Supervisory Control of Nondeterministic
Systems with Driven Events via Prioritized
Synchronization and Trajectory Models

by M.A. Shayman and R. Kumar

TECHNICAL
RESEARCH
REPORT

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 92-113



Supervisory Control of Nondeterministic Systems
with Driven Events via Prioritized Synchronization
and Trajectory Models *

Mark A. Shayman
Department of Electrical Engineering and
Systems Research Center
University of Maryland
College Park, MD 20742
Email: shayman@src.umd.edu

Ratnesh Kumar
Department of Electrical Engineering
University of Kentucky

Lexington, KY 40506-0046
Email: kumar@engr.uky.edu

October 21, 1992

1This research was supported in part by Center for Robotics and Manufacturing, University of
Kentucky, in part by by the National Science Foundation under the Engineering Research Centers
Program Grant CDR-8803012, the Minta Martin Fund for Aeronautical Research, and the General
Research Board at the University of Maryland.






Abstract

We study the supervisory control of nondeterministic discrete event dynamical systems
(DEDS’s) with driven events in the setting of prioritized synchronization and trajectory mod-
els introduced by Heymann. Prioritized synchronization captures the notions of controllable,
uncontrollable, and driven events in a natural way, and we use it for constructing supervisory
controllers. The trajectory model is used for characterizing the behavior of nondeterministic
DEDS’s since it is a sufficiently detailed model (in contrast to the less detailed language
or failures models), and serves as a language congruence with respect to the operation of
prioritized synchronization. We obtain results concerning controllability and observability
in this general setting.
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1 Introduction

Supervisory control of discrete event dynamical systems (DEDS’s) was introduced by
Ramadge and Wonham [17]. In this approach, the behavior of a DEDS, called the plant,
is described by its language, the collection of all possible sequences of events (traces) that
it can generate. The task is to design a controller, called a supervisor, which, based on
the observation of the sequence of events, disables some of the controllable events so that
the language generated by the controlled plant either equals a prespecified desired language,
called a target language, or remains confined to a prespecified range of languages. Various
extensions of this basic problem such as control under partial observation, decentralized and
modular control, hierarchical control, and optimal control have also been studied. Refer to
[18] and references therein for an overview of research in this area.

Most of the research on supervisory control of DEDS’s assumes that the plant can be
modeled as a deterministic system [8]. In other words, given a state of the system, and
an event that occurs in that state, the state reached after the occurrence of the event is
uniquely known. Such an assumption is not satisfied whenever unmodeled dynamics, partial
observation, or inherent nondeterminism is present. It is not possible to avoid these compli-
cations in a realistic setting. Hence the assumption of a deterministic plant is quite strong.
In this paper, we relax this assumption, and consider the control of a nondeterminisiic plant
[8, 16, 7, 9, 5], which offers a more reasonable and realistic model of DEDS’s.

A modeling framework m over a finite event set ¥ is an equivalence relation on all DEDS’s
representable as state machines, with arbitrary state space, having e-transitions and event set
Y. We identify m with the projection r,, which maps each state machine P to its equivalence
class or model 7,,(P). If the equivalence class of P is uniquely characterized by an attribute
which is common to its members, we will freely identify 7, (P) with this attribute.

We say that a modeling framework 7, is more detailed than another modeling framework
7, if the equivalence relation 7, refines the equivalence relation w,. Obviously, it is desirable
to use the least detailed modeling framework which is sufficient for the design task at hand. A
complex system is generally synthesized by combining simpler systems using various types of
interconnections. Since specifications for the logical behavior of a DEDS are typically given
in terms of the language of the system, a basic requirement is that the modeling framework
should contain sufficient detail so that if the models for each subsystem are known, then the
language of the interconnected system is uniquely determined. A modeling framework with
such a property for a given class of admissible interconnections is referred to as a language
congruence [5].

The language modeling framework associates to a system its language, the collection of
all possible finite traces which are executable. Thus, the language model of a system is a
subset of X*, the set of all finite strings of events in ¥ including ¢, the zero length string. For
deterministic systems and deterministic operators such as strict synchronous composition
(SSC), the language modeling framework is a language congruence. If operators which
introduce nondeterminism (e.g., internal choice, event internalization) are admissible, then
the language modeling framework is no longer a language congruence and a more detailed



modeling framework such as the failures model introduced by Hoare [7] must be used in
order to have a language congruence. The failures model consists of the set of all failures
of the system-pairs (s, %) where s is a trace and X' C ¥ is a refusal set with the property
that if the environment restricts the possible events to ¥’ the system can deadlock following
“execution of s. Thus a failures model is a subset of ¥* x 2% .1

In the work of Kumar, Garg and Marcus [11], control design is accomplished by con-
structing a supervisor which operates in strict synchronization with the plant. In the work
of Balemi et al. [1], the set of events ¥ is partitioned into two disjoint subsets—commands
which are generated by the supervisor and sent to the plant, and responses which are gener-
ated by the plant and sent to the supervisor. It is required that the plant and supervisor be
mutually receptive, which means that the plant executes every command generated by the
supervisor and the supervisor executes every response generated by the plant. Thus, this
design also requires that every event be executed synchronously.

There are several reasons to consider control designs which do not require complete syn-
chronization between the plant and supervisor. Uncontrollable events are generated sponta-
neously by the plant and the supervisor is not permitted to interfere with their execution.
Consequently, there is no a priori reason to assume that the supervisor needs to “track”
every such event by undergoing a transition synchronously with the plant. Also, certain un-
controllable events in the plant may not be sensed and hence are invisible to the supervisor.
It is unrealistic to require the supervisor to execute such events synchronously.

In many applications, it is not realistic to expect (or require) the plant to respond syn-
chronously to every event generated by the supervisor. (Such events are referred to as
forceable [4], driven [53] or command [1] events in the literature.) By permitting the super-
visor to place commands which are not executed by the plant, nondeterminism in the plant
may be resolved and performance improved. For example, not every piece of equipment in
a factory will trigger an alarm upon breakdown. Breakdown may only be discovered when
an action is requested by the supervisor and not executed by the plant. Thus, the unsensed
state of the plant is determined by a synchronization failure.

Another motivation for relaxing the requirement of strict synchronization comes from
systems in which a single supervisor controls more than one plant. For example, in a walking
machine, there could be separate modules (viewed here as plants) which perform motion
control and vision control respectively. At a higher-level, there could be a single supervisor
which controls and coordinates the two modules. Some of the commands issued by the
supervisor may apply to both the modules, while others may be relevant to only one of them
and should be ignored by the other.?

Heymann [5] has proposed a type of interconnection, called prioritized synchronous com-
position (PSC), which relaxes the synchronization requirements on the plant and supervisor.

1For simplicity, we ignore the possibility of divergence.

2This problem can sometimes be addressed by assigning different event alphabets to each process and
only requiring synchronization for events in the intersection of the alphabets. However, this is inadequate
for applications in which synchronization requirements are naturally state-dependent. See [10] for a different
approach using state-dependent (or trace-dependent) alphabets.



A priority set of events is associated with each system. An event is executable in the PSC of
two systems only if it is executable in the system(s) whose priority set(s) contain that event.
It is shown in [5, Example 7] that two systems with the same failures model may yield dif-
ferent languages when composed in prioritized synchrony with a fixed system. Thus, if PSC
is included as an admissible interconnection operator, a more detailed modeling framework
than the failures model is required to serve as a language congruence. One such modeling
framework, called the trajectory model, is proposed by Heymann [5] and Heymann-Meyer [6].
The trajectory model of a system consists of the set of all trajectories-finite sequences of the
type Xo(o1, 1) ... (ok, Xk ), where o7 . .. 0 is the trace executed by the system, while ¥; C ¥
(1 =0,...,k) is a refusal set, a set of events which can result in deadlock if presented to the
system by the environment at the indicated point in the trajectory. Thus, a trajectory model
is a subset of 2% x (T x 2%)* and refines the failures model by including the intermediate
refusal sets.

Although we use the trajectory model for describing the behavior of a nondeterministic
plant, it is assumed that the desired specification is given only in terms of a language model
(as in [17]), and not in terms of a trajectory model. This is a reasonable assumption, for
in most applications, we are only interested in the sequences of events that a system can
execute, and not in the events that the system may “refuse” to execute after execution of a
certain event in a certain event sequence. Hence we address the following supervisory control
problem:

Given (i) a partition ¥ = £,UX,UX, of the event set into subsets of controllable,
uncontrollable and driven events, (ii) a nondeterministic plant with trajectory
model P C 2% x (¥ x 2%)*, whose priority set is A = I, U I, (jii) a target
language K C Y¥*; design a supervisor-another trajectory model, denoted S C
2% x (E x 2%)*~whose priority set is B = 5, U £y, such that the language of the
PSC of P and S equals K.

The interconnection of the plant and the supervisor by PSC results in disabling of some of
the controllable events and forcing of some of the driven events, while never preventing any
of the uncontrollable events from occurring in the plant. Thus we investigate the supervi-
sory control of DEDS’s in the general setting of trajectory models and PSC, as opposed to
language models and SSC studied by Kumar, Garg and Marcus [11].

We obtain a necessary and sufficient condition for the existence of a supervisor for the
general problem with driven events, and also provide a technique for synthesizing a super-
visor. For ease of implementation, we design supervisors which are deterministic. We also
address the control problem when some of the uncontrollable events are not observed by
the supervisor. While the primary goal of this paper is to obtain necessary and sufficient
conditions for the control of nondeterministic systems with driven events, a secondary gcal is
to provide a rigorous mathematical foundation for the theory of trajectory models and PSC,
and to resolve certain ambiguities concerning their properties which exist in the literature.

The organization of this paper is as follows: In Section 2, the trajectory model of a
nondeterministic state machine (NSM) with e-moves is defined and its properties derived



{rom those of NSM’s. An algorithm to construct a canonical NSM from a given trajectory
model is presented and its correctness proven. In Section 3, the PSC of NSM’s is defined and
it is shown that this induces a PSC operation on trajectory models. It is also proven that
the trajectory modeling framework is a language congruence relative to PSC. Properties of
the PSC of trajectory models are described in Section 4, and the technique of augmeniation
is introduced. In Section 5, the supervisory control problem with driven events under both
complete and partial observation is solved.

