(d)

<00011> <00100> <00100> <00011> <00100> <00100>
a b +1 (b) +1 (a) +1 (b) +1(b)

' '

<00010>  <00010>

v v

<00000>  <00000>

Thus, there are 69 feasible sequences.

Figure A-2. Complete outtree graph of aCT1-1-2 (L = 3) when thefirst
and second dominance criteria are active.
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APPENDIX B

In this appendix, we formulate the formulas of cycle length and lot makespan for a
CT1-1 that follows 1-unit cycle. We will assume that initially the tool is empty and the
wafer handler is at load lock.

1) Cycle1l: Ry j.1 — Roj — Rij — Ryj.

Thus, R takes p(i = 0, 1, 2). Figure B-1 presents a Gantt chart of a comgliete

sequence when L = 3.

P1
P2
P1
A
_________ 0 N 2 O 1 O Y —
\—[ﬁx—cN»N_NO')hmm
r ¢ o o© & & &

Figure B-1. Gantt chart of a completé-sequence (L = 3).

For convenience, consider tegyclic cycleal = Ry j— Ryj — Ryj. The complete
sequence consists of L occurrencesbf Thus, the cycle length B 3p + p. + p, and

the makespan MS= LP;.

123



2) Cycle2: Ry, j.1 — R1j — Roj+1 — Rej.  In the cyclic phase, all;Rare 2p. Figure B-2

presents a Gantt chart of a comple®esequence when L = 4.

P,
P2
P1
H H !_ H !_ H !_ H
PR s — _— " ma— . — _—
4 re¢ ¢ o £ o€ & o 4

P,

Figure B-2. Gantt chart of a complet2-sequence (L = 4).

However, for convenience, we will consider theyclic cyclea? = Ro,j+1 — Ry,
i —R1,j+1, which repeats (L-1) times. Let time t = O at the beginning of the sequence.
The filling-up phase consists opRand R 1. The first cycle begins at £ 2p + pu.
Let y be the idle time between,R; and R j, then y = max{p, 2p} - 2p,. Let x be the
idle time between R and R j+1, then x = max{p- 2p - y, 0} = max{p, 2p + Yy} - 2p
-y. Thus, the cycle length,P 6p + X + y = 4p + max{p., 2p + y} = 4p + max{2p,
p1, P2}- The completion phase starts attt + (L - 1) = 2p + p. + (L-1)P.. Note that
R, | takes p Thus, the makespan MS2p+p + (L-)PR+p+p=3ptp+tp+

(L-1)P,.
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APPENDIX C

In this appendix, we derive the formulas for cycle length and lot makespan for a CT1-1-

1 that follows 1-unit cycle ox (x = 1, 3, 4, and 5). We will assume that initially the tool

Is empty and the wafer handler is at load lock.

1) Cycle 1: R3j..-— Ryj — Rij — Ry — Rsj. The filling-up phase isf — R;,1— Ry 1.

Thus, Rj takes p Figure C-1 presents a Gantt chart of a compigtsequence when L

=3.
Py
P3
Pz
P1

H H : : H H

........ Y 5 O 5 O Y A O Y O A )
— ) — - ~N N N N ™ ™ ™ [S2]
¢ & & dd & & df & & o
| Py Py | Py |
|< =|¢ =|

Figure C-1. Gantt chart for a completé-sequence (L =3).

For convenience, consider the cyote= Ry j— R,j— R,j— Rsj. The

complete sequence consists of L occurrenced ofThus, the cycle length B 4p + p

+ [ + i, and the makespan MS LP;.
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2) Cycle3: R3ja— Roj — Ryj+1 — Rujy1 — Ry;.
In the cyclic phase, RRtakes pand others take 2prhere are two feasible filling-up
phases: f1 and f2.

a)fl:R1-R 1-R 1—Ry2— R 2 Figure C-2a presents a Gantt chart of a complete
o03-sequence with the filling-up f1 when L = 4.

Ps

P3 |
Pz !

A

‘ P3 - Pr P3

|
i
|
|
|
i : ;

.......... 0 o e O
'R2.3 Ro.4 Riy4 R33 Roa R34

Figure C-2a. Gantt chart of a complet&sequence with filling-up f1 (L = 4).

For convenience, we can consider fheyjclic cyclea3 = R, i— Roj+1— Ryj+1—
Rsj, which repeats (L-2) times. Note that the last four moves of the filling-up phase

forms a transition cycle whose length equals-B. Thus, the first cycle starts at=t
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20+ prtp2t Ps—p=p+ pt+ pit Ps. We now compute the cycle length. Let t be the

starting time of R; (j = 2,..., L-1), then

Move | start complete

Roj t t+2p

Roj+1 | t+2p t+4p

Rija | tH4ptp t+op+py

Rs; max{ t+5p+p, t+2p+ps} t+4p+max{ 3p+p1, ps}

Rojra | max{ t+4p+max{ 3p+py, pa}, t+6p +max{ 3p+py, Pa, P+P1+P2}
t+5p+prtp2}
= t+4p +max{3p+py, Ps, Prtprtp2}

Thus, cycle length £= 4p +max{3p+p1, p3, p+p1+tp2}. The completion phase starts at
timetb=1t + (L-2)Ps=p+ p+ p2+ (L-1)P;s. Two moves in the completion phase are
Rz and R (note that B takes p. Thus, makespan MS= [p+pi+p+(L-1)Ps] +

[2pr+ps+pr] = 4p+pr+ptpst+(L-1)Ps.

b)f2: Ry1— R 1— Ry 2— R 1— Ry 2. Figure C-2b presents Gantt chart of a complete

o03-sequence with the filling-up f2 when L = 4.

Figure C-2b. Gantt chart of a completg-sequence with filling-up f2 (L = 4).
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For convenience, we can consider thej™ cyclic cycle03=R, i— Roj+1— Ryj+1—
Rsj, which repeats (L-2) times. We need to determine the starting;tivhéhe first

cyclic cycle. Below are the starting and completion times of the moves in the filling-up

phase.

