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ABSTRACT

New detectors based on one-step memory nonlinearities and employing the test statistic
Z?;& 9(X;,X;41) are introduced. Problems of discrimination between two arbitrary stationary
m-dependent or mixing sequences of observations and problems of detecting a weak signal in addi-
tive stationary m-dependent or mixing noise are considered in this context. For each problem, the
nonlinearity g is optimized for performance criteria, such as the generalized signal-to-noise ratio and
the efficacy and is obtained as the solution to an appropriate linear integral equation. Moreover,
the schemes considered can be robustified to statistical uncertainties determined by 2-alternating
capacity classes, for the second-order joint pdfs of the observations, and by bounds on the corre-
lation coefficients of time-shifts of the observation sequence, for the third- and fourth-order joint
pdfs. Evaluation of the performance of the new schemes via simulation reveals significant gains
over that of detectors employing memoryless nonlinearities or the i.i.d. nonlinearity.
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I. INTRODUCTION AND PROBLEM FORMULATION

Over the last decade, a considerable amount of attention has been devoted to the study of
detectors and discriminators based on memoryless nonlinearities. These tests use a test statistic of

the form
To(x) = 3 g(a0). (1)
=1

A decision is usually made by comparing T, to a threshold and declaring the hypothesis H; to
be true if and only if T, exceeds the threshold. Most of the research in this area has focused on
optimal memoryless nonlinearities ([1], [2]), and robust memoryless nonlinearities ([3]) for weak-
signal detection. More recently, Sadowsky and Bucklew [4] and Sauder and Geraniotis [5] have
considered the more general problem of signal discrimination, where the test must decide which of
two possible random signals is observed. In this paper, we advance further in discriminator/detector
complexity by considering nonlinearities possessing one-step memory.
The signal discrimination problem involves deciding between the two hypotheses

Ho: {Xk} has the distribution F

(2)
Hy: {Xy} has the distribution F;

where we use F; to denote symbolically all the known or assumed information about the entire
process {X;} under H;. Problems of this type arise in areas such as radar target discrimination,
where one must decide which of two possible targets is present on the basis of returned radar
pulses. In some instances, the distribution of a process is known in principle, as the underlying
mechanism which generates the process is known, but a closed form expression for the complete
multivariate density is not available (e.g. the Rice process which is obtained as the envelope of a
complex Gaussian process with nonzero mean). For the derivation of the optimal one-step memory
nonlinearities in this paper, all of the mafginal probability densities of dimensions one, two, three,
and four are required. Therefore, for this paper F; must denote at least the complete set of marginal
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densities up to four dimensions. By contrast, only univariate and bivariate densities are required
for the derivation of optimal memoryless nonlinearities [5].

A problem that is related to the discrimination problem is the weak-signal detection problem,
Hy: Xp=Yi
(3)
Hi: Xp=Ye+0,
where 6§ > 0 represents the constant signal and {V}} the additive noise. The statistical distribution
Fy of the noise is assumed to be known, in the sense described in the preceding paragraph. To obtain
the optimal one-step memory nonlinearity derived here, the marginal densities corresponding to
Iy up to four dimensions must be available. So far, research in the weak-signal detection area has
yielded memoryless nonlinearities which are optimal under the asymptotic relative efficiency (ARE)
performance measure [1}, [2] and robust [3]. These results required knowledge of the univariate and
bivariate densities only.

Memoryless discriminators possess a form that is simple to implement, and this makes them
attractive from a practical staﬁdpoint. However, since correlated observations possess memory, we
are inclined to think a priori that a discriminator with memory will perform substantially better. It
is interesting to note that the situations in which one obtains the best improvement over the i.i.d.
discriminator by using an optimal memoryless discriminator also appear to be the most favorable for
further improvement by using an optimal one-step memory discriminator. In some earlier simulation
results [5], we compared the error probabilities for the memoryless discriminator that is optimal for
independent and identically distributed (i.i.d.) processes, i.e. g(z) = log[fi(2)/ fo(z)], with that of
the memoryless discriminator that is optimal for correlated processes under a generalized signal-
to-noise ratio (SNR) performance measure. It was observed that the i.i.d. discriminator tends to
have the lower error probabilities when one of two conditions prevails: (1) when the correlation is
very weak and (2) when the marginal densities f; and fp are significantly different. A plausible

explanation is obvious. In the first situation, the processes are close enough to being i.i.d. that the

