
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

MASTER'S THESIS

Improving Cluster Tool Performance by Finding the Optimal
Sequence and Cyclic Sequence of Wafer Handler Moves

by Manh-Quan Tam Nguyen
Advisor: Jeffrey Herrmann

M.S. 2000-3

IMPROVING CLUSTER TOOL PERFORMANCE BY FINDING THE OPTIMAL

SEQUENCE AND CYCLIC SEQUENCE OF WAFER HANDLER MOVES.

by

MANH-QUAN TAM NGUYEN

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2000

Advisory Committee:

Assistant Professor Jeffrey W. Herrmann, Chair
Associate Professor Shapour Azarm
Professor Gary W. Rubloff

ABSTRACT

Title of Thesis: IMPROVING CLUSTER TOOL PERFORMANCE BY

FINDING THE OPTIMAL SEQUENCE AND CYCLIC

SEQUENCE OF WAFER HANDLER MOVES.

Degree candidate: Manh-Quan Tam Nguyen

Degree and year: Master of Science, 2000

Thesis directed by: Assistant Professor Jeffrey W. Herrmann

Department of Mechanical Engineering

 The research aims to develop algorithms that can minimize the total lot

processing time (makespan) of cluster tools used for semiconductor manufacturing.

Previous research focuses on finding an optimal sequence of wafer handler moves in a

cluster tool that has one process chamber in each stage. In practice, if the number of

chambers in a stage is more than one, either a pre-specified sequence of moves is given

in advance or a dispatching rule is applied. No previous work has addressed the

problem of finding an optimal sequence of wafer handler moves to improve

performance of cluster tools with more than one chamber in a stage.

Cluster tools are highly integrated machines that can perform a sequence of

semiconductor manufacturing processes. The performance of cluster tools becomes

increasingly important as the semiconductor industry produces larger wafers with

smaller device geometry. Some factors that motivate the use of cluster tools, instead of

stand-alone tools, include increased yield and throughput, less contamination, and less

human intervention.

In this research, the cluster tool is modeled as a manufacturing system with a

material handling system (wafer handler). The model specifies all constraints that a

feasible sequence of wafer handler moves must satisfy. The thesis develops two cluster

tool scheduling algorithms. Given the lot size, the wafer handler move time, the in-

chamber processing times, and the tool configuration the first algorithm, based on a

complete forward branch-and-bound algorithm, searches for an optimal solution from

the set of all feasible sequences of wafer handler moves. The second algorithm, a

truncated branch-and-bound algorithm, quickly searches for the best solution from the

set of feasible cyclic sequences of wafer handler moves. For simple tool configurations,

analytical makespan models are also derived.

The results show that, in many cases, the search algorithms can significantly

reduce the total lot processing time. This reduces tool utilization, reduces

manufacturing cycle times, and increases tool capacity.

IMPROVING CLUSTER TOOL PERFORMANCE BY FINDING THE OPTIMAL

SEQUENCE AND CYCLIC SEQUENCE OF WAFER HANDLER MOVES.

by

MANH-QUAN TAM NGUYEN

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2000

Advisory Committee:

Assistant Professor Jeffrey W. Herrmann, Chair
Associate Professor Shapour Azarm
Professor Gary W. Rubloff

Copyright by

Manh-Quan Tam Nguyen

2000

ii

DEDICATION

TO MY PARENTS, BROTHERS, AND SISTERS

iii

ACKNOWLEDGMENTS

I wish to thank my advisor, Dr. Jeffrey W. Herrmann, who helped me

understand the theory of scheduling. It was under his guidance that I was able to

develop the algorithms, which form such an important part of this thesis. I am grateful

to him for his patience, encouragement and cornucopia of suggestions throughout the

proceeds of this project work.

Thanks are equally due to Dr. Gary W. Rubloff, and my colleagues Mr. Brian F.

Conaghan, Mr. Niranjan Chandrasekaran, Mr. Praveen Mellacheruvu and Mr. Rock Shi

who helped me gain invaluable insights into the area of Semiconductor Manufacturing.

This acknowledgement would be incomplete without the mention of Dr. Edward Lin,

whose help and suggestions while coding the algorithms proved to be invaluable.

iv

TABLE OF CONTENTS

Dedication ……..…………………………...……….………………………………… ii

Acknowledgement …………………………………………………………………... iii

List of Tables ………………………………………………………………………….vii

List of Figures…………………………………………………………………………..ix

CHAPTER 1: INTRODUCTION..1

1.1 Motivation...1

1.2 Research Objective ...2

1.3 Models and Insights ..3

1.4 Outline of Thesis Report...5

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW..........................7

2.1 Semiconductor Manufacturing Overview...7

2.2 Cluster tools ..9

2.3 Current Push and Pull Dispatching Rules...11

2.4 Related Literature..15

2.4.1 Cluster tool scheduling ..15

2.4.2 Robot scheduling ...17

2.5 Summary...19

CHAPTER 3: PROBLEM FORMULATION..20

3.1 Notation...20

v

3.2 Problem statement...21

3.2.1 Assumptions . ……………………………………………………………21

3.2.2 Objective ..21

3.2.3 Constraints ...22

3.2.4 Permutation versus non-permutation ...24

3.2.5 Problem notation..24

3.3 Number of feasible sequences ..25

3.4 Determining the lot makespan ..30

3.5 Summary...32

CHAPTER 4: BRANCH-AND-BOUND ALGORITHM......................................33

4.1 The forward branch-and-bound algorithm..33

4.2 Dominance criteria..40

4.3 Number of feasible sequence under the first and second dominance criteria...47

4.4 Better lower bounds ..48

4.5 Summary...50

CHAPTER 5: THE CYCLIC BEHAVIOR OF THE CLUSTER TOOLS

 AND TRUNCATED BRANCH-AND-BOUND ALGORITHM........51

5.1 Performance of a cluster tool processing a finite lot size51

5.2 The CT1-1 Problems...54

5.3 The CT1-1-1 problems..55

5.4 THE CTm1-...-mS | | Cmax PROBLEMS..65

5.5 Summary...73

CHAPTER 6: IMPLEMENTATION ...75

6.1 Introduction...75

6.2 Implementation as executables ...77

vi

6.2.1 Cluster tool models using Algorithm BB...80

6.2.2 Cluster tool models using Algorithm TBB ..83

6.2.3 Cluster tool models using the push and pull dispatching rules..................90

6.2.4 Cluster tool models using the prespecified sequence of

 wafer handler moves ..95

6.3 The graphic user interface for the two- and three-stage cluster tool models97

6.4. Integration into subfactory model..101

6.5 Summary...102

 CHAPTER 7: RESULTS AND DISCUSSION ...104

7.1 Performance of the search using Algorithm BB...104

7.2 Performance of the search using Algorithm TBB...110

7.3 Summary..……………………………………………………………………115

CHAPTER 8: SUMMARY AND CONCLUSIONS ..116

APPENDIX A..119

APPENDIX B ..123

APPENDIX C..125

APPENDIX D..135

APPENDIX E ..139

APPENDIX F ..144

REFERENCES..159

vii

List of Tables

1. Numbers of wafers in each stage at each level τ associated

with the selected move..30

2. Cycle time and lot makespan of the 1-unit cyclic sequences

that use cycle σx (x = 1, 3, 4, and 5) ..57

3. Cycle time and makespan of σ2-sequence,

using f1 = R0, 1 – R1, 1 – R0, 2 – R2, 1 – R1, 2, for some instances60

4. Cycle time and makespan of σ2-sequence,

using f2 = R0, 1 – R1, 1 – R2, 1 – R0, 2 – R1, 2, for some instances61

5. Cycle time and makespan of the 1-unit cyclic sequences

when L = 15, pr = 13, p1 = 18, p2 = 14, p3 =7...62

6. MS1 and MS22 as functions of L...63

7. TBB, push, and pull sequences for CT1-2..69

8. Variables used to build cluster tool models..76

9. Status of a two-stage tool using the push dispatching rule.......................................91

10. Status of a two-stage tool using the pull dispatching rule ..91

11. Status of a three-stage tool using the push dispatching rule.....................................92

12. Status of a three-stage tool using the pull dispatching rule93

13. Two-stage problem sets ..105

14. Three-stage problem sets ..105

15. Computing times and percentage improvement of Algorithm BB

over the push and pull sequences for some two-stage cluster tool

configurations (OH = 0) ...106

16. Computing times and percentage improvement of Algorithm BB

over the push and pull sequences for some three-stage cluster tool

configurations (OH = 0) ...107

viii

17. Computing time and lot makespan of a CT1-2-2 when increasing

number of nodes and applying better lower bound ..109

18. Computing times and percentage improvement of Algorithm TBB

over the push and pull sequences for some two-stage cluster tool

configurations (OH = 0) ...111

19. Computing times and percentage improvement of Algorithm TBB

over the push and pull sequences for some three-stage cluster tool

configurations (OH = 0) ...113

ix

LIST OF FIGURES

1. Configuration of a 1-2-2 cluster tool…………………………………………… 10

2. Sequences constructed following the push and pull dispatching rules

 and the optimal sequence………………………… ...14

3. Partial outtree of the 1-1-2 cluster tool………………………………………….29

4. Outtree graph of the CT1-1 (3 wafers per lot)…………………………………..37

5. A scenario demonstrating the third dominance criterion………………………..45

6. Gantt charts of push and optimal sequences for CT2-2 (L = 8)………………...53

7. Two-unit cycle versus one-unit cycle…………………………………………...64

8. Search tree of a CT1-2 using Algorithm TBB…………………………..70

9. The best 1-unit cyclic sequence and the optimal sequence for CT1-2……….....72

10. An arbitrary outtree graph………………………………………………………. 79

11. Flow chart for program BB…………………………………...............................81

12. Flow chart for program TBB……………………… ..84

13. Flow chart for program GCCS...87

14. Flow chart for program CheckCycle..89

15. Flow chart for program P ...94

16. Flow chart for program PS...96

17. Interaction of GUI and cluster tool models……………………………………..97

18. GUI for two-stage cluster tools………………………………..98

19. GUI for three-stage cluster tools………………………………98

20. GUI for two-stage cluster tools after 3 runs…………………...........................100

21. GUI for three-stage cluster tools after 4 runs………………….........................100

22. Information flow in the integrated subfactory model...102

A-1. Complete outtree graph of a CT1-1-2 (L = 3) when the first and second

dominance criteria are not active………………………………………………120

A-2. Complete outtree graph of a CT1-1-2 (L = 3) when the first and second

dominance criteria are active………………………………………………….122

x

B-1. Gantt chart of a complete σ1-sequence (L = 3)……………………………… ..123

B-2. Gantt chart of a complete σ2-sequence (L = 4)……………………………… ..124

C-1. Gantt chart for a complete σ1-sequence (L =3)………………………………..125

C-2a. Gantt chart of a complete σ3-sequence with filling-up f1 (L = 4)……………..126

C-2b. Gantt chart of a complete σ3-sequence with filling-up f2 (L = 4)……………..127

C-3a. Gantt chart of a complete σ4-sequence with filling-up f1 (L = 4)……………..129

C-3b. Gantt chart of a complete σ4-sequence with filling-up f2 (L = 4)…………......130

C-4a Gantt chart of a complete σ5-sequence with filling-up f1 (L = 4)……………. 132

C-4b Gantt chart of a complete σ5-sequence with filling-up f2 (L = 4)……………..133

D-1 Gantt chart of a complete σ2-sequence with the filling-up phase f1 (L = 5)…..135

D-2 Gantt chart of a complete σ2-sequence with the filling-up phase f2 (L = 5)…..137

E-1 Gantt chart of a complete σ6-sequence with filling-up f1 (L = 5)……………..139

E-2 Gantt chart of a complete σ6-sequence with filling-up f2 (L = 5)……………..142

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

This research aims to develop algorithms that can minimize the total lot processing time

(makespan) of cluster tools used for semiconductor manufacturing. Previous research

focuses on finding an optimal sequence of wafer handler moves in a cluster tool that has

one process chamber in each stage. In practice, if the number of chambers in a stage is

more than one, either a prespecified sequence of wafer handler moves is given in

advance or a dispatching rule (push/pull) is applied to find the sequence of wafer

handler moves. Then the requisite performance metrics of the cluster tools may be

measured and evaluated. No previous work has addresses the problem of finding an

optimal sequence of wafer handler moves to improve performance of cluster tools with

more than one chamber in a stage.

Cluster tools are highly integrated machines that can perform a sequence of

semiconductor manufacturing processes. The performance of cluster tools becomes

increasingly important as the semiconductor industry produces larger wafers with

smaller device geometry. Some factors that motivate the use of cluster tools, instead of

stand-alone tools, include increased yield and throughput, less contamination, and less

human intervention.

2

In this research, the cluster tool is modeled as a manufacturing system with a material

handling system. The success of the work will play a vital role in modeling the current

wafer fabrication facilities. The model also serves as a decision support tool for the

management to understand and be able to make decision on selecting the right tools to

achieve the goal equipment productivity, which is one of the keys to increasing the

overall factory productivity.

1.2 Research Objective

The objective of this research is to develop scheduling algorithms that can find the

optimal sequence of wafer handler moves for a given lot size, wafer handler move time,

and chamber processing times. This improves cluster tool performance by reducing the

total time needed to process the lot. This can reduce cycle time, reduce tool utilization,

and increase tool capacity. Note that in cluster tools with two load locks, the tool can

be in steady state for long period of time by having different load locks be alternated

ready for processing. This can be achieved by readying one of the load lock to send

wafers into the cluster tool, while wafers in the other load lock is currently being

processed. A cluster tool may have dual end effector handler to move wafers. This

implies dependent rotation; however, only one end effector can extend or retract to load

or unload a wafer at any given instant. The research will consider only the single-load-

lock and single-wafer-handler tools.

3

To model the cluster tool, the wafer handler sequencing problem will be formulated in

standard scheduling form by providing framework and identifying all constraints that a

feasible sequence of wafer handler moves must follow. One algorithm that guarantees

to find an optimal sequence of wafer handler moves will be developed. Based on the

careful study on the cyclic behavior of the cluster tool in steady state, another algorithm

will be developed to find near optimal solutions.

1.3 Models and Insights

 In this thesis, two scheduling algorithms are introduced. These procedures give the

relationship between handler lot size, move time, and chamber processing times to the

lot makespan for a given tool configuration.

1. The first algorithm is a complete branch-and-bound (BB) algorithm. This

procedure, when run completely, is guaranteed to find an optimal solution from all

possibly feasible sequences of wafer handler moves.

2. The second algorithm is a truncated branch-and-bound (TBB) algorithm. This

procedure will search for the best solution from feasible cyclic sequences of wafer

handler moves.

For two simple tool configurations, the two- and three-stage cluster tools that have one

chamber in each stage, analytical models for the makespan and average cycle time will

be derived.

4

The models allow one to perform the sensitivity analysis of lot makespan with respect

to process times, handler move time, and tool configuration. Given the relationship

between semiconductor process parameters (such as pressure, temperature, and so on)

to the processing times, one can also perform a sensitivity analysis of the tool

performance with respect to these process parameters. Insights gained from our results

included:

� The cluster tool performance can be greatly improved using Algorithm BB and

Algorithm TBB to schedule the wafer handler moves instead of using the current

dispatching rules. This improvement was greater when the processing times are

approximately the same as or smaller than the move times.

� For the models that implement Algorithm BB, the computing effort increases as the

lot size, the number of chambers in each stage, and the number of stages increase.

Also conducting longer searches or using more complicated lower bounds did not

improve the search performance significantly.

� The computing effort is significantly reduced and becomes less sensitive with

respect to the lot size, when Algorithm TBB is used. Although Algorithm TBB may

not be able to find optimal sequences of wafer handler moves in some instances, the

resulting sequences are still much better than the sequences found by the

dispatching rules.

5

1.4 Outline of Thesis Report

The remainder of the thesis is organized as follows. Chapter 2 gives a brief overview

on semiconductor manufacturing, cluster tool structure, current dispatching rules and

background literature concerning both cluster tool and robot scheduling.

Chapter 3 formulates the problem, identifies all constraints that a feasible sequence of

wafer handler moves must follow. Also, the methodologies to determine the problem

size and lot makespan of a given sequence of wafer handler move are presented.

Chapter 4 presents a forward branch-and-bound algorithm that can be implemented to

any tool configuration to find an optimal sequence of wafer handler moves. The

algorithms for the push and pull dispatching rules are also presented. The attempt to

reduce the solution space by introducing three dominance criteria and sophisticated

lower bounds are also proposed.

The steady state behavior of the cluster tools processing finite lot sizes is studied in

Chapter 5. Analytical models for CT1-1 and CT1-1-1 are derived to determine the

cycle time and lot makespan of the 1-unit cyclic sequence of wafer handler moves,

given lot size, handler move time, and chamber processing time. This Chapter presents

an efficient search algorithm, the truncated branch-and-bound algorithm.

Chapter 6 describes the basic requirements to implement the BB and TBB algorithms to

two- and three-stage cluster tool models. The Graphic User Interfaces are also

6

constructed. Chapter 7 tests the performance of the simulation models using the

branch-and-bound and truncated branch-and-bound algorithms by comparing two main

performance criteria, the lot makespan and CPU time, to that of the simulation models

using the dispatching rules. Chapter 8 summarizes the work and gives suggestions for

future research extension from this work.

7

CHAPTER 2

 BACKGROUND AND LITERATURE REVIEW

2.1 Semiconductor Manufacturing Overview

Semiconductors contain numerous electrical pathways, which connect thousands or

even millions of transistors and other electronic components. These transistors store

information on the semiconductors, either by holding an electrical charge or by holding

little or no charge. Almost all of today’s computer chips are built on silicon wafers that

are made of highly purified sand.

The manufacturing of semiconductor devices involves three main steps: formation of p

and n-type regions of the required conductivity within the semiconductor chip by

doping; formation of reliable metal-semiconductor contacts on the surface of the chip;

and encapsulation and packaging of the chip to provide protection and a convenient

method of making electrical connection. In the first and second steps, the chips are

processed together as wafers. The two wafer fabrication steps can be decomposed into

nine small steps (International Sematech, 2000):

• Crystallize melted silicon to form ingots that are sliced into wafers.

• Polish one side of the wafer to remove the damage caused by slicing; chips are built

on this side.

8

• Deposit a layer of silicon dioxide on the polished side of the wafer by subjecting the

wafers to oxygen or water vapor at high temperature. This layer is called dielectric.

• Use photolithography process to create images of multiple layers of circuit patterns

on a chip. First the wafer is coated with a light-sensitive chemical called photo-

resist. Then light is shone through a patterned plate to expose the resist.

• Etch away the non-hardened resist and materials below it, then strip off the

hardened resist to form three-dimensional patterns on wafers.

• Repeat several photolithography and etch steps to build multiple layers of circuit

patterns on a single chip.

• Diffuse or force dopant atoms into certain areas of the chips through chemical

exposure and heating or ion implantation to form p and n-type regions.

• Form microscopically thin lines of metal interconnects by first depositing a layer of

conducting metal on the entire wafer surface and then removing unwanted metal

using photolithography and etch processes. This includes vertical interconnects

between layers and horizontal interconnects across each layer of the chip.

• Each chip on the completed wafer is tested for electrical performance. Any failing

chips are marked so that they can be discarded when they are separated with wafer

saws.

Most operations process each wafer individually. However, identical wafers move

together from one process to the next. Each set of wafers is a lot, and a typical lot has

20 wafers. The container used to move and store the wafers in a lot is called a cassette.

9

2.2 Cluster tools

The term cluster tools describes a specific class of capital equipment used in

semiconductor manufacturing. The SEMI E21-96 standard defines a cluster tool as “An

integrated, environmentally isolated manufacturing system consisting of process,

transport, and cassette modules mechanically linked together.” Typical cluster tools

include load locks that store cassettes of wafers (cassette modules), process modules

that modify the properties of the wafers, and single or multiple wafer handler(s) that

transport the wafers (transport modules). These modules are linked together by an

evacuated transfer space. Because it has multiple chambers, a cluster tool can process

multiple wafers simultaneously.

After a lot enters the cluster tool, it may undergo additional operation such as pump

down or metrology. Each wafer must undergo a series of activities such as

orientation/degassing (OD), titanium physical vapor deposition (Ti PVD), or tungsten

chemical vapor deposition (W CVD). Such activities are performed in different

chambers. After processing wafers, chambers may become temporarily unavailable

during automated module cleaning operation.

The wafer handler transports each wafer from one chamber to another. For example,

the cluster tool shown in Figure1 has one load lock (LL), which stores a cassette of

wafers, and three process stages. The first stage has one OD chamber, the second has

two Ti PVD chambers, and the third has two W CVD chambers. Each wafer, starting

10

OD

PVD 1

PVD 2

CVD 1

LL

CVD 2

1. Hand

Figure 1: Configuration of a 1-2-2cluster tool

Note: OD = Orientation/Degassing chamber

PVD 1, PVD 2 = first and second physical vapor deposition chambers

CVD 1, CVD 2 = first and second chemical vapor deposition chambers

11

from LL, must visit the OD chamber, one of the two PVD chambers, one of the two

CVD chambers, and then return to LL.

Sequential cluster tools integrate a sequence of processes, while other tools have two or

more identical chambers that are used in parallel. A sequential cluster tool can improve

yield and device performance since wafers are exposed to fewer contaminates between

process steps. The tool can include an in-situ metrology step that provides real-time

feedback on process performance. A cluster tool with multiple parallel chambers can

increase capacity and reduce cycle times by reducing the total time needed to process a

lot of wafers. Moreover, such tool may be more reliable, since a failure of a single

chamber does not necessarily stop production. The cluster tool in Figure 1 is a

combination of sequential and parallel.

Semiconductor manufacturers are increasingly using cluster tools. Annual sales of

cluster tools are projected to increase from $11.2 billion in 1997 to $21.9 billion in 2000

(Semiconductor Business News, 1998).

2.3 Current Push and Pull Dispatching Rules

The sequence of wafers going to the cluster tool is not important, since the wafers are

identical, and an activity’s processing time is the same for every wafer. However, the

sequence of wafer handler moves will change the lot makespan. The lot makespan is

the total time needed to process a lot of wafers. An activity is either the handler moving

12

a wafer from one chamber to another or a chamber processing a wafer (for example,

chemical vapor deposition in the CVD chamber). A different sequence of wafer handler

moves yields a different sequence of activities, and this sequence may have a different

lot makespan. Typically, the wafer handler waits until a wafer is ready to move from

one chamber to another. Then, the wafer handler moves from its current location to the

chamber that has the wafer. Then the wafer handler moves the wafer to the next

chamber. After completing the move, the wafer handler will move another wafer if one

is ready or will wait where it is until another wafer is ready. If multiple wafers are

ready to be moved at the same time, the cluster tool must decide which move the wafer

handler will perform. A dispatching rule is often used.

Typical cluster tools use a push dispatching rule or a pull dispatching rule. The

dispatching rule selects the next move when two or more different wafers are waiting

for the wafer handler. The pull rule gives priority to the wafer that has fewer remaining

process steps. The push rule gives priority to the wafer that has more remaining

process steps. Consider the cluster tool in Figure 1. Suppose there are unprocessed

wafers in the LL, the first stage chamber is empty, one of the second stage chambers is

holding a processed wafer, and the third stage chambers are empty. The pull rule will

give priority to the wafer in the second stage chamber. The push rule will give priority

to the next unprocessed wafer in LL that needs to visit the first stage chamber.

Although these rules help the cluster tool sequence the wafer handler moves, the push

and pull dispatching rules do not guarantee that the resulting sequence has the optimal

13

lot makespan for the given lot size, tool configuration, and activity processing times.

For instance, consider a two-stage cluster tool that has two first-stage chambers and

three second-stage chambers. Each first-stage activity requires 10 seconds, and each

second-stage activity requires 40 seconds. A wafer handler move requires 5 seconds.

The lot has eight wafers. (We will ignore the time needed to pump down the central

chamber after the wafers enter the LL.) Figure 2 presents the Gantt charts of the

activities under the push and pull dispatching rules and under an optimal sequence.

Notice that the Gantt charts present activities that occur in the same chamber in the

same row.

The sequence under the pull rule is inferior in this case, since it abandons the third

second-stage chamber and the second first-stage chamber after 65 seconds. The push

rule sequence and the optimal sequence repeat different patterns after 65 seconds. The

pattern of the optimal sequence, unload second stage → load first stage → load second

stage, eliminates one unloaded move for loading first-stage chambers and is better than

the pattern of the push sequence, load first stage → unload second stage → load second

stage. The optimal sequence, in this case, follows neither dispatching rule throughout

the entire lot.

14

 0 40 80 120 160 200 240 280

 0 40 80 120 160 200 240 280

0 40 80 120 160 200 240 280

CVD3

CVD2

CVD1

OD2

OD1

Robot

CVD3

CVD2

CVD1

OD2

OD1

Robot

CVD3

CVD2

CVD1

OD2

OD1

Robot

IF PUSH: MS = 255 s

IF PULL: MS = 265 s

OPTIMAL: MS = 235 s

2. Figure 2. Sequences constructed following the push and pull dispatching rules and
3. the optimal sequence.

time

time

time

Load OD and OD activity

Load CVD and CVD activity

Unload CVDNote:

W1

W2

W3

W4

W5

W6

W7

W8

W1

W2

W3

W4

W5

W6

W7

W8

W1

W2

W3

W4

W5

W6

W7

W2 W4

W1 W3 W5 W6 W7 W8

W8

W1

W1

W2

W3

W4

W5

W6

W7

W2

W3

W4

W5

W6

W7

W8

W8

Wj = the jth wafer (j = 1,…, L)

15

2.4 Related Literature

Usually the purpose of operation research applied to cluster tools is to define metrics for

cluster tool performance, then develop models or methods for tracking cluster tool

performance. Such performance metrics include throughput, which is the average

number of wafers that the tool processes per unit time, and total lot processing time (or

lot makespan), which is the elapsed time from when a new lot of wafer is loaded into a

tool until the completed lot is unloaded.