Move | Start Complete

Ro,1 0 Pr

Ri1 | ptps 2ptps

Ro, 2 2p+p 4p+py

Ry1 | 2ptputmax{p,, 2p} Aprtprtmax{pe, 2p}

Ry, 2 max{4p+2py, 4ptprtmax(e, 2p)} | 6ptprtmax{py Pz, 20}
= 4ptprtmax{py, P2, 2}

Rs1 | max{4p+prtpstmax(p, 2p), 6p+prrmax{pstmax(p, 2p), 2p
6p+prrmax(p, P2, 2m)} +max(p, P2, 2p)}

= 4p+pitmax{pstmax(p, 2p),
2p+max(p, P2, 2p)}

Hence, 1 = max{6p + p.+ p2+ max(q, p2 2p), 6p + pr+ max[p+ max(p, 2p), 2p
+ max(n, P2 2p)]}

= 6p+ pit max{p, 2p} + max{p1, Pz, Pz, 2P}

Note that the steady-state and completion phases are the same as those in Section 3a
above. Hence, the cycle length4p + max{3p+ p1, ps, b+ p1+ p2}- The
completion phase starts at time=tt; + (L-2)P; = 6p + p.+ max{p,, 2p}+ max{p1, pz
p3, 2p} + (L-2)P3. Two moves in the completion phase agge Bnd R, (note that B .
takes p. Thus, makespan
MSz, = [6p + P+ max{pz, 2p}+ max{pa, P2 P3, 2p}+ (L-2)P3] + [2p: + p3 + p]

= Oprpr+ P+ max{pe, 2p}+ max{p, Pz, B3, 2p}+ (L-2)Ps.
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3) Cycle4: R3,j-1_ Rl,j - Rz,j - F"O,j+1 - R?J

In the cyclic cycle, R takes pand others take 2pThere are two feasible filling-up

phases: f1 and f2.

a)fl:R1-R. 1—-R 1— Ry 2 Figure C-3a presents a Gantt chart of a compiéte

sequence with the filling-up f1 when L = 4.

ps‘ j
P2 - - -
P1
— [ —
P 5 5 o o s
— \—|~ HN. H. o~ Nf'{ th M < a{ < < <
¥ ¢ e ¢ 2 B € o &

Figure C-3a. Gantt chart of a completesequence with filling-up f1 (L = 4).

For convenience, we consider tiecjclic cycleo4 = R,i—Rj—Ryjui1— R,
which repeats (L-2) times. Note that the last four moves of the filling-up phase forms a

transition cycle whose length equalsPa. Thus, the first cycle starts attp + p; +

Ps—p = pit P.. We now compute the cycle length. Let t be the starting time, p(jR

2,..., L-1), then
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Move start complete

Ru; t t+2p,

Rz t+2pr+p; t+3pi+p;

Roj+1 t+3p+p2 t+5p+p2

R t+3pr+pz+max{ 2, ps} t+5pr+pztmax{ 2pr, ps}

Rujet max{ t+5pr+pz+max{ 2pr, ps}, t+7p+pztmax{ 2pr, ps, pa}
t+5pr+patpa}
= t+5pr+pztmax{ 2p;, Ps, Pu}

Thus, cycle length P, = 5p; + p2 + max{ 2p,, ps, p1}. The completion phase starts
atimet, =t + (L - 2P4=p1+ (L - 1)Ps. The completion phaseincludesRy,, Rz, and
Rs3.. Notethat both R, and Rs, take p,. Hence, makespan MSy; = [p1+ (L - 1)P4] +

[2p+ P2+ Pr+ P+ pr] = 4P+ po+ P2+ pa+ (L - 1)Pa.

b) f2: Ro,1 — Ri,1 — Ry, 2 — Ry 1. Figure C-3b presents a Gantt chart of a compléte

sequence with the filling-up f2 when L = 4.

P3
P2
Pi
| | | | — |
..... 5 15 O 5 O o o o o o o
O B B o S S S S S AR - SO A
f df & I 2 PE Ffg g © O

Figure C-3b. Gantt chart of a complei#-sequence with filling-up f2 (L = 4).
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For convenience, we consider thej™ cyclic cycleaso4 =R, i— Ry — Roj+1 — Rsj,
which repeats (L-2) times. We need to determine the startingtimhéhie first cyclic

cycle. Below are the starting and completion times of the moves in the filling-up phase.

Move Start Complete

Ro, 1 0 Pr

Ri,1 Prtps 2ptps

Ro, 2 2p+p 4p+py

R21 2ptprtmax{p,, 2p} Aprtprtmax{pe, 2p}

Rs 1 4prtprtpstmax{pz, 2p} Sprtprtpstmax{pz, 2p}

Hence t = max{4p + 2p, Sp+ pu+ ps+ max(p, 2p)} = 4pr+ pr+ max{py,
prtpstmax(p, 2p)}. Note that the steady-state and completion phases are the same as
those in Section 4a above. Hence, the cycle lengthgp + p, + max{2p, ps, p.}-

The completion phase starts at time t; + (L - 2)P, = 4p + p1 + max{py, p+ps+

max(p, 2m)}+ (L - 2)P4. The completion phase includes RR,,, and R,. Note that
both R, and R take p. Hence, makespan MS= [4p + pr + max{p., p+ps+ max(p,
2p)1+ (L - 2)Pg] + [2pr+ P2+ pr+ p3+ p] = 8p+ pu+ P2+ Ps+ max{py, p+ps + max(p,

2p)}+ (L - 2)P,.
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4) Cycle5: R3,j-1' Rlyj — R),j+]_ — Rzyj — jo
In the cyclic cycle, B takes pand others take 2pThere are two feasible filling-up

phases: f1 and f2.

a)fl:R1—-R 1—- Ry 2— R, 1. Figure C-4a presents a Gantt chart of a compfete

sequence with the filling-up flwhen L= 4.

