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The ability to image micro/nano scale objectives with miniaturized optical 

components has always been of great interest due to its great potential in applications 

such as microscopy, nanofabrication, and biomedical monitoring. However, in 

traditional practice using dielectric lenses, the focal size is inevitably limited by the 

Abbe’s diffraction limit (0.51fλ/ρ).  Here, λ is the wavelength in vacuum, and f and ρ 

are the focal length and the radius of the lens, respectively. Moreover, the 

performance of conventional spherical lenses deteriorates as their sizes approach the 

wavelength. On the other hand, owing to the recent advances in micro/nano 



  

fabrication techniques, miniature sensors have received much attention, which are 

highly desirable in many sensing applications for physical, chemical, and biomedical 

parameter measurements. However, the performance of miniature sensors usually 

suffers from the similar difficulty as miniaturized imaging systems. Recently 

nanophotonic structures have been explored for the development of miniaturizing 

imaging and sensing systems due to their capability of confining and manipulating 

light at a subwavelength scale. 

 

In this dissertation work, several different mechanisms that nanophotonic structures 

can be used to help enhance the performance of imaging and sensing in miniaturized 

systems are investigated.  First, plasmonic lens utilizing the nanophotonic structure to 

achieve the subwavelength focusing ability is studied. Three different regions in the 

plasmonic lens design are defined. Furthermore, a plasmonic lens in the Fresnel’s 

region is designed and k.ed to achieve a sub-diffraction limit focus.  Second, radially 

polarized light generated by the TEM mode in the annular aperture in metal is 

investigated, which can further enhance the focusing ability. Third,  in terms of 

sensing, an ultra-thin plasmonic interferometer constructed with a nano-hole array is 

fabricated on a fiber facet. By using this structure, the multi-parameter sensing 

capability of this interferometer is demonstrated; high sensitivity refractive index and 

temperature sensing are achieved.  Finally, a novel sensor design based on the 

cladding modes and buffer modes generated by the planar grating on the fiber facet is 

proposed. Experimental studies of this sensor demonstrate its superior temperature 

sensitivity and the potential of multi-parameter sensing.  



  

 

 

 
 
 
 

INVESTIGATION OF NANOPHOTONIC STRUCTURES FOR IMAGING AND 
SENSING   

  
 
 

By 
 
 

Zhijian Zhang 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2017 
 
 

    

  
 
 
 
 
 
Advisory Committee: 

Associate Professor Miao Yu, Chair 

Professor Bongtae Han 

Professor Don L. DeVoe 

Professor Patrick F. McCluskey 

Professor Christopher C. Davis, Dean’s Representative 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
 

Zhijian Zhang 
 

2017 



 

 

ii 
 

 
 
 
 

Dedication 
 

To my wife Chenlu, my daughter Ruochen, and my parents 
  



 

 

iii 
 

Acknowledgements  
 
First of all, I would like to express my sincere gratitude to my advisor, Professor Miao 

Yu, for her consistent support and guidance through my whole Ph. D. study.  This 

dissertation can never be done without her intellectual input and the encouragement she 

gave to me. I have learned a lot from her through this journey, not only scientific 

knowledge but more importantly the attitude to conquer difficulties. This unseeing 

spiritual wealth is the most valuable treasure I gained in the past five years. 

I would like to thank the other members in my committee. I thank Professor Bongtae 

Han. I was really impressed by how fast he responded to my help requests and how 

detailed his suggestions are. I am very grateful to Professor Don L. DeVoe. When I 

need some help or recommendation, he is always responsive and helpful. I thank 

Professor Patrick F. McCluskey for his kind help and advice. I am thankful to Professor 

Christopher C. Davis. As such an expert in plasmonics, I am really lucky to have his 

comments and suggestions to improve my dissertation. 

I also want to thank all the colleagues in the Sensor and Actuators, Yuxiang Liu, Cheng 

Pang, Haijun Liu, Hyungdae Bae, Felix Stief, Laith Sawaqed, Zhongshan Wen, Ying 

Chen, Hyuntae Kim, Randy Ganye, Yongyao Chen, and Jon Tedeschi. I could not 

finish this dissertation work without their help. More importantly, they made me a 

colorful and joyful campus life there in College Park.  

 I want to thank Dr. Douglas A. Olson, Dr. Joshua Schumacher, Dr. Zeeshan Ahmed, 

and Dr. Jingyun Fan in National Institute of Standards and Technology. With their help, 



 

 

iv 
 

I got the access to the great facilities. Moreover, the discussions with them made my 

fabrication and measurement better and better.  

I am grateful to all the group members in Dr. Peter Choyke and Dr. Hisataka 

Kobayashi’s group in National Institute of Health, especially Dr. Tadanobu Nagaya 

and Dr. Yuko Nakamura. They broadened my horizons in the area of biomedicine. With 

them, I find the beauty how engineering helps real-world solutions. 

My deepest gratitude goes to the love of my life, my loving wife, Chenlu Wang. Not to 

mention her tremendous supports, I cannot thank her enough for companying me, 

watching me and being there for me not only throughout my Ph.D. study but also my 

whole journey of growing from a boy to a man, and from a man to a father. While I am 

finishing my dissertation here in Maryland, she is starting a new job, and at the same 

time taking care of our sweetest daughter, Ruochen, in Texas. I could not even imagine 

how difficult that is for her. For that, I will always be indebted to her. Moreover, I thank 

my little princess, Ruochen for all the joy and happiness she brought. Thank my parents 

and parents-in-law for their unconditional love and help. My great friends, Xue Fei and 

Lance, Yuanting, Lin Zhu, Donglei, Rian and Jinglei, Christy and Vali, Qi Xia and 

Kelvin, and everyone in the soccer team, thank you all! 

 

 

 

 



 

 

v 
 

 
  



 

 

vi 
 

Table of Contents 
 
 
Acknowledgements ...................................................................................................... iii 
Table of Contents ......................................................................................................... vi 
List of Figures ............................................................................................................ viii 
Chapter 1. Introduction and background ...................................................................... 1 

1.1. Problem of interest ........................................................................................ 1 
1.2. Literature review ........................................................................................... 6 

1.2.1. Plasmonic lens ...................................................................................... 6 
1.2.2. Plasmonic structures with radially polarized light .............................. 18 
1.2.3. Plasmonic structures for sensor miniaturization ................................. 26 
1.2.4. Fiber optic sensors based on cladding modes and buffer-guided modes
 31 

1.3. Motivation for this doctoral research .......................................................... 38 
1.4. Objectives and scope of the dissertation ..................................................... 40 
1.5. Organization of the dissertation works ....................................................... 41 

Chapter 2. Plasmonic lens in different regions ........................................................... 42 
2.1. Plasmonic lens overview............................................................................. 42 
2.2. Plasmonic lens in different regions: properties and limitations .................. 45 

2.2.1. Subwavelength focusing in surface plasmon dominating region ....... 45 
2.2.2. Plasmonic focusing in Fresnel region and Fraunhofer region ............ 48 

2.3. Plasmonic lens design in Fresnel region ..................................................... 57 
Chapter 3. Radially polarized light generated by TEM mode resonance and its 
applications ................................................................................................................. 69 

3.1. Introduction ................................................................................................. 69 
3.2. TEM resonance generated with inclined incidence .................................... 70 

3.2.1. Theoretical model ............................................................................... 70 
3.2.2. Simulations with PEC ......................................................................... 73 
3.2.3. Simulations with silver ....................................................................... 75 

3.3. TEM resonance generated with normal incidence on PEC ........................ 77 
3.4. Surface plasmon dominating region plasmonic lens with radially polarized 
light generated by TEM resonance ......................................................................... 79 

Chapter 4. On-fiber plasmonic structures for multi-parameter sensing ...................... 87 
4.1. Overview of on-fiber multi-parameter sensing ........................................... 87 
4.2. On-fiber plasmonic interferometer design and fabrication ......................... 89 
4.3. On-fiber plasmonic interferometer fabrication and sensing measurement . 93 
4.4. Discussion for on-fiber plasmonic interference .......................................... 97 
4.5. Multi-parameter sensing with a planar grating on the facet of a multimode 
fiber 101 

Chapter 5. Cladding mode and buffer-guided mode excited by a planar grating on a 
fiber facet for multi-parameter sensing ..................................................................... 110 

5.1. Introduction of cladding modes and buffer-guided modes in SMF .......... 110 
5.3. Multi-parameter sensing ........................................................................... 119 

Chapter 6. Summary ................................................................................................. 126 
6.1. Summary of the dissertation work ............................................................ 126 



 

 

vii 
 

6.2. Future work ............................................................................................... 129 
Appendix A: Protocol for Nanofabrication on Fiber Facet ...................................... 131 
Appendix B: List of Publications .............................................................................. 144 
Bibliography ............................................................................................................. 147 
 
 
 
 
 
 
 
 
 
 



 

 

viii 
 

List of Figures 
 
Figure 1.1 (a) SPP-based far-field microscope setup. (b) SPP dispersion on the gold-
glycerine interface[19]. ................................................................................................. 7 
Figure 1.2 (a) SEM of a triplet nanohole array which has a negative effective 
refractive index[21]. (b) AFM image of a magnifying superlens enabled by 
hyperbolic metamaterial................................................................................................ 7 
Figure 1.3 Experimental setup for NSOM measurement of plasmonic lens fabricated 
on silver film[12] . ........................................................................................................ 9 
Figure 1.4 Calculated intensity for the x (a) and z (b) component of the electric field 
for a silver disk 150 nm thick with a diameter of 6 μm. (c) Comparison of the cross 
section of the calculate electric field along  x direction for the disk in a and the 
measured NSOM intensity for a circle milled into a 150 nm thick silver film with a 6 
μm diameter. The period of the fringes is 244 nm [12]. ............................................... 9 
Figure 1.5 SEM image of a plasmonic lens with 15 rings. The scale bar is 5 um [74].
..................................................................................................................................... 10 
Figure 1.6 Plasmonic lens array on a lithography writing head[78]. .......................... 11 
Figure 1.7 A schematic of a nano-slit array with different width formed on thin 
metallic film [26]. ....................................................................................................... 12 
Figure 1.8 Dependence of propagation constant of SPPs in the slit on the slit width. 
The solid and dashed lines represent real and imaginary part, respectively. The dotted 
line stands for plane EM wave in air[26]. ................................................................... 13 
Figure 1.9 (a) FDTD calculated result of normalized  Poynting Vector in z for 
designed metallic nano-slits lens. The film thickness is 500nm, and the total slits 
number is 65. The structure’s exit side is posited at z=0.7 μm . (b) Cross section of 
the focus at z=1.5 μm[26] . ......................................................................................... 14 
Figure 1.10 Planar lens based on nanoscale slit array in metallic film. (a) The 
geometry of the lens. (c)Focusing pattern measured by confocal scanning optical 
microscopy (c)FEM field simulation[27]. .................................................................. 15 
Figure 1.11 (a) Schematic diagram of the sandwiched plasmonic lens with chirped 
circular slits corrugated on Au film.(b) Measured 3D E-field intensity distribution of 
the plasmonic lens vs. lateral x and propagation distance z using NSOM[29]. .......... 16 
Figure 1.12 (a) Schematic of the planar plasmonic lenses formed by variant cross-
shaped aperture arrays. (b) The transmission efficiency (red solid line) and phase(blue 
dotted line) of the transmitted field as function of arm length at the working 
wavelength.(c) Measured axial intensity profile (in the y-z plane) of light passing 
through[28]. ................................................................................................................ 16 
Figure 1.13(a) SEM image of a 5 μm patch of nanoholes with 400-nm period [30]. 
(b). nanolens made of periodical concentric silver rings[84]. (c) Surface plasmon 
resonances were tuned by changing the lattice geometry[30]. ................................... 18 
Figure 1.14 Diagram of the proposed setup for evanescent Bessel beam 
generation[85]. ............................................................................................................ 19 
Figure 1.15 Numerical simulation results for (a) total field strength at the bottom of 
the silver layer for radial polarization, (b) total field strength at the bottom of the 
silver layer for linear polarization illumination as a comparison[85]. ........................ 20 



 

 

ix 
 

Figure 1.16 Schematic diagram showing the geometry of the plasmonic lens and the 
orientation of the field components under radial and linear polarization 
illumination[35]. ......................................................................................................... 21 
Figure 1.17 NSOM measurement showing SPP focusing in the plasmonic lens 
illuminated by linearly polarized light[35]. ................................................................ 22 
Figure 1.18 NSOM measurement showing SPP focusing in the plasmonic lens 
illuminated by radially polarized light[35]. ................................................................ 22 
Figure 1.19 Coherent superposition of two orthogonally polarized modes to form 
azimuthally and radially polarized beams; (a) azimuthally polarized doughnut beam; 
(b) radially polarized doughnut beam[42]. ................................................................. 23 
Figure 1.20 Arrangement for transformation of a linearly polarized Gaussian beam to 
a radially or azimuthally polarized beam. The insets show the SVR scheme, together 
with an SVR photo [46]. ............................................................................................. 24 
Figure 1.21 Drawing of the conical Brewster prism[45]. ........................................... 25 
Figure 1.22 SEM images 20 periods of concentric metallic rings[48]. ...................... 25 
Figure 1.23 three commonly used configurations of SPR sensors: (a) prism coupler-
based SPR system; (b) grating coupler-based SPR system; (c) optical waveguide-
based SPR system [53]................................................................................................ 27 
Figure 1.24 Schematic diagrams illustrating a localized surface plasmon[54]. ......... 28 
Figure 1.25 Schematic diagrams illustrating two-slit plasmonic interference at 
metal/dielectric interference........................................................................................ 29 
Figure 1.26 (a) SEM micrograph of a groove-slit-groove (GSG) plasmonic 
interferometer. (b) Normalized per-slit transmitted intensity spectra and relative 
intensity change of the plasmonic interferometer measured at various concentrations 
of glucose in water[55]. .............................................................................................. 30 
Figure 1.27 (a) Schematic (cross section view) of the hybrid metal-dielectric structure 
for enhancing LSP integrated on the optical fiber tip. (b) Measured reflectivity and 
calculated electric field intensity distributions[56]. .................................................... 31 
Figure 1.28 SEM image on the fiber grating surface after etching[108]. ................... 32 
Figure 1.29 Structure of etch-eroded FBG for ambient refractive index sensing[109]
..................................................................................................................................... 33 
Figure 1.30 Experimentally measured transmission spectrum of an LPFG with a 
period of 198 μm [112]. .............................................................................................. 34 
Figure 1.31 Experimentally measured transmission spectrum of a 8 mm long standard 
FBG photo-written in a single-mode step-index optical fiber [61]............................. 34 
Figure 1.32 Schematic of a TFBG. ............................................................................. 35 
Figure 1.33 Experimentally measured transmission spectrum of a 8 mm long θ= 16◦-
tilted TFBG surrounded by air[61]. ............................................................................ 35 
Figure 1.34 Schematic of cladding mode generated by core diameter mismatch. ..... 36 
Figure 1.35 Taper-based SMF Michelson interferometer[63]. ................................... 37 
Figure 1.36 (a) Geometry of the WGM interference model. (b) Bend loss as a 
function of wavelength for the fiber with WGM. [68] ............................................... 37 
Figure 1.37 (a) Experimental setup for testing the coated-SMF loop temperature 
senor. (b) The temperature response of the three types of coated-SMF loop 
sensors[73]. ................................................................................................................. 38 
Figure 2.1 Schematic of plasmonic focusing in three different regions ..................... 44 



 

 

x 
 

Figure 2.2 Attenuation length (range of the SPP dominating region) of SPP in the 
dielectric as a function of wavelength. The permittivity of air (

d
ε 1.0≈ ) and the 

permittivity of gold and silver found in [127] were used . ......................................... 47 
Figure 2.3 Schematic of a plasmonic lens with an arbitrary design, which has a radius 
ρ and a designed focal length of f. P is an arbitrary point on the lens aperture, which is 
away from the lens center by a distance a. F is the focus. P’ is an observation point on 
the focal plane, which is away from F by a distance x. α is the semi-angle of the light 
cone from the lens aperture to the focus. θ is the observation angle of P’ to the optical 
axis. ............................................................................................................................. 50 
Figure 2.4 Field intensity distribution along x-direction (a) and y-direction (b), while 
the incident light is under x-direction polarization and with different incident angles 
0  and 40 . .................................................................................................................... 55 
Figure 2.5 Schematic of a plasmonic lens with a single ring aperture with radius ρ and 
width w, which is milled in a gold film with thickness t. ........................................... 58 
Figure 2.6 Fig 6. FDTD simulation results obtained for a plasmonic lens with a single 
ring slit: (a) intensity distribution of the focal plane along x-z direction, (b) intensity 
distribution along the optical axis, and (c) intensity distribution along the x-direction 
of the focal plane. ........................................................................................................ 59 
Figure 2.7 Schematic of a plasmonic lens of 4 concentric ring slits with radii of r1, r2, 
r3, r4 and widths of w1, w2, w3, w4 milled on a gold film with a thickness of t. The 
designed focal length is f. F is the focal point and O is the center of the lens. ........... 60 
Figure 2.8 FDTD simulation results of a plasmonic lens with 4 rings: (a) field 
intensity distribution in the x-z plane, (b) intensity distribution along the optical axis, 
and (c) intensity distribution along the x-direction of the focal plane. ....................... 62 
Figure 2.9 FDTD simulation results of a 4 ring plasmonic lens with an enlarged 
width: (a) field intensity distribution in the x-z plane, (b) intensity distribution along 
the optical axis, and (c) intensity distribution along the x-direction of the focal 
plane.(d) Field distribution in the x-z plane of a 4 ring plasmonic lens with perfect 
conductor..................................................................................................................... 63 

Figure 2.10 Comparison of angular intensity distribution of a single ring lens 0
( )J ξ  

(red line) and a single hole lens 1
( )J ξ   (black line) ...................................................... 65 

Figure 3.1 Schematic of annular aperture in a metal plate. The electric field 
polarization of the TEM mode is also shown[135]. .................................................... 71 
Figure 3.2 Transmission spectrum for the annular aperture array with PEC. The field 
distribution is calculated at the end of the emitting side. ............................................ 74 
Figure 3.3 Transmission spectrum for 1st order TEM mode for P=300nm and 
P=600nm. .................................................................................................................... 74 
Figure 3.4 Transmission spectrum for the annular aperture array with silver. The field 
distribution is calculated at the end of the emitting face. ........................................... 76 
Figure 3.5 The field distributions at the cross-sections from side view for (a) 193 THz 
and (b) 440 THz. ......................................................................................................... 76 
Figure 3.6 Schematic of the annular aperture array with dual gratings on the top and 
bottom. ........................................................................................................................ 77 
Figure 3.7 (a) The transmission spectrum for the structure in Figure 3.6 under normal 
incidence. (b) The field distribution calculated at the end of the emitting face at 317 



 

 

xi 
 

THz. (c) The direction of electric field distribution at the end of the emitting face at 
317 THz. (d) The field distributions at the cross-sections from side view at 317 THz.
..................................................................................................................................... 78 
Figure 3.8. Sketch of a plasmonic lens under inclined illumination and its top view. 
The focus point B of the plasmonic lens shifts away from the center under inclined 
illumination [15] ......................................................................................................... 80 
Figure 3.9 Schematic of a plasmonic lens with a single ring aperture with radius ρ and 
width w, which is milled in a gold film with thickness t ............................................ 81 
Figure 3.10 The field intensity distribution at the plane 10 nm distance away from the 
designed plasmonic lens surface for θ=45o and λ=1435 nm. ...................................... 81 
Figure 3.11 The field intensity distribution at the plane 10 nm distance away from the 
designed plasmonic lens surface for θ=45o and λ=758 nm ......................................... 83 
Figure 3.12(a) The field intensity distribution at the x-z cross section for the designed 
plasmonic lens surface for θ=45o and λ=758 nm. (b) The intensity along the optical 
axis. ............................................................................................................................. 84 
Figure 3.13 The field intensity distribution at the y-z cross section for the designed 
plasmonic lens surface for θ=45o and λ=758 nm. (b) The intensity along the y axis for 
x=0 and z=0 ................................................................................................................ 85 
Figure 4.1(a) Schematic of on-fiber plasmonic interferometer with nano-hole array. 
The inset shows the unit cells of the array (t=150 nm, d= 528 nm and Λ = 1055 nm). 
(b) SEM of the fabricated sensor. (c) SEM of the nano-hole array. ........................... 89 
Figure 4.2(a) Schematic of the experimental setup, (b) typical reflection spectrum of 
the sensor in glucose solution at room temperature (glucose concentration 10 %), (c) 
reflection spectrum of SP resonance extracted from (b), (d) reflection spectrum of 
plasmonic interference extracted from (b), (e) schematic of the on-fiber plasmonic 
interference, (f) reflection spectrum obtained with RCWA simulations for a hole array 
structure of infinite size in a 10 % glucose solution. The insets show the field 
distributions at the SP resonance peak and the Wood’s anomaly dip in one unit cell.92 
Figure 4.3(a) Extracted  reflection spectra dominated by SP resonance with respect to 
refractive index change, (b) peak wavelength of the SP resonance versus refractive 
index, (c) extracted  reflection spectra dominated by plasmonic interference with 
respect to different refractive indices, (d) effective OPD versus refractive index. ..... 95 
Figure 4.4(a) Extracted reflection spectra dominated by SP resonance with respect to 
temperature change, (b) peak wavelength of SP resonance versus temperature, (c) 
extracted reflection spectra due to plasmonic interference with respect to temperature 
change, and (d) effective OPD versus temperature. ................................................... 96 
Figure 4.5 The comparison of dispersion relations of surface plasmons on the hole 
array structure and on the flat silver surface. The dashed line represents the light 
dispersion in the fiber core region ............................................................................ 100 
Figure 4.6 SEM pictures of the planar grating fabricated on a MMF end face. ....... 103 
Figure 4.7 Schematic of multimode interference ...................................................... 104 
Figure 4.8 (a) reflection spectra of multimode interference with respect to temperature 
change (b) peak wavelength position as temperature increased (black)/ decreased 
(red) over the range from 30 oC to 100 oC. ............................................................... 105 
Figure 4.9 Schematic of the optical interrogation system with tunable laser ........... 106 
Figure 4.10 reflection spectra of the sensor in air and in water around 1550 nm ..... 107 



 

 

xii 
 

Figure 4.11 (a) reflection spectra of the sensor in IPA solution with different 
concentration, (b) reflection intensity at the fixed wavelength 1507 nm as the 
refractive index of the solution changes ................................................................... 108 
Figure 5.1 Schematic of core mode (red line) coupled to cladding mode (blue lie) in a 
step-index SMF by scattering. .................................................................................. 110 
Figure 5.2 Schematic and SEM of the planar grating fabricated on a fiber end face to 
generate buffer modes and cladding modes. ............................................................. 114 
Figure 5.3 (a) Schematic of the optical interrogation system, and (b) a typical 
reflection spectrum of the sensor with Z≈ 28 cm. ................................................... 115 
Figure 5.4 (a) OPDs extracted from the reflection spectrums for the cases of Z≈10 
cm, 28 cm and 50 cm (b) effective refractive index of the buffer extracted from 
reflection spectrums in the buffer modes dominating wavelength range, and (c) 
effective refractive index of the buffer extracted from reflection spectrums in the 
cladding modes dominating wavelength range. ........................................................ 118 
Figure 5.5 Electric field intensity distributions of the first few modes supported at 736 
nm and 840 nm in the system. .................................................................................. 119 
Figure 5.6 (a) the whole reflection spectra with respect to temperature change, (b) 
reflection spectra around peak A with respect to temperature change, (c) reflection 
spectra around peak B with respect to temperature change, (d) peak positions of peak 
A with respect to different temperatures, (e) peak positions of peak B respect to 
different temperatures, .............................................................................................. 120 
Figure 5.7 (a) mean peak positions of peak A with respect to different temperatures in 
three different measurements, (b) mean peak positions of peak B with respect to 
different temperatures in three different measurements. .......................................... 122 
Figure 5.8 (a) the whole reflection spectra with respect to axial strain change, (b) 
reflection spectra around peak A with respect to axial strain change, (c) reflection 
spectra around peak B with respect to axial strain change, (d) peak positions of peak 
A with respect to different axial strains, (e) peak positions of peak B respect to 
different axial strains................................................................................................. 123 
Figure 5.9 (a) mean peak positions of peak A with respect to different axial strains in 
three different measurements, (b) mean peak positions of peak B with respect to 
different axial strains in three different measurements. ............................................ 124 

  



 

 

1 
 

Chapter 1. Introduction and background 

 

1.1. Problem of interest 

Nanophotonics, which focuses on the study of the behavior of light on the nanoscale, 

has drawn much attention for decades, since the miniaturization of optical 

components becomes more and more important in many applications, such as 

photolithography [1, 2], optical manipulation [3], imaging [4] and sensing [5, 6]. 