2 Trajectory Model

A plant, or a DEDS to be controlled, is modeled as an NSM with e-moves. Letting P
denote an NSM, it is defined to be the four tuple [8]:

P = (X'Pa E) 61?,33%),

where Xp denotes the state space of P, ¥ denotes the event set of P, §p : Xp x XU {e} — 247
denotes the nondeterministic® transition function of P, and % € Xp denotes the initial state
of P. A triple (x1,0,z2) € Xp x (2 U {e}) x Xp is called a transition in P if z; € ép(z1,0).
A transition (21, €, z7) is referred to as a silent transition. We assume that the plant cannot
undergo an unbounded sequence of silent transitions.

2.1 Language or Trace Model

As mentioned in Section 1, although trajectory models-are used for describing the
behaviors of nondeterministic systems, language or trace models are used for describing the
desired or target specifications. Hence in this subsection we define the language model of
the plant.

We first define the e-closure of a state, which is the set of states reached by executing a
finite sequence of “silent” transitions.

Definition 1 The e-closure map, €p : Xp — 2%7, is recursively defined to be:
V€ Xp :

v 7 € &p(z),

o 2’ € ep(z) = bp(2/,¢) C e5(z).

Using the definition of e-closure, we extend the definition of the transition function from
events to traces as follows:

3The transition function ép is deterministic if and only if it is of the type, 6p : Xp x £ — Xp, in which
(i) there are no transitions labeled ¢, and (ii) given a state and an event, either a unique state is reached
upon execution of that event in that state, or that event is undefined in that state.
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Definition 2 The extension of the transition function to traces, denoted 65 @ Xp x ¥* —
2X7 is defined inductively on the length of the traces as:

Ve e Xp:
o 65(z,€) = ep(a),
o Vs € ¥ 0 € X:dp(z,s0) = ep(bp(b5(z, s),0)),

where in the last equality, the transition map is extended to 8p : 247 x U {c} — 2%7, and
the e-closure map is extended to €} : 2X7 — 2%7 in the natural way.

The set of states reached by executing a string s € X* from a state z € Xp is given by the set
8p(z,s). It is clear that if P is deterministic, then the extension of the transition function
to traces is also a deterministic partial map 63 : Xp x £* — Xp. (It is a partial map since
it is generally defined only on a subset of Xp x £*.)

The preceding definition can be used to obtain the language or trace model for the plant

P, denoted m(P) C ¥, as follows:
m(P) = {s € £ | §p(zp,s) # 0}.

Note that the following properties, L1 and L2, are satisfied by the language model m;(P) of
the plant:

L1 (nonemptiness): € € 7(P) = m(P) # 0,
L2 (prefix closure): s € m(P),t € £* such that t < s =t € m(P),

where the notation ¢ < s is used to denote that ¢ is a proper prefiz of s. Given a language
model satisfying properties L1 and L2, standard algorithms are available for constructing a
canonical state machine having the same language model. If K is a nonempty subset of ¥*,
K denotes the prefix-closure of K-i.e.,

K = {t € ¥*| 3s € K such that t < s}.

2.2 Trajectory Model of a Nondeterministic State Machine

As discussed in Section 1, language models are not adequate for characterizing the
behavior of nondeterministic systems. Hence, we next define the trajectory model for the
plant P. We first need to define the refusal map, and extend the transition function from
events to trajectories.

Definition 3 The refusal map, ®p : Xp — 2%, is defined as:
VeeXp:Rp(z)=2~ | Zp(a),

a:’ec;,(x)

where Yp(2') = {0 € £ | §p(a’,0) # 0}.



Thus the refusal map defines, at each state, a set of events such that the system “refuses”
to execute any of the events belonging to that set at that state. An event o € ¥ belongs to
the refusal set of a state £ € Xp if and only if it is undefined at each state belonging to the
e-closure of z.

Next we define the extension of the transition function from events to trajectories.

Definition 4 The extension of the transition function to trajectories, denoted 63 : Xp x
(2% x (2 x 2%)*) — 2X7 is defined inductively on the length of the trajectories as:

Ve & Xp:
o VY C X : 65 (2, ) = {2/ € ep(z) | &' C Rp(2")},

»Ve€e 2P x (T x25)0eE, Y CE:
55 (0, e(0, ) = (' € eb(En (5 (2, €),0)) | & € Rp(a)}.

A state 2’ € Xp is reached by executing a “zero-length” trajectory ¥’ C ¥ from a state
z € Xp if (i) ' belongs to the epsilon-closure of z, and (ii) the refusal set of 2’ contains %'.
A state ¢’ € Xp is reached by executing a trajectory e(o, £') € 2% x (£ x 2%)* from a state
z € Xp if (i) 2’ belongs to the epsilon-closure of a state reached by executing the event o
from' a state reached after executing the trajectory e from z, and (ii) the refusal set of z’
contains X', It is clear that if P is deterministic, then the extension of the transition function
to trajectories is also a deterministic partial map 63 : Xp x (2% x (T x 2%)*) — Xp.

A trajectory e € 2% x (X x 2%)* can be written as e = Zo(e)(01(€), Z1(€)) . . - (on(e), n(e))
for some n € NV, where ¥;(e) C X for each 0 < ¢ < n, and oj(e) € L foreach 1 < j < n. We
call n the length of e, and denote it as |e| = n. X;(e) is called the ith refusal set of e, and
o;(e) the jth event of e. For each 0 < ¢ < |e|, we use €' to denote the prefix of length i of e,
ie., e = To(e)...(0i(e), Li(e)). Given two (distinct) trajectories e, f € 2% x (L x 2¥)*, we
say that f is (strictly) dominated by e, denoted f [ e, (equivalently, e dominates f, denoted
e J f), i [f] = |e| :=n, o;(f) = o;(e) for each 1 < 57 < n, and Z;(f) C Ei(e), for each
0<t<n.

Based on the above extension of the transition function from events to trajectories, we
define the trajectory model of the plant P, which we denote as m;(P):

m(P) := {e € 2% x (8 x 25)* | 65 (2%, ¢) # 0}.

We refer to the elements of this set as the trajectories of P. A trajectory e € m(P) is said to
be a dominant trajectory of P if there exists no other trajectory f € 7,(P) such that e CC f.
Furthermore, e is said to be a mazimal trajectory if it is dominant, and there exists no other
trajectory g € m(P) such that e < g.

Example 1 Consider a system P that deadlocks, i.e., cannot execute any transition, at its
initial state. Then 7(P) = {¥' | ¥’ C ¥}. Le., the trajectory model of P consists of the zero
length trajectories X'. We use Ay := {&' | ¥’ C ¥}, to denote the trajectory model of the
deadlock system. Given o € ¥ and a trajectory model T' C 2% x (¥ x 28)*, weuse 0 — T to
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denote the system that first- executes the event ¢ and then follows a trajectory in 7. In other
words, 0 — T := {¥'(0,e) | ' C ¥ —{c},e € T}. 0 — T is called the o-prefiz operation on
the trajectory model T'. Given trajectory models Ty, Ty C 2% x (X x 2%)*, we use Ty @ T
to denote the system that nondeterministically chooses to execute trajectories either in 7T}
or in 13. Ty & T3 is called the internal choice between Ty and Ty, and Ty, @ T4 := 11 U T%.
If 01,02 € £ with 01 # 09, the external choice between the trajectory models oy — T and
oy — T is defined to be the trajectory model
(o1 =T+ (02> T):i={e € (01 = T1) U (02 = Ta)| ® € (61 = Ty) N (03 — T3)}.

This is a process which initially makes a deterministic choice between oy and o,. If o; is
executed, then the remainder of the trajectory is in T;.

Remark 1 There is a subtle but important difference in the meaning of the refusal scts in
a trajectory model as opposed to those in an NSM. In the NSM, Rp(z) represents events
that must be refused at the state z if offered by the environment. In contrast, the refusal
set Li(e) in the trajectory e represents a set of events which can be refused if offered by the
environment following execution of the previous fragment of the trajectory. The reason for
this is that the trajectory fragment does not uniquely determine the state of the NSM due
to nondeterminism, unless ¢ is a maximal trajectory. (Refer to Algorithm 1.)

It follows from the definition of the trajectory model () that it satisfies the following
five properties, denoted T1, T2, T3, T4, and T5:

Proposition 1 The trajectory model 7;(P) of an NSM P satisfies the following properties:
T1 (nonemptiness): § € m(P) = m(P) # 0,
T2 (prefix closure): Ve € m(P), f € 25 x (Z x 25)*: f < e= f € n(P),
T3 (dominance closure): Ve € my(P),f € 2 x (S x 25)*: fCe= f € m(P),
T4 (refusal of infeasible): Ve € 2% x (2 x 2%)*,0<i<|e[,c € &
e'(0,0) & m(P) = € (ai(e), Ti(e) U {a}) ... (01ef; Byep) € mu(P),
T5 (Persistence of refused): Ve € 2% x (¥ x 2¥)*,0<i < le|,0 € & :
o € Xi(e) = oiyi(e) # 0.

Proof: T1, T2 and T5 follow immediately from the definition of the trajectory model. To
prove T3, we note that a straightforward induction on trajectory length shows that if f e,
then 67 (z%,e) C 6% (2%, f), which immediately yields T3. It remains to prove T4. Fix
7, and suppose that €'(c,0) ¢ m(P). Then 6p(6} (2%,¢'),0) = §. Since b (63 (z3,¢)) =
6% (2%, €'), this implies that o € Rp(z), Yz € 65(2%,e'). It follows immediately that if &
is obtained from e by replacing X;(e) with £;(e) U {c}, then 63 (2%,€) = 63 (z%,e) which
implies that € € m,(P). a



-

Remark 2 In contrast to [6] where the properties of the trajectory model are defined ax-
iomatically, we regard the NSM as the fundamental object and derive the propertics of the
trajectory model from the properties of NSM’s.

If € is any trajectory which has the property that o € X;(e) whenever ei(o,0) ¢ 7.(P),
then we say that e is saturated. Note that in T4, if e is a prefix of a maximal trajectory
and e(o,0) & m,(P), then o € ¥;(e). Thus, a prefix of a maximal trajectory is saturated.
It is important to distinguish between saturated trajectories and dominant trajectories. A
dominant trajectory is trivially saturated. However, while a prefix of a saturated trajectory
is saturated, a prefix of a dominant trajectory is not necessarily dominant. In the special case
of a deterministic process, every saturated trajectory is dominant, so the sets of saturated
and dominant trajectories are identical.