2.4.1 Cluster tool scheduling

Kise et al. (1991) discuss new flow shop scheduling problems related to automated

manufacturing systems in which n jobs are processed on two machines. Jobs are

transported by a robot between an input/output station and a machine, or between two

machines. They provide an algorithm that find optimal sequences of n jobs with the

objective of minimizing the makespan under a specified move cycle in O(n3) time.

Wood (1996) derives formulas that relate the total lot processing time to the number of

wafers in the lot for ideal sequential and parallel tools. Note that in Wood’s paper,

cycle time is defined the same as what we defined total lot processing time. The models

use two measurable parameters that aggregate tool operations: the incremental cycle

time, which is the average increase in total lot processing time resulting from a lot size

increment of one wafer, and the fixed cycle time, which is the independent-of-lot-size

portion of total lot processing time. Wood suggests using the empirically determined

16

increment and fixed cycle times to predict the improvement in a cluster tool’s maximum

throughput, or using analytical models of increment and fixed cycle times to predict the

impact of tool configuration on cycle time and throughput for a hypothetical integrated

tool.

Considering the transitions at the beginning and the end of the lot, Perkinson et al.

(1996) derive a model that relates the total processing time to the number of wafers for

cluster tools that have single-wafer process chambers organized around a wafer

transport mechanism. Using timing diagrams, they derive the so-called fundamental

period, then determine throughput as inverse of the fundamental period. Perkinson et

al. also suggest three ways to improve throughput. The look-ahead algorithms and

multi-speed transporters tempt to increase the net wafer handler speed by modifying the

action of the handler when it is moving a wafer; the incorporate dual load locks tempts

to minimize the lengths of the beginning and ending phases of processing a lot. They, as

well as Wood (1996), present linear models and identify two operating regions: in one

region, the total lot processing time is constrained by the wafer handling time; in the

other region, by the module process time.

Following Perkinson’s work, Venkatesh et al. (1997) analyze the steady state

throughput of a sequential cluster tool with a dual-blade robot. Their analysis shows

that, under the process-bound condition, a cluster tool with single-blade robot would

need to double the speed of the robot to achieve the similar throughput as the dual-blade

17

cluster tool. In the transport-bound condition, the throughput is the same for both dual-

blade and single-blade cluster tools.

Srinivasan (1998) presents more detailed Petri net models for sequential and parallel

tools and uses these to determine the steady state throughput of the tool. His models

can be applied to a tool with either single or dual-blade wafer handler, and with either

anticipatory or non-anticipatory handler moves. However, the sequence of wafer

handler moves must be dictated in advance.

Herrmann et al. (1999) study the impact of process changes on cluster tool

performance. They propose using a network model for a prespecified sequence of

wafer moves and cluster tool simulation software when the controller uses a dispatching

rule or scheduling algorithm to sequence the wafer moves. They choose the cluster tool

performance measure of interest is the lot makespan. None of the previous work

addresses the problem of reducing the total lot processing time by sequencing the wafer

handler moves.

2.4.2 Robot scheduling

Jeng et al. (1993) study the problem of sequencing robot activities for a robot-centered

parallel-processor workcell, where n jobs and m identical processors exist in the cell.

They provide a branch-and-bound algorithm to find an optimal sequence of robot

activities, which minimizes the total completion times. This branch-and-bound

algorithm can find solutions for small and medium sized problems (refer to values of n

18

and m) within reasonable times. For large sized problems, they proposed a heuristic for

finding a near optimal solution.

A state space approach is used in Sethi et al. (1992) to address the problem of

sequencing parts and robot moves in a robotic cell, which is defined as a flow-line

manufacturing system. Their objective is to maximize the long-run average throughput

of the system subject to the constraint that the parts are to be produced in proportion of

their demand. For the cell that has M machines producing a single part type, they show

in a constructive manner that the number of one-part cycles is exactly M!.

Extending the results from Sethi’s paper, Hall et al. (1997) provide an algorithm that

simultaneously finds sequences of parts and robot moves to minimize the steady state

cycle time, for multiple part-type problems in a two-machine cell. They also address a

conjecture about the optimality of repeating one-unit cycles for a three-machine cell

with general data and identical parts. Restricted to a special problem where the number

of machines is arbitrary, but all parts are of the same type, Crama and van de Klundert

(1997), relying on the concept of pyramidal permutation, present a dynamic

programming approach that finds an minimum one-unit cycle time in O(M3) time. Both

Crama and Hall address that many interesting related problems are still open, such as

the conjecture that one-unit cycles are optimal among all possible robot move

sequences.

19

Kamoun et al. (1999), revisiting the problem dictated in Hall (1997), develop a heuristic

procedure that aims to maximize the long-run average throughput for part sequencing

problem under different robot move cycles in three-machine cell. They also provide a

methodology for extending this heuristic to four-machine cell and even larger cell.

2.5 Summary

Semiconductor manufacturing is a complicated process involving many steps, which

require processing on highly automated and expensive equipment. This attracts

research into the performance of the cluster tools with respect to throughput and lot

makespan. Both analytical and simulation models for some simple tool configurations

have been developed. As the tool configuration becomes more complex, understanding

and improving cluster tool performance become more important.

However, due to the complexity of the problem, there is currently no available model

for a general tool configuration that can obtain an optimal performance of a cluster tool,

given any set of processing parameters such as in-chamber process times and wafer

handler move time.

20

CHAPTER 3

PROBLEM FORMULATION

3.1 Notation

The following notation is used in the thesis:

L = lot size.

S = number of stages in the cluster tool.

i = stage index, i = 1,…,S.

j = wafer index, j = 1,…, L.

Si = stage i.

R0,j = move wafer j from LL to a chamber in S1.

Ri,j = move wafer j from a chamber in Si to a chamber in Si+1 (i = 1, ..., S-1).

RS,j = move wafer j from a chamber in SS to LL.

mi = number of chambers in stage Si.

m1-m2-...-mS = tool configuration, denoting that the tool has S stages and each stage Si

has mi chambers.

h = number of wafer handlers.

pr = time that the wafer handler needs to travel from one chamber to another, from LL

to a chamber, or from a chamber to LL.

pi = time required for a wafer to be processed in a chamber in Si.

T = the total number of wafer moves. T = L(S+1).

21

3.2 Problem statement

3.2.1 Assumptions

In this thesis, we make the following assumptions to simplify the problem:

• In a stage, the processing time includes chamber’s overhead time and is a

deterministic constant.

• The move time includes times for picking up, moving, and loading a wafer.

• The move time from a chamber to another, or from load lock to a chamber, or from

a chamber to load lock is a deterministic constant.

• Tool overhead time includes initial pumpdown and vent times of the lot.

• Breakdowns or failures of the components are rare and not considered.

• We will only consider the single load lock, single wafer handler cluster tools.

3.2.2 Objective

This research focuses on an S stage, single load lock cluster tool. The number of

chambers in any stage can be any positive integer. Let mi be the number of chambers in

stage Si (i = 1,..., S). Let M = m1 + ... + mS be the total number of chambers. The

chambers are numbered 1 to M.

Each stage has a wafer processing time pi, and the wafer handler requires pr time units

to move from one chamber to another. The lot has L wafers. The sequence of wafers

leaving LL is not important, since the wafers are identical, and the processing time at a

stage is the same for every wafer. We will number the wafers in the order they leave

LL. However, the sequence of wafer handler moves will change the lot makespan.

22

The research studies the problem of minimizing the lot makespan Cmax, the total time

required to process a lot of wafers. Reducing the total time needed to process the lot

can reduce cycle time, reduce tool utilization, and increase tool capacity. Moreover,

Cmax is a necessary component for calculating overall equipment effectiveness (OEE)

and cost-of-ownership (COO), which are usually used to evaluate cluster tool

performance (Murphy, 1996; Dance, 1998).

The problem is to find a feasible sequence of wafer handler moves that minimizes the

total time required to process all the wafers and return them to LL.

3.2.3 Constraints

A chamber at stage Si begins processing wafer j as soon as move Ri-1,j ends (i = 1, ... S).

Move Ri,j can begin after this chamber finishes processing wafer j and after the wafer

handler completes the previous move. Ri,j requires pr time units if the wafer handler is

already at the chamber that processed wafer j (at LL if the move is R0,j). Ri,j requires

2pr time units otherwise, for the wafer handler must move to the correct chamber at Si

before moving the wafer to a chamber at stage Si+1 (to LL if the move is RS,j). In this

work we assume that the wafer handler cannot move to the chamber before processing

ends. The lot makespan is the time that the last move ends.

A feasible sequence must satisfy the following constraints.

• Constraints caused by nature of semiconductor manufacturing

a) Precedence constraints: All wafers must follow the fixed sequence of processing

steps. Ri,j must precede Ri+1,j for i = 0, ..., S-1.

23

b) No Preemption: An activity in a chamber cannot be interrupted until the wafer is

finished its processing in that chamber. For example, if a chamber in Si starts

processing at time t, then the chamber is busy during the interval [t, t + pi] and the

wafer cannot be unloaded during that time.

• Constraints caused by the tool architecture

c) Feasible move: The wafer handler cannot unload an empty or busy chamber and

cannot load a busy or full chamber. A full chamber has a wafer that has completed

processing and is waiting to be moved.

d) Tool configuration: Since a chamber can process only one wafer at a time, the

total number of wafers in a stage must be smaller than or equal to the number of

chambers in that stage.

e) Wafer handling: Since the cluster tool has a single wafer handler, then, at any

time, there is at most one move occurring.

f) Non-anticipation: The wafer handler cannot anticipate the next move. That is, if

the next move is Ri,j and the wafer handler is idle, the wafer handler must wait

where it is until the busy chamber at Si finishes processing wafer j. Only then can

the wafer handler move from its current location to the (now full) chamber to unload

the wafer and move it.

• Constraints caused by lot size

g) Lot size L: the wafer handler cannot move a wafer from LL to a chamber in S1 if

there are no unprocessed wafers in LL.

24

3.2.4 Permutation versus non-permutation

Permutation implies that the order in which the wafers enter the first stage is maintained

throughout the system. In the cluster tool environment, permutation means that wafer j

is always loaded to or unloaded from a stage before wafer j+1, i.e. Ri, j precedes Ri, j+1.

Obviously, this constraint must be satisfied if there is only one chamber at each stage.

However, it may be violated if a tool has multiple chamber stages. For example,

consider a cluster tool that has two chambers, A and B, in the last stage SS. Assume that

at time t, wafer j and j+1 are finished their processes in chamber A and B respectively.

Then move RS, j is prior to move RS, j+1 if the permutation constraint is active. But,

move RS, j+1 may be prior to move RS, j since blocking at chamber A is allowed.

The introduction of non-permutation constraint complicates the problem since it

increases number of feasible sequences. In Chapter 4, we will prove that, for some

cases, violating the permutation constraint will not improve performance of the cluster

tool.

3.2.5 Problem notation

A scheduling problem is described by a triplet α | β | γ. The α field describes the

machine environment and contains a single entry. We let α = CTm1-m2-...-mS.

The β field provides details of special processing characteristics and constraints and

may contain no entries, a single entry, or multiple entries. All seven constraints

depicted in Section 3.2.2 are always active; hence they do not need to be introduced in

25

the β field except for some special cases presented below. Notice that constraint d has

already been introduced in the α field and constraint g is an input parameter. The

following entries may appear in the β field.

• “permu.”, if “permu.” appears in the β field, all sequences must follow the

permutation condition. If “permu.” is not in the β field, the permutation condition

may be violated.

• h, if there are more than one wafer handler in the tool, then the number of wafer

handler must be introduced. Otherwise, h equals to 1.

• anticipation, if anticipation appears in the β field, the wafer handler must anticipates

the next move. Otherwise, all considering sequences are non-anticipatory.

The γ field contains the objective to be minimized and usually contains a single entry.

For our problem, γ = Cmax.

Thus, for example, CT1-2 | | Cmax denotes the problem of finding the sequence of wafer

handler moves that minimizes the total lot makespan of a two-stage, single wafer

handler cluster tool. The first stage has one chamber and the second stage has two

chambers. The permutation condition may be violated.

3.3 Number of feasible sequences

Consider a general problem CTm1-…-mS | | Cmax. According to the precedence

constraint, a wafer must follow a fixed order of processing steps, i.e., the wafer must

visit every single stage. This implies that each wafer requires (S+1) wafer handler

26

moves. Hence, there are a total of L(S+1) times that the scheduler must select a feasible

wafer handler move. Except for the move RS,j, follow each wafer handler move Ri,j

there is a process activity in a chamber, i.e. there are L process activities occurring in

each stage’s chambers. As a result, there are a total of L(2S+1) activities that need to be

scheduled.

Excluding the activities in process chambers, we can construct a directed graph

representing all feasible sequences of wafer handler moves. The graph will have a form

of an outtree, a precedence graph wherein, the number of immediate predecessors of a

node is either zero or one. The number of levels of the directed graph equals to the

number of times the scheduler must make selection L(S+1). The state of the tool

changes according to the move. For instance, after move R0, j, the number of

unprocessed wafers in LL decreases by one, and one free chamber in the first stage

becomes busy. Hence, the number of nodes at level τ depends on the type and number

of nodes at previous level τ-1. Starting with an empty tool and the wafer handler is at

LL, the move R0,1 is located at level 1. Denote number of nodes at level τ as N(τ). We

can find the total number of nodes in a level of the outtree graph using the recursive

formulas.







+=τ∀=τ

=

∑
−τ

=

)1(N

1k
k).1S(L,...,2,z)(N

1)1(N

(1)

Where zk is the total number of feasible choices resulting from the state of the cluster

tool associated with the node k at level τ-1. Using the feasible move constraint, we can

27

easily determine zk. Define li,k as the number of wafers in stage Si (i = 1,…, S) and l0,k

as the number of unprocessed wafers in LL after the move, representing by node k,

finishes. We can determine the number of choices in each move resulting from tool

state of node k as follow.

◊ R0,j, move a wafer j from LL to the first stage S1: the number of choices for this

move is strictly depended on number of unprocessed wafers in LL and status of S1.

Since every unprocessed wafer is the same (we actually index a wafer when loading

it to S1), the number of departure will be either one, if there is at least one

unprocessed wafer in LL, or zero. The number of destination is the number of free

chamber in the first stage (m1-l1,k). We can mathematically write the number of

choices for the move R0 as





=
≤≤−

=ζ
0l if 0

 Ll1 if lm

k0,

ko,k,11

k,0 (2)

◊ Ri,j, for i = 1,…, S-1, load a stage other than S1: the number of choices for these

moves depends on status of the departure stage Si-1 and destination stage Si. The

number of departure is the number of wafers in the departure stage li-1,k and the

number of destination is the number of free chamber in the destination stage mi-li,k.

Number of choices for loading these stage as

1S 1,..., ifor)lm(l k,iik,1ik,i −=−=ζ − (3)

◊ RS,j, unload the last stage: since the LL can store the whole lot of wafer, the number

of choice for this move only depends on status of the last stage. In fact, the number

of choice equals to the number departure, i.e. number of wafers in the last stage lS,k.

28

Thus, we can write

∑
−

=

+ζ=
1S

0i
k,Sk,ik lz (4)

Using equations (1), (2), (3), and (4), we can determine the number of nodes in each

level τ. Starting at the single node in level 1 and going to one of the nodes in the last

level, the collection of all nodes in this path form a feasible sequence of wafer handler

moves. The number of feasible sequences equals to the number of nodes in the last

level L(S+1). Since the sequences under the push and pull dispatching rules are

feasible, they are including in the outtree graph.

For example, consider problem CT1-1-2 | | Cmax. Let L equals 3. Denote S1 and S2 as

the names of chamber in the first and second stages respectively. Denote S31 and S32

as the names of the first and second chambers in the third stage. The number of times

that the scheduler must make selection is L(S+1) = 3(3+1) = 12. Table 1 presents

details on the numbers of wafers in each stage at each level τ associated with the

selected move. Figure 3 presents a branch of the directed outtree that forms by

collecting selected feasible moves in Table 1. In Figure 3, each node is represented by a

circle. Departures and destinations of the moves are also given next to each node.

Wafer index at each node is also given inside the parentheses. For example, at level 3,

S2-S31(1) means moving wafer 1 from stage 2 to the first chamber in stage 3. Noticing

that the number of dashed arrows outgoing the nodes is not exactly determined in

Figure 3. A complete exploration of all possible nodes in Appendix A shows that there

are 552 feasible sequences of wafer handler moves for a 1-1-2 cluster tool, processing 3

wafers per lot.

29

LL-S1 (1)

S1-S2 (1)

LL-S1 (2) S2-S31 (1)

S2-S31 (1)

S31-LL (1)

S2-S32 (2)

S1-S2 (2)

S31-LL (1)LL-S1 (3)

S1-S2 (3)

S2-S31 (3)

S32-LL (2)

S31-LL (3)

S31-LL (1)

S1-S2 (3)

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 11

Level 12

Figure 3. Partial outtree of the 1-1-2 cluster tool.

...

...

...

S31-LL (1)
...

...

S32-LL (2)
...

S32-LL (2)
...

S2-S32 (1)

S2-S32 (1)

S31-LL (3)

...

S32-LL (2)

...

...

...

S2-S32 (2)

...

30

Table 1. Numbers of wafers in each stage at each level τ associated with selected
moves.
m1 = 1, m2 = 1, m3 = 2.

τ
selected

move
l0 l1 l2 l3 ζ0 ζ 1 ζ 2

z =

ζ 0+ ζ 1+ ζ 2+l3

Next feasible moves

0 3 0 0 0 1 0 0 1 LL-S1

1 LL-S1 2 1 0 0 0 1 0 1 S1-S2

2 S1-S2 2 0 1 0 1 0 2 3
LL-S1, S2-S31,

S2-S32

3 LL-S1 1 1 1 0 0 0 2 2 S2-S31, S2-S32

4 S2-S31 1 1 0 1 0 1 0 2 S1-S2, S31-LL

5 S1-S2 1 0 1 1 1 0 1 3
LL-S1, S2-S32, S31-

LL

6 LL-S1 0 1 1 1 0 0 1 2 S2-S32, S31-LL

7 S2-S32 0 1 0 2 0 1 0 3
S1-S2, S31-LL, S32-

LL

8 S31-LL 0 1 0 1 0 1 0 2 S1-S2, S32-LL

9 S1-S2 0 0 1 1 0 0 1 2 S2-S31, S32-LL

10 S2-S31 0 0 0 2 0 0 0 2 S31-LL, S32-LL

11 S32-LL 0 0 0 1 0 0 0 1 S31-LL

12 S31-LL 0 0 0 0 0 0 0

3.4 Determining the lot makespan

The first task to solve this scheduling problem is to find the lot makespan for a given

cluster tool under a sequence of wafer handler moves. For a very simple tool

configuration and small lot size, one can easily construct a Gantt chart of all activities,

then determine the makespan as in Figure 2.

31

The lot makespan under a fixed sequence of wafer handler moves can also be computed

by determining the critical path in a network model, a collection of nodes and directed

arcs (Herrmann et al. ,1999 and Chandrasekaran, 1999). Associated with an activity,

either handler move activity or process activity in a chamber, there is a node with a

weight that is equal to the processing time of the activity. The directed arcs, connecting

the nodes, describe the precedence constraint between activities. A path will start at the

first node, representing the move to load the first wafer from load lock to a chamber in

the first stage, and end at the last node, representing the move to unload the last wafer

from the last stage. The total weight of the maximum weight path, or the length of the

longest path, corresponds to the makespan under the fixed sequence of wafer handler

moves.

When the tool configuration is more complex, i.e. more than two processing stages or

more than two chambers in a stage, and the lot size is a large number, constructing the

Gantt chart and network model for such tools are time-consuming tasks. In such cases,

discrete-event simulation models should be developed. One example is the Cluster

Tool Performance Simulator (CTPS) software that Lee Schruben (1999) developed at

Cornell University. The input of CTPS includes the tool configuration, the lot size, the

sequence of processes that each wafer should undergo, the duration time of each

operation (both wafer handler move and process activities), and a rule (push or pull) for

moving the wafer within the tool. Limitations of the CTPS include:

32

• The tool configuration is not flexible; in fact, every stage cannot have more

than two chambers.

• Either push or pull dispatching rule must be used to generate the sequences.

We can easily develop simulation model that uses the dispatching rule (push or pull), to

generate a sequence of activities then determine its makespan for any given tool

configuration. Also, we can easily develop simulation model that determines the

makespan of a cluster tool under a pre-specified sequence of wafer handler moves.

3.5 Summary

This chapter has identified the main objective of the problem. That is finding the

optimal sequence of wafer handler moves to minimize the lot makespan, given lot size,

handler move time, and chamber processing time, for single wafer hander and single

load lock cluster tool. Using the introduced framework, the problem can be formulated

as a standard scheduling problem. This chapter describes seven constraints for

constructing feasible sequences of handler moves and an additional permutation

constraint. It presented a methodology to construct an outtree graph for a given tool

configuration based on the constraints. Finally, it described methodologies to determine

the lot makespan from a given sequence of handler moves and to generate a schedule

and determine the lot makespan using current push and pull dispatching rules.

33

CHAPTER 4

BRANCH-AND-BOUND ALGORITHM

Currently, there is no available algorithm that generates an optimal sequence of wafer

handler moves for a multi-chamber, multi-stage cluster tool. In this chapter, we will

develop a forward branch-and-bound algorithm for finding a sequence that minimizes

the lot makespan.

4.1 The forward branch-and-bound algorithm

A branch-and-bound procedure is an enumeration scheme that can discard a partial

solution by showing that the objective value obtained with the partial solution is not

optimal. This involves computing a lower bound on the value of any solution that uses

the partial solution and an upper bound on the value of the optimal solution. If the

partial solution’s lower bound is greater than optimal value’s upper bound, then the

partial solution cannot lead to an optimal solution, so it can be discarded.

The algorithm first generates two feasible sequences using the push and pull dispatching

rules and uses the better sequence’s lot makespan as the upper bound on the optimal lot

makespan. The better sequence is also used as an optimal sequence candidate. For a

partial solution, we use the completion time of the last scheduled activity as its lower

bound.

34

Given m1,...,mS, pr, p1,...,pS, and L, the algorithm proceeds as follows.

Algorithm BB:

Step 0:

Use the push and pull dispatching rules to generate two feasible sequences (see

Algorithm P). Take the better sequence as an optimal sequence candidate, and use its

makespan as an upper bound on the optimal value.

Step 1:

Initialize the cluster tool. All L unprocessed wafers are in LL, and the wafer

handler is at LL. All of the chambers are free. The current sequence is a

sequence with no moves. Set t = 0, n = L, and tk = 0 for all chambers k.

Step 2:

Based on the tool state, identify all feasible moves.

• R0,j is feasible if j = L+1-n and there is a free chamber in S1. This can begin

at time t.

• Ri,j (0 < i < S) is feasible if wafer j is at chamber k in Si and there is a free

chamber in Si+1. This can begin at max{t, tk}.

• RS,j is feasible if wafer j is at chamber k in SS. This can begin at max{t, tk}.

35

Step 3:

For each feasible move, form a new sequence and calculate LB as follows: add

the feasible move to the current sequence, compute the move’s completion time, and

update the tool state.

• If the feasible move was R0,j, then go to Step 3a.

• If the feasible move was Ri,j, 0 < i < S, then go to Step 3b.

• Otherwise, go to Step 3c.

Step 3a:

Reduce n by one. If the wafer handler was at LL, then the move completion

time C = t + pr. Otherwise, the move completion time C = t + 2pr. Let q be the

lowest-numbered free chamber in S1. The wafer handler is now at chamber q,

which now has wafer j, and tq = C + p1. Let LB = tq. Go to Step 3d.

Step 3b:

Let k be the chamber in Si that was processing wafer j. If the wafer handler was

at chamber k, then the move completion time C = max{t, tk} + pr. Otherwise,

the move completion time C = max{t, tk} +2pr. Chamber k is now free. Let q

be the lowest-numbered free chamber in Si+1. The wafer handler is now at

chamber q, which now has wafer j, and tq = C + pi+1. Let LB = tq. Go to Step 3d.

Step 3c:

Let k be the chamber in SS that was processing wafer j. If the wafer handler was

at chamber k, then the move completion time C = max {t, tk}+ pr. Otherwise,

the move completion time C = max {t, tk}+ pr. Chamber k is now free. Go to

Step 3d.

36

Step 3d:

Let t = C. If LB is greater than or equal to the upper bound on the optimal

value, then discard this new sequence. If the new sequence includes all L(S+1) moves,

the lot makespan equals C. If the lot makespan is less than the upper bound, save the

new sequence as the current best sequence and set the upper bound equal to the lot

makespan.

Step 4:

If any incomplete new sequences remain, select one, identify the corresponding

tool state, and go to Step 2. Otherwise, stop. The current best sequence is an optimal

sequence.

For example, consider the problem CT1-1 | | Cmax. The following information is given:

pr = 5, p1 = 10, p2 = 40, and L = 3. The push sequence is R0,1, R1,1, R0,2, R2,1, R1,2, R0,3,

R2,2, R1,3, R2,3. The lot makespan is 185. Figure 4 shows a graph of all feasible

sequences. Any path from the top node (the first feasible move) to a lower node

corresponds to a feasible partial sequence. Branch A corresponds to the push sequence.

Because the upper bound is 185, this is the only branch fully explored. The other

branches are discarded when the partial sequences have eight moves because the lower

bounds are greater than or equal to 185 (C ≥ 145. LB = C + p2 ≥ 185).

37

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

L

Level 8

Level 9

Figure 4. Outtree graph of the CT1-1 (3 wafers per lot).