With the capability of confining and manipulating light at subwavelength, 

nanophotonic structures offer novel properties and high power efficiency [7]. In 

general, nanophotonics covers a broad range of topics from nanotechnology 

applications to fundamental nanoscience. This dissertation mainly focuses on the 

fundamental studies of the principles of some specific nanophotonic structures, which 

can help enhance the performance of imaging and sensing of miniaturized systems, as 

well as their applications. 

A plasmon, generated on a metal nanophotonic structure, is the energy 

excitation of collectively oscillating free electrons. Usually, it couples with a photon 

at the interface of metal and dielectric and forms a quasiparticle which is called 

surface plasmon polariton (SPP) or called surface plasmon (SP)[8]. For the half-

infinite metal and dielectric interface, we could easily derive the dispersion of surface 

plasmon by applying Maxwell equation and boundary conditions as[9] 

md

md
sp kk

εε
εε
+

= 0 ,                                                ( 1.1 ) 
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where 0k  is the free space wave vector, dε is the dielectric permittivity and mε  is the 

metal permittivity. The permeability is assumed to be 1, which is true for general 

cases. It is noted that the wave vector of SP spk  is always larger than the free space 

wave vector ( 0kksp > ), which means that SP cannot be excited by the free space 

incidence on the smooth metal-dielectric surface. SP can be excited with Otto 

configuration and Kretschmann configuration, based on the attenuated total reflection 

method [10]. This method requires prisms and glancing incidence, which is not 

preferable for miniaturized systems. On the other hand, when subwavelength 

structures are fabricated at the interface, the incident light will be scattered by these 

structures and some component with a large wave vector can excite SP. These 

structures that support SP modes are called plasmonic structures, which have been 

intensely investigated to enhance the imaging and sensing system [5, 11].  

With the help of SP, due to its shorter wavelength than free space light and its 

capability to confine and manipulate light in an ultra-small space [12-17], it has been 

shown that sub-diffraction-limit focusing and imaging can be achieved. Particularly, 

Prof. Davis’ group demonstrated that a large effective refractive index could be 

achieved with matching the permittivity of dielectric and metal. Therefore, an in-

plane image magnification lens was fulfilled with the optical resolution about 60 nm 

at 515 nm working wavelength [18-20], which is far beyond the diffraction limit. 

Later, they demonstrated that similar resolution can also be achieved by using 

different types of nanophotonic structures called photonic metamaterials [21-23]. 

Furthermore, they showed that 30 nm resolution could be achieved by applying 

digital filters in the system [24, 25]. Nevertheless, this kind of focusing and imaging 



 

 

3 
 

can only be achieved in the very near-field, since the SP mode is tightly confined near 

the surface. These kinds of plasmonic structures which are used to focusing light are 

called plasmonic lenses. Other studies have been conducted to develop plasmonic 

lenses in the diffractive regions to replace traditional refractive index based 

microlenses or to decrease the lens size [26-31]. For example, a plasmonic lens with 

one-dimensional (1D) nanoslit array defined on a metal surface was proposed and 

studied through numerical simulations [26]. The experimental demonstration of a lens 

with a similar pattern was reported later by Verslegers et al. [27]. More recently, two-

dimensional (2D) plasmonic focusing lenses were realized with chirped circular 

nanoslits [29] and cross-shaped aperture arrays [28, 31]. Furthermore, a plasmonic 

lens in the far-field region was also developed by using nanohole patches [30].  Even 

with the above mentioned plasmonic lens development in the diffractive regions, the 

physical behaviors of plasmonic focusing in these regions have never been 

thoroughly studied, and the focus size is still within the diffraction limit in these 

designs. 

On the other hand, radially polarized light has been applied to traditional optical 

systems to reduce the focus size by utilizing its radial symmetry for years [32, 33]. It 

has been demonstrated that radially polarized light can enhance the focusing ability of 

plasmonic lenses as well [34-41]. It cannot only help reduce the focus size but also 

help increase the focal length because a Bessel beam can be generated due to the 

radial symmetry. However, it is not easy to generate radially polarized light. The 

methods people used to generate radially polarized light are either costly or having its 

own drawbacks, including coherent superposition of two orthogonally polarized 
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modes [42], space-variant subwavelength gratings[43, 44], conical Brewster prism 

[45], integrate spatially variant wave plate [46], combination of SLMs [47], 

concentric metallic gratings fabricated on optical fibers [48]. In addition, many 

applications of plasmonic lenses require complicated alignment of the optical axis 

with the axis of the radially polarized light.  

Regarding sensing, nanophotonic structures play important roles to shrink the 

sensor size and improve the performance. Sensor miniaturization has received much 

attention in a broad range of applications for physical, chemical and biomedical 

parameters sensing [49, 50]. Owing to the recent advances in micro/nano fabrication 

techniques [51], miniature sensors can be realized in smaller and smaller scales. As a 

popular miniature sensor platform, optical fiber based sensors have been extensively 

investigated because of their small sizes, light weight, flexibility, robustness to 

electromagnetic interference, and remote sensing ability [49].  

Nevertheless, as the size of a conventional optical element gets closer to the 

operating wavelength, the size of fiber-optic sensors seems irreducible due to the 

diffraction limit [52], Nevertheless, recent studies on surface plasmons (SPs) shed 

some light on the realization of optical devices with an even smaller form factor, 

since SPs enable the confinement and manipulation of light at the subwavelength 

scale [14]. With the help of SPs, sensors with excellent sensing ability and ultra-thin 

film configurations have been demonstrated, including SP resonance [53], localized 

SP [54],  and plasmonic interferometer based sensors [55]. Recently, the facet of an 

optical fiber tip is found to be an appealing platform to integrate plasmonic structures 

for sensing applications [56, 57]. However, all of these sensors are either limited to 
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single parameter sensing or can be sensitive to multiple parameters but are not 

capable of distinguishing different parameters.  

Among the optical fiber sensing methods, there is one well-known and widely-

used scheme which utilizes cladding modes to measure the environment parameters. 

Since a cladding mode extends its evanescent field into the surrounding environment 

[58], it is very sensitive to the environment parameter change, especially the 

refractive index change.  In the beginning, short- or long-period fiber gratings were 

used to couple the light from fiber core to cladding to form cladding modes [59, 60]. 

Later, tilted fiber Bragg grating (TFBG) was found to be more efficient in generating 

cladding mode [61, 62]. However, fiber gratings whose lengths vary from millimeters 

to centimeters are still too long for the miniaturizations propose, especially when it 

comes to the spatial resolution of the measurement. Other methods to generate 

cladding modes, such as fiber tapering [63-65] and core diameter mismatch [66, 67], 

suffer from large coupling loss. In addition to the cladding layer, the buffer layer of 

optical fibers can support guided modes as well under some circumstances. The 

whispering gallery mode (WGM) supported by the buffer coating has been 

recognized [68] after the studies of bend-induced losses [69, 70]. As can be expected, 

high-sensitivity temperature sensor [71-73] have been achieved by WGMs due to the 

polymer material properties of the buffer layer. Nevertheless, in most of the previous 

studies, a large fiber bending is needed to generate the WGMs in the buffer layer. 

Nanophotonic structures give the potential to design a system with small size, large 

cladding mode coupling coefficient, and generating buffer-guided mode without 

bending. 
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This dissertation work is aimed to achieve enhanced understanding of 

nanophotonic structures in terms of their applications in imaging and sensing, and 

apply such understanding to enhance the performance of miniaturized imaging and 

sensing systems.  

1.2. Literature review 

1.2.1. Plasmonic lens 

SPP has been used to enhance the resolution of imaging systems thanks to its short 

wavelength for a long time. It has been first experimentally demonstrated by 

Smolyaninov et al.[18, 19]. In their experiment, laser light illuminates a parabolically 

shaped glycerin droplet through a glass prism and excites SPPs propagating at the 

gold and glycerin interface, as shown in Figure 1.1 (a). The gold-glycerin interface 

provides the large value of the effective index, seen from the SPP dispersion in Figure 

1.1(b). Thus SPPs with the wavelength about 70 nm travels along the interface and 

reflects at the boundary of the glycerin droplet which functions as a magnifying lens 

of SPPs. SPPs are partially scattered above the prism and can be observed by a 

microscope. In the end, an optical resolution of 60 nm is achieved by 515 nm laser 

illumination, which is far beyond the diffraction limit.     
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Figure 1.1 (a) SPP-based far-field microscope setup. (b) SPP dispersion on the gold-
glycerine interface[19]. 

Later, Smolyaninov et al. has also demonstrated SPP can enhance the resolution 

of 2D imaging by achieving a negative refractive index mirror with a nanohole array 

photonic crystal structure at the surface[21], shown in  Figure 1.2 (a), as well as a 

photonic metamaterial structure with a hyperbolic dispersion[22], shown in Figure 1.2 

(b).   

 

Figure 1.2 (a) SEM of a triplet nanohole array which has a negative effective 
refractive index[21]. (b) AFM image of a magnifying superlens enabled by hyperbolic 
metamaterial.  

Although the works mentioned above have accomplished great successes to 

enhance the resolution far beyond the diffraction limit by up to 1/7 of the illuminating 

wavelength (λ0/7), or even further to λ0/14 with additional digital filters [24, 25], they 

usually require additional excitation mechanisms for SPPs, like the glancing 
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incidence with glass prism shown in Figure 1.1(a). Other studies have been conducted 

to study metal nanophotonic structures which are designed to directly couple photons 

from free-space incidence to SPPs and focus light, which are named as plasmonic 

lenses. It is first investigated by Liu et al. [12] In their experiment, as shown in Figure 

1.3, a single annular aperture is fabricated on a silver film deposited on a quartz 

substrate. Linearly polarized light illuminates on the structure from the substrate. 

Since the width of the slit is designed to be smaller than the half of the incident 

wavelength, large portion of the light will be diffracted at the edge and therefore 

excited propagating SPP at the surface. The energy will be guided toward the center 

of the structure to the focus spots, making the structure serve as a lens. Because of the 

linearly polarized incidence, the SPPs generated at the opposite edges of the slit have 

a phase different of π, thus a destructive interference can be found at the very center 

of the plasmonic lens. Therefore, there will be two focus spots around the center due 

to the constructive interference of SPPs. It is verified in their finite difference time 

domain (FDTD) simulation. The calculated field distribution is shown in Figure 1.4(a, 

b). Compared with the parallel field Ex, the electric field in the vertical direction Ez is 

the dominating term in the SPP field. Therefore it is demonstrated that there will be 

two focus spot around the center of the lens. In the experiment, the field intensity is 

scanned by near-field scanning optical microscopy (NSOM), and the cross-section 

intensity distribution is shown in Figure 1.4(c). Due to the characteristic of NSOM 

system which is more sensitive to Ex, the field distribution from NSOM scanning only 

shows the profile of Ex distribution, but it still demonstrates the focusing capability of 
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such plasmonic lens. A sub-diffraction-limit focus size 244 nm is achieved by 

considering the wavelength of the incident light is 514nm. 

 

Figure 1.3 Experimental setup for NSOM measurement of plasmonic lens fabricated 
on silver film[12].  

 

Figure 1.4 Calculated intensity for the x (a) and z (b) component of the electric field 
for a silver disk 150 nm thick with a diameter of 6 μm. (c) Comparison of the cross 
section of the calculate electric field along x direction for the disk in a and the 
measured NSOM intensity for a circle milled into a 150 nm thick silver film with a 6 
μm diameter. The period of the fringes is 244 nm [12]. 

Since 2005, much attention has been drawn into the study of the plasmonic 

lens[15, 74-79], due to its obvious advantages for sensing and imaging. The circular 

grating has been added to the single ring lens to enhance the focus intensity [74], as 

shown in Figure 1.5. The circular grating serves a Bragg mirror which reflects the 
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outgoing SPPs back into the center of the lens. By doing that a 10-fold intensity 

enhancement is achieved. 

 

Figure 1.5 SEM image of a plasmonic lens with 15 rings. The scale bar is 5 um [74]. 

Later, a plasmonic lens array, shown in Figure 1.6(a), has been applied to a 

maskless nanolithography system (Figure 1.6 (b)) [78]. With the help of plasmonic 

lens, an inexpensive parallel scanning probe lithography method with high speed and 

sub 100-nm lateral resolution have been achieved. Due to the high energy 

concentration from SPPs, the throughputs have been improved 2~5 orders of 

magnitude, compared with other maskless lithography techniques. Later, they have 

even achieved 22-nm lateral resolution by introducing localized surface plasmonic 

structure at the center of the plasmonic lens[77]. 
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Figure 1.6 Plasmonic lens array on a lithography writing head[78]. 

Despite the success of focusing light to the sub-diffraction-limit spot size on the 

metal surface, the above-mentioned plasmonic lenses lack of the ability to focus light 

in the region away from the surface, since SPP decays exponentially along the 

direction perpendicular to the surface. Therefore it limits some applications. For 

example, for the plasmonic-lens-assistant maskless lithography we mentioned[78], an 

accurate aerodynamic flying head must be designed to maintain the distance as small 

as 10 nm to accommodate the short focal length of the plasmonic lens. To avoid this 

shortcoming, diffractive plasmonic lenses have been developed [26-31, 80-83].   

A typical diffractive plasmonic lens design is shown in Figure 1.7 [26], where 

subwavelength nano-slits are milled through a silver film. Once a plane wave with 

TM polarization illuminates from one side of the silver film, SPPs are generated and 
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guided through the slits. In the metal/dielectric/metal structure, SPPs at the top and 

bottom surfaces will couple with each other, and the dispersion of the guided SPP 

mode can be expressed as [26]  

 

Figure 1.7 A schematic of a nano-slit array with different width formed on thin 
metallic film [26]. 
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where w is the width of the slit, β is the complex propagating constant of the guided 

SPP mode, k0 is the free space wave vector, εd and εm are the permittivities of the 

dielectric and metal respectively. Since k0, εd, εm are fixed, this equation shows the 

relationship between the propagation constant and the slit width, which is plotted as 

shown in Figure 1.8 [26]. 
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Figure 1.8 Dependence of propagation constant of SPPs in the slit on the slit width. 
The solid and dashed lines represent real and imaginary part, respectively. The 
dotted line stands for plane EM wave in air[26]. 

This relationship indicates a mechanism to modulate the phase at the outlets of 

the slits by changing the width of the slits. A curved wavefront can be formed by 

modulating the phase. And a focusing lens with the focal length f can be designed, 

while the phase of the slit sitting at position x satisfies the constructive interference 

requirement 
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where φ0 is the phase at the center of the lens,  λ is the free space wavelength, N is an 

integer and n is the refractive index of the propagating media. 

According to this principal, a metallic nano-slit plasmonic lens has been 

designed, and its performance has been verified by FDTD simulation as seen in 

Figure 1.9. Slits with width from 10 nm to 70 nm have been milled through the silver 
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film with 500 nm thick. This diffractive plasmonic lens works at 650 nm and presents 

a focus with FWHM 270 nm and focal length 1.5 μm, shown in Figure 1.9.  

 

Figure 1.9 (a) FDTD calculated result of normalized  Poynting Vector in z for 
designed metallic nano-slits lens. The film thickness is 500nm, and the total slits 
number is 65. The structure’s exit side is positioned at z=0.7 μm. (b) Cross section of 
the focus at z=1.5 μm[26]. 

Later, the diffractive plasmonic lens with nanoslits has been experimentally 

demonstrated [27]. 13 nano-slits have been fabricated on the silver film deposited on 

glass substrate (Figure 1.10 (a)). The focusing capability of a far-field cylindrical lens 

has been verified by showing the field distribution patterns scanned with confocal 

scanning optical microscope (CSOM) (Figure 1.10 (b)) and simulated by FDTD 

method (Figure 1.10 (c)). From the experiment and numerical results, a planar focus 

is achieved by the plasmonic lens with the FWHM 880 nm and focal length about 5.3 

μm, while it is under TM-polarized incidence with the wavelength of 637 nm. 
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Figure 1.10 Planar lens based on nanoscale slit array in metallic film. (a) The 
geometry of the lens. (c)Focusing pattern measured by confocal scanning optical 
microscopy (c)FEM field simulation[27]. 

After the early investigations about one-dimensional (1D) diffractive plasmonic 

lenses which only focus light in plane, lots of studies have shown the three-

dimensional (3D) focusing capabilities with different two-dimensional plasmonic 

(2D) lens designs. In the chirped circular nano-slits design[29], concentric circular 

apertures with various widths have been fabricated on a gold film, shown in Figure 

1.11 (a). The widths of the circular slits control the phase of emitting light in the same 

way as in nano-slits mentioned before. 3D Field intensity distribution of the system 

under linearly polarized incidence has been detected by NSOM, as seen in Figure 

1.11 (b). A strong focus at the focal length of 1.0 μm with the FWHM about 300 nm 

is verified.  
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Figure 1.11 (a) Schematic diagram of the sandwiched plasmonic lens with chirped 
circular slits corrugated on Au film.(b) Measured 3D E-field intensity distribution of 
the plasmonic lens vs. lateral x and propagation distance z using NSOM[29]. 

Other studies show different designs to manipulation the phase of the emitting 

light by guided SPPs. In one approach, the planar plasmonic lens is formed by cross-

shaped aperture arrays [28, 31], as shown in Figure 1.12 (a). The phase and the 

amplitude of the wavefront are modified by changing the arm lengths of the cross-

shaped apertures, as seen in Figure 1.12 (b). Thanks to the 2D controlling of the phase 

in the metal plane, a 3D focusing is achieved and record by CSOM, shown in Figure 

1.12 (c). A focus size of 2.3 μm with the focal length 16 μm is characterized, while 

the lens is under linearly polarized incidence at the wavelength of 850 nm.  

 

Figure 1.12 (a) Schematic of the planar plasmonic lenses formed by variant cross-
shaped aperture arrays. (b) The transmission efficiency (red solid line) and 
phase(blue dotted line) of the transmitted field as function of arm length at the 
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working wavelength.(c) Measured axial intensity profile (in the y-z plane) of light 
passing through[28]. 

Besides the focal size and focal length, transmission coefficient is also an 

important property of a focusing lens. There are some researches investigate the 

transmission coefficient of diffractive plasmonic lenses [30, 84]. In those researches, 

periodic plasmonic structures are applied, as shown in Figure 1.13 (a) and (b). While 

the periodicity satisfies the equation [84] 

0 sinSPP gk k n qkϕ= +                                                 ( 1.4 ) 

where k0 is the wavevector in free space, kspp is the wavevector of the SPP wave,  ϕ is 

the angle of incidence, n is the refractive index of the dielectric media, q is an integer, 

and kg is the reciprocal vector of the grating periodicity Λ (kg = 2π/Λ), the 

transmission of the plasmonic lens will be enhanced. As shown in Figure 1.13 (c), 

while the plasmonic lens is working at the wavelength described by the equation 

(1.3), the transmission of the system will be enhanced. 
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Figure 1.13(a) SEM image of a 5 μm patch of nanoholes with 400-nm period [30]. 
(b). nanolens made of periodical concentric silver rings[84]. (c) Surface plasmon 
resonances were tuned by changing the lattice geometry[30]. 

1.2.2. Plasmonic structures with radially polarized light 

In all the studies about plasmonic lense mentioned above, only linearly 

polarized incidence cases have been considered. Nevertheless, other studies [34-39, 

85-88] have shown that radially polarized incidence will significantly improve the 

focusing capability of plasmonic lens. This is first noticed in an evanescent Bessel 

beam generation study [85]. The setup is shown in Figure 1.14. As can been seen, a 

radially polarized light is focused by an aplanatic lens and illuminates onto a silver 

film. The focused light contains components with various incident angles. At certain 

incident angle SPP will be generated. Because the radial symmetry, all the generated 

SPPs will be guided into the center of the optical axis. According to the numerical 

simulation, a Bessel function field distribution will be found, as shown in Figure 1.15 
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(a). Compared with linearly polarized light situation (Figure 1.15 (b)), the radially 

polarized incidence will not only enhance the intensity at the focus but also presents a 

single focus with even smaller focus size at the center. The focus size, or in the other 

word full width at half maximum (FWHM), depends on the Bessel function solution 

will be as small as 0.219λ0, where is λ0 the wavelength of the incident light. Despite 

the setup in this study is not a strictly plasmonic lens since the traditional aplanatic 

lens plays the role of focusing, it shows the advantage to apply radially polarized light 

into plasmonic focusing structures. 

 

Figure 1.14 Diagram of the proposed setup for evanescent Bessel beam 
generation[85]. 
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Figure 1.15 Numerical simulation results for (a) total field strength at the bottom of 
the silver layer for radial polarization, (b) total field strength at the bottom of the 
silver layer for linear polarization illumination as a comparison[85]. 

After that, the enhanced focusing capability of plasmonic lens with radially 

polarized incidence has been demonstrated in studies[34, 35]. As illustrated in Figure 

1.16 [35], a single ring slit plasmonic lens under different polarization incidence will 

behave differently. While under radially polarized incidence, the in-plane electric 

field ER will vanish at the center of the lens due to destructive interference, since the 

phases of ER at the opposite edges are with 180o difference. However, for out-of-

plane electric field Ez, which is the dominating component for SPP field, there will be 

constructive interference at the center. The ratio of |ER| and |Ez| depends on material 

properties of metal and dielectric, by |EZ|2/|ER|2 = |εM|/|εD| where εM and εD are the 

permittivities of metal and dielectric respectively. In the optical range, |εM| is usually 

about one order larger than |εD|. Thus there will be a single focus from the 

constructive interference at the center of the lens for the overall effect. Moreover, due 

to the radial symmetry, the field distribution has a zero order Bessel function profile, 

which gives a very small focus size. On the other hand, the case of linearly polarized 

incidence is just the reverse, where ER constructively inference and |ER| destructively 
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interference at the center. Tow focus spots across the center along the direction of the 

polarization will be found.  

 

Figure 1.16 Schematic diagram showing the geometry of the plasmonic lens and the 
orientation of the field components under radial and linear polarization 

illumination[35]. 

For the experimental demonstration [35], a single ring plasmonic lens with the 

diameter of 15 μm is fabricated on a 150 nm thick Ag film deposited on glass 

substrate. A radially polarized light with the wavelength of 1064 nm has been 

illuminated in the NSOM scanning measurement. The wavelength is chosen 

intentionally that the ratio |EZ|2/|ER|2 is large enough to overcome the shortage of 

NSOM system whose coupling coefficient for ER is larger than for EZ. By doing so, 

the field distribution scanned by NSOM will match the profile of the overall intensity 

profile. The NSOM scanning result for radially polarized light incidence has been 

shown in Figure 1.17. Compared with the case of linearly polarized incidence, shown 

in Figure 1.18, a single focus with strong intensity has been achieved by radially 

polarized light. 
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Figure 1.17 NSOM measurement showing SPP focusing in the plasmonic lens 
illuminated by linearly polarized light[35]. 

 

Figure 1.18 NSOM measurement showing SPP focusing in the plasmonic lens 
illuminated by radially polarized light[35]. 
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Despite the advantages that radially polarized incidence can bring to plasmonic 

lenses, it is not easy to generate radially polarized light. There are many kinds of 

methods to generate radially polarized light; nevertheless, we can roughly classify 

them into three categories. 

The first kind of methods is based on resonator configurations in laser cavities 

[42, 89, 90]. For example, in a resonator, the coherent summation of two orthogonally 

polarized modes can lead to both azimuthally polarized light and radially polarized 

light by changing different mode combinations, as shown in Figure 1.19 [42]. 

 

Figure 1.19 Coherent superposition of two orthogonally polarized modes to form 
azimuthally and radially polarized beams; (a) azimuthally polarized doughnut beam; 
(b) radially polarized doughnut beam[42]. 

The second kind of methods is to spatially control the polarization direction and 

phase by different ways [43, 44, 46, 47, 91]. As an illustration, the spatial polarization 

direction can be modified by half-wave plates [46], shown in Figure 1.20. A spatially 

varying retarder (SVR) which is composed of 8 half-wave plates in different 

directions can control the polarization direction through each wave plate and 

eventually transform a linearly polarized light into radially polarized light. The same 
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kind of spatially polarization modulation can also be achieved by space-variant 

subwavelength gratings[43, 44], combination of spatial light modulators[47], 

arranged liquid crystal molecules[91]. 

 
Figure 1.20 Arrangement for transformation of a linearly polarized Gaussian beam 
to a radially or azimuthally polarized beam. The insets show the SVR scheme, 
together with an SVR photo [46]. 

