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The U. S. Coast Guard uses a U. S. Navy methodology and a computer program 

called SPECTRA to probabilistically characterize wave-induced bending moments on 

surface vessels. SPECTRA is primarily used for fatigue design based on defined cells 

of vessel operation with specified heading, sea condition and speed in order to 

calculate bending response using the probability a ship is within each cell in a 

specified time period. In this study, the SPECTRA output for a hypothetical ship was 

obtained to examine its appropriateness to be used as a basis to characterize lifetime 

extreme design bending moments on ship hulls. The objective was to develop a 

method to utilize the SPECTRA fatigue load output to estimate the parameters of an 

extreme value distribution, such as the Weibull probability distribution, for the largest 

bending moment of k years. The study examined how to appropriately interpret and 

use the mean and variance of the bending moments obtained from SPECTRA for this 

purpose. A four step method is proposed in this thesis involving first getting the 

statistical moments of the data from the SPECTRA histograms, estimating the 



  

parameters of the Weibull using these moments, finding the moments of the largest in 

k years from the generated distribution, and finally estimating the parameters of the 

Weibull for the largest in k years from these moments. The study also includes the 

development of an efficient and robust method of estimating the parameters and 

moments that is called the adaptive technique, involving exact calculation and 

numerical integration. The method is illustrated using a hypothetical case and verified 

using extreme value computations. It is also observed that the SPECTRA output 

based on specifying two or more years produces only minor enhancements in the 

estimated moments for one year and does not produce the statistical moments of 

extreme loading. 
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1. Introduction 

1.1. Ship Reliability under Wave Loading 

Ships at sea are subjected to a wide variety of loading conditions due to waves, wind, 

mechanical loadings, and many other forms; however wave loading is often the most 

paramount concern due to the fact that they produce both cyclic loadings leading to 

possible fatigue failures, as well as the possibility of an excessive load on the ship 

structure due to large waves. Compounding this problem is the difficulty to predict 

wave loading for a given ship due to the random nature of weather patterns and sea 

conditions. This makes ship design and lifetime analysis challenging, as the 

maximum loads, as well as cyclic loading, are required to make sure a vessel is 

capable of surviving through its design life. This study focuses on the extreme wave 

loading aspect of naval engineering, specifically the bending moments induced by 

wave loading conditions. 

 

Examining the extreme loading events due to waves allows ship analysis to be 

handled by looking at the two most extreme cases, hogging and sagging. Hogging 

loads occur when a ship rides the crest of a wave Figure 1.1-a while sagging results 

from a ship being supported bow to stern between two waves Figure 1.1-b. 

In these cases the ship can be viewed as acting much like a beam under self-weight 

loading. Coupled with the wave loading loading is still-water bending moment, or the 

bending moment of the ship in flat seas due to the ships self-weight being supported 

by a liquid medium. There are other considerations including how the weight is 
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distributed along the ship, as well as whipping effects which are a result of impulsive 

loading, and torsional loading among others, but the large length-to-width ratio of a 

ship usually means that the bending moments will control, with additional bending 

due to whipping effects being included in those values. 

 

                                     
(a) Hogging Moment Condition                                    (b) Sagging Moment Condition           

Figure 1.1. Sea Conditions Resulting in Bending Moments 

 

In response to the difficulties in dealing with wave loading various probabilistic and 

statistical methods have been developed and used to estimate loading and serve as 

design aids. One such method put forth by uses a Poisson like process reliability 

equation to determine the likelihood of a ships yearly survival (Ayyub B. M., 2011). 

 

               
 
               

 
          

 

 

 (1-1) 

 

The purpose of the interior integral is to calculate the survival probability of the ship 

under the sea conditions and subjected to possible corrosion degradation. Equation 1-

2 (Ayyub 2011b) provides the specific probability model used in the calculation. 

 

                                       (1-2) 

 

In Equation 1-2 c(τ) represents a corrosion degradation model, the form of which 

need not be specified, as any justifiable form may be chosen. Su(s) is the strength 

value from the corresponding outer integral in terms of s while Lsw(t) is the still-water 
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bending moment as a function of time (Ayyub 2011b). Ordinarily the still-water 

bending moment is constant over time, however if changes to the superstructure of a 

ship are expected then this value could be time dependent. Lastly Lw(t) is the wave 

loading, taken as the largest distribution of the wave loading for the year in question. 

 

Inherent assumptions are made in Equation 1-2, the first is that the still-water bending 

moment is additive to the wave induced loads. The assumption that the still-water 

bending moment can be uncoupled from the wave loading was be used in the analysis 

presented here. 

 

Reliability methods based on probability and statistics have inherent complications as 

well. First of all, the reliability of a ship over the course of its design life, which can 

be upwards of 40 years, requires extensive computations and models to predict 

lifetime extreme loads and cumulative effects. Also the closed form solutions may be 

non-existent. In these cases numerical or simulation methods may be used to solve the 

problems, and in the case of a ship over a 50 year lifespan subjected to large numbers 

of wave loadings every year requiring the use of computer programs, such as the 

commonly used program SPECTRA (Michaelson 2000) by the U. S. Navy and Coast 

Guard, that will be the focus of the research presented here. 

1.2. Overview of the SPECTRA Computer Program 

The history of SPECTRA dates back to the 1980’s and is based on the work of the 

Sikora et al. paper A Method for Estimating Lifetime Loads and Fatigue Lives for 

SWATH and Conventional Monohull Ships (Sikora 1983). A full summary of the 
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paper is outside the scope of this analysis however a general synopsis is important in 

order to understand the purpose of this report. Sikora et al. (1983) uses a spectral 

analysis to estimate the lifetime loadings for monohull and Small Waterplane Area 

Twin Hull ships (SWATHS). 

 

To analyze a ship its operating mode is defined as a block or cell with axes 

corresponding to its speed, heading relative to waves, and the sea condition 

(Nikolaidas 1993). These cells are then further subdivided into cells for a particular 

mode, which may consist of a range of speeds, sea heights, or headings with a certain 

probability of being in that range. Each of these incremental modes results in a 

characteristic response and all of these responses can be combined to calculate 

exceedance levels for the ship (Sikora 1983). 

 

Sikora et al. (1983) provided the user guideline for the SPECTRA computer program 

developed by the Naval Surface Warfare Center, Carderock Division, used primarily 

for fatigue loading. Several other sea spectra, ship models and predictive models were 

subsequently added to the library of functions available for use (Sikora 2002). In the 

program implementation the generated cells were chosen so that they were 

statistically stationary, meaning the parameters of the distributions determining the 

relevant quantities of the cell were time invariant. The amount of time a ship is within 

each of these cells can be calculated based on probabilistic means and wave spectra 

equations (Sikora 1983). 
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SPECTRA takes several input parameters related to the ship’s structure, the sea state, 

and the loadings of interest and runs them through a simulation to predict the lifetime 

loadings for a given ship. These inputs include (Michaelson 2000). 

Ship Dimensions – Includes beam length, displacement, length between 

perpendiculars, and draft and sets up a rudimentary definition of the ship’s 

structure. 

Calculation Location – Defines where the extreme load calculations will be 

taken. 

Still-Water Bending Moment – Calculated from a separate program. 

Service Life – How long the ship can be expected to be in operation. 

Ship Type – Includes different classes for Navy ships 

Bow Form – The shape of the bow, used in whipping calculations. 

Sea Spectrum – Several models of sea conditions are available including the 

Ochi 6 parameter model used in the 1983 paper. 

Sea State Probabilities – The likelihood of being in a certain sea state based on 

the ocean the ship is expected to operate in. 

Operational Profile – Details how often the ship can be expected to be at sea, 

and under what conditions, i.e. combat, slow cargo, etc. 

Response Amplitude Operators (RAOs) – Represents the means by which the 

seaway produces the bending moments. 

Bending Type – Vertical, lateral, or torsional. 

Whipping – How are whipping loads induced, several options of slamming are 

included. 
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Average Time Between Slams – Time between slams assuming the ship is in 

conditions where slamming can occur. 

Whipping Frequency – Frequency at which the ship will vibrate under 

whipping conditions. 

Log Decrement of Whipping – Defines how the vibrations due to whipping 

dissipate through damping. 

Whipping Phase Angle – The point in the time history of bending moment 

where slam induced whipping begins. 

After the ship is defined by the input the program is run resulting in output similar to 

that in Figure 1.2. 