Example 2 Let ¥ = {a}, Ay the deadlock process with alphabet ¥, and let P = Axs®(a —
Ag). Then e = 0(a, {a}) is dominant (and hence also saturated). The prefix €® = 0 is
saturated but is not dominant since P also contains the length 0 trajectory e’ = {a}.

Definition 5 Given a NSM P, the dominant trajectory model, denoted g, (P), of P is
defined to be:
Tiagom(P) := {e € m(P) | Bf € m¢(P) such that e = f}.

Similarly, the saturated trajectory model, denoted 7,q:(P), of P is defined to be:
Tisat(P) := {e € m(P) | e is saturated }.

It is clear that 74, (P) C Tig:(P) C m(P).

Remark 3 Since a trajectory model satisfies T3, it can be uniquely determined from its
dominant trajectories or from its saturated trajectories. However, if there is no upper bound
on the lengths of the trajectories in m¢(P), then m;(P) is not necessarily determined by its
subset of maximal trajectories. For example, if P is the deterministic process with language
{a}*, then the set of maximal trajectories is empty whereas 7,(P) is obviously not empty.

Since a trajectory model is a more detailed model than a language model, we can obtain the
language model from a trajectory model by “projecting” the trajectories onto the set X*.
Formally,

Definition 6 The trace map from trajectories to traces, denoted ¢r : 2% x (X x 2%)* — ©*,
is defined inductively on the length of the trajectories as:

e VE'C X :ir(Y) =,
e Ve €28 x (Zx2%)* 0 € B,% C X :itr(e(o, X)) = tr(e)o.

It is clear that tr(m(P)) = =/(P), where the trace operator is extended to the set of tra-
jectory models in the natural way. Given a trajectory model T' C 2% x (£ x 2%)* satis{ying
properties T1-T5, we use L(T) := tr(T) to denote the language model associated with 7.
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2.3 Construction of Canonical State Machine

In this subsection we develop an algorithm for constructing a canonical state ma-
chine for any given trajectory model satisfying T1-T5. Given a trajectory model, P C
2% x (¥ x 2%)*, we have shown above that it is equivalent, in detail of description, to its
saturated trajectory subset P,;. We use the set of saturated trajectories for the construction
of the canonical state machine. Given a finite number of event sets X;,..., %, C X for some
n € N, we use the notation min(X;,...,%,) to denote the collection of minimal sets from
among the given n sets, i.e.,

min(Xy,...,5,) ={¥,1 <i<n|Ajsuchthat 1 <j <njj#4X;, C L}
Lemma 1 Let P be a trajectory model.

(a) Pset contains a unique minimal O-length trajectory X2, := {0’ € | ¢’ & L(P)}.
(b) If e € Py; and e(0,0) € P, then the family {¥' C X| e(0,%’) € Py} has a unique

minimal element given by
e = {0' € Bl e(0,0)(o",0) ¢ P}.

Proof: The proof of (a) is similar to that of (b), so we include only the latter. Since
e(o,0) € P, repeated application of T4 yields e(o, Zf:;f,?) € P. Since e is saturated, in order
to show that e(o, Z(e’”)) is saturated, it suffices to show that if e(o ng,fl))(a',w) ¢ P, then

mn

o € o), Suppose o' ¢ 29 Then e(o,0)(0’,0) € P. By repeated application of T4, it

min min

follows that e(a, 22) (o, 0) € P, contradiction. Thus, e(o, ) € Py

Finally, suppose e(0,Y') € Py and o' € S%ie., (o, 0)(c",0) & P. By T3, it follows
that e(o, X')(0",0) € P. Since e(o,Y') is saturated, thls implies that ¢’ € ¥, so E,(;f;) C ¥
a

Algorithm 1 Given P C 2% x (T x 2%)*, construct a nondeterministic state machine {with
e-moves) P := (Xp,Z, p,2%), where

o Xp = Py, is the state space of P,
o 2% = X% . is the initial state of P,

o §p : Xp x LU {e} — 2%7 is the nondeterministic transition function of P defined as
follows:

1. Ve € Py, 0 €

bp(e,0) = {@( S07)) ife(o,0) € P

otherwise



2. (a) VL' C ¥ such that &' € Pyq:
Sp(E,¢) =min{E" C X| 2" € Pour, ¥ C ¥}
(b) Ve(o,%’) € Pyar:
ép(e(0, %), ¢) = {e(a, 2| 2" € min{L C 8| e(0,5) € Py, &' C 1)

Algorithm 1 provides a procedure for constructing a canonical NSM P for a given tra-
jectory model P. The state space of P equals P,,;, the set of saturated trajectories of P,
and the initial state of P is the minimal O-length saturated trajectory X2 . of P. The state
reached by executing a non-epsilon event ¢ € ¥ from a state e € P,,; equals the minimal
saturated trajectory of the type e(o,¥') dominating e(c,?). The set of states reached by
executing the epsilon event from a 0-length trajectory X' € P,,;, = Xp equals the set of
minimal 0-length saturated trajectories dominating ¥'. Also, the set of states reached by
executing the epsilon event from a trajectory e(o,¥') € Pyt = Xp equals the set of minimal
saturated trajectories of the type e(o, £”) dominating e(co, X').

Note that the canonical NSM constructed using Algorithm 1 has as many states as the
number of saturated trajectories. The notion of Nerode equivalence [8] can be easily extended
to the set of trajectories, and “minimal” NSM’s can be constructed for given trajectory
models.

Remark 4 A construction which bears some similarity to Algorithm 1 was informally de-
scribed in [6, Algorithm 12.1]. However, a proof to show that the trajectory model of the
canonical NSM equals P was omitted in that reference. There is also an important difference
between the two algorithms. The construction in [6, Algorithm 12.1] is based on prefixes of
dominant trajectories. In contrast, Algorithm 1 is based on saturated trajectories. The use
of saturated trajectories for the states has the advantage of avoiding the need to introduce
certain “auxiliary states” as is the case when prefixes of dominant trajectories are used.
This advantage arises because the saturated trajectories satisfy the properties described in
Lemma 1.

We now prove the correctness of Algorithm 1-i.e., that the trajectory model of the cancnical
NSM coincides with the given trajectory model.

Proposition 2 m(P) = P, where P is as constructed in Algorithm 1.

Proof: We begin by showing that
Ve=2¢(0,Y) € Py, Rp(e) =X (1)
It follows from the definition of ép that o’ € Rp(e) if and only if

f(d',0)¢ P, YV f=¢(0,8") € Py such that &' C X"

10



If o' € ¥, then o' € ¥ for all such ¥”. By T5, f(¢',0) ¢ P, so ¢’ € Rp(e). Thus,
' C Rp(e). On the other hand, if ¢’ ¢ L', then since e € P,a4, it follows that e(¢’,9) € P,
so o' & Rp(e). Thus, Rp(e) C ¥, proving (1).

Next, we claim that

63 (2p,e) = {f € Puy| e C f}, Vee€2¥ x (T x2%)". (2)

We prove (2) by induction on |e|. Let e = ¥'; a length-0 trajectory. Using the definition of
ép and (1) gives

57:(a3,2) = (X" € 5 (e3)| &' € Rp(E)} = {5 € Pue| ¥ C T},

This establishes (2) in the length-0 case.
For the induction step, let e = &(a, ¥') € 2% x (£ x 2%)*. Using the induction hypothesis
on €, (1), and the fact that P, is prefix-closed gives

8 (ape) = {f € 5 (6p(65 (25,8),0))| T' C Rp(f)}
= {f € &(6p({f € Put| EC f},0))| T' C Rp(f))}
= {.f(a? E”) € Psatl el f, ¥ C E”}
{f € P egf}-

This completes the induction step and establishes (2).

If e € Py, (2) implies that e € 67'(2%,€). Thus, §5(2%, ) is nonempty, so e € m(P).
Hence, Py, € m(P). Since every trajectory in P is dominated by a saturated trajectory and
7¢(P) satisfies T3, this implies that P C my(P).

On the other hand, if e € m(P), then 6% (z%,e) is nonempty, so there exists f € P,
which dominates e. Since P satisfies T3, this implies that e € P, so 7,(P) C P, which
completes the proof. ad

The following result is an immediate consequence of the proof of Proposition 2.

Corollary 1 If P is a trajectory model with canonical NSM P, then
65 (xp,e) = {f € Pyut| eC f}, Vee P.
The following result is an immediate consequence of Propositions 1 and 2.

Theorem 1 Let P C 2% x (X x 2%)*. Then P is the trajectory model of a nondeterministic
state machine (with e-moves) if and only if P satisfies properties T1-T5.

2.4 Deterministic Trajectory Models

Recall that a state machine P is deterministic if and only if its transition function is a
partial map ép : Xp x ¥ — Xp. lLe., there are no e-transitions and ép(z, o) is either empty
or contains exactly one element.

11



Definition 7 Let P C 2% x (¥ x 2%)* satisfy T1-T5. P is called a deterministic trajectory
model if and only if there exists a deterministic state machine P such that =,(P) = P.

For any NSM P, the language model can be obtained from the trajectory model via the trace
operator since m(P) = tr(m¢(P)). In the special case when the system P is deterministic, the
trajectory model can be recovered from the language model. Consequently, for deterministic
systems, the language model is equivalent in detail of description to the trajectory model.
The language model can be used to compute the trajectory model as described below. First
consider the definition of the inverse operation of the trace map.

Definition 8 Let K be a nonempty prefix-closed subset of £*. The trajectory map from
traces to trajectories for the language model K, denoted trjgx : K — 2% x (¥ x 2%)*, is
defined inductively on the length of the traces of K as follows:

» trj(e) = {o € S| o ¢ K},

» Vs € K, o € ¥ such that so € K : trjg(so) = trjg(s)(o, {0’ € £ | soo’ ¢ K}).
Lemma 2 Let P be an NSM with language model K := 7;(P). Then
(a) trjx(K) € 7(P)

@

(b) If P is deterministic, then

tr]K(I{) = Wtsat(P) = Wtdom(,P)

Proof: Let s € K be a trace of length r. If r = O: then s = ¢; otherwise let s = o105, ...0,.
Let s denote the length-: prefix of s, and define 3; = {0 € ¥| s'c &€ K}. Set

e =trjx(s) = £o(01,81) ... (0r, &)

Since s € m(P) = tr(m(P)), it follows from T3 that the trajectory §(oy,8). .. (or,8) € m:(P).
By repeated application of T4, this implies that e € m;(P), proving (a).