The third kind of methods is to utilize the polarization selective configurations 

to filter out the light with local polarization direction different from radially polarized 

light. A conical Brewster prism [45], as shown in Figure 1.21, will filter out light with 

one particular polarization, since the conical angle satisfies Brewster condition for all 

the light incidence parallel to the optical axis. Moreover, because of its axial 

symmetry, the output light will be radially polarized.  
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Figure 1.21 Drawing of the conical Brewster prism[45]. 

The subwavelength concentric metallic gratings work in a similar way[48]. A 

grating with a subwavelength period will strongly reflect TE polarized light and 

allows TM polarized light to transmit through. For the concentric metallic gratings, 

all the light with TE polarization respect to the grating will be filtered out. The 

transmitted light with TM polarization respect to the grating is actually radially 

polarized light. 

 
Figure 1.22 SEM images 20 periods of concentric metallic rings[48]. 

Most the above-mentioned methods to generate radially polarized light are 

complicated and require precise alignment. Even more, it will require another precise 
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alignment when it is applied to the plasmonic structures, such as plasmonic lens we 

have previously discussed.  

1.2.3. Plasmonic structures for sensor miniaturization 

For decades, sensor miniaturization has drawn people’s attention in a broad 

range of sensing fields for physical, chemical and biomedical parameters, because the 

scope of researches focuses into smaller and smaller scale. It becomes an even more 

important matter, after the booming of nanotechnologies.  However, as the size of the 

optical components goes as small as the operating wavelength, it suffers from the 

same size difficulty as in the miniaturized imaging system due to diffraction limit. 

Nevertheless, recent researches suggest that plasmonic structures have the potential to 

shrink the size of optic components to an even smaller scale with their capability of 

confining and manipulating light at subwavelength.  

The first surface plasmon resonance (SPR) based sensor was demonstrated by 

Nylander and Liedberg [92-94]  and was applied to gas detection and biosensing.  

After that, SPR based sensors were widely investigated, especially in the 

measurement of chemical and biological parameters due to the high sensitivity, label-

free advantage and ultra-thin thickness.   

As discussed previously, SPP cannot be excited by the free space incidence on 

the smooth metal-dielectric surface because of the momentum mismatch (see Eq. 

1.5). Therefore, people conceived many different configurations to introduce SPR. 

Figure 1.23 shows the three commonly used configurations of SPR sensors. The basic 

idea is to increase the momentum of the incident light to match the momentum of 

SPP, which is achieved by attenuated total reflection [Figure 1.23 (a)], diffraction 
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grating at the metal surface [Figure 1.23(b)] or waveguide structures [Figure 1.23]. 

Once SPR is excited, strong field concentration is found in the evanescent region at 

the interface. The strong field enhancement results in the high sensitivity to the 

environment refractive index change. Thus the environment media change can be 

monitored by the SPR wavelength shift or the optical intensity at the resonance 

wavelength.  

 
Figure 1.23 three commonly used configurations of SPR sensors: (a) prism coupler-
based SPR system; (b) grating coupler-based SPR system; (c) optical waveguide-
based SPR system [53]. 

Sensors based on localized surface plasmon (LSP) have also been investigated 

[43]. For LSP cases, light interacts with material in the scale which is determined by 

the geometric size of nanoparticles. Plasmon oscillation is locally confined in the area 

near the nanoparticle, shown in Figure 1.24. Since the nanoparticle size can be far 

smaller than the wavelength, LSP based sensor are often used to enhance the lateral 
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spatial resolution [95, 96] of sensing. In addition to measuring LSP resonance 

directly, LSP was found essential to enhance Raman scattering due to its highly 

localized field enhancement, which is called surface-enhanced Raman spectroscopy 

(SERS) [54, 97]. With SERS, not only the environment refractive index but also the 

type of molecules can be measured.  

 

Figure 1.24 Schematic diagrams illustrating a localized surface plasmon[54]. 

Plasmonic interference, SPP interference at the metal/dielectric interface, has 

been widely studied in recent decades after the investigation of SPP behaviors [98-

101]. Taking two-slit plasmonic interference for example, SPPs, generated at the slits 

while the slit scattering provides the extra momentum, interference at the 

metal/dielectric interface, as shown in Figure 1.25. And eventually the plasmonic 

interference will affect the intensity distribution in the near-field [98, 100, 102] as 

well as the transmission or reflection spectra [98, 99].  
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Figure 1.25 Schematic diagrams illustrating two-slit plasmonic interference at 
metal/dielectric interference 

After that, plasmonic interference has been used for sensing purpose [55, 103]. 

As an example, a plasmonic interferometer is fabricated on a 300-nm thick silver film 

deposited on a glass substrate, shown in Figure 1.26 (a). The interferometer contains 

two shallow grooves and one slit in the center. SPPs generated at the grooves 

interference and transmitted through the slit. Since SPP is sensitivity to environment 

refractive index, the interference spectra will respond to the media refractive index 

both in wavelength and relative intensity Figure 1.26 (b).   
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Figure 1.26 (a) SEM micrograph of a groove-slit-groove (GSG) plasmonic 
interferometer. (b) Normalized per-slit transmitted intensity spectra and relative 
intensity change of the plasmonic interferometer measured at various concentrations 
of glucose in water[55].  

In terms of sensor miniaturization, the facet of an optical fiber tip is recently 

found to be an appealing platform to integrate photonic structures for sensing 

applications [56, 57, 104-106].  

A typical design is shown in Figure 1.27 (a). A dielectric and metallic photonic 

structure is integrated on the tip of fiber, which significantly improves the field 

confinement due to enhanced LSP resonance, seen in the inset of Figure 1.27 (b). The 

reflectance dip of LSP resonance shown in Figure 1.27 (b) enables a refractive index 

sensitivity of 120nm per refractive index unit (RIU).  Additionally, this sensor shows 

the potential to detect the pressure change due to the low Yong’s modulus of the 

positive photoresist ZEP. 
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Figure 1.27 (a) Schematic (cross section view) of the hybrid metal-dielectric structure 
for enhancing LSP integrated on the optical fiber tip. (b) Measured reflectivity and 
calculated electric field intensity distributions[56]. 

Although researchers started to integrate plasmonic structures on fiber for 

sensing application, to date all of these sensors are either limited to single parameter 

sensing, or can be sensitive to multiple parameters but are not capable of 

distinguishing different parameters. 

1.2.4. Fiber optic sensors based on cladding modes and buffer-guided modes 

In FBG fibers, there are discrete dips can be found below the Bragg wavelength 

in the transmission spectra, which are due to the coupling between core modes and 

cladding modes. Although the cladding modes shown in the spectra are undesirable in 

optical communications, it turns out that they can serve as good sensors for 

environmental parameter changes, such as refractive index [61], and temperature 

[107].  

It is found that cladding modes are generally more sensitive to the 

environmental changes than core modes. That is because the mode fields of cladding 

modes can extend to the media, whereas the mode fields of core modes are confined 

in the core region, and covered by the cladding. Take the refractive index sensing as a 

comparison. Through holes from the media to the core region are typically required 
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for the refractive index sensors based on core modes. For example, for the sensor as 

shown in Figure 1.28, a microhole array in a single-mode fiber (SMF) is fabricated by 

selective chemical etching of femtosecond-laser-induced FBG. Thanks to the through 

holes, the refractive index can be directly detected by the Bragg resonant wavelength 

shift. Despite the fabrication difficulty of the through holes, the sensor demonstrates a 

refractive index sensitivity of 5.484nm/RIU, which is among the highest sensitivity 

for fiber optic sensors based on core modes.  

 

Figure 1.28 SEM image on the fiber grating surface after etching[108]. 

Fiber optic sensors based on cladding modes, on the other hand, show much 

larger refractive index sensitivities. A typical fiber optic sensor based on cladding 

modes is shown in Figure 1.29.  The cladding of a SMF is chemically etched to a 

smaller diameter, which gives three advantages for refractive index sensing: 1) the 

coupling strength between core modes and cladding modes is enhanced, 2) the 

number of the cladding mode resonances is greatly decreased to be easily 

discriminate in the spectra, 3) more cladding mode field can extend into the media. 

The maximum sensing sensitivity of 172 nm/RIU is found in this sensor which is two 

orders larger than those fiber optic sensors based on core modes. 
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Figure 1.29 Structure of etch-eroded FBG for ambient refractive index sensing[109] 

In the history of sensors based on cladding mode coupling, long-period fiber 

gratings (LPFGs) are first used for sensing applications for temperature, strain, and 

refractive index [60, 110-112]. LPFGs scatter the code modes into cladding, and 

couple the co-propagating cladding modes with co-propagating core modes thanks to 

LPFGs’ small grating vectors. As a result, the cladding modes can be easily observed 

in the transmission spectra and used to measure the environmental parameters. A 

typically transmission spectrum of an LPFG is shown in Figure 1.30. As a 

comparison, the standard FBG or short-period fiber grating (SPFG) support the 

coupling between core mode and contra-propagating cladding modes, yet show 

weaker cladding mode coupling in the spectrum (see Figure 1.31 for example). 

Despite the large cladding mode coupling coefficient from LPFGs, the sensor based 

on LPFGs are limited by the lateral resolution, especially when it comes to the local 

parameter measurement, because the overall length of a LPFG is typically centimeter 

long.  
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Figure 1.30 Experimentally measured transmission spectrum of an LPFG with a 
period of 198 μm [112]. 

 

Figure 1.31 Experimentally measured transmission spectrum of a 8 mm long 
standard FBG photo-written in a single-mode step-index optical fiber [61]. 

In that case, SPFGs are preferred to miniaturize the size of sensors. And tilted 

short-period fiber Bragg gratings (TFBGs) are introduced to take the advantages of 

both small size and large coupling coefficient. As shown in Figure 1.32, Bragg 

gratings in the fiber are tilted. Thus more light can be reflected into the cladding, and 
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strong cladding modes can be characterized in the transmission spectrum, shown in 

Figure 1.33. 

 

Figure 1.32 Schematic of a TFBG. 

 
Figure 1.33 Experimentally measured transmission spectrum of a 8 mm long θ= 16◦-
tilted TFBG surrounded by air[61]. 

Other than FBGs, other methods were also developed to generate cladding 

modes for sensing applications. One commonly used idea is to fuse the fibers in 

different core diameters [107, 113, 114]. As shown in Figure 1.34, one piece of fiber 

is aligned and spliced into a fiber with different core diameter. Due to the core 

diameter mismatch at the splicing boundary, the core modes can be scattered into the 
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cladding and coupled back to the core at the other boundary. Therefore a Mach-

Zehnder interferometer is formed and can be used to measure parameters such as 

temperature, strain and refractive index. This configuration can use any combination 

of fibers with different diameters, depends on different applications, such as SMF 

with multimode fiber (MF) for high temperature measurement [107], SMF with  

photonic crystal fiber (PCF) for Simultaneous temperature and force measurement, 

and singlemode-multimode-thinned-single-mode fiber structure for temperature, 

strain and refractive index sensing.  

 

Figure 1.34 Schematic of cladding mode generated by core diameter mismatch.  

Another method to generate cladding mode is to taper a fiber, which is the same 

in principle with the method of core diameter mismatch. As an example in Figure 

1.35, one 3 dB taper is made by a fusion splicer in a SMF. Core modes can be 

scattered into cladding modes, travel along the fiber, be reflected by the gold coating 

and eventually coupled back to the core modes again, which forms a Michelson 

interferometer to sense different immersion length as well as the refractive index.  

The tapered fiber structure was later integrated with a TFBG to generate strong 

cladding modes and serve as an accelerometer [115] and a 3D inclinometer [116]. 



 

 

37 
 

 

Figure 1.35 Taper-based SMF Michelson interferometer[63]. 

For all the methods mentioned above to generate cladding modes for sensing 

applications, the sensors are still either suffering from large size (FBGs), or weak 

coupling coefficient (core diameter mismatch and tapered structure). 

On the other hand, unlike cladding layer, buffer layer of optical fibers was less 

studied, since it typically only serves as a mechanical protection to the glass surface. 

However, when an optical fiber is bent, the guided light in the core region can 

penetrate to the cladding and buffer regions, and later recouples coherently to the core 

mode, forming WGMs[68]. As showing in Figure 1.36 (a), light in the core can 

penetrate from the core region into buffer layer through the cladding layer thanks to 

the large bending of the fiber. It forms guided mode in the buffer region and can be 

observed in the spectrum such as shown in Figure 1.36 (b).

 

Figure 1.36 (a) Geometry of the WGM interference model. (b) Bend loss as a function 
of wavelength for the fiber with WGM. [68] 



 

 

38 
 

Different from core modes and cladding modes which are confined in the glass 

materials, buffer guided modes can be more sensitive to temperature and strain 

because of the polymer property of the buffer layer. For instance, a highly sensitive 

temperature sensor is achieved by exciting WGM in a coated single-mode fiber 

loop[73]. They test the looped SMF in the temperature controlled oven shown in 

Figure 1.37 (a). Seen from Figure 1.37(b), large sensitivities up to -5.22nm/oC have 

been observed, and different buffer coatings result in different temperature response.  

 

Figure 1.37 (a) Experimental setup for testing the coated-SMF loop temperature 
sensor. (b) The temperature response of the three types of coated-SMF loop 
sensors[73]. 

In terms of strain sensing, a large strain sensitivity up to −1.76 pm/με has been 

achieved by utilizing the polymer material property of polymer optical fibers (POFs) 

[117], which is more sensitive than most of the strain sensors based on core modes 

and cladding modes. However, POFs are more expensive than regular SMFs and lack 

of multi-parameter sensing ability.  

 

1.3. Motivation for this doctoral research 

Although it was a quite success to achieve sub-diffraction limit resolution by the 

help of SPP at the metal/dielectric interface, the physical limits of plasmonic lenses in 
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the diffractive regions as well as a clear definition of the boundaries of different 

regions for plasmonic lenses are still under-investigated.  To enhance the 

understanding of how plasmonic lenses help imaging systems, this dissertation seeks 

to answer the following import but unexplored questions: i) how to define different 

regions of plasmonic lenses, 2) what is the physical limits in each different region, 3) 

how to utilize plasmonic behaviors to enhance the resolution in the diffractive region.  

Further, another goal of this dissertation is to study how to use nanophotonic 

structures to easily generate radially polarized light and integrate it with plasmonic 

lenses to enhance imaging. Although there are many methods to excite radially 

polarized light, they relatively complicated and often require precise alignment with 

lens systems to enhance the focus resolution. 

In the perspective of sensing, many nanophotonic structures mentioned above 

have been studied to miniaturize the systems and enhance the sensing performance. 

Nevertheless, they are either still in relative large sensor sizes or lacking of multi-

parameter sensing capability. In this dissertation, we want to use the nanophotonic 

structures at the tip of the fiber to minimize the sensor size and achieve multi-

parameter sensing capability with high sensitivities. 

 In addition to that, for all the methods mentioned above to generate cladding 

modes for sensing applications, the sensors are still either suffering from large size 

(FBGs), or weak coupling coefficient (core diameter mismatch and tapered structure). 

We want to easily excite cladding modes and buffer-guided modes simultaneously in 

optic fibers with the nanophotonic structures at the fiber facet, which will enhance the 
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coupling coefficient, increase the sensor performance and enable multi-parameter 

sensing capability. 

1.4. Objectives and scope of the dissertation 

The overall goal of the dissertation work is to achieve a better understanding of 

selected nanophotonic structures and use this understanding to study how to design 

miniature imaging and sensing systems with enhanced performance. Specific 

objectives include the following: 

1) Develop an enhanced understanding of plasmonic lens through theoretical 

investigation into the physical limits of focusing in different regions, and 

formulate the design guidelines in each region. 

2) Design and optimize a plasmonic lens working around Fresnel region, and 

study its subwavelength focusing ability by using numerical simulations. 

3) Study the radially polarized light generated by using transverse 

electromagnetic (TEM) resonance in annular plasmonic structures and its 

application for improving plasmonic lens in the surface plasmon dominating 

region. 

4) Design and fabricate a plasmonic interferometer on a fiber facet and 

experimentally study its ability of multi-parameter sensing. 

5) Develop a novel method that utilizes gratings on fiber facets to generate 

cladding modes and buffer-guided modes simultaneously and study these 

structures for multi-parameter sensing. 
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1.5. Organization of the dissertation works 

The rest of this dissertation is organized as follows. In Chapter 2, a 

classification of plasmonic lenses in different regions is provided, along with the 

study of physical limits of plasmonic lens design in different regions. After that, sub-

diffraction-limit plasmonic lens in Fresnel region is discussed. In Chapter 3, the study 

of radial polarization generating based on TEM mode resonance in plasmonic 

structure is presented. A plasmonic structure with the ability to generate radially 

polarized light with normal incidence is demonstrated. Later, plasmonic lens designed 

in the near-field with dialectic layer deposited and plasmonic lens self-aligned with 

radial polarization generating structure are investigated. In Chapter 4, the study of an 

on-fiber plasmonic interferometer for the application of multi-parameter sensing is 

provided. In Chapter 5, the study of cladding modes and buffer-guided modes 

generated by gratings on fiber facets is conducted. A summary of the proposal, as 

well as an outline for future work, is provided in Chapter 6 
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Chapter 2. Plasmonic lens in different regions 

 

2.1. Plasmonic lens overview 

The ability to focus light into a smallest achievable spot has always been of 

great interest. However, in traditional practice using dielectric lenses, the focal size is 

inevitably limited by the Abbe’s diffraction limit (0.51fλ/ρ)[52].  Here, λ is the 

wavelength in vacuum, and f and ρ are the focal length and radius of the lens, 

respectively. Moreover, the performance of conventional spherical lenses deteriorates 

as their sizes approach the wavelength. Recent progress in surface plasmon polariton 

(SPP) has provided promising solutions to achieving compact photonic devices 

through manipulation of SPPs [11]. Since first discovered by Ritchie [8], SPP, which 

is defined as the coupling of the collective electron excitation with the incident light 

at the metal and dielectric interface, has been widely studied. One of the most 

tantalizing prospects of SPPs is their ability to focus light energy into a nanoscale 

volume [118].  Recently, much attention has been focused on utilizing the plasmonic 

property of nanoscale structures [119],  to improve the performance of light focusing. 

Although it was a great success to improve optical resolution by SPP at the 

metal/dielectric interface with matching the material permittivity [18-21, 25], or with 

the help of photonic metamaterials[22], these approaches usually require additional 

launching for SPP. Furthermore, people investigated plasmonic structures which can 

directly couple light to SPP to enhance the imaging properties, namely plasmonic 

focusing lenses [4], With enhanced focusing properties, plasmonic focusing lenses are 
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expected to have great potential in applications such as microscopy, sensing, and 

nanofabrication.  

Plasmonic focusing in different regions exhibits different physical behaviors. 

However, in previous efforts on developing plasmonic lenses, the effect of different 

regions on the performance of a plasmonic lens has not been thoroughly studied, 

especially for lenses working in a region that diffraction behaviors dominate the 

focusing phenomenon. Recently, the importance of the diffraction behaviors in 

different regions of plasmonic lenses has been realized due to the observation of a 

mismatch between the designed focal lengths and the experimentally obtained values 

[120, 121]. In addition to the focal length, the physical limits of the focus size, which 

is a vital aspect of plasmonic focusing, have never been studied. Worth to mention, 

although the Talbot effect, or self-focusing effect, has been investigated to enhance 

the resolution in the diffractive region, it only works on grating structures [122, 123]. 

In this chapter, we first define three different regions for plasmonic focusing of 

the plasmonic lens, followed by a theoretical investigation into the physical behaviors 

of plasmonic lenses in these three different regions. Furthermore, with a goal of 

achieving sub-diffraction-limit focus size, a specific plasmonic lens with multiple 

concentric ring structures is investigated. It is expected that this work will help 

achieve a better understanding of the physical behaviors of plasmonic focusing and 

provide a basis for plasmonic lens design in different regions. 

Plasmonic lenses can be developed in both near-field and far-field. Here, we 

consider a linear polarized light with normal incident on a plasmonic focusing lens 

with an aperture size of ρ. Depending on the distance d from the lens exiting pupil, 
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we define three different regions for plasmonic focusing, namely, SPP dominating 

region, Fresnel region, and Fraunhofer region, as illustrated in Figure 2.1 Schematic 

of plasmonic focusing in three different regions. In the reactive near-field region, 

where SPP dominates the field distribution, the range of the near-field affected by 

SPP can be determined by the attenuation length of SPP (lzd) in the direction normal 

to the interface of a metal and a dielectric. In this region (i.e., 0<d<lzd), due to the 

large wavenumbers of SPPs, subwavelength focusing and energy confinement can be 

achieved by obtaining interference of SPPs [12]. Many efforts have been made to 

further improve the focusing performance in this region, such as employing radially 

polarized incident light [35] and introducing asymmetric surface structure [124].  

 

Figure 2.1 Schematic of plasmonic focusing in three different regions 

Beyond the SPP dominated region, in those regions that are further away from 

the lens surface, diffraction behaviors will dominate the focusing phenomenon. In the 

Fresnel region, which is the farthest part of the near-field (i.e., 2/zdl d ρ λ< < ) , the 

diffraction pattern is relatively close to the diffraction object and the propagation of 

the light exiting the lens can be investigated by using Kirchhoff-Fresnel diffraction 
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theory [52]. In the far-field (i.e., 2/d ρ λ> ), where the Fraunhofer diffraction 

dominates the lens behavior, the diffraction pattern will be formed in a relatively long 

distance away from the lens. 

2.2. Plasmonic lens in different regions: properties and limitations 

2.2.1. Subwavelength focusing in surface plasmon dominating region 

The wave vector of SPP under transverse magnetic (TM) incidence (the 

existence of transverse electric (TE) mode in SPP requires materials with negative 

permeability, which hardly exists) is given by 0 / ( )spp d m d mk k ε ε ε ε= + [125], where 0k  

is the free space wave vector, dε  and mε are the permittivity of the dielectric and 

metal respectively. Note that sppk is always larger than 0k for the materials that can be 

found in nature, and thus, the wavelength of SPP ( sppλ ) is always smaller than 0λ . We 

assume nonmagnetic materials (i.e., permeability 1µ = ) here, which is applicable to 

most of the practical cases. The vertical components of wave vectors at the dielectric 

and metal interface can be determined as 

 
2

,
, 0

d m
zd zm

d m

k k
ε

ε ε
=

+
.                                                                           ( 2.1 ) 

For a plasmonic lens working in the SPP dominating region, with the help of 

nanoscale metal structures, free space light can be coupled into SPP at the interface. 

By tailoring the nanostructure, interference of the energy excitation (i.e., SPPs) can be 

obtained, which can help achieve energy confinement in a dimension smaller than the 

diffraction limit of the incident light due to the much smaller wavelength of the SPP. 

On the other hand, since SPP is strongly localized around the interface, the energy 
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density of SPP is much stronger than the propagating light. Therefore, in the SPP 

dominating region, the field distribution or the focusing effect is governed by SPP.  

Since the amplitudes of the electric fields in both dielectric and metal are 

proportional to ,
,

zd zmizk
d mE e∝ , the attenuation lengths of SPP in the direction normal to 

the interface can be determined as [126] 

          , ,1 / ( )zd zm zd zml Imag k= .                                                                     ( 2.2 ) 

The attenuation length can be used to define the range of the plasmonic 

dominating region. Since the SPP near-field focusing always happens at the dielectric 

side in practical applications, the range of the SPP dominating region, as shown in 

Figure 2.1 Schematic of plasmonic focusing in three different regions, is defined as

zdd l< .  

The SPP attenuation length varies with respect to the incident light wavelength 

and material properties. As shown in Figure 2.2, which was obtained for a metal (e.g., 

gold and silver) and air interface, the range of SPP dominated region will increase as 

the incident light wavelength goes longer, except the anomalous dispersion region 

near to plasma frequencies. For example, at an incident light wavelength of 808 nm, 

the distance that characterizes the SPP dominating region at the interface of gold and 

air can be obtained as 657 nm, which is not a negligible distance compared with the 

wavelength. 
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Figure 2.2 Attenuation length (range of the SPP dominating region) of SPP in the 
dielectric as a function of wavelength. The permittivity of air (

d
ε 1.0≈ ) and the 

permittivity of gold and silver found in [127] were used . 

Since the behavior of SPP dominates the field distribution, the focusing spot 

size in this near-field region depends on how to manipulate SPP interference on the 

lens surface. For example, with a single ring structure milled into an optically thick 

metallic film that is incident by linearly polarized light [12],  due to one-dimensional 

interference of SPP, standing waves can be formed on the metal/dielectric interface 

along the polarization direction, resulting in one-dimensional focusing along the 

direction of interference at the center of the ring. The obtained focus size can be as 

small as sppλ / 2 . Since in many practical applications, 2D focusing is more desirable, 

radially polarized incident light can be applied on a plasmonic lens with single or 

multiple ring structures to achieve 2D focusing on metal/dielectric interface [34, 35]. 