Ps
———————>
P3
M2 — — — —
pi

! : !
______ I- .8 - /| B - B 808 8 8.
— — — - o~ ™ o~ N ™ ™ < < <
4 n?n?o?o?n?n?d:“n?n?rfn‘:“o?o?n‘:“f

Ps- pr Ps ~ Ps ‘

Figure C-4a. Gantt chart of a completesequence with filling-up f1 (L = 4).

For convenience, we consider tiecjclic cycleo5 = Rji—Ryjn—Rj— R,
which repeats (L-2) times. Note that the last four moves of the filling-up phase forms a
transition cycle whose length equalsPa. Thus, the first cycle starts attp + p; +

Ps—p = pit Bs. We now compute the cycle length. Let t be the starting time, p(jR

2,...,L-1). Then,
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Move | start complete

R, t t+2p,

Roj+1 t+2p, t+4p,

Ry, t+2pr+max{ pz, 2pr} t+4pe+max{ pz, 2pr}

Rsj t+4p+max{ pz, 2p} +ps t+5pr+max{ pz, 2p:} +ps

Ryjer | max{ t+5p+max{pz, 20} +ps, t+4p; +pa} | t+6p+max{ pr+p2+pPs, 3pr+pPs, Po}
= t+dp+max{ prtp2+ps, 3prtpPs, P}

Thus, cycle length Ps = 4p, + max{p; + p2 + ps, 3p: + ps3, p1}. The completion
phase starts at timet, =t; + (L - 2)Ps = p1 + (L - 1)Ps. The completion phase includes
RiL, Ro, and Rz, . Notethat both Ry and R3, take p.. Hence, makespan MSs; = [p1 +

(L-DPs] +[2p+ p2+ pr+ps+ P =4p + pr+ p2+ ps+ (L - 1)Ps.

b)f2: Rp1 — R 1— R, 1 — Ry 2. Figure C-4b presents a Gantt chart of a compigte

sequence with the filling-up f2 when L= 4.

s _ _ _
P2
P1
! ! ' '
3 5 S Y 1 o s Y
— — — N o NCV)Nervm—mq- < <
4 ¥ e € @ e @ £ & o
‘ Ps Ps

Figure C-4b. Gantt chart of a completg-sequence with filling-up f2 (L = 4).
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For convenience, consider thej" cyclic cycleas o5 = Ry, i—Rjni—Rj— R,
which repeats (L-2) times. We need to determine the startingitimhéhie first cyclic

cycle. Below are the starting and completion times of the moves in the filling-up phase.

Move | Start Complete

Ro,1 0 Pr

Rii1 | ptpe 2ptpy

Ro1 | 2ptpotp2 3ptprtp2

Ro2 | 3ptputp: Sprtpitp2

Rs 1 max{3p-+p.+P2+pPs, SP+patpo} Spr+potpt max{ps, 2p}

Hence, { = max{5p+ 2p + pz, Sp + pL+ P2+ Max(, 2p)} = 5pr+ pr+ P2+
max{p1, ps, 2p}. Note that the steady-state and completion phases are the same as those
in Section 5a above. Hence, the cycle length Bp + max{p + p>+ ps, 3p+ p3, pu}-
The completion phase starts at time t;+ (L - 2)R = 5p + p1 + p2 + max{pu, p3, 2p}+
(L - 2)Ps. The completion phase includes RR,., and R.. Note that both R and
R3, take p. Hence, makespan MS= [5p + pr+ P2+ max{py, ps, 2p}+ (L - 2)Ps] +

2P+ P2+ pr+ 3+ Pl =9+ pr+ 2@+ P3+ max{py, Ps, 2p}+ (L - 2)Ps.
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APPENDIX D

In this appendix, we derive the formulas for cycle length and lot makespan for a CT1-1-
1 that follows 1-unit cycle 02 = Rgj.1— Ryj+1 — Rej — Rij+1 — Rsj. Assume that initially
the tool is empty and the wafer handler is at load lock. In the cyclic phgdekBs p

and all other moves require 2prhere are two feasible filling-up phases: f1 and 2.

a)fl:R1-R 1-R2—R 1— R 2 Figure D-1 presents a Gantt chart of a complete

o02-sequence with the filling-up phase f1 when L = 5.

P3

<
I

Figure D-1. Gantt chart of a complet2-sequence with the filling-up phase f1 (L = 5).

For convenience, consider tiedyclec2 = Ry ju1 — Ry j— Rijw— Rej. After the
filling-up phase, the tool undergoes (L-2) steady state cycles. The completion phase

consists of R. and R.. Note that B_ takes p Let a be the idle time betweenR
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and Ry, j+1. Let by betheidle time between Rg j+1and Ry ;. Let ¢; betheidletime

between R1,j+l and ngj. Then,

* j=1(filling-up phase)
b1 = max(pz - 2pr, 0) = max(p2, 2p) - 2pr
a1 = max(p1 - 2pr - by, 0) = max{ p1 - max(pz, 2pr), 0}
€1 = max(ps - 2p; - &, 0)
e 1<<(L-2)
by = max(pz - 3pr — G.1, 0)
g =max(n-2p —1h, 0)
¢ =max(p - 2p — g, 0)
Thus, the length of th€'jcycle is By =7p + g+ + G (j = 2,...,L.-1). The average

cycle time is

1 L-1
P,=——S P,.
21 L_ZIZ 21j

The first cycle start at &£ 10p + p. + & + by + ¢. The last move of the steady-state
phase R .. completes abt=t, + (L-2)Pn=10p+p+a + b + ¢ + (L-2) B1. The
first move of the completion phase can start at timterhax(p - 2p — G.-1, 0), hence,
the makespan is

MSn=10p+m+a+b+ca+(L-2) Bi+max(p-2p—-G-1,0) +3p+

=13 p+tmta+tbh+ca+(L-2)RBi+max(p-2p-aq.1,0)
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b)f2: Rp1— R, 1— R 1— Ry 2— Ry 2. Figure D-2 presents a Gantt chart of a complete

o2-sequence with the filling-up phase f2 when L = 5.

P3
P2
P1
— L L ! !
r & ofdf dffcd et o 4 4

‘ filling-up P21 P222

Figure D-2. Gantt chart of a complet2-sequence with the filling-up phase 2 (L = 5).