 

 

 
Figure 1.1. SPECTRA Example Exceedance Histogram Output 

 

Figure 1.2 gives an example of a Fatigue Load Exceedance Histogram. The values are 

determined from values in Tables 1.1-a and 1.1-b, example tables for exceedance 

values from SPECTRA. These values are divided into two tables the first is without 

whipping effects included and the second table with whipping. Exceedance in this 

case means the number of times a particular load has been exceeded. 
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Table 1.1. Example Exceedance Results 

(a) Vertical Bending (ft-lton) without Whipping (b) Vertical Bending (ft-lton) with Whipping 

Hogging Sagging 
# Times 
Exceeded 

 
Hogging   Sagging 

# Times 
Exceeded 

63573 -59573 1 
 

63794 -61899 1 

61110 -57110 1.965 
 

61374 -59752 1.965 

58647 -54647 3.834 
 

58954 -57618 3.834 

56184 -52184 7.423 
 

56541 -55484 7.423 

53721 -49721 14.268 
 

54139 -53362 14.268 

51258 -47258 27.217 
 

51731 -51122 27.217 

48795 -44795 51.518 
 

49293 -48657 51.518 

46332 -42332 96.748 
 

46765 -45986 96.748 

43869 -39869 180.207 
 

44218 -43091 180.207 

41407 -37407 332.836 
 

41671 -40108 332.836 

38944 -34944 609.363 
 

39137 -37125 609.363 

36481 -32481 1105.513 
 

36614 -34143 1105.513 

34018 -30018 1986.789 
 

34104 -31210 1986.789 

31555 -27555 3536.104 
 

31606 -28339 3536.104 

29092 -25092 6231.869 
 

29119 -25569 6231.869 

26629 -22629 10875.225 
 

26645 -22886 10875.225 

24166 -20166 18796.656 
 

24171 -20290 18796.656 

21703 -17703 32190.028 
 

21709 -17750 32190.028 

19240 -15240 54645.685 
 

19241 -15254 54645.685 

16777 -12777 91982.345 
 

16779 -12777 91982.345 

14315 -10315 153520.53 
 

14311 -10318 153520.53 

11852 -7852 254028.004 
 

11848 -7847 254028.004 

9389 -5389 417104.288 
 

9386 -5388 417104.288 

6926 -2926 685964.157 
 

6924 -2930 685964.157 

3231 769 1413835.687 
 

3231 764 1413835.687 

 

A similar set up is used for the fatigue loading, the only difference is that the cycles 

are counted for a specific moment. The fatigue loads were the ones used for the 

analysis, as they were more in line with a traditional histogram. 
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Figure 1.3. SPECTRA Example Fatigue Load Histogram Output 
 

Table 1.2. Example Fatigue Load Results 

(a) Vertical Bending (ft-lton) 
 

(b) Vertical Bending with Whipping 

Hogging Sagging 
# Cycles at 
Moment 

 
Hogging Sagging 

# Cycles at 
Moment 

62341 -58341 0.965 
 

62584 -60825 0.965 

59878 -55878 1.868 
 

60164 -58685 1.868 

57416 -53416 3.59 
 

57748 -56551 3.59 

54953 -50953 6.845 
 

55340 -54423 6.845 

52490 -48490 12.949 
 

52935 -52242 12.949 

50027 -46027 24.301 
 

50512 -49890 24.301 

47564 -43564 45.23 
 

48029 -47322 45.23 

45101 -41101 83.459 
 

45491 -44539 83.459 

42638 -38638 152.629 
 

42945 -41600 152.629 

40175 -36175 276.527 
 

40404 -38617 276.527 

37712 -33712 496.15 
 

37876 -35634 496.15 

35249 -31249 881.276 
 

35359 -32676 881.276 

32786 -28786 1549.315 
 

32855 -29775 1549.315 

30323 -26323 2695.764 
 

30363 -26954 2695.764 

27861 -23861 4643.357 
 

27882 -24227 4643.357 

25398 -21398 7921.431 
 

25408 -21588 7921.431 

22935 -18935 13393.373 
 

22940 -19020 13393.373 

20472 -16472 22455.656 
 

20475 -16502 22455.656 

18009 -14009 37336.66 
 

18010 -14015 37336.66 

15546 -11546 61538.185 
 

15545 -11547 61538.185 

13083 -9083 100507.474 
 

13080 -9082 100507.474 

10620 -6620 163076.284 
 

10617 -6618 163076.284 

8157 -4157 268859.869 
 

8155 -4159 268859.869 

5079 -1079 727871.53 
 

5078 -1083 727871.53 
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Reliability results are also provided and are given for both the hogging case Table 

1.3-a  and the sagging case in Table 1.3-b. These include a table for the reliability fit 

at specified reliability values as well as the parameters of the Weibull used to 

generate them. 

 

Table 1.3. Example Hogging Reliability Output 

(a) Hogging Reliability Output 
 

(b) Sagging Reliability Output 

Hog (ft-lton) Reliability   Weibull Fit 
 

Sag (ft-lton) Reliability Weibull Fit 

63794 0.367746 64032 
 

-61899 0.367802 -61978 

65648 0.55214 65794 
 

-63816 0.579327 -63878 

67502 0.703694 67656 
 

-65733 0.742693 -65874 

69356 0.812882 69542 
 

-67650 0.850483 -67866 

71210 0.885424 71410 
 

-69567 0.915644 -69810 

73063 0.931266 73241 
 

-71483 0.953184 -71689 

74917 0.959339 75029 
 

-73400 0.974251 -73501 

76771 0.976188 76775 
 

-75317 0.985909 -75252 

78625 0.986163 78480 
 

-77234 0.992311 -76946 

80479 0.992011 80149 
 

-79151 0.995813 -78592 

82332 0.995414 81786 
 

-81068 0.997724 -80195 

  Weibull Slope         =          1.353 
 

  Weibull Slope        =          1.355 

  Truncation Value    =          60605 
 

  Truncation Value   =         -58804 

  Scale                      =          6101       
 

  Scale                      =         -5643 

  Mean X                   =           5593 
 

  Mean X                  =          -5171 

  Variance X              =       17472456 
 

  Variance X             =       14884569 

 

 

Table 1.3 shows that Weibull parameters are given in SPECTRA. The problem that 

was encountered was whether or not the given parameters could be used as the values 

for a largest distribution. Knowing if the parameters were for a largest distribution 

was important as the ability to use the given parameters directly would save time and 

allow a direct extension of SPECTRA. If they could not then a methodology had to be 

used to take the histogram data and forecast distributions for the following years. 
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1.3. Research Objectives 

The objectives of the research presented herein were to firstly characterize the 

underlying nature of SPECTRA’s output and meaning of the Weibull distribution 

parameters produced by going through a statistical analysis, and secondly to develop 

a method of using the SPECTRA fatigue load output and extending it for forecasting 

extreme wave loading distributions to be used in reliability calculations similar to 

Equation 1-1. Extending the utilization of SPECTRA beyond the current analysis to 

forecasting and ship reliability would provide a more powerful tool that could be used 

in extreme lifetime reliability analysis, not just the cumulative lifetime load effect. 
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2. Methodology 

2.1. Methodology Summary 

2.1.1. Methodology Steps 

The methodology consisted of the following steps:  

1) Define assumptions 

2) Make initial data observations 

3) Determine parent distributions 

4) Analyze parent distributions 

5) Estimate Moments of Extreme Load Distributions based on Step 4 

6) Analyze Results of Forecasting 

The steps utilized entailed statistical analysis methods. The Excel add-on program 

@Risk (Palisade 2010) was used to expedite this process. @Risk extends Excel 

functionality by adding a wide range of statistical and probabilistic functions, and 

simulation capabilities. For the purposes of this analysis only the statistical functions 

were required. 

 

2.1.2. Overview of Extreme Value Analysis and the Weibull Distribution 

A primary consideration in life-time reliability assessment is the definition of the 

extreme value distribution of loads for which a brief overview is provided in this 

section. The premise behind extreme loads is that in designing buildings, vessels, or 

other structures which will be subjected to natural loads that vary widely it is 

important to design for the likely largest loading anticipated. Historical data are 

available for certain cases however most are system dependent. Accounting for and 
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predicting largest loads usually involves probabilistic techniques. Common examples 

of largest loads include 100 year floods, 500 year earthquakes, and so on. Finding 

such quantities necessitates that the distributions for those years be forecasted. In 

general their PDF and CDF will take the respective forms of (Ayyub 2011a). 

 
    

                 
    (2-1) 

 
    

           
  (2-2) 

 

where k is the number of observations or, in the case of this report, years. Using these 

the moments can be found and the design loadings determined. The calculation of the 

moments is generally non-trivial, and the use of computer software to determine them 

is commonplace. Most regularly used cumulative distribution functions and 

probability density functions cannot be integrated into closed form solutions, and 

numeric procedures have to be used to evaluate them. In the case of wave loading the 

Weibull smallest distribution is frequently chosen (Ayyub 2011b). Although it is 

called the smallest distribution it is lower bounded, making it better suited than the 

Weibull largest distribution for this case. The Weibull is flexible in the shape its PDF 

can represent by changing the shape parameter. Another advantage is when the 

Weibull is reduced to a two parameter distribution the method of moments (Al-

Fawzan 2000) provides an extremely effective parameter estimation process.  

 

2.2. Assumptions 

The primary assumption in the analysis was that the Weibull was a good model for 

the data. The Weibull is often used for modeling extreme events and SPECTRA gave 

parameters for such a distribution as part of its output. Using a Weibull allowed a 
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direct comparison for the SPECTRA values and modeled parameters. Another 

assumption made in using the Weibull was that it was unshifted so its lower bound 

was zero. Doing so was equivalent to saying that the still-water bending moment was 

zero. The two previous assumptions led to the following model which was used 

throughout this report. 