In this case, the solution to the wave equation of SPP can be obtained in the polar 

coordinate with a circular symmetry, which takes the form of zero order Bessel 

function of the first kind; that is, the field distribution is proportional to ( )0 sppJ k r  

[128], where r is the distance to the center of the lens. According to the property of 
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the zero-order Bessel function of the first kind, the strongest field intensity happens at 

the center of the ring (r=0) and the Full Width at the Half Maximum (FWHM) spot 

size can be determined when ( )0 1/ 2sppJ k r = , i.e., when 1.13sppk r = . Therefore, the 

focusing spot size can be obtained as 0.36 sppλ . Since the SPP wavelength sppλ  is 

always shorter than the optical wavelength 0λ , the focus size of a plasmonic lens 

designed in the surface plasmon dominating region can easily be smaller than the 

diffraction limit. However, the actual size of the focus strongly depends on the SPP 

wavelength sppλ , in the other word, depends on the material properties of the lens. 

Based on Eq. (1.1), the shortest sppλ  can be achieved when mdε ε+  is approaching 

zero. Generally, the imaginary parts of dε  and mε  (i.e., Im( dε ) and Im( mε )) are 

relatively small compared with the corresponding real parts (i.e., Re( dε ) and Re( mε

)), and thus can be neglected. Since mε  has a large negative real part and dε  has a 

small positive real part, to obtain a smaller sppλ , a larger Re( dε ) is required. 

Therefore, high refractive index dielectric should be employed in a plasmonic lens 

working in the surface plasmon dominating region to obtain a small sized focus.  

2.2.2. Plasmonic focusing in Fresnel region and Fraunhofer region 

Further away from the SPP dominating region, plasmonic lenses can be 

designed to work in two different diffraction regions, the Fresnel region and the 

Fraunhofer region, as shown in Figure 2.1 Schematic of plasmonic focusing in three 

different regions. In the literature, plasmonic lenses have been developed in these 

regions to replace traditional refractive index based microlenses or to decrease the 
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lens size [26-31]. For example, a Fresnel region plasmonic lens with one-dimensional 

(1D) nanoslit array defined on a metal surface was proposed and studied through 

numerical simulations [26]. The experimental demonstration of a lens with a similar 

pattern was reported later by Verslegers et al [27]. More recently, two-dimensional 

(2D) plasmonic focusing lenses were realized in the Fresnel region with chirped 

circular nanoslits [29] and cross-shaped aperture arrays [28, 31]. Furthermore, a 

plasmonic lens in the Fraunhofer region was also developed by using nanohole 

patches [30].  Even with the above mentioned plasmonic lens development in the 

Fresnel region and Fraunhofer region, the physical behaviors of plasmonic focusing 

in these regions have never been thoroughly studied. 

Regardless of any specific lens design, to show the focusing behavior of a 

diffractive lens, an arbitrary plasmonic lens with a radius ρ, a designed focal length of 

f, and an operating wavelength λ is considered, as illustrated in Figure 2.3. Typically, 

the Fresnel number is used to determine the boundary of the Fraunhofer region and 

the Fresnel region. Assuming that the propagating media is air, which will be used in 

later discussions, the Fresnel number can be defined as 

                               

2

FN
f

ρ
λ

=
.                                                                         (2.3) 

When 1FN <<  (i.e., d ρ>> ), Fraunhofer diffraction will dominate the lens 

behavior. On the other hand, when 1FN >> , Fresnel diffraction will dominate the 

lens behavior. 
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To ensure constructive interference at the focal point F, the phase difference 

between the lens center 𝑂𝑂 and an arbitrary point 𝑃𝑃 on the lens that is a distance a 

away from the lens center is required to be  

            

2 222Δ 2
n f afnN

ππϕ π
λ λ

+
= + −

,                                                          (2.4) 

 

Figure 2.3 Schematic of a plasmonic lens with an arbitrary design, which has a 
radius ρ and a designed focal length of f. P is an arbitrary point on the lens aperture, 
which is away from the lens center by a distance a. F is the focus. P’ is an observation 
point on the focal plane, which is away from F by a distance x. α is the semi-angle of 
the light cone from the lens aperture to the focus. θ is the observation angle of P’ to 
the optical axis. 

where N is an integer and n is the refractive index of the propagating media. For a 

refractive index based microlens, the phase difference is usually induced by the 

different thicknesses of the lens along the radial direction; while for a planar 

plasmonic lens, this phase difference can be achieved by modulating the complex 

propagating constant β of the guided SPP mode in a metal-dielectric-metal (MDM) 

structure. For simplicity, the guided SPP mode in a MDM slit structure is considered, 

which will follow the dispersion as [6]  
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where w is the width of the slit. As can be seen from Eq. (2.5), the propagation 

constant β can be tuned by changing w, and thus, the width of the slit can be tailored 

to modify the phase difference at any point on the lens.  

In previous studies [27, 31], Eq. (2.4) has been used for designing a plasmonic 

lens with a specific focal length without considering the diffraction regions. It has 

been found that there is a significant discrepancy between the focal length designed 

by using Eq. (2.4) and that obtained in the experiment. This is due to the fact that Eq. 

(2.4) is only applicable to a plasmonic lens that has a focus designed in the Fresnel 

region. For a plasmonic lens with a focus designed in the Fraunhofer region, 

Fraunhofer diffraction will dominate the lens behavior, resulting in a focal length that 

cannot be predicted by using Eq. (2.4) [120, 121].   

In the Fraunhofer region (i.e., 1FN <<  ), it is noted that the largest phase 

difference at the focus due to light propagation from two different points on the lens 

is 

          
2

2 2 0
0 (Δ

2
)max

k
k f f FN

f
ρ

ϕ ρ π− + ≈ == ⋅  .                                          (2.6) 

It can be easily obtained that Δ maxϕ π<< , which implies that in the Fraunhofer 

region, Δ maxϕ is negligible. According to Eq. (2.4), the phase differences due to the 

modulation of the SPP propagating constant should match the spatial phase difference 

with a 2Nπ difference. Therefore, the phase difference due to the disturbance from 

SPP phase modulation can also be neglected. In this case, the diffracting plane can be 
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considered to have a uniform phase. When neglecting the phase difference on the 

lens, the lens can be considered as a circular aperture of radius ρ and its focal length 

can be determined by the Fraunhofer diffraction. By applying Rayleigh-Sommerfeld 

integral, the normalized intensity along the optical axis can be calculated as [129] 

           
( )

2
2sin ( )

2
I z

z
πρ
λ

=
.                                                                      (2.7) 

Based on Eq. (2.7), the focal length f can be found as 2 /f z ρ λ= = . It can be 

seen that the focal length mainly depends on the radius of the lens, when 1FN  .  

On the other hand, in the Fresnel region when 1FN >> , based on Eq. (2.6), it 

can be obtained that Δ maxϕ π>> , which means that the phase difference of different 

points on the lens is critical. Therefore, it is possible to modulate the phase difference 

with a plasmonic lens and the focal length of the plasmonic lens can be designed by 

using Eq. (2.4). In Table 1, several plasmonic lenses reported in the literature are 

listed. It can be seen that only when the 1FN >>  (e.g., Refs [26], [29]) (i.e., the lens 

works in the Fresnel region), the designed focal length can match the experimental 

result. For the lenses with a focus not in the Fresnel region (e.g., Refs [27], [30], 

[31]), the measured focal length will not match the experimental results. However, 

when the focus is approaching the Fraunhofer region (e.g., Refs [27], [30]), the focal 

length can be well predicted by using Eq. (2.7).  

Furthermore, since resolution power critically depends on the ability of a lens to 

focus light into the smallest spot, a focus size that is smaller than the diffraction limit 

has always been of great interest. However, none of designs listed in Table 1 can 

realize a focus beyond the diffraction limit. This is due to the fact that all the designs 
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are based on the principle of diffractive lens, which is inevitably limited by the 

diffraction limit. 

To better understand the physical limit of the focus size, the lens shown in 

Figure 2.3 is considered. The semi-angle of the light cone from the aperture 

proceeding to the focus is defined as α. Let 0    k xsinξ α=  be the normalized distance 

from the center to simplify the expressions. If the incident light is polarized in the x-

direction and all points on the lens are assumed to have the same phase, the amplitude 

of the electric field along x-direction on the focal plane can be given as [130] 

1

( )
j

j
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U a

ξ
ξ

∞

=

= ∑
  ,                                                                      (2.8) 

where Jj is the jth order of Bessel function of the first kind and the first four 

coefficients aj can be obtained as 1 1a = , 2 2
2

5 1( )
2 2

a tan sinα α= − + , 

4 2 2 4
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45 5 3
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a tan tan sin sinα α α α= + − , and 
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a tan tan sin tan sin sinα α α α α α= − + − + . The field amplitude 

along y-direction on the focal plane is of the same form as Eq. (8) but with different 

coefficients. In this case, the first four coefficients can be obtained as 1 1a = , 

2
2a tan α= − , 4

3
25
8

a tan α= , and 6
4

204
8

a tan α= − . 

For a lens with a radius ρ, the focus will be in the Fraunhofer region if α is 

small (i.e., 0α → ) so that the condition tan / 1FN α ρ λ= ⋅ <<  is satisfied.  On the 

other hand, the focus will be in Fresnel region if α is large.  
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Note that when the focus of a lens is in the Fraunhofer region, the high order 

terms in Eq. (2.8) will be negligible and the normalized intensity distributions along 

x-direction and y-direction will merge to one uniform expression: 
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  ,                                                                (2.9) 

where θ is the angle that characterizes the distance between the observation point and 

the focus, as shown in Figure 2.3. Note that 0 0 0  / ?k xsin k x f k sinξ α ρ ρ θ= ≈ ≈ , for 

small angle approximation (i.e., /sin x fθ ≈  and /sin fα ρ≈ ). Based on Eq. (2.9), 

the half maximum intensity occurs at 0 1.6k sinρ θ ≈  and the focus size D in terms of 

FWHM spot size is given by  

             
0.512 fD x λ

ρ
= ≈

.                                                                   (2.10) 

Eq. (2.10) simply describes the physical limit of the focus in terms of the spot 

size for a plasmonic lens designed in the Fraunhofer region, which is limited by the 

traditional diffraction limit. This implies that for a plasmonic lens designed in the 

Fraunhofer region, no matter how the lens is designed, the obtained focus can never 

overcome the diffraction limit of a conventional spherical lens. It should be noted that 

when a plasmonic lens with specific metamaterials is designed, it is possible to 

achieve a sub-diffraction-limit focus in the Fraunhofer region [131], which is beyond 

the scope of this article that only focuses on nonmagnetic materials. 

According to Eq. (2.10), for a fixed f and λ, a smaller focus size can be obtained 

by enlarging the lens size ρ. However in this case, α will also be increased, resulting 

in the focus shifting into the Fresnel region.  In the Fresnel region, the focus size as 
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well as intensity distribution at the focal plane can be obtained by using Eq. (2.8) with 

higher order terms. The focus size limit for the large numerical aperture cases can be 

studied by using Eq. (2.8) with a large α.   

 

Figure 2.4 Field intensity distribution along x-direction (a) and y-direction (b), while 
the incident light is under x-direction polarization and with different incident angles 
0  and 40 . 

In Figure 2.4, the intensity distribution at the focal plane is obtained for two 

different α, representing the two different diffraction regions. It can be seen that the 

focus size obtained for 40α =  , is only slightly smaller than that obtained for 0α =  , 

i.e., the Fraunhofer diffraction limit. For 30α <  , the obtained focus size will be 

remarkably close to the Fraunhofer diffraction limit. Note that 40α =   already 

represents a large angle for most plasmonic lenses designed in the Fresnel region. For 

an even larger α, the field amplitude based on Eq. (2.8) will become increasingly 

complicated due to the increased contribution from high order terms. However, by 

considering the first four terms only, it was found that the focus size cannot be 

significantly reduced by increasing α, and for certain large α, the focus size can be 
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even much larger than the diffraction limit. Therefore, it can be concluded that for a 

lens with uniform phase, a large numerical aperture cannot help significantly improve 

the focus size even when the lens focus is pushed into the Fresnel region.  

As shown in Table 1, all the previously reported plasmonic lens designs have a 

larger focus size than the traditional diffraction limit predicted by Eq. (2.10), no 

matter they are in the Fraunhofer region or in the Fresnel region. It is interesting to 

note that if a plasmonic lens with a single-hole structure is designed, it will always 

produce a focus as small as that predicted by Eq. (2.10). This means that in terms of 

resolution performance, none of the designs listed in Table 1 can render a smaller 

focus size than a single-hole structure with the same designed radius and designed 

working wavelength.  

Table 1. Performance parameters for the plasmonic lenses from previous references. Focal length f 
is predicted by Eq. (2.7) and focus size (FWHM) is predicted by Eq. (10) (length unit: nm)   

Ref
. 

Designed 
Pattern FN 

Operating 
Wavelengt

h 

Lens 
Radiu

s 

Designe
d f 

Predicte
d f 

Measure
d f 

FWH
M 

Diffractio
n limit 

[30
] 

Patches 
of 

nanoholes 
0.94 500 2500 NA 12500 13300 1830 1356.6 

[27
] 

Nanoscal
e slit 

Arrays 
1.18 637 2000* 20000 6279 5300 880 860.9 

[31
] 

Nano 
cross-
shaped 

aperture 
arrays 

2.82 850 3600 15000 – 5400 1200 650.3 

[26
] 

Nano-
slits with 
variant 
widths 

7.69 650 2000 600 – 800 270 132.6 

[29
] 

Chirped 
circular 

nanoslits 

50.7
3 532 5195 1000 – 1000 300* 52.2 

* The data are approximately measured from the graph provided by the references. 

Note: When FN>2, Eq. (2.7) cannot be used to predict the focal length since the focus is approaching the 
Fresnel region. 
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2.3. Parameter study of plasmonic lens designed in Fresnel region 

In the Fresnel region, it is meaningful to design a plasmonic lens with a specific 

pattern to modulate the SPP propagating constant, which makes it possible to control 

the interference pattern to enhance the relative intensity at the focus. Here, we will 

address the fundamental question: how can we design a plasmonic lens to overcome 

the diffraction limit? In fact, it is noted that if there is only a single ring slit at the rim 

of the plasmonic lens, the normalized intensity distribution on the focal plane can be 

obtained as [132] 

2
0 0( )I J k sinρ θ= .                                                               (2.11) 

Based on the property of zero order Bessel function of the first kind, the 

FWHM spot size can be found when 0 1.13k sinρ θ ≈ . The focus size of a plasmonic 

lens with a ring slit can thus be determined to be 

0.36 fD λ
ρ

≈
    .                                                                    (2.12) 

Based on this equation, the focus size of a plasmonic lens with a ring slit is 

about 30% smaller than the diffraction limit described in Eq. (2.10) for a circular lens 

of the same radius. 

To verify this conclusion, FDTD simulations for a plasmonic lens with a single 

ring slit were conducted.  As shown in Figure 2.5, the plasmonic lens used in the 

simulations has a thin gold film with a thickness of 400 nm deposited on a glass 

substrate with a refractive index of 1.458. A single ring slit with a radius of 1600 nm 

and a width of 120 nm is grooved on the film. The propagating media is chosen to be 

air with a refractive index of 1.0. A Gaussian beam with an 808 nm wavelength is 
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used to illuminate the lens from the substrate side. The incident light is polarized 

along x-direction.  

 

 

Figure 2.5 Schematic of a plasmonic lens with a single ring aperture with radius ρ 
and width w, which is milled in a gold film with thickness t. 

The obtained intensity distribution in the x-z plane is shown in Figure 2.6(a). 

Because the light will be coupled into in-phase radial polarization after SPP is guided 

through the subwavelength MDM ring slit [44, 133], only the field distribution in the 

x-z plane is considered, which dominates the field distribution in all the azimuthal 

directions. From the intensity distribution obtained along the optical axis (Figure 

2.6(b)), the focus can be found at the focal length f=1843 nm. Based on the intensity 

along the x-axis at the focal plane, as shown in Figure 2.6(c), the FWHM focus spot 

size can be determined as D=320 nm. This result is consistent with that obtained with 

Eq. (2.12); that is 0.36 /D f λ ρ≈ . 
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Figure 2.6 Fig 6. FDTD simulation results obtained for a plasmonic lens with a 
single ring slit: (a) intensity distribution of the focal plane along x-z direction, (b) 
intensity distribution along the optical axis, and (c) intensity distribution along the x-
direction of the focal plane.  

FDTD simulations of a single ring plasmonic lens with various ring radius, ring 

width, and lens thickness were also carried out (data not shown). The results indicate 

that the field distributions of all the plasmonic lenses with a single ring aperture can 

be characterized by using the zero order of Bessel function of the first kind, as long as 

the following two conditions are satisfied: i) the ratio w/ρ is small enough so that the 

structure can be considered as a single ring and ii) the thickness of the lens is big 

enough to prevent direct light penetration.  All focus sizes obtained from these 

simulations match well with those predicted by using Eq. (2.12).  Therefore, a 

plasmonic lens with a single ring structure can indeed help achieve a sub-diffraction-

limit sized focus. However, as can be seen from Figure 2.6(c), the intensity pattern at 

the focal plane has many strong side lobes, which is the disadvantage of the 

plasmonic lens with a single ring structure, resulting in relatively low intensity at the 
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focus. For practical applications, the side lobes need be suppressed and the relative 

intensity of the focus should be enhanced.  

To address the issue of strong side lobes, a plasmonic lens with multiple 

concentric rings can be used. Consider a representative example that has three 

concentric ring structures added to the single ring structure, as shown in Figure 2.7. 

The effect of multiple rings can be considered to be similar to that of multiple slits in 

one dimension. Owing to the contribution of the multiple slits interference, the 

number of the side lobes can be decreased and the relative intensity at the focus can 

be enhanced. FDTD simulations were carried out for a plasmonic lens with 4 

concentric rings with radii of 300 nm, 828 nm, 1074 nm, and 1600 nm, which is 

grooved on a 400 nm thick gold film deposited on a glass substrate with a refractive 

index of 1.458.  

 

 

Figure 2.7 Schematic of a plasmonic lens of 4 concentric ring slits with radii of r1, r2, 
r3, r4 and widths of w1, w2, w3, w4 milled on a gold film with a thickness of t. The 
designed focal length is f. F is the focal point and O is the center of the lens. 
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The widths of the rings are 60 nm, 72 nm, 85 nm and 120 nm, respectively. The 

width of each ring is chosen to be different so that the corresponding phase 

modulation obtained at each slit will ensure constructive interference at the focus and 

Eq. (2.4) can be satisfied. The propagating media is considered to be air. Note that the 

focal length should be carefully chosen so that the lens will work in the Fresnel 

region to take advantage of the phase modulation induced by SPP propagation 

constants, as discussed previously. It is worth noting that the outermost ring is 

designed to have the largest width to ensure that the light propagating through this 

ring will dominate the field distribution, and thus, the field distribution at the focus 

can be approximated by using the zero order Bessel function of the first kind. This 

makes the current design conceptually different from the previously reported 

plasmonic lens designs with concentric rings structures [29], in which the outermost 

ring was designed to have the smallest width. Compared with the design described in 

Ref. [29], this new type of design will render much smaller focus size which is even 

smaller than the diffraction limit. The experimental demonstration of sub-diffraction-

limit focusing phenomenon has been reported in our previous work [83]. Here, in this 

article, we provide further understanding of the physical behaviors of this type of 

lenses.  
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Figure 2.8 FDTD simulation results of a plasmonic lens with 4 rings: (a) field 
intensity distribution in the x-z plane, (b) intensity distribution along the optical axis, 
and (c) intensity distribution along the x-direction of the focal plane. 

As can be seen in Figure 2.8, the field intensity distribution (Figure 2.8(a)) of 

the plasmonic lens with 4 rings exhibits a much stronger focus than that of the 

plasmonic lens with a single ring (Figure 2.8(a)). The intensity distributions along the 

optical axis and the x-direction of the focal plane are also obtained, as shown in 

Figure 2.8(b) and Figure 2.8(c), respectively.  Based on these results, it can be seen 

that the side lobes have been greatly suppressed. The focal length f and focus size D 

are found to be 3914nm and 760 nm, respectively. This renders a focusing resolution 

of 0.38 /D f λ ρ≈ , which is slightly larger than the resolution defined by Eq. (2.12), 

but still smaller than the conventional diffraction limit.  

To further enhance the relative intensity at the focus and suppress the side 

lobes, it was found that enlarging the width of the outermost ring is the most efficient 

way. Therefore, FDTD simulations were conducted for a plasmonic lens with the 

same parameters as that used to obtain Figure 2.8 except that the width of the outmost 
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ring is enlarged to 180 nm. The phase delay rendered by the 180 nm slit is only 5% 

different from the one presented by 120 nm slit. Thus the constructive interference at 

the focus will be reasonably satisfied with the width change. The results are shown in 

Figure 2.9. 

 

Figure 2.9 FDTD simulation results of a 4 ring plasmonic lens with an enlarged 
width: (a) field intensity distribution in the x-z plane, (b) intensity distribution along 
the optical axis, and (c) intensity distribution along the x-direction of the focal 
plane.(d) Field distribution in the x-z plane of a 4 ring plasmonic lens with perfect 
conductor. 

As can be seen from Figure 2.9(a), the relative intensity at the focus is largely 

enhanced and the side lobes are heavily suppressed, compared with Figure 2.8(a). It 

can be obtained from Figure 2.9 (b) and (c) that the focal length is 3140 nm and the 

focus size is 670 nm. In this case, the resolution is found to be further decreased to 

0.42 /D f λ ρ≈ .  

To address the importance of the phase modulation induced by SPP propagating 

through the lens, we also conduct a simulation for a lens that has the same parameters 

as the lens used to obtain Figure 2.9 (a) but using perfect conductor (PEC) as the 

material for comparison, as shown in Figure 2.9(d). In this case, there will be no 
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plasmonic wave propagating along the MDM structure and thus there is no plasmonic 

phase modulation in Eq. (2.4). This will result in non-perfectly constructive 

interference at the focus, but strong constructive interference at the side lobes. As can 

be seen from Figure 2.9(d), the perfect conductor lens has a low relative intensity at 

the focus, worse resolution, and strong side lobes. This result validates the role of the 

plasmonic waves for enhancing the constructive interference at the focus and to 

suppress the side lobes. Nevertheless, a perfect conductor lens can also present high 

relative intensity focusing by applying the design of Fresnel zone plates where the 

phase modulation is purely from the spatial phase difference. However compared 

with the plasmonic lens design shown in Figure 2.8, a Fresnel zone plate lens suffers 

from large size and its focus is limited by the diffraction limit. For instance, the radius 

of a Fresnel zone plate lens should be designed to be larger than 5000 nm to achieve 

the similar focusing effect as that shown in Figure 2.9(a).  

In fact, the relative intensity at the focus can be further enhanced by enlarging 

the width of the outermost ring even further. However, this will result in a further 

degradation of the resolution. Therefore, there is a trade-off between the resolution 

and the relative focus intensity in the design of a plasmonic lens with multiple ring 

structures. This trade-off can be understood by examining the properties of the Bessel 

function 0 ( )J ξ  in Eq. (2.12) and the first order Bessel function of first kind 1( )J ξ   in 

Eq. (2.9). When the width of the ring is small enough, Eq. (2.12) can be applied to 

calculate the intensity distribution of the cross-section, which is defined by the profile 

of 0 ( )J ξ . However, as the ring width increases, the field distribution of the plasmonic 

lens will approach to that of a single hole, which is getting more and more close to the 
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profile of 1( )J ξ  as defined in Eq. (2.9) since the aperture gradually changes from a 

ring to a hole. Clearly, the intensity distribution defined by 0 ( )J ξ  will have better 

focus resolution, while an intensity distribution defined by 1( )J ξ  will give much 

smaller side lobes and stronger relative focus intensity, as illustrated in Figure 2.10. 