Now assume that P is deterministic. To prove (b), it suffices to show that e is the unique
trajectory in 7y, (P) with ¢tr(e) = s. Since every dominant trajectory is saturated and there
exists a dominant trajectory with trace s, this implies that e is also the unique trajectory in
Tigom (P) with tr(e) = s. Also, since there must exist a saturated trajectory with trace s, it
suffices to show that if f € my,,,(P) with tr(f) = s, then f = e. We use induction on r = |e|
to prove this together with the assertion that

85 (zp,€) = 8p(ap, tr(e)) (3)

Note that since P is deterministic, €p(z) = z, and given any w € K, there exists a unique
Ty € 65(2%,w). Furthermore, Rp(zy) = X — Lp(zy) = {0 € | wo & K}.
If r =0, then f = 3¢ with

To C Rp(23) = — Tp(22) = So.
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Since [ 1s saturated, )i)o C Yo, so f = e. Also,
5 (23, €) = 2 = E(22, ) = 5p(a% tr(e)),

as required. .

Yor the induction step, express e and f as e = &(0,,,), f = f(or,%,). Since the prefix
of a saturated trajectory is saturated, f € m;,,;(P). Therefore, by induction hypothesis, we
may assume that f = e. Using (3) applied to &, it follows that

(2%, f) = {z € &(6p(67 (23,2),0v))| E, C Rp(2)} (
= {z € p(53(eh, (), 07)| 5, C Re(e)) (5
= {z € 55(a5,tr(e))| E; C Rp(2)} (
{.’Es if 2.,- g%p({rs) (
0  otherwise
Since f is a trajectory of P, 6% (z%, f) is nonempty, so

L, CRp(zs) =2 — Tp(zs) = EA],..

Since f is saturated, 3., C %,,s0 f = e. Also, by replacing f by e and £, by &, in the string
of equalities (4)-(7), we get

55 (2%, €) = z, = 65(23, tr(e)).
This completes the induction step. 0

Proposition 3 Let K be a nonempty prefixed-closed sublanguage of ¥*, and let
det(K) := {f € 2% x (T x 2%)*| Je € trjg(K) such that f C e}.
Then

(a) det(K) is a deterministic trajectory model.

(b) If P is any trajectory model with L(P) = K, then det(K) C P, with equality if and
only if P is deterministic.

Proof: By a standard result, there exists a deterministic state machine Q such that =(Q) =
K. Setting Q = m,(Q) gives L(Q) = K. Since Q is deterministic, it follows from Lemma 2
that trjx(K) = 7y40m (@), which implies that det(K) = Q. Thus, det(K) is a deterministic
trajectory model.

Let P be any trajectory model with L(P) = K. By Proposition 2, there exists a state
machine P such that =,(P) = P. By Lemma 2, trjx(K) C P, so det(K) C P. If Pis
deterministic, then we can take P to be deterministic, so Lemma 2 implies that trjx(K) =
Ti4om (P), and hence det(K) = P. On the other hand, if det(K) = P, then P is deterministic
by (a). O
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Remark 5 It follows from Proposition 3 thal given a nonempty prefix-closed language I,
there is a unique deterministic trajectory model with language K. Furthermore, this tra-
jectory model det(K) can be constructed from K by applying the map trjx and taking
dominance closure. This trajectory model is the unique minimal element (with respect to
inclusion) of the family of trajectory models having language K.

3 Prioritized Synchronous Composition

In this section, we define the PSC of two NSM’s (with e-moves), which induces a PSC
operation on trajectory models. We also prove that the trajectory modeling framework is
a language congruence with respect to PSC. Qur definition of the PSC of NSM’s is more
general than the one in [5], since the “silent” transitions, i.e., transitions labeled €, were not
included. As discussed in Section 1, a priority set is associated with a system. This means
that for an event which belongs to the priority set of a system to occur in the PSC with
another system, the former system must participate.

Definition 9 Let P = (Xp,X,6p,2%) and Q = (Xg, %, bg,2%) be two NSM’s (with e
moves). Let A, B C ¥ be the priority sets of P, Q respectively. Then the PSC of P and Q,
denoted P 4||p Q, is another NSM defined as:

P A”B Q =R = (XR,E,(SR,IL‘%),

where Xz = Xp x Xg,2% = (2%,2%), and the transition function éz : Xr x LU {e} — 2%r
is defined as:

Vi, = (2p,24) € Xp,0 € X

0p(Tp, 0) X bg(2q,0) if 6p(2p,0) # 0,60(zq,0) # 0
S (2r,0) = 6p(zp,0) X {24} if bp(zp,0) # 0,0 € Ro(z,),0 € B
RS = {zp} x bo(24,0) if §g(zq,0) # 0,0 € Rp(z,),0 ¢ A
0 otherwise

Ve, = (2p,2,) € Xgr,
or(zr, €) = [8p(zp, €) U {zp}] % [8g(2q, €) U {2}] — {(2p,24)}

Thus, if an event is executable in the current states of both P and @, then it can be
executed in R, in which case both P and Q change their states synchronously according to
their respective transitions. An event can be executed asynchronously by one of the systems
if it is executable by that system and is not in the priority set of, nor can be executed in
any state in the epsilon-closure of the current state of the other system. In this case, a
state transition occurs in one system while no state change occurs in the other system. The
hidden transitions-i.e., those labeled by e~can occur either synchronously or asynchronously.
It is clear that an event in A N B occurs only synchronously. Such synchronous execution
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is not required for events that do not belong to AN B. However, if an event that does not
belong to AN B is defined at states z, € Xp and z, € Xg, then it occurs synchronously
at state z, = (zp,2,) € Xg. Synchronous execution of such events is called broadcast
synchronization.

Remark 6 If A = B = X, then an event is executable in the composed system if and
only if it is executable in both systems. Thus this case corresponds to SSC. In contrast,
if A= B = (), then an event is executable in the composed system if and only if it is
executable in either of the systems. This corresponds to an interleaving composition of the
systems modified by the requirement that events which are executable by both systems are
executed synchronously.

If P represents an uncontrolled plant, Q a supervisor, and P 4||p @ the controlled plant
or the closed loop system, then (i) AN B is the set of strict synchronization events and can
be used to represent the set of controllable events; (ii) A — B is the set of priority events
only of P and can be used to represent the set of uncontrollable events; (iii) B — A is the
set of priority events only of @ and can be used to represent the set of driven events; (iv)
Y — (AU B) is assumed to be empty, for events in £ — A U B belong neither to the priority
set of the plant nor to that of the supervisor.

To simplify future notation, we define for any two event sets X/, 5" C X :
Sas(Z 2" =[ENnYU[ANT]U[BNZ"].

The following lemma gives two useful properties of the PSC of NSM’s. It is a straightforward
consequence of the definition of PSC.

Lemma 3 If R =P 4||p @ and z, = (zp,2,) € Xr, then
(2) er(zr) = ep(zp) X €p(xy),
(b) Rr(z.) = S48(Rp(z,), Ro(z,)).

In other words, a state z; = (z,,2;) € Xr belongs to the epsilon-closure of z, = (zp,x,) if
and only if z; (respectively, z) belongs to epsilon-closure of z, (respectively, z,). Also, an
event is refused in P 4||p @ if and only if either it is refused in both P and Q, or it belongs
to the priority set of P and is refused in P, or it belongs to the priority set of Q and is
refused in Q. ‘

We next consider the trajectory model of the PSC of two systems, and obtain its relation
to the trajectory models of the component systems. Using the definition of P 4||p @ and
that of its refusal map Rp ,), @, the trajectory model (P 4B Q) is easily obtained from its
definition developed in the previous subsection. In order to obtain the relationship between
mi(P), m(Q) and (P 4llp Q), we first define the PSC of a pair of trajectories. Although
we use the same notation e, 4|/ e, as is used in [6], our definition is not precisely the same
as the one in this reference.
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Definition 10 Let ¢, € 7(P) and ¢, € 7,(Q). Then the PSC of ¢, and e, (with respect to
P and Q), denoted e, 4|5 ¢, is defined inductively on |e,| + |e,| as follows:

VE,, Bq € X such that X, € m(P), X, € 7(Q) : , 4|l Bg := {¥' C San(E,, %)},

Ve, € m(P);eq € 1(Q);0p,0, € B;5,,E, C L such that ey(0,,L,) € m(P),e,(04,2,) €
7rt(§2) :
ep(0p, Bp) allB €q(04q, g) := T1 U T2 U T3, where

( {e(05,2") | € € 5 allB eg(04,54); X' C Sa8(5,,5,)} if 0, € B and |
N = | eq(0q, Eg)(0p,0) & m(Q)

otherwise

( {e(aq,Z’) lee ep(ab’zp) A”B eg; ' C SA,B(Equ)} ifo, ¢ A and /
ep(Tp, EP)(O'qa@) ¢ T P)

T2 =
W otherwise
T3 = {e(0,Z') |e € ep allp €; £' C Su,B(5p,5g)} fop=0y:=0
0 otherwise

Thus the PSC of two zero length trajectories X, € m(P) and Z, € 7,(Q), which correspond
to initial refusal sets of 7,(P) and m;(Q) respectively, is obtained by computing S4 5(%;, Z,)
which corresponds to an initial refusal set of (P 4||p Q). Next the PSC of two trajectories
ep(0p, Bp) € T(P) and e (04, %,) € 7(Q) is obtained by considering these three possible
cases: (i) a trajectory belonging to e, ||z e,(cq,X,) has already been executed in the
composed system, and at this point, o, is executable in P (indicated by e,(c,, Z;) € m:(P)),
the occurrence of o, cannot be blocked by Q (indicated by ¢, ¢ B), and Q cannot participate
in the occurrence of o, (indicated by e (g,,¥;)(0,,8) € 7:(Q)); (ii) a trajectory belonging
to e,(0p, Lp) allp €4 has already been executed in the composed system, and at this point,
04 i3 executable in @, and P can neither block the occurrence of oy, nor it can participate
in the occurrence of o; (iii) 0, = 0, := 0} a trajectory belonging to e, 4|/ €, has already
been executed in the composed system, and at this point, ¢ is executable in both P and Q.