 

        
 

  
     

  
 
 
 
 

 (2-3) 

 

          
  

 
 
 
 

 
(2-4) 

 

with 

 

shape factor = α ≥ 0 

 

scale factor  = β ≥ 0 

 

Equation 2-3 is the most regularly used form of the Weibull and was chosen mainly 

for computational ease (Ayyub 2011a). Its use was to be proven justifiable through 

the process of analysis. For the purposes of verifying the moment estimation 

methodology the location of the lower bound was not paramount. The measure of 

effectiveness was whether or not the predictions for any initial mean and standard 

deviation converge with the actual distribution of interest. Making the zero shift 

assumption presented a risk of skewing the mean and standard deviation of the 

histogram data away from the actual values. Any concerns from the shift assumption 

would be dealt with in the analysis and recommendations. 
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If a shift was required a general procedure was determined to allow a two parameter 

Weibull distribution to be used. Appendix A it illustrates that the scale factor for a 

distribution taken from some shifted value “ω” to the origin is 

 
         (2-5) 

 

where    is the scale parameter from a distribution fitted to the histogram data with 

the moment values shifted as follows. 

 
         (2-6) 

 

The assumption made in Equations 2-3 and 2-4 was that the moments induced on a 

ship remained in the linear elastic range. Assuming they were in a linear elastic range 

meant they remained additive. Considering the nature of the reliability model given in 

Equation 1-2, this assumption was taken as valid. Any extension of uncoupling 

moments in other circumstances however would require a more rigorous examination. 

An advantage of uncoupling the still-water bending moment is that it makes the 

distribution based on    equivalent to the wave loading only. Therefore a distribution 

based on    allowed the resulting distributions to be used directly in Equation 1-1. 

 

The histogram served as the statistical basis for representing the underlying 

distribution. Assuming that the fatigue loading histogram could be used similar to a 

loading one meant a final validation of the methodology would be required. Fatigue 

loading gives the number of cycles a ship experiences at a given bending moment, so 

it seemed reasonable to expect that it could represent a general wave loading 

distribution.  
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The purpose of a histogram is to visually approximate the underlying distribution in a 

data set. Accuracy of a model fitted to those histogram points is dependent on the 

number of bins chosen. Too few bins results in insufficient points to define a 

distribution adequately, while too many allows noise in the data to affect the 

distribution (Ayyub 2011a). It was assumed out of necessity that the histogram bins 

were properly defined as their generation method was unknown. 

 

In order to use the @Risk software the sagging moments were all made positive in 

calculations. Doing so had no actual bearing on the shape and scale factors of the 

Weibull and simply mirrored the distribution about the y-axis. Since @Risk runs 

through Excel, Excel was also used for any non @Risk calculations to maintain 

commensurate precision in any results. 

 

Two final assumptions served as a check of validity of the results in general. Navy 

guidelines require that the coefficient of variation of wave loading at 15 years be 

roughly 0.25 (Ayyub 2011b). All values obtained were checked against this 

benchmark in the final methodology Validation. The standard deviation would be 

expected to converge as the value of k increases, as the tails of a distribution die out 

under repeated multiplications. 
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2.3. Initial Data Observations 

The analysis contained here was contingent upon hypothetical data provided from 

SPECTRA. Hogging and sagging moment histograms from SPECTRA were provided 

for 1 year, as well as for 15 to 50 years in 5 year increments. The reliability 

calculations included the Weibull parameters in question. All data was supplied “as 

is” and contained none of the input used to generate it. Using “as is” data lead to 

certain aspects regarding the accuracy of the program to be taken as given for lack of 

a way to independently validate them. Program code for SPECTRA was not 

accessible due to it being proprietary. 

 

Prior to a more rigorous analysis of the data it was examined for any obvious insights 

that could provide guidelines or checks. Reviewing the histogram data from the 

output it appears that the sagging and hogging moment distributions were roughly 

symmetric about the still water bending moment. The symmetry in the data provided 

a sanity check of any generated parent distributions. Secondly the given parameters 

for the Weibull fit seem off. For the years of interest they are almost constant which 

would not be expected of a largest distribution. The mean and standard deviation 

appeared to be near constant as well. Constant values suggested that they are either 

predefined in doing the programs Weibull calculations, or indicated the distribution 

for each year is not actually altering any of the histogram statistics. Thus by adding 

more years more refinement in statistical moment estimation was added. The nature 

of these problems warranted investigation in the course of the analysis. 
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The maximum wave loading also increased from year to year due to an increased 

exposure to the random sea environment. This trend makes sense as the more years a 

ship is at sea the more likely it is that it will experience an extreme wave loading, 

while not surprising it did add some confidence that the wave loading calculations 

were correct. Thus the hypothetical data provided was assumed to represent a valid 

SPECTRA result output. 

 

Some observations were made on the way in which SPECTRA displayed the output. 

SPECTRA used both exceedance levels which are the probability of a wave inducing 

a higher bending moment than the one in question and fatigue loads. This division 

proved useful in determining how to proceed with the creation of the parent 

distributions. SPECTRA also handled whipping as a separate variable and added it 

through some mathematical means to the original bending moments independently 

(Nikolaidas 1993). In this analysis the histograms including whipping effects were 

utilized. 

 

2.4. Basic Statistical Analysis 

2.4.1. Mean and Standard Deviation 

Estimation of the mean and standard deviation of the given histogram data were 

calculated independently of the values given in SPECTRA to validate them. The 

calculations were done assuming that the bin count could be treated as weight factors. 

Table 2.1 displays that the mean and standard deviation show little deviation as time 

increases. A general trend of increasing average can be seen in the results but it is not 
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significant. Table 2.1 indicates additional years only add slightly more refinement to 

the statistical measures, and not any real additional information. The standard 

deviation showed no trend and remained in a relatively tight spread, suggesting it was 

only affected by the randomness of the probabilistic techniques used in SPECTRA, 

and not by additional time.  

 
Table 2.1. Histogram Mean and Standard Deviations 

 
Hogging Sagging 

Year Mean 
Standard 
Deviation 

Mean 
Standard 
Deviation 

1 8396.017 4848.457 4407.853 4887.619 

15 8647.731 4794.381 4647.663 4821.567 

20 8672.877 4788.977 4675.995 4811.643 

25 8692.673 4785.624 4698.201 4805.367 

30 8709.832 4781.479 4712.524 4799.522 

35 8722.692 4777.891 4725.762 4795.668 

40 8735.085 4775.172 4739.057 4791.727 

45 8746.725 4772.5 4751.861 4787.59 

50 8754.203 4771.591 4757.644 4785.634 

 

The calculated means and standard deviations based on the histogram data were off 

when compared to the given mean and standard deviation by SPECTRA. There is the 

possibility that the differences in the means was a result of the mean in SPECTRA 

being calculated using the individual point data as opposed to the histogram data. Still 

the discrepancy placed sufficient doubt that the mean given in the output refers to the 

given data that it was neglected for actual use. 

2.4.2. Examination of SPECTRA Weibull Parameters 

The check of the mean and standard deviation indicated that they may be related to 

the given Weibull parameters. Since the moments do not agree with the histogram 

and that they are positioned in the same area of the output guided the decision. It 

appeared that the given statistics were for the Weibull distribution but they initially 
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appeared to be far too low for that to be the case. There was also the given shift 

parameter whose determination is not explained in the program documentation 

(Michaelson 2000). As noted before the shape parameter is independent of any shift 

so it was decided to estimate a Weibull distribution using the given means and 

standard deviations. Using the method of moments, a table look-up method, Weibull 

parameters were calculated based on their statistical moments, resulting in Table 2.2 

(Al-Fawzan 2000). 

Table 2.2. Weibull Parameters for Given SPECTRA Moments versus Weibull Parameters Given 

by SPECTRA 

  
Hogging Sagging 

  Year Shape Scale Shape Scale 

SPECTRA 
15 

1.426 6405 1.327 5383 

Approximation 1.425 6404 1.328 5384 

SPECTRA 
20 

1.434 6440 1.334 5434 

Approximation 1.433 6439 1.335 5434 

SPECTRA 
25 

1.441 6468 1.338 5476 

Approximation 1.440 6467 1.339 5477 

SPECTRA 
30 

1.446 6489 1.343 5503 

Approximation 1.445 6489 1.344 5504 

SPECTRA 
35 

1.451 6507 1.347 5525 

Approximation 1.450 6506 1.346 5525 

SPECTRA 
40 

1.323 5750 1.350 5544 

Approximation 1.323 5749 1.349 5544 

SPECTRA 
45 

1.326 5761 1.352 5565 

Approximation 1.326 5761 1.352 5565 

SPECTRA 
50 

1.329 5772 1.352 5592 

Approximation 1.328 5771 1.352 5592 

 

The agreement between the values in Table 2.2 suggests that the proposed reasoning 

is correct. Therefore the given Weibull parameters were based on a shifted 

distribution which had the SPECTRA provided mean and standard deviation of a 

zeroed distribution and the given shift value. A check of this reasoning was done by 

examining how the distribution fitted the given values in the CDF table provided in 
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the SPECTRA reliability section. The 30 year hogging data was used for illustration 

purposes in Table 2.3 though the procedure was repeated for all available years. 