2



i.i.d. discriminator, which is actually the likelihood ratio test (LRT) for i.i.d. processes, yields nearly
optimal error probabilities. In the second case, the signals under the two hypotheses are so different
that any SNR-type performance measure is not likely to be useful in predicting of how discriminators
perform under a criterion involving the error probabilities (e.g. Bayes risk). This conclusion was also
obtained by Sadowsky and Bucklew in [4]. Thus the optimal memoryless discriminators derived in
[5] seem to offer the greatest improvement over the i.i.d. discriminator when the univariate densities
are not too dissimilar and the correlation is moderate to strong. Intuition suggests, however, that
in this case most of the discrimination potential lies in the correlation, especially if the strength
of the correlation is significantly different under the two hypotheses. It is primarily this line of
thinking which motivates us to investigate one-step memory nonlinearities for discrimination and
detection.

The form of the test statistic we employ is
1

To(x) =) g(zjzjs1) (4)
1

3
|

.
il

where g(-,) is a one-step memory nonlinearity that characterizes the test. Since we are concerned
primarily about asymptotic performance, we ignore the possibility of an initial term go(zq). A
decision is made by comparing T}, to a threshold, as in the case of the memoryless discriminator.
The test statistic (4) maintains some of the advantages of the memoryless test statistic (1), while
introducing a means to discriminate on the basis of correlation. In particular, with the proper
condition of asymptotic independence of the observations, T, obeys a central limit theorem. One
must use caution, though? not to infer too much from the asymptotic normality of the test statistic.
For example, if the error probabilities vanish asymptotically, as they do for a consistent test, one
cannot use the central limit theorem to accurately approximate them. See [4] for a more complete
discussion of issues related to nonlocal detection and an approach based on large deviations. The
asymptotic normality of the test statistic is important, however, in the context of weak-signal
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detection when the efficacy performance measure (defined below) is used.

Dependency conditions that are sufficient for a central limit theorem (CLT) to hold are well
known. For a good survey paper on CLTs for dependent data, see [6]. The two conditions we
consider most useful are m-dependence and p-mixing. To define these conditions, let F? denote
the o-field generated by the random variables {X,,..., X,}. The process {X} is said to be m-
dependent under a distribution F if F*_ and Fi3m are independent for any k. If U and V are

random variables which are measurable with respect to F*_ and F g3 ns 1espectively, and square

0
integrable under the distribution F, then p, is defined as sup;y Cov(U, V)/v/VarU VarV where
the supremum is taken over all such U and V. The process {X} is then defined to be p-mixing
under the distribution F if the sequence {p,} converges to zero as n — oo. If the observation
seq;lence {X:} is m-dependent, then the sequence {g(Xx, Xx41)} is (m + 1)-dependent for any
square-integrable nonlinearity g. Also, if {X} is p-mixing, so is {g(Xk, Xz+1)}. Thus a central
limit theorem applies as in the memoryless case. Here we assume that all processes are stationary
and either m-dependent or p-mixing.

The asymptotic performance of the test statistic T,, may be measured by its asymptotic

mean and variance, which have the expressions

.1
,Ltz(g) = lim =E;T, = E; g(‘Y174X2) (5)
n—00 N

and

oi(g) = lim lVari T,

n—oo n
(6)

= Var; g( X1, X2) + 2 Z Cov; [g(X1, X2), 9(Xj41, Xjt2)]
Jj=1

where E;, Var;, and Cov; respectively denote the expectation, variance, and covariance operators
under H;. When the process is m-dependent, then the upper limit on the sum in (6) is m.
In our work [5] on memoryless nonlinearities for discrimination, we used for a performance
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measure a generalized signal-to-noise ratio

o alg) = po(9)
Sel9)= (1= ()i (g) + Coilg)