Remark 7 It is clear from Definition 10 that if A = B = X, which corresponds to the case
of SSC, then an initial refusal set of 7;(P 4|l @) equals the union of an initial refusal set
of 7/(P) and an initial refusal set of m;(Q), since Sy x(%,,%,) = &, U ;. Also, note that
the sets 77 = T3 = §) since the conditions “o, ¢ B” and “o, € A” both evaluate to “false”.
Hence the PSC of ey(0p, E,) € 7(P) and e,(0,,E,) € m(Q) is nonempty if and only if the
set T3 is nonempty, which requires that o, = o,. Using induction, it can be easily concluded
that the SSC of trajectories e, € m,(P) and e, € m(Q) is a nonempty set if and only if
tr(ep) = tr(eq), in which case, tr(e, x||s €,) = tr(e,) = tr(e,), and the ith refusal set of any
trajectory in e, s||s e, is any subset of the union of the ith refusal set of e, and the ith
refusal set of e, for each 0 < ¢ < |e,| = |eyl-
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We can extend the definition of the PSC of a pair of trajectories to the PSC of the trajectory
models. With a slight abuse of notation, we use the same symbol 4||p for the PSC of the
NSM’s P, Q and for the PSC of their corresponding trajectory models m(P), m,( Q).

Definition 11 The PSC of the trajectory models 7,(P), 7:(Q) is defined to be
mi(P) all 7(Q) = {ep allB € | € € m(P), ¢q € 7(Q)}.

The following result shows that the trajectory model of the PSC of NSM’s is the PSC of their
corresponding trajectory models. Equivalently, it states that the PSC operation on NSM’s
induces a PSC operation on trajectory models, and the induced operation is precisely the
one described in Definition 11.

Theorem 2 For any NSM’s P, Q,
(P allp Q) = 7(P) allp m(Q)

Proof: Let R =P 4||p Q. First we show that
m(R) € m(P) all 7(Q) | ON

We prove by induction on trajectory length that if e € m:(R) and z, = (z,,2,) € 6% (2%, €),
then there exist e, € m(P), e, € m(Q) such that

(i) the final refusal sets of e,, e, are Rp(z,), Ro(z,) respectively;
(1) e € e, 4B €4;
(iil) z, € 85 (2%, ¢,) X 63 (2, €9)

Consider a 0O-length trajectory e = X’ € m(R). Then there exists z, = (z,,z,) €
ex(2%) such that X' C Rp(z,). Lemma 3 implies that z,, € €5(2%), z, € €5(2}), 2’ C
SaRp(zp),Ro(z,)). Setting e, = Rp(z,), e, = Ro(z,), it follows that (i),(ii),(iii) are
satisfied.

For the induction step, consider a trajectory ¢ = &(0,X') € m(R). Then there exist
T, = (Tp,Z,) € 7 (2%,€), z, = (},2,) € ér(E,,0), 2, = (Tp,T,) € ex(x,) such that
3’ C Rr(z,). By induction hypothesis, there exist €, € 7(P), €, € 7(Q) with final refusal
sets Rp(Z,), Ro(Z,) respectively such that

ECEallpéy T, €65(2%,8), Z,€ 65 (2%, 8,)
Since o is executable in Z,, it follows from Definition 9 that there are three cases:
(a) 0p(Zp,0) # 0, b60(T4,0) # 0
(b) 6p(&p,0)# 0, 0 € Ro(Z,), 0 ¢ B
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(C) 6Q(§7Q70) 7& Q)’ S %’P(Ez))w g g A.

By symmetry, it suffices to consider cases (a) and (b).
In case (a), 2, € ép(Zp, 0), T, € (T4, 0). Setting e, = &,(0, Rp(z,)), €q = (0, Ro(z,))
and using the fact that

¥ C §RR(xr) = SA,B(%P(xp)vg%Q(xq)), (9)

it follows easily that e, € m(P), e, € 7(Q) and conditions (i),(ii),(iii) are satisfied.

In case (b), z, € 8p(%y,0), 2, = Z,. Set e, = &,(0,Rp(z,)) and let e, be the trajectory
obtained from &, by replacing its final refusal set Ro(Z,) with the set Rg(z,). (Since z, €
€a(#,), the new final refusal set will contain the old final refusal set.) Then e, € m(P), ¢, €
7(Q) and conditions (i),(iii) are clearly satisfied. It follows from Definition 10 that

€€ alle; S & allb e

Since o € Ko(Z,) € Ro(z,), it follows from property T5 that e,(a,0) & 7,(Q). Since o ¢ B
and (9) holds, it follows from Definition 10 that condition (ii) is satisfied. This completes
the induction step and establishes (8).

It remains to show that

m(P) allp 7:(Q) € m(R) (10)
We prove by induction on |e,| + |e,| that if € € €, 4|5 €, With €, € m(P), e, € 7:(Q), then
85 (23, ) X 65 (2, €0) C 6% (2R, ¢) (11)

Since the set on the left side is nonempty by assumption, this implies that the set on the
right side is nonempty-i.e., that e € m,(R).

Let e, = X, e; = X, be O-length trajectories of P, Q respectively, and let «, €
65 (2%, Ep), 4 € 65 (2%,%,). Then

Tp € 6;9(5”(7)?)’ Ty € 6:2(‘”?2)’ L, CRr(zy), 2y € Ro(zy).

Let z, = (zp,z,). Then z, € ei(z%). It follows from Definition 10 and Lemma 3 that e = %'
with
%' C Sa(Zp,5) C SapRp(z,), Ro(z,)) = Rr(z,).

This shows that z, € 65 (z%, X}, so (11) holds in the 0-length case.
For the induction step, write e, = €,(0,,%,), e, = €,(04,Z,), and suppose e = &, ¥') €
ep AllB €. It follows from Definition 10 that there are three cases to consider:

(d)o=0,=0, €€ ép allp &, X' C S4,8(5p, %)
(e) o =0y, 0 € B, eg(0,0)  m(Q), €€ & allp &g, ' C Sap(Ep, %)
(f) o =o0¢, 0 & A, ep(0,0) € 7(P), €€ ey allp &, £' C Sap(E5,5,)
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By symmetry, it suffices to consider cases (d),(e).

For case (d), let z, = (z,,2,) € 63'(2%,€,) X 65 (2y,¢0). Then L, C Rp(z,), L, C
§RQ(:':(I)’ 50

5 C Sap(55, %) C San(Re(a,), Ro(z,)) = Rr(zr). (12)

Since z, € 6;;‘(3307,,6,,), T, € 65 (29, €,), there exist z, € 63 (25,6,), T, € 65 (2y,¢,), ), €
bp(Zp,0), T, € bo(Zg, ) such that =, € ep(z}), 24 € CQ( 2. Let a:r = (wp, ¢)- It follows
from Deﬁmtlon 9 that (z,,z;) € 6r(Z,,0), while by mductmn hypothesis, we may assume
that z, € 65 (2%, €). Then

2, € (2}, })) € R(6r(E:,0)) C R(6R(5F (23, 8),0). (13)

We conclude from (12) and (13) that z, € 6% (z%,¢) as required.

For case (e), let z, = (z,,z,) € 67 (2%, €,) X85 (2%, €5). The inclusions given by (12) hold
as in the previous case. Since z, € 67'(2%, €,), there exist Z, € 65 (2%, €,) and z, € 6p(ip,0)
such that z, € e5(7},). Let %, = (Z,,z,). We have

6Q(622($9)’0') - 6Q(68($0Q’ eq)wa) = 0’

where the final equality follows from the assumption that e,(o, 8) & 7;(Q). This implies that
o€ ?Rg(xq) It then follows {rom Definition 9 that (z,z,) € 6r(@,0), while by induction
hypothesis, we may assume that z, € §% (2%, &). Then

zr € ex((27,24)) € r(6r(3r,0)) C R (6r(6% (2%, ), 7). (14)
We conclude from (12) and (14) that z, € 85 (2%, e) as required. This completes the induc-
tion step and establishes (10). O

Corollary 2 The trajectory model is a language congruence with respect to the operation

of PSC.

Proof: Suppose that Py, P,, @1, Q2 are NSM’s with m¢(P1) = m(P2) and m( Q1) = mil Q2).
Then

T(P1 alle Q1) = tr(m(P1 alle Q1) = tr(z(P1) all 7:(Q1)) = tr(7d(P2) all 7:(Q2))
= tr(m(Ps allp Q) = (P2 ll5 Qo).

0

Remark 8 Theorem 2 shows that the trajectory model of P 4]|p @ can be described using
only m(P) and m(Q), and not P, Q directly. This is in contrast to the situation with the
failures model. Theorem 2 and Corollary 2 both fail if the trajectory model is replaced with
the failures model. The equality of failures models does not necessarily imply the equality of
failures models-or even language models-under prioritized synchronous composition with a
fixed system [5, Example 7]. The result in Corollary 2 was mentioned without proof in [5, 6].
However, its rigorous demonstration depends on the precise definition given above for the
PSC of NSM’s (with e-moves) as well as of the projection map 7; from NSM’s to trajectory
models.
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4 Properties of Prioritized Synchronous Composition

In this section we study some of the properties of the PSC of two or more trajectory
models, which are used in Section 5 for the synthesis of supervisors which control the behavior
of nondeterministic plants via PSC.

4.1 Associativity

We begin by providing a proof for the following result which is stated without proof
as part of [6, Theorem 13.4]:

Proposition 4 For any trajectory models P, @, R and priority sets A, B, C

(P alls Q) auBllc B =P 4llsuc (@ 8llc R)

This can be interpreted as an associative property as follows. Let P, () denote trajectory
models with alphabet ¥, and let A, B be subsets of £. We refer to the pairs (P, A), (@, B) as

prioritized processes, and define their synchronous composition to be the prioritized process
(P, A) || (@, B) := (P 4lls @, AU B).
Then Proposition 4 asserts that
(P,A) [ (Q.B) Il (B,0) = (P,4) || (@, B) || (R O)).

Thus, the result is simply the associative property for the synchronous composition of pri-
oritized processes.

In order the prove Proposition 4 we will use the following result which gives a monotonic-
ity property of the PSC of trajectories with respect to the dominance partial order.

Lemma 4 Let P,Q be trajectory models, A,B C X, f,,e, € P, f, e, € Q, with f, C
ep, fq C eq. Then
foallB fo € € allB €

Proof: The proof is by mductlon on the sum of trajectory lengths [e,|+|e,|. If |e,|+[eg| = 0,
then fp =3, ep =5, fy=3,, ¢, =5, with 3, C %,, £, CS,. Let f € f, 4ll5 f,- Then

f=3"CSan(5r2) C Sap(Ep E).

Thus, f € e, aliB €.