Note:

R0, 1 [0, 5]

R1, 1 [15, 20]

R0, 2 [20, 30] R2, 1 [60, 65]

R0, 2 [65, 70]

R1, 2 [80, 85]

R0, 3 [85, 95] R2, 2 [125, 130]

R0, 3 [130, 135]

R1,3 [145, 150]

R2, 3 [190, 195]

R2, 1 [60, 70]

R1, 2 [70, 80]

R0, 3 [80, 90] R2, 2 [120, 125]

R0, 3 [125, 130]

R1, 3 [140, 145]

R2, 3 [185, 190]

R2, 2 [120, 130]

R1, 3 [130, 140]

R2, 3 [180, 185] R2, 3 [185, 190]

R1, 3 [135, 145]

R2, 2 [125, 135]

completion time

Ri, j [##, ###]

start time

A B C D

38

We now present an algorithm that uses the push (or pull) dispatching rule to construct a

feasible schedule.

Algorithm P:

Step 1:

Initialize the cluster tool. All L unprocessed wafers are in LL, and the wafer

handler is at LL. All of the chambers are free. Set t = 0 and n = L.

Step 2:

Based on the tool state, identify any feasible moves that could begin at time t.

Move R0,j can begin at time t if j = L+1-n and there is a free chamber in S1.

Move Ri,j (0 < i < S) can begin at time t if wafer j is at chamber k in Si, tk ≤ t,

and there is a free chamber in Si+1. Move RS,j can begin at time t if wafer j is at

chamber k in SS and tk ≤ t.

• If there is exactly one feasible move, then perform that move. Go to Step 4.

• If there is more than one feasible move and the dispatching rule is push, select the

feasible move Ri,j with the smallest value of i. Go to Step 4.

• If there is more than one feasible move and the dispatching rule is pull, select the

feasible move Ri,j with the largest value of i. Go to Step 4.

• Otherwise, go to Step 3.

39

Step 3:

Among the busy chambers k in S1, ..., SS, identify the minimum value of tk. Let

t = tk. Go to Step 2.

Step 4:

Update the tool state.

• If the selected move was R0,j, then reduce n by 1. If the wafer handler was at

LL, then the move completion time C = t + pr. Otherwise, the move

completion time C = t + 2pr. Let q be the lowest-numbered free chamber in

S1. The wafer handler is now at chamber q, which now starts processing

wafer j, and tq = C + p1.

• If the selected move was Ri,j, 0 < i < S, then let k be the chamber in Si that

was processing wafer j. If the wafer handler was at chamber k, then the

move completion time C = t + pr. Otherwise, the move completion time C =

t +2pr. Chamber k is now free. Let q be the lowest-numbered free chamber

in Si+1. The wafer handler is now at chamber q, which now starts processing

wafer j, and tq = C + pi+1.

• Otherwise, let k be the chamber in SS that was processing wafer j. If the

wafer handler was at chamber k, then the move completion time C = t + pr.

Otherwise, the move completion time C = t + 2pr. Chamber k is now free.

The wafer handler is now at LL.

40

Step 5:

Let t = C. If n = 0 and all chambers are free, then stop. The lot makespan

equals C. Otherwise, go to Step 2.

Note that Algorithm P generates only non-delay schedules.

4.2 Dominance criteria

Since all chambers in a stage are identical, move Ri,j loads the lowest-numbered free

chamber in Si+1 (i = 0, ..., S-1). Doing this will eliminate the number of search

branches, thus reduce the solution space when the number of chambers in a stage is

greater than one.

The permutation constraint states that each wafer must be moved in turn. That is, Ri,j

must precede Ri,j+1 for all i = 0, ..., S, and j = 1, ..., L-1. If all stages have exactly one

chamber (all mi = 1, i = 1, ..., S), then all feasible sequences satisfy this constraint.

Otherwise, there may exist feasible sequences that violate this constraint. We will show

however, that, for some tool configurations, there exists an optimal sequence that does

satisfy this constraint. Thus, we can limit the branch-and-bound search to those

sequences. This will improve our search performance.

Theorem 1. If, for each i = 1, ..., S, mi = 1 or pi ≥ pr, then there exists an optimal

sequence that satisfies the permutation constraint.

41

Proof. Consider an optimal feasible sequence Q that violates the permutation

constraint. Then, find i such that Rk,j precedes Rk,j+1 for k = 0, ..., i-1, but Ri,j+1 precedes

Ri,j. Since R0,j must precede R0,j+1, then i is at least 1.

If mi = 1, Ri-1,j+1 is infeasible until Ri,j empties the chamber in Si. Ri,j must precede Ri-

1,j+1 and Ri,j+1, so Q is infeasible. Thus, Si must have multiple chambers (mi > 1) and pi

≥ pr.

Now, form a new sequence Q’ by interchanging Rk,j and Rk,j+1 for k = i, ..., S. We will

show that Q’ is a feasible sequence and that, since pi ≥ pr, it does not increase the lot

makespan. If Q’ is not a permutation sequence yet, then we can repeat this construction

until we have a feasible permutation sequence that does not increase the lot makespan

of Q. Thus, this forms a feasible permutation sequence that is also optimal.

Q’ is a feasible sequence because creating it only interchanges wafer j moves with

wafer j+1 moves. If there was a chamber free to accept wafer j+1, then it is still free to

accept wafer j (and vice versa).

Now consider two cases. In the first case, there is, in Q, a move between Ri-1,j+1 and

Ri,j+1. Thus, in Q, Ri,j+1 requires 2pr time units (since Ri-1,j+1 does not immediately

precede it). Also, Ri,j requires 2pr time units (since Ri-1,j does not immediately precede

it). After the interchange, in Q’, both moves still require 2pr time units. For k = i+1,...,

S, move Rk,j in Q’ requires the amount of time that Rk,j+1 required in Q (and vice versa).

Thus, all moves still require the same amount of time. Because Ri-1,j precedes Ri-1,j+1,

42

wafer j is complete at Si before wafer j+1. Thus, in Q’, Ri,j can start at the time that

Ri,j+1 started in Q. Ri,j+1 is delayed after the interchange and can certainly start in Q’

when Ri,j started in Q. Thus Q’ delays no moves other than those interchanged and they

can start at the same time, so the lot makespan is not increased.

In the second case, there is, in Q, no move between Ri-1,j+1 and Ri,j+1. Thus, in Q’, there

is no move between Ri-1,j+1 and Ri,j. Let Q1 be the subsequence in Q that occurs

between Ri-1,j and Ri-1,j+1.

Now we need to consider the following sub-cases:

B1: Q1 empty or Q1 not empty and doesn’t end with Ri-2,j+1.

B2: Q1 ends with Ri-2,j+1.

Consider case B1. Let td denote the time that Ri-1,j+1 becomes feasible (because Si-1

finishes processing wafer j+1 and there is a free chamber in Si). Consider the move that

precedes Ri-1,j+1. Let tc denote the time that this move finishes. Thus, Ri-1,j+1 begins at

max{tc, td}. Let ta be the time that Ri-1,j finishes. If Q1 is empty, ta = tc. Otherwise,

because the first move in Q1 is not Ri,j, tc ≥ ta+2pr. Note that Ri,j in Q and Ri,j+1 in Q’

both require 2pr time units. We need to show that, in Q’, Ri,j finishes no later than Ri,j+1

finishes in Q. Then, Q’ does not increase the lot makespan because no remaining

moves are delayed.

• If pr ≤ pi ≤ tc-ta+2pr and td ≤ tc, then, in Q, Ri,j+1 completes at tc+3pr+pi. In Q’, Ri,j

completes at tc+4pr. Since pi ≥ pr, Ri,j finishes earlier.

43

• If pi ≥ tc-ta+2pr and td ≤ tc, then, in Q, Ri,j+1 completes at tc+3pr+pi. In Q’, Ri,j

completes at ta+2pr+pi. Since tc > ta, Ri,j finishes earlier.

• If pi ≥ tc-ta+2pr and tc ≤ td ≤ ta+pi-2pr, then, in Q, Ri,j+1 completes at td+3pr+pi. In Q’,

Ri,j completes at ta+2pr+pi. Since td ≥ tc > ta, Ri,j finishes earlier.

• If pi ≥ pr and tc ≤ td and td ≥ ta+pi-2pr, then, in Q, Ri,j+1 completes at td+3pr+pi. In Q’,

Ri,j completes at td+4pr. Since pi ≥ pr, Ri,j finishes earlier.

Consider Case B2. Let td denote the time that Ri-1,j+1 becomes feasible (because Si-1

finishes processing wafer j+1 and there is a free chamber in Si). Consider the move that

precedes Ri-1,j+1. Let tc denote the time that this move finishes. Because the last move

in Q1 is Ri-2,j+1, td = tc+pi-1. Thus, Ri-1,j+1 begins at td and ends at td+pr. Let ta be the time

that Ri-1,j finishes. Because the first move in Q1 is not Ri,j, tc ≥ ta+2pr. Note that Ri,j in

Q and Ri,j+1 in Q’ both require 2pr time units. We need to show that, in Q’, Ri,j finishes

no later than Ri,j+1 finishes in Q. Then, Q’ does not increase the lot makespan because

no remaining moves are delayed.

• If pi ≥ td-ta+pr, then, in Q, Ri,j+1 completes at td+2pr+pi. In Q’, Ri,j completes at

ta+2pr+pi. Since td > tc > ta, Ri,j finishes earlier.

• If pr ≤ pi ≤ td-ta+pr, then, in Q, Ri,j+1 completes at td+2pr+pi. In Q’, Ri,j completes at

td+3pr. Since pi ≥ pr, Ri,j finishes earlier.

This completes the proof.

44

By limiting the branch-and-bound algorithm to permutation sequences, we limit the

number of sequences that need to be considered. We can abbreviate the search more

with the following dominance property.

Since wafer processing can happen concurrently in different chambers, a move can be

discarded if there exists another move at the same level that can be proceeded before the

first move without delaying the first move’s completion time and changing its

processing time. For instance, consider a scenario shown in Figure 5.

Assume that there are three moves (a, b, and c) available at time t, and the wafer handler

is at chamber B. Both move a and move c take 2pr while move b takes pr. Both moves

b and c dominate move a, since they can finish before wafer WA is available and move a

will always take 2pr. Even though move c can finish before wafer WB is available, it

does not dominate move b because the time required for move b will change to 2pr if

move c precedes move b.

45

Chamber B

CHAMBE

Chamber C

WA

WB

WC

2pr

2pr

pr

Figure 5. A scenario demonstrating the third dominance criterion.

move a

move b

move c
Time

t

46

Let Q1 be a feasible partial sequence. Rp,q dominates Ri,j if, for any complete, feasible

permutation sequence Q that starts with Q1 and Ri,j, there is a complete, feasible

permutation sequence Q’ that starts with Q1 and Rp,q and the makespan of Q’ is not

greater than the makespan of Q. Thus, the branch-and-bound algorithm will not find a

better sequence by searching the sequences that start with Q1 and Ri,j.

Theorem 2. Given Q1, a feasible partial sequence that satisfies the permutation

constraint, move Rp,q dominates Ri,j if both are feasible and the following conditions

hold: The last move in Q1 ends at time t. The wafer handler is at chamber k after this

move (k may be LL). Ri,j can begin at time ta ≥ t and wafer j is at chamber ca, which is

not chamber k. Rp,q can begin at time tb ≥ t and wafer q is at chamber cq. Either cq = k

and tb+pr ≤ ta or cq is not k and tb+2pr ≤ ta.

Proof. Consider a complete feasible permutation sequence Q that begins with Q1 and

Ri,j. Since ca is not k, Ri,j requires 2pr time units. Form a new sequence Q’ by moving

Rp,q before Ri,j. Because Rp,q remained feasible from the end of Q1 to its position in Q,

Q’ is also a feasible permutation sequence. If cq = k and tb+pr ≤ ta, the wafer handler

can complete Rp,q at tb+pr and still begin Ri,j at ta. Otherwise, cq is not k and tb+2pr ≤ ta.

Still, the wafer handler can complete Rp,q at tb+2pr and still begin Ri,j at ta. Thus, no

move must be delayed, and the lot makespan of Q’ is not worse than the lot makespan

of Q.

47

Note that using this criterion limits the branch-and-bound algorithm to the set of active

schedules. In summary, the solution space of the problem can be reduced by applying

three dominance criteria.

1) The wafer handler should always load the lowest-numbered free chamber in a stage.

2) The permutation constraint, which forces the wafer handler to unload wafer j before

wafer j+1 in the same stage (Ri,j should precede Ri,j+1).

3) The active constraint, which prohibits a move Ri,j if there exists another move Rp,q

that can be done first without delaying the completion of Ri,j.

4.3 Number of feasible sequence under the first and second dominance criteria

Applying dominance criteria 1 and 2 and defining the function δ(x) as





=
≥

=δ
,0xif0

1x if1
)x((5)

we can rewrite the number of choices in each wafer handler move for the permutation

problem as follows.

• Ri, load Si: number of choices

S,...,1i,)lm()l(k,iik,1ik,i =∀−δδ=ζ − (6)

• RS, unload SS, unload the last stage: number of choices will be either one, if there is

at least a wafer in the last stage, or zero, which mathematically expresses as δ(lS,k).

Thus, we can write the total number of feasible choices resulting from the state of the

cluster tool associated with the node k at level τ-1.

∑
=

− δ+−δδ=
S

1i
k,Sk,iik,1ik).l()lm()l(z (7)

48

For instance, revisit the 1-1-2 cluster tool, processing 3 wafers per lot. If applying the

first and second criteria, the number of feasible sequences reduces to 69 from 552

sequences. (See Appendix A for details on determining the number of feasible

sequences).

The third criterion involves processing times of the activities, hence, it may be active

for some instants and inactive for others. The dominance criteria can be applied to the

algorithm BB while finding all feasible moves in Step 2.

4.4 Better lower bounds

In section 4.1, the completion time of the last scheduled activity is used as lower bound

LB for a partial solution. Let σ be the partial sequence. Denote LB(σ) as lower bound of

σ. Let Ca be the completion time of the last activity in σ. Then,

LB1(σ) = Ca (8)

Although this lower bound is very easy to determine, it will not detect a bad sequence

(one that has partial makespan greater than or equal to the upper bound) until the search

is almost at the end of a searching branch. Three better lower bounds proposed below

can be applied to improve the search performance of the Algorithm BB.

1) Let C be the completion time of the last move in σ. Let nσ be the total number of

moves that have been performed in σ. The remaining move is L(S-1) - nσ. Neglect

all activities in the process chambers, and assume that all remaining moves require

pr. Then,

49

() rpn)1S(LC)(2LB σ−−+=σ (9)

Thus, LB2(σ) will likely help the algorithm discard poor solutions when move time pr is

long compared to processing time pi.

2) From σ, determine number of wafers has been started W1(σ), which equals to the

number of moves R0, j in σ. Then to complete a branch starting with σ, there will be

(L-W1(σ)) move(s) needed to load the unprocessed wafer(s) to S1. Assume that all

moves require pr. Total time needed to completed these moves is (L-W1(σ))pr.

Neglect all activities in the process chambers that happen between R0, L-W1(s) and

R0,L. Hence, if W1(σ) < L,

() ()∑
=

++σ−+=σ
S

1i
rir ppp)(1WLC)(3LB (10)

3) Let Wi(σ) be numbers of wafer(s) that have started processing in Si (i = 1, …, S).

Notice that Wi(σ) equals to the number of moves Ri-1, j in σ. Each chamber in Si

will be loaded (L - Wi(σ))/mi times. Assume that all moves require pr. Then,

()() .S,...,1i,pp
m

)(WL
C)(4LB ri

i

i
i =∀+σ−+≥σ (11)

Thus, LB3(σ) and LB4i(σ) will likely help the algorithm discards poor sequences when

move time pr is short compared to processing times pi.

For a given σ, we can check whether σ is a bad sequence by first determining the

maximum value of all quantities in the right hand side in the Equations 9, 10, 11, and

50

12. Then, if this value is greater than or equal to the upper bound, σ is a bad sequence,

hence, σ can be discarded.

4.5 Summary

This chapter presents a forward branch-and-bound algorithm that can be implemented

to any tool configuration to find an optimal sequence of wafer handler moves with the

objective of minimizing the lot makespan. The better sequence between the push and

pull sequence is initially used as candidate of the solution and its makespan is used as

an upper bound, which is updated whenever a better solution is found. For a partial

solution, we use the completion time of the last scheduled activity as its lower bound.

The algorithm searches all possibly feasible sequences of wafer handler moves for

single wafer handler and single load lock cluster tools; hence it guarantees the

optimality of the solution. The algorithms for the push and pull dispatching rules are

also presented.

Three dominance criteria are introduced to greatly reduce the solution space to improve

the search performance. A numerical example shows that the solution space can be

greatly reduced by using the first and second criteria. We have proved that, in cases

when the handler move time is not greater than the chamber processing times, there

exists an optimal solution that satisfy three dominance criteria. Sophisticated lower

bounds are proposed and will be numerically evaluated in Chapter 7.

51

CHAPTER 5

THE CYCLIC BEHAVIOR OF THE CLUSTER TOOLS AND

TRUNCATED BRANCH-AND-BOUND ALGORITHM

5.1 Performance of a cluster tool processing a finite lot size

Normally, if the lot size L is large enough, the performance of a cluster tool might be

separated into three phases: filling-up, steady state (or cyclic), and completion. The tool

is empty when processing begins. Until the first wafer is completed, the tool is filling

up with wafers. Then the tool is in a steady-state phase as it completes wafers and loads

new wafers. Then when there are no more wafers to start, the tool enters the completion

phase. Processing ends when the last wafer is unloaded from the last stage. Starting

with an empty tool and the wafer handler is at load lock ready to pick up a wafer, after

some number of events (wafer handler moves) the tool will converge to a steady state.

Just after the last unprocessed wafer is loaded to a chamber of the first stage, the tool

orderly begins to flush wafers out until the last wafer is unloaded from the last stage.

Let us define a λ-unit cycle as a subsequence during which each stage is loaded and

unloaded λ times (λ wafers are completed). The resulting sequence formed by

repeating a cycle in the steady state and completion phase is called the λ-unit cyclic

sequence. Note that the cycle does not define the filling-up phase, which ends with the

first wafer being completed.

52

This chapter presents an efficient search algorithm that can quickly find the best λ-unit

cyclic sequence of wafer handler moves. The algorithm requires less computational

effort than a complete branch-and-bound algorithm. The problem is to find the λ-unit

cyclic sequence of wafer handler moves that minimizes the total time required to

process all the wafers and return them to LL.

Srinivasan (1998) observes that “during steady state operation in a typical cluster tool,

there is a certain sequence of events that occurs recurrently, forming a cycle.” Figure 6

presents the Gantt charts of the push sequence and optimal sequence for a tool that has

two chambers in the first stage and two chambers in the second stage. Based on

Srinivasan’s observation, we can say that the cyclic phases in the push and optimal

sequences start at time 65. The cyclic phase of the push sequence consists of four 1-unit

cycles σ1, while the optimal sequence consists of two 2-unit cycles σ2, where σ1 = R2, p

– R1, p+2 – R0, p+4 (p = 1,...,L-4), and σ2 = R2, q – R1, q+2 – R2, q+1 – R1, q+3 – R0, q+4 – R0, q+5

(q = 1,..., L-6).

Actually, there are many ways to define the starting point of a cyclic cycle. For

example, we can say that the first cyclic cycle of the push sequence in Figure 6 starts at

time 75 and σ1 will be R1, p+1 – R0, p+3 – R2, p (p = 2,..., L-3). And so on. Hence, for

convenience, we may sometimes consider different starting events for different

sequences.

53

Handler

M1

M2

M3

M4

Handler

M1

M2

M3

M4

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

PUSH: MS = 285 S

Optimal: MS = 275 s

Load S1 Load S2 Unload S2

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

time

time

Figure 6. Gantt charts of push and optimal sequences for CT2-2 (L = 8).

Note:

54

Another important observation is that the order of events in the completion phase

resembles that in the cyclic phase. In Figure 6, the six events in the completion phase

of the optimal sequence can be divided into two incomplete cycles: the first includes R2,

L-3 – R1, L-1 – R2, L-2 – R1, L; the second includes R2, L-1 – R2, L. The reason for lacking an

event in an incomplete cycle is such event has become infeasible. For example, the first

incomplete cycle lacks the load S1 events, since there is no wafer in load lock after time

185; hence, load S1 is infeasible.

There may exist more than one feasible filling-up sequence, we will begin by studying

two special cases: CT1-1 and CT1-1-1.

5.2 The CT1-1 Problems

In this section, we analyze cycle time and makespan of the two 1-unit sequences for a

two-stage cluster tool following two 1-unit cycle that Sethi et al. (1992) provide. For a

tool that has M machines, S = M stages, each 1-unit cycle can be exactly described by

M+1 wafer handler moves: Mi
- move a wafer to machine Mi (i = 1,…, S) and MS

+ move

a wafer from MS. For the CT1-1 environment, M = 2, and the corresponding wafer

handler moves of the two 1-unit cycles are:

σ1: R2,j-1 – R0,j – R1,j – R2,j (j = 2,..., L),

σ2: R2,j-1 – R1, j – R0,j+1 – R2,j (j = 2,..., L).

Each cycle has only one feasible filling-up phase: for σ1 that is R0, 1 – R1, 1 and for σ2

that is R0, 1 – R1, 1 – R0, 2.

55

Theorem 3. For CT1-1, the 1-unit cycle time Px and makespan MSx (x = 1, 2) of the 1-

unit cyclic sequences σx is given by:

P1 = 3pr + p1 + p2, (12a)

MS1 = LP1, (12b)

P2 = 4pr + max{2pr, p1, p2}, (13a)

MS2 = 3pr + p1 + p2 + (L-1)P2. (13b)

Proof. The cycle time Px and makespan MSx are evaluated in Appendix B.

Theorem 4. For CT1-1, if pr ≥ p1 and pr ≥ p2, then P2 > P1 and MS2 > MS1.

Proof. Assume that pr ≥ p1 and pr ≥ p2 ⇒ P2 = 4pr + max{2pr, p1, p2} = 6pr, and P1 = 3pr

+ p1 + p2 ≤ 5pr ⇒ P2 > P1. Clearly that when P2 >P1, then MS2 > MS1 since MS2 -

MS1=(L-1)(P2-P1) > 0.

5.3 The CT1-1-1 problems

In this section, we derive cycle times and makespans of the 1-unit sequences for a three-

stage cluster tool. There are six 1-unit cycles that Sethi et al. (1992) provide. For the

CT1-1-1 problems, M = 3, the corresponding wafer handler moves of the six 1-unit

cycles are:

56

σ1: R3,j-1 – R0,j – R1,j – R2,j – R3,j.

σ2: R3,j-1 – R0,j+1 – R2,j – R1,j+1 – R3,j.

σ3: R3,j-1 – R2,j – R0,j+1 – R1,j+1 – R3,j.

σ4: R3,j-1 – R1,j – R2,j – R0,j+1 – R3,j.

σ5: R3,j-1 – R1,j – R0,j+1 – R2,j – R3,j.

σ6: R3,j-1 – R2,j – R1,j+1 – R0,j+2 – R3,j.

For σ1, there is just one feasible filling-up phase. For the other five cycles, there are

two feasible filling-up phases. Thus, there are eleven feasible cyclic sequences for

CT1-1-1.

Theorem 5. For CT1-1-1, the cycle times and lot makespans of the 1-unit cyclic

sequences that use cycle σx (x = 1, 3, 4, and 5) are given in Table 2.

Proof. The cycle times and makespans are evaluated in Appendix C.

57

Table 2. Cycle time and lot makespan of the 1-unit cyclic sequences that use cycle σx (x

= 1, 3, 4, and 5).

Cycle Cycle time Filling-up phase � Lot makespan
Equation

number

σ1
P1 = 4pr + p1 +

p2 + p3

∅
MS1 = LP1 = 4pr+p1+p2+

p3+(L-1)P1

(14a,b)

f1 = R0,1 – R1,1 –

R2,1 – R0,2 – R1,2

MS31 = 4pr + p1 + p2 + p3

+ (L-1)P3

(15a,b)

σ3

P3 = 4pr +

max{3pr + p1,

p3, pr + p1 + p2}
f2 = R0,1 – R1,1 –

R0,2 – R2,1 – R1,2

MS32 = 9pr + p1 + p3+

max{p2, 2pr}+ max{p1,

p2, p3, 2pr}+ (L-2)P3

(16a,b)

f1 = R0,1 – R1,1 –

R2,1 – R0,2

MS41 = 4pr + p1 + p2 + p3

+ (L-1)P4

(17a,b)

σ4
P4 = 5pr + p2 +

max{2pr, p3, p1} f2 = R0,1 – R1,1 –

R0,2 – R2,1

MS42 = 8pr + p1 + p2 + p3

+ max{p1, pr + p3 +

max(p2, 2pr)}+ (L - 2)P4

(18a,b)

f1 = R0,1 – R1,1 –

R0,2 – R2,1

MS51 = 4pr + p1 + p2 + p3

+ (L-1)P5

(19a,b)

σ5

P5 = 4pr +

max{pr + p2 +

p3, 3pr + p3, p1}
f2 = R0,1 – R1,1 –

R2,1 – R0,2

MS52 = 9pr + p1 + 2p2 + p3

+ max{p1, p3, 2pr}+ (L -

2)P5

(20a,b)

��Note filling-up phase has been adjusted in Appendix C.