(7)
where 0 < ¢ < 1. In this paper, we take the optimal one-step memory nonlinearity to be the one
which maximizes the performance measure S.. The parameter { determines the weighting of the
asymptotic variances. Although a value of { near % yields a balanced mixture, we also obtained
good simulation results in [5] for { = 1, especially in the case of strong correlation under H; and

weak correlation under Hy. Tt is also possible to take { to be a function of ¢g. In particular, if ¢ is

taken to be ((g) = (20901 + 07)/(0} — 7}), then the performance measure becomes

S(g) = =il (®)

oo + o1 ]?
which is the performance measure obtained in [4]. In [5], it was explained how the optimal non-
linearity for (8) may be obtained by solving iteratively a series of linear integral equations. The
idea is to choose an initial value for {, optimize the performance measure S¢, use the nonlinearity
thus obtained to compute o and oy, and then compute a new value for (. The procedure is then
repeated until the value of { does not change significantly.
When the problem under consideration is weak-signal detection (3), the appropriate perfor-

mance measure is the efficacy functional [7]

|10 (9)I

Nng)=——=,~ (9)
9= "2)

where pq(g) = (d/d8)E, g(Xl’X'l)lezo' We denote by E, the expectation taken under H; when

the signal strength is #. The use of the efficacy functional requires that

lim %09 _ (10)
§—0 05(g)

where 02(g) is the asymptotic variance of T}, when the signal strength is 6. A few other mild regu-
larity conditions on the distribution are also required [7], including the uniform weak convergence of
the distribution to normality for @ in an interval around zero. The relation of (9) to (7) is evident.
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We show in this paper that one-step memory nonlinearities maximizing the generalized SNR
(Section IT) and efficacy (Section III) performance measures may be obtained through the solution
of certain linear integral equations. For m-dependent observations, the integral equations yield
precisely the optimal nonlinearities, while for p-mixing observations the optimal nonlinearities may
be approximated as closely as desired by the integral equation solutions. Because the integral equa-
tions generally lack closed form solutions, numerical approximations are required, and we show how
the approximations may be obtained by solving a large but manageable system of linear equations.
We have also obtained discriminators that have a guaranteed level of performance over uncertainty
classes for the distributions (Section IV). This result is related to minimax robustness, the differ-
ence being that we have not been able to prove that there actually exists a pair of distributions in
the uncertainty classes for which the lower bound on the performance is actually obtained. In our
numerical results in Section V, we compare the performance of several discriminators (i.i.d. LRT,
optimal memoryless, and optimal one-step memory) for the problem of discriminating between
Rayleigh and lognormal processes. We also show the ARE of several detectors relative to the i.i.d
(locally optimal) detector for the problem of signal detection in Cauchy noise. The results show
the significant advantage in the discriminator or weak-signal detector performance that becomes

possible through the use of one-step memory nonlinearities.
II. DERIVATION OF OPTIMAL NONLINEARITY FOR SIGNAL DISCRIMINATION

The one-step memory discriminator is characterized by the one-step memory nonlinearity
g(+,-) used in the test statistic T}, as defined by (4), and the threshold v. Once a nonlinearity g
is given, the distribution of T}, can be estimated through simulation and the threshold determined
on the basis of the estimated distribution and the desired error probabilities. Thus the important

design step is the selection of the nonlinearity. Our task is to find the nonlinearity g which maximizes

S¢(g)-



To avoid problems with the interchanging of limits, we must begin with the optimization of
Sc(g) for the m-dependent model. Results for the p-mixing model are obtained via approximation
by m-dependent models with sufficiently large m. We first note that S¢(g) remains invariant under
scaling of g; therefore we may maximize the numerator while constraining the denominator to be
constant. Introducing a Lagrange multiplier A, our maximization problem becomes equivalent to

maximizing the functional

J(g) = p1lg) — molg) — A[(1 = Q)og(g) + Coilg)]. (11)

This is the approach used in [1], [2], [4], [5]. A necessary condition for g to maximize J is that
%J(g + 6h)|€=0 = 0, for an arbitrary nonlinearity h satisfying E; [h(Xl,Xg)[2 < oo fori = 0,1.

First we compute

d . )
Ze_ﬂi(g + Gh)lezg = E; h(X1, X3) (12)
and

d 9 -
&U;(g -+ Eh)‘ezl) = 2E; g(‘xl,Xg)h(‘Yl,‘ng)

Z zg( YhX" (/Yj+17‘Xj+2) + Ei g(){j+1,Xj+2)h(X1,X2)] (13)

— 2(2m + 1)Ei g(Xl, X1)E; h(Xl,ng).