 

Figure 2.10 Comparison of angular intensity distribution of a single ring lens 0
( )J ξ  

(red line) and a single hole lens 1
( )J ξ   (black line) 

In summary, the FDTD simulations show that a sub-diffraction-limit focus size 

can be achieved by using a plasmonic lens with a single ring or multiple concentric 

rings. A single ring plasmonic lens renders better resolution, while a lens with 

multiple rings enables better relative focus intensity. The intensity at the focus can be 

enhanced by utilizing multiple-slit interference as well as enlarging the width of the 

outermost ring. However, there is a trade-off between the resolution and the relative 

focal intensity; the resolution will be reduced while the relative intensity at the focus 

is enhanced. Furthermore, to design a plasmonic lens with a sub-diffraction-limit 

focusing resolution, the following guidelines need to be considered.  First, the focus 

of the multiple-ring plasmonic lens must be designed to be close to the Fresnel region 

to render any meaningful phase delay that can play an important role in multiple-slit 
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interference. Second, the grooved area of the outermost ring should be designed to be 

much larger than the sum of the rest rings so that it can play a dominating role to the 

intensity distribution and can be treated as the rim of the lens. In this case, the 

intensity distribution profile will be close to 0 ( )J ξ  to render the sub-diffraction-limit 

resolution. Third, the width of the outermost ring should not be too large. Otherwise, 

it will lead to the intensity distribution close to that of a single hole that is governed 

by 1( )J ξ  and the sub-diffraction-limit resolution cannot be achieved. 

It’s worth to mention that our plasmonic lens design in Fresnel region has some 

similarity with Fresnel zoom plates [134], since they both utilize the phase 

modulation in Fresnel region to focus light. However, Fresnel zoom plates, which are 

mostly used to focus high energy electromagnetic radiation (Gamma ray and X-ray), 

are designed with smaller ring width for the outer ring. That is opposite to our design. 

More importantly, Fresnel zoom plates are still restrained by diffraction limit [134, 

135].  

Besides plasmonic lenses, there are multiple other methods to improve the 

optical focusing resolution have been achieved. Holographic techniques can break the 

diffraction limit, though the resolution was restricted in the specific experimental 

analysis [136]. Confocal laser scanning microscope is capable of enhancing the 

resolution to 0.37 /D NAλ≈ because of the narrower intensity point spread 

function[137]. However, the confocal microscope system is difficulty to be 

miniaturized. Near-field scanning optical microscopy (NSOM), on the other hand. 

which uses evanescent waves, has been demonstrated a lateral resolution of 20 nm 

[138, 139]. Nevertheless, it suffers from the limited working distance similar to the 
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case of the plasmonic lens in the surface plasmon dominating region. After all, we 

find plasmonic lens might be the best candidate for improving the miniaturized 

imaging system. 

In this chapter, we define three different regions in designing a plasmonic lens, 

namely, the surface plasmon dominated region, the Fraunhofer region, and the 

Fresnel region. We have shown that it is important to understand the physical 

behaviors of a plasmonic lens designed in the three different regions, because each of 

them is governed by different physics principles and presents different physical limits 

in focal length and focal size. In the SPP dominating region, both the region boundary 

and focus size depend on the material properties of the metal and dielectric. The SPP 

attenuation length on the dielectric side defines the boundary of the SPP dominating 

region. The focus size can be much smaller than the conventional diffraction limit due 

to the short SPP wavelength. Away from SPP dominating region, diffraction behavior 

will dominate the lens performance and two diffraction regions, namely, the 

Fraunhofer region and the Fresnel region are defined by Fresnel number FN.  For a 

plasmonic lens designed in the Fraunhofer region ( 1FN << ), the focal length can 

only be determined by using the Fraunhofer diffraction theory and the focus size is 

always limited by the traditional diffraction limit for a normal propagating media. In 

the Fresnel region ( 1FN >> ), owing to the diffraction property of a single-ring-slit 

aperture and the phase modulation induced by the SPP propagating constant, it is 

possible to achieve a plasmonic lens with a sub-diffraction limit focus size in this 

region and it is feasible to design a lens with a desired focal length. This has been 

demonstrated in this article by using a plasmonic lens with a single ring structure or 
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multiple concentric ring structures through numerical simulations. The multiple 

concentric ring structure is found to be helpful to enhance the relative intensity at the 

focus, which can be enhanced further by enlarging the width of the outermost ring, 

yet resulting in degradation of the resolution. The parameter study provides some 

guidelines to design sub-deification limit plasmonic lens in Fresnel region. 

The physical understanding and results presented in this article for plasmonic 

focusing in different regions provide a basis for future plasmonic lens designs with 

the objective of enhancing the focus resolution. These findings can also provide 

guidelines to inspire new designs of high performance plasmonic lenses, which will 

have great potential in many applications including microscopy, sensing, and 

nanofabrication.  
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Chapter 3. Radially polarized light generated by TEM mode 

resonance and its applications 

 

3.1. Introduction 

Radially polarized light has many applications, such as photolithography, 

imaging and optical manipulation, because of its property to focus light to a smaller 

spot than linearly polarized light. However, it is not easy to generate a radially 

polarized light (Coherent superposition of two orthogonally polarized modes, conical 

Brewster prism, integrate spatially variant wave plate, combination of SLMs, 

concentric metallic gratings fabricated on optical fibers). On the other hand, for many 

applications, it requires aligning the optical axis with the axis of the radially polarized 

light, which brings another difficulty. Here, we want to discuss the new method to 

generate TEM mode, which is naturally radially polarized light, with the help of 

metallic annular aperture array and radially polarized focusing with ring structure on 

a metal film with dielectric layer covered. 

Recently, it has been found that the TEM mode can be excited in the annular 

aperture array on the metal slab with inclined TM incidence[140]. We will investigate 

this phenomenon in details and will introduce the structure which can excite TEM 

mode resonate with normal incidence. TEM mode is naturally radially polarized. 

Thus it may find useful in some applications requires radially polarized light source. 

Additionally, the extraordinary transmission through the metal slab due to the TEM 
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mode resonance may play importance role in some applications, since there is no cut-

off wavelength for TEM mode. 

3.2. TEM resonance generated with inclined incidence 

3.2.1. Theoretical model 

The TEM mode resonance will be generated in a finite coaxial waveguide 

structure without cut-off frequency under TM inclined incidence. For the normal 

incidence, no TEM mode resonance can be excited the due to the component 

mismatch. For the propagating TEM mode in the annular aperture, there will a peak 

in the transmission spectrum while the Fabry-Perot resonance condition is satisfied.  

                             
'2 eff

TEM
r

ln
N
π

λ
π φ

=
−

,                                                       (3.1) 

 where λTEM is the resonance wavelength, neff′  is the real part of the effective index of 

the TEM mode, ϕr is the phase delay due to the reflection at the interface (it can be 

obtained theoretically), and N is the order of the resonance and l is the thickness of 

the metal film. neff′ = 1 for the perfect conductor (PEC) and air situation and will be 

larger than one for the real metal or the situation that dielectric fills in the aperture. 

While the resonance condition stands, radially polarized beams will be found on the 

emitting side. 

If the TEM mode can be excited in the annular apertures, it’s naturally radial 

polarized as the electric field and magnetic field can be expressed as 

 
dik zeEρ ρ

=                                                                  (3.2) 
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and  0

0

dik z
d eHφ
ε ε
µ ρ

= ,                                                           (3.3) 

where 0 0ddk ω ε ε µ= , ω  is the angular frequency, 0ε and 0µ  are the permittivity 

and permeability in air and dε is the permittivity of the dielectric in the annular 

aperture. Moreover, this radially polarized light is naturally aligned with the optical 

axis of plasmonic lens. The annular aperture is shown as in Figure 3.1[141]. The 

thickness of the structure is l and the inner and outer radii of the annular aperture are 

a and b. It is assumed that the material of the lens is perfect conductor. 

 

Figure 3.1 Schematic of annular aperture in a metal plate. The electric field 
polarization of the TEM mode is also shown[141]. 

For any incident light, it is composed of TE and TM components. Assume the 

amplitudes of TE and TM electric fields are TEE  and TME . By solving the TEM 

modes in the annular aperture, the electric field and magnetic field of a TEM mode 

with TEE  and TME  can be expressed as [140] 

1cos ( sin )TME C E J krρ θ θ=  and 

2

1 3
0

3 1 sin( cos 2 ) ( sin ) ( sin )
4 4 2TM

CkH E J k J kφ
θθ ρ θ ρ θ

µ ω
 −

= + + 
 

,             (3.4) 
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where cosikzC ie θ= . Jn is the Bessel function of the first kind of order n. As can be 

seen, the fields of TEM modes will be non-zero only if TME and θ  are non-zero, in 

another word, the TEM modes in the annular aperture can only be excited when the 

incident light has an off-normal TM component.  

After the TEM mode is excited by inclined TM incidence, it propagates along 

the annular aperture as (3.2) and (3.3). Assume the reflective coefficient of the TEM 

mode at the end of the annular aperture is r, the TEM mode fields at the interface are  

1( , 0 ) (1 )E z rρ ρ
ρ

−= = +                                                     (3.5) 

and  0

0

1( , 0 ) (1 ) dH z rφ
ε ερ
µ ρ

−= = − .                                                  (3.6) 

For the light remitting to the free space (with permittivity 0ε ) at 0z += , it can 

only have the rotationally symmetric modes as the same as TEM modes, thus 

2 2
0

10
0

( , 0 ) ( ) ( )
k k

E z t k J k dkρ ρ ρ
ωε

∞+ −
= = ∫                                         (3.7) 

and 10
( , 0 ) ( ) ( )H z t k J k dkφ ρ ρ

∞+= = ∫ .                                                  (3.8) 

By applying the continuous boundary condition at z=0 and with considering 

orthogonality of Bessel functions, the reflective coefficient can be found as [141] 

1
1

Gr
G

−
=

+
,                                                              (3.9) 

where  

2
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The phase delay can be presented as  

1tan (Im( ) / Re( ))r r rϕ −=   ,                                                            (3.11) 

which is the important term in Eq. (3.1). 

3.2.2. Simulations with PEC 

As mentioned previously, the inclined incident light can be used to generate 

TEM mode in the annual aperture on metal at the resonant wavelength. For proof-of-

concept demonstration,   FDTD simulations (CST MWS) were carried out to 

calculate the transmission spectrum for such structure and the field distribution at the 

resonance. Here, the following structure is considered:  an annular aperture array with 

the periodicity of 300 nm fabricated on a perfect conductor slab with a thickness of 

600nm. The inner radius and the outer radius of each annular aperture are 75 nm and 

100 nm respectively. With the 45o inclined incidence with TM polarization, the 

spectrum is calculated and shown in Figure 3.2. It is seen that, in the frequency range 

of 200 THz to 700 THz, there are three TEM mode resonances at 232 THz, 465 THz 

and 661 THz, which satisfy Eq. (3.1). To verify that these peaks are the TEM mode 

resonances, the field distributions at the surface of the emitting side are calculated at 

the emitting surface of the structure. After normalized by the maximum intensity, the 

field distributions show the same profile as shown in the inset, which are the profile 

of TEM mode field distribution with radial symmetry. The field distributions of the 

non-TEM mode peaks are also calculated for comparison. As can been seen, there is 

no radial symmetry for those modes, which indicates they are TE or TM modes. 
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Figure 3.2 Transmission spectrum for the annular aperture array with PEC. The field 
distribution is calculated at the end of the emitting side. 

Further, the TEM resonances are found to be independent of periodicity and 

incident angle. As shown in Figure 3.3, the periodicity is changed from 300 nm to 

600 nm, but the position of the first order TEM mode at 232 THz does not change. It 

shows similar results with incident angle changing. Thus, the resonant frequency of 

TEM modes does not change either with the periodicity or the incident angle. 

 

Figure 3.3 Transmission spectrum for 1st order TEM mode for P=300nm and 
P=600nm.  
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3.2.3. Simulations with silver 

For the real metal situation, silver has been considered. From the Eq. (3.1), it is 

expected that the effective refractive index will increase for the silver situation, which 

results in an increase in the resonance wavelength. To ensure the TEM mode 

resonance occurs in the visible range for the silver case, the parameters of the 

structure are modified accordingly.  An annular aperture array with the periodicity of 

450 nm is fabricated on a silver slab with the thickness of 495 nm. The inner radius 

and the outer radius of each annular aperture are 65 nm and 130 nm respectively. The 

spectrum of the structure under 45o inclined incidence with TM polarization is 

calculated and shown in Figure 3.4. The first order of TEM mode is found at 193 

THz. On the other hand, the TE modes and TM modes supported in this structure are 

also shifted to a lower frequency region and the line-widths are broadened. Thus, the 

higher order TEM modes, N=2 and N=3, are overlapped with the TE and TM modes. 

Therefore, only one pure TEM mode has been found in the silver situation at the 

frequency range of the simulation. The field distribution at the end of emitting side 

for the peak at 193 THz has been calculated. As can been seen from the field 

distribution, it is TEM mode.  
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Figure 3.4 Transmission spectrum for the annular aperture array with silver. The 
field distribution is calculated at the end of the emitting face. 

The field distributions were also calculated in the cross-section planes from the 

side view, for the first order TEM mode at 193 THz in Figure 3.5 (a), and 440 THz 

where the 3rd TEM mode should occur according to Eq. (3.1) in Figure 3.5 (b). As 

we can see, for the 1st order TEM mode, the mode penetrates through the silver slab 

and the radial symmetry is kept. For 440 THz case, the radial symmetry is lost 

gradually along the propagation direction and the TE mode field distribution becomes 

dominating. This means the TEM mode is overlapped with TE mode at 440 THz.  

 

Figure 3.5 The field distributions at the cross-sections from side view for (a) 193 THz 
and (b) 440 THz. 
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3.3. TEM resonance generated with normal incidence on PEC 

For the structures discussed in the previous sections, an inclined incidence is 

required for the TEM mode generation. However, this is not preferable for many 

applications. Although the resonance frequency of TEM mode is affected by the 

incident angle, the angle will vary with respect to the transmittance of TEM mode. 

Moreover, the normal incidence is much easier to align than the inclined incident. 

Therefore, a configuration that can excite the TEM mode resonance with normal 

incidence is preferable. Here, a SiO2 grating layer on the top of the annular aperture 

with the same periodicity of the annular aperture is introduced. The field component 

of TEM mode can be matched with the diffraction from the grating. Thus the TEM 

mode can be generated even with the normal incidence.  

 

Figure 3.6 Schematic of the annular aperture array with dual gratings on the top and 
bottom. 

For the simulation simplicity, the PEC is chosen as the metal film in this case. 

As shown in Figure 3.6, a SiO2 grating is attached to the PEC annular aperture array. 

The annular aperture is filling with SiO2 for the fabrication consideration. Another 

SiO2 grating layer is attached to the bottom of the metal film to match the ϕr in the 

Eq. (3.1) from the top and bottom interface. The thickness of PEC is 600 nm,  the 
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periodicity is 300 nm, the inner and outer radiuses of the annual aperture are 75 nm 

and 100 nm respectively. A normal incident light with TM polarization is considered. 

The spectrum is calculated as shown in Figure 3.7(a). It is seen that, there is a 

transmission peak at 317THz. To find out whether it is TEM mode resonance, the 

field distribution at the end of the emitting surface and the cross-section have been 

calculated. As can be seen, the peak at 317THz is a TEM mode with central 

symmetric field amplitude distribution. Therefore, it is demonstrated that the novel 

design of the annular aperture array with dual gratings on the top and bottom can be 

used to excite TEM resonance under normal incidence. It is expected that it can 

benefit some imaging systems which require radially polarized light generated under 

normal incidence to improve the resolution.  

 

Figure 3.7 (a) The transmission spectrum for the structure in Figure 3.6 under 
normal incidence. (b) The field distribution calculated at the end of the emitting face 
at 317 THz. (c) The direction of electric field distribution at the end of the emitting 
face at 317 THz. (d) The field distributions at the cross-sections from side view at 317 
THz.  
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3.4. Surface plasmon dominating region plasmonic lens with radially polarized light 

generated by TEM resonance 

 
It has been theoretically shown that the radially polarized light can be generated 

on a plasmonic annular structure with a linearly polarized incidence if the incident 

angle is off-normal.  In this section, the behavior of plasmonic lenses under inclined 

incident light is studied.  

Plasmonic lenses under inclined incidence for very small incident angle have 

been studied [15].  As shown in Figure 3.8, a ring slit aperture with radius R is milled 

on a silver film, serving as a plasmonic lens. The excitation light is incident at an 

angle θ. The surface plasmon excited at the edge of the slit at point A will propagate 

on the surface and superposition with the contribution from other points on the 

circumference of the slit at point B with a distance x away from the center.  The 

position of B can be determined by the relation 

2
2 2

2( 1) 2 cosspp

in

k
x R Rx

k
α− = −  ,                                                  (3.11) 

where kin is the in-plane component of  the incident wave vector k0 defined by 

0 sinink k θ= , kspp  is the excited SPP wave vector. For a very small incident angle, x 

is much smaller than R, then the term -2Rxcosα is much smaller than R2, which means 

it is negligible. Therefore the equation can be expressed as  
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Figure 3.8. Sketch of a plasmonic lens under inclined illumination and its top view. 
The focus point B of the plasmonic lens shifts away from the center under inclined 
illumination [15] 

2 2
in

spp in

Rkx
k k

=
−

                                                            (3.12) 

In this condition, x is independent of α, which means all the SPP will be guided 

to point B and there will be only one focus point on the surface. It is verified by the 

numerical simulations and experiments that there is only one focus on the surface 

while the incident angle is within 26.6o [15].   

When the incident angle keeps increasing, kin will become larger. Thus, x gets 

bigger according to Eq. (3.12).  Therefore, the term -2Rxcosα in Eq. (3.11) can no 

longer be negligible. This means x will depend on α, which indicate that there will be 

multiple constructive interference points (focus points) near the surface. To verify 

this, consider a plasmonic lens under large incident angle as shown in Figure 3.9. A 

plasmonic lens with large radius r=3000 nm is milled on a free standing silver film 

with thickness t=570 nm. The width of the slit is w=65 nm. The plasmonic lens is 

under the illumination with an inclined angle θ=45o. The incident light is linearly 
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polarized with polarization direction parallel to x-axis (i.e., TM polarization 

incidence).  The incident wavelength is λ=1435 nm. 

 

Figure 3.9 Schematic of a plasmonic lens with a single ring aperture with radius ρ 
and width w, which is milled in a gold film with thickness t 

The FDTD simulation result of the field distribution of the plane 10 nm away 

from the plasmonic lens is shown in Figure 3.10. The permittivity of silver from the 

optical handbook [127] is used in the simulation. It can be clearly seen from the result 

that there are multiple focus points with the same order of intensity shown near the 

lens surface. 

 

Figure 3.10 The field intensity distribution at the plane 10 nm distance away from the 
designed plasmonic lens surface for θ=45o and λ=1435 nm. 
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It is known that the plasmonic lenses under inclined incidence could present 

multiple focuses in the near-field, which is not preferable to the nanolithography 

application. Therefore, the question is how the plasmonic lens can generate a single 

focus and render a large focal depth at the same time.  

As discussed previously, the annular aperture under linearly polarized inclined 

incidence can couple TEM waveguide mode inside the aperture out to the free space 

if the aperture thickness is big enough and Fabry-Perot resonant condition in Eq. (3.1) 

is satisfied by all the parameters. Because TEM mode is naturally radially polarized, 

it will excite SPPs with the same phase and amplitude at every point on the 

circumference of the aperture. Thus a strong constructive SPP interference will be 

formed in the center of the lens. Moreover, the field intensity will follow the trend of 

zero-order Bessel function due to the radially symmetric solution enforcement which 

means it will render non-diffractive Bessel beam with very long focal length. 

To demonstrate this kind of non-diffractive Bessel beam, a plasmonic lens 

working at the Fabry-Perot resonant condition is designed.  The configurations are the 

same as the plasmonic lens described in Figure 3.9, with r=3000 nm, t=570 nm and 

w=65 nm. However, the operating wavelength is shifted to 758 nm. The incident light 

is also TM polarized with incident angle θ=45o. The numerical simulation result for 

the field distribution at the plane that is 10 nm away from the plasmonic lens is shown 

in Figure 3.11. 
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Figure 3.11 The field intensity distribution at the plane 10 nm distance away from the 
designed plasmonic lens surface for θ=45o and λ=758 nm 

From the result, it can be seen there is only one strong focus occurred at the 

center of the lens while the plasmonic lens is working at Fabry-Perot resonant 

wavelength under inclined incidence. The field intensity distribution at the x-z cross 

section is also plotted in Figure 3.12(a). As can be seen, the emitting beam does have 

the property close to non-diffractive Bessel beam, which has a very large focal depth 

and the intensity profile following the trend of zero order Bessel function. The 

intensity along the optical axis is plotted in Figure 3.12(b), and it shows that the focal 

depth (FWHM) is 1280nm which is much larger than any other plasmonic design for 

nanolithography application. 
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Figure 3.12(a) The field intensity distribution at the x-z cross section for the designed 
plasmonic lens surface for θ=45o and λ=758 nm. (b) The intensity along the optical 
axis. 

The field intensity distribution on the y-z cross section is also shown in Figure 

3.13(a). The same non-diffractive Bessel beam property can be found. The intensity 

along the y axis for x=0 and z=0 is presented in Figure 3.13(b) to find the focus size 

(FWHM) is about 370 nm which is a small subwavelength focus.  
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Figure 3.13 The field intensity distribution at the y-z cross section for the designed 
plasmonic lens surface for θ=45o and λ=758 nm. (b) The intensity along the y axis for 
x=0 and z=0 

Here, it is demonstrated that the plasmonic lens working at Fabry-Perot 

resonant wavelength under inclined incidence can emit non-diffractive Bessel beam 

that has a large focal depth and a small focus size. Although it is not a pure non-

diffractive Bessel beam due to the existence of the other modes other than the TEM 

mode in the annular aperture, these results may benefit miniature imaging systems, 

such as maskless nanolithography systems.  

It is worth to mention that we theoretically and numerically studied a 

suspending silver plasmonic lens here as a proof of concept that TEM resonance can 

be utilized to enhance the performance of the plasmonic lens and solve the system 

aligning difficulty. Nevertheless, in the real applications, a dielectric substrate must 

be considered in the system, including the scattering from the dielectric interface, and 
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effective material property change. Also, silver, although it owns a very good 

plasmonic property, is not preferred for the real applications due to its chemical 

instability[142]. Other materials, such as gold, platinum, and aluminum might be 

found better candidates for the real devices, by considering the plasmonic property 

and chemical stability [143].  
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Chapter 4. On-fiber plasmonic structures for multi-parameter 

sensing 

 

4.1. Overview of on-fiber multi-parameter sensing 

For decades, sensor miniaturization has received a lot of attention in a broad 

range of applications for physical, chemical and biomedical parameters sensing [49, 

50]. Owing to the recent advances in micro/nano fabrication techniques [51], 

miniature sensors can be realized in  smaller and smaller scales. As a popular 

miniature sensor platform, optical fiber based sensors have been extensively 

investigated because of their small sizes, light weight, flexibility, robustness to 

electromagnetic interference, and remote sensing ability [49]. However, as the size of 

a conventional optical element gets closer to the operating wavelength, the size of 

fiber-optic sensors seems irreducible due to the diffraction limit [52]. Nevertheless, 

recent studies on surface plasmons (SPs) shed some light on the realization of optical 

devices with an even smaller form factor. SPs are electromagnetic wave induced 

collective oscillations of free electrons on a metal/dielectric interface with a 

wavelength shorter than that of the incident light, which enable the confinement and 

manipulation of light at the subwavelength scale [14]. With the help of SPs, sensors 

with excellent sensing ability and ultra-thin film configurations have been 

demonstrated, including SP resonance [53], localized SP [54],  and plasmonic 

interferometer based sensors [55]. Recently, the facet of an optical fiber tip is found 
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to be an appealing platform to integrate plasmonic structures for sensing applications 

[56, 57]. However, all of these sensors are either limited to single parameter sensing 

or can be sensitive to multiple parameters but are not capable of distinguishing 

different parameters. 

On the other hand, sensors with multi-parameter sensing ability become more 

and more important, since in practical situations the measured parameters are often 

coupled with each other. Therefore, sensor designs that can distinguish different 

parameters in a single measurement are highly desirable. Over the last decade, a 

number of multi-parameter fiber-optic sensors have been presented [108, 111, 116, 

144-148]. There are generally two methods. One method is to include additional 

sensing elements to measure different parameters, such as dual Bragg gratings in a 

fiber [145], cascaded Fabry–Pérot (FP) cavities [146, 147], and fiber Bragg grating 

(FBG) cascaded to a photonic crystal fiber interferometer [148]. Consequently, this 

method will increase the size of the sensor. Another method is to utilize multiple 

modes that are distinctively responsive to different parameters. As a result, multiple 

parameters can be discriminated by using a sensitivity matrix [108, 116, 144, 147]. 

However, all these sensors utilize conventional optical components with a relatively 

large sensor size.   