            Table 2.3. Analysis of 30 Year Reliability Data 

Moment Reliability SPECTRA Fit Generated Fit 

76153 0.361834 76131 76075.69 

78378 0.596576 78414 78413.96 

80602 0.767188 80765 80765.32 

82827 0.873677 83073 83073.36 

84041 0.933958 85299 85299.76 

87276 0.96627 87437 87438.44 

89501 0.983047 89494 89496.01 

91725 0.991584 97480 91482.95 

93950 0.995866 93406 93409.79 

96174 0.997989 95282 95285.78 

98399 0.999031 97115 97119.12  

 

Table 2.3 indicates that using the Weibull parameters as prescribed in this section 

would provide a distribution that matches the SPECTRA fit. Differences in the results 

were considered to be due to slight rounding errors. 

 

The SPECTRA provided Weibull parameters do not follow the steps required for a 

valid extreme value analysis. The remainder of the analysis focused on a true extreme 

value analysis and a method to take the SPECTRA data and utilize it in reliability 

calculations. 

 

2.5. Estimation of Parent Distributions 

2.5.1. General Procedure 

The first step was to create the parent distributions to be used in developing the 

forecasted distributions. Previous analysis suggested that the mean and standard 

deviation of any year could theoretically be chosen, however to conform with general 
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practices and for future calculation purposes the first year data was chosen to be the 

basis of the parent distribution. Creating the parent distributions required using the 

histogram data taken from the SPECTRA for the one-year data and converting the 

“number of cycles at moment” column to CDF values. The results of the conversion 

step are given in Table 2.4. For calculation purposes frequency is the number of 

cycles at the particular moment over the total number of cycles, and the CDF value is 

the sum of all preceding frequencies including the current one. 

Table 2.4. Conversion of Histogram Data to CDF Values 

Hogging 
(ft-lton) 

# Cycles 
@ 

Moment 

Sagging 
(ft-lton) 

# Cycles 
@ 

Moment 

% 
Frequency 

CDF 

0 0 0 0 0 0 

5078 727871.5 1083 727871.5 0.514820818 0.514821 

8155 268859.9 4159 268859.9 0.190163582 0.704984 

10617 163076.3 6618 163076.3 0.115343247 0.820328 

13080 100507.5 9082 100507.5 0.071088561 0.891416 

15545 61538.19 11547 61538.19 0.043525729 0.934942 

18010 37336.66 14015 37336.66 0.02640808 0.96135 

20475 22455.66 16502 22455.66 0.015882802 0.977233 

22940 13393.37 19020 13393.37 0.009473083 0.986706 

25408 7921.431 21588 7921.431 0.005602799 0.992309 

27882 4643.357 24227 4643.357 0.003284229 0.995593 

30363 2695.764 26954 2695.764 0.001906704 0.9975 

32855 1549.315 29775 1549.315 0.001095825 0.998595 

35359 881.276 32676 881.276 0.000623323 0.999219 

37876 496.15 35643 496.15 0.000350925 0.99957 

40404 276.527 38617 276.527 0.000195587 0.999765 

42945 152.629 41600 152.629 0.000107954 0.999873 

45491 83.459 44539 83.459 5.90302E-05 0.999932 

48029 45.23 47322 45.23 3.1991E-05 0.999964 

50512 24.301 49890 24.301 1.7188E-05 0.999981 

52935 12.949 52242 12.949 9.15878E-06 0.999991 

55340 6.845 54423 6.845 4.84144E-06 0.999995 

57748 3.59 56551 3.59 2.53919E-06 0.999998 

60164 1.868 58685 1.868 1.32123E-06 0.999999 

62584 0.965 60825 0.965 6.82541E-07 1 
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Table 2.5. Comparison of Fitted Parent Distribution with SPECTRA Source Data 

Case 
 

Shape Scale 
Mean 

(ft-lton) 
Std Dev 
(ft-lton) COV 

RMS 
Error 

Hogging 

Fitted 1.1903 6750.5 6363.353 5367.018 0.843426 0.00224 

Histogram - - 8396.017 4848.457 0.834023 - 

SPECTRA 1.353 6101 5592.348 4178.457 0.747174 - 

Sagging 

Fitted 0.58239 2269.2 3553.411 6485.456 1.825135 0.0167 

Histogram - - 4407.853 4887.619 1.320361 - 

SPECTRA 1.355 5643 5171.186 3858.442 0.746143 - 

 

Figure 2.1 plots the parent distributions alongside of the SPECTRA histogram data 

allowing for a visual comparison. 

 

 
Figure 2.1. (a) Fitted Hogging Moment Parent Distribution versus the SPECTRA Histogram 

Data 

 
Figure 2.1. (b) Fitted Sagging Moment Parent Distribution versus the SPECTRA Histogram 

Data 
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2.5.2. Parent Distribution Analysis 

An initial inspection of the results of Figure 2.1 and Table 2.5 was done to check their 

validity. The root mean square error (RMS) with the SPECTRA histogram output was 

the first measure and in all cases it was fairly low. A low RMS leant credence to the 

use of the Weibull as a valid model. Comparing the statistical moments of each 

distribution there was a large discrepancy. Differences were a result of @Risk 

treating the data as histogram points, while the histogram moments were done using a 

weighted average and standard deviation. Despite the fitted distributions being off it 

was decided to use them. Using the generated parent distribution was the only way to 

compare the accuracy of the estimation methods. Any estimation comparison required 

a baseline and the fitted distributions provided that. Corrections to the parent 

distribution generation process would be accounted for once a valid estimation 

procedure was obtained. 

 

Two items had to be considered, the significant difference between the SPECTRA 

parameters and parent distribution parameters, and the loss of symmetry in the data. It 

is possible that the mean reported by SPECTRA was calculated based on all 

generated data points causing the difference. Still these values cannot be used 

confidently and were kept only for comparison purposes. The decision as to whether 

or not to proceed with the fitted distributions needed to be made. Due to the closeness 

of fit with the histogram data they could be used for the purposes of estimation 

method comparison. The overall accuracy in terms of a final methodology would be 

checked after a complete evaluation of the proposed approximation process.  
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The loss of symmetry in the Weibull parameters could be corrected by removing the 

shift as shown in Appendix B. Due to the difference in how @Risk viewed the 

histogram from the weighted view these parameters were considered equally invalid. 

As the SPECTRA Weibull parameters were found to be invalid for use in a largest 

distribution the only question remaining was how to take the histogram data and use it 

to generate largest distributions. Any of the steps pertaining to the estimation process 

were going to determine which moment determination method was most suitable for 

use. Therefore the only requirement was that the methods all use the same initial data 

and that the distributions fit to them were valid. So long as the initial parameters were 

consistent for all methods a justifiable comparison could be made. One of the shape 

parameters being less than one also proved useful. Since the Weibull is very sensitive 

to the shape parameter it was deemed beneficial to see how the difference would 

affect the forecasting results. Loss of symmetry in the parent distributions would be 

handled in the final proposed process. An accuracy check based on the required 0.25 

coefficient of variation would be done once the estimation process for forecasting was 

determined. 

 

2.6. Extreme Value Analysis and Estimation Method 

2.6.1. Estimation Methods 

The point of forecasting is to get the mean and standard deviation for a given year in 

the future. Thus the parent distributions were used to get the estimated distributions. 

Determining the most efficient method to do so utilized four approaches. All methods 
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used the same parent distributions to facilitate comparison. As such the moments 

obtained should trend towards the same values. The four methods examined were the 

distribution fitting method, which was similar to the SPECTRA program, integration, 

both numeric and symbolic, and an approximation. 

 

a. The initial method was the same as in the parent distribution 

estimation. This technique is based on the concept that if data points 

are generated point-wise from a distribution then the distribution fit to 

them should be the same. Accuracy is dependent upon the number of 

generated points and errors can be introduced through precision losses. 

Many of the values that are manipulated are close to the upper and 

lower bounds of Excel’s precision limit. With sufficient points an 

accurate model could be produced. The main purpose of using this 

method was to supply a base line for comparison for the subsequent 

methods. 

 

Front end calculations were required to be able to fit the distribution. 

First the parent distribution was used generate CDF values for discreet 

values of the moment in increments of 1000 ft-lton. The generated 

points were then raised to the power of the year of interest to produce 

the CDF value of the largest distribution. A distribution was fit to the 

newly created CDF points using @Risk. Appendix C-1 provides a 

numeric example of the process used here.  
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b. The second method a numeric integration technique to determine the 

mean and standard deviation. For a continuous distribution the mean 

and variance are defined respectively as 

 

       

 

 

      (2-7) 

 

              

 

 

      (2-8) 

 

where the standard deviation is the square root of the variance. In the 

case of the extreme value distribution equation with the Weibull 

function as the parent distribution Equations 2-7 and 2-8 become 
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Equations 2-9 and 2-10 come courtesy of Probability, Statistics, and 

Reliability for Engineers and Scientists (Ayyub 2011a). 