For the induction step, write f, = fp(ap,Ep), ep = E(0p,5,), fo = folog, X 5 ) € =
£,(04,5,) with f, C &, 3, C %, f,Cé, 5, C %, Let f = f(o, 2 € fp allB f;- There
are three cases to consider: (1) Suppose f € fp A”B foy 0= = 0p = 04, &' C 54 B2, 5,).
By the induction hypothesis, f € &, 4| &. Since ' C S458(2,,35,) C Sas(Z,, T,), this
implies that f € e, 4llp ¢ (2) Suppose [ € fp alls for 0 = 05 & B, fo(on0) & Q) ' C
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Sa B(ﬁp,i} ). By induction hypothesis, f € &, llp €,. Also, e,(o, (0) ¢ @, since otherwise
T3 would imply that f,(o,0) € @, contradiction. Since &' C S4(2p,8,) € San(Ep, 5,),
this implies that f € e, a|lp €,. (3) Suppose f € fo alls fo, o =0, € A, f,(c,0) ¢ P, X' C

S45(5p, £,). This case is analogous to case (2). Hence, the induction step is complete. O

Proof of Proposition 4: By symmetry, it suffices to prove the inclusion

(P 4l Q) auBllec R C P 4llBuc (Q Bllc R).

By Lemma 4, it suffices to show that if e,,e,, e, are saturated trajectories of P, (), R
respectively, then
(¢p 4llB €q) ausllc e S P allBuc (@ Bllc R).

To prove this, we show by induction on the sum of the lengths |e,| + |e,] + |e,| that

(ep allB €q) auBllo er S € allBuc (€4 Bllc €). (13)
For future reference, we note that the following identity holds:

SAUB,C(SA,B(E;M Zq), Er) = (Ep n Zq N E,-) U (Ep N A) U (Eq N B) U (ET N C)
= Sapuc(Ep, Spc(X, X)) =% (16)

If e, = Xy, ¢ = Xy, e, = X, each have length 0, then (e, al|B €;) auBllc €, consists of
all subsets of S4up,c(S4,8(Z,, %), Z,) while e, a|lBuc (¢4 B||c €,) consists of all subsets of
Sa,puc(Zp, SB,c(Xq, Er)). Thus, (15) follows from (16).

For the induction step, let e, = &,(0p, 5,), €q = &(0q,Lq), €& = &(0r, 2r). &, &g, &
are saturated since they are prefixes of saturated trajectories. Let f € e, 4|l e, and let
h € f ausllc er C (ep 4llB €g) auBllc €. Let b = h(a, 2) (There is no loss of generality in
taking the final refusal set of & to be the maximal set 3. ) To establish the induction step, we

consider several cases. (Some cases will not apply if at least one of the trajectories e,, 2,, ¢,
has length 0.)

(1) h € f auBllc &, 0 € AUB, f(0,0) € P 4|z Q, o = o, (This is when the final event
in h occurs in R but not in P 4|5 Q.)

(Za) h € f—AuB“C €ry O g Cv 6,«(0, @) ¢ R, 0 = Op, f_ € e A“B €q; O ¢ B, 64(0',@) ‘Z Q
(This is when the final event in h occurs in P 4||g @ but not in R, and within P 4lls @,
it occurs in P but not in @Q.)

(2b) k€ fauslc e, 0 €O, e(0,0) € R, 0 =0y, f € epalley o & A, eya,0) & P.
(This is when the final event in h occurs in P 4]|p Q but not in R, and within P 4||z @,
it occurs in @ but not in P.)

(2¢) he fausllocer, 0 €C, e(0,8) ¢ R, 0 =0, =0y, f €&, |l €. (This is when the
final event in A occurs in P 4|[p @ but not in R, and within P 4|p @, it occurs in
both P and Q.)
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(3a) h€ f avBllcér, o=0,=0,, fEE& allpeg, 0 & B, ec,0) ¢ Q. (This is when the
final event in h occurs in P 4|l @ and in R, and within P 4|/ @, it occurs in £ but
not in .)

(3b) h € f auBlc &, o =0, =0, fE ep AllB &g, 0 & A, ey(a,0) ¢ P. (This is whea the
final event in h occurs in P 4||p @ and in R, and within P 4||g Q, it occurs in () but
not in P.)

(3c) h € fAU3||C €ry O = Op = Oy = Oy, fe €, allB €. (This is when the final event in A
occurs in P 4||p @ and in R, and within P 4]|g @, it occurs in both P and @Q.)

We include a detailed proof for case (2a). The other cases are proven in a similar manner
and are left to the reader. Under the assumptions of (2a),

h € f ausllc e C (& 4llB €g) ausllc & C &, allauc (e Bllc e),

where the last inclusion is the induction hypothesis. Thus, there exists
9=3(0",SB,c(54,%:)) € g 5llc e

with o' € {oy,0,} such that & € &, 4||puc ¢. (By Lemma 4, there is no loss of generality in
taking the final refusal set of g to be the maximal set Spc(Z,,E,).) Since e,(0,0) € @ and
e-(0,0) ¢ R, it follows from the assumption that e, and e, are saturated that o € £, and
o €%,. Thus, 0 € ¥, NE, C Spc(Xy, ). By T5, ¢g(0,9) € Q B|lc R. This together with
o ¢ BUC, implies that

h = h(a,%) = k(o, Sa,Buc(Xp, SB,c(X4,2:))) € € allBuc 9 € € allBuc (€q BllC €r),

completing the induction step. a

4.2 Monotonicity

Next, we show that prioritized synchronous composition is a monotone operator in
each of its arguments.

Proposition 5 Let P, ()1, @2 be trajectory models with @y € Q.. Then for any priority
sets A, B
P 4llg @1 € P 4lB Qo

Proof: By Lemma 4, it suffices to show that for any e, € P and saturated e, € @1, then
ep allb €q = €5 4ll} €,

where the left (respectively, right) side denotes the PSC of e,,¢e, in P 4||gp Q1 (respectively,
P 4|lB @2). We prove this by induction on the sum of the lengths |e,| + |e,|.
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If |ey| + |eg] = 0, then e, = £, e, = By, in which case
ep allp €g = {X' € Sa,8(55,50)} = €5 4ll €q-

Now suppose the assertion is true whenever the sum of the lengths is less than n, and suppose
that [ep] + leg| = n. Write e, = €,(0y, %p), € = €;(04,2,). For ¢ = 1,2 define the following
subsets of P 4||p Q::

Tli - {{é(ap’ leee A”%B gy &' C SaB(Ep, )} if 0p € B and egfay,0) & Qs
' )

otherwise
T} = {{é(aq,E')l g€ epally 8y &' C San(55,5,)} if o, ¢ Aand ey(0y,0) ¢ P
. 0 otherwise
Ti = { {e(o, X)) €€ & 4llp &, X' C Sup(Ep%,)} ifo,=0,:=0
’ 0 otherwise

Since the prefix of a saturated trajectory is saturated, &, is @;-saturated. Thus, the induction
hypothesis implies that

€p A”}% e = €p A”% €y €p A”}B € =¢€p A”ZB €g; €p A”}B € = €p A”% €.

It follows immediately from this that 7) = T2 and T3 = T%. .

Since e, is Qq-saturated, it follows that if e,(0,,0) & Q1, then o, € £,. Since ¢, =
4(0q,5q) € @2, and o, € X,, we obtain from the property T5 of trajectory models that
eQ(Ui’a @) ¢ Q2' Also since Ql g Q2a if eQ(UPa ﬂ) € Qla then 6?(0Pa®) € Q2' Thus7 eq(ap.,@) €
Q1 if and only if e,(0,,0) € Q. It follows that T} = T2. Thus,

3 3 m2
€p A”%? €q = L'Jj‘—-‘lTj1 = Uj:lfz—'j =¢€p AHZB €q;s
completing the induction step. 0

Rernark 9 Let P, ()1, @ be trajectory models and let A, B be arbitrary priority sets. It
follows trivially from Proposition 5 that if Q1 C @, then

L(P 4llp @1) € L(P 4l @2). | (17)

However, it is important to note that (17) is not true under the weaker assumption that
L(Q1) € L(Q2). Were this to be true, it would imply that if L(Q1) = L(Q,), then
L(P 4| Q1) = L(P a|lp Q2). However, it is shown in [5, Example 7] that two systems
with the same failures model (and hence the same language model) may yield different
languages when composed in prioritized synchrony with a fixed system.

Corollary 38 Let P, Q1, Q2 be trajectory models with @; deterministicand L(@Q1) = L(Q,).
Then
P allp @1 € P allB Q2.

Proof: It follows from Proposition 3 that ); C @2, so the result is an immediate consequence
of Proposition 5. a
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4.3 Augmentation and Prioritized Synchronous Composition

We define augmentation of both NSM’s and trajectory models, and show that the pri-
oritized synchronous composition of two trajectory models is identical to strict synchronous
composition of their augmentations, provided the two priority sets exhaust the set of events.

Let P be an NSM with alphabet £, and let D C ¥. We denote by S(D) the deterministic
state machine with one state and self-loops labeled by every event in D. The augmentation
of P by D, denoted PP, is defined to be the NSM

PP =Pyl S(D)

The state space of PP can be identified with the state space of P, and PP is then obtained
from P by adding self-loops at each z € Xp labeled by every event in D N\ Rp(z). It is clear
that PP is deterministic whenever P is deterministic.
If P is a trajectory model, the augmentation of P by D, denoted PP, is defined to be
the trajectory model
PP := P y|lp det(D").

Note that since both priority sets are empty, PP represents pure interleaving of P and
det(D*) except that the broadcast synchronization requirement means that events in D
which can also occur in P occur synchronously in both P and det(D*).

We will need the following result which shows that PSC of trajectory models preserves
determinism.

Proposition 6 If P and @ are deterministic trajectory models, then so is P 4||5 Q.

Proof: By definition, there exist deterministic state machines P,Q such that =(P) =
P, 7,(Q) = Q. From Definition 9, it is clear that P 4||p Q is deterministic. Since Theorem
2 implies that P 4||p @ = m(P al|B Q), we conclude that P 4||p @ is deterministic. O

Corollary 4 If P is a deterministic trajectory model, then so is its augmentation PP.

The next result describes the relationship between the augmentation of an NSM and the
augmentation of its trajectory model.

Proposition 7 Given a NSM P and an event set D C %, 7,(PP) = [r(P)].
Proof: Immediate consequence of Theorem 2. O

Remark 10 Since det(D*) can always execute every event in D and can never execute any
event in ¥ — D, it follows that

PP=p q)”@ det(D*) =P Q)”D det(D*) =P E—-D”D det(D*).