Theorem 6. For CT1-1-1, the cycle time and lot makespan of the 1-unit cyclic

sequences that use cycle σ2 are given by:

• Filling-up phase f1 = R0, 1 – R1, 1 – R0, 2 – R2, 1 – R1, 2:

(21a)

MS21 = 13pr + p1 + p3 + a1 + b1 + c1 + (L –2) P21 + max(p2 - 2pr – cL-1, 0) (21b)

.P
2L

1
P

1L

2j
21j21 ∑

−

=−
=

58

 Where: for all j = 2,…, (L-1)

P21j = 7pr + aj + bj + cj, (21c)

bj = max(p2 - 3pr – cj-1, 0) (21d)

aj = max(p1 - 2pr – bj, 0) (21e)

cj = max(p3 - 2pr – aj, 0) (21f)

b1 = max(p2 - 2pr, 0) = max(p2, 2pr) - 2pr (21g)

a1 = max{p1 - max(p2, 2pr), 0} (21h)

c1 = max(p3 - 2pr - a1, 0) (21i)

• Filling-up phase f2 = R0, 1 – R1, 1 – R2, 1 – R0, 2 – R1, 2:

(22a)

MS22 = 8pr + p1 + p2 + p3 + max{p3, 3pr + p1} +max{p2 – 2pr – gL-2, 0} +

+ (L – 2)P22. (22b)

Where:

P22j = 7pr + dj + ej + gj, for all j = 1, ..., (L-2) (22c)

q j = 1

e1 = max{p1 + p2 – max(p3, p1 + 3pr), 0} (22d)

d1 = max{p1 – 2pr – e1, 0} (22e)

g1 = max{p3 – 2pr – d1, 0} (22f)

.P
2L

1
P

2L

1j
22j22 ∑

−

=−
=

59

q 1 < j ≤ (L-2)

ej = max{p2 – 3pr – gj-1, 0} (22g)

dj = max{p1 – 2pr – ej, 0} (22h)

gj = max{p3 – 2pr – dj, 0} (22i)

Proof. The cycle times and makespans are evaluated in Appendix D.

Theorem 7. For CT1-1-1, the cycle time and lot makespan of the 1-unit cyclic

sequences that use cycle σ6 are given by:

� Filling-up phase f1 = R0, 1 – R1, 1 – R0, 2 – R2, 1 – R1, 2 – R0, 3:

.P
3L

1
P

2L

2j
j6161 ∑

−

=−
= (23a)

MS61 = 13pr + p1 + p3 + wL-2 + max(2pr, p1, p2) + max{4pr, p2, p3 - max[0, p1 –

- max(2pr, p2)]} + max{2pr, p2, p3- wL-2} + (L –3)P61 (23b)

Where:

P61j = 4pr+ wj +max{p2, p3-wj, 4pr}, for all j = 2, ..., (L-2) (23c)

w2 = max{p1 - max{4pr, p2, p3 - max[0, p1 - max(2pr, p2)]}, 0} (23d)

wj+1 = max{p1-max(p2, p3 – wj, 4pr), 0}, for all j = 3,..., (L-2). (23e)

� Filling-up phase f2 = R0, 1 – R1, 1 – R2, 1 – R0, 2 – R1, 2 – R0, 3:

.P
3L

1
P

2L

2j
j6262 ∑

−

=−
= (24a)

MS62 = 12pr + p1 + p2 +p3+vL-2+ max{pr + p1 + p2, p3, 5pr + p1}+

+ max{2pr, p2, p3- vL-2}+(L - 3)P62. (24b)

60

Where: P62j = 4pr + vj + max{p2, p3-vj, 4pr}, for all j = 2, ..., (L-2) (24c)

v2 = max{p1 – max[p2, 4pr, p3 – p1 – pr], 0} (24d)

vj+1 = max{p1-max(p2, p3 – vj, 4pr), 0}, for all j = 3, ..., (L-2). (24e)

Proof. The cycle times and makespans are evaluated in Appendix E.

Hall et al. (1997) show that, for a mobile-robot cell, which has 3 machines and 3 stages,

processing single part-type, there is a unique formula for cycle time if the tool follows

σ2. However, this is not applicable to our tool structure. For example, consider the

problem CT1-1-1 | | Cmax. Table 3 and 4 present cycle times and makespans of σ2-

sequence, using filling-up f1 and f2 respectively, for some instances. Let pr = 1, p1 = 5,

and p3 = 10.

Table 3. Cycle time and makespan of σ2-sequence, using f1 = R0, 1 – R1, 1 – R0, 2 – R2, 1

– R1, 2, for some instances.

P21jAdditional

data j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9
P21 MS21

p2 = 20,

L = 9
24 24 24 24 24 24 24 - 24 232

p2 = 20,

L = 10
24 24 24 24 24 24 24 24 24 256

p2 = 10,

L = 9
15 17 15 17 15 17 15 - 15.86 158

p2 = 10,

L = 10
15 17 15 17 15 17 15 17 16 173

61

Table 4. Cycle time and makespan of σ2-sequence, using f2 = R0, 1 – R1, 1 – R2, 1 – R0, 2

– R1, 2, for some instances.

P22jAdditional

data j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
P22 MS22

p2 = 20,

L = 9
30 24 24 24 24 24 24 - 24.85 237

p2 = 20,

L = 10
30 24 24 24 24 24 24 24 27.75 261

p2 = 10,

L = 9
20 15 17 15 17 15 17 - 16.57 160

p2 = 10,

L = 10
20 15 17 15 17 15 17 15 16.38 177

The following Corollaries are direct results from Theorem 5.

Corollary 1. For a CT1-1-1, if Px ≥ Py, then MSx1 ≥ MSy1 for all x, y = 1, 3, 4, and 5.

Proof. By comparing formulas of MS1, MS31, MS41, and MS5f1.

Corollary 2. For a CT1-1-1, there is no guarantee that MSx1 = MSx2 for all x = 2, 3, 4,

5, and 6.

Proof. By considering the following instance. Let L = 15, pr = 13, p1 = 18, p2 = 14, p3

= 37. Table 5 presents the cycle times and lot makespans of the eleven sequences

dictating in Theorems 5, 6, and 7.

62

Table 5. Cycle time and makespan of the 1-unit cyclic sequences when L = 15, pr = 13,

p1 = 18, p2 = 14, p3 = 37.

x 1 2 3 4 5 6

Px1 102 104

Px2

121
102

109 116 128
104

MSx1 1561 1647 1745 1913 1587

MSx2

1815
1556 1652 1757 1901 1593

Note that in this instance, MS22 is the makespan of the best 1-unit cyclic sequence.

Lemma 1. Repetition of the best 1-unit wafer hander moves cycle does not guarantee

optimality for the problem CT1-1-1 | | Cmax.

Proof. We will prove this lemma by providing a counterexample. Let L = 10, pr = 16,

p1 = 20, p2 = 11, and p3 = 18. Then σ2 is the optimal steady state cycle whose P21 = P22

= 112. The makespans of the σ2-sequences with different filling-up phase f1 and f2 are

MS21 = 1142 and MS22 = 1141. However, the optimal makespan is of the sequence that

forms by repeating σ1 whose P1 = 113, and MS1 = 1130.

However, we expect that if L is large enough then repeating of the optimal 1-unit cycle

will lead to an optimal 1-unit cyclic sequence. For instance, revisit the counterexample

in Lemma 1, if L greater than 21, then MS22 is optimal. Table 6 shows MS1 and MS22

as functions of lot size L. In this example, MS1 equals MS22 when L equals 21.

63

Table 6. MS1 and MS22 as functions of L.

L (wafers) 19 20 21 22 23 24 25

MS1 (unit times) 2147 2260 2373 2486 2599 2712 2825

MS22 (unit times) 2149 2261 2373 2485 2597 2709 2821

Hall et al. (1997) prove that, for a mobile-robot cell, which has M machines and M

stages, processing single part-type, the repetition of 1-unit cycles dominates more

complicated policies that produce 2-unit cycles. However, this is not applicable to the

problem CT1-1-1 | | Ct.

Theorem 8. The 1-unit cycles do not dominate 2-unit cycle for the problems CT1-1-1 | |

Ct and CT1-1-1 | | Cmax.

Proof. We will prove this theorem by providing a counterexample. Let L = 8, pr = 10,

p1 = 30, p2 = 25, p3 = 5. Then the optimal 1-unit cycle is σ5 whose P5 = 80. The best 1-

unit cyclic sequence is formed by repeating σ5 with filling-up phase f1 = R0, 1 – R1, 1 –

R0, 2 – R2, 1. MS5f1 = 660 time units. However, the optimal sequence forms by repeating

2-unit cycle, R3, j – R0, j+2 – R2, j+1 – R3, j+1 – R1, j+2 – R0, j+3 – R2, j+2 – R1, j+3, which has an

average cycle time of 77.5 time units. The optimal makespan is 645. Figure 7 presents

the Gantt charts of the optimal sequence and the sequence formed by repeating σ5 with

filling-up phase f1.

64

 0 40 80 120 160 200 240 280

340 380 420 460 500 540 580 620

REPEATING CYCLE 5 WITH FILLING-UP F1: MS = 660

Figure 7. Two-unit cycle versus one-unit cycle.

 0 40 80 120 160 200 240 280

340 380 420 460 500 540 580 620

OPTIMAL: MS = 645

S3

S2

S1

handler

S3

S2

S1

handler

S3

S2

S1

handler

S3

S2

S1

handler

65

5.4 THE CTm1-...-mS | | Cmax PROBLEMS

In general a stage may have more than one chamber; the number of chambers in a stage

can be any integer. Although the branch-and-bound algorithm can find an optimal

sequence of wafer handler moves, its main limitation is the computing effort increases

as the lot size, the number of chambers in each stage, and the number of stages

increases. In such complicated problems, we propose an algorithm that can find the

best solution among the λ-unit cyclic schedules, λ = min{m1, …, mS}. As a result from

Corollary 2, this best schedule must have the best filling-up phase associated with the

best cyclic phase. The following assumptions are used to identify the λ-unit cycle:

• The cyclic phase starts with the first move that unloads a finished wafer from the

last stage (and returns it to the load lock).

• The cyclic phase of a cluster tool can be divided into complete cycles. In each

complete cycle, the number of unprocessed wafer(s) leaving the load lock must

equal the number of finished wafer(s) returning to the load lock. Furthermore, this

number must be greater than or equal to λ.

• The occurring order of events in an incomplete cycle of the completion phase

resembles the occurring order of events in a complete cycle.

The first assumption guarantee that all possibly feasible filling-up phase will be

considered. We now present a truncated branch-and-bound algorithm to find the best λ-

unit cyclic schedule. This algorithm is a modified version of the branch-and-bound

66

algorithm proposed in Chapter 4. The algorithm first generates two feasible sequences

using the push and pull dispatching rules and uses the better sequence’s lot makespan as

the upper bound on the optimal lot makespan. For a partial solution, we use the

completion time of the last scheduled activity as its lower bound.

Given m1,...,mS, pr, p1,...,pS, and L, the algorithm proceeds as follows.

Algorithm TBB:

Step 0:

Use the push and pull dispatching rules to generate two feasible sequences.

Take the better sequence as an optimal sequence candidate, and use its makespan as an

upper bound on the optimal value.

Step 1:

Initialize the cluster tool. All L unprocessed wafers are in LL, and the wafer

handler is at LL. All of the chambers are free. The current sequence is a

sequence with no moves. Set t = 0, n = L, and tk = 0 for all chambers k.

Step 2:

Based on the tool state, identify all feasible moves. R0,j is feasible if j = L+1-n

and there is a free chamber in S1. This can begin at time t. Ri,j (0 < i < S) is

feasible if wafer j is at chamber k in Si and there is a free chamber in Si+1. This

67

can begin at max{t, tk}. RS,j is feasible if wafer j is at chamber k in SS. This can

begin at max{t, tk}.

Step 3:

For each feasible move, form a new sequence and calculate LB as follows: add

the feasible move to the current sequence, compute the move’s completion time,

and update the tool state.

� If the feasible move was R0,j, then go to Step 3a.

� If the feasible move was Ri,j, 0 < i < S, then go to Step 3b.

� Otherwise, go to Step 3c.

Step 3a:

Reduce n by one. If the wafer handler was at LL, then the move completion

time C = t + pr. Otherwise, the move completion time C = t + 2pr. Let q be the

lowest-numbered free chamber in S1. The wafer handler is now at chamber q,

which now has wafer j, and tq = C + p1. Let LB = tq. Go to Step 3d.

Step 3b:

Let k be the chamber in Si that was processing wafer j. If the wafer handler was

at chamber k, then the move completion time C = max{t, tk} + pr. Otherwise,

the move completion time C = max{t, tk} +2pr. Chamber k is now free. Let q

be the lowest-numbered free chamber in Si+1. The wafer handler is now at

chamber q, which now has wafer j, and tq = C + pi+1. Let LB = tq. Go to Step 3d.

68

Step 3c:

Let k be the chamber in SS that was processing wafer j. If the wafer handler was

at chamber k, then the move completion time C = max{t, tk} + pr. Otherwise,

the move completion time C = max{t, tk} + pr. Chamber k is now free. Go to

Step 3d.

Step 3d:

Let t = C.

� If LB is greater than or equal to the upper bound on the optimal value, then

discard this new sequence. Go to Step 4.

� If the new sequence includes all L(S+1) moves, the lot makespan equals C.

If the lot makespan is less than the upper bound, save the new sequence as

the current best sequence and set the upper bound equal to the lot makespan.

Go to Step 4.

� If the number of finished wafers is greater than λ, go to Step 3e.

� Otherwise, go to Step 4.

Step 3e:

If a λ-unit cycle exist in the steady state phase, then repeat this λ-unit cycle until

n = 0 and all chambers are free. The lot makespan equals C. If the lot makespan

is less than the upper bound, save the new sequence as the current best sequence

and set the upper bound equal to the lot makespan. Go to Step 4.

Otherwise, discard this new sequence. Go to Step 4.

69

Step 4:

If any incomplete new sequences remain, select one, identify the corresponding

tool state, and go to Step 2. Otherwise, stop. The current best sequence is an optimal

sequence.

Note that Algorithm TBB also applies to the CT1-1 | | Cmax and CT1-1-1 | | Cmax

problems. Figure 8 presents the search tree of a CT1-2 using the Algorithm TBB. The

search found four 1-unit cyclic sequences.

Q1 repeats σ1 = R2, j − R1, j+1 − R0, j+2,

Q2 repeats σ2 = R2, j − R1, j+2 − R0, j+3,

Q3 repeats σ3 = R2, j − R0, j+2 − R1, j+2, and

Q4 repeats σ4 = R2, j − R0, j+1 − R1, j+1.

Note that σ1 is similar to σ2 and σ3 is similar to σ4. Neither Q1 nor Q4 uses the

second chamber of S2. Table 7 compares results of the search with the push/pull

dispatching rule for some instances of a CT1-2 when L = 10.

Table 7. TBB, push, and pull sequences for CT1-2.

TBB push pull
pr p1 p2

MS cycle MS cycle MS cycle

10 5 5 400 σ4 580 σ1 580 σ1

5 10 20 315 σ2 315 σ2 405 σ1

3 5 10 177 σ3 222 σ1 222 σ1

70

Start
<0 0 0>

R0, 1

<1 0 0>

R1, 1

<0 1 0>

R0, 2

<1 1 0>
R2, 1

<0 0 0>

R2, 1

<1 0 0>
R1, 2

<0 1 1>

R1, 2

<0 1 0>

R0, 3

<1 1 0>
R2, 2

<0 0 0>

R1, 3

<0 1 1>
R2, 2

<1 0 0>

R0, 4

<1 1 1>
R2, 2

<0 0 1>

R2, 2

<1 0 1>

σ1

$

$

$

R0, 3

<1 1 1>
R2, 1

<0 0 1>

R2, 1

<1 0 1>

R1, 3

<0 1 1>
R2, 2

<1 0 0>

R0, 4

<1 1 1>
R2, 2

<0 1 0>
$

$

R2, 2

<1 1 0>
σ2

R0, 3

<1 0 1>
R2, 2

<0 0 0>

$
R1, 3

<0 1 1>

R2, 2

<0 1 0>
σ3

R0, 4

<1 1 1>

R2, 2

<1 1 0>
$

R0, 2

<1 0 0>

R1, 2

<0 1 0>

R0, 3

<1 1 0>
R2, 2

<0 0 0>
σ4

R1, 3

<0 1 1>
R2, 2

<1 0 0>
$

R0, 4

<1 1 1>
R2, 2

<0 1 0>
$

R2, 2

<1 1 0>
$

Termination criteria:
- Pattern found:
 σ1 = R2, j - R1, j+1 - R0, j+2

 σ2 = R2, j - R1, j+2 - R0, j+3

 σ3 = R2, j - R0, j+2 - R1, j+2

 σ4 = R2, j - R0, j+1 - R1, j+1

- Pattern not found: $

Figure 8. Search tree of a CT1-2 using Algorithm TBB.

Ri, j

<1 1 0> where: 1 = busy
 0 = freeM3

M2

M1

71

Theorem 9. The λ-unit cyclic schedule is not necessarily optimal for the problem

CTm1-…-mS | | Cmax.

Proof: We will again prove this theorem by providing a counterexample. Consider

CT1-2 | | Cmax, with pr = 1, p1 = p2 = 5, L = 9. Here, λ = min{1, 2} = 1. The best 1-unit

cyclic sequence is Q2. This has a lot makespan of 85. The optimal schedule repeats 2-

unit cycle in its steady state phase. The optimal makespan is 81. Figure 9 presents

Gantt charts of the sequence Q2 and the optimal sequence.

72

73

 0 10 20 30 40 50 60 70 80 85

Note R0, j R1, j R2, j

M1

M2

M3

Robot

Figure 9. The best 1-unit cyclic sequence and the optimal sequence for CT1-2.

Optimal sequence: MS = 81.

0 10 20 30 40 50 60 70 80 85

M1

M2

M3

Robot

Best 1-unit cyclic sequence Q2: MS = 85.

74

5.5 Summary

The steady state behavior of the cluster tools processing finite lot sizes is studied in this

chapter. Normally, if the lot size L is large enough, the performance of a cluster tool

might be separated into three phases: filling-up, steady state (or cyclic), and completion.

Until the first wafer is completed, the tool is filling up with wafers. During steady state

operation in a typical cluster tool, there is a certain sequence of events that occurs

recurrently, forming a cycle. The order of events in the completion phase resembles

that in the cyclic phase.

The analytical models for CT1-1 and CT1-1-1 are derived to determine the cycle time

and lot makespan of the 1-unit cyclic sequence of wafer handler moves, given lot size,

handler move time, and chamber processing time. We have found counterexamples

showing that the 1-unit cyclic sequence may not be optimal even when there is only one

chamber in each stage. Also, counterexamples have been found to show the need of

searching both filling-up and cyclic phases.

This chapter presents an efficient search algorithm, Algorithm TBB, that can quickly

find the best λ-unit cyclic sequence of wafer handler moves (λ = min{mi,..., mS}). The

algorithm requires less computational effort than a complete branch-and-bound

algorithm; however, it will not find the optimal solutions. Algorithm TBB, which is a

modified version of Algorithm BB, searches all possibly feasible filling-up phases and

cyclic phases to find the best λ-unit cyclic sequence. A partial branch is truncated

75

either when a cycle is found or when the branch is long enough. Algorithm BB can be

implemented to build models of single wafer handler and single load lock cluster tools

for any tool configuration.

76

CHAPTER 6

IMPLEMENTATION

This chapter describes the implementation of the cluster tool models as software that

can generate, for any given tool configuration and lot size, a sequence of wafer handler

moves and then determine the makespan of the resulting sequence of all activities.

Although the cluster tool models can be applied to any cluster tool configuration, we

have implemented them for two- and three-stage cluster tools.

6.1 Introduction

For implementing the cluster tools models, the software was written in Java, since it

provides many advantages over C/C++ such as automatic garbage collection, pure

object orientation with multiple inheritance, and multi-threading. One of the

advantages is the concept of a vector, a changeably sized array of objects, which will be

used very frequently in the programs.

Before introducing the Java code to implement Algorithm BB and Algorithm TBB for

the two and three stage cluster tools, it is necessary to introduce some main variables

and their construction in the programs. There are two main objects that will be used,

the Job and Machine, which allow us to store some information. Each basic object can

store several information such as a String, an Integer, a Double, or a Vector of other

Objects; that is a Job can store a Vector of Machines and vice versa (see Appendix F for

77

construction of a Job and a Machine). Table 8 presents the variables used to build

cluster tool models.

Table 8. Variables used to build cluster tool models.

Variables Storing information Construction

l number of unprocessed wafers in LL integer

Robot position name of stage and index of chamber in stage,

or LL

Job

Global timer completion time of the latest move Machine

Chamber index and completion time of wafer being

processed

Machine

Stage list of the chambers in the stage Vector of Machines

Handler move

activity

� type of move

� index of wafer being moved

� index of activity

Job

In-chamber

processing

activity

� type of processing (stage name)

� index of chamber that processed the

activity

� index of wafer being processed

� index of activity

Job

Sequence list of activities Vector of Jobs

78

Hence, the l, Stages, Robot position, and Global timer variables provide information

regarding to the current cluster tool status, while the Sequence variable provides

information regarding to the history of activities. For instance, we need to determine

whether a move Ra,j* which moves a wafer from stage Sa to stage Sa+1, takes pr or 2pr.

Ra, j* is feasible only if Sa contains at least one wafer and Sa+1 has at least one free

chamber. We assume that the wafer handler should always load the lowest-numbered

free chamber in a stage, and the permutation constraint is active. Let Sa_k (k = 1,..., ma)

be the name of the chamber in Sa, which processes the wafer j*, that has the smallest

completion time. Let Sa+1_k’ be the name of the lowest-numbered free chamber in Sa+1.

If robot position is different from Sa_k, then Ra, j* takes 2pr (otherwise, pr). Two activities

Ra, j* and Sa+1_k’, j* will be added to the Sequence. The wafer handler is now at Sa+1_k’.

The global time is reset to completion time of Ra, j*.

6.2 Implementation as executables

The input to the Java executable is a string of (2S + 3) numbers, separated by white

spaces. The first number is the lot size L. Next S numbers are the tool configuration

(m1, ..., mS). Then, S+1 numbers are pr, p1,..., pS. The last number is the overhead time.

For example, the string 25 1 2 5 10 40 400 is input for a CT1-2, processing 25 wafers

per lot. pr = 5, p1 = 10, p2 = 40, and OH = 400.

The output of a cluster tool model is a list of activities. From this list, we can find the

lot makespan and the utilization of each chamber in the tool and of the wafer handler

79

per lot, which is the ratio of production time compared to total available time. For each

chamber, the utilization is the total time that the wafers are actually processed in the

chamber divided by the makespan. Note that the waiting or blocking time in the

chamber will not be included when determining the chamber utilization. For the wafer

handler, the utilization is the sum of unloaded move times and loaded move times

divided by the makespan.

While writing the computer codes to implement Algorithm BB, we will make use the

automatic garbage collection ability of Java to simplify the codes. In fact, while

generating a trial list, the tool’s status changes whenever a move is added to the trial

list. Therefore, information of tool’s status must be recovered when generating the next

trial list. Using Java language, we can easily overcome this difficulty by creating

temporary tool environment whenever a move is added to the trial list.

For instance, consider an arbitrary outtree graph in Figure 10. There are four branches

in this graph. After searching the first branch A-B-C1-D1-E1-F1, the status of the tool

associates with the last node F1. To search the next branch A-B-C1-D1-E2-F2, we need

to delete nodes E1 and F1 from the trial list and to recover the tool’s status to the one

associated with node D1, then add nodes E2 and F2. And so on. This means

information of the tool’s status associated with every single node in the graph must be

permanently stored. If we create temporary trial list and tool environment any time a

node is added, then when jumping to the next branch, the first trial list and tool’s status

associated with the last nodes become garbage and will be automatically destroyed.

80

In details, this procedure is follows. Start at the first node A, when adding node B, a list

A-B and associated tool’s environments have created (the dashed line 1 in Figure 10).

And so on. The first branch A-B-C1-D1-E1-F1 representing by the dashed line 4, after

being evaluated its length, becomes garbage and will be destroyed. The second branch

A-B-C1-D1-E2-F2, representing by the dashed line 3, will start from the end of the

dashed line 2. And so on. Note that the best list and upper bound will be updated

whenever a better branch is found.

Figure 10. An arbitrary outtree graph.

A

B

C1 C

D1 D2 D3

E1

F2F1

E4E3E2

F3 F4

4 3 2 1

81

6.2.1 Cluster tool models using Algorithm BB

Figure 11 shows the flow chart for Algorithm BB to find an optimal sequence of wafer

handler moves for given lot size, tool configuration, processing times required at each

stage, and wafer handler move time. Example 1 in Appendix F presents the main

portion of the Java codes, the “search ()” method, for a three-stage cluster tool model

using Algorithm BB. Note that in this model, all three dominance criteria are active.

The first and second criteria are applied when making the move; in fact, the wafer

handler will move the earliest completed wafer from Si to the lowest-numbered free

chamber in Si+1. The third dominance criterion is applied when finding the feasible

moves.

82

Figure 11. Flow chart for program BB (to be continued).

Start

Get m1,...,mS, pr, p1,...,pS, L

Using push/pull rules, find:
- Upper bound UB and
- Candidate of the optimal sequence BL

Set up tool environment CTE

Trial list TL = Ø

Find all feasible moves FM

Call Search(FM, CTE, TL, pr, p1,..., pS, L)

End

83

i = 0

Create CTEi = CTE

• Add move i to TLi
• Update CTEi
• Compute lower bound LB

i = i + 1

LB ≥ UB?

Yes

No

FM = Ø?

Yes

Return BL, UB

No

Create TLi = TL

Delete CTEi and TLi

lTLi = L?

Yes

• Update UB
• Update BL

No

lTLi = # of completed wafers in TLi

call Search (FMi, CTEi, TLi,
 pr, p1,..., pS, L)

Search (FM, CTE, TL, pr, p1,..., pS, L)

Find all feasible moves FMi

I

I

Figure 11 continued.

84

6.2.2 Cluster tool models using Algorithm TBB

The flow chart for Algorithm TBB to find an optimal sequence of wafer handler moves

for given lot size, tool configuration, processing times required at each stage, and wafer

handler move time is presented in Figure 12. Since Algorithm TBB is a modified

version of Algorithm BB, we will only discus on how to modify the BB model.

Example 2 in Appendix F presents the main portion of the Java code, the smart_search()

method, for a three-stage cluster tool model using Algorithm TBB.