Consider the"] cyclic cycleo2 = Rs,j — Roj+2 — Ry j+1 — Ry j+2. The first cycle starts
attime { = 3p+ p.+ p2+ max{ps, 3p+ pi}. Let d be the idle time between,R:and
Ry j+2. Let g be the idle time betweenyR» and R, j+1. Let g be the idle time between
Ry j+2and R j+1. Then,

. j=1

&1 = max{p — 3p — max(p — p. — 3p, 0), 0} = max{p. + p — max(p, p. + 3p), 0}

di = max{p — 2p — &, 0}

01 = max{ps — 2p - d;, 0}

e 1<j<s(L-2)
g = max{p — 3p — g-1, 0}
d = max{p. - 2p - §, 0}

g = max{p: - 2p - d, 0}
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Thus, the length of the|™ cycleis Py =7p+di+g+9g (=1,..., L-2). The average

cycle time is

1 L-2
Py = =) ]Z Py

The completion phase starts attt; + (L—2)R,=3p+ pr+ po+ max{ps, 3p+ p} +

(L - 2)P». We can compute the starting times of the moves in completion phase as

follows.
Move Starting time Completion time
Rsa |2 t2+2p

Ro L to + 2p + max{p—2p — g -2, 0} to +4p + max{p: — 2p — g -2, O}

Rs,L tordp+pstmax{p — 2p — 9.2, 0} | t2+5p+ ps +max{p, — 2p — g 2, 0}

Hence, the makespan is
MSz, = 3p+prtpztmax{ps, 3p+py} + (L — 2)P2+ 5p + ps +max{p; — 2p — 9.2, 0}

= 8p+ put P2+ s+ max{ps, 3p+ pi} +max{p2—2p — g2, 0} + (L — 2)P».
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APPENDIX E

In this appendix, we derive the formulas for cycle length and lot makespan for a CT1-1-
1 that follows 1-unit cycle 06 = R3j.1— Ryj — Ryj+1 — Roj+2 — Rsj. We will assume that
initially the tool is empty and the wafer handler is at load lock. In the cyclic phase, all

moves take 2p There are two feasible filling-up phases: f1 and f2.

a)fl:R1-R1—-R2—R1—R,2— Ry 3 Figure E-1 presents a Gantt chart of a

completes6-sequence with the filling-up f1 when L = 5.

P3

92

Pi

Ro1 ..
Ro.1 [l
Rs1 [
R [
Rs,2 .
R2z [
R14.
Ro, 5
Rs 3 [
=
[
I

Ri11
Ro, 2
Ry 2
Ro, 3 |

Figure E-1. Gantt chart of a completé-sequence with filling-up f1 (L = 5).

For convenience, we consider tHecjclic cycle a6 = R j—Ryjn—Roj+2—
Rs j, which repeats (L-3) times. Below are the starting and completion times of the

moves in the filling-up phase.
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Move | start complete

Ro1 0 Pr

Ri1 prtp1 2petpr

Ro2 2p+ps Ap+ps

Ro1 | 2prtprtmax{2p;, pa} Apr+pytmax{ 2pr, p}

Ri2 Apr+py+max{ 2pr, Py, P2} 6pr+prtmax{ 2pr, pa, P2}

Ros 6pr+prtmax{ 2pr, pa, P2} 8pr+prtmax{ 2pr, pa, P2}

Rs1 | 4prtprtmax{4p+max(2p;, p1, P2), 6pr+pa+max{ 4p-+max(2pr, p1, P2),

max(2pr, P2)+ps}

max(2pr, P2)+ps}

Hence, the first cycle starts at t; = max{ 6p; + p1 + max[4p; + max(2p:, p1, P2),

max(2pr, P2) + Pal, P2+ 6pr + p1+ Max{2pr, 1, P2}} = 6P + Po+ Max(2py, p1, P2) +

max{ 4pr, P2, Ps- Mmax[0, p1 -max(2pr, p2)]}. Let w, be theidle time between R, > and

Ry, 3, then wy = max{p1 + 8p; + p1+ Max(2pr, p1, P2) - 8pr - P1- max(2py, p1, P2) —

max{4p, pz, ps- max[0, @ -max(2p, P)1}, 0} = max{p1 - max{4p, Pz, ps- max[o, p -

max(2p, p)l}, 0}

We now compute the cycle length. Lgthe the idle time between,Rand R,

j+1. Lett be the starting time obR(j = 2, ..., L-3), then the starting and completion

times of the moves in the cyclic cycle are:

Move start complete

Roj t t+2p

Ruij+1 t+2p+w; t+4p+w;

Roj+2 t+4p+w; t+6p+w,

R3;j t+2p+ max{ ps, 4p+w;} t+4p+ max{ ps, 4p+w;}
Roja | tH4ptwitmax{pz, ps-wj, 4} t+6p+ wi+max{pz, pz-w;, 4p}
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Thus, cycle length of thej™ cycleis Ps1j = 4pr+ wj +max{ p2, p3-w;, 4pi}, and the

idle time between Ry j+1 and Ry, j+2 iSWj+1 = max{ pi-max(p., ps — W, 4p), 0}. The

average cycle time is

1 L-2
P,=——SP,,.
61 L_SJ; 61j

The completion phase can start at time t, + (L —3)R;;. The completion phase

consists of R.-1- Ry - Rs1-1 - Ry - Rg.. Note that B, takes p We now compute

starting and completion times of the moves in the completion phase as follows.