We now introduce the notation fi(j’k), fi(j’k’l), and fi(j’k’l’p) denoting the densities of (X, Xy),

(X;, Xk, X1), and(X;, X4, X1, X,), respectively, under H;. Using (12) and (13), we obtain

%J(g + eh)|€=0 = // h(%y)[ffl*z)(x,y) _ fél’z)($7y)] dz dy "

— 2A[(1 = {)Wo(g, h) + (Wi(g, )]
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where the operator W; is defined by
Wil = [ st i, s ey de dy

+ /// l9(z, y)h(?;/au)+g(%U)h($,y)]f,~(1’2’3)(m,y,u) dz dydu
(15)
+ Z z, y)h(u,v)+ g(u, v)h(z, y)]f(l’“’J+1’J+2)(x y,u,v) dz dydu dv
> J[fn
- (2m + 1)//g(z,y)fi(l’2)(x,y) dz dy // h(z,y)fi(l’z)(w,y) dz dy.

The right-hand side of (14) becomes zero for an arbitrary h if and only if the part of the integrand

which multiplies A is identically 0. Thus we obtain the integral equation

) = 157 () = D9 (1= OF @0 + A (200)]

+2’\/g(u7$)1(1(u7x7y) du—i—?A/g(y,u)Kl(x,y,u) du (16)

+ 2 // g(u,v) Koz, y,u,v)dudv

where

Ei(u,z,y) = (1= Of* D (w2, 9) + A (w2, y) (17)

Es(z,y,u,0)= 3 [(L= O 0,0, y) + (A (0, 0,3,y)

j=2
+ (1= QI g,y 0) 4 U (@, u,0)] (18)
= 2m+ D[ = O (w0) 5 (@, 9) + A (o) A (2, 0)-
It is evident that A determines the scaling of g, which is irrelevant to the performance, provided

that the threshold is properly scaled. It seems most convenient to set A = —%—, which yields the

integral equation
(@, y) = £ @) = 90 ) [(1- 05" (@ 0) + ()]

+/g(u7x)l<l(u7zay) du"’/g(yau)lfl(w’%u) du (19)

+ //g(u,v)[&'g(x,y,u,v) du dv.



It is interesting to note that the generalized SNR (7) has a property similar to that of the
SNR and the matched filter. If we multiply both sides of (19) by g(z,y) and integrate, we find

that, if g* solves the integral equation, then (19) becomes

p(g™) = po(g™) = (1= ¢)ag(g™) + Coilg™)-

This gives us the value of the performance measure

Sc(97™) = m1(g™) — po(g™) (20)

evaluated at the optimal nonlinearity.
Under mismatch conditions, which is the case when the nonlinearity g is not the optimal

nonlinearity for the densities f(1 2 f(l’“’s) an df(l'”’]+1’]+2)

involved in (17)-(19), the performance

measure S¢(g) can be computed from (7) where the numerator is given by

(@) = mo() = [[ s e.0) - @90 d dy (21)

and the denominator by
(1= 0@ + ¢at() = [[ el - O e + A @] dody

+ /// g(z,y)[g(u. z)K1(u, z,y) + g{y, YK (z,y,u)] dudzdy (22)

+ //// 9(z, v)g(u,v)Ks(z,y, u,v) dx dydu dv.

The integral equation (19) generally cannot be solved for a closed form solution; numerical
methods must be used. We recommend a normalization of (19) in order to facilitate a more accurate
numerical solution by introducing the substitution h(z,y) = g¢(z,y)v/D(z,y), with D(z,y) =

(1- ()féw)(z, y) + (:fl(l’g)(x, y). The new integral equation

(@, y) - 1§92, y) = h(z,y) / u o) EKr(u,2,y) / Kl(x Y )d
\/m VD(u,z)D(z,y) v D(y,u)D(z,y)

(23)

sty
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is more “balanced” and results in a more stable solution. In particular, the kernel K9(z,y,u,v)/
D(u,v)D(z,y) of the double integral is symmetric in the pairs (z,y) and (u,v).