85

Figure 12. Flow chart for program TBB (to be continued).

Start

Get m1,...,mS, pr, p1,...,pS, L

Using push/pull rules, find:
- Upper bound UB and
- Candidate of the optimal sequence BL

Set up tool environment CTE

Trial list TL = Ø

Find all feasible moves FM

Call smart_search(FM, CTE, TL, pr, p1,..., pS, L)

End

85

i = 0

Create CTEi = CTE

• Add move i to TLi
• Update CTEi
• Compute lower bound LB

i = i + 1

LB ≥ UB?

Yes

No

FM = Ø?

Yes

Return BL, UB

No

Create TLi = TL

Delete CTEi and TLi

lTLi = L?

Yes
• Update UB
• Update BL

No

lTLi = # of completed wafers in TLi Call smart_search (FMi, CTEi, TLi, pr, p1,..., pS, L)

smart_search (FM, CTE, TL, pr, p1,..., pS, L)

Find all feasible moves FMi

Yes

No

lTLi > λ?

Call GCCS(TLi,CTEi, BL,UB)

Figure 12 continued.

86

Given a trial sequence σ in which its number of completed wafers is smaller than L but

greater than λ = min(mi), Algorithm GCCS can generate a complete cyclic sequence if

there exists a complete cycle in σ. Figure 13 shows the flow chart for Algorithm

GCCS.

Algorithm GCCS

� Get departure list DL, which includes the departure stages of all moves in the trial

sequence. For example, the departure stage of R0, j is LL, the departure stage of Ri, j

is Si (i = 1, …, S).

� From DL, check whether a λ-unit cycle exists and to determine the starting and

ending position of the cycle in DL (Algorithm CheckCycle). Then,

• If the λ-unit cycle does not exist, discard the trial sequence σ. Go to the next trial

sequence.

• If the λ-unit cycle exists, collect the departures of moves in the filling-up phase and

the first cycle from DL. The collected departures of moves as well as other input

information (lot size, move time and so on) are used as input to the fixed sequence

cluster tool model to generate a complete sequence of all activities, Q. Then

determine the makespan of Q and compare it to the current upper bound value.

Update candidate upper bound and candidate best sequence if necessary. Discard

both Q and σ and go to the next trial sequence.

87

Figure 13. Flow chart for program GCCS.

Start

• Get partial sequence σ
• Get tool environment CTE
• Get best list BL and upper bound UP

FSL = departures in filling-up phase and 1st cycle

Call CheckCycle (DL, m1, ..., mS)

Get departure list DL (σ)

Delete Q

No

End

• Update BL
• Update UP

Yes

MS(Q) < UP?

cycle exist?
No

Yes

List Q = Call PS (FSL, m1,...,mS, pr, p1,...,pS, L)

Delete σ

88

We now present the algorithm CheckCycle, given the departure list DL. Let Wi be the

number of wafer(s) that have started processing in Si (i = 1, …, S). Let OUT be the

number of completed wafers in DL. Let nDL be total numbers of departures in DL.

Denote START and END as starting and ending points of the cyclic cycle. Figure 14

shows the flow chart for Algorithm CheckCycle.

Algorithm CheckCycle

Let x = 0, Wi(DL) = 0, OUT = 0, START = 0, and END = 0.

Step 1:

Find the position x of the first SS in DL (the first wafer is completed). Set START

to (x-1).

Step 2:

For x = (START+1) to (nDL-1), denote DL(x) as the xth departure stage in DL.

• If DL(x) = LL, add one to W1. If DL(x) = Si (i = 1,…, S-1), add one to W(i+1).

Otherwise, add one to OUT.

• Let END = x.

• If Wi ≥ λ and Wi = Wj = OUT, for all i ≠ j, (i, j = 1, …, S), then

- If DL(x+1) = DL(START+1), then STOP, the cyclic cycle is found

as well as its starting and ending points in DL.

- Otherwise, increase START by one and reset Wi = OUT = 0.

• If W1 ≥ λ but Wi ≠ Wj for at least one pair i and j or Wi ≠ OUT for at least one i,

then increase START by one and reset Wi = OUT = 0

• If x = (nDL-1), then STOP, the cyclic cycle is not found. Otherwise, next x.

89

Figure 14. Flow chart for program CheckCycle.

Start

Get departure list DL, m1, ..., mS

W1 = W1 + 1

x = START + 1

START = 1st position of SS in DL - 1

W1 ≥ λ ?

DL(x) = LL?

No

Yes

Wi = Wi + 1

START, END, OUT, W1, ..., WS = 0, x = 0
 λ = min(m1,..., mS), nDL = # departures in DL

DL(x) = Si?
(i = 1,...,S-1)

Yes

No

OUT = OUT + 1
END = x

START = START + 1
Wi = OUT = END = 0

Yes

No

x = x + 1

x = nDL - 1?

No

End 1

Wi = OUT?
No

DL(x+1) =
DL(START+1)?

Yes

No

End 2

Yes

Yes

End 2
Note: End 1 = cycle found

 End 2 = cycle not found

90

6.2.3 Cluster tool models using the push and pull dispatching rules

Algorithm P in Chapter 4 can be implemented to any tool configuration. In this section,

we will introduce the cluster tool models using Algorithm P for a two- and three-stage

cluster tool. Table 9 and Table 10 present the status of two-stage cluster tools using the

push and pull dispatching rules to sequence the wafer handler moves respectively. Table

11 and Table 12 present the status of three-stage cluster tools using the push and pull

dispatching rules to sequence the wafer handler moves respectively In Table 9 and

Table 10, the status of a chamber is defined as follows.

Free, F: there is no wafer in the chamber

Done, D: wafer is finished processing, ready to unload

Busy, B: wafer is still in process at the chamber

For a stage, we also define its status as follows.

F: there is at least one free chamber.

D: there is at least one done chamber.

B: all chambers are busy.

Figure 15 shows the flow chart for Algorithm P. Example 3 and Example 4 in

Appendix F present the main portion of the Java codes for a three-stage cluster tool

model using the push and pull rules respectively.

91

Table 9. Status of a two-stage tool using the push dispatching rule

Status of stage
Case

S1 S2
Priority Resulting Action

1
F F

2 F D

3 F B

1 Load S1

4 D F 2 Load S2

5 D
D 3

Unload S2

6 D B otherwise Unload S2

7 B
F 4

Check S1 and S2

• if one of S2 is done first: unload S2

• if one of S1 is done first or at the
same time as one of the S2: load S2

8 B
D 3

Unload S2

9 B B otherwise Unload S2

Table 10. Status of a two-stage tool using the pull dispatching rule

Status of stage
Case S1 S2

Priority
Resulting Action

1
F D

2 D D
3 B D

1 Unload S2

4
F

F 3 Load S1

5 D F 2 Load S2

6 B F 4

Check S1 and S2

• if one of S2 done first or at the
same time as one of S1: unload S2

• if one of S1 done first: load S2

7
F

B 3 Load S1

8 D B
9 B B

otherwise Unload S2

92

Table 11. Status of a three-stage tool using the push dispatching rule.

Status of stage Resulting Action and Priority
Case

S1 S2 S3

Priority

1 F F F
2 F F D
3 F F B
4 F D F
5 F D D
6 F D B
7 F B F
8 F B D
9 F B B

1 Load S1

10 D F F
11 D F D
12 D F B

2 Load S2

13 D D F 3 Load S3

14 D D D 4 Unload S3

15 D D B otherwise Unload S3

16 D B F 5
Check S2 and S3

- if S2 done first, load S3

- if S3 done first, unload S3

17 D B D 4 Unload S3

18 D B B otherwise Unload S3

19 B F F 6

Check S1, S2, and S3

- if S1 done first, load S2

- if S2 done first, load S3

- if S3 done first, unload S3

20 B F D 4 Unload S3

21 B F B 7
Check S1 and S3

- if S1 done first, load S2

- if S3 done first, unload S3

22 B D F 3 Load S3

23 B D D 4 Unload S3

24 B D B otherwise Unload S3

25 B B F 5
Check S2 and S3

- if S2 done first, load S3

- if S3 done first, unload S3

26 B B D 4 Unload S3

27 B B B otherwise Unload S3

93

Table 12. Status of a three-stage tool using the pull dispatching rule.

Status of stage
Case

S1 S2 S3
Priority Resulting Action

1 F F F 4 Load S1

2 D F F 3 Load S2

3 B F F 6

Check S1, S2, and S3

- if S3 done first, unload S3

- if S2 done first, load S3

- if S1 done first, load S2

4 F D F
5 D D F
6 B D F

2 Load S3

7 F B F 4 Load S1

8 D B F

9 B B F
5

Check S2 and S3

- if S3 done first, unload S3

- if S2 done first, load S3

10 F F D
11 D F D
12 B F D
13 F D D
14 D D D
15 B D D
16 F B D
17 D B D
18 B B D

1 Unload S3

19 F F B 4 Load S1

20 D F B 3 Load S2

21 B F B 7

Check S1, and S3

- if S3 done first, unload S3

- if S1 done first, load S2

22 F D B 4 Load S1

23 D D B
24 B D B

otherwise Unload S3

25 F B B 4 Load S1

26 D B B
27 B B B

otherwise Unload S3

94

Figure 15. Flow chart for program P.

Start

Get m1,...,mS, pr, p1,...,pS, L

Set up tool environment CTE
lPL = 0

List PL = Ø

Select move Rk, j (*)

• Add Rk, j to PL
• Update CTE, lPL

lPL = L?

Yes

No

End

Get tool status

Note: (*) Use Table 9, 10, 11, or 12 to select Rk, j

95

6.2.4 Cluster tool models using the prespecified sequence of wafer handler moves

The cluster tool model using the prespecified sequence of wafer handler moves is the

simplest model. The prespecified sequence includes of two parts: the first part is the list

of starting and destination of moves in the filling-up phase, the second is the list of that

in a steady state cycle. These two parts are separated by a signal phrase “begin loop”.

For example, the text file containing the prespecifed sequence for a CT1-2-2 is follows.

LL S1
S1 S2
LL S1
S1 S2
LL S1
S2 S3
S1 S2
LL S1
S2 S3
S1 S2
begin loop
LL S1
S3 LL
S2 S3
S1 S2

Figure 16 shows the flow chart for Algorithm prespecified sequence (PS). Example 5

in Appendix F presents a main portion of the Java codes for a three-stage cluster tool

model using the prespecified sequence of wafer handler moves. After creating all

moves in the filling-up phase, method get_fixed_sequence_for_3S_tool() repeats the

moves of the cycle until all wafers are completed.

96

Figure 16. Flow chart for program PS.

Start

• Get m1,...,mS, pr, p1,...,pS, L
• Get pre-specified moves Ri

Set up tool environment CTE
lFL = 0

List FSL = Ø

• Add Rk, j to FSL
• Update CTE, lFL

i < k1?
No

i = 0

• k1 = # of moves in filling-up phase
• k2 = # of moves in cycle

i = i+ 1

i = i+ 1

Yes

lPL = L?

Yes

No

End

i = k1 + 1
Yes

i > k2?

No

Ri, j feasible?

Yes

No

97

6.3 The graphic user interface for the two- and three-stage cluster tool models

After building the simulation models using the prescribed sequence, the dispatching

rules, the BB and TBB algorithms, we created the GUI (graphic user interface) for the

two- and three-stage cluster tool models. Both GUIs are written using Delphi and

compiled into executables. They will work as stand-alone decision-support tools on any

personal computer (running Microsoft Windows). The system requirement to execute

these GUIs includes the Delphi 4 package and Java Runtime (version 1.2.2). Figure 13

presents the interaction between GUI and the cluster tool models for either two- or

three-stage cluster tool. Figures 14 and 15 show the GUI for the two-stage and three-

stage cluster tools. The information passed between the GUI and the models are in the

format of Strings.

GUI
(Delphi)

Model using
Push rule

(Java)

Model using
Pull rule
(Java)

Model using
fixed sequence

(Java)

Model using
BB algorithm

(Java)

Model using
truncated BB

algorithm
(Java)

Figure 17. Interaction of GUI and cluster tool models.

98

Figure 18. GUI for two-stage cluster tools.

Figure 19. GUI for three-stage cluster tools.

99

From GUI to cluster tool models, the Strings include (2S + 3) numbers (L, m1,..., mS, pr,

p1,..., pS, OH If the fixed sequence model is used, the file name of the pre-specified

sequence must also be appended to the String. For instance, if the user clicks the

“Cyclic?” button in the default window of the two-stage cluster tool GUI, a String “20 1

2 5 10 30 400” will pass to the cluster tool model that uses Algorithm TBB. This model

will generate a cyclic sequence and then determine the makespan of a CT1-2,

processing 20 wafers per lot, with pr = 5, p1 = 10, p2 = 30, and OH = 400.

After generating the list of all activities, the cluster tool model determines the lot

makespan and utilization of the wafer handler and every chamber in the tool. The

selected cluster tool model will return to the GUI a String of (m1 + …+ mS + 2)

numbers separated by white spaces. These numbers are the lot makespan, utilization of

the wafer handler, utilization of every chamber in the first to the last stage, which are

then appropriately displayed by the GUI. The GUI also presents the histogram of the

runs. For example, Figure 16 displays the GUI for two-stage cluster tool after three

runs using push, pull, and cyclic scheduling algorithms. Similarly, Figure 17 shows the

GUI for three-stage cluster tool after four runs using different scheduling algorithms:

push, pull, fixed-sequence, and cyclic. In each run, the user uses the same lot size, tool

configuration, move time, in-chamber processing times, and overhead time.

100

Figure 20. GUI for two-stage cluster tools after 3 runs.

Figure 21. GUI for three-stage cluster tools after 4 runs.

101

6.4. Integration into subfactory model

The cluster tool models has also been integrated successfully into a subfactory model.

This subfactory model integrated operational and process models in a single platform,

which allows us to investigate co-optimization of scheduling and process parameters.

In the subfactory models, the cluster tool models take the same input (a String) as that

of the stand-alone GUI presented in the previous section. However, the lot makespan is

the only required output from the cluster tools models. From GUI of the subfactory

model, the user input process parameters (temperature, pressure, and other relevant

parameters), lot size, wafer handler move time, overhead time, configuration for each

tool, and the preferred scheduling algorithm.

Through a process model, the raw process time is determined from process parameters.

The raw process time as well as lot size, wafer handler move time, overhead time, and

tool configuration is then fed to a preferred tool simulator to calculates the lot

makespan. This lot makespan is then the input to a factory operations simulator. The

user is then presented with the factory performance measures, such as work-in-process

inventory (WIP) and cycle time, for the process case chosen. Communication between

these different models is accomplished by an administrator, which also provides the

user interface. Figure 22 summarizes the information flow in the integrated subfactory

model.

102

6.5 Summary

This chapter presented the cluster tool models using Algorithm BB, Algorithm TBB, the

push and pull dispatching rules, and the prespecifed sequence of wafer handler moves.

The methodology to construct Java codes for these models are also introduced.

Examples of the codes are shown in Appendix F.

After building the simulation models, methodology to construct GUIs for the two- and

three-stage cluster tool models are presented. Both GUIs are written using Delphi and

compiled into executables that worked as stand-alone decision-support tools on any

personal computer (running Microsoft Windows), which allow the user to access to all

cluster tool models of the same type (two- or three-stage). From GUIs, one can

Factory
Simulator

USER

Tool-Level
Simulators

Process
Simulators

Raw process time,
lot size, move time,
overhead time, tool
configuration.

Process parameters,
lot size, move time
overhead time, tool
configuration

Cycle time,
WIP

Lot makespan

GUI /
Administrator

Figure 22. Information flow in the integrated subfactory model.

103

compute the lot makespan and chamber utilization for any tool configuration, move

time, in-chamber processing times, overhead time, and lot size.

The integration of cluster tool models into a subfactory model allows one to investigate

co-optimization of scheduling and process parameters. Typically this means revisiting

scheduling algorithms and estimating changes in cycle time when process changes are

demanded. In some cases this could also mean identifying situations where significant

operational improvements could result from changing process parameters without

sacrificing quality.

104

CHAPTER 7

 RESULTS AND DISCUSSION

In this chapter, we compare the performance of the optimization models (the BB and

TBB algorithms) on two main performance criteria (the lot makespan and CPU time,) to

that of the simulation models using the push and pull dispatching rules.

7.1 Performance of the search using Algorithm BB

We tested Algorithm BB on 72 problem sets of two- and three-stage tool configurations.

Each problem set included ten randomly generated instances. See Tables 13 and 14 for

the parameters used to generate the instances. The problem sets were chosen to

determine how the tool configuration and processing time affect algorithm performance.

The problem sets cover three cases: short move time and long processing times,

approximately equal move and processing times, and a long move time and short

processing times. For each instance, we used the branch-and-bound algorithm

(Algorithm BB), the push dispatching rule (Algorithm P), and the pull dispatching rule

(Algorithm P) to find solutions. On all instances, Algorithm BB halted if it reached

100,000 nodes and reported the best solution found.

Table 15 and Table16 report the performance of Algorithm BB. Table 15 and 16

present, for each problem set, the average CPU time that the branch-and-bound search

required, the number of instances that Algorithm BB can completely solved within

105

100,000 nodes. The fourth, fifth, and sixth columns show the average lot makespan

achieved using the branch-and-bound algorithm, the push dispatching rule, and the pull

dispatching rule respectively. The last two columns of these tables show the average

percent improvement from the push and pull sequences to the best sequence found.

Table 13. Two-stage problem sets.

Problem Sets
Tool

Configuration
Associated
Lot Size L

Range for
move time pr

(s)

Range for
processing

times
p1, p2 (s)

1, 2, and 3 CT1-1 5, 10, and 15 [1, 10] [20,40]
4, 5, and 6 CT1-2 5, 10, and 15 [1, 10] [20,40]
7, 8, and 9 CT2-1 5, 10, and 15 [1, 10] [20,40]
10, 11, and 12 CT2-2 5, 10, and 15 [1, 10] [20,40]
13, 14, and 15 CT1-1 5, 10, and 15 [10, 20] [10, 20]
16, 17, and 18 CT1-2 5, 10, and 15 [10, 20] [10, 20]
19, 20, and 21 CT2-1 5, 10, and 15 [10, 20] [10, 20]
22, 23, and 24 CT2-2 5, 10, and 15 [10, 20] [10, 20]
25, 26, and 27 CT1-1 5, 10, and 15 [20, 40] [1, 10]
28, 29, and 30 CT1-2 5, 10, and 15 [20, 40] [1, 10]
31, 32, and 33 CT2-1 5, 10, and 15 [20, 40] [1, 10]
34, 35, and 36 CT2-2 5, 10, and 15 [20, 40] [1, 10]

Table 14. Three-stage problem sets.

Problem Sets
Tool

Configuration
Lot Size L

Range for
move time

pr (s)

Range for
processing

times
p1, p2, p3 (s)

37, 38, and 39 CT1-1-1 5, 10, and 15 [1, 10] [20,40]
40, 41, and 42 CT1-2-2 5, 10, and 15 [1, 10] [20,40]
43, 44, and 45 CT2-2-1 5, 10, and 15 [1, 10] [20,40]
46, 47, and 48 CT2-2-2 5, 10, and 15 [1, 10] [20,40]
49, 50, and 51 CT1-1-1 5, 10, and 15 [10, 20] [10, 20]
52, 53, and 54 CT1-2-2 5, 10, and 15 [10, 20] [10, 20]
55, 56, and 57 CT2-2-1 5, 10, and 15 [10, 20] [10, 20]
58, 59, and 60 CT2-2-2 5, 10, and 15 [10, 20] [10, 20]
61, 62, and 63 CT1-1-1 5, 10, and 15 [20, 40] [1, 10]
64, 65, and 66 CT1-2-2 5, 10, and 15 [20, 40] [1, 10]
67, 68, and 69 CT2-2-1 5, 10, and 15 [20, 40] [1, 10]
70, 71, and 72 CT2-2-2 5, 10, and 15 [20, 40] [1, 10]

106

Table 15. Computing time and percentage improvement of Algorithm BB over the push
and pull sequences for some two-stage cluster tool configurations (OH = 0).

Average makespan (sec) % improvement
Tool

configuration
L

CPU time
min:sec

#
instances

solved
BB push pull push pull

 Case 1: short moves, long processing times.
5 0:01 10/10 303.1 303.1 303.1 0 0
10 0:02 10/10 585.6 585.6 585.6 0 0CT1-1
15 0:28 10/10 868.1 868.1 868.1 0 0
5 0:01 10/10 280.9 294.1 294.1 4.18 4.18
10 0:46 7/10 536.2 564.6 564.6 4.65 4.65CT1-2
15 1:13 0/10 789.3 835.1 835.1 5.08 5.08
5 0:01 10/10 298.3 306.1 306.1 2.29 2.29
10 0:57 7/10 575.9 589.6 589.6 2.12 2.12CT2-1
15 1:32 0/10 859.4 873.1 873.1 1.43 1.43
5 0:01 10/10 216 221.7 231.7 2.13 6.43
10 0:51 4/10 378.2 401.5 406.9 4.79 6.21CT2-2
15 1:31 0/10 559.7 588.7 609.4 4.32 8.02

Case 2: move time and processing times are approximately equal.
5 0:01 10/10 372.7 420.3 420.3 10.33 10.33
10 0:02 10/10 745.2 852.3 852.3 11.41 11.41CT1-1
15 1:13 0/10 1117.7 1284.3 1284.3 11.76 11.76
5 0:01 10/10 401.3 468 468 13.64 13.64
10 1:16 0/10 811 951 951 14.19 14.19CT1-2
15 1:36 0/10 1294 1434 1434 9.41 9.41
5 0:01 10/10 383 451.2 451.2 14.71 14.71
10 1:16 0/10 775.6 919.2 919.2 15.31 15.31CT2-1
15 1:27 0/10 1134.4 1387.2 1387.2 18.93 18.93
5 0:03 10/10 382 446.6 419.8 13.84 8.52
10 1:20 0/10 818.9 908.6 847 9.73 3.17CT2-2
15 1:39 0/10 1263.8 1370.6 1263.8 7.72 0.00

Case 3: long move time, short processing times.
5 0:01 10/10 510.5 812.5 812.5 37.15 37.15
10 0:02 10/10 1021 1700.5 1700.5 39.94 39.94CT1-1
15 0:22 10/10 1531.5 2588.5 2588.5 40.81 40.81
5 0:01 10/10 478.5 767.7 767.7 37.59 37.59
10 0:44 10/10 957 1607.7 1607.7 40.38 40.38CT1-2
15 1:34 0/10 1803.7 2447.7 2447.7 26.23 26.23
5 0:01 10/10 547 897.7 897.7 38.87 38.87
10 0:55 9/10 1098.9 1884.7 1884.7 41.34 41.34CT2-1
15 1:33 0/10 2083.6 2871.7 2871.7 27.29 27.29
5 0:02 10/10 471.5 794.6 697.1 40.13 31.87
10 1:15 0/10 1210 1616.6 1507 24.71 19.23CT2-2
15 1:35 0/10 2032 2438.6 2204.1 16.38 7.52

107

Table 16. Computing times and percentage improvement of Algorithm BB over the
push and pull sequences for some three-stage cluster tool configurations (OH = 0).

Average makespan (sec) % improvement
Tool

configuration
L

CPU
time

min:sec

#
instances

solved
BB push pull push pull

Case 1: short moves, long processing times.
5 0:01 10/10 369 369 371.1 0 0.44
10 1:04 5/10 677.5 677.5 683.1 0 0.62CT1-1-1
15 1:44 0/10 986 986 995.1 0 0.68
5 0:17 10/10 334.9 349.9 350.8 3.97 4.32
10 1:34 0/10 613.5 638.4 641.1 3.64 4.24CT1-2-2
15 2:00 0/10 889.4 926.9 930.5 3.81 4.38
5 0:34 7/10 349.2 359.6 356 2.58 1.85
10 1:38 0/10 638.8 644.6 641.6 0.78 0.51CT2-2-1
15 2:05 0/10 923.8 929.6 926.6 0.54 0.35
5 0:49 6/10 290.1 296.1 318.1 1.73 8.52
10 1:42 0/10 549.3 563.9 578.6 2.68 4.67CT2-2-2
15 2:10 0/10 817.3 831.9 839.5 1.83 2.72

Case 2: move time and processing times are approximately equal.
5 0:03 10/10 521.7 591.8 591.8 11.10 11.21
10 1:37 0/10 1083 1195.8 1195.8 9.07 9.07CT1-1-1
15 2:10 0/10 1687 1799.8 1799.8 6.03 6.06
5 1:13 0/10 515.6 573.7 577.5 9.63 10.52
10 1:43 0/10 1107.9 1161.7 1164.5 4.42 4.74CT1-2-2
15 2:15 0/10 1695.9 1749.7 1753.5 2.93 3.25
5 1:14 0/10 537.3 600.6 600.6 10.27 10.21
10 1:50 0/10 1158 1216.6 1216 4.71 4.64CT2-2-1
15 2:19 0/10 1774 1832.6 1832.6 3.12 3.11
5 1:12 0/10 534.4 577.2 549.9 7.11 2.80
10 1:40 0/10 1027.5 1169.2 1110 14.56 10.00CT2-2-2
15 1:57 0/10 1535.2 1630.3 1535.2 5.18 0.00

Case 3: long move, short processing times.
5 0:01 10/10 670 1095.4 1071.6 38.63 37.29
10 1:28 0/10 1585.6 2267.4 2267.4 29.84 29.84CT1-1-1
15 1:54 0/10 2757.6 3439.4 3415.6 19.67 19.12
5 0:35 10/10 694.5 1152.4 1105.3 39.28 36.75
10 1:40 0/10 1984.7 2360.4 2337.1 15.70 14.86CT1-2-2
15 2:06 0/10 3192.7 3568.4 3521.3 10.38 9.21
5 0:50 10/10 650 1047.2 1069.6 37.53 38.81
10 1:40 0/10 1836.3 2167.2 2167.4 15.02 15.04CT2-2-1
15 2:09 0/10 2961.7 3287.2 3309.6 9.77 10.37
5 1:09 0/10 780 1092 968.2 28.19 19.08
10 1:44 0/10 1946.2 2212 2100 11.85 7.15CT2-2-2
15 2:11 0/10 3049.8 3332 3066.4 8.41 0.51

108

To test the performance of Algorithm BB with additional search time and with more

sophisticated lower bounds, we used problem sets 52, 53, and 54: CT1-2-2 and the

move and processing times are approximately equal. Table 17 compares the search

performances for these problems in three cases: A) the search halted at 100,000 nodes,

B) the search halted at 1,000,000 nodes, and C) the search halted at 100,000 nodes and

used better lower bounds.