Move Start Complete

RoL-1 to t+2p

R to+2p+ Wi to+4p+wi 2

R3L-1 to+2p+tmax{2p+ wi.2, ps} tot4p+max{2p+ w2, ps}

RaL tot4p+ wi. tmax{2p, p2, Ps- to+6p+ wy +max{2p, Pz, P3-WL-2}
Wi -2}

Rs. to+6p+pst W otmax{2p, p2, P3- | tot7pt+pstwiotmax{2p, P2, Pz- W2}
Wi -2}

Thus, makespan

MSe1 = 6p + p1+ max(2p, p, B2) + max{4p, pz, p3- max[0, p -max(2p, p)1}
+ (L -3)R1+ 7p + ps+ w2+ max{2p, p2, P3- Wi-2}
= 13p+ pr+ p3+ W2+ max(2p, pu, p2) + max{4p, Pz, p3- max[o, p —

max(2p, p)]} + max{2pr, pz, Ps- Wi} + (L —3)Per .
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b)f2: Ro,1— R 1—R,1—Ry2— Ry, 2— Ry, 3. Figure E-2 presents a Gantt chart of a

completes6-sequence with the filling-up f2 when L = 5.

Ps :

P2 |

|

P1 i

z : ! ] e e =
H [ ] 11 l-ll-Ii ____________
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Figure E-2. Gantt chart of a completé-sequence with filling-up f2 (L = 5).

For convenience, we consider tHecjclic cycle a6 = R j—Ryjn—Roj+2—
Rs j, which repeats (L-3) times. Below are the starting and completion times of the

moves in the filling-up phase.

Move start complete

Ro1 0 o

Ri1 Prtp1 2p+py

Roa 2p+pitp; 3p+pitpz

Ro2 3p+ptpe Sprtp1tpe

Ri2 Spt2pitpe 6p+2ptp:

Ros 6p+2ptpe 8p+2pitp2

Rs1 max{3p-+py+P2tpPs, 8R+2prtP} | SPrtprtpztmax{ps, Sptpa}
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Hence, the first cycle starts at t; = max{ 6p; + 2p1 + 2Pz, 5p; + p1+ P2+ Max(Ps, 5p; + po)}
=5p;+ pr+ p2+ max{pr+ p1+ P2, Pz, 5pr + P} - And theidle time of robot between R;, »
and Ry 3is
Vo = max{8p; + 3py+ P2 — t — 2p, O}
= max{8p+ 3pL+ P2 — 5p— p— Pe— max{p + pr+ Pz, P3, SR+ pu} — 2y, O}
= max{p+ 2p— max(p+ P+ Pz, P3, SR+ pa), O}
= max{p — max[p, 4p, ps — . — p], O}
The procedure to determine the cycle length is the same as in Section 6a above.
In fact, substituting ywoy v, yields the cycle lengthel = 4p + v; + max{p, ps-vj, 4p}.

The average cycle time is

1 L-2
P, :E; P62j'

The completion phase starts at time t; + (L - 3)R:. Also, the idle time
between Rj+; and R, j+2 in the (i+1)" cycle is V:1= max{pr-max(p, pz — Vv, 4p), 0}.
The completion phase consists 6f R- Ry - Rs1.1 - Ry - Rs. Note that B, takes p
We can compute the starting and completion times of the moves in the completion
phase as the same procedure in Section 6a. The lot makespan is
MSe; = & + 7p+pstviotmax{2p, P, Ps- Vi-2}
= 5p+ put P2+ max{p+ pr+ Pz, Pa, SR+ pu}t
+ (L-3)Pn+ 7p+ p3+ W2+ max{2p, p2, Ps- VL-2}
= 12p+ pr+ p2+pstviot max{p+ pr+ Pz, Ps, S+ putt

+ max{2p, P2, Ps- Vi-2} + L - 3)Psp.
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APPENDIX F
F.1 The Basic Objects: Job and Machine

e TheJob

public class Job {
private String jobName;
private int joblD;
private double jobDueDate;
private double jobPriority;
private double jobReleaseDate;
private double jobProcessTime;
private Vector jobOperating;

public Job() { jobOperating = new Vector(); }
public void setJobName(String name) { jobName = name; }
public String getJobName() { return jobName; }
public void setJobl D(Integer index){ joblD = index.intValue(); }
publicint getJoblD() { returnjoblD; }
public void setJobDueDate(Double duedate) {

jobDueDate = duedate.doubleVa ue();

public double getJobDueDate() { return jobDueDate; }

public void setJobPriority(Double priority) {
jobPriority = priority.doubleVaue();

}

public double getJobPriority() { return jobPriority; }

public void setJobReleaseDate(Double releaseDate) {
jobReleaseDate = releaseDate.doubleValue();

}

public double getJobReleaseDate(){ return jobReleaseDate; }

public void setJobProcessTime(Double processTime) {

jobProcessTime = processTime.doubleVaue();

public double getJobProcessTime() { return jobProcessTime; }
public void setJobOperating(Machine aM achine) {

jobOperating.addElement(aM achine);
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* The Machine

public class Machine implements Cloneable
{
private int machinelD;
private double machineProcessTime;
private double startTime;
private double completionTime;
private Vector machineTask;

public Machine() {
machineTask = new Vector(); }

public void setMachinelD(Integer id) {
machinelD = id.intValue(); }

public int getMachinelD () {
return machinelD; }

public void setMachineProcessTime(Double time) {
machineProcessTime = time.doubleValue(); }

public double getMachineProcessTime () {
return machineProcessTime; }

public void setStartTime(Double time) {
startTime = time.doubleValue(); }

public double getStartTime() {
return startTime; }

public void setCompletionTime(Double time) {
completionTime = time.doubleValue(); }

public double getCompletionTime() {
return completionTime; }

public void setMachineTask(Job aJob) {
machineTask.addElement(aJob); }

public Vector getMachineTask() {
return machineTask; }

}

The purpose of the “set” methods is to store information into the Job and Machine,

while the purpose of the “get” methods is to extract information from the Job and
Machine. The Job also contains a vector of Machines, the jobOperating. And the
Machine also contains a vector of Jobs, the machineTask. By this structure, we are able

to build a changeably sized array of any dimension.
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F.2 Java codesfor three-stage cluster tool models.