To solve the integral equation numerically we introduce the nodes {zg,...,zx_1} and

weights {wq,...,wy_1} from some numerical integration method (such as Simpson’s rule). The

numerical form of the integral equation (23) is then

1,2 1,2 N-1 - N-1 ,
fl( )(zi,zj) - fé )(a:,-,zj) — ot Z ur Ky (2k, 24, T5)wy Z up Ky (23,25, Tp)we
= uy;

+
Vv D(zi, ) — /D(zk,x:)D(zi,25) =5 V/D(wiy25)D(zj,2k)

(24)
+ Z g Ko (Tr, Ty T4, 25) w wy
k=0 [=0 \/D(-’Ifk,.’t[)D((Z}i,fL’j)

with u;; ~ h(z;,z;) = g(zi,mj)\/m. Eq. (24) can be solved as a system of N? linear
equations in the N? variables u;5, ¢ = 0,...,N -1, 7 =0,...,N — 1. Note tlvlat, without the
presence of the terms involving Ky, the matrix involved is symmetric.

The results of this section may be applied to p-mixing processes. The method involves
approximating the p-mixing process by an m-dependent process; that is, one assumes that ob-
servations are independent if they are farther than m steps apart in time. The approximation
is sufficient if m is sufficiently large. More precisely, if g™ is the the nonlinearity obtained by
solving the integral equation (19), then S¢(g(™) — sup, S¢(g), as m — oo. A proof of this result
was given in [5] for memoryless nonlinearities; the extension to one-step memory nonlinearities is

straightforward.
III. DERIVATION OF THE OPTIMAL NONLINEARITY FOR WEAK-SIGNAL DETECTION

For weak-signal detection, the hypotheses are given by (3), where {Y;} an m-dependent noise
process and # > 0 is a constant signal. The n-variate densities are thus f(”)(x) and f(n) (x — 8),
where @ = (6,0, ++,60), under f{p and f1, respectively. The performance measure here is the
efficacy functional (9). The method for maximizing n(g) is similar to that for maximizing S¢(g).
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Assuming that
d 9 .
tolg) = // g(z, y)ge—f(l" (z—8,y—0)],_0dzdy (25)

as well as some other regularity conditions [1], [2], we can obtain the integral equation
L 090, g + 2 D @, )] = gl )OI a,y)
8.’17 ? ay b K Sl
+ /[g(u,x)f(l‘g’s)(u,z,y)+g(y,U)f(1’2'3)(fc,y,u)] du

+ // glu,v)K(z,y,u,v)dudv
(26)
where

A'(‘T’ Y, u, 7]) = [f(l,’l,j-{-l,j—}-?.)(u, v, T, y) + f(172,j+lyj+2)(z7 Y, u, v)]

s

1l
ro

j (27)
- @m+ D)0 (1,0) /0 a, )

and fUR) fURD and fUFLP) denote the densities of (Y;,Ye), (Y;,Y, Y1), and (Y}, Y%, Y,,Y5),

respectively. This integral equation is also given in [2].

The efficacy functional of (25) is closely related to the generalized SNR functional of (7).

Indeed, we can write

n(g) = lim %(gi)
where S¢(g) is evaluated from (7) by using fl(l’z)(z, y) = fAN(2-6,y-6), fél’z)(x, y) = LA (2,y),
and similar relationships for the third- and fourth-order joint densities.

The efficacy has also a property similar to that of the SNR with the matched filter. If we
multiply both sides of (26) by g(z,y) and integrate, we find that, if g* solves the integral equation,
then (26) implies that

uo(9*) = a5(g”).
This gives the value

| ) 9 1s
n(g%) = polg™) = - // 9" (z,y) [%f“"’(w’y) + %f“"’(x,y) dz dy (28)
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of the efficacy evaluated at the optimal nonlinearity.
Under mismatch conditions, that is, when g(z, y) # g*(z,y), the efficacy n(g) can be obtained

from (9), where the numerator by

=~ [[ stz [ 1D+ 510, | dsdy (29)

and the denominator is given by

= // g*(z, y) ) (2, y) de dy

+ /// g(z,y) [g(u,m)f(1*2'3)(u,:z,y)+ gly, W) fO33(z,y,u)] dudz dy (30)

L //// o(2,9)g(, v) K (2, y, u,v) de dy du dv.