From Tables 15, 16, and 17 we can draw some insights as follows.

� Except for CT1-1 and CT1-1-1 in Case 1, the search was able to find better

sequences. This improvement was greater when the processing times are

approximately the same as or smaller than the move times. This is true even though

the optimal sequence may not satisfy the permutation constraint when the

processing times are small.

� The computing effort increases as the lot size, the number of chambers in each

stage, and the number of stages increase.

� Conducting longer searches or using more sophisticated lower bounds did not

improve the search performance significantly.

109

Table 17. Computing time and lot makespan of a CT1-2-2 when increasing number of
nodes and applying better lower bounds.

if # nodes = 105 if # nodes = 106 if LBs and #
nodes = 105

L pr p1 p2 p3

C
PU

 ti
m

e
m

in
:s

ec

so
lv

ed
?

M
S

 (
se

c)

C
PU

 ti
m

e
m

in
:s

ec

so
lv

ed
?

M
S

 (
se

c)

C
PU

 ti
m

e
m

in
:s

ec

so
lv

ed
?

M
S

 (
se

c)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
5 1:18 * 497 1:41 480 1:11 480
10 1:42 * 1105 17:00 * 1086 3:11 * 1101
15

15 11 14 11
2:11 * 1705 22:00 * 1686 4:26 * 1701

5 1:12 * 396 1:43 396 1:25 396
10 1:43 * 836 17:11 * 836 2:50 * 836
15

11 11 17 19
2:20 * 1276 22:02 * 1276 3:57 * 1276

5 1:10 * 638 1:47 615 1:38 615
10 1:43 * 1406 16:48 * 1389 3:14 * 1404
15

19 13 17 17
2:22 * 2166 21:44 * 2149 4:23 * 2164

5 1:18 * 364 1:44 364 1:37 364
10 1:42 * 764 16:49 * 754 2:54 * 764
15

10 12 13 18
2:20 * 1164 21:58 * 1154 4:28 * 1164

5 1:16 * 635 1:43 605 1:20 605
10 1:45 * 1404 16:54 * 1384 2:56 * 1401
15

19 16 11 18
2:22 * 2164 21:55 * 2144 4:35 * 2161

5 1:13 * 442 1:45 442 1:18 442
10 1:45 * 928 16:50 * 916 3:08 * 928
15

12 20 14 19
2:22 * 1408 21:47 * 1396 4:31 * 1408

5 1:11 * 690 1:57 670 1:51 * 690
10 1:48 * 1496 17:00 * 1489 3:13 * 1495
15

20 15 20 19
2:10 * 2296 21:46 * 2289 4:00 * 2295

5 1:11 * 435 1:51 435 1:50 435
10 1:40 * 916 17:11 * 916 3:11 * 916
15

12 14 13 20
2:10 * 1396 22:22 * 1396 4:01 * 1396

5 1:11 * 580 1:58 580 1:47 * 580
10 1:43 * 1224 16:59 * 1224 3:13 * 1224
15

16 20 18 16
2:10 * 1864 21:45 * 1864 4:01 * 1864

5 1:10 * 479 1:45 479 1:29 479
10 1:42 * 1000 16:59 * 987 3:13 * 1000
15

13 19 20 18
2:09 * 1520 21:44 * 1507 4:00 * 1520

Note: * means the problem is not completely solved within the number of nodes
specified.

110

7.2 Performance of the search using Algorithm TBB

We tested Algorithm TBB on the same 72 problem sets of two- and three-stage tool

configurations as in the previous section. Each problem set included ten randomly

generated instances. See Tables 13 and 14 for the parameters used to generate the

instances. TBB halted if it reached 50,000 nodes.

Table 18 and Table 19 report the performance of Algorithm BB. In Tables 18 and 19,

for each problem set, the third and fourth columns present the average CPU times that

Algorithm BB and Algorithm TBB required. The fifth and sixth columns are the

number of instances that Algorithm BB completely solved and Algorithm TBB

completely solved. The seventh and eighth columns show the average lot makespan

achieved using Algorithms BB and TBB respectively. The last four columns of these

tables show the average percent improvement from the push and pull sequences to the

best sequence found. Note that the results from Table 15 and 16 about the performance

of Algorithm BB are repeated here to enable comparison between the Algorithm BB

and Algorithm TBB.

111

Table 18. Computing times and percentage improvement of Algorithm TBB over the push and pull sequences for some two-stage
cluster tool configurations (OH = 0).

CPU time
min:sec

instances
solved

Average makespan
(sec)

% improvement
over push

% improvement
over pull

Tool
configuration L

BB TBB BB TBB BB TBB BB TBB BB TBB
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Case 1: short move time, long processing times.
5 0:01 0:01 10/10 10/10 303.1 303.1 0 0 0 0
10 0:02 0:01 10/10 10/10 585.6 585.6 0 0 0 0CT1-1
15 0:28 0:01 10/10 10/10 868.1 868.1 0 0 0 0
5 0:01 0:01 10/10 10/10 280.9 285.3 4.49 2.99 4.49 2.99
10 0:46 0:01 7/10 10/10 536.2 546.6 5.03 3.19 5.03 3.19CT1-2
15 1:23 0:01 0/10 10/10 789.3 807.1 5.48 3.35 5.48 3.35
5 0:01 0:01 10/10 10/10 298.3 302.4 2.55 1.21 2.55 1.21
10 0:57 0:01 7/10 10/10 575.9 585.7 2.32 0.66 2.32 0.66CT2-1
15 1:32 0:01 0/10 10/10 859.4 869.2 1.57 0.45 1.57 0.45
5 0:01 0:01 10/10 10/10 216 216.3 2.57 2.44 6.78 6.65
10 0:51 0:01 4/10 10/10 378.2 377.1 5.80 6.08 7.05 7.32CT2-2
15 1:31 0:01 0/10 10/10 559.7 543.3 4.93 7.71 8.16 10.85

Case 2: move time and processing times are approximately equal.
5 0:01 0:01 10/10 10/10 372.7 372.7 11.33 11.33 11.33 11.33
10 0:02 0:01 10/10 10/10 745.2 745.2 12.57 12.57 12.57 12.57CT1-1
15 1:13 0:01 0/10 10/10 1117.7 1131.7 12.97 11.88 12.97 11.88
5 0:01 0:01 10/10 10/10 401.3 401.3 14.25 14.25 14.25 14.25
10 1:16 0:01 0/10 10/10 811 798.3 14.72 16.06 14.72 16.06CT1-2
15 1:36 0:01 0/10 10/10 1294 1194.8 9.76 16.68 9.76 16.68

112

Table 18 continued.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

5 0:01 0:01 10/10 10/10 383 383 15.12 15.12 15.12 15.12
10 1:16 0:01 0/10 10/10 775.6 761.2 15.62 17.19 15.62 17.19CT2-1
15 1:27 0:01 0/10 10/10 1134.4 1138.2 18.22 17.95 18.22 17.95
5 0:03 0:02 10/10 10/10 382 382 14.46 14.46 9.00 9.00
10 1:20 0:02 0/10 10/10 818.9 753.7 9.87 17.05 3.32 11.02CT2-2
15 1:39 0:03 0/10 10/10 1263.8 1126.6 7.79 17.80 0.00 10.86

Case 3: long move time, short processing times.
5 0:01 0:01 10/10 10/10 510.5 510.5 37.17 37.17 37.17 37.17
10 0:02 0:01 10/10 10/10 1021 1021 39.96 39.96 39.96 39.96CT1-1
15 0:22 0:01 10/10 10/10 1531.5 1531.5 40.83 40.83 40.83 40.83
5 0:01 0:01 10/10 10/10 478.5 478.5 37.67 37.67 37.67 37.67
10 0:44 0:01 10/10 10/10 957 957 40.47 40.47 40.47 40.47CT1-2
15 1:34 0:01 0/10 10/10 1803.7 1386 26.31 43.38 26.31 43.38
5 0:01 0:01 10/10 10/10 547 547 39.07 39.07 39.07 39.07
10 0:55 0:01 9/10 10/10 1098.9 1094 41.69 41.95 41.69 41.95CT2-1
15 1:33 0:01 0/10 10/10 2083.6 1641 27.44 42.86 27.44 42.86
5 0:02 0:02 10/10 10/10 471.5 471.5 40.66 40.66 32.36 32.36
10 1:15 0:03 0/10 10/10 1210 943 25.15 41.67 19.71 37.43CT2-2
15 1:35 0:04 0/10 10/10 2032 1414.5 16.67 42.00 7.81 35.82

113

Table 19. Computing times and percentage improvement of the Algorithm TBB over the push and pull sequences for some three-stage
cluster tool configurations (OH = 0).

CPU time
min:sec

instances
solved

Average makespan
(sec)

% improvement
over push

% improvement
over pull

Tool
configuration

L

BB TBB BB TBB BB TBB BB TBB BB TBB
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Case 1: short move time, long processing times.
5 0:01 0:01 10/10 10/10 369 369 0 0 0.57 0.57
10 1:04 0:01 5/10 10/10 677.5 677.5 0 0 0.82 0.82CT1-1-1
15 1:44 0:01 0/10 10/10 986 986 0 0 0.91 0.91
5 0:17 0:02 10/10 10/10 334.9 337.8 4.29 3.46 4.53 3.71
10 1:34 0:03 0/10 10/10 613.5 616.8 3.90 3.38 4.31 3.79CT1-2-2
15 2:00 0:04 0/10 10/10 889.4 895.4 4.05 3.40 4.42 3.77
5 0:34 0:03 7/10 10/10 349.2 350.3 2.89 2.59 1.91 1.60
10 1:38 0:05 0/10 10/10 638.8 634.1 0.90 1.63 0.44 1.17CT2-2-1
15 2:05 0:07 0/10 10/10 923.8 918.1 0.62 1.24 0.30 0.92
5 0:49 0:46 6/10 5/10 290.1 294 2.03 0.71 8.80 7.58
10 1:42 1:27 0/10 0/10 549.6 524.9 2.54 6.92 5.01 9.28CT2-2-2
15 2:10 1:44 0/10 0/10 817.3 760.3 1.76 8.61 2.64 9.43

Case 2: move time and processing times are approximately equal.
5 0:03 0:01 10/10 10/10 521.7 521.7 11.85 11.85 11.85 11.85
10 1:37 0:01 0/10 10/10 1083 1032.2 9.43 13.68 9.43 13.68CT1-1-1
15 2:10 0:01 0/10 10/10 1687 1541.7 6.27 14.34 6.27 14.34
5 1:13 0:04 0/10 10/10 515.6 509.2 10.13 11.24 10.72 11.83
10 1:43 0:06 0/10 10/10 1107.9 1005.2 4.63 13.47 4.86 13.68CT1-2-2
15 2:15 0:08 0/10 10/10 1695.9 1501.2 3.07 14.20 3.28 14.39

114

Table 19 continued

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

5 1:14 0:06 0/10 10/10 539.3 525.2 10.21 12.55 10.21 12.55
10 1:50 0:09 0/10 10/10 1158 1044.5 4.82 14.15 4.77 14.10CT2-2-1
15 2:19 0:11 0/10 10/10 1774 1446.5 3.20 21.07 3.20 21.07
5 1:12 1:17 0/10 0/10 534.4 537.9 7.42 6.81 2.82 2.18
10 1:51 1:25 0/10 0/10 1110 1077.8 5.06 7.82 0.00 2.90CT2-2-2
15 2:10 1:42 0/10 0/10 1659.9 1595.8 5.75 9.39 0.00 3.86

Case 3: long move time, short processing times

5 0:01 0:01 10/10 10/10 670 670 38.84 38.84 37.48 37.48
10 1:28 0:01 0/10 10/10 1585.6 1340 30.07 40.90 30.07 40.90CT1-1-1
15 1:54 0:01 0/10 10/10 2757.6 2010 19.82 41.56 19.26 41.15
5 0:35 0:04 10/10 10/10 694.5 694.5 39.73 39.73 37.17 37.17
10 1:40 0:06 0/10 10/10 1984.7 1389 15.92 41.15 15.08 40.57CT1-2-2
15 2:06 0:08 0/10 10/10 3192.7 2083.5 10.53 41.61 9.33 40.83
5 0:50 0:06 10/10 10/10 650 650 37.93 37.93 39.23 39.23
10 1:40 0:10 0/10 10/10 1836.3 1300 15.27 40.01 15.28 40.02CT2-2-1
15 2:09 0:12 0/10 10/10 2961.7 1950 9.90 40.68 10.51 41.08
5 1:09 1:15 0/10 0/10 780 883.3 28.57 19.11 19.44 8.77
10 1:44 1:25 0/10 0/10 1946.2 1903.2 12.02 13.96 7.32 9.37CT2-2-2
15 2:11 1:42 0/10 0/10 3049.8 2819.3 8.47 15.39 0.54 8.06

115

From Table 18 and 19, we can draw some insights as follows.

� Except for CT1-1 and CT1-1-1 when move time is short comparing to processing

times (Case 1), the searches were able to find better sequences. This improvement

was greater when the processing times are approximately the same as or smaller

than the move times.

� If the number of searching nodes is less than 100,000, Algorithm TBB can find

better solutions than Algorithm BB when the lot size is a large number in most

instances. In other words, the computing effort is significantly reduced and

becomes less sensitive with respect to the lot size L, when Algorithm TBB is used.

However, Algorithm BB is able to find better results than the Algorithm TBB in

Case 1.

7. 3 Summary

This chapter compares the performance of Algorithm BB and Algorithm TBB on two

criteria, lot makespan and CPU time, to that of the simulation models using the push

and pull dispatching rules. The results suggest that the push and pull dispatching rules

only perform well on a small set of problems (1, 2, 3, 37, 38 and 39). That is, the push

and pull dispatching rules should be used when the move time is smaller than in-

chamber process times and each stage has one chamber. Algorithm BB performs well

on two-stage problems when lot size is smaller than 10. Otherwise, Algorithm TBB is

the best candidate even though it will not guarantee the optimality of the solutions,

because it requires much less computational effort.

116

CHAPTER 8

SUMMARY AND CONCLUSIONS

This research aims to optimize the total lot processing time (makespan) in cluster tool

scheduling for semiconductor manufacturing. Previous research focuses on finding an

optimal sequence of wafer handler moves in a cluster tool that has one process chamber

in each stage. None of the previous work addresses the problem of finding an optimal

sequence of wafer handler moves to improve performance of cluster tools whose

number of chambers in each stage can be any integer. Lot makespan is used as the

performance measure for the analysis of the cluster tools. The inverse of makespan is

an upper bound on the tool throughput; hence, makespan is an important performance

measure for the tool in the analysis of the entire system of tools

In this research, the wafer handler sequencing problem are formulated in standard

scheduling form. All constraints that a feasible sequence of wafer handler moves must

follow are identified. Two cluster tool models have been developed in the research: one

model, implementing the forward branch-and-bound algorithm, can find the optimal

solution and the other, implementing the truncated branch-and-bound algorithm, can

find the best λ-unit cyclic solution. The models attempt to find the optimal or near

optimal sequence of wafer handler moves for a given lot size, wafer handler move time,

and chamber processing times. This improves cluster tool performance by reducing the

total time needed to process the lot. This can reduce cycle time, reduce tool utilization,

117

and increase tool capacity. However, the research considers only the single-load-lock

and single-wafer-handler tools due to the complexity of the problems.

Three dominance criteria are used to reduce the solution space of the problem and

improve the search performance. Although Algorithm BB requires additional

computational effort, our results show that the tool performance can improve

significantly when the wafer handling moves follow the optimal sequence instead of a

simple push (or pull) dispatching rule. This is especially true when the move time and

processing times are approximately equal and when the move time is longer than

processing times. Like other branch-and-bound algorithms, the computational effort is

sensitive to the problem size. Increasing the number of chambers in a stage, the number

of stages in the tool, or the lot size increases the search space. Because programming

the wafer handler can be done off-line, the extra computational effort should be

acceptable.

The truncated branch-and-bound algorithm significantly eases computational effort that

a complete branch-and-bound algorithm faces, although it does not guarantee the

optimality of the solution. Moreover, our results show that the tool performance can

still improve significantly when the wafer handling moves follow the cyclic sequence

instead of a simple push (or pull) dispatching rule. When the lot size is a large number,

Algorithm TBB can find better solutions than Algorithm BB in most instances. The

computing effort is significantly improved and becomes less sensitive with respect to

the lot size L, if using the Algorithm TBB instead of Algorithm BB.

118

These models can serve as stand-alone decision support tools that will help the

managers select the right tool configuration for given ranges of processing time. They

can also be integrated into an integrated simulation model of a semiconductor wafer fab.

The integrated simulation will allow engineers to determine how factory performance

(such as cycle time) depends upon process parameters and tool configurations.

Future work should consider scheduling anticipatory moves, which position the wafer

handler at the next chamber before the chamber finishes the wafer. Such anticipatory

moves will further improve the cluster tool performance. Other research direction

would be a study on the influence of overhead (pumpdown/vent and so on) associated

with stop and start of a process in the wafer handler move time. This immediately leads

to variability in handler move times.

119

APPENDIX A

In this Appendix, we will determine the number of feasible sequences of wafer handler

moves for a 1-1-2 cluster tool with and without using the first and second dominance

criteria.

To keep track of the moves easily, define the state variable as <ABCDE>. Where A is

the number of unprocessed wafers in LL. B and C are numbers of wafer in the first and

second stage respectively. D and E are numbers of wafer in the first and second

chamber of the last stage. B, C, C, and D are binary variables with 0 indicated that the

chamber is empty and 1 indicated that a wafer occupies the chamber. Thus, the state

variable at level zero is <30000> and at the last level is <00000>.

Actually, we do not need to explore all branches. If state variable of a node in a

searching branch is the same as one in the previous branches, we can determine the

number of branches from the node as the previous cases. For example, at level 10,

when node <00011> is repeated to the same state variable as node a, the search is

terminated and number of possible sequences is two. If the first and second dominance

criteria are not applied, we can find 552 feasible sequences using the graphs in Figure

A-1. If applying the first and second dominance criteria, there are 69 feasible sequences

(see Figure A-2).

120

<30000>

<21000>

<20100>

<11100> <20010> <20001>

<11010>

<10110><11000>

<10011>

<00000> <00000>

<01110>

<01011> <01100>

<00111> <01001><01010>

<00101> <00110>

<00100>

<00000> <00000>

<00011>

<00001> <00010> <00010> <00001>

<00011> <00100>

<00101> <01000>

<00100>

<00110 <01000>

<01010> <01001>

+2 (a) +2 (b) +2(b)

+4 (c)+2 (e)+4 (d)

+6 (g)+6 (f)

+36 (j)
<10100>

+28 (k)

+28 (l)

<11001>
+124 (n)

<11010><20000>

<11000>

+124 (o)

+28 (l)

<11001> <20000>

<11000>
+28 (l)

+124

THUS, THERE ARE 552 FEASIBLE

m

f

a b

d e

g

h i

c

o

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 11

Level 12

Figure A-1. Complete outtree graph of a CT1-1-2 (L = 3) when the first
 and second dominance criteria are not active.

121

<10011>

<01011> <10001> <10010>
+20 (h)

<01001> <10000> <01010> <10000>

<01000>
+2 (e)

+6 (g) +6 (f)

+2 (e)

Node j

<10100>

<01100> <10010> <10001>
+12 (i)

Node k

<11001>

<10101> <11000>

<01101><10011> <10100>

<01011> <01100>

+28 (l)

+28 (k)

+20 (h) +12 (i)

+36 (k)

Node n

Node l <11000>

Figure A-1 (cont’d).

<01000>

<01010> <10000>
+6 (f)

+2 (e)
<01000>

<01001> <10000>

<01000>
+2 (e)

+6 (g)

<10100>
+28 (k)

122

<30000>

<21000>

<20100>

<11100>

<11010>

<10110> <11000>

<01110> <10011> <10100>

<01011> <01100>

<00111>

<00101>

<00011> <00100>

<00010>

<00000> <00000>

<00010>

<01001>

<00101> <01000>
+2 (c)

<01010>

<00110> <01000>

<00011>
+1 (a)

<00100>
+1 (b)

<00100>
+1 (b)

<01011>
+5 (h)

<10001>

<01001> <10000>
+3 (e)

<01000>
+1 (d)

<01100> <10010>
+3 (i)

<01010>
+3 (f)

<10000>
+1 (g)

<00100>
+1 (b)

<10100>
+7 (j)

<20010>

<11010> <20000>
+31 (l)

<11000>
+7 (k)

Thus, there are 69 feasible sequences.

Figure A-2. Complete outtree graph of a CT1-1-2 (L = 3) when the first
 and second dominance criteria are active.

a b

c d

e f g

h i

j

k

l

123

APPENDIX B

In this appendix, we formulate the formulas of cycle length and lot makespan for a

CT1-1 that follows 1-unit cycle. We will assume that initially the tool is empty and the

wafer handler is at load lock.

1) Cycle 1: R2, j-1 − R0,j – R1,j – R2,j.

Thus, Ri,j takes pr (i = 0, 1, 2). Figure B-1 presents a Gantt chart of a complete σ1-

sequence when L = 3.

For convenience, consider the jth cyclic cycle σ1 = R0, j − R1, j − R2, j. The complete

sequence consists of L occurrences of σ1. Thus, the cycle length P1 = 3pr + p1 + p2, and

the makespan MS1 = LP1.

R
1,

 2

R
0,

 3

R
0,

 2

R
2,

 2

R
1,

 3

R
2,

 3

R
0,

 1

R
1,

 1

R
2,

 1

P1

p1

p2

Figure B-1. Gantt chart of a complete σ1-sequence (L = 3).

P1

124

2) Cycle 2: R2, j-1 − R1, j − R0,j+1 – R2,j. In the cyclic phase, all Ri,j are 2pr. Figure B-2

presents a Gantt chart of a complete σ2-sequence when L = 4.

However, for convenience, we will consider the jth cyclic cycle σ2 = R0, j+1 − R2,

j −R1, j+1, which repeats (L-1) times. Let time t = 0 at the beginning of the sequence.

The filling-up phase consists of R0, 1 and R1, 1. The first cycle begins at t1 = 2pr + p1.

Let y be the idle time between R0, j+1 and R2, j, then y = max{p2, 2pr} - 2pr. Let x be the

idle time between R2, j and R1, j+1, then x = max{p1 - 2pr - y, 0} = max{p1, 2pr + y} - 2pr

- y. Thus, the cycle length P2 = 6pr + x + y = 4pr + max{p1, 2pr + y} = 4pr + max{2pr,

p1, p2}. The completion phase starts at t2 = t1 + (L - 1)P2 = 2pr + p1 + (L-1)P2. Note that

R2, L takes pr. Thus, the makespan MS2 = 2pr + p1 + (L-1)P2 + p2 + pr = 3pr + p1 + p2 +

(L-1)P2.

R
2,

 1

R
1,

 2

P2

p1

p2

Figure B-2. Gantt chart of a complete σ2-sequence (L = 4).
R

0,
 3

R
0,

 1

R
1,

 1

R
0,

 2

R
2,

 2

R
1,

 3

R
0,

 4

R
2,

 3

R
1,

 4

R
2,

 4

P2

125

APPENDIX C

In this appendix, we derive the formulas for cycle length and lot makespan for a CT1-1-

1 that follows 1-unit cycle σx (x = 1, 3, 4, and 5). We will assume that initially the tool

is empty and the wafer handler is at load lock.

1) Cycle 1: R3,j-1– R0,j – R1,j – R2,j – R3,j. The filling-up phase is R0, 1 – R1, 1 – R2, 1.

Thus, Ri,j takes pr. Figure C-1 presents a Gantt chart of a complete σ1-sequence when L

= 3.

For convenience, consider the cycle σ1 = R0, j – R1, j – R2, j – R3, j. The

complete sequence consists of L occurrences of σ1. Thus, the cycle length P1 = 4pr + p1

+ p2 + p3, and the makespan MS1 = LP1.

R
3,

 1

R
0,

 1

R
1,

 1

R
2,

 1

P1

p1

p2

p3

Figure C-1. Gantt chart for a complete σ1-sequence (L =3).

R
3,

 2

R
0,

 2

R
1,

 2

R
2,

 2

R
3,

 3

R
0,

 3

R
1,

 3

R
2,

 3

P1 P1 P1

126

2) Cycle 3: R3,j-1– R2,j – R0,j+1 – R1,j+1 – R3,j.

In the cyclic phase, R1,j takes pr and others take 2pr. There are two feasible filling-up

phases: f1 and f2.

a) f1: R0, 1 – R1, 1 – R2, 1 – R0, 2 – R1, 2. Figure C-2a presents a Gantt chart of a complete

σ3-sequence with the filling-up f1 when L = 4.

For convenience, we can consider the jth cyclic cycle σ3 = R2, j– R0,j+1 – R1,j+1 –

R3,j, which repeats (L-2) times. Note that the last four moves of the filling-up phase

forms a transition cycle whose length equals P3 – pr. Thus, the first cycle starts at t1 =

R3, 1R0, 1 R1, 1 R2, 1

P3

p1

p3

p2

Figure C-2a. Gantt chart of a complete σ3-sequence with filling-up f1 (L = 4).