Example 1. A portion of the Java codes for athree-stage cluster tool model using

Algorithm BB.

public Vector search(char[] feasible_moves, int num_wafer, int wafer, int c_wafer,
int act, double robot_durat, double S1_durat, double S2_durat,double

S3 durat,
Job upper_bound , Job robot_pos, Machine global_time, Vector Sls,
Vector S2s, Vector S3s, Vector list, Vector best_list)

Schedule2 T2 = new Schedule2();
for (inti = 0; i < feasible_moves.length; i++) {
NEXT_I:
if (feasible_moved[i] =="y’) {

I/l make atemporary list

Vector t_list = new Vector();

for (intj=0;] <list.size(); j++)

t list.addElement((Job)list.elementAt(j));

/I make temporary tool environment

Jobt_C wafer = new Job(); t_C_wafer.setJoblD(new Integer(c_wafer));
Job t_Wafer = new Job(); t_Wafer.setJoblD(new Integer(wafer));
Job t_Act = new Job(); t_Act.setJoblD(new Integer(act));

Job t_robot_pos = new Job();
t _robot_pos.setJobName(robot_pos.getJobName());

Machine t_global_time = new Maching();
t_global_time.setStartTime(new Double(global _time.getStartTime()));

Vector t_S1s= create new_handler(Sls);
Vector t_S2s = create_new_handler(S2s);
Vector t_S3s= create_new_handler(S3s);

make the move(i, num_wafer, t Wafer,t C wafer, t_Act, robot_durat,
S1 durat, S2_durat, S3_durat,t_robot_pos,
t global time, t Sls, t S2s,t S3s,t list);

/I return values

intt wafer =t_Wafer.getJoblD();

intt_c wafer =t C_wafer.getJoblD();

int t_act =t_Act.getJoblD();
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Example 1 continued.

/ldiscard the trial sequenceif its partial makespan is greater than
upper_bound

if(T2.getMakespan(t_list) >= upper_bound.getJobDueDate())
break NEXT _I;
if (t_c wafer ==num_wafer) { // last wafer finished
double pM S = T2.getMakespan(t_list);
// update upper_bound
upper_bound.setJobDueDate(new Double(pMS));
/I update best_list
best_list.removeAllElements();
for (intu=0; u<t_list.size(); ut+)
best_list.addElement( (Job)t_list.elementAt(u));
break NEXT _I;
}
else { // not complete, search again
char[] feasible_moves b =
get_feasible_moves(num_wafer-t_wafer+1,t Sls t S2s,t S3s,
t robot_pos,t_globa time, robot_durat,
S1 durat, S2_durat, S3_durat);

t list=
search(feasible_moves b, num_wafer, t_wafer,
t c wafer, t act, robot_durat, S1 durat, S2_durat,
S3_durat, upper_bound, t robot_pos, t_global time,
t Sls, t S2s,t S3s,t_list, best_list);
}
}
}
return best_list;

}
}
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Example 2. A main portion of the Java code for athree-stage cluster tool model using

Algorithm TBB.

public Vector smart_search(int k,int K,Job limiter,char[] feasible_moves,
int num_wafer, int wafer, int c_wafer, int act,
double robot_durat, double S1_durat, double S2_durat,
double S3_durat, Job upper_bound ,Job robot_pos,
Machine global_time, Vector Sls, Vector S2s,
Vector S3s, Vector list, Vector best_list)
{
Schedule2 T2 = new Schedule2();
Schedule7 T7 = new Schedule7();
Schedule9a T9a = new Schedule9a();
for (inti = 0; i <feasible_moves.length; i++) {
NEXT_I:
if (feasible_moveg[i] =="y’) {
Vector t_list = new Vector();
for (intj=0;j <list.size(); j++)

/Il make atemporary list
{ t_list.addElement((Job)list.elementAt(j)); }
// make temporary tool environment

Jobt C wafer = new Job(); t_C_wafer.setJoblD(new Integer(c_wafer));
Job t_Wafer = new Job(); t_Wafer.setJoblD(new Integer(wafer));

Job t_Act = new Job(); t_Act.setJoblD(new Integer(act));

Job t_robot_pos = new Job();
t_robot_pos.setJobName(robot_pos.getJobName());

Machinet_global_time = new Machine();
t_global_time.setStartTime(new Double(global _time.getStartTime()));

Vector t_Sls= T9a.create_new_handler(Sls);
Vector t_S2s = T9a.create_new_handler(S2s);
Vector t_S3s= T9a.create_new_handler(S39);

T9a.make _the move(i, num wafer,t Wafer,t C wafer, t_Act,
robot_durat, S1 durat, S2_durat, S3_durat,t robot pos,
t global_time, t Sls, t S2s,t S3s, t list);

I/ return values

intt wafer =t_Wafer.getJoblD();
intt_c wafer =t _C_wafer.getJoblD();
intt act =t Act.getJoblD();
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Example 2 continued

/I discard the trial sequence if its partial makespan is greater than or equal to
/lupper_bound.

double pM S = T2.getM akespan(t_list);
if( pM S >= upper_bound.getJobDueDate())
break NEXT _I;

if (t_c wafer == num_wafer) { // sequence reachesits end
/l update upper_bound
upper_bound.setJobDueDate(new Double(pMS));
/I update best_list
best_list.removeAllElements();
for (intu=0; u<t_list.size(); ut+)
best_list.addElement( (Job)t_list.elementAt(u));
break NEXT _I;
}
else { // sequence not reach its end.
if(t_c_wafer > k){
Vector moves = get_departures of _moves(t_list);
int[] pattern =
is_pattern_found(Sls.size(), S2s.size(), S3s.size(),moves) ;
if (pattern[0] ==1){
//pattern found, stop here, get the pattern, run the program to
/I assign fixed sequence to tool.
Vector pattern_list =
get_fixed sequence(pattern[1], pattern[2], moves);
Vector aList =
T7.9et_fixed sequence for_3S tool(pattern_list, num_wafer,
Sls.size(), S2s.size(), S3s.size(),
robot_durat, S1_durat, S2_durat,
S3_durat);
pMS = T2.getM akespan(alL.ist);
if (pMS < upper_bound.getJobDueDate() ) {
/Il update upper_bound
upper_bound.setJobDueDate(new Double(pMS));
I/ update best list
best_list.removeAllElements();
for (int p=0; p<aList.size(); p++)
best_list.addElement( (Job)aList.elementAt(p) );