IV. A LoweR BoOounND FOR WORST-CASE PERFORMANCE

In our work on memoryless discriminators [5], we were able to obtain a nonlinearity which
is Tobust in a minimax sense. We have not been able to extend these results fully to the one-
step memory case. What we have obtained is a lower bound on performance, in terms of the
SNR performance measure, which holds for every distribution in the uncertainty classes. This is
not a minimax robustness result because we have not been able to demonstrate the existence of
least favorable distributions whose optimal nonlinearity achieves the lower bound. However, this
information is useful, since the lower bound may be able to tell us that significant performance
degradation from the nominal performance can be avoided by using the robust test. The treatment
here is brief, since most of the work here is an extension of the results in [5].

The notation in this section is cumbersome. Fy and F; denote the complete distributions
under Hy and H; (i.e. the complete set of finite dimensional distributions), while fo and f; denote
the bivariate distributions of (X, X5) under Hy and Hj, respectively. We use S¢(g; Fo, F1) to denote
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the performance measure (7) evaluated under the indicated distributions. A related performance

measure S¢(g; fo, f1), which involves only the bivariate distributions, is defined by

|E1 g(X1, X2) ~ Eo g( X1, Xo)?

Scg; fo, fr) = - - - - ,
<93 fo, 1) (1= Q)14 2Rp)Varg g(X1, X2) 4+ (1 + 2R1)Vary g(X3,X2)

(31)

where R; = E;nzz r;; are known constants. The parameters r;; are defined below.

Uncertainty classes for the distributions are defined in the following way. The bivariate
densities are assumed to belong to classes defined by e-mixtures. (The results hold for other
uncertainty classes, as well, such as the 2-alternating capacity classes [8]). Thus every bivariate

density under H; is assumed to have the form

filz,y) = (1 — )2z, y) + €hi(=, ) ' (32)

where f? is a nominal density and h; is unknown. The parameter ¢; € (0,1) determines the degree
of uncertainty in the bivariate distribution. A further condition on the uncertainty classes, given

below, completely defines them. This condition requires that the bound

Covilg(X1, X2), 9(Xjt1, Xj3o)]
g +/Var;g(X1, X2)Var; g(Xj41, Xjt2)

< 7y (33)

be satisfied for a known sequence 7;;, for t = 0,1 and j = 2,3, ..., m. The sequence of r parameters
determines the degree of uncertainty in the higher-order distributions. Note that for p-mixing
processes, we have r;,j < p; for all 7.

For the performance measure S¢(g; fo, f1), which involves only the bivariate distributions,
we may obtain a complete robustness result. One can show [5] that the least-favorable bivariate

densities fy, fi are given by Huber [9]. These are

e
-y

PED= et - a) ey it R/ R

Rz, )] f3(=z,9) > ¢
Rz y)/ oz, y) < ¢

A { A Rz, y)/ fo(z,y) < ¢
( (34)
(

-
=N

1- 61)][{)(9:7 y)
¢(1-ea)fo(z,y)
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where the constants ¢/ and ¢” are chosen so that the functions integrate to one. The nonlinearity
§ that is matched to these densities is minimax robust under the performance measure .5'2, that is,

the inequalities
SH@i for 1) = SEG; fo, 1) > SE(gs for f1) (35)

are satisfied for any other densities f; and f; in the uncertainty class and for any other nonlinearity

g. This nonlinearity is given by the solution to the integral equation

)g(u,v) dudv (36)

i) = Alz,y) - // Afr(z,y) fi(w, v) + fola, v) folu,

Afi(z,y) +fo z,Y) Afi(z,y) + fo(z,y)

where

C(1+2Ry)

A= (1= O)(1+ 2Ro)

The integral equation (36) may be obtained directly by the method used to obtain (19). The

solution to this integral equation was obtained in [5] and is given by

“ N -1 N
iz ) = fo(a:,y)fl(x,y) dz d fl(%?/) 37
o"ev) U Afi(z,y) + fo(z,y) YO ARz ) + folzey) (37

We now obtain the lower bound for the complete uncertainty classes. The lower bound is

given by
Sc(d; Fo, Fy) > S¢(8; fo, f1) = S£(d5 o, fr)- (38)

The first inequality in (38) is obtained from the bounds (33) and the expression (6). The second
inequality holds because of the minimax robustness of § over the e-contamination classes for the
bivariate densities, the proof of which is an extension of the proof given in [5] for univariate densities.