 

Front-end calculations were required for numeric integration as well. 

An initial step size was chosen and the value of equation 2-9 was 

found using the trapezoid rule to find the approximate areas of each 

interval. Any valid numeric integration technique could be used, and 

the trapezoid rule was only picked due to its ease in implementation. 

The calculated values were summed to find the approximate integral. 
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The mean was calculated first and then used to calculate the variance. 

Appendix C-2 contains the process as it was done for the hogging 

parent distribution for 15 years.  

 

An initial step size of 1000 ft-lton was chosen and adjusted until the 

relative error between step size iterations was less than 1% for both the 

mean and standard deviation. Such precision is not necessarily 

required and was only used for the sake of comparison. In the hogging 

case a 1000 ft-lton step size proved sufficient for a high degree of 

accuracy. The sagging moment was not as precise. Since the Weibull 

function is highly sensitive to changes in either the shape or scale 

factors providing a recommended number of intervals is not feasible. 

That is also true for the upper cutoff limit of the integration. Thus 

achieving a specific accuracy level in the general case is not feasible 

without multiple calculations. 

c. Distribution fitting and numeric integration involved repeated 

calculations and several data points to ensure accuracy. An 

approximation that would reduce calculations was used to see if it was 

valid for the input. If so it would increase the efficiency of the 

estimation process. The reasoning behind such an approximation is 

that when raising a distribution to large values an extreme distribution 

will approach an asymptotic form that is independent of the exact 

parent distribution from which it was generated. Instead it will be more 
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affected by the properties of the tail. If the parent distribution has 

exponential tails as the Weibull does it can be shown that the extreme 

value distribution will approach a double exponential asymptotic form 

(Ayyub 2011a). Therefore it may be possible to approximate the mean 

and standard deviation of the parent distribution generated from 

SPECTRA using Equations 2-11 and 2-12 (Ayyub 2011a). 
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d. The exact mean and standard deviation were obtained through direct 

integration of equations 2-7 and 2-8, they are found in Equation 2-15 

and 2-16. 
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  (2-16) 

 

with “μ” and “σ” being the mean and standard deviation of the parent 

distribution respectively and “k” being the number of years. 

Equations 2-15 and 2-16 are only valid for a distribution with a zero 

lower bound. If the function is shifted in any way from this a 
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numerical integration method will most likely be required unless the 

procedure followed in Appendices A and B is used. The derivation of 

2-15 and 2-16 can be found in Appendix C-3. 

 

A full comparison of all results is given in Table 2.6 on the following pages. In 

analyzing the tables note that the “Fitted” rows correspond to section 2.6.1a, 

“Numeric Integration” to 2.6.1b, “Exact” to 2.6.1d, and “Approximation” to 2.6.1c. 

The “SPECTRA” rows give the mean and the standard deviation of the SPECTRA 

reliability data. The “n” column is the power that any distributions were raised to; 

while dashes mean that the specific column did not apply to that method. Plots of the 

variation of mean and standard deviation of the mean with the number of years were 

also generated and can be found in Figure 2.2 immediately following the summary 

tables. 

 

  



 

 30 

 

Table 2.6. (a) Summary of Moment Estimation Method Results for Hogging Moment 

Year 
 

n 
Mean 

(ft-lton) 
Std Dev 
(ft-lton) COV 

RMS 
Errora 

RMS 
Errorb 

15 

Fitted 15 17849.62 5408.718 0.303016 0.0174 0.2869 

Numeric  15 18325.7 5771.4 0.314935 - - 

Exact 15 18325.7 5771.4 0.314935 - - 

Approximation - 16117.7 2957.767 0.18351 - - 

SPECTRA - 5821 4143.183 0.711765 - - 

20 

Fitted 20 19146.54 5384.972 0.28125 0.0183 0.3113 

Numeric 20 19638.74 5730.962 0.291819 - - 

Exact 20 19638.74 5730.962 0.291819 - - 

Approximation - 16788.4 2812.165 0.167506 - - 

SPECTRA - 5848 4138.875 0.707742 - - 

25 

Fitted 25 20130.02 5354.615 0.266001 0.0189 0.3289 

Numeric 25 20651.46 5697.971 0.275911 - - 

Exact 25 20651.46 5697.971 0.275911 - - 

Approximation - 17288.6 2712.94 0.156921 - - 

SPECTRA - 5870 4137.097 0.704787 - - 

30 

Fitted 30 20938.12 5315.123 0.253849 0.0193 0.3429 

Numeric 30 21474.79 5670.462 0.264052 - - 

Exact 30 21474.79 5670.462 0.264052 - - 

Approximation - 17685.41 2639.225 0.149232 - - 

SPECTRA - 5886 4133.717 0.702297 - - 

35 

Fitted 35 21617.78 5305.306 0.245414 0.0197 0.354 

Numeric 35 22167.88 5647.032 0.254739 - - 

Exact 35 22167.88 5647.041 0.25474 - - 

Approximation - 18013.15 2581.376 0.143305 - - 

SPECTRA - 5899 4130.835 0.70026 - - 

40 

Fitted 40 22209.37 5283.498 0.237895 0.0199 0.3634 

Numeric 40 22765.96 5626.716 0.247155 - - 

Exact 40 22765.96 5626.686 0.247153 - - 

Approximation - 18291.63 2534.224 0.138546 - - 

SPECTRA - 5292 4037.438 0.762932 - - 

45 

Fitted 45 22729.37 5269.292 0.231827 0.0201 0.3715 

Numeric 45 23291.69 5608.84 0.240809 - - 

Exact 45 23293.72 5600.754 0.240441 - - 

Approximation - 18533.28 2494.71 0.134607 - - 

SPECTRA - 5300 4034.893 0.761301 - - 

50 

Fitted 50 23188.34 5258.44 0.226771 0.0202 0.3784 

Numeric 50 23760.54 5592.919 0.235387 - - 

Exact 50 23862.68 5152.75 0.215933 - - 

Approximation - 18746.4 2460.886 0.131272 - - 

SPECTRA - 5308 4034.813 0.760138 - - 

 a RMS error with respect to generated points to fit distribution   

 b RMS error with respect to SPECTRA Data 
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Table 2.6. (b) Summary of Moment Estimation Method Results for Sagging Moment 

Year 
 

n 
Mean 

(ft-lton) 
Std Dev  
(ft-lton) COV 

RMS 
Errora 

RMS 
Errorb 

15 

Fitted 15 18330.65 11137.58 0.607594 0.013 0.3186 

Numeric 15 19321.62 13451.77 0.696203 - - 

Exact 15 19325.93 13482.66 0.697646 - - 

Approximation - 15340.48 3574.139 0.232987 - - 

SPECTRA - 4952 3768.508 0.761007 - - 

20 

Fitted 20 20822.39 11710.93 0.56242 0.0143 0.3554 

Numeric 20 21953.8 14147.65 0.644428 - - 

Exact 20 21959.55 14185.83 0.645998 - - 

Approximation - 16150.95 3398.195 0.210402 - - 

SPECTRA - 4993 3780.586 0.757177 - - 

25 

Fitted 25 22894.18 12158.52 0.531075 0.0152 0.3818 

Numeric 25 24113.34 14676.53 0.608648 - - 

Exact 25 24120.52 14721.58 0.610334 - - 

Approximation - 16755.38 3278.292 0.195656 - - 

SPECTRA - 5030 3797.474 0.754965 - - 

30 

Fitted 30 24642.77 12520.99 0.5081 0.016 0.3535 

Numeric 30 25952.55 15101.63 0.581894 - - 

Exact 30 25961.17 15153.22 0.583688 - - 

Approximation - 17234.89 3189.215 0.185044 - - 

SPECTRA - 5051 3801.111 0.752546 - - 

35 

Fitted 35 26182.19 12840.89 0.490444 0.0166 0.3721 

Numeric 35 27559.09 15456.14 0.560837 - - 

Exact 35 27569.14 15514.03 0.562732 - - 

Approximation - 17630.93 3119.311 0.176923 - - 

SPECTRA - 5069 3804.434 0.75053 - - 

40 

Fitted 40 27559.67 13135.61 0.476624 0.0172 0.3883 

Numeric 40 28988.3 15759.64 0.543655 - - 

Exact 40 28999.8 15823.59 0.545645 - - 

Approximation - 17967.43 3062.334 0.170438 - - 

SPECTRA - 5084 3807.607 0.748939 - - 

45 

Fitted 45 28793.95 13345.6 0.463486 0.0176 0.403 

Numeric 45 30277.55 16024.58 0.529256 - - 

Exact 45 30290.68 16094.04 0.53132 - - 

Approximation - 18259.44 3014.585 0.165097 - - 

SPECTRA - 5102 3814.669 0.747681 - - 

50 

Fitted 50 29912.66 13576.14 0.453859 0.018 0.4156 

Numeric 50 31453.27 16259.4 0.516938 - - 

Exact 50 31473.06 16324.55 0.518683 - - 

Approximation - 18516.98 2973.713 0.160594 - - 

SPECTRA - 5126 3831.684 0.7475 - - 

 a RMS with respect to generated points to fit distribution    

 b RMS with respect to SPECTRA Data 
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Figure 2.2. (a) Variation of mean and Standard Deviation with Number of Years for Hogging 

Moment 
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Figure 2.2. (b) Variation of Mean and Standard Deviation with Number of Years for Sagging 

Moment 

 

2.6.2. Analysis of Moment Estimation Methods 

The results of Section 2.6.1 could be directly compared since all methods were based 

off of the same parent distributions. A validation of the overall process is found later 
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in Section 2.6.3. Initially the analysis focused on how accurate the forecasting results 

were in comparison to each other. All relative errors are relative to moments and 

parameters calculated from the numeric method. 