R0, 2 R1, 2 R3, 2R2, 2 R0, 3 R1, 3

R3, 3R2, 3 R0, 4 R1, 4 R3, 4R2, 4

P3

P3

P3 - pr

127

2pr + p1 + p2 + P3 – pr = pr + p2 + p1+ P3. We now compute the cycle length. Let t be the

starting time of R2,j (j = 2,…, L-1), then

Move start complete

R2,j t t+2pr

R0,j+1 t+2pr t+4pr

R1,j+1 t+4pr+p1 t+5pr+p1

R3,j max{ t+5pr+p1, t+2pr+p3} t+4pr+max{ 3pr+p1, p3}

R2,j+1 max{ t+4pr+max{ 3pr+p1, p3},

t+5pr+p1+p2}

= t+4pr +max{3pr+p1, p3, pr+p1+p2}

t+6pr +max{ 3pr+p1, p3, pr+p1+p2}

Thus, cycle length P3 = 4pr +max{3pr+p1, p3, pr+p1+p2}. The completion phase starts at

time t2 = t1 + (L-2)P3 = pr + p1 + p2 + (L-1)P3. Two moves in the completion phase are

R2,L and R3,L (note that R3, L takes pr). Thus, makespan MS31 = [pr+p1+p2+(L-1)P3] +

[2pr+p3+pr] = 4pr+p1+p2+p3+(L-1)P3.

b) f2: R0, 1 – R1, 1 – R0, 2 – R2, 1 – R1, 2. Figure C-2b presents Gantt chart of a complete

σ3-sequence with the filling-up f2 when L = 4.

Figure C-2b. Gantt chart of a complete σ3-sequence with filling-up f2 (L = 4).

R
3,

 1

R
0,

 1

R
1,

 1

R
2,

 1

p1

p3

p2

R
0,

 2

R
1,

 2

R
3,

 2

R
2,

 2

R
0,

 3

R
1,

 3

R
3,

 3

R
2,

 3

R
0,

 4

R
1,

 4

R
3,

 4

R
2,

 4

P3 P3

128

For convenience, we can consider the jth cyclic cycle σ3 = R2, j– R0,j+1 – R1,j+1 –

R3,j, which repeats (L-2) times. We need to determine the starting time t1 of the first

cyclic cycle. Below are the starting and completion times of the moves in the filling-up

phase.

Move Start Complete

R0, 1 0 pr

R1, 1 pr+p1 2pr+p1

R0, 2 2pr+p1 4pr+p1

R2, 1 2pr+p1+max{p2, 2pr} 4pr+p1+max{p2, 2pr}

R1, 2 max{4pr+2p1, 4pr+p1+max(p2, 2pr)}

= 4pr+p1+max{p1, p2, 2pr}

6pr+p1+max{p1, p2, 2pr}

R3, 1 max{4pr+p1+p3+max(p2, 2pr),

6pr+p1+max(p1, p2, 2pr)}

= 4pr+p1+max{p3+max(p2, 2pr),

2pr+max(p1, p2, 2pr)}

6pr+p1+max{p3+max(p2, 2pr), 2pr

+max(p1, p2, 2pr)}

Hence, t1 = max{6pr + p1 + p2 + max(p1, p2, 2pr), 6pr + p1 + max[p3 + max(p2, 2pr), 2pr

+ max(p1, p2, 2pr)]}

 = 6pr + p1+ max{p2, 2pr} + max{p1, p2, p3, 2pr}

Note that the steady-state and completion phases are the same as those in Section 3a

above. Hence, the cycle length P3 = 4pr + max{3pr + p1, p3, pr + p1 + p2}. The

completion phase starts at time t2 = t1 + (L-2)P3 = 6pr + p1 + max{p2, 2pr}+ max{p1, p2,

p3, 2pr} + (L-2)P3. Two moves in the completion phase are R2,L and R3,L (note that R3, L

takes pr). Thus, makespan

MS32 = [6pr + p1+ max{p2, 2pr}+ max{p1, p2, p3, 2pr}+ (L-2)P3] + [2pr + p3 + pr]

 = 9pr+p1+ p3+ max{p2, 2pr}+ max{p1, p2, p3, 2pr}+ (L-2)P3.

129

3) Cycle 4: R3,j-1 – R1,j – R2,j – R0,j+1 – R3,j.

In the cyclic cycle, R2,j takes pr and others take 2pr. There are two feasible filling-up

phases: f1 and f2.

a) f1: R0, 1 – R1, 1 – R2, 1 – R0, 2. Figure C-3a presents a Gantt chart of a complete σ4-

sequence with the filling-up f1 when L = 4.

For convenience, we consider the jth cyclic cycle σ4 = R1, j – R2, j – R0, j+1 – R3, j,

which repeats (L-2) times. Note that the last four moves of the filling-up phase forms a

transition cycle whose length equals P4 – pr. Thus, the first cycle starts at t1 = pr + p1 +

P4 – pr = p1+ P4. We now compute the cycle length. Let t be the starting time of R1, j (j =

2,…, L-1), then

R
3,

 1

R
0,

 1

R
1,

 1

R
2,

 1

Figure C-3a. Gantt chart of a complete σ4-sequence with filling-up f1 (L = 4).

R
0,

 2

R
1,

 2

R
3,

 2

R
2,

 2

R
0,

 3

R
1,

 3

R
3,

 3

R
2,

 3

R
0,

 4

R
1,

 4

R
3,

 4

R
2,

 4

p3

P4

p1

p2

P4 - pr P4 P4

130

Move start complete

R1,j t t+2pr

R2,j t+2pr+p2 t+3pr+p2

R0,j+1 t+3pr+p2 t+5pr+p2

R3,j t+3pr+p2+max{2pr, p3} t+5pr+p2+max{2pr, p3}

R1,j+1 max{t+5pr+p2+max{2pr, p3},

t+5pr+p2+p1}

= t+5pr+p2+max{2pr, p3, p1}

t+7pr+p2+max{2pr, p3, p1}

Thus, cycle length P4 = 5pr + p2 + max{2pr, p3, p1}. The completion phase starts

at time t2 = t1 + (L - 2)P4 = p1 + (L - 1)P4. The completion phase includes R1,L, R2,L, and

R3,L. Note that both R2,L and R3,L take pr. Hence, makespan MS41 = [p1 + (L - 1)P4] +

[2pr + p2 + pr + p3 + pr] = 4pr + p1 + p2 + p3 + (L - 1)P4.

b) f2: R0, 1 – R1, 1 – R0, 2 – R2, 1. Figure C-3b presents a Gantt chart of a complete σ4-

sequence with the filling-up f2 when L = 4.

R
3,

 1

R
0,

 1

R
1,

 1

R
2,

 1

Figure C-3b. Gantt chart of a complete σ4-sequence with filling-up f2 (L = 4).

R
0,

 2

R
1,

 2

R
3,

 2

R
2,

 2

R
0,

 3

R
1,

 3

R
3,

 3

R
2,

 3

R
0,

 4

R
1,

 4

R
3,

 4

R
2,

 4

p3

p1

p2

P4 P4

131

For convenience, we consider the jth cyclic cycle as σ4 = R1, j– R2,j – R0,j+1 – R3,j,

which repeats (L-2) times. We need to determine the starting time t1 of the first cyclic

cycle. Below are the starting and completion times of the moves in the filling-up phase.

Move Start Complete

R0, 1 0 pr

R1, 1 pr+p1 2pr+p1

R0, 2 2pr+p1 4pr+p1

R2, 1 2pr+p1+max{p2, 2pr} 4pr+p1+max{p2, 2pr}

R3, 1 4pr+p1+p3+max{p2, 2pr} 5pr+p1+p3+max{p2, 2pr}

Hence t1 = max{4pr + 2p1, 5pr + p1 + p3 + max(p2, 2pr)} = 4pr + p1 + max{p1,

pr+p3+max(p2, 2pr)}. Note that the steady-state and completion phases are the same as

those in Section 4a above. Hence, the cycle length P4 = 5pr + p2 + max{2pr, p3, p1}.

The completion phase starts at time t2 = t1 + (L - 2)P4 = 4pr + p1 + max{p1, pr+p3 +

max(p2, 2pr)}+ (L - 2)P4. The completion phase includes R1,L, R2,L, and R3,L. Note that

both R2,L and R3,L take pr. Hence, makespan MS42 = [4pr + p1 + max{p1, pr+p3 + max(p2,

2pr)}+ (L - 2)P4] + [2pr + p2 + pr + p3 + pr] = 8pr + p1 + p2 + p3 + max{p1, pr+p3 + max(p2,

2pr)}+ (L - 2)P4.

132

4) Cycle 5: R3,j-1 - R1,j – R0,j+1 – R2,j – R3,j.

In the cyclic cycle, R3,j takes pr and others take 2pr. There are two feasible filling-up

phases: f1 and f2.

a) f1: R0, 1 – R1, 1 – R0, 2 – R2, 1. Figure C-4a presents a Gantt chart of a complete σ5-

sequence with the filling-up f1when L= 4.

For convenience, we consider the jth cyclic cycle σ5 = R1, j – R0, j+1 – R2, j – R3, j,

which repeats (L-2) times. Note that the last four moves of the filling-up phase forms a

transition cycle whose length equals P5 – pr. Thus, the first cycle starts at t1 = pr + p1 +

P5 – pr = p1+ P5. We now compute the cycle length. Let t be the starting time of R1, j (j =

2,…, L-1). Then,

R
3,

 1

R
0,

 1

R
1,

 1

R
2,

 1

R
0,

 2

R
1,

 2

R
3,

 2

R
2,

 2

R
0,

 3

R
1,

 3

R
3,

 3

R
2,

 3

R
0,

 4

R
1,

 4

R
3,

 4

R
2,

 4

P5

p3

p1

p2

P5 - pr P5 P5

Figure C-4a. Gantt chart of a complete σ5-sequence with filling-up f1 (L = 4).

133

Move start complete

R1,j t t+2pr

R0,j+1 t+2pr t+4pr

R2,j t+2pr+max{p2, 2pr} t+4pr+max{p2, 2pr}

R3,j t+4pr+max{p2, 2pr}+p3 t+5pr+max{p2, 2pr}+p3

R1,j+1 max{ t+5pr+max{p2, 2pr}+p3, t+4pr +p1}

= t+4pr+max{pr+p2+p3, 3pr+p3, p1}

t+6pr+max{pr+p2+p3, 3pr+p3, p1}

Thus, cycle length P5 = 4pr + max{pr + p2 + p3, 3pr + p3, p1}. The completion

phase starts at time t2 = t1 + (L - 2)P5 = p1 + (L - 1)P5. The completion phase includes

R1,L, R2,L, and R3,L. Note that both R2,L and R3,L take pr. Hence, makespan MS51 = [p1 +

(L - 1)P5] + [2pr + p2 + pr + p3 + pr] = 4pr + p1 + p2 + p3 + (L - 1)P5.

b) f2: R0, 1 – R1, 1 – R2, 1 – R0, 2. Figure C-4b presents a Gantt chart of a complete σ5-

sequence with the filling-up f2 when L= 4.

R
3,

 1

R
0,

 1

R
1,

 1

R
2,

 1

R
0,

 2

R
1,

 2

R
3,

 2

R
2,

 2

R
0,

 3

R
1,

 3

R
3,

 3

R
2,

 3

R
0,

 4

R
1,

 4

R
3,

 4

R
2,

 4

p3

p1

p2

P5 P5

Figure C-4b. Gantt chart of a complete σ5-sequence with filling-up f2 (L = 4).

134

For convenience, consider the jth cyclic cycle as σ5 = R1, j – R0, j+1 – R2, j – R3, j,

which repeats (L-2) times. We need to determine the starting time t1 of the first cyclic

cycle. Below are the starting and completion times of the moves in the filling-up phase.

Move Start Complete

R0, 1 0 pr

R1, 1 pr+p1 2pr+p1

R2, 1 2pr+p1+p2 3pr+p1+p2

R0, 2 3pr+p1+p2 5pr+p1+p2

R3, 1 max{3pr+p1+p2+p3, 5pr+p1+p2} 5pr+p1+p2+ max{p3, 2pr}

Hence, t1 = max{5pr + 2p1 + p2, 5pr + p1 + p2 + max(p3, 2pr)} = 5pr + p1 + p2 +

max{p1, p3, 2pr}. Note that the steady-state and completion phases are the same as those

in Section 5a above. Hence, the cycle length P5 = 4pr + max{pr + p2 + p3, 3pr + p3, p1}.

The completion phase starts at time t2 = t1 + (L - 2)P5 = 5pr + p1 + p2 + max{p1, p3, 2pr}+

(L - 2)P5. The completion phase includes R1,L, R2,L, and R3,L. Note that both R2,L and

R3,L take pr. Hence, makespan MS52 = [5pr + p1 + p2 + max{p1, p3, 2pr}+ (L - 2)P5] +

[2pr + p2 + pr + p3 + pr] = 9pr + p1 + 2p2 + p3 + max{p1, p3, 2pr}+ (L - 2)P5.

135

APPENDIX D

In this appendix, we derive the formulas for cycle length and lot makespan for a CT1-1-

1 that follows 1-unit cycle σ2 = R3,j-1– R0,j+1 – R2,j – R1,j+1 – R3,j. Assume that initially

the tool is empty and the wafer handler is at load lock. In the cyclic phase, R0,j takes pr

and all other moves require 2pr. There are two feasible filling-up phases: f1 and f2.

a) f1: R0, 1 – R1, 1 – R0, 2 – R2, 1 – R1, 2. Figure D-1 presents a Gantt chart of a complete

σ2-sequence with the filling-up phase f1 when L = 5.

For convenience, consider the jth cycle σ2 = R0, j+1 – R2, j – R1, j+1 – R3, j. After the

filling-up phase, the tool undergoes (L-2) steady state cycles. The completion phase

consists of R2,L and R3,L. Note that R3,L takes pr. Let aj be the idle time between R2, j

R
0,

 1

R
1,

 1

R
0,

 4

R
1,

 4

R
2,

 4

R
1,

 2

R
0,

 3

R
0,

 2

R
2,

 2

R
1,

 3

R
2,

 3

R
2,

 1

P212

p1

p3

p2

Figure D-1. Gantt chart of a complete σ2-sequence with the filling-up phase f1 (L = 5).

R
3,

 1

R
3,

 2

R
3,

 3

R
0,

 5

R
1,

 5

R
3,

 4

R
2,

 5

R
3,

 5

P214P213filling-up

136

and R1, j+1. Let bj be the idle time between R0, j+1 and R2, j. Let cj be the idle time

between R1, j+1 and R3, j. Then,

• j = 1 (filling-up phase)

b1 = max(p2 - 2pr, 0) = max(p2, 2pr) - 2pr

a1 = max(p1 - 2pr - b1, 0) = max{p1 - max(p2, 2pr), 0}

c1 = max(p3 - 2pr - a1, 0)

• 1 <j ≤ (L - 1)

bj = max(p2 - 3pr – cj-1, 0)

aj = max(p1 - 2pr – bj, 0)

cj = max(p3 - 2pr – aj, 0)

Thus, the length of the jth cycle is P21j = 7pr + aj + bj + cj (j = 2,…,L-1). The average

cycle time is

.P
2L

1
P

1L

2j
21j21 ∑

−

=−
=

 The first cycle start at t1 = 10pr + p1 + a1 + b1 + c1. The last move of the steady-state

phase R3, L-1 completes at t2 = t1 + (L - 2)P21 = 10pr + p1 + a1 + b1 + c1 + (L –2) P21. The

first move of the completion phase can start at time t2 + max(p2 - 2pr – cL-1, 0), hence,

the makespan is

MS21 = 10pr + p1 + a1 + b1 + c1 + (L –2) P21 + max(p2 - 2pr – cL-1, 0) + 3pr + p3

 = 13pr + p1 + p3 + a1 + b1 + c1 + (L –2) P21 + max(p2 - 2pr – cL-1, 0)

137

b) f2: R0, 1 – R1, 1 – R2, 1 – R0, 2 – R1, 2. Figure D-2 presents a Gantt chart of a complete

σ2-sequence with the filling-up phase f2 when L = 5.

Consider the jth cyclic cycle σ2 = R3, j – R0, j+2 – R2, j+1 – R1, j+2. The first cycle starts

at time t1 = 3pr + p1 + p2 + max{p3, 3pr + p1}. Let dj be the idle time between R2, j+1 and

R1, j+2. Let ej be the idle time between R0, j+2 and R2, j+1. Let gj be the idle time between

R1, j+2 and R3, j+1. Then,

• j = 1

e1 = max{p2 – 3pr – max(p3 – p1 – 3pr, 0), 0} = max{p1 + p2 – max(p3, p1 + 3pr), 0}

d1 = max{p1 – 2pr – e1, 0}

g1 = max{p3 – 2pr – d1, 0}

• 1 < j ≤ (L-2)

ej = max{p2 – 3pr – gj-1, 0}

dj = max{p1 – 2pr – ej, 0}

gj = max{p3 – 2pr – dj, 0}

P221

p1

p3

p2

Figure D-2. Gantt chart of a complete σ2-sequence with the filling-up phase f2 (L = 5).

P223P222filling-up

R
0,

 1

R
1,

 1

R
0,

 4

R
1,

 4

R
2,

 4

R
1,

 2

R
0,

 3

R
0,

 2

R
2,

 2

R
1,

 3

R
2,

 3

R
2,

 1

R
3,

 1

R
3,

 2

R
3,

 3
R

0,
 5

R
1,

 5

R
3,

 4

R
2,

 5

R
3,

 5

138

Thus, the length of the jth cycle is P22j = 7pr + dj + ej + gj (j = 1,…, L-2). The average

cycle time is

.P
2L

1
P

2L

1j
22j22 ∑

−

=−
=

The completion phase starts at t2 = t1 + (L – 2)P22 = 3pr + p1 + p2 + max{p3, 3pr + p1} +

(L – 2)P22. We can compute the starting times of the moves in completion phase as

follows.

Move Starting time Completion time

R3, L-1 t2 t2 + 2pr

R2, L t2 + 2pr + max{p2 – 2pr – gL-2, 0} t2 + 4pr + max{p2 – 2pr – gL-2, 0}

R3, L t2+4pr+p3+max{p2 – 2pr – gL-2, 0} t2+5pr+ p3 +max{p2 – 2pr – gL-2, 0}

Hence, the makespan is

MS22 = 3pr+p1+p2+max{p3, 3pr+p1} + (L – 2)P22 + 5pr + p3 +max{p2 – 2pr – gL-2, 0}

 = 8pr + p1 + p2 + p3 + max{p3, 3pr + p1} +max{p2 – 2pr – gL-2, 0} + (L – 2)P22.

139

APPENDIX E

In this appendix, we derive the formulas for cycle length and lot makespan for a CT1-1-

1 that follows 1-unit cycle σ6 = R3,j-1 – R2,j – R1,j+1 – R0,j+2 – R3,j. We will assume that

initially the tool is empty and the wafer handler is at load lock. In the cyclic phase, all

moves take 2pr. There are two feasible filling-up phases: f1 and f2.

a) f1: R0, 1 – R1, 1 – R0, 2 – R2, 1 – R1, 2 – R0, 3. Figure E-1 presents a Gantt chart of a

complete σ6-sequence with the filling-up f1 when L = 5.

For convenience, we consider the jth cyclic cycle as σ6 = R2, j – R1, j+1 – R0, j+2 –

R3, j, which repeats (L-3) times. Below are the starting and completion times of the

moves in the filling-up phase.

R
3,

 1

R
0,

 1

R
1,

 1

R
2,

 1

R
0,

 2

R
1,

 2

R
3,

 2

R
2,

 2

R
0,

 3

R
1,

 3

R
3,

 3

R
2,

 3

R
0,

 4

R
1,

 4

R
3,

 4

R
2,

 4

Figure E-1. Gantt chart of a complete σ6-sequence with filling-up f1 (L = 5).

p2

p3

p1

R
0,

 5

R
1,

 5

R
3,

 5

R
2,

 5

P612 P613

140

Move start complete

R0,1 0 pr

R1,1 pr+p1 2pr+p1

R0,2 2pr+p1 4pr+p1

R2,1 2pr+p1+max{2pr, p2} 4pr+p1+max{2pr, p2}

R1,2 4pr+p1+max{2pr, p1, p2} 6pr+p1+max{2pr, p1, p2}

R0,3 6pr+p1+max{2pr, p1, p2} 8pr+p1+max{2pr, p1, p2}

R3,1 4pr+p1+max{4pr+max(2pr, p1, p2),

max(2pr, p2)+p3}

6pr+p1+max{4pr+max(2pr, p1, p2),

max(2pr, p2)+p3}

Hence, the first cycle starts at t1 = max{6pr + p1 + max[4pr + max(2pr, p1, p2),

max(2pr, p2) + p3], p2 + 6pr + p1 + max{2pr, p1, p2}} = 6pr + p1 + max(2pr, p1, p2) +

max{4pr, p2, p3 - max[0, p1 -max(2pr, p2)]}. Let w2 be the idle time between R2, 2 and

R1, 3, then w2 = max{p1 + 8pr + p1 + max(2pr, p1, p2) - 8pr - p1- max(2pr, p1, p2) –

max{4pr, p2, p3 - max[0, p1 -max(2pr, p2)]}, 0} = max{p1 - max{4pr, p2, p3 - max[0, p1 -

max(2pr, p2)]}, 0}.

We now compute the cycle length. Let wj be the idle time between R2, j and R1,

j+1. Let t be the starting time of R2, j (j = 2, …, L-3), then the starting and completion

times of the moves in the cyclic cycle are:

Move start complete

R2,j t t+2pr

R1,j+1 t+2pr+wj t+4pr+wj

R0,j+2 t+4pr+wj t+6pr+wj

R3,j t+2pr+ max{ p3, 4pr+wj} t+4pr+ max{ p3, 4pr+wj}

R2,j+1 t+4pr+wj+max{p2, p3-wj, 4pr} t+6pr+ wj+max{p2, p3-wj, 4pr}

141

Thus, cycle length of the jth cycle is P61j = 4pr+ wj +max{p2, p3-wj, 4pr}, and the

idle time between R2, j+1 and R1, j+2 is wj+1 = max{p1-max(p2, p3 – wj, 4pr), 0}. The

average cycle time is

.P
3L

1
P

2L

2j
j6161 ∑

−

=−
=

The completion phase can start at time t2 = t1 + (L –3)P61. The completion phase

consists of R2,L-1- R1,L - R3,L-1 - R2,L - R3,L. Note that R3,L takes pr. We now compute

starting and completion times of the moves in the completion phase as follows.

Move Start Complete

R2,L-1 t2 t2+2pr

R1,L t2+2pr+ wL-2 t2+4pr+wL-2

R3,L-1 t2+2pr+max{2pr+ wL-2, p3} t 2+4pr+max{2pr+ wL-2, p3}

R2,L t2+4pr+ wL-2 +max{2pr, p2, p3-

wL-2}

t2+6pr+ w1 +max{2pr, p2, p3-wL-2}

R3,L t2+6pr+p3+ wL-2+max{2pr, p2, p3 -

wL-2}

t2+7pr+p3+wL-2+max{2pr, p2, p3- wL-2}

Thus, makespan

MS61 = 6pr + p1 + max(2pr, p1, p2) + max{4pr, p2, p3 - max[0, p1 -max(2pr, p2)]}

+ (L –3)P61 + 7pr + p3 + wL-2 + max{2pr, p2, p3- wL-2}

 = 13pr + p1 + p3 + wL-2 + max(2pr, p1, p2) + max{4pr, p2, p3 - max[0, p1 –

max(2pr, p2)]} + max{2pr, p2, p3- wL-2} + (L –3)P61 .

142

b) f2: R0, 1 – R1, 1 – R2, 1 – R0, 2 – R1, 2 – R0, 3. Figure E-2 presents a Gantt chart of a

complete σ6-sequence with the filling-up f2 when L = 5.

For convenience, we consider the jth cyclic cycle as σ6 = R2, j – R1, j+1 – R0, j+2 –

R3, j, which repeats (L-3) times. Below are the starting and completion times of the

moves in the filling-up phase.

Move start complete

R0,1 0 pr

R1,1 pr+p1 2pr+p1

R2,1 2pr+p1+p2 3pr+p1+p2

R0,2 3pr+p1+p2 5pr+p1+p2

R1,2 5pr+2p1+p2 6pr+2p1+p2

R0,3 6pr+2p1+p2 8pr+2p1+p2

R3,1 max{3pr+p1+p2+p3, 8pr+2p1+p2} 5pr+p1+p2+max{p3, 5pr+p1}

R
3,

 1

R
0,

 1

R
1,

 1

R
2,

 1

R
0,

 2

R
1,

 2

R
3,

 2

R
2,

 2

R
0,

 3

R
1,

 3

R
3,

 3

R
2,

 3

R
0,

 4

R
1,

 4

R
3,

 4

R
2,

 4

Figure E-2. Gantt chart of a complete σ6-sequence with filling-up f2 (L = 5).

p2

p3

p1

R
0,

 5

R
1,

 5

R
3,

 5

R
2,

 5

P622 P623

143

Hence, the first cycle starts at t1 = max{6pr + 2p1 + 2p2, 5pr + p1 + p2 + max(p3, 5pr + p1)}

= 5pr + p1 + p2 + max{pr + p1 + p2, p3, 5pr + p1}. And the idle time of robot between R2, 2

and R1, 3 is

v2 = max{8pr + 3p1 + p2 – t1 – 2pr, 0}

 = max{8pr + 3p1 + p2 – 5pr – p1 – p2 – max{pr + p1 + p2, p3, 5pr + p1} – 2pr, 0}

 = max{pr + 2p1 – max(pr + p1 + p2, p3, 5pr + p1), 0}

 = max{p1 – max[p2, 4pr, p3 – p1 – pr], 0}.

The procedure to determine the cycle length is the same as in Section 6a above.

In fact, substituting wj by vj yields the cycle length P62j = 4pr + vj + max{p2, p3-vj, 4pr}.