In order to demonstrate true minimax robustness for the complete uncertainty classes, one

must construct least favorable multivariate distributions Fy and Fj that satisfy the bounds

Sc(9; Fo, F1) > Sc(g; Fo, Fy) > 5((9§F0,F1) (39)
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for arbitrary distributions Fy, Fy, andtan arbitrary nonlinearity g. The way to do this is to extend
the least favorable bivariate densities fy and fi to multivariate distributions such that equality

holds in (33) for each j. If this this were the case, then we would have the equality

Sé(@?fmfl) = Sg@?Fo’Fl)- (40)

Then, combining (36) and (38) would yield the left inequality in (35). We could also obtain the
optimal nonlinearity § by the method of Section II, and thus we would also have the right inequality.
For memoryless nonlinearities, it is possible to construct such multivariate distributions [3] and thus
prove minimax robustness [5]. It should be noted, however, that the distributions in the memoryless
case possess a very peculiar property which is necessary for showing robustness inequalities. This

property seems to be lost when dimensionality is extended.
V. NUMERICAL RESULTS

A.  Discrimination Between Rayleigh and Lognormal Correlated Time-Series

In Section II, we provided a method for obtaining an approximate solution of the integral
equation (19) by solving a system of linear equations (24). We used this method, with N = 33 nodes,
to obtain (approximately) the optimal one-step memory nonlinearity for discrimination between a
Rayleigh and lognormal process. The performance of the one-step memory discriminator was then
evaluated through computer simulation. The results are presented here.

The discrimination problem we consider assumes a Rayleigh distribution under Hy and a
lognormal distribution under H;. The Rayleigh process {X} involves two underlying Gaussian
processes {Y}} and {Z;} through the relation X = 1/Y? + Z7. We assume that the distributions
of Y;, and Z; have mean py = pz = 0, variance of, = 0% = 4, and covariances Cov[Yk, Yi4j] =
Cov[Zk, Zk4j] = e V1™ with 1y = 13. The lognormal process {X}} is related to a Gaussian process
{Uk} through X, = exp(Uy). We assume that py = 0.8, o7, = 0.25, and Cov[Uy, Ury;] = e~lil/m,
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with 7y = 130. With these parameters, the Rayleigh and lognormal distributions have equal first
and second moments. The tails are different, however, with the lognormal distribution having a
heavier tail to the right (toward +00) and the Rayleigh distribution having a heavier tail to the left
(toward zero). The correlation is considerably different, being very strong under H; (lognormal)
and moderate under Hy (Rayleigh). We assume that an m-dependent model with m = 300 is
sufficient approximation for either hypothesis. The forms of the Rayleigh and lognormal second-,

third-, and fourth-order densities are given in Appendix A.

Figure 1 shows the optimal one-step memory nonlinearity, which is symmetric in z; and z;41.
Eigures 2 and 3 show plots of Py vs. Py, where P; is the probability of error when H; is true, for
three different discriminators. These discriminators are denoted T7(10) for the i.i.d. discriminator (Eq.
(1) with g(2) = log[fi(2)/ fo(2)]); M for the memoryless discriminator (1) that is optimal under
the performance measure (7) with ¢ = -%;; and TT(LZ) for the optimal one-step memory discriminator
obtained from the integral equation (19) with ¢ = . The memoryless discriminator ) is obtained
through the solution of an integral equation similar to (19), as shown in [5]. Figure 2 was generated
from 10° simulations with n = 25 samples for the test statistic. The superiority of TQ(;')) is evident.
This superiority is even more evident in Figure 3, also generated from 10° simulations but with
n = 50 samples.

Generally, 10° trials is not sufficient to accurately approximate the error probabilities unless
importance sampling is used. Since we did not use importance sampling, the curve for T in
Figure 3 should not be regarded as an accurate estimation of the true error probability curve.

Nevertheless, the plot does indicate a substantial improvement in performance obtained by the

one-step memory discriminator over the memoryless discriminator.

B. Detection of a Weak-Signal in Correlated Cauchy Noise

The univariate density for Cauchy noise is f(z) = [r(1 + z2)]~!. This distribution has
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extremely heavy tails and is a good model for impulsive noise. Correlated Cauchy noise may be
obtained from a memoryless transformation of a Gaussian process. For our model, {7} is assumed
Gaussian with zero mean, unit variance, and covariance Cov[Zy, Zxy;] = e“ljl/T, and the Cauchy
noise process is obtained by Yy = tan[r erf(Zk/ﬂ)/2]. The forms of the Cauchy second-, third-,
and fourth-order densities are given in Appendix B.