In this chapter, a novel miniature on-fiber multi-parameter sensor based on a 

plasmonic interferometer is presented. The sensor consists of a two-dimensional (2D) 

nano-hole array pattern fabricated on a silver film deposited on a cleaved fiber facet, 

as shown in Figure 4.1. The nano-hole array induces SPs, which propagate at the 

interface of metal and silica, resulting in plasmonic interference of the multiple 
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reflections at the boundaries of the finite-sized pattern. Owing to the distinct 

responses of the SP resonance and the plasmonic interference to temperature and 

refractive index, simultaneous measurements of temperature and refractive index can 

be achieved, which are the essential sensing parameters in many biomedical 

applications [149, 150].  

In addition to the plasmonic structure on SMF, we also investigate a multimode 

fiber (MMF) with a planar grating for the multi-parameter sensing purpose, which 

might be found useful for the sensing application in an extremely harsh environment. 

 

Figure 4.1(a) Schematic of on-fiber plasmonic interferometer with nano-hole array. 
The inset shows the unit cells of the array (t=150 nm, d= 528 nm and Λ = 1055 nm). 
(b) SEM of the fabricated sensor. (c) SEM of the nano-hole array. 

4.2. On-fiber plasmonic interferometer design and fabrication 

To fabricate the on-fiber plasmonic interferometer illustrated in Figure 4.1(a), a 

single mode fiber (SMF28, Corning) [151] was first cleaved with a typical cleave 

angle of ±0.5o. Next, a silver film with a thickness of t=150 nm was deposited on the 

cleaved facet by magnetron sputtering. Further, a focused ion beam (FIB) (Helios 

650, FEI) milling was used to write the nano-hole array pattern on the silver film 
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around the fiber core region. The diameter d of the individual hole was designed to be 

528 nm and periodicity Λ is 1055 nm. The entire array pattern consists of 31×31 units 

with an overall patterned area of d × d (≈ 33 μm × 33 µm). This design ensures the 

following: i) SPs can be excited around the optical communication wavelength of 

1550 nm, ii) a proper free spectrum range is obtained to observe multiple fringes in 

our spectrum range, iii) the SP resonance will not be degraded by the finite pattern 

size[152, 153], and iv) the entire core area of the fiber is covered by the hole array. 

The scanning electron microscopy (SEM) pictures of the fabricated device are shown 

in Figure 4.1 (b) and (c).  

The reflection spectrum of the fabricated device was measured by using an 

optical sensing interrogator (SM130, Micron Optics) with an uncertainty of 1 pm in 

the wavelength range from 1510 nm to 1590 nm. The remote sensing configuration 

was used, so that both incident light and the reflected signal can be guided through 

the fiber, as shown in Figure 4.2(a). A polarization controller was used in the light 

path to control the light polarization. The measured reflection spectra were 

normalized by the reflection spectrum of a fixed fiber mirror (a cleaved fiber with 150 

nm silver deposited without patterning). Note that the nano-hole array structure was 

designed to be polarization independent, since the 2D symmetric structure is 

illuminated under normal incidence through the fiber. A typical reflection spectrum of 

the sensor is shown in Figure 4.2(b), which is a result of two mechanisms: SP 

resonance and plasmonic interference.  The incident light first interacts with the hole 

array structure. Due to the grating diffraction of the nanopattern, momentum 
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matching can be achieved, which leads to effective coupling from incident light to 

SPs at the resonant wavelength [125]:  

( ) ( ) ,
( ) ( )
d m

resonace
d m

ε λ ε λλ
ε λ ε λ

= Λ
+

                                      (4.1) 

where εd and  εm are the permittivities of silica and silver, respectively. Moreover, the 

individual holes could act as elementary scatters, which enables broadband excitation 

of surface waves [see Figure 4.2(e)], resembling the spoof/hybrid surface plasmons 

(SSPs)[154-156] counter-propagating on the hole-array structures. These surface 

modes will be reflected at the boundaries of the hole array pattern, resulting in an 

interference effect of surface waves propagating at the metal-fiber interface. It should 

be noted that the SSPs could be re-scattered through the individual holes, and their 

signals can be collected and guided through the optical fiber. From the fringe pattern 

shown in the fiber reflection spectrum [Figure 4.2(b)], it indicates that the 

interference effect of SSPs on the fiber end-face can be measured and characterized in 

the far field. Therefore, the sensor can act as a plasmonic interferometer [55, 75, 98] 

as well as a SP resonator. It should be noted that SP resonance is usually 

accompanied with Wood’s anomalies in long wavelength region [157]. The Wood’s 

anomaly happens at the wavelength predicted by ' ( )Wood s dλ ε λ= Λ , which is close to 

the SP resonance but at a shorter wavelength. 
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Figure 4.2(a) Schematic of the experimental setup, (b) typical reflection spectrum of 
the sensor in glucose solution at room temperature (glucose concentration 10 %), (c) 
reflection spectrum of SP resonance extracted from (b), (d) reflection spectrum of 
plasmonic interference extracted from (b), (e) schematic of the on-fiber plasmonic 
interference, (f) reflection spectrum obtained with RCWA simulations for a hole array 
structure of infinite size in a 10 % glucose solution. The insets show the field 
distributions at the SP resonance peak and the Wood’s anomaly dip in one unit cell. 

 

To clearly observe the two different mechanisms from the reflection spectrum, 

fast Fourier transform (FFT) of the measured spectrum is performed and the 

corresponding spatial frequency spectrum (i.e., wavenumber spectrum) is obtained 

[116, 146]. It is noted that the SP resonance mainly affects the low spatial frequency 

components while the plasmonic interference contributes to the higher spatial 

frequency components of the spatial frequency spectrum. Therefore, after filtering out 

DC component in the spatial frequency spectrum, we applied two bandpass filters to 

the first and second peaks the spatial frequency spectrum and performed inverse FFT. 

Two distinctive spectra corresponding to the SP resonance effect [Figure 4.2(c)] and 

plasmonic interference [Figure 4.2(d)] can be obtained, respectively. Figure 4.2(c) 

shows an asymmetric Fano line shape of the spectrum, which clearly indicates a SP 

resonance peak accompanied by a Wood’s anomaly dip at a shorter wavelength. On 
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the other hand, Figure 4.2(d) clearly indicates the periodic fringes of a Fabry-Perot 

(F-P) interferometer due to the plasmonic interference. To validate the influence of 

SP resonance, a rigorous coupled-wave analysis (RCWA) simulation was conducted 

for a nano-hole array structure with the same hole diameter and periodicity as the 

fabricated device but an infinite size, shown in Figure 4.2(f). Due to the excitation of 

SPs, a resonance peak can be found around 1553 nm in the reflection spectrum, which 

agrees well with the theoretical prediction using Eq. (4.1) (≈1542 nm).  Further, it can 

be seen that the spectrum obtained with RCWA simulations exhibits an asymmetric 

Fano line shape, which matches with the filtered experimental spectrum shown in 

Figure 4.2(b). The experimentally measured resonance peak is about 1558 nm, which 

agrees well with the theoretical prediction and numerical simulation.  

4.3. On-fiber plasmonic interferometer fabrication and sensing measurement 

To demonstrate the multi-parameter sensing ability of the on-fiber plasmonic 

interferometer, the responses of the sensor was characterized with respect to 

refractive index of the environment and temperature changes. In the refractive index 

experiments, the sensor was immersed in glucose/water solution. By changing the 

concentration of glucose solution to 5 %, 10 %, 15 %, 20 %, and 25 %, the refractive 

index of the solution was tuned to 1.3382, 1.3448, 1.3506, 1.3575 and 1.3623 

respectively. The refractive index of the solution was calibrated by using a 

refractometer (Digital Brix/RI-Chek, Reichert) with an uncertainty of 4.1×10-5 (note 

the uncertainties discussed in this paper are defined by the coverage factor k=1 [158] 

). The temperature measurements were conducted in air by using a temperature 

control chamber that allows us to accurately calibrate temperature. The device was 
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sandwiched between two polyimide-insulated flexible film heaters (KH 103/10, 

Omega Engineering Inc.) and the temperature control was achieved by using a 

temperature controller (CN77333, Omega Engineering Inc.) with a film thermocouple 

(CO1-K, Omega Engineering Inc.) as the reference that has a measurement 

uncertainty of 0.4 oC.  

Further, the spatial frequency filtering method was used to extract the spectra 

dominated by two different mechanisms discussed previously. For refractive index 

measurements, Figure 4.3(a) shows the filtered spectra dominated by the SP 

resonance. The SP resonance exhibits a red shift with increasing refractive index of 

the solution, which is consistent with the prediction of Eq. (4.1). By tracing the shift 

of SP resonance, the refractive index of the solution can be determined. Here, the 

Wood’s anomaly dip was not used to obtain the refractive index change. Instead, the 

SP resonance peak was chosen, since it is more sensitive to the refractive index 

change. This can be explained by using the field distributions obtained at the SP 

resonance peak and the Wood’s anomaly dip [insets of Figure 4.2(f)]. At the Wood’s 

anomaly, light is mostly confined in the SiO2 region, while around the SP resonance 

more evanescent field can extend into the environment (solution region). Hence the 

SP peak is more sensitive to the environmental changes. Figure 4.3(b) shows the 

obtained peak wavelength shift with respect to the refractive index change.  The 

estimated sensitivity is 220 nm/RIU with an uncertainty of 2.1 %. All the sensitivity 

uncertainties calculated here are standard deviations based on the linear fits. 

Similarly, the high spatial frequency contribution from plasmonic interference was 

extracted [see Figure 4.3(c)]. By tracking the peak around 1545 nm, the effective 
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optical path difference (OPD) for the interference was obtained by using the one peak 

tracing method [159] [see Figure 4.3(d)]. The effective OPD increases with 

increasing the refractive index. The sensitivity of effective OPD with respect to the 

refractive index change of the environment was determined to be 1700 nm/RIU with 

an uncertainty of 17.2 %.  Due to the short wavelength span of SM130 (80 nm), the 

resolution of spatial frequency spectra is limited, which causes the fluctuation in 

Figure 4.3(d). Nevertheless, we still use the linear fit because of the underlying 

mechanism. It is known that OPD=2neffd, where d is the pattern size and neff is 

effective refractive index of surface plasmon modes on the hole array structure. Since 

the effective refractive index is proportional to the environmental dielectric refractive 

index in the infrared region ( eff dn ε∝ ) [160], the effective OPD should linearly 

change with the environment  refractive index.  

 

Figure 4.3(a) Extracted  reflection spectra dominated by SP resonance with respect 
to refractive index change, (b) peak wavelength of the SP resonance versus refractive 
index, (c) extracted  reflection spectra dominated by plasmonic interference with 
respect to different refractive indices, (d) effective OPD versus refractive index. 
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With the spatial frequency filtering method, the spectra obtained at different 

temperatures in air were also analyzed (see Fig. 4). As shown in Figs. 4(a) and 4(b), 

the peak wavelength due to the SP resonance manifests a blue shift as the temperature 

increases. This is because the negative thermo-optical coefficient of silver (on the 

order of 10-3/oC around 1550 nm [161]) dominates in the temperature measurement, 

compared with the thermo-optical coefficient of SiO2 (on the order of 10-6/oC [162]) 

and thermal expansion coefficient of both silver and SiO2  (on the order of 10-6/oC 

[163, 164]). The temperature sensitivity of the SP resonance was obtained as -60 

pm/oC with an uncertainty of 11.6 %.  Furthermore, the effective OPD increases as 

the temperature rises [see Figure 4.4(c) and (d)].  The temperature sensitivity for the 

effective OPD was estimated to be 500 pm/ oC with an uncertainty of 9.7 %. 

 

Figure 4.4(a) Extracted reflection spectra dominated by SP resonance with respect to 
temperature change, (b) peak wavelength of SP resonance versus temperature, (c) 
extracted reflection spectra due to plasmonic interference with respect to temperature 
change, and (d) effective OPD versus temperature. 

In order to distinguish the refractive index and temperature in a single 

measurement, the sensitivity matrix method was used, in which the refractive index 
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and temperature changes (Δn, ΔT) as functions of the peak wavelength shift of the SP 

resonance and the effective OPD change (Δλ, ΔL) can be represented as  .
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       (4.2) 

where K is the sensitivity matrix, kλ,n and kL,n are the refractive index sensitivities of 

SP resonance peak and the effective OPD, respectively, and kλ,T and kL,T  are the 

corresponding temperature sensitivities, respectively.  

Note that the kL,n , kL,T   are obtained only for facilitating the multi-parameter 

sensing and discriminating the temperature and refractive index change. In terms of 

wavelength shift, the SP resonance gives much larger sensitivities as the primary 

system sensitivities for refractive index and temperature measurements. For the SP 

resonance, the obtained refractive index sensitivity of 220 nm/RIU is comparable to 

the localized SP sensor on a fiber facet working in the visible region [56]. Moreover, 

the temperature sensitivity of -60 pm/oC is six times higher than that of a FBG 

temperature sensor [165].  

4.4. Discussion for on-fiber plasmonic interference 

The geometries of the hole-array structure could play an important role to 

modify the surface plasmons (SPs) dispersion relation, and therefore can influence the 

plasmonic interference effect. The fringe patterns appear in the reflection spectrum 

[see Figure 4.2(d)] clearly indicates the interference effect of SPs, which may be 

characterized by an effective F-P resonance equation:   

( ) 2 ( ) .smk d mω ϕ ω π⋅ − =                                         (4.3) 
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Here, ( )smk ω is the wave-vector of the SPs, d is the total size of the hole array 

pattern, ( )ϕ ω represents the phase shift due to the SPs reflection at the boundaries of 

the hole array structure. m=1, 2, .. a positive integer, corresponding to the F-P mode 

orders. Since the SPs are re-scattered on the fiber hole-array interface, the far-field 

measurement of the spectrum fringing pattern will carry information about the SPs 

modes, and the dispersion relation of the SPs may be extracted (estimated) from the 

fringe patterns of the reflection spectrum by using the following approximation 

equations:  

(2 ) 2 ( ) ,i i id n m iπ λ ϕ π− = + ⋅                             (4.4) 

where i= 1,2,3…  represents the fringing order numbers, iλ is the mode wavelength 

corresponding to the fringing peaks in the reflection spectrum, in is the effective 

refractive index of  the SPs. For closely spaced fringes in the spectrum, the phase-

shift difference between these modes (e.g. i and i+1) is assumed to be small, and 

approximates as 1i iϕ ϕ +≈ .On the other hand, since the SPs with larger wavelength 

will be relatively insensitive to the surface corrugations (patterns), the SPs on the hole 

array in the long wavelength region (e.g. λ1,) may behave like a surface plasmon 

mode propagating on a flat metal surface, and approximately satisfy the relation

1 ( )sp m d m dn n ε ε ε ε≈ = + . Based on the Eq. (4.4) and the above approximations, the 

effective refractive index ni of the SPs can be estimated from the fringing patterns 

obtained from the experiment measurements: 

1 1 2i i i in d nλ λ+ += +                                     (4.5) 

and the dispersion relations of the SPs can be obtained as  
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( ) 2 ,i i ik f n π λ=                                         (4.6) 

where fi  corresponds to the frequency of SPs. As shown in Figure 4.5, in the low 

frequency region, the dispersion curve of SPs approaches the dispersion line of 

surface plasmon on the flat silver surface, while at high frequency range the 

dispersion of SPs starts to derivate from the flat surface dispersion. Therefore, it is 

evident from the experiment that the hole-array structure will modify the dispersion 

properties of SPs as compared with surface plasmon propagating on a flat metal 

surface, this bears a resemblance of spoof or hybrid surface plasmons supported by 

the hole array structures [154-156]. The reflections of SPs at the boundaries of the 

hole array pattern is due to their wave impedance mismatch (refractive index 

difference) in the hole array region and outside the hole array pattern. It is expected 

that the geometries of the hole array structure, including the size, shape and depth of 

the individual holes as well as the periodicity of the array could modify the dispersion 

relation of the SPs [156], and therefore will influence the effective Fabry-Perot 

resonance due to the plasmonic interference effect. Here, it should be emphasized that 

the experimental results and the above analytical model can provide us a good 

physical understanding of the on-fiber plasmonic interference effect, however, they 

may not accurately characterize the influences of hole array geometries on the free-

spectrum-range (FSR) and finesse of the plasmonic F-P cavity. The accurate and 

comprehensive analysis of these properties should rely on more rigorous numerical 

simulations (e.g. 3D FDTD model), which is however beyond the scope of current 

work. 
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Figure 4.5 The comparison of dispersion relations of surface plasmons on the hole 
array structure and on the flat silver surface. The dashed line represents the light 
dispersion in the fiber core region 

In summary, an on-fiber plasmonic interferometer with nanohole array 

structures has been successfully demonstrated for multi-parameter sensing. This 

device can excite SPs in the optical communication wavelength range and induce 

plasmonic interference due to the finite pattern area. The influences of two different 

mechanisms (i.e., SP resonance and plasmonic interference) on the reflection 

spectrum have been studied and utilized as a novel mechanism for multi-parameter 

sensing on a miniaturized sensing area. To the best of our knowledge, this is the first 

time that high sensitivity, simultaneous sensing of refractive index (220 nm/RIU) and 

temperature (-60 pm/ oC) has been achieved by using such a compact device. Owing 

to the ultra-thin sensing element (≈150 nm thick) with a small sensing area (≈33 μm × 

33 µm), our sensor has a much smaller volume than conventional fiber optic sensors. 

Moreover, the sensing is based on the measurement of SPP evanescent fields, thus 

enabling a very short light-sample interaction depth of about 1 μm. This enables the 

capability of measuring the refractive index of femto-liter samples (≈33 μm × 33 μm 

× 1 μm) and at the same time provides a high spatial resolution for temperature 

sensing. This work renders a new paradigm for the realization of ultra-miniature 
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multi-parameter optical sensors, which can impact many fronts, such as biological 

and chemical sensing, biomedical diagnostic, and environmental sensing.  

4.5. Multi-parameter sensing with a planar grating on the facet of a multimode fiber 

In addition to a 2D hole array on an SMF end face, a planar grating on a 

multimode fiber (MMF) for the multi-parameter sensing purpose. Compared with 

SMFs, MMFs have larger core diameters, which can support multiple modes 

traveling in the core region. Typically they have larger numerical apertures and 

higher energy density than SMFs. Since sapphire fibers, which can bear high 

temperature up to 2000 oC, are mostly multimode at the wavelength of visible to near-

infrared range. Here, MMFs are chosen as proof-of-concept platform for multi-

parameter sensing in high temperature harsh environment. This study can be 

potentially extended to study Sapphire fibers for multi-parameter sensing in high 

temperature harsh environments. 

Different from SMFs, MMFs enable multi-mode interference in the core region, 

which dominates the spectrum features. Therefore, the cladding modes and buffer-

guided modes, which will be discussed in Chapter 5, can be negligible in the MMF 

cases. The multi-mode interference, which happens in the core region with no contact 

with outside medium environment, is affected by the intrinsic fiber material property. 

Therefore, multi-mode interference can be used for temperature sensing [107, 166, 

167]. Here, a planar grating supported SP resonance on the MMF facet is used to 

sense the refractive index change, as discussed previously with SMFs.  

The fabrication process is similar to the hole array structure on a SMF facet. 

However, to investigate the future potential of high temperature sensing, platinum 
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instead of silver is used in this case. To enhance the metal adhesion a 10-nm-thick 

chromium is firstly deposited at the fiber facet. After that, a 90 nm platinum film is 

deposited. A MMF (50/125, Corning), which has a core diameter about 49.5 μm and a 

cladding diameter about 125 μm is used for sample preparation. FIB is used to 

directly develop grating patterns on the MMF end face. In the end, a one-dimensional 

(1D) grating of 30 units is fabricated on a Cr/Pt film at the fiber end face. The width 

and length of one individual unit are about 530 nm and 40 μm, respectively, and the 

periodicity Λ of the grating is 1050 nm.  The overall pattern area, about 30 μm × 40 

μm, is aligned with the center of the MMF and covers most of the core area, as seen 

in Figure 4.6. The metal grating serves two functions here: 1) increase the reflection 

power at the fiber end face to enhance the multi-mode interference to be clearly 

observed in the wavelength range around 850 nm, 2) excite SPs around the optical 

communication wavelength of 1550 nm. Note that two different wavelength regions 

are used to characterize the multi-mode interference and SP resonances in the MMF 

case.   
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Figure 4.6 SEM pictures of the planar grating fabricated on a MMF end face.   

The schematic of the multimode interference in the MMF fiber sensor is shown 

in Figure 4.7. The MMF with a planar grating is connected with a SMF with a FC/PC 

fiber connector to connect to a reflection spectrum measurement system, such as in 

Figure 4.2(a). As the light is coupled into the system through the SMF, it scatters at 

the SMF/MMF interface, due to the large core diameter mismatch. The guided mode 

in the SMF now is converted into multiple modes traveling along the MMF, reflecting 

back at the platinum film on the fiber end face, and eventually coupling back to the 

single mode at the SMF/MMF interface. After all that, the multimode interference is 

formed and can be found in the reflection spectrum of the sample.  
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Figure 4.7 Schematic of multimode interference. 

To measure multimode interference around 850 nm, a 30 cm long MMF with 

the planar grating at the facet was studied with a broadband light source (HL-2000, 

Ocean Optics) and a spectrometer (USB4000, Ocean Optics). The multimode 

interference was measured at around 850 nm wavelength to avoid the influence of SP 

resonance. Since the planar grating structure has a similar period to the 2D hole array 

that was previously discussed, the SP resonance appeared at the same wavelength of 

~1550 nm. Therefore, if the spectrum is measured at around 850 nm, there will be 

only the effect of multimode interference. The temperature response of the sensor was 

characterized by measuring the spectra under different temperature environment, 

shown in Figure 4.8(a). The temperature control used for the on-fiber plasmonic 

interferometer was applied here again.  Multimode interference fringes can be clearly 

observed in the spectra. As temperature increases, the multimode peaks exhibit red 

shift, which is consistent with the observations reported in previous literature [107, 
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166]. It is easy to understand that the optical path difference of the multimode 

interference increases as the temperature increases. The peak around 830 nm was 

tracked under different temperatures to extract the temperature sensitivity of the 

sensor. The sensor was heated up from 30 oC to 100 oC by a step of 10 oC, and the 

spectrum was measured, which was used to obtain the peak positions. An hour was 

given before each measurement to allow the system to reach the thermal equilibrium. 

To test the repeatability, the sample was also measured as the temperature was cooled 

down. The peak positions under different temperature while the sample was heated up 

and cooled down were recorded, as shown in Figure 4.8 (b). It is found the 

temperature response is quite linear with a sensitivity of ~135 pm/ oC.  

 

Figure 4.8 (a) reflection spectra of multimode interference with respect to 
temperature change (b) peak wavelength position as temperature increased (black)/ 
decreased (red) over the range from 30 oC to 100 oC. 

On the other hand, the refractive index change can be detected with this the 

planar grating fabricated on a MMF end face around the wavelength of 1550 nm, 

where SP resonance plays a role. To measure the spectrum of the sensor around 1550 

nm, an optical interrogation system, shown in Figure 4.9, was used.  This system 

measures the reflection spectrum of the structured sample by using a tunable laser 
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(TSL-550, Santec), a photodiode, and a fiber circulator (6015-3-FC, Thorlabs). This 

high power optical interrogation system was used, because the SP resonance from the 

planar grating on MMF was vastly affected by the multi-mode interference. In this 

case, the intensity of the multi-mode interference was too strong to dominate the SP 

resonance. Even with the help of spatial FFT, it was difficult to obtain the wavelength 

shift of SP resonance. However, the SP resonance still plays a role to influence the 

reflectance at a fixed wavelength as the refractive index of the environment media 

changes. Therefore, a light source with very stable intensity is required to detect the 

spectrum intensity change over different refractive index condition. The tunable laser 

used here has the power stability of ±0.1%, and thus it is suitable for this application.     