 

The approximation method did not fit with any of the other methods of analysis. Its 

relative error of the mean with the integration value for the hogging moment started 

off at 12% at the 15-year mark and increased to 21.1% at the 50-year mark. Standard 

deviations calculated from this method had a minimum relative error of 48.8%. The 

results indicate that the proposed approximation was insufficient to use a forecasting 

tool. Its reported means and standard deviations were all under values and the rate of 

deterioration in the predictions is rapid. 

 

The quality that the method of distribution fitting produced for the hogging 

distribution was also reviewed. Relative errors started off at 2.60% and 6.28% off the 

standard deviation. Unlike the approximate method distribution fitting results 

improved with an increase in years. Results of this nature were expected due to the 

fact that as the “k” value becomes large the exact form of the parent distribution 

becomes less important. For larger years, any minor discrepancies in the generated 

distribution become less noticeable. Figure 2.2-b displays a major discrepancy in the 

sagging distribution moments calculated from the integrated results. The standard 

deviation results are far off. The error in Figure 2.2-b was most likely a manifestation 

of the difference in the distribution fitting method minimizing the root mean square 

error while the other methods were based only off of the given mean and standard 
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deviation. The sagging moment’s parent distribution also began with error in the 

standard deviation. Therefore the divergence in the fitted distribution results was 

possibly propagation of the initial error. 

 

The results of the exact method and numerical integration were the last be examined. 

Their results started off identical for the hogging case but starting with the 45
th

 year 

minor differences emerged. These discrepancies eventually become significant, 

especially for the standard deviation for the 50
th

 year. Figure 2.2-a illustrates that the 

exact method eventually diverges significantly from the expected trend. The cause of 

this error lies in finding the nature of finding the exact solution. For the variance to be 

positive the following equation must hold true. 

 

        
 

 
   

   

 
 

 

     

        
 
   

    
  (2-17) 

 

Round off errors and precision loss in the binomial expansion can result in Equation 

2-17 becoming false. Errors in this analysis appear around the 40 to 45 year mark. 

After these years the loss of precision removes any confidence in the results. Any 

proposed method must account for the possibility of loss of precision in the binomial 

expansion calculations in order to be justified. 

 

Numerical integration gave results that seemed more appropriate for the 50
th

 year. 

The numeric approach also does not require the expansion of the (x-μ)
2
 term in order 

to calculate. Not calculating the (x-μ)
 2

 term means the variance will not become 
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negative. As the numerical integration method does not diverge it was more robust as 

an estimation method, though more time consuming. 

 

The sagging moment results of the exact method versus the numeric method did not 

have the same precision loss. However due to the nature of precision loss there is the 

possibility round off errors will cancel out. Despite appearing to be correct values 

above 40 years were considered unjustifiable to be used. Any other differences 

between the two results stemmed from the nature of the numeric method. Since 1% 

relative error was deemed acceptable in the analysis no further iterations were done 

once an error less than that level was reached. Considering for the 50-year standard 

deviation for the sagging moment the relative error between the final step of size 

chosen and the previously used step size was roughly 0.46% the accuracy of the 

integral could be expected to have a maximum error of that value. To compare the 

exact values, the approximated value and the error between successive step sizes is 

found in Table 2.7. 

 
Table 2.7. Sagging Exact Method versus Numeric Integration Results 

 

Mean Standard Deviation 

Year 
Exact  

(ft-lton) 
Numeric 
(ft-lton) 

Step Size 
Relative Error 

(%) 

Exact 
(ft-lton) 

Numeric 
(ft-lton) 

Step Size  
Relative Error 

(%) 

15 19325.93 19325.93 4.04165E-05 13482.66 13482.6 0.00070354 

20 21959.55 21953.8 -0.026109257 14185.83 14147.65 -0.267892208 

25 24120.52 24113.34 -0.029712432 14721.58 14676.53 -0.304562458 

30 25961.17 25952.55 -0.033126913 15153.22 15101.63 -0.338872899 

35 27569.14 27559.09 -0.03639381 15514.03 15456.14 -0.371321236 

40 28999.8 28988.3 -0.039540898 15823.59 15759.64 -0.402248965 

45 30290.68 30277.55 -0.042587936 16094.04 16024.58 -0.431900708 

50 31473.06 31453.27 -0.045549619 16324.55 16259.4 -0.460459332 
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Table 2.7 displays that the differences between the two methods are within the range 

of the maximum possible error due to the step sizes used in calculating the moments 

numerically. Therefore the exact method could be a very efficient tool so long as the 

“k” range is valid. 

 

2.6.3. Estimation Method Comparison 

Each method had to be analyzed for its suitability as an estimation process. Based on 

the results the approximation method was not viable as a means of forecasting. The 

approximation was the simplest to implement and required little time or 

computational power but it was not accurate enough to be justifiably used.  

 

The exact method was examined for its potential as an estimation process. It was 

accurate within the range in which it was valid. Programming the method was not 

difficult. Two main problems needed to be addressed before it could be used. One 

was the range of validity of the integration result. In order to use the exact method 

with confidence the range over which the equation could provide accurate results 

needed to be determined. Doing so required finding a range in terms of the shape 

factor and year. The other issue was the factorial nature of the permutations in the 

binomial expansion terms. Factorial calculations can become large quickly, reaching 

the overflow limit of a computer if the design life is large. Compounding the 

precision loss was the “α” term in the summation. A ship’s design life is generally 

short enough that any precision loss will only occur in later years. Then there was 

also the loss of precision as the number of year’s increases. 
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Implementing the exact method in a programming language like C++ or MATLAB is 

simple and does not require as many calculations as the other methods examined. The 

issue was whether or not a specific year can be determined where precision loss 

becomes problematic. MATLAB’s binomial expansion tool warns when the binomial 

expansion values will exceed the precision limit so a similar option could be 

programmed for the calculations here. These binomial expansion values are also 

multiplied by a term involving the shape factor “α”, potentially adding to the 

precision loss. The multipliers for the mean, denoted M, and standard deviation, 

denoted S, both for the i
th

 year in the summation terms of Equations 2-15 and 2-16 are 

given in Equations 2-18 and 2-19. 

 

   
     

        
 
   

 (2-18) 

 

   
     

        
 
   

 (2-19) 

 

In all cases Equations 2-18 and 2-19 will be less than one, as “α” is always positive. 

The additional precision loss due to the “α” term will be shifted towards the smallest 

order of magnitude of any binomial coefficient that can be accurately represented in a 

program. Depending on the desired level of accuracy Equations 2-18 and 2-19 could 

guide when to start using the numeric method. If the moments are only required to be 

found to the a 10
0
 order of magnitude then at the point that a code is only capable of 

giving results of that accuracy that value could be checked with numeric integration. 

After that point a numeric method could be used. 
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 A check of the numeric approach for accuracy and efficiency was done. Upfront 

calculations were required in order to find the PDF and generate the values for each 

step of the integrals. No curve fitting was required, nor any specialized software to do 

the integration. One source of complication was finding a step size that would result 

in the desired accuracy. For this data set there was a step size of 1000 ft-lton was 

generally sufficient but two complete integrations were required to verify the results. 

An advantage of the numeric approach was that was valid even if the lower bound 

was shifted away from the origin. Overall the approach proved robust, and easy to 

implement. The method was calculation heavy but did not require any distribution 

fitting, and it could produce results as accurately as desired.  

 

The distribution fitting method also needed to be looked at for its capabilities and to 

see if any improvement was actually made. Two primary faults with it were that it 

introduced errors in regression, and it required point generation and curve fitting. The 

former problem emanated from the repeated multiplication of small numbers 

together. Calculations of this type could cause a program to reach its precision limit 

quickly; resulting in any fitted curve produced providing incorrect parameters. 

Similar to the exact method the error appears for longer design lives and could cause 

the results to diverge from expected trends. The point generation was also 

problematic. Depending on the desired accuracy, and the nature of the distribution, a 

large number of points may be required in order to get an appropriate fit. 