Figures 4 and 5 show graphs of the nonlinearities for 7 = 1 and 7 = 15. Table 1 shows the
value of the efficacy for several detectors and values of 7. The values are normalized in Table 2 to
show the ARE to the locally optimal i.i.d. (memoryless) detector with g(z) = —f'(z)/f(z). The

Markov detector is a one-step memory detector with

B d f(;y-(),y—e)f(l‘)
g9(z,y) = @log flz,y)flz=0) [,
w95y fe)

f(z,y) f(z)’
which is the locally optimal detector if the noise process is Markov. It is interesting to note that the
efficacy of the memoryless detectors decreases with increasing 7, while the efficacy of the one-step
memory detectors increases. Since the Markov detector behaves like a memoryless detector for
relatively weak correlation and a one-step memory detector for stronger correlation, its efficacy at

first decreases and then increases, as T increases.
VI. CONCLUSIONS

The contribution of our research has been to extend results obtained for memoryless dis-
criminators to discriminators involving one-step memory. In Section II, we showed that the optimal
one-step memory nonlinearity can be obtained as the solution of the linear integral equation (19).
We also showed how an approximate solution of the integral equation can be obtained by solving
a system of linear equations. This numerical approximation actually involves a quantization of the
nonlinearity, which we do not claim to be optimal. However, our simulation results demonstrate
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a significant improvement over memoryless discriminators even for a crude solution with N = 33
nodes. Evidently, any loss of accuracy in the approximation was not significant enough to override
the discrimination power contributed by the memory. This numerical approximation to the one-
step memory nonlinearity involved the solution of a 1089 x 1089 system of linear equations, which
is well within the computation capability of many computer systems. In our preliminary results, we
used only 17 nodes_ for the integration and still obtained a significant improvement over the optimal
memoryless discriminator. We actually used interpolation to generate values of g, though, and not
quantization, in our simulations. Results on optimal quantization may be possible, although they
are more complex than results for quantization of the memoryless nonlinearities.

We have also been able to apply our results to the problem of weak-signal detection. We
showed that the optimal one-step memory nonlinearity for detection under the ARE criterion is
given by the solution of the linear integral equation (26). The performance of the optimal one-step
memory detector as compared to the optimal memoryless detector under the ARE performance
measure is significantly better and improves with increasing correlation.

Results for robustness for memoryless discriminators do not completely extend to the case
of memory, as we showed in Section IV. What we obtained there is a one-step memory nonlinearity
g and a lower bound on it; performance when the distributions are known to belong to given

uncertainty classes.
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Appendix A
Second, Third, and Fourth Order Joint pdfs of

the Rayleigh and Lognormal Observations Used in Section V.A

For the Rayleigh case (under hypotheses H ) the bivariate joint pdf is

(1-p3)og

Fozw) = —ﬂ—-—exp a z %4y / Pozw
T 610 201-pdo [ °

Furthermore, the third order joint pdf

Zwv 1 2 N ) Pozw PoWwv
I W) = e X {— e (2 (1P W V] b I
T ) = T (1l p{ Wi pdog . PO }0[(1—95’)65]0{(1—95)63}

Finally, the fourth-order joint pdf of (X;,X1.X;,1.X142) 18

_ 1-pd’
Wy uil) = i exp{— 1 2 e (wv?)
ol = e ol b [P

g | Po¥ o pg wy I, Povi
0
(1-pdod | | (1-p&¥ Mo | | 1-pdos

Similarly, for the lognormal case (under hypothesis H ;) the bivariate joint pdf is

-t 1 1 )+ (Inw—1 )= 2 ~1)nw =]
fiz.w) SN exp{ 2pDo? [(nz—pp)“+(Inw~1,)™— 2p(nz—p)dnw -,

and the third-order joint pdf is

1 1
(znc 2)3/2(1_ 2) WYy
1 P1

= I S N2 2 2 2
Fizwy)= GXP{ p P03 [(lnz 1) (1+p /D Anw —L ) “+H(Inv —Ly)
— 2p [Nz —41,)(Inw —L )W — )y =it )] ] }

Finally, the fourht-order joint pdf of (X;.X5X;.1,X;4p) is given by



1 1 1 2 2
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Appendix B