The next result shows that augmentation can be used to reduce prioritized synchronous
composition to strict synchronization.
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Proposition 8 If AU B = X, then

P 4lls Q = PB-4 5|5 Q = PP-4 5|5 Q5.

Proof: It suffices to prove the first equality since the second equality follows from symmetry
and a second application of the first equality. Using Remark 10 and Proposition 4 gives

PB4 5l Q = (P allp-adet((B—A)))x|sQ
det((B — A)*) p-allz (P 4|l @)
= P4z Q.

The final equality is an easy consequence of two facts: The priority set of P 4||p Q is &, so
the process det((B — A)*) cannot execute any events which do not occur in P 4|/ Q. The
process det((B — A)*) can alway execute each event in its priority set, so it cannot block any
events in P 4||p @. O

il

4.4 Idempotency

If P, Q are NSM’s, the language model of the strict synchronous cornposition (SSC) is
* the intersection of the language models of P and Q (refer to Remark 7 for explanation), i.e.

m(P zllz @) = m(P) N m(Q).
It follows from this that the SSC of language models is idempotent:
7TI(’P z”z P) - 71'1('P).

In contrast to the situation for language models, the SSC of trajectory models is not
idempotent. This is illustrated by the following example.

Example 3 Let £ = {a,b}, A= B =%, P=(a— Ag)® (b - Ag). P is generated by
the maximal trajectories {b}(a, {a,b}) and {a}(b, {a,b}). However, P g||z P is generated by

the trajectories
{6}(a,{a,b}), {a}(b,{a,b}), {a,b}.
Although L(P g||z P) = L(P), the trajectory models P z||z P and P are not the same.

The next example shows that when the priority sets A, B are not both equal to ¥, even the
language model of P 4||p P can differ from that of P.

Example 4 Let ¥ and P be as in Example 3, but let A = B = {). P g||p P is generated by
the trajectories

{6}(a,{a,0}), {a}(b,{a,b}), O(a,{a})(,{a,b}), B(b, {b})(a, {a,b}).
Thus, P 79 P @Hq) P.In fact, L(P) "rL L(P @”q) P)
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It has been suggested elsewhere that if A C B, then
L(P allp Q) = L((P 4lls @) 4llB Q) (18)

However, this is not the case as demonstrated by the next example.

Example 5 Let ¥ = {a,b}, A=B =10, P=As, Q = (a > As) ® (b — Ax). Then

P alls @=Q,s0 L
L((P alls @) alls @) = L(Q ollo @) = {ab, ba}.
But L
L(P 4llp Q) = L(Q) = {a, b}.
(Overbar denotes prefix-closure.)

Based on the connection between PSC and SSC of augmented systems when AUB = I,
(18) might be expected to hold under the alternative assumption that AU B = X. However,
this also turns out to be false as demonstrated by the following example.

Example 6 Let ¥ = {a,b}, A = {a}, B = {b}, P = (a —» Ag) + (b — Ay),

As @ (b — Agx). Straightforward calculation shows that P 4llp Q = (¢ — Ag) @ (( =
Ag) +(a = (b — Ag))), while (P4l Q) 4lls @ = [a = Ag] @ [(a —» (b = Ag)) +
(b— (a = Ag))] & [(a = (b — Ag)) + (b = Ag)]. Thus, L(P 4|z Q) = {b, ab}, while
L((P alls @) allB @) = {ab, ba}.

5 Supervisory Control with Driven Events

In this section, we derive results concerning supervisory control by prioritized syn-
chronous composition in the presence of driven events.

5.1 Supervisory Control Problem

We begin with a result which shows that in a prioritized synchronous composition, a
deterministic process participates in every event of any trajectory whose trace belongs to its
language.

Lemma 5 Let P, Q be trajectory models with @ deterministic. If € € e, 4llp e, C P 4|5 @
with tr(e) € L(Q), then tr(e) = tr(e,).

Proof: The result follows as a special case of Lemma 6 below. a

The following result gives necessary and sufficient conditions for a given (prefix-closed)
language to be realizable as the closed-loop language for a plant supervised by prioritized
synchronous composition. The basic assumption is that every event in the alphabet ¥ belongs
to the priority set A of the plant P or the priority set B of the supervisor. The interpretation
is that ¥ is partitioned into disjoint subsets ¥,, ¥, and Xy consisting of the controllable,
uncontrollable and driven events, and A =¥, U X, while B= Y. U¥%,.
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Theorem 3 Let P be a trajectory model, AUB = X, and let K be a nonempty prefix-closed
sublanguage of L(P5~4). Then there exists a trajectory model S such that L(P 4]|g S) = K
if and only if

K(A-B)nL(PP~4) CK, (19)

in which case S can be chosen to be the deterministic trajectory model det(K).

Proof: We begin with sufficiency. Suppose that equation (19) holds. Since K is a nonempty
prefix-closed sublanguage of L(PB~4), there exists a trajectory model S such that

L(PE-YYn L(S) = K.

Without loss of generality, we may assume that S is deterministic. (In particular, we can
choose S = det(K).)
‘We claim that
L(PPHnL(s4P) =K. (20)

Obviously,
K = L(PP~Yn L(S) C L(PP~*)n L(S47B).

We establish the reverse inclusion by contradiction. Suppose L(PB-4) N L(S4~B) strictly
contains K. Let t = so be a minimal length trace in L(PP~4) N L(SA~B) — K. Then
s € K = L(PB~4) N L(S). Since so € L(S4~B), there exists g = §(o,0) € S48 such that
tr(g) = s. Hence, there exist e = &(o’, ') € S, f = f(0”,X") € det((A — B)*) such that
g € egllp f- First suppose 0 ¢ A — B. Then o # ¢”,s0 0 = ¢’ and § € € ¢y f. Since S
is deterministic and tr(g) = s € L(S), it follows from Lemma 5 that tr(g) = tr(€). Thus,
so = tr(g) = tr(e) € L(S), which implies that ¢t € K, contradiction. On the other hand, if
o € A — B, then it follows from (19) that ¢ € K, again a contradiction. Thus, (20) holds.
Using Proposition 8, it follows that

K = L(PP~)N L(S478) = L(PB~4 g||z §4B) = L(P 4| S),

showing that S solves the supervisory control problem.
Conversely, suppose there exists a trajectory model S such that

L(P 4l §) = K.

Then (20) holds. Let t = so € K(A—B)NL(PB-4). Sinces € K C L(S4~B)and o € A— B,
it follows that so € L(S4~8). Thus, t € L(PB-4)N L(S4~B) = K, so (19) holds. @]

Remark 11 Theorem 3 states that K is realizable as the closed-loop language if and only
if it is controllable (in the sense of Ramadge-Wonham [18]) with respect to the language
of the augmented plant. L(PB~4) depends on the trajectory model P-not simply on L(P).
Knowledge of L(P) is not sufficient to determine if the supervisory control problem is solvable
for a given target language K. This is illustrated by the following example.
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Example 7 We consider a very simple air traffic control problem. The plant represents the
aircraft and pilot while the supervisor represents the air traffic controller. Let £ = {a, b}
where a € ¥, represents a flight maneuver, while b € ¥y represents a command from the
tower not to execute the flight maneuver. The execution of b by the supervisor indicates
that the command has been broadcast, whereas the execution of b by the plant indicates
that the command has been received.

We consider two alternative trajectory models for the plant:

P = (a—> Ag)+(b— Ag)
P, = [(a— Asg)+(b— As)]® (a = Ax)

In P, the pilot can initially execute the maneuver or receive the command not to do so.
However, in P, there is an initial nondeterministic choice between P; and the trajectory
model (¢ — Ag) in which the maneuver is possible but the command cannot be received.
Thus, P; models the possibility of aircraft radio receiver failure. Note that L(P;) = L(P,).
However, it can be verified that L{PZ™4) = (a + €)b* while L(Pf™*) = b*(a + €)b".

Suppose that the target language K is not completely specified but is required to contain
the trace b and not contain any trace in which the event a occurs after the event & has
occurred. In other words, the tower should be initially able to broadcast the command b,
and if the command has been broadcast, the pilot must not be able to execute the maneuver
a.

The supervisory control problem is clearly solvable for the plant model P;. For example,
if we choose S = P, then P, 4]l S = P, so the closed-loop language is L(P;) = {¢,a,b},
which meets the specifications for K. On the other hand, the supervisory control problem
is not solvable for the plant model P,. For any target language K which satisfies the speci-
fications, we have ba € K(A — B) N L(Pf~*) — K. It follows from Theorem 3 that there is
no supervisor S such that L(P; 4]l 5) = K.

It is worth noting that if P, is the correct plant model-i.e., receiver failure can occur-then
the supervisory control problem can be made solvable by changing the protocol between the
pilot and tower. If the pilot is required to obtain clearance from the tower in order to execute
the maneuver a, then a becomes a controllable event and it is then trivial to construct a
supervisor which meets the specifications.

Rernark 12 If K does not satisfy the condition (19)-i.e., is not controllable relative to the
language of the augmented plant-then a supervisor S can be constructed which imposes K1
as the closed-loop language. Here K is the supremal sublanguage of K which is controllable
with respect to L{(PB~4). KT can be computed by applying any of the standard algorithms
[19, 2, 11], but using L(PB~4) in place of L(P).

Rermark 13 The proof of Theorem 3 shows that if K satisfies the condition (19) and if N
is any prefix-closed sublanguage of ¥* with

L(PP"YN N =K,
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then the deterministic supervisor S := det(N) results in K as the closed-loop language
L(P 4llg S). Since K C N, it follows from Lemma 5 that every event executed by the
closed-loop system occurs in S. In particular, every uncontrollable event is executed by the
supervisor even though such events do not belong to its priority set. This behavior is induced
by the broadcast synchronization requirement in prioritized synchronous composition.

When there are no driven events, then A = L, U X, = ¥ and B = %.. In this case
Theorem 3 specializes to give the following two corollaries.

Corollary 5 Let K be a nonempty prefix-closed sublanguage of L(P). Then there exists a
trajectory model S such that L(P g||s, S) = K if and only if

L(P |5, det(K)) = K.