Compounding the point generation problem is the curve fitting process, which took 

extra computational time. For the case examined here neither problem proved too 
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problematic. The @Risk software fit the distribution quickly and the calculations to 

generate the necessary points were easily handled. One benefit of the distribution 

fitting technique is that it is valid regardless of the lower bound of the Weibull 

meaning no shift or alteration to the given data. Comparing methods, distribution 

fitting was not as robust as the numeric integration and not as efficient as the exact 

method. 

 

It is the conclusion of this report that the mean and standard deviation be calculated 

by the exact method for k up to the point the loss of precision is unacceptable. Unless 

the forecasting goes beyond 40 years precision loss should not be problematic. The 

exact method requires fewer calculations and is accurate to the level of precision in 

any program used. A numeric approach is more robust and there are several 

algorithms optimized for this purpose and may also be used up to the 40 year mark. 

After 40 years all calculations should be done using a numerical approach. Numeric 

integration is more calculation heavy than the other two but resolves the issue of 

precision loss.  

 

2.6.3. Validation of Methodology 

 

A final check of if the fatigue load results could be used to estimate an extreme 

loading distribution was done. The mean and standard deviation of the hogging 

fatigue load histogram with the still-water bending moment uncoupled were 

calculated.  A parent distribution was generated and an estimated distribution was 
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found for the 15
th

 year. The coefficient of variation was calculated and compared to 

the 0.25 prescribed as per Ayyub 2011b. Table 2.8 displays these results 

 

 

 
Table 2.8. Results of 15 Year Estimation for Shifted Data 

1 year Histogram, Hogging 

Mean                      = 6396.017 

Standard Deviation = 4848.457 

  Parent Distribution 

Shape =       1.332183 

Scale  = 6958.167 

  15 Year Estimated Moments 

Mean                      = 16907.38 

Standard Deviation = 4733.13 

COV                        = 0.279945 

  15 Year Estimated Parameters 

Shape = 4.005104 

Scale  = 18651.93 

 

 

Symmetry of the hogging and sagging moments meant only the one of the bending 

moment results needed to be done. The exact method was used for calculating 

moments as 15 years was within the limit where precision errors were negligible. 

 

Table 2.8 shows that the coefficient of variation is fairly close to the 0.25 given. 

Considering that other sources accept up to 0.3 it can be stated that the fatigue data 

can be justifiably used in the manner that it was during the analysis for this data set. 
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3. Observations and Recommendations 
 

3.1. SPECTRA Values and a Proposed Forecasting Method 

3.1.1. SPECTRA Values 

Analyzing the SPECTRA output revealed that the given Weibull parameters were not 

fit to be used for an extreme value distribution. The mean and standard deviations 

presented are used for the reliability section of the output and not the statistical 

moments for the histogram data. Any given parameters or moments from SPECTRA 

cannot be used for the purposes of any extreme load estimation. 

3.1.2. Proposed Estimation Method 

 

The analysis lead to the development of a method to use the fatigue load data to 

generate extreme load distributions. An adaptive methodology was chosen to achieve 

a desired level of accuracy in an optimal manner. By utilizing both the exact method 

where it provides valid results and numeric integration when the precision limit of a 

program is starting to reach its limit the limitations of both can be overcome. Any 

program should us double precision in implementation and avoid a long double 

format due to the lack of consistency in how long double precision numbers are 

defined across compilers and programs. 

 

1) Calculate the mean and standard deviation from the histogram data treating 

the number of cycles at a given moment as weight factors. These values 

should have the still-water bending moment, if any, uncoupled so that they 

represent only the wave loading, this can be done based on the work of 
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Appendices A and B. Alternatively the still water bending moment may be set 

as zero for the input into SPECTRA, thus giving only the wave induced 

moments (Nikolaidas 1993).  

 

2) Using any valid parameter estimation technique like the method of 

moments (Al-Fawzan 2000)  or a root finding algorithm, estimate the parent 

distribution parameters using the statistical moments from Step 1 and zero as 

the shift factor. 

 

3) Estimate the mean and standard deviation for any year in question using an 

adaptive method. For times below 40 years the exact method provided here 

should be used, however beyond that it any values obtained from the exact 

method should be checked using a numerical method. When using numeric 

methods the moments should be recalculated until the relative error between 

two successive calculations achieves the desired level of accuracy. 

 

4) Estimate the parameters of a Weibull using the mean and standard 

deviation calculated in Step 3. 

 

5) Use these distributions in any reliability calculations, such as Equation 1-1. 
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Only checking the coefficient for a single data set does not provide sufficient grounds 

to state that the process is valid. Therefore Validation using other data sets is 

required. 

 

3.2. Applications 

The primary application of the proposed method is for extending the usefulness of the 

SPECTRA program or other similar programs. The need to predict extreme loadings 

is by not limited to naval engineering. Thus the use of this technique could be 

extended to several other areas in physics and engineering. Any structure involving a 

cyclic loading capable of producing extreme loading can benefit from using extreme 

value analysis on fatigue load data. Wind loading on bridges is one example of a 

situation where this procedure could be used. The loading in this analysis followed a 

Weibull but other distributions could be used.  

 

3.3. Further Research 

The analysis done here could be used as a basis for other studies. A full examination 

of the effects of the shape factor on the divergence of the integrals could be beneficial 

in increasing the efficiency of the any program that utilizes the proposed method.  A 

general means of finding a valid k range would also increase confidence in the 

results. Other approximation methods similar to Equations 2-11 and 2-12 could be 

developed. Doing so would increase the efficiency of the methodology by removing 

the need for a numeric integration process or an adaptive technique.  Sensitivity 

analysis to check error propagation through the process would help identify where the 
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most accuracy is lost. Knowing where the error is accumulated would allow 

recommended tolerances to be determined and which areas require further 

refinement. Other studies could potentially be done to check applicability to other 

engineering fields and systems. 
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4. Conclusions 
 

Histograms and probability distributions based on lifetime fatigue load data are 

needed for ship design. Several programs, like SPECTRA, have been coded 

specifically to estimate their characteristics. However the extreme loading events that 

a ship may encounter are also of importance. An analysis was done to see if it was 

possible to extend the functionality of lifetime fatigue loading output for use in 

estimating extreme loading distributions. Doing so entailed an analysis of the 

hypothetical SPECTRA output for its validity in the use of an extreme value 

estimation. Analysis showed that only the fatigue load histograms were usable and 

parent distributions were generated from it and compared. Two predominant issues in 

the resulting distributions were found, the means of the fitted distribution did not 

agree with the calculated histogram mean, and the symmetry of the histogram loading 

data was lost. The analysis continued using only the @Risk distributions and 

statistical moments to allow a baseline for the comparison of the moment estimation 

methods. Errors in the validity of the method would be adjusted in the final 

recommendations after a method was chosen and verified. The comparison consisted 

of a proposed approximation method which was wholly unsuitable, a distribution 

fitting method using @Risk, numeric integration, and an exact method involving the 

closed form solution for the mean and variance of the k
th

 year. Comparing results 

showed the numeric method proved the most robust, while the exact method was 

most efficient. Precision loss in calculating the exact moments became problematic 

after 40 years due to precision loss. A combination of the exact method up to 40 
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years, combined with a numeric integration method proved to be most efficient. The 

proposed method is as follows 

 

1) Calculate the mean and standard deviation from the histogram data treating 

the number of cycles at a given moment as weight factors. These values 

should have the still-water bending moment, if any, uncoupled so that they 

represent only the wave loading, this can be done based on the work of 

Appendices A and B. Alternatively the still water bending moment may be set 

as zero for the input into SPECTRA, thus giving only the wave induced 

moments (Nikolaidas 1993).   

 

2) Using any valid parameter estimation technique like the method of 

moments (Al-Fawzan 2000)  or a root finding algorithm, estimate the parent 

distribution parameters using the statistical moments from Step 1 and zero as 

the shift factor. 

 

3) Estimate the mean and standard deviation for any year in question using an 

adaptive method. For times below 40 years the exact method provided here 

should be used, however beyond that it any values obtained from the exact 

method should be checked using a numerical method. When using numeric 

methods the moments should be recalculated until the relative error between 

two successive calculations achieves the desired level of accuracy. 

 



 

 48 

 

4) Estimate the parameters of a Weibull using the mean and standard 

deviation calculated in Step 3. 

 

This adaptive method utilizes both the efficiency of the exact method for years below 

40, and the robustness of the numeric integration after that. 

 

The method proposed in this analysis does have limitations. Unavailability of 

SPECTRA meant only hypothetical data was obtained, and only one set. Therefore 

the check of the coefficient of variation being near the acceptable value is possibly a 

statistical anomaly. Ideally more data sets would have been checked, allowing more 

confidence in the validity of the method. The effect of the shape factor on the 

divergence of the exact method is also not fully known. The cutoff for the use of the 

exact method must be carefully chosen as a result and may be ship dependent.  