The average cycle time is

.P
3L

1
P

2L

2j
j6262 ∑

−

=−
=

The completion phase starts at time t2 = t1 + (L - 3)P62. Also, the idle time

between R2, j+1 and R1, j+2 in the (j+1)th cycle is vj+1 = max{p1-max(p2, p3 – vj, 4pr), 0}.

The completion phase consists of R2,L-1- R1,L - R3,L-1 - R2,L - R3,L. Note that R3,L takes pr.

We can compute the starting and completion times of the moves in the completion

phase as the same procedure in Section 6a. The lot makespan is

MS62 = t2 + 7pr+p3+vL-2+max{2pr, p2, p3- vL-2}

 = 5pr + p1 + p2 + max{pr + p1 + p2, p3, 5pr + p1}+

+ (L - 3)P62 + 7pr + p3 + wL-2 + max{2pr, p2, p3- vL-2}

 = 12pr + p1 + p2 +p3+vL-2+ max{pr + p1 + p2, p3, 5pr + p1}+

+ max{2pr, p2, p3- vL-2} + L - 3)P62.

144

APPENDIX F

F.1 The Basic Objects: Job and Machine

• The Job

public class Job {
 private String jobName;
 private int jobID;
 private double jobDueDate;
 private double jobPriority;
 private double jobReleaseDate;
 private double jobProcessTime;
 private Vector jobOperating;

 public Job() { jobOperating = new Vector(); }
 public void setJobName(String name) { jobName = name; }
 public String getJobName() { return jobName; }
 public void setJobID(Integer index){ jobID = index.intValue(); }
 public int getJobID() { return jobID; }
 public void setJobDueDate(Double duedate) {
 jobDueDate = duedate.doubleValue();

}
 public double getJobDueDate() { return jobDueDate; }
 public void setJobPriority(Double priority) {
 jobPriority = priority.doubleValue();
 }
 public double getJobPriority() { return jobPriority; }
 public void setJobReleaseDate(Double releaseDate) {
 jobReleaseDate = releaseDate.doubleValue();
 }
 public double getJobReleaseDate(){ return jobReleaseDate; }
 public void setJobProcessTime(Double processTime) {
 jobProcessTime = processTime.doubleValue();
 }
 public double getJobProcessTime() { return jobProcessTime; }
 public void setJobOperating(Machine aMachine) {

 jobOperating.addElement(aMachine);

}

145

• The Machine

The purpose of the “set” methods is to store information into the Job and Machine,

while the purpose of the “get” methods is to extract information from the Job and

Machine. The Job also contains a vector of Machines, the jobOperating. And the

Machine also contains a vector of Jobs, the machineTask. By this structure, we are able

to build a changeably sized array of any dimension.

public class Machine implements Cloneable
{
 private int machineID;
 private double machineProcessTime;
 private double startTime;
 private double completionTime;
 private Vector machineTask;

 public Machine() {
 machineTask = new Vector(); }
 public void setMachineID(Integer id) {
 machineID = id.intValue(); }
 public int getMachineID () {
 return machineID; }
 public void setMachineProcessTime(Double time) {
 machineProcessTime = time.doubleValue(); }
 public double getMachineProcessTime () {
 return machineProcessTime; }
 public void setStartTime(Double time) {
 startTime = time.doubleValue(); }
 public double getStartTime() {
 return startTime; }
 public void setCompletionTime(Double time) {
 completionTime = time.doubleValue(); }
 public double getCompletionTime() {
 return completionTime; }
 public void setMachineTask(Job aJob) {
 machineTask.addElement(aJob); }
 public Vector getMachineTask() {
 return machineTask; }
}

146

F.2 Java codes for three-stage cluster tool models.

Example 1. A portion of the Java codes for a three-stage cluster tool model using

Algorithm BB.

public Vector search(char[] feasible_moves, int num_wafer, int wafer, int c_wafer,
int act, double robot_durat, double S1_durat, double S2_durat,double

S3_durat,
Job upper_bound , Job robot_pos, Machine global_time, Vector S1s,

 Vector S2s, Vector S3s, Vector list, Vector best_list)
{

 Schedule2 T2 = new Schedule2();
 for (int i = 0; i < feasible_moves.length; i++) {
 NEXT_I:

if (feasible_moves[i] = = ’y’) {
 // make a temporary list
 Vector t_list = new Vector();
 for (int j = 0 ; j < list.size(); j++)
 t_list.addElement((Job)list.elementAt(j));

 // make temporary tool environment

 Job t_C_wafer = new Job(); t_C_wafer.setJobID(new Integer(c_wafer));
 Job t_Wafer = new Job(); t_Wafer.setJobID(new Integer(wafer));
 Job t_Act = new Job(); t_Act.setJobID(new Integer(act));

 Job t_robot_pos = new Job();
 t_robot_pos.setJobName(robot_pos.getJobName());

 Machine t_global_time = new Machine();
 t_global_time.setStartTime(new Double(global_time.getStartTime()));

 Vector t_S1s = create_new_handler(S1s);
 Vector t_S2s = create_new_handler(S2s);
 Vector t_S3s = create_new_handler(S3s);

 make_the_move(i, num_wafer, t_Wafer, t_C_wafer, t_Act, robot_durat,
S1_durat, S2_durat, S3_durat,t_robot_pos,
t_global_time, t_S1s, t_S2s, t_S3s, t_list);

 // return values
 int t_wafer = t_Wafer.getJobID();
 int t_c_wafer = t_C_wafer.getJobID();
 int t_act = t_Act.getJobID();

147

Example 1 continued.

 //discard the trial sequence if its partial makespan is greater than
upper_bound

 if(T2.getMakespan(t_list) >= upper_bound.getJobDueDate())
 break NEXT_I;
 if (t_c_wafer = = num_wafer) { // last wafer finished
 double pMS = T2.getMakespan(t_list);
 // update upper_bound
 upper_bound.setJobDueDate(new Double(pMS));
 // update best_list
 best_list.removeAllElements();
 for (int u = 0; u < t_list.size(); u++)
 best_list.addElement((Job)t_list.elementAt(u));
 break NEXT_I;
 }
 else { // not complete, search again
 char[] feasible_moves_b =
 get_feasible_moves(num_wafer-t_wafer+1, t_S1s, t_S2s, t_S3s,

 t_robot_pos, t_global_time, robot_durat,
 S1_durat, S2_durat, S3_durat);

 t_list =
search(feasible_moves_b, num_wafer, t_wafer,

t_c_wafer, t_act, robot_durat, S1_durat, S2_durat,
S3_durat, upper_bound , t_robot_pos, t_global_time,
t_S1s, t_S2s, t_S3s, t_list, best_list);

 }
}

 }
 return best_list;
 }
}

148

Example 2. A main portion of the Java code for a three-stage cluster tool model using

Algorithm TBB.

public Vector smart_search(int k,int K,Job limiter,char[] feasible_moves,
 int num_wafer, int wafer, int c_wafer, int act,
 double robot_durat, double S1_durat, double S2_durat,
 double S3_durat, Job upper_bound ,Job robot_pos,
 Machine global_time, Vector S1s, Vector S2s,
 Vector S3s, Vector list, Vector best_list)

 {
 Schedule2 T2 = new Schedule2();
 Schedule7 T7 = new Schedule7();
 Schedule9a T9a = new Schedule9a();
 for (int i = 0; i < feasible_moves.length; i++) {
 NEXT_I:

if (feasible_moves[i] == ’y’) {
 Vector t_list = new Vector();
 for (int j = 0 ; j < list.size(); j++)

 // make a temporary list
 { t_list.addElement((Job)list.elementAt(j)); }
 // make temporary tool environment

 Job t_C_wafer = new Job(); t_C_wafer.setJobID(new Integer(c_wafer));
 Job t_Wafer = new Job(); t_Wafer.setJobID(new Integer(wafer));
 Job t_Act = new Job(); t_Act.setJobID(new Integer(act));
 Job t_robot_pos = new Job();
 t_robot_pos.setJobName(robot_pos.getJobName());

 Machine t_global_time = new Machine();
 t_global_time.setStartTime(new Double(global_time.getStartTime()));

 Vector t_S1s = T9a.create_new_handler(S1s);
 Vector t_S2s = T9a.create_new_handler(S2s);
 Vector t_S3s = T9a.create_new_handler(S3s);

 T9a.make_the_move(i, num_wafer, t_Wafer, t_C_wafer, t_Act,
 robot_durat, S1_durat, S2_durat, S3_durat,t_robot_pos,
 t_global_time, t_S1s, t_S2s, t_S3s, t_list);

 // return values
 int t_wafer = t_Wafer.getJobID();
 int t_c_wafer = t_C_wafer.getJobID();
 int t_act = t_Act.getJobID();

149

Example 2 continued

// discard the trial sequence if its partial makespan is greater than or equal to
//upper_bound.

 double pMS = T2.getMakespan(t_list);
 if(pMS >= upper_bound.getJobDueDate())
 break NEXT_I;

 if (t_c_wafer == num_wafer) { // sequence reaches its end
 // update upper_bound
 upper_bound.setJobDueDate(new Double(pMS));
 // update best_list
 best_list.removeAllElements();
 for (int u = 0; u < t_list.size(); u++)
 best_list.addElement((Job)t_list.elementAt(u));
 break NEXT_I;
 }
 else { // sequence not reach its end.
 if(t_c_wafer > k){
 Vector moves = get_departures_of_moves(t_list);
 int[] pattern =

is_pattern_found(S1s.size(), S2s.size(), S3s.size(),moves) ;
 if (pattern[0] = = 1) {

//pattern found, stop here, get the pattern, run the program to
// assign fixed sequence to tool.
Vector pattern_list =
 get_fixed_sequence(pattern[1], pattern[2], moves);
Vector aList =
 T7.get_fixed_sequence_for_3S_tool(pattern_list, num_wafer,

 S1s.size(), S2s.size(), S3s.size(),
 robot_durat, S1_durat, S2_durat,
 S3_durat);

pMS = T2.getMakespan(aList);
if (pMS < upper_bound.getJobDueDate()) {
 // update upper_bound
 upper_bound.setJobDueDate(new Double(pMS));
 // update best list
 best_list.removeAllElements();
 for (int p = 0; p < aList.size(); p++)
 best_list.addElement((Job)aList.elementAt(p));
}
break NEXT_I;

 }

150

Example 2 continued

 else {// sequence not long enough, search again
 char[] feasible_moves_b =

T9a.get_feasible_moves(num_wafer-t_wafer+1,t_S1s,t_S2s,t_S3s,
 t_robot_pos,t_global_time,robot_durat,
 S1_durat,S2_durat,S3_durat);

 t_list =
smart_search(k, feasible_moves_b, num_wafer, t_wafer, t_c_wafer,

 t_act, robot_durat, S1_durat, S2_durat, S3_durat,
 upper_bound , t_robot_pos, t_global_time, t_S1s,
 t_S2s, t_S3s, t_list, best_list);

 }
 }
}

 }
 return best_list;
 }

151

Example 3. A main portion of the Java code for a three-stage cluster tool model using

the push dispatching rule.

public Vector get_sequence_by_push_rule_for_3S_tool(int num_wafer,
int num_S1, int num_S2, int num_S3,
double robot_durat, double S1_durat,
double S2_durat, double S3_durat)

 {
// set up tool configuration
 Machine global_time = new Machine();
 global_time.setStartTime(new Double(0));
 Job robot_pos = new Job();
 robot_pos.setJobName("LL");
 Vector S1s = set_up_new_chambers(num_S1);
 Vector S2s = set_up_new_chambers(num_S2);
 Vector S3s = set_up_new_chambers(num_S3);
 Vector list = new Vector();
 int c_wafer = 0; // number of completed wafer
 int act = 1, wafer = 1; // wafer is the number of wafer started
 while(c_wafer < num_wafer) {
 char S1s_status;
 if (wafer <= num_wafer)

S1s_status = is_a_chamber_free_or_all_busy(global_time, S1s);
 else { S1s_status = ’b’;}
 char S2s_status = is_a_chamber_free_or_all_busy(global_time, S2s);
 char S3s_status = is_a_chamber_free_or_all_busy(global_time, S3s);
 if(S1s_status == ’f’ && wafer <= num_wafer)

{ // one free cham. in S1 and loadlock still has wafer(s)
 // priority 1
 load_S1(wafer, act, robot_durat, S1_durat, robot_pos,

 global_time, S1s, list);
 wafer++; act = act + 2;

}

 else if(is_there_a_done_chamber(global_time, S1s) == ’y’ &&
 S2s_status == ’f’)
{ // one done cham. in S1 others busy and one free cham. in S2

 // --> must load wafer from S1 to S2, move name is R2
 // priority 2

152

Example 3 continued.

 load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,
 global_time, S1s, S2s, list);

 act = act + 2;
}

 else if(is_there_a_done_chamber(global_time, S2s) == ’y’ &&
 S3s_status == ’f’)
{ // one done cham. in S2 others busy and one free cham. in S3
 // --> must load wafer from S2 to S3, move name is R3
 // priority 3
 load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,

 global_time, S2s, S3s, list);
 act = act + 2;

 }

 else if(is_there_a_done_chamber(global_time, S3s) == ’y’)
{ //S3 is the last stage --> must unload this chamber from S3, move R4
 // priority 4
 unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++;

 }

 else if(S2s_status == ’b’ && S3s_status == ’f’)
 { // S2 busy and one S3 free other S3 are busy

 // priority 5
 if(push_cham_from_2_stages(S2s,S3s)== ’2’) {
 // one cham in S3s done first
 unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++;
 }
 else {// one S2 cham. done first (there is a free S3)-->load S3
 load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,

 global_time, S2s, S3s, list);
 act = act + 2;
 }
}

 else if(S1s_status == ’b’ && S2s_status == ’f’ && S3s_status == ’f’)
{ // all S1 busy, one S2 free other S2 busy, S3 free
 // priority 6

153

Example 3 continued.

 char which = push_cham_from_3_stages(S1s,S2s,S3s);
 if(which == ’1’) {
 // a cham in S1s done first and always has a free S2s’ cham
 // --> load from S1s to S2s
 load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,

 global_time, S1s, S2s, list);
 act = act + 2;
 }
 else if(which == ’2’) {
 // a cham in S2s done first and there is always a free cham in S3s
 // --> load from S2s to S3s
 load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,

 global_time, S2s, S3s, list);
 act = act + 2;
 }
 else { // a cham in S3s done first
 unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++;
 }
}

 else if(S1s_status == ’b’ && S2s_status == ’f’ && S3s_status == ’b’)
{ // all S1 busy, one S2 free other S2 busy, all S3 busy
 // priority 7
 if(push_cham_from_2_stages(S1s,S3s)== ’1’) {
 // one cham in S1s done first --> load from S1s to S2s
 load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,

 global_time, S1s, S2s, list);
 act = act + 2;
 }
 else { // one S3 cham. done first --> unload S3s
 unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++;
 }
}

 else { // otherwise case
unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
act++; c_wafer++;

 }
 }
 return list;
 }

154

Example 4. A main portion of the Java code for a three-stage cluster tool model using

the pull dispatching rule.

public Vector get_sequence_by_pull_rule_for_3S_tool(int num_wafer, int num_S1,
int num_S2,

 int num_S3, double robot_durat, double S1_durat,
 double S2_durat, double S3_durat)

 {
 // set up tool configuration
 Machine global_time = new Machine();
 global_time.setStartTime(new Double(0));
 Job robot_pos = new Job();
 robot_pos.setJobName("LL");
 Vector S1s = set_up_new_chambers(num_S1);
 Vector S2s = set_up_new_chambers(num_S2);
 Vector S3s = set_up_new_chambers(num_S3);
 Vector list = new Vector();
 int c_wafer = 0; // number of completed wafer
 int act = 1, wafer = 1; // wafer is the number of wafer started

 while(c_wafer < num_wafer) {
 char S1s_status;
 if (wafer <= num_wafer)

S1s_status = is_a_chamber_free_or_all_busy(global_time, S1s);
 else { S1s_status = ’b’;}
 char S2s_status = is_a_chamber_free_or_all_busy(global_time, S2s);
 char S3s_status = is_a_chamber_free_or_all_busy(global_time, S3s);

 if(is_there_a_done_chamber(global_time, S3s) == ’y’)
{ //S3 is the last stage --> must unload this chamber from S3, move R4
 // priority 1
 unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++;

 }
 else if(is_there_a_done_chamber(global_time, S2s) == ’y’ &&

 S3s_status == ’f’)
{// one done cham. in S2 others busy and one free cham. in S3
 // --> must load wafer from S2 to S3, move name is R3
 // priority 2
 load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,

 global_time, S2s, S3s, list);
 act = act + 2;

 }

155

Example 4 continued.

 else if(is_there_a_done_chamber(global_time, S1s) == ’y’ &&
 S2s_status == ’f’)
{// one done cham. in S1 others busy and one free cham. in S2
 // --> must load wafer from S1 to S2, move name is R2
 // priority 3
 load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,

 global_time, S1s, S2s, list);
 act = act + 2;
}

 else if(S1s_status == ’f’ && wafer <= num_wafer) {
// one free cham. in S1 and loadlock still has wafer(s)
// priority 4
load_S1(wafer, act, robot_durat, S1_durat, robot_pos,

global_time, S1s, list);
wafer++; act = act + 2;

 }
 else if(S2s_status == ’b’ && S3s_status == ’f’)
 {// S2 busy and one S3 free other S3 are busy

 // priority 5
 if(pull_cham_from_2_stages(S2s,S3s)== ’2’) {
 // ’2’ means the second stage between S2s and S3s
 // one cham in S3s done first
 unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++;
}
 else {// one S2 cham. done first (there is a free S3)-->load S3
 load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,

 global_time, S2s, S3s, list);
 act = act + 2;
}

}
 else if(S1s_status == ’b’ && S2s_status == ’f’ && S3s_status == ’f’)

{// all S1 busy, one S2 free other S2 busy, S3 free or busy
 // priority 6

 char which = pull_cham_from_3_stages(S1s,S2s,S3s);

156

Example 4 continued.

 if (which == ’3’) {
 // a cham in S3s done first --> pull
 unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++;
}
 else if(which == ’2’) {
 // a cham in S2s done first and always have a free S3s’ cham
 // --> load from S2s to S3s
 load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,

 global_time, S2s, S3s, list);
 act = act + 2;
}
 else {
 // a cham in S1s done first and there is always a free cham in S2s
 // --> load from S1s to S2s
 load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,

global_time, S1s, S2s, list);
 act = act + 2;
 }

 }

 else if (S1s_status == ’b’ && S2s_status == ’f’ && S3s_status == ’b’){
// all S1 busy, one S2 free other S2 busy, all S3 busy
// priority 7
if(pull_cham_from_2_stages(S1s,S3s)== ’2’) {
 // ’2’ means the second stage between S1s and S3s
 // one cham in S3s done first
 unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++;
}
else {// one S1 cham. done first (there is a free S2)-->load S2
 load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,

 global_time, S1s, S2s, list);
 act = act + 2;
}

 }
 return list;
 }

157

Example 5. A main portion of the Java code for a three-stage cluster tool model using

the prespecified sequence of wafer handler moves.

Example 5 continued.

public Vector get_fixed_sequence_for_3S_tool(Vector event_list, int num_wafer,
 int num_S1, int num_S2, int num_S3,
 double robot_durat, double S1_durat,
 double S2_durat, double S3_durat)

 {
 // set up tool configuration
 Schedule6 tool6 = new Schedule6();
 Machine global_time = new Machine();
 global_time.setStartTime(new Double(0));
 Job robot_pos = new Job();
 robot_pos.setJobName("LL");
 Vector S1s = tool6.set_up_new_chambers(num_S1);
 Vector S2s = tool6.set_up_new_chambers(num_S2);
 Vector S3s = tool6.set_up_new_chambers(num_S3);
 int c_wafer = 0; // number of completed wafer
 int act = 1, wafer = 1; // wafer is the number of wafer started
 Vector list = new Vector();
 int k = count_lines(event_list, 0);
 Job event;
 // fill up the tool
 for(int i = 0; i < k; i++)
 { event = (Job)event_list.elementAt(i);

String condition = event.getStarting().substring(0,2);
if (condition.equals("LL") && wafer <= num_wafer) {
 tool6.load_S1(wafer, act, robot_durat, S1_durat, robot_pos,

 global_time, S1s, list);
 wafer++; act = act + 2;
 }
else if(condition.equals("S1") && feasible_move(S1s) == ’y’) {
 tool6.load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,

 global_time, S1s, S2s, list);
 act = act + 2;
 }

 else if(condition.equals("S2") && feasible_move(S2s) == ’y’) {
 tool6.load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,

 global_time, S2s, S3s, list);
 act = act + 2;
 }

158

else if (condition.equals("S3") && feasible_move(S3s) == ’y’)
 { // unloading S3
 tool6.unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++; if(c_wafer == num_wafer) {break;}
 }

 }
 // end filling up

 while (c_wafer < num_wafer) {
 for(int i = k; i < event_list.size(); i++) {

event = (Job)event_list.elementAt(i);
String condition = event.getStarting().substring(0,2);
if (condition.equals("LL") && wafer <= num_wafer) {
 tool6.load_S1(wafer, act, robot_durat, S1_durat, robot_pos,

 global_time, S1s, list);
 wafer++; act = act + 2;
 }
else if(condition.equals("S1") && feasible_move(S1s)==’y’) {
 tool6.load_stage("S1","R2","S2",act, robot_durat, S2_durat, robot_pos,

 global_time, S1s, S2s, list);
 act = act + 2;
 }
else if(condition.equals("S2") && feasible_move(S2s)==’y’) {
 tool6.load_stage("S2","R3","S3",act, robot_durat, S3_durat, robot_pos,

 global_time, S2s, S3s, list);
 act = act + 2;
 }
else if (condition.equals("S3") && feasible_move(S3s)==’y’)
 { // unloading S3
 tool6.unload_stage("S3", "R0", act, robot_durat, robot_pos,

 global_time, S3s, list);
 act++; c_wafer++;if(c_wafer == num_wafer) { break;}
 }
if (i == event_list.size() && c_wafer < num_wafer) { i = k; }

 }
 }
 return list;
 }

159

REFERENCES

1. Chandrasekaran, Niranjan, “Operational models for evaluating the impact of process

changes on cluster tool performance.” MS thesis. Mechanical Engineering Dept.,

University of Maryland College Park, 1999.

2. Crama, Yves and Joris van de Klundert, “Cyclic scheduling of identical parts in a

robotic cell”, Operations Research, vol. 45, n. 6, Dec. 1997.

3. Dance, Daren L., Devid W. Jimenez, and Alan L. Levine, “Understanding

equipment cost-of-ownership,” Semiconductor International, pp. 117-122, July

1998.

4. Hall, Nicholas G., Hichem Kamoun, and Chelliah Sriskandarajah, “Scheduling in

robotic cells: classification, two and three machine cells.” Operations Research, vol.

45, n.3, pp. 421-439, 1997.

5. Herrmann, Jeffrey W., Niranjan Chandrasekaran, Brian F. Conaghan, Manh-Quan

Nguyen, Gary W. Rubloff, and Rock Z. Shi, “Evaluating the impact of process

changes on cluster tool performance”, IEEE Transactions on Semiconductor

Manufacturing, vol.13, n. 2, May 2000.

6. International Sematech, “Semiconductor manufacturing process.” Sematech. 29

March, 2000. <http://www.sematech.org/public/news/mfgproc/mfgproc.htm>

7. Jeng, Wu-De, James T. Lin, and Ue-Pyng Wen, “Algorithms for sequencing robot

activities in a robot-centered parallel-processor workcell.” Computers Ops. Res.

v20, n2, pp. 185-197, 1993.

160

8. Kamoun, Hichem, Nicholas G. Hall, and Chelliah Sriskandarajah, “Scheduling in

Robotic Cells: Heuristics and Cell Design.” Operations Research, vol. 47, n. 6, pp.

821-835, 1999.

9. Kise, Hiroshi, Tadayoshi Shioyama, and Toshihide Ibaraki, “Automated two-

machine flowshop scheduling: a solvable case.” IIE Transactions, vol. 23, n. 1, pp.

10-16, March 1991.

10. Murphy, Robert, Puneet Saxena, William Levinson, “Use OEE; don’t let OEE use

you,” Semiconductor International, pp. 125-132, Sep. 1996.

11. Perkinson, Terry L., Peter K. McLary, Ronald S. Gyucsik, and Ralph K. Cavin.

1994. Single-wafer cluster tool performance: an analysis of throughput. IEEE

Transactions on Semiconductor Manufacturing, vol. 7, n. 3, pp. 369-373, August

1996.

12. Schruben, L. W., “Deadlock detection and avoidance in cluster tools.” International

Conference on Semiconductor Manufacturing Operational Modeling and

Simulation, 1999.

13. Semiconductor Business News, “Applied Materials, Novellus, LAM Research lead

cluster tool market.” CMP Media Inc. 26 March 1998. 14 Jan., 2000.

<http://www.semibiznews.com/stories/8c26tools.htm>

14. Sethi, S. P., C. Sriskandarajah, G. Sorger, J. Blazewicz, and W. Kubiak,

“Sequencing of parts and robot moves in a robotic cell,” Int. J. Production Res.,

vol. 4, pp. 331-358, 1992.

161

15. Srinivasan, R. S, “Modeling and performance analysis of cluster tools using Petri

nets.” IEEE Transactions on Semiconductor Manufacturing, vol. 11, n. 3, pp. 394-

403, 1998.

16. Venkatesh Srilakshmi, Rob Davenport, Pattie Foxhoven, and Jaim Nulman, “A

steady-state throughput analysis of cluster tools: dual-blade versus single-blade

robots.” IEEE Transactions on Semiconductor Manufacturing, vol. 10, n. 4, pp.

418-424, 1997.

17. Wood, Samuel C, “Simple performance models for integrated processing tools.”

IEEE Transactions on Semiconductor Manufacturing, vol. 9, n. 3, pp. 320-328,

1996.