 

Figure 4.9 Schematic of the optical interrogation system with tunable laser 

The spectra of the MMF with planar grating in air and in water were first 

measured, as shown in Figure 4.10. As can been seen, the multimode interference still 

plays a strong role in this wavelength range. However, the SP resonance exhibiting 

around the wavelength 1500 nm to 1540 nm should still change the reflection 

intensity while the refractive index of the environment changes from air to water. In 

the meantime, the multimode inference fringes will stay at the same position.  
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Figure 4.10 reflection spectra of the sensor in air and in water around 1550 nm  

To test the intensity change under different refractive index environment, the 

spectra of the sample in IPA/water mixture with different concentration were 

measured. By changing the concentration of IPA/water solution to 0 %, 20 %, 60 %, 

and 100%, the refractive index of the solution was tuned to 1.3333, 1.3477, 1.3648, 

and 1.3776 respectively. The spectra exhibited clear intensity change in the range 

from 1500 nm to 1540 nm, which are shown in Figure 4.11 (a). With even a very 

small change of refractive index, the reflection intensity, which is under the influence 

of SP resonance, can be captured by the optical interrogation system.  The reflection 

intensities at the fixed wavelength 1507 nm with different refractive indices are 

plotted in  Figure 4.11 (b). With a higher refractive index, the reflection intensity 

becomes smaller. Thus, after calibration, the environment refractive index can be 

measured by tracking the reflection intensity at a fixed wavelength. 
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Figure 4.11 (a) reflection spectra of the sensor in IPA solution with different 
concentration, (b) reflection intensity at the fixed wavelength 1507 nm as the 
refractive index of the solution changes 

Here, it has been demonstrated that the MMF with a planar grating at the facet 

of the fiber has the multi-parameter sensing ability. With the effect of multimode 

inference at the shorter wavelength around 850 nm, high sensitivity temperature 

sensing can be achieved. In addition, with the influence of the SP resonance in the 

longer wavelength region, the refractive index can be detected by monitoring the 

reflection intensity change at a fixed wavelength.  

Nevertheless, in the real-world applications, intensity based sensing 

mechanisms are not always preferred. That is because many factors can influence it, 

such as laser power degradation, photodetector degradation, temperature, and 

humidity. Therefore, the wavelength shift based mechanism is still a better choice for 

the MMF case. The weak SP intensity in the MMF case results from the angle 

dependence of the SP resonance. Compared with the case of SMF, the broad range of 

the incidence angle on the MMF facet broadens the FWHM of the SP peak and 

lowers peak intensity. One possible solution in the future work is to design a 

plasmonic structure which can excite the localized SP resonance which is insensitive 



 

 

109 
 

to the incident angle. In that case, the localized SP intensity can be large enough to be 

distinguished from multimode interference, which enables the sensing by monitoring 

the wavelength shift.   
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Chapter 5. Cladding mode and buffer-guided mode excited by 

a planar grating on a fiber facet for multi-parameter sensing 

5.1. Introduction of cladding modes and buffer-guided modes in SMF 

While light travels in a SMF at the designed wavelength, most of the energy is 

confined in the fiber core region, propagating as the core mode (Figure 5.1, red line). 

On the other hand, cladding modes which confine energy in the cladding of a fiber 

can be supported at a shorter wavelength (Figure 5.1 blue line). These modes are 

generally undesirable for communication applications, although it is hard to generate 

cladding modes in general.  

 

Figure 5.1 Schematic of core mode (red line) coupled to cladding mode (blue lie) in a 
step-index SMF by scattering.  

Nevertheless, cladding modes are found useful in the sensing applications. The 

field of cladding mode can penetrate into the medium and enhance the sensitivity to 

certain environmental parameters. For this reason, many methods have been 

developed to couple the core mode into cladding modes [60, 61, 109, 115]. The 

simplest way is to scatter the core mode by using some defect or a cavity in the fiber 

core as shown in Figure 5.1. Therefore some of the energy will be coupled into the 
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cladding mode. If there is another scattering objective downstream, it will couple the 

cladding mode back into the core mode to form a Mach-Zehnder interferometer and 

the inference spectrum can be observed in the transmission. By detecting the spectral 

change, the change of environment parameters can be measured. However, the 

coupling coefficient by scattering from a single objective is weak and the cladding 

mode is not easy to observe in the spectrum. Furthermore, the cladding modes can be 

easily removed by leakage loss when the fiber is coated with a material of index 

higher than the cladding. The FBG, on the other hand, has multiple scattering 

objectives. Light can be coupled into cladding mode and coupled back into core mode 

multiple times in the grating area. Thus the intensified interference spectrum similar 

to Figure 1.30 and Figure 1.31 can be easily observed. That explains why the sensors 

based on cladding modes were first demonstrated in the LPFG fibers [110], which 

support large coupling coefficient from core modes to cladding modes. However, the 

drawback of FBGs as sensors is that the length of FBG is too long, which limits their 

lateral resolution. To date, the shortest FBG sensors base on cladding modes are made 

with tilted fiber Bragg grating (TFBG) which is designed to shorten the grating length 

as well as enhance the core mode to cladding mode coupling coefficient [61]. 

Nevertheless, the length of TFBG is still about millimeters long. 

On the other hand, the buffer layer of optical fibers typically serves as a 

mechanical protection to the glass surface. Unlike the core and cladding, the optical 

property of the buffer layer had not drawn much attention, since the light field is 

concentrated around the core region for most cases of optical communication and 

sensing, even for low order cladding mode cases.  Since the early 1990s, the 
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whispering gallery mode (WGM) supported by the buffer coating has been 

recognized [68] after the studies of bend-induced losses [69, 70].  When an optical 

fiber is bent, the guided light in the core region can penetrate to the cladding and 

buffer regions, and later recouple coherently to the core mode, forming WGMs. Since 

its light field is extended to the cladding and buffer region, WGM provides a much 

easier way for the interaction between light and environment than the optic fiber 

sensors based on core modes. Therefore, WGMs have been extendedly studied 

afterwards for the sensing applications. WGMs in the cladding region were used to 

enhance the sensitivity to the environment refractive index [168, 169]. Moreover, 

highly sensitive temperature sensors have been achieved by using WGMs in buffer 

based configurations [71-73]. As can be expected, the optical property of the buffer 

layer becomes very important in these cases, and hence, many efforts have been 

conducted to study the optical property of the buffer [68, 170-173].   

Nevertheless, in most of the previous studies, a large fiber bending is needed to 

generate the WGMs in the buffer layer, which has two limitations. First, bending 

locally modifies the refractive index profile of core, cladding, and buffer [174]. 

Second, the bending radius needs to be precisely controlled and accurately measured 

to interpret t WGMs [68]. Due to these two problems, the buffer property extracted 

from WGM studies loses its generality. More importantly, the bending radius 

requirement limits the sensing capability of the buffer guided WGM. Most WGM 

sensors have only been demonstrated for detecting the parameters that do not involve 

the bending radius change (i.e., temperature and refractive index). Although there was 
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a study on the buffer property with a straight fiber [172], it requires spatial filtering of 

the core modes, which is impractical for most applications. 

In this chapter, a novel method is proposed to simultaneously generate buffer 

guided modes and cladding modes in a straight single mode fiber by using a planar 

grating fabricated on the fiber end face.  The planar grating diffracts light guided in 

the core into the cladding and buffer regions. By studying the interference resonances 

in the reflection spectrum resulting from buffer guided modes and cladding modes, 

the optical property of buffer layer can be extracted. Furthermore, this method 

enables a sensor with the capabilities of simultaneous, high-sensitivity temperature 

and axial strain sensing. In addition, because of the different responses from buffer-

guided-mode resonances and cladding-mode resonances, this system demonstrates the 

potential for multi-parameter sensing. 

5.2. Cladding modes and buffer-guided modes generated by using planar gratings  

Instead of fabricating periodic structures along the fiber core as those in FBGs, 

a metal grating structure is fabricated on the end face of a fiber. The configuration of 

the proposed sensor structure is illustrated in Figure 5.2. A single mode fiber 

(SMF28e+, Corning), which has a core diameter about 8.2 μm, a cladding diameter 

about 125 μm and a buffer coating diameter about 242 μm, is used for sample 

preparation. The fabrication process is similar to that used for the on-fiber plasmonic 

interferometer [175].  A one-dimensional (1D) grating of 50 units is fabricated on a 

silver film at the fiber end face. The width and length of one individual unit are about 

650 nm and 53 μm, respectively, and the periodicity Λ of the grating is 1068 nm.  The 

overall pattern area, about 53 μm × 53 μm, is aligned with the center of the fiber and 
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is sufficiently big to cover the core area.  The metal grating on the fiber facet serves 

the following two functions: 1) efficiently diffract the incidence core mode to 

cladding modes and buffer modes, 2) enhance the reflection power since cladding 

modes attenuate easily along the fiber. Note that the working wavelength of this 

structure should be shorter than that of the plasmonic interferometer, while the 

grating periods are similar. With a shorter wavelength, higher order diffractions can 

be achieved at the grating, which can eventually be coupled into higher order 

cladding modes as well as buffer-guided modes. 

 
Figure 5.2 Schematic and SEM of the planar grating fabricated on a fiber end face to 
generate buffer modes and cladding modes.   

In experiments,  the fabricated fiber with a length of Z is connected with the 

optical interrogation system shown in Figure 5.3 (a), which measures the reflection 
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spectrum of the structured sample by using a broadband light source (HL-2000, 

Ocean Optics),   a spectrometer (USB4000, Ocean Optics), a 2 × 2 coupler (Gould 

Fiber Optics), and single mode fibers (780 HP Thorlabs).  A typical reflection 

spectrum is shown in Figure 5.3 (b). As can been seen, there are two types of 

interference resonances in the spectrum: the buffer-guided-mode resonances in the 

shorter wavelength range and cladding-mode resonances in the longer wavelength 

range. The underlying mechanism of simultaneously exciting buffer guided modes 

and cladding modes will be explained as follows, while two-dimensional 

simplification and linear polarization assumption are used.  

 

Figure 5.3 (a) Schematic of the optical interrogation system, and (b) a typical 
reflection spectrum of the sensor with Z≈ 28 cm. 



 

 

116 
 

While the core mode is guided through the fiber and used to illuminate the 

structured fiber end face, the grating on the silver film diffracts back the light with a 

diffractive angle of α, which can be expressed as [52] 

 
Λ core

lsin
n
λα = ,                                                  (5.1) 

where l is an integer representing the diffraction order, λ is the wavelength and  ncore  

is the refractive index of the fiber core. Since most of the diffraction energy is in the 

first order, only l=0 is considered here. The diffracted light can penetrate into the 

cladding and buffer region and form buffer guided modes and cladding modes.  

Depending on the refractive indexes of cladding and buffer, buffer-guided-mode 

resonances and cladding-mode resonances can be found in different wavelength 

regions.  

In the shorter wavelength region, where the refractive index in the buffer is 

larger than that in the cladding, light partially penetrates into the buffer region and 

forms guided buffer modes and cladding modes as illustrated in Figure 5.2. After 

traveling through the fiber of length Z, light is recoupled to the core due to the 

diameter mismatch between SMF 28e+ and 780 HP fibers.  The optical path 

difference (OPD) between light traveling in buffer and cladding is 

 2 1

2 1

,n n
sin sin

OPD Z
θ θ

 
− 

 
=                                                   (5.2) 

where n1, n2 are the refractive indexes of cladding and buffer, θ1 and θ2 are the 

incident angle and reflection angle shown in Figure 5.2.  By considering the Fresnel 

equation and 1 / 2 ,θ π α= − Eq. (5.2) can be derived as   
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The buffer-guided-mode resonances can be found in the reflection spectrum, where the 

OPD satisfies the constructive interference condition.  

In the longer wavelength region, the refractive index in the buffer is smaller 

than that in the cladding, thus the diffracted energy is mostly constrained in the 

cladding region (i.e., cladding modes are dominated). The cladding mode yields to the 

step-index planar waveguide dispersion, and travels through the fiber with the angle 

θN=cos(Nλ/2D)[176] instead of θ1, where N is the cladding mode order and D is the 

diameter of the cladding. Therefore, the OPD can be expressed as 

 
2
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nZO nPD
nθ
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=                                                   (5.4) 

Thus, in the longer wavelength region, the cladding-mode resonances can be found in 

the reflection spectrum, where the OPD satisfies the constructive interference 

condition. 

On the other hand, the OPD at each resonance peak in reflection spectrums such 

as in Figure 5.3 (b) can be estimated by the free spectrum range Δλ by OPD= λ2/ Δλ 

[52], as illustrated in Figure 5.4(a) for the cases of Z≈10 cm and Z≈50 cm. By combing 

with Eq. (5.3) in the shorter wavelength range or Eq. (5.4) in the longer wavelength 

range, the effective refractive index of the buffer as a function of wavelength can be 

extracted. For simplicity, assume n1 =1.458 in the whole wavelength range, since it is 

less dispersive than n2 [172]. As a result, in the shorter wavelength range as shown in 

Figure 5.4 (b), all the three fiber length cases lead to similar results for the buffer 

refractive index since the buffer modes are determined by the same diffractive angle. 
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On the contrary, different length of the fiber selects different cladding modes [177] and 

results in different effective refractive indices of n2, shown in Figure 5.4 (c). Note that 

there are multiple branches of the dispersion relation. For example, it can be seen from 

the extracted result that there are three branches in the case of   Z≈10 cm. This means 

that there are three cladding modes have been selected by the system parameters and 

excited in this wavelength range. 

 

Figure 5.4 (a) OPDs extracted from the reflection spectrums for the cases of Z≈10 
cm, 28 cm and 50 cm (b) effective refractive index of the buffer extracted from 
reflection spectrums in the buffer modes dominating wavelength range, and (c) 
effective refractive index of the buffer extracted from reflection spectrums in the 
cladding modes dominating wavelength range. 
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To further investigate the different mode resonances in Figure 5.3 (b), a finite-

difference time-domain method based software (FDTD Solutions, Lumerical) has been 

used to obtain electric field distributions of the first few orders supported at a shorter 

wavelength (736 nm) and a higher wavelength (840 nm). As can be seen in Figure 5.5, 

at 736 nm, the buffer modes are supported in the system while the cladding modes 

dominate the system at 840 nm.  

 
Figure 5.5 Electric field intensity distributions of the first few modes supported at 736 
nm and 840 nm in the system. 

5.3. Multi-parameter sensing 

To characterize its temperature responses, the planar grating structured fiber 

with Z≈ 28 cm was put in a setup the same as used in our previous studies [175, 178, 

179] with a temperature accuracy of 0.4 oC.  Part of the fiber with the length of 7.5 

cm was clamped by micro-heaters and was under temperature test from 22.2 oC to 55 

oC.  The reflection spectra with different temperatures were recorded, as shown in 

Figure 5.6 (a). From the spectra, it can be observed that the resonances in the buffer-



 

 

120 
 

mode region have opposite response to the temperature, compared with the 

resonances in the cladding-mode region. 

 
Figure 5.6 (a) the whole reflection spectra with respect to temperature change, (b) 
reflection spectra around peak A with respect to temperature change, (c) reflection 
spectra around peak B with respect to temperature change, (d) peak positions of peak 
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A with respect to different temperatures, (e) peak positions of peak B respect to 
different temperatures, 

To characterize the temperature sensitivities, the buffer-guided-mode resonance 

around 740 nm (peak A) and cladding-mode resonance around 810 nm (peak B) were 

used.  Due to different material properties of buffer and cladding, peak A and peak B 

exhibit blue shift [Figure 5.6 (b)] and red shift [Figure 5.6 (c)], respectively, as the 

temperature increases. Because of the polymer material properties of the buffer, a 

large temperature sensitivity of the buffer-guided-mode resonance was obtained as -

252 pm/oC, shown in Figure 5.6  (d). The temperature sensitivity of the cladding-

mode resonance was obtained as  91 pm/oC, shown in Figure 5.6  (e), which is also 

comparable with the highest sensitivities achieved by the cladding modes based on 

single mode fibers [180, 181].   

To study the repeatability of the temperature measurements, three different sets 

of measurements were conducted. For each measurement, peak A and B were 

tracked, and the averaged results for peak A and B are shown in Figure 5.7 (a) and 

(b), respectively. As can been seen from the error bars, the temperature measurement 

is quite repeatable, and the estimate temperature accuracy is about 1.3 oC from peak 

A and 2.4 oC from peak B. 
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Figure 5.7 (a) mean peak positions of peak A with respect to different temperatures in 
three different measurements, (b) mean peak positions of peak B with respect to 
different temperatures in three different measurements. 

 . 

Furthermore, the proposed structure for axial strain sensing is studied. The 

sample was loaded by using an ElectroForce test instrument (Bose 3330 Series II). 

Part of the fiber with the length about 8.8 cm was stretched by the translation stage. 

With displacement measurement resolution of a nanometer, the axial strain can be 

calculated. The whole reflection spectra with respect to different axial strain were 

recorded, as shown in Figure 5.8 (a). Similar to the temperature responses, the 

resonances in the buffer-mode region are found to have opposite response to the axial 

strain change, compared with the resonances in the cladding-mode region. 
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Figure 5.8 (a) the whole reflection spectra with respect to axial strain change, (b) 
reflection spectra around peak A with respect to axial strain change, (c) reflection 
spectra around peak B with respect to axial strain change, (d) peak positions of peak 
A with respect to different axial strains, (e) peak positions of peak B respect to 
different axial strains. 
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As the axial strain is increased from 0 to 2778 µε, peak A shifts to shorter 

wavelengths (Figure 5.8 (b)) and peak B shifts slightly to longer wavelengths (Figure 

5.8 (c)). The axial strain sensitivity of peak A is about -1.32 pm/µε (Figure 5.8 (d)), 

which is similar to the axial strain sensor based on a polymer optical fiber [117]. The 

axial strain sensitivity of peak B is characterized as 0.54 pm/µε (Figure 5.8 (e)). 

The repeatability study was also carried out for the axial strain measurements, 

as shown in Figure 5.9 (a) and (b). The estimated strain accuracy calculated from the 

error bars is about 317 µε for peak A and 352 µε for peak B. 

 

Figure 5.9 (a) mean peak positions of peak A with respect to different axial strains in 
three different measurements, (b) mean peak positions of peak B with respect to 
different axial strains in three different measurements. 

In summary, it is demonstrated that the planar grating structured fiber can 

simultaneously excite buffer modes and cladding modes in a straight fiber, and this 

results in buffer-guided-mode resonances and cladding-mode resonances in the 

reflection spectrum. The buffer property of a fiber can be determined from these 

resonance positions. Moreover, in the shorter wavelength region, where the buffer 

modes dominate, the structured fiber exhibits high temperature sensitivity of -252 

pm/oC and high axial strain sensitivity of -1.32 pm/µε, owing to the material 
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properties of the buffer.  Whereas, the cladding-mode resonances in the longer 

wavelength region are found to have opposite sign of the temperature and axial strain 

sensitivities as 91 pm/oC and 0.54 pm/µε. The different behaviors of buffer-guided-

mode resonances and cladding-mode resonances hold great promise for multi-

parameter sensing in many applications. 
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Chapter 6. Summary 

 

6.1. Summary of the dissertation work 

Miniature imaging and sensing systems, which utilize conventional optical 

components, are limited by the diffraction limit. This poses a challenge for the 

development of high performance miniature imaging and sensing systems. Recently, 

nanophotonic structures have drawn great attention due to its ability to confine and 

manipulate light in the nanoscale. It sheds light on further improving the performance 

of miniaturized imaging and sensing systems.  

  In this dissertation, nanophotonic that can be used to enhance the performance 

of imaging and sensing in miniaturized systems are investigated. As one of the most 

important performance properties in an imaging system, enhanced focusing ability is 

first investigated. Theoretical study on the physical behaviors of plasmonic lenses in 

three different regions is carried out. The results from this study can help determine 

the design guidelines for a plasmonic lens. For proof-of-concept, a plasmonic lens is 

designed to obtain a sub-diffraction limit focus in the Fresnel’s region. To further 

enhance the focusing ability, plasmonic structures with the ability to generate radial 

polarization through the TEM resonance are investigated.  A plasmonic lens working 

in the surface plasmon dominating region, which is self-aligned with the radial 

polarization generating structure, is designed. In terms of sensing systems, an on-fiber 

plasmonic interferometer for the multi-parameter sensing is designed and fabricated. 
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The experiment study demonstrates its ability to simultaneously measure refractive 

index and temperature. Furthermore, the multi-parameter sensing ability of a MMF 

with a planar grating on its facet is demonstrated. The multimode interference at the 

shorter wavelength is utilized for the temperature sensing, while the SP resonance in 

the longer wavelength region is used to detect the refractive index change of the 

medium. In addition, a novel method to generate buffer-guided modes and cladding 

modes simultaneously in the reflection spectrum of a straight single mode fiber is 

studied by using a planar grating fabricated on the fiber end face. Temperature and 

axial strain sensing with high sensitivities are experimentally demonstrated with this 

structure. 

The original contributions of this dissertation work are summarized as follows: 

Contribution 1: An enhanced understanding of plasmonic lens is 

achieved. By the theoretical studies of plasmonic focusing in three regions, 

which are surface plasmon dominating region, Fresnel region, and 

Fraunhofer region, the boundaries of the three regions are defined and the 

physical behaviors of plasmonic lenses in terms of focal length and focus 

size in these regions are investigated. This can serve as a basis for 

understanding plasmonic focusing phenomenon and designing plasmonic 

lenses for various applications. A plasmonic lens that renders a sub-

diffraction-limit focus in the Fresnel region is designed. The lens 

performance with respect to the design parameters is studied by using finite-

difference time-domain (FDTD) simulations. In the surface plasmon 

dominating region, radially polarized light generated by the TEM mode in a 
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metal annular structure is studied. A novel plasmonic lens is designed to 

work in the surface plasmon dominating region with self-alignment to the 

radial polarization generating structure. The enhanced focusing ability in the 

near-field is demonstrated by numerical simulations. This plasmonic lens 

design might find applications in photolithography, imaging, and optical 

manipulation. 

 

Contribution 2: A novel ultra-thin multi-parameter sensing device 

based on a plasmonic interferometer fabricated on a fiber facet in the 

optical communication wavelength range is demonstrated for the first 

time. This device enables the coupling between surface plasmon resonance 

and plasmonic interference in the structure, which are the two essential 

mechanisms for multi-parameter sensing. It is experimentally shown that 

these two mechanisms have distinctive responses to temperature and 

refractive index, rendering the device the capability of simultaneous 

temperature and refractive index measurement on an ultra-miniature form 

factor. 

 

 Contribution 3: A novel method which utilizes planar gratings on fiber 

facets to generate buffer-guided modes and cladding modes 

simultaneously in a straight fiber is developed for the first time. By 

studying the interference resonances in the reflection spectrum resulting 

from buffer guided modes and cladding modes, the optical property of the 
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buffer layer can be determined. More importantly, a new sensor based on 

these cladding and buffer-guided modes is fabricated and experimentally 

studied. It shows great temperature sensitivity and axial strain sensing 

ability. Moreover, because of the different responses from buffer-guided-

mode resonances and cladding-mode resonance, the system shows the 

potential of multi-parameter sensing.  

6.2. Future work 

Upon the completion of this dissertation work, the future work is suggested as 

follows. 

1) Demonstration of multi-parameter sensing capability of a fiber 

optical sensor at a temperature above 1500 oC. In this dissertation, 

we demonstrated the multi-parameter sensing capability of a MMF with 

a planar grating on the facet. With a proper selection of the materials of 

the fiber and metal film, a higher temperature fiber optical sensor with 

the ability to sense refractive index change of the environment can be 

achieved. The most straightforward choice is to choose a sapphire fiber 

to replace the MMF used in the dissertation, and still use platinum film 

for the grating. Due to the high temperature property of sapphire and 

platinum, the estimated working temperature of fiber optical sensor can 

easily go up to 1500 oC. This might find great applications in harsh 

environment monitoring. For example, it can be used for measuring the 

temperature and gas concentration in a higher temperature combustion 

chamber. 
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2)  Fabrication and characterization of the multi-parameter sensing 

device based on simultaneously exciting cladding mode and buffer-

guided mode with a planar grating on the fiber facet. A new way to 

excited cladding modes and buffer-guided modes in the reflection 

spectrum by a grating on a fiber facet is explored in the dissertation. It 

has been demonstrated to serve as a new platform for multi-parameter 

sensing.  Besides temperature and axial strain sensing discussed in this 

dissertation work, other parameters such as bending angle, twisting 

angle, and humidity are all possible parameters that can be measured by 

using this platform, since these parameters are closely related to the 

buffer property.    

3) Modeling, design, fabrication and experimental study the 

distribution sensing optical fibers with utilizing buffer-guided 

modes generated by the planar gratings. Since it has been 

demonstrated that the reflection spectrum of the buffer-guided 

resonance depends on the property of the buffer coating, it is possible to 

achieve distributed sensing capability with implementing different 

buffer coatings at different locations.  

  



 

 

131 
 

 

Appendix A: Related numerical simulations and codes 
 
A1. Plasmonic focusing lens with dielectric layers 
 

A very preliminary simulation of a plasmonic lens with a dielectric substrate 

and a dielectric cover has been carried to disscuss the problems of the suspending 

silver plasmonic lens we mentioned in Chapter 3.4. 