 

Despite the limitations, the method proposed here has the potential to extend the 

functionality of fatigue load data ships and possibly other structures. Any system 

subjected to a cyclic loading that can also produce extreme events may benefit from 

its usage. The procedure provided does not require any structure dependent 

calculations in determining the estimated distributions. All that is required is a check 

that the distributions produced are valid based on historical data or engineering 

judgment. Further validation of the procedure is required and the proposed method 

remains only a possible estimation method and not a fully reliable one. 
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Appendices 
 

Appendix A. Weibull Shifted Distribution to Non-shifted Distribution 

Assume the following set of data 

 

                  
 

follows a Weibull distribution shifted from the origin by some known quantity ω. The 

mean for this set is 

 

   
   

 
   

 
 

 

The mean and standard deviation in terms of the Weibull parameters are, respectively  

 

                
 

  
   

 

Next assume that each value in X is shifted back to the origin, or 

 

                           
 

With a mean in terms of the Weibull of 

 

             
 

  
   (A-1) 

 

This changes the mean equation to 

 

      
        

   

 
 

     
 
   

 
 
  

 
      

        
 

So 
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Inserting Equation A-1 

 

         
 

  
              

 

  
    

 

In the event that the entire distribution is shifted a constant the shape factor remains 

unaffected, so αS = α0 canceling out the gamma function terms. As such 

 

             
 

Therefore it can be stated that the scale factor for a shifted distribution is equal to that 

of a distribution with its lower bound at the origin with the shift added to the this 

value. 
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Appendix B. Weibull Parameters for Shifted Distribution 

Table B-1 Presents the shape and scale factors for the case where the still-water 

bending moment is uncoupled, resulting in a symmetric case for the hogging and 

sagging loads. 

 

 
Table B.1. Results for Weibull Parameters After Uncoupling the Still-Water Bending Moment 

Hogging Case Sagging Case 

Shifted Moment 
Values 

Cumulative 
Distribution Function 

Shifted Moment 
Values 

Cumulative 
Distribution Function 

0 0 62825 1 

3078 0.514821 60685 0.999999 

6155 0.704984 58551 0.999998 

8617 0.820328 56423 0.999995 

11080 0.891416 54242 0.999991 

13545 0.934942 51890 0.999981 

16010 0.96135 49322 0.999964 

18475 0.977233 46539 0.999932 

20940 0.986706 43600 0.999873 

23408 0.992309 40617 0.999765 

25882 0.995593 37643 0.99957 

28363 0.9975 34676 0.999219 

30855 0.998595 31775 0.998595 

33359 0.999219 28954 0.9975 

35876 0.99957 26227 0.995593 

38404 0.999765 23588 0.992309 

40945 0.999873 21020 0.986706 

43491 0.999932 18502 0.977233 

46029 0.999964 16015 0.96135 

48512 0.999981 13547 0.934942 

50935 0.999991 11082 0.891416 

53340 0.999995 8618 0.820328 

55748 0.999998 6159 0.704984 

58164 0.999999 3083 0.514821 

60584 1 0 0 

Shape 0.90539 Shape 0.90525 

Scale 4622 Scale 4626 
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Appendix C: Example Forecasting Calculations 

Appendix C.1. Distribution Fitting Procedure Example 

 

Table B-1 contains the series of calculations done to produce the results of the fitted 

distribution. An explanation of each heading and what it calculates follows. 

 
Table C.1. Outline of Distribution Fitting Method 

Parent Distribution 
   6363.353   
   

     Parent 
  

15 Year 
 X Fx(x) 

 
X Fx(x)^15 

0 0 
 

0 0 

500 0.044133 
 

500 4.69E-21 

1000 0.097874 
 

1000 7.24E-16 

1500 0.153711 
 

1500 6.32E-13 

2000 0.209467 
 

2000 6.56E-11 

2500 0.264022 
 

2500 2.11E-09 

3000 0.316723 
 

3000 3.24E-08 

3500 0.367173 
 

3500 2.97E-07 

4000 0.415139 
 

4000 1.87E-06 

4500 0.460497 
 

4500 8.88E-06 

5000 0.503197 
 

5000 3.36E-05 

 

The Parent Distribution Cell at the top is actually an @Risk function which stores a 

Weibull distribution, “RiskWeibull(1.1903,6750.5)”, and can be used to generate 

points for a CDF using the function, “RiskTheoTarget(distribution cell,x value)”. 

This is how the first table was obtained. This value was then raised to the number of 

years, resulting in the second table. Both of these tables continued on until the X 

column reached 70000. This table could then have a distribution fit to it using @Risks 

distribution manager. All that was required was to highlight all the points and specify 

a lower bound, and the type of data, in this case CDF data. With that it returned 

several possible distributions, so the Weibull was chosen in the RiskWeibull function 

form.  
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Appendix C.2. Numeric Integration Example 

 

Table C-2 contains the calculations used to determine the numeric integral. An 

explanation of each heading and what that column calculates. 

 
Table C.2: Example of Numeric Integration method 

50 Years 
 

Shape 
Factor 1.1903 

 

   

Scale 6750.5 
 

        X fx(x) Fx(x) Fx(x)
(k-1)

 fm(x) 

0 0 0 0 0 

500 1.03E-4 0.044 3.92E-67 2.01E-69 

1000 1.11E-4 0.098 3.49E-50 1.93E-52 

1500 1.12E-4 0.154 1.41E-40 7.89E-43 

2000 1.11E-4 0.210 5.43E-34 3E-36 

2500 1.07E-4 0.264 4.58E-29 2.46E-31 

3000 1.03E-4 0.317 3.41E-25 1.76E-27 

     x*fm(x) Area (x-μ)
2
fm(x) Area 

0   0   

1.01E-66 2.52E-64 5.03E-64 1.26E-61 

1.93E-49 4.82E-47 1.93E-46 4.82E-44 

1.18E-39 2.96E-37 1.78E-36 4.44E-34 

6E-33 1.50E-30 1.2E-29 3E-27 

6.14E-28 1.54E-25 1.54E-24 3.84E-22 

5.29E-24 1.32E-21 1.59E-20 3.97E-18 

 

The calculations are described in the headings, where “b” is the scale factor and “a” is 

the shape factor. Fx(x) and fx(x) are the CDF and PDF of the distribution respectively 

defined by Equations 2-4 and 2-3. Thus the first five column headings are self-

explanatory. fm(x) is the PDF  of the largest value distribution as defined in equation 

(3-1). X*fm(x) is the expression inside the definition of the mean, and the area is the 

area under the curve of x*fm(x) as calculated by the trapezoid rule. The last two 

columns are the definition of the variance and the area under the resulting curve. Not 

shown are the many other X values used. The sum of the first area column produces 

the mean, then this value is used in the variance calculation column, then the second 
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area column is summed to get the variance. The square root of this then is the 

standard deviation.  
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Appendix C.3. Derivation of Exact Mean and Standard Deviation 

 

Starting from Equation 2-9 

   
 

  

  
    

  
 
 
 
 

    
  

 
 
 
 

 

    

 

   

Expanding the binomial 

      
 

  

  
    

  
 
 
 
 

       
  

 
 
 
 

    
   

 
 
 
  

 

              
       

 
 
 
 

    

 

   
 

  

  
     

  
  

 
 
 
 

    
  

   
 
 
 
 

    
  

   
 
 
 
  

 

              
  

   
 
 
 
 

    

Distributing the integral 

   
 

  

  
      

  
  

 
 
 
 

 
 

 

        
  

   
 
 
 
 

 
 

 

  

                
  

   
 
 
 
 

 
 

 

    

From integration tables 
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So 

   
 

  

  

 
 
 

 
 

  
    

 
  

  
 
   

   
 
 
 
   

    
 
  

  
 
   

   
 
 
 
          

   
    

 
  

  
 
   

   
 
 
 

 
 
 

 
 

 

The constants can be factored out 
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Applying a binomial expansion series and simplifying the β terms results in the 

following series form for the mean for the k
th

 year. 

 

    
       

 

 
   

   

 
 

 

     

        
 
   

 (C-2) 

 

 

Finding the standard deviation starting from Equation 2-8 

   
          

 
 
   

   
 

 

   

Expanding 

   
            

     
     

   
 

 

   

   
         

   
 

 

       
     

   
 

 

      
     

     
 

 

 

By definition 

    
     

 

 

    

     
   

 

 

       
 

So 

   
         

   
 

 

      
  

Isolating the integral 

        
 

 

    
  

  
      

  
 
 
 
 

    
  

 
 
 
 

 

    

 

   

The expansion of the binomial is the same process as before, as such 

  

  
      

  
 
 
 
 

    
  

 
 
 
 

 

    

 

     

  

  
      

    
  

 
 
 
 

 
 

 

        
    

   
 
 
 
 

 
 

 

  

                
    

   
 
 
 
 

 
 

 

    

Using C-1 
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Pulling out constants and simplifying 

  

  
      

  
 
 
 
 

    
  

 
 
 
 

 

    

 

   

        
 

 
        

 

    
 
 
 
             

 

    
 
 
 
  

Applying a binomial expansion series and reinserting into variance equation results in 

the equation for the variance in series form 
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