}
break NEXT_I;
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Example 2 continued

}

}

else {// sequence not long enough, search again
char[] feasible_ moves b =
T9aget_feasible moves(num_wafer-t wafer+1,t Slst S2st S3s,
t _robot_pos,t_global_time,robot_durat,
S1 durat,S2_durat,S3_durat);

t list=
smart_search(k, feasible_moves b, num_wafer, t wafer,t c wafer,
t_act, robot_durat, S1_durat, S2_durat, S3_durat,
upper_bound , t robot_pos, t_global_time, t_Sls,
t S2s,t S3s, t_list, best_list);
}
}
}

return best_list;
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Example 3. A main portion of the Java code for a three-stage cluster tool model using

the push dispatching rule.

public Vector get_sequence by push rule for_3S tool(int num_wafer,
int num_S1, int num_S2, int num_S3,
double robot_durat, double S1_durat,
double S2_durat, double S3_durat)
{
/I set up tool configuration
Machine global_time = new Machine();
global_time.setStartTime(new Double(0));
Job robot_pos = new Job();
robot_pos.setJobName("LL");
Vector S1s = set_up_new_chambers(num_S1);
Vector S2s = set_up_new_chambers(num_S2);
Vector S3s = set_up_new_chambers(num_S3);
Vector list = new Vector();
int c_wafer = 0; // number of completed wafer
int act = 1, wafer = 1; // wafer isthe number of wafer started
while(c_wafer < num_wafer) {
char Sls status;
if (wafer <= num_wafer)
Sls status=is a chamber_free or_all_busy(global_time, S1s);
else{ Sls status="b’;}
char S2s status=is a chamber_free or_all busy(global time, S2s);
char S3s _status=is a chamber_free or_all_busy(global_time, S3s);
if(Sls_status =="'f’ & & wafer <= num_wafer)
{ /I onefree cham. in S1 and loadlock still has wafer(s)
I/ priority 1
load_Si(wafer, act, robot_durat, S1_durat, robot_pos,
global_time, Sls, list);
wafer++; act = act + 2;

}

elseif(is_there_a done_chamber(globa_time, S1s) ==y’ & &
S2s status==f")
{ /I one done cham. in S1 others busy and one free cham. in S2
/I --> must load wafer from S1 to S2, move name is R2
Il priority 2
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Example 3 continued.

load stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,
global_time, Sls, S2s, list);

act = act + 2,
}
elseif(is_there_a done_chamber(globa_time, S2s) ==y’ & &
S3s_status==f")

{ I/ one done cham. in S2 others busy and one free cham. in S3
Il --> must load wafer from S2 to S3, move name is R3
/[ priority 3
load stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,
global_time, S2s, S3s, list);
act = act + 2;

}

elseif(is_there_a done _chamber(global_time, S3s) =="y’)
{ I/S3isthelast stage --> must unload this chamber from S3, move R4
/[ priority 4
unload_stage("S3", "R0O", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; c_wafer++;

}

elseif(S2s_status=="b’' & & S3s status == f’)
{ 1/ S2 busy and one S3 free other S3 are busy
/[ priority 5
if(push_cham_from 2 stages(S2s,S3s)=="2) {
// one cham in S3s done first
unload_stage("S3", "R0O", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; c_wafer++;
}
else{// one S2 cham. done first (thereis afree S3)-->load S3
load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,
global_time, S2s, S3s, list);
act = act + 2,
}
}

elseif(Sls status=="b’' & & S2s status ==’ && S3s _status == ")
{ I/ al S1 busy, one S2 free other S2 busy, S3 free
/[ priority 6
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Example 3 continued.

char which = push_cham_from_3_stages(S1s,S2s,S3s);
if(which=="1") {
/[ acham in Slsdone first and always has afree S2s' cham
Il -->load from Slsto S2s
load stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,
global_time, Sls, S2s, list);
act = act + 2,
}
elseif(which =="2)) {
I/l acham in S2s done first and there is always a free cham in S3s
Il -->load from S2s to S3s
load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,
global_time, S2s, S3s, list);
act = act + 2,
}
else{ // acham in S3s donefirst
unload_stage("S3", "R0O", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; c_wafer++;
}
}
elseif(Sls status=="b' & & S2s status=="'f' && S3s status=="0)
{ I/ al S1 busy, one S2 free other S2 busy, al S3 busy
Il priority 7
if(push_cham_from 2 stages(S1s,S3s)=="1") {
// one cham in S1s donefirst --> load from S1sto S2s
load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,
global_time, Sls, S2s, list);
act = act + 2,
}
else{ // one S3 cham. done first --> unload S3s
unload_stage("S3", "R0O", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; ¢ wafer++;

}

else{ // otherwise case
unload_stage("S3", "R0O", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; ¢ wafer++;
}
}
return list;
}
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Example 4. A main portion of the Java code for a three-stage cluster tool model using

the pull dispatching rule.

public Vector get_sequence by pull_rule for_3S tool(int num_wafer, int num_S1,
int num_S2,
int num_S3, double robot_durat, double S1_durat,
double S2_durat, double S3_durat)

/I set up tool configuration

Machine global_time = new Machine();
globa_time.setStartTime(new Double(0));

Job robot_pos = new Job();
robot_pos.setJobName("LL");

Vector S1s = set_up_new_chambers(num_S1);
Vector S2s = set_up_new_chambers(num_S2);
Vector S3s = set_up_new_chambers(num_S3);
Vector list = new Vector();

int c_wafer = 0; // number of completed wafer
int act = 1, wafer = 1; // wafer isthe number of wafer started

while(c_wafer < num_wafer) {
char S1s status,
if (wafer <= num_wafer)
Sls status=is a chamber_free or_all_busy(global_time, Sls);
else{ Sls status="b’;}
char S2s status=is a chamber_free or_all_busy(global_time, S2s);
char S3s _status=is a chamber_free or_all busy(global time, S3s);

if(is_there_a done_chamber(global _time, S3s) ==y’
{ I/S3isthelast stage --> must unload this chamber from S3, move R4
I/ priority 1
unload_stage("S3", "R0O", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; ¢ wafer++;
}
elseif(is_there_a done_chamber(globa_time, S2s) ==y’ & &
S3s_status==f")
{/I one done cham. in S2 others busy and one free cham. in S3
Il --> must load wafer from S2 to S3, move name is R3
/] priority 2
load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,
global_time, S2s, S3s, list);
act = act + 2,