Here, we design a near-field focusing lens with normal incident light and small 

focus size. In addition to the large annular aperture (radius r=3000 nm) milled on a 

silver film with thickness t=570 nm deposited on the SiO2 substrate, a small annular 

aperture with radius 100 nm is added at the center.  A 350 nm SiO2 layer is deposited 

at the emitting sides of the aperture, as shown in Figure A.1.While the system is 

under the normal incidence of light at the wavelength of 758 nm, due to the 

constructive interface from the emitting light propagating in the SiO2 from two ring 

slits, a focusing spot right at the interface of SiO2 and air can be designed. Because of 

the high refractive index of SiO2, this focus has smaller focus size, compared with the 

plasmonic lens designed for the propagating media as air. From the cross-section field 

distribution shown, it can be seen that the focusing is at the interface of SiO2 and air. 

And the simulated field distribution at the SiO2 and air interface shows this focus size 

is small. This focusing structure may be found to be more practical than what we 

discussed in Chapter 3.4.  
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Figure A.0.1 (a)The field intensity distribution at the plane 10 nm distance away from 
the designed plasmonic lens surface,  (b) and at the cross section,  for θ=0o and 
λ=758 nm. 

 
A2. Matlab code for calculating the attenuation length of SP 
 
%calculate the SP attenuation length of air/Pt interface  
clc 
lambda=700:1:900; 
for ind=1:length(lambda) 
     
[n(ind),k(ind)]= Rakic_Pt(lambda(ind)/1000); 
em(ind)=(n(ind)+1i*k(ind))^2; 
  
[nd(ind),kd(ind)]=Palik_SiO2(lambda(ind)/1000); 
ed(ind)=(nd(ind)+1i*kd(ind))^2; 
  
Lspp(ind)=sqrt((ed(ind)*em(ind))/(ed(ind)+em(ind)))*1055; 
Lwa(ind)=sqrt(ed(ind))*1055; 
  
end 
plot(lambda,Lspp,'r'); 
hold on; 
AA=[lambda;Lspp]'; 
 
 
%Pt property function, data from Palik handbook 
 
function [n,k]=Rakic_Pt(lambda) 
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      A=[0.2066 1.77403147162 1.48934816481 
        0.21089508319 1.74089031 1.48681627484 
        0.215279458439 1.7064516691 1.49075469521 
        0.219754982075 1.67153380755 1.5012003679 
        0.224323549012 1.63696149606 1.51806855129 
        0.228987093564 1.60354242845 1.54114377819 
        0.233747590255 1.57203802453 1.57007780763 
        0.238607054657 1.54313169628 1.60439744764 
        0.243567544248 1.5173990747 1.64352339818 
        0.248631159276 1.49528498058 1.68679884531 
        0.253800043655 1.47709078632 1.73352426366 
        0.259076385867 1.46297361192 1.7829936117 
        0.264462419893 1.452956361 1.83452724173 
        0.269960426156 1.44694578337 1.88749816335 
        0.275572732488 1.44475499622 1.94135013481 
        0.281301715116 1.44612713866 1.99560773024 
        0.287149799665 1.45075768149 2.04987963781 
        0.293119462189 1.45831392766 2.10385691533 
        0.299213230217 1.46845111275 2.15730791352 
        0.305433683824 1.48082512169 2.21007129054 
        0.311783456723 1.49510217769 2.26204816518 
        0.318265237381 1.51096599627 2.31319410267 
        0.324881770154 1.52812290634 2.36351134697 
        0.331635856454 1.54630538284 2.41304151463 
        0.338530355932 1.56527435442 2.46185883807 
        0.345568187689 1.58482056741 2.51006397124 
        0.352752331512 1.60476521634 2.55777833287 
        0.360085829136 1.62495999411 2.60513894682 
        0.367571785533 1.64528667226 2.65229373702 
        0.375213370223 1.66565629072 2.69939723919 
        0.383013818621 1.68600801545 2.74660669895 
        0.390976433402 1.70630770818 2.79407853453 
        0.399104585903 1.72654624415 2.8419651498 
        0.407401717548 1.74673760935 2.89041208966 
        0.415871341306 1.7669168069 2.93955553495 
        0.42451704318 1.7871376025 2.98952013674 
        0.433342483722 1.80747014014 3.04041719143 
        0.442351399584 1.82799846107 3.09234315759 
        0.451547605104 1.84881796058 3.14537851377 
        0.460934993913 1.87003281865 3.19958695317 
        0.470517540592 1.89175344021 3.25501490728 
        0.480299302349 1.91409394037 3.31169138623 
        0.49028442074 1.93716970763 3.36962811878 
        0.50047712342 1.96109507471 3.42881997142 
        0.510881725935 1.98598112261 3.48924562241 
        0.521502633549 2.0119336384 3.55086846498 
        0.532344343107 2.0390512423 3.61363771298 
        0.543411444943 2.06742369474 3.67748968311 
        0.554708624818 2.09713038965 3.74234922957 
        0.56624066591 2.12823903736 3.80813131002 
        0.578012450835 2.1608045382 3.87474266494 
        0.590028963715 2.19486804744 3.94208359627 
        0.602295292289 2.2304562332 4.01004983433 
        0.614816630068 2.26758073074 4.07853448506 
        0.627598278532 2.30623779999 4.14743005082 
        0.640645649374 2.34640819678 4.21663051868 
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        0.653964266795 2.38805727273 4.28603350879 
        0.667559769839 2.43113532254 4.35554247266 
        0.681437914784 2.47557820139 4.42506892706 
        0.695604577575 2.52130823787 4.49453470327 
        0.710065756315 2.56823546934 4.56387418487 
        0.724827573806 2.61625922715 4.63303649887 
        0.739896280135 2.66527009746 4.70198761708 
        0.755278255329 2.71515228059 4.77071231512 
        0.770980012047 2.76578636685 4.83921592796 
        0.787008198346 2.81705254085 4.90752583184 
        0.803369600489 2.86883421801 4.97569257364 
        0.820071145824 2.92102210792 5.04379056045 
        0.837119905712 2.97351868848 5.11191821356 
        0.854523098523 3.02624306164 5.18019748233 
        0.872288092693 3.07913614766 5.24877260453 
        0.890422409845 3.13216615622 5.31780798978 
        0.908933727968 3.18533425203 5.38748509244 
        0.927829884674 3.23868030448 5.45799812916 
        0.947118880514 3.29228857703 5.5295484858 
        0.966808882365 3.34629316686 5.60233764927 
        0.986908226887 3.40088294905 5.67655849545 
        1.00742542406 3.45630570694 5.75238476781 
        1.02836916076 3.512871041 5.82995859957 
        1.0497483045 3.57095153936 5.90937597263 
        1.07157190709 3.63098156496 5.99067008178 
        1.09384920857 3.69345287113 6.07379269661 
        1.11658964103 3.75890610843 6.15859380637 
        1.13980283269 3.82791715124 6.24480011528 
        1.16349861191 3.90107708609 6.33199334899 
        1.18768701137 3.97896471897 6.41958985172 
        1.21237827235 4.06211065181 6.50682359382 
        1.237582849 4.15095244548 6.59273543041 
        1.26331141285 4.24578123198 6.67617215521 
        1.28957485725 4.34668144155 6.75579940197 
        1.31638430203 4.45346707178 6.83013249874 
        1.34375109819 4.5656200032 6.89758866458 
        1.37168683271 4.68223790941 6.95656217298 
        1.40020333347 4.80200075929 7.0055211777 
        1.42931267422 4.92316508334 7.04312101889 
        1.45902717974 5.04359348001 7.0683246356 
        1.48935943101 5.16082304849 7.0805172184 
        1.52032227059 5.27217093497 7.07960057721 
        1.55192880799 5.37486901298 7.06605373827 
        1.58419242529 5.466214354 7.04095021039 
        1.61712678277 5.5437190143 7.00592851424 
        1.65074582469 5.60524265655 6.96311957072 
        1.6850637852 5.64909465575 6.91504074429 
        1.72009519439 5.67409775897 6.86447034543 
        1.75585488439 5.67961168409 6.81431750763 
        1.7923579957 5.66552079063 6.7675006782 
        1.82961998359 5.63219403195 6.72684427003 
        1.86765662461 5.58042728127 6.69499840829 
        1.90648402331 5.51137788233 6.67438224676 
        1.94611861905 5.42649939227 6.66714782229 
        1.98657719294 5.32748164289 6.67515930134 
        2.02787687497 5.21619813838 6.69998185078 
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        2.07003515123 5.09466002788 6.7428750899 
        2.11306987137 4.96497390521 6.80478784268 
        2.15699925609 4.82929982329 6.88635327392 
        2.2018419049 4.68980633003 6.98788591527 
        2.24761680399 4.54862095841 7.10938394797 
        2.29434333425 4.40777704221 7.25054082819 
        2.34204127949 4.26916027038 7.41076958554 
        2.39073083481 4.13446018505 7.58924101404 
        2.44043261516 4.00513219695 7.7849341358 
        2.49116766405 3.88237446118 7.99669468884 
        2.54295746248 3.76712155224 8.22329582712 
        2.59582393804 3.66005412751 8.46349512754 
        2.64978947414 3.56162151331 8.71608320963 
        2.70487691958 3.47207290205 8.97992121851 
        2.76110959812 3.39149268187 9.25396643991 
        2.81851131845 3.31983606631 9.53728692083 
        2.8771063842 3.25696225073 9.82906695018 
        2.93691960427 3.20266343939 10.1286056368 
        2.99797630331 3.15668903595 10.4353107632 
        3.06030233246 3.11876497572 10.7486897796 
        3.1239240803 3.08860860298 11.0683393879 
        3.188868484 3.06593970866 11.3939347572 
        3.25516304072 3.0504884077 11.7252190546 
        3.32283581931 3.04200050783 12.0619937059 
        3.39191547211 3.04024094658 12.4041095936 
        3.46243124716 3.04499578066 12.7514592692 
        3.53441300053 3.05607311815 13.1039701654 
        3.60789120897 3.07330329963 13.4615987455 
        3.68289698284 3.0965385623 13.8243255021 
        3.75946207926 3.12565236265 14.1921507035 
        3.83761891556 3.16053848634 14.5650907918 
        3.91740058299 3.20111003858 14.9431753377 
        3.99884086078 3.24729838029 15.3264444686 
        4.08197423038 3.29905205561 15.7149466961 
        4.1668358901 3.35633574056 16.1087370772 
        4.25346176999 3.4191292322 16.5078756548 
        4.34188854708 3.48742648945 16.9124261306 
        4.43215366088 3.56123473119 17.3224547304 
        4.52429532923 3.64057359348 17.7380292292 
        4.61835256454 3.72547434499 18.1592181082 
        4.71436519021 3.81597915804 18.586089821 
        4.81237385758 3.91214043146 19.0187121496 
        4.91242006309 4.01402016112 19.4571516355 
        5.01454616587 4.12168935328 19.9014730709 
        5.11879540566 4.23522747613 20.3517390424 
        5.22521192114 4.35472194481 20.8080095151 
        5.3338407686 4.48026763541 21.2703414529 
        5.44472794102 4.61196642365 21.7387884673 
        5.55792038754 4.74992674412 22.2134004911 
        5.67346603336 4.89426316646 22.6942234734 
        5.79141379999 5.04509598487 23.1812990921 
        5.91181362602 5.20255081786 23.6746644827 
        6.0347164882 5.36675821517 24.1743519821 
        6.16017442306 5.53785326946 24.6803888844 
        6.28824054896 5.71597523016 25.192797211 
        6.41896908852 5.90126711757 25.7115934919 
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        6.55241539166 6.09387533513 26.2367885597 
        6.68863595894 6.29394927852 26.768387357 
        6.82768846557 6.50164094001 27.3063887564 
        6.96963178576 6.71710450697 27.8507853947 
        7.11452601772 6.94049595377 28.401563522 
        7.26243250901 7.17197262625 28.958702867 
        7.41341388261 7.41169281838 29.5221765192 
        7.56753406337 7.65981534101 30.0919508298 
        7.72485830511 7.9164990826 30.6679853318 
        7.88545321822 8.1819025622 31.2502326817 
        8.04938679789 8.45618347535 31.8386386238 
        8.21672845289 8.73949823335 32.4331419776 
        8.38754903495 9.03200149703 33.0336746515 
        8.56192086874 9.33384570604 33.6401616823 
        8.73991778256 9.64518060521 34.252521303 
        8.92161513952 9.9661527693 34.8706650393 
        9.10708986948 10.2969051281 35.4944978364 
        9.29642050165 10.6375764939 36.1239182163 
        9.48968719778 10.988301093 36.7588184673 
        9.68697178616 11.3492081043 37.3990848657 
        9.88835779621 11.7204212065 38.044597929 
        10.0939304939 12.1020581374 38.6952327036 
        10.3037769178 12.4942302671 39.3508590831 
        10.517985916 12.8970421882 40.0113421603 
        10.7366481837 13.3105913253 40.6765426101 
        10.9598563014 13.7349675681 41.3463171025 
        11.1877047746 14.1702529276 42.020518746 
        11.4202900733 14.6165212223 42.6989975577 
        11.6577106731 15.073837793 43.3816009608 
        11.9000670968 15.5422592512 44.0681743049 
        12.1474619572 16.0218332626 44.7585614084 
        12.4 16.5125983677 45.4526051203]; 
  
        Rakic_lam=A(:,1); 
        Rakic_kap=A(:,3); 
        Rakic_ref=A(:,2); 
         
        if lambda<Rakic_lam(1) || 
lambda>Rakic_lam(length(Rakic_lam)) 
            y=0; 
        else 
            ind=find(Rakic_lam>=lambda); 
            wave_R=Rakic_lam(ind(1)); 
            if ind(1)==1 
                n=Rakic_ref(1); 
                k=Rakic_kap(1); 
            else 
                wave_L=Rakic_lam(ind(1)-1); 
                n=(Rakic_ref(ind(1))-Rakic_ref(ind(1)-1))/(wave_R-
wave_L)*(lambda-wave_L)+Rakic_ref(ind(1)-1); 
                k=(Rakic_kap(ind(1))-Rakic_kap(ind(1)-1))/(wave_R-
wave_L)*(lambda-wave_L)+Rakic_kap(ind(1)-1); 
            end 
        end 
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A3. Matlab code for calculating the effective refractive index of the 
buffer from the reflection spectrum 
 
%to calculate the effective refractive index of the buffer 
clear all; 
clc; 
close all; 
% Wavelength file loding 
    data1 = 
load('E:\Dropbox\Codes\SpacialFFT\2016Cladding\wavelength.txt'); 
    wavelength = data1(:,1); 
     
  pressure_list=1;%No of the data   
     
    % Import spectrum from the first data set for choosing a km 
    file_name = [num2str(pressure_list) '.txt']; 
    data = load(file_name); 
    intensity0 = data(:,1); 
    intensity=smooth(intensity0,10,'moving'); 
  
% Plot the data with peaks identification 
    fig_h1 = figure('Position', [10 425 600 295]); 
    figure(fig_h1) 
    plot(wavelength,intensity,'b-','LineWidth',2); 
    xlabel('Wavelength (nm)') 
    ylabel('Intensity') 
    title('Original data') 
    hold on; 
     
    PeakTo=0.01; % peak tolerance 
     
    % Find peaks from Origin result and plot them 
    delta = (max(intensity)-min(intensity))*PeakTo; 
    peaks = peakdet(intensity,delta); 
    index = peaks(:,1); 
    o1_peaks = wavelength(index);   
    
    I1_peaks = intensity(index); 
     
    %plot the markers 
     
    
plot(o1_peaks,I1_peaks,'rs','MarkerSize',4,'MarkerFaceColor','r') 
     
    for n = 1:length(index) 
        text(o1_peaks(n),I1_peaks(n),num2str(o1_peaks(n))) 
    end 
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    figure; % plot the OPD over wavelength 
     
      
     
    for k=1:length(o1_peaks)-1 
    OPD(k)=o1_peaks(k)^2/(o1_peaks(k+1)-o1_peaks(k))/1000; %OPD in 
um 
    plot(o1_peaks(k),OPD(k), 's','markersize', 8); 
    hold on; 
     
     
    end 
    
    %calculate n2 
    n1=1.4580; %cladding RI 
    p=1055; %grating period in nm 
  
     
    Z=28e4; %fiber length in um 
     
    for m=1:length(OPD) 
         
    %calc 1st order diffraction angle for each wavelength      
    diffa=asin(o1_peaks(m)/p/n1); 
    theta1=pi/2-diffa; 
  
     
    clear x; 
        syms x; 
    a=double(solve(OPD(m)==Z*n1/sin(theta1)*(1-(x^2)/(n1^2)), x)); 
     
    if numel(a)==2 
        n2(m)=a(1,1); 
        n3(m)=a(2,1); 
        elseif numel(a)==1; 
        n2(m)=a(1,1); 
        n3(m)=a(1,1); 
    end 
     
    if n2(m)>n3(m) 
        n4(m)=n2(m); 
    else 
        n4(m)=n3(m); 
    end 
     
    a=double(solve(OPD(m)==Z*(x/sin(theta1)-n1)/1000, x)); 
     
    if numel(a)==2 
        n2(m)=a(1,1); 
        n3(m)=a(2,1); 
        elseif numel(a)==1; 
        n2(m)=a(1,1); 
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        n3(m)=a(1,1); 
    end 
     
    if n2(m)>n3(m) 
        n5(m)=n2(m); 
    else 
        n5(m)=n3(m); 
    end 
     
  
     
    end 
%Plot results 
o1_peaks=o1_peaks(1:length(o1_peaks)-1); 
figure;     
     plot(o1_peaks,n4, 's','markersize', 8, 'color','k');hold on; 
     plot(o1_peaks,n5, 's','markersize', 8, 'color','r'); 
     
   title(['This figure used list = ', num2str(pressure_list)]) 
   hold on;  
   
     
A4. Input for FDTD Solution to calculated the mode field 
distribution  
 
 

a. Core radius = 4.9 um 

b. Core refractive index = 1.46 

c. Cladding radius = 62.5 um 

d. Core refractive index = 1.458 

e. Buffer radius = 125 um 

f. Buffer refractive index = 1.456 (for wavelength 840nm) 

g. Buffer refractive index = 1.5132 (for wavelength 736nm) 
 
 

Appendix B: Protocol for Nanofabrication on Fiber Facet and 
additional samples fabricated  

 
B1. Protocol for Nanofabrication on Fiber Facet 
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2) To fabricate the on-fiber nanophotonic structures such as in Figure 4.1(a), 

choose a bundle of fibers depends on what kind of fibers you want to 

fabricate. Roughly cut them to the length you want, typically 30 cm to 50 

cm. 

3) Cleave each fiber.  Exam the cleave angle under the microscope. A typical 

cleave angle of ±0.5o should be reached for each fiber. 

4)  Bundle and tape the cleaved fibers on a glass substrate, put them into the 

sputtering chamber, align their end faces vertically to the sputtering target. 

5) Next, a thin film of desired thickness will be deposited on the cleaved facet 

by magnetron sputtering. Depends on the conductivity of the metal layer, 

you might have to deposit a very thin layer of metal on the sidewall of the 

fiber to improve the conductivity, which is crucial for the FIB fabrication 

later. 

6) Further, a focused ion beam (FIB) (FEI Helios 650 or Tescan Gaia) milling 

was used to write the nanophotonic pattern on the metal film around the 

fiber core region.  

7) There is a typical parameter set used in FEI Helios 650, for a 2D square 

nanohole array pattern on silver 

a. Voltage 30 kV (Ion beam voltage) 

b. Current = 0.79 nA (Ion beam current) 

c. Tilt angle = 2.1o 

d. Rotation angle =51o 

e. X = 400 nm (square length) 



 

 

141 
 

f. Y = 400 nm (square width) 

g. Z = 500 nm (how deep to drill) 

h. P = 1030 nm (Period) 

8) There is a typical parameter set used in Tescan Gaia, for a 1D grating 

pattern on platinium 

a. Voltage 30 kV 

b. Current = 63 pA 

c. Tilt angle = -3.5o 

d. Rotation angle =232o 

e. W =130 nm (square width) 

f. H = 30 um (square height) 

g. D = 650 nm (how deep to drill) 

h. P = 1055 nm (Period) 

 

B2. Additional samples fabricated and spectrum results 
 

1) On-fiber plasmonic interfermeter  labeled “Ag6BA6” with a 2D circular 

nanohole array pattern (Tescan Gaia). SEM picture and reflection spectrum 

are shown in Figure A.2. 

a. Voltage 30 kV  

b. Current = 33 pA 

c. Tilt angle = -2.2o 

d. Rotation angle =-152o 

e. Dout =340 nm 



 

 

142 
 

f. Din = 0 nm 

g. Z =150 nm 

h. P = 1040 nm 

 

Figure A.2 (a) SEM picture of the sample, (b) reflection spectrum of the sample 

 
2) On-fiber plasmonic interfermeter  labeled “Ag2BA7” with a 2D circular 

nanohole array pattern (Tescan Gaia). SEM picture and reflection spectrum 

are shown in Figure A.3. 

a. Voltage 30 kV  

b. Current = 97.8 pA 

c. Tilt angle = 1.4o 

d. Rotation angle =28o 

e. Dout =365 nm 

f. Din = 0 nm 

g. Z =150 nm 

h. P = 1070 nm 
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Figure A.3 (a) SEM picture of the sample, (b) reflection spectrum of the sample 

 
3) 1D grating on MMF labeled “Pt4MMF1” (Tescan Gaia). SEM picture and 

reflection spectrum are shown in Figure A.4. 

a. Voltage 30 kV  

b. Current = 63 pA 

c. Tilt angle = -3.5o 

d. Rotation angle =232o 

e. W =130 nm 

f. H = 30 um 

g. D =650 nm 

h. P = 1055 nm 
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Figure A.4 (a) SEM picture of the sample, (b) reflection spectrum of the sample 

 
 

Appendix C: List of Publications 
 
Journal Publications 
 
1. Y. Chen, H. Liu, Z. J. Zhang, A. K. Gupta, and M. Yu, Planar photonic crystal 

based multifunctional sensors. Applied Optics (submitted). 

2. Z. J. Zhang, Y. Chen, Z. Wen, H. Liu, and M. Yu, Buffer-guided-mode and 

cladding-mode resonances generated by a planar grating on a fiber end face for 

temperature and axial strain sensing.  Optics Letters (to be submitted). 

3. H. Bae, Z. J. Zhang, T. Nagaya, Y. Nakamura, P. Choyke, H. Kobayashi and M. 

Yu, In Vivo Pressure and Temperature Monitoring Using a Fiber Optic Sensor 

during Near Infrared Photo-Immunotherapy. Biomedical Optics Express (to be 

submitted). 

4. Z. J. Zhang, Y. Chen, H. Liu, H. Bae, D. A. Olson, A. K. Gupta, and M. Yu, On-

fiber plasmonic interferometer for multi-parameter sensing.  Optics Express 23, 

10732-10740 (2015). 
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5. H.-T. Kim, H. Bae, Z. J. Zhang, A. Kusimo, and M. Yu, Optofluidic microvalve-

on-a-chip with a surface plasmon-enhanced fiber optic microheater. 

Biomicrofluidics 8, 054126 (2014) 

6. Y. Chen, Z. J. Zhang, M. Yu, Tunable out-of-plane slow light in resonance 

induced transparent grating waveguide structures.  Applied Physics Letters, 103, 

061109 (2013) 

7. Z. J. Zhang and M. Yu. Investigation of Physical Limits of Plasmonic Focusing 

Lens in Different Regions. Plasmonics, 8, 817-827 (2013) 

 

Conference Proceedings 
 
1. Z. J. Zhang, H. Bae, T. Nagaya, Y. Nakamura, P. Choyke, H. Kobayashi and M. 

Yu, In Vivo Pressure and Temperature Monitoring during Near Infrared Photo-

Immunotherapy Using a Fiber Optic Sensor. Frontiers in Optics (OSA), p. 

FTh2E. 2., San Jose, USA (2015) 

2. Z. J. Zhang, Y. Chen, H. Liu, H. Bae, D. A. Olson, A. K. Gupta, and M. Yu, 

Ultra-thin multi-parameter sensor achieved with on-fiber plasmonic 

Interferometer.  Frontiers in Optics (OSA), p. FTh3E. 4., San Jose, USA (2015). 

3. Z. J. Zhang, and M. Yu, Subdiffraction-Limit Focusing with Plasmonic Lens 

Designed in Fresnel Region. Frontiers in Optics (OSA), p. FTh2F. 5., Orlando, 

USA (2013) 

4. Z.J. Zhang, Y. Liu and M. Yu Investigation of Fiber Optical Tweezers for 

Nano/Microscale Particle Manipulation IEEE/SPIE/OSA Student Poster 

Competition in Optics and Photonics, College Park, USA (2012) 
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