Corollary 6 Let K be a nonempty prefix-closed sublanguage of L(P). Then there exists a
trajectory model S such that L(P x|ls. S) = K if and only if

KS.nL(P) C K. (21)

Remark 14 Corollary 6 shows that when there are no driven events, the necessary and
sufficient conditions for supervisory control by prioritized synchronous composition are the
same as those in the Ramadge-Wonham framework [17]. Corollary 6 was stated without
proof in [5, Theorem 1] and [6, Theorem 14.2]. Corollary 5 was stated in [6, Theorem 14.1]
acccmpanied by an incomplete proof. (Compare [6, Propositions 13.12, 13.13 and Corocllary
13.3], on which the given proof of [6, Theorem 14.1] is based, with Remark 9 and Example
5 above.)

Remark 15 It is interesting to specialize Remark 13 to the case where there are no driven
events. It follows from Remark 13 that if K satisfies the condition (21) and if N is any
prefix-closed sublanguage of ¥* with

L(P)NN =K,

then the supervisor S := det(N) imposes K as the closed-loop language and participates in
every event executed by the closed-loop system. Since A = X, the plant also participates in
every event. Thus, the plant and supervisor function as though they are connected by strict
synchronization rather than by prioritized synchronous composition. In particular, this is
the case when the supervisor is chosen to be det(K). The determinism of S is essential here.
If S is a nondeterministic trajectory model with L(S) = N, there is no guarantee that the
closed-loop language will be K. This is demonstrated by the next example.

Example 8 Let ¥ = {a,b}, X. = {a}, Z. = {b}, P=(a = Axg)+ (b = (a = Ax)), S =
(a = Ag) @ (b — Ag). Then

L(P) ={e,a,b,ba}, L(S) = {e a,b}.
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Let K = L(S). Then K satisfies the controllability condition (21) as well as L(P)NL(S) = K.
A straightforward calculation shows that

Psls. S=({(a— Ag)+(b— (a = Ax)) & (b — Ax).

Thus,
L(P slls. S) = {¢,a,b,ba} = L(P) # K.

What happens is that since S is nondeterministic, the event b can be executed as the initial
event solely in P even though b € L(S). (This cannot happen for deterministic S by Lemma
5.) Thus, strict synchronization is lost. This permits a trace of P |z, S which is not a
trace of S.

5.2 Restricted Supervisory Control Problem

We continue to assume that AU B = X where A=Y, U¥Y, and B = X, U ¥4. In the
closed-loop system P 4||p S, the events in A — B-i.e., the uncontrollable events-are gener-
ated by the plant P and are broadcast to the supervisor S where they are synchronously
executed whenever enabled. It may happen that information about the occurrence of certain
uncontrollable events is unavailable for broadcast due to lack of sensors, or it may be desired
to irnplement a simplified supervisor which ignores such information. This suggests a gen-
eralization of prioritized synchronous composition in which the broadcast synchronization
requirement is disregarded for a specified subset I' C A — B of uncontrollable events. Since
events in A — B cannot occur spontaneously in S, this effectively prevents S from ever exe-
cuting the events in I'. Thus, instead of modifying the definition of prioritized synchronous
composition, it is equivalent to restrict the admissible supervisors to those which do not
execute events in I'.

Let IIr denote the natural projection defined by

_f[e foroel
HF(U)_{U force ¥ -T

IIr extends to a map on ¥* in the obvious way. We define the Restricted Supervisory
Control Problem (RSCP) to be as follows: Given a prefix-closed sublanguage K of L(PZ~4)
and I' C A — B, determine if there exists a supervisor S such that

o L(PAlls S) =K
o TIr(L(S)) = L(S)

Remark 16 There are two different ways to model an uncontrollable event in the plant
which is unobservable to the supervisor. It can be completely suppressed and treated as an
e-event in P. Alternatively, it can be treated as a labeled event o € ¥ in the plant which does
not label any transitions in the supervisor. The advantage of the second approach (which
is the one taken in the RSCP) is that such an event can be included in the performance
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specifications-i.e., in the target language K. Hence, even though it is unobservable to the
supervisor, its occurrence in the closed-loop system can be controlled-albeit subject to the
conditions which must be satisfied by K for the solvability of the RSCP.

The next result generalizes Lemma 5 to the case where certain events in A — B are not
present in the second process Q.

Lemma 6 Let I' € A — B and let IIr be the natural projection. Let P,Q be trajectory
models with @ deterministic and satisfying IIp(L(Q)) = L(Q). lf e € e, alls e C P 4lls Q
with IIp(tr(e)) € L(Q), then Ir(tr(e)) = tr(e,).

Proof: The proof is by induction on |e]. The assertion holds trivially when |e] = 0. For
the induction step, write ¢ = €(o, £') and let €,, &, denote the prefixes of e,, e, obtained by
deleting the final event and refusal set from each trajectory.

If o occurs synchronously in both P and (), then € € €, 4]|g &€,. Then o € T, so

Hr(tr(e)) = Hr(tr(e))o.

Since L(Q) is prefix-closed, Ir(tr(€)) € L(Q). Applying the induction hypothesis gives
Hr(tr(e)) = tr(g,;). Thus,

Hr(tr(e)) = Or(tr(€))o = tr(é,)o = tr(e,).

The same argument applies in the case where € € ¢, 4||p €,-i.e., when ¢ occurs only in Q.
Suppose € € €, 4l|p €, le., o0 occurs only in P. If ¢ € T, then

Or(tr(e)) = Hr(tr(e)) = tr(e,),

where the second equality follows from the induction hypothesis. Now suppose that ¢ ¢ I'.
Since o occurs only in P, it follows that e,(o,0) & Q. Since @ is deterministic, Proposition
3 then implies that tr(e;)o ¢ L(Q). Since L{Q) is prefix-closed, IIr(¢r(€)) € L(Q). Using
the induction hypothesis, we have

tr(eg)o = Ilp(tr(e))o = Ir(ir(e)) € L(Q),

a contradiction. Thus, this final case cannot occur. O

For the standard supervisory control problem with partial observations (and no driven
events), a target language K is obtainable as the language of the closed-loop system if and
only if K is controllable and observable relative to the language of the plant [15, 3]. The
following result shows that in the presence of driven events, the RSCP is solvable if and only
il K is controllable and observable relative to the language of the augmented plant.

Theorem 4 Let AUB = X, I' € A— B, and let K be a nonempty prefix-closed sublanguage
of L(PB=4). Then there exists a trajectory model S such that

L(P 4llg S) = K, Or(L(S)) = L(S) (22)
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if and only if the following two conditions are satisfied:

(a) K(A-B)NL(PP~YCK (23)
(b) If & t € K with IIr(8) = IIr(?), and if 50 € K, to € L(PP~4),
then to € K. (24)

In this case, S can be chosen to be the process det(IIp(K)).

Proof: We first show the necessity of the controllability condition (23) and observability
condition (24). Suppose there exists a trajectory model S such that (22) is satisfied. Then
(23) follows from Theorem 3. Let 5, t € K with IIp(3) = IIr(?), and suppose that 5o €
K, o € L(PB-4). We need to show that o0 € K. Since

L(PE-YYnL(54B) = K,

it suffices to show that {0 € L(S4~P). Since K is controllable, it suffices to consider o € B.

Note that
SA-B — (SA-—B—I“)I".

Also, since IIp(L(S)) = L(S), events in I" are never executed in S. Hence
HF(L(SA-—B——F)) = L(SA—B—F).

In other words, events in I' are never executed in $4-B-1. Hence the language L(S4~8) =
L((54-B-T)) is obtained by pure interleaving of the languages L(S4~2~T) and L(det(I*)) =
I'*. Since the string 50 € L(S#~F), we have IIr(30) € L(SA~2-T). Also, since IIp(50) =
lIr(3)o = p(¢)o = Hr (o), we have lIr(ie) € L(S4~B-1). Since fo is a pure interleaving of
IIr(io) € L(S*7B-T) and a string in T, o € L(S*~P). This establishes (24) and completes
the proof of necessity.

To prove sufficiency, suppose that (23) and (24) both hold. Let S = det(IIr(K)). By
Proposition 8, it is equivalent to prove

L(PB_A 2”3 S) =K.

Given any t € K, there exists e € PB~4 with tr(e) = t and there exists f € S with
tr(f) = IIp(t). Since I'N B =  and S can never execute an event in I', it follows that
e x||s f is nonempty and every trajectory which it contains has trace t. Thus,

K C L(PB—A E”B S)

It remains to prove
L(PP-4 |5 S) CK. (25)

We establish (25) by contradiction. Let ¢ = g(o,%') € PP~4 g||g S and suppose g has
minimal length among the trajectories of P24 ¢||g § whose traces are not in K. Let { and
t = io denote the traces of § and g respectively. Then ¢t ¢ K and

te K, te L(PB, (26)
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where the final membership follows from the fact that the priority set of P2—4 is %.
If o € A— B, then it follows from (23) that ¢ € K, contrary to assumption. Thus,
without loss of generality, we may assume that ¢ € B. Since

r:=1IIr(t) € Ir(K) = L(S),

it follows from Lemma 6 that S executes every event in 7 while PP-4 || S executes the
trajectory §. Since o € B, the final event in ¢ must occur synchronously in PZ-4 and S.
This implies that

fo € L(S) = IIp(K).

Thus, there exists s € K such that IIp(s) = Fo. Since the last observable event in s is o, by
replacing s with a prefix if necessary, we may assume that s = 0. Then

seK, lp(s)=r= H[‘(t_) (27)

It follows from (26), (27) and the observability assumption that ¢ € K, contrary to assump-
tion. This establishes (25) and completes the proof of sufficiency. O

Remark 17 It follows from Lemma 6 that if S := det(IIr(K)) is used to solve the Restricted
Supervisory Control Problem, then every event in ¥ — I' which occurs in the closed-loop
system is executed by the supervisor. The events in I' are not observed by the supervisor
and are executed only by the plant.

6 Conclusion

In this paper we have studied the supervisory control of nondeterministic plants in the
presence of driven events under complete as well as partial observation. We have shown that
prioritized synchronous composition is an adequate control mechanism for this purpose. The
trajectory model, used for describing the behavior of nondeterministic systems, is shown
to be a language congruence with respect to prioritized synchronous composition. Hence
it is quite useful for describing the behaviors of nondeterministic systems which may be
controlled via PSC. It is shown that the supervisory control problem with driven events is
solvable if and only if the target language is controllable and observable with respect to the
language of the plant augmented by the set of driven events. Due to the augmentation, the
solvability depends on the trajectory model of the plant-not simply on its language. We
have also described some of the basic properties—associativity, monotonicity, augmentation,
idempotency, etc.—of PSC, which are useful in the analysis of supervisory control.
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