}
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Example 4 continued.

elseif(is_there_a done_chamber(globa_time, S1s) ==y’ & &
S2s status =='f")
{/I one done cham. in S1 others busy and one free cham. in S2
/I --> must load wafer from S1 to S2, move hame is R2
/[ priority 3
load stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,
global_time, Sls, S2s, list);
act = act + 2,

}

elseif(Sls status=="f’ & & wafer <= num_wafer) {
/I one free cham. in S1 and loadlock still has wafer(s)
/] priority 4
load S1(wafer, act, robot_durat, S1_durat, robot_pos,
global_time, Sls, list);
wafer++; act = act + 2;

eseif(S2s status=="b’' & & S3s _status == 'f’)
{/I S2 busy and one S3 free other S3 are busy
/] priority 5
if(pull_cham_from_2_stages(S2s,S3s)=="2) {
/1’2" means the second stage between S2s and S3s
// one cham in S3s done first
unload_stage("S3", "R0O", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; c_ wafer++;
}
else{// one S2 cham. donefirst (thereis afree S3)-->load S3
load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,
global_time, S2s, S3s, list);
act = act + 2,

}

}
elseif(Sls status=="b’' & & S2s status ==’ && S3s _status == ’f")
{// dl S1 busy, one S2 free other S2 busy, S3 free or busy
/I priority 6

char which = pull_cham_from_3_stages(S1s,52s,S3s);
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Example 4 continued.

if (which=="3){
/[ acham in S3sdonefirst --> pull
unload_stage("S3", "R0O", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; c_wafer++;
}
elseif(which =="2") {

/[ acham in S2s done first and always have afree S3s' cham

Il --> load from S2s to S3s

load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,
global_time, S2s, S3s, list);

act = act + 2,

else{
// acham in Sls donefirst and there is always a free cham in S2s
Il -->load from Slsto S2s
load stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,
global_time, Sls, S2s, list);

act = act + 2,

}
}

elseif (Sls_status=="b’ && S2s status=="f' & & S3s_status =="b’){
Il dl S1 busy, one S2 free other S2 busy, all S3 busy
/I priority 7
if(pull_cham_from_2_stages(S1s,S3s)=="2) {
/1’2’ means the second stage between S1s and S3s
// one cham in S3s done first
unload_stage("S3", "R0O", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; c_wafer++;
}
else {// one S1 cham. donefirst (thereis afree S2)-->load S2
load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,
global_time, Sls, S2s, list);
act = act + 2,
}
}
return list;
}
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Example 5. A main portion of the Java code for a three-stage cluster tool model using

the prespecified sequence of wafer handler moves.

public Vector get_fixed sequence for_3S tool(Vector event_list, int num_wafer,
int num_S1, int num_S2, int num_S3,
double robot_durat, double S1_durat,
double S2_durat, double S3_durat)

/I set up tool configuration
Schedul e6 tool 6 = new Schedul e6();
Machine global_time = new Machine();
global_time.setStartTime(new Double(0));
Job robot_pos = new Job();
robot_pos.setJobName("LL");
Vector S1s = tool6.set_up_new_chambers(num_S1);
Vector S2s = tool6.set_up_new_chambers(num_S2);
Vector S3s = tool6.set_up_new_chambers(num_S3);
int c_ wafer = 0; // number of completed wafer
int act = 1, wafer = 1; // wafer is the number of wafer started
Vector list = new Vector();
int k = count_lines(event_list, 0);
Job event;
/I fill up the tool
for(inti =0;i <k;i++)
{ event = (Job)event_list.elementAt(i);
String condition = event.getStarting().substring(0,2);
if (condition.equals("LL") & & wafer <= num_wafer) {
tool6.load_Sl1(wafer, act, robot_durat, S1_durat, robot_pos,
global_time, S1s, list);
wafer++; act = act + 2;
}
else if(condition.equals("S1") & & feasible_move(Sls) =='y’) {
tool6.load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,
global_time, Sls, S2s, list);
act = act + 2,

}

elseif(condition.equals("S2") & & feasible_move(S2s) =="y’) {
tool6.load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,
global_time, S2s, S3s, list);
act = act + 2,

}

Example 5 continued.
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}

elseif (condition.equals("S3") & & feasible move(S3s) ==y)
{ // unloading S3
tool6.unload_stage("S3", "R0", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; c_wafer++; if(c_wafer == num_wafer) { break;}

}

Il end filling up

while ( c_wafer < num_wafer) {
for(inti =k; i <event_list.size(); i++) {

}
}

event = (Job)event_list.elementAt(i);
String condition = event.getStarting().substring(0,2);
if (condition.equals("LL") && wafer <= num_wafer) {
tool6.load_Sl1(wafer, act, robot_durat, S1_durat, robot_pos,
global_time, S1s, list);
wafer++; act = act + 2;
}
else if(condition.equals("S1") & & feasible_move( S1s)=="y’) {
tool6.load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,
global_time, Sls, S2s, list);
act = act + 2,
}
elseif(condition.equals("S2") & & feasible_ move( S29)=="y’) {
tool6.load stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,
global_time, S2s, S3s, list);
act = act + 2,

}
elseif (condition.equals("S3") & & feasible move(S3s)=="y’)
{ // unloading S3
tool6.unload_stage("S3", "R0", act, robot_durat, robot_pos,
global_time, S3s, list);
act++; c_wafer++;if(c_wafer == num_wafer) { break;}
}
if (i ==event_list.size() && c_wafer < num_wafer) { i = k; }

return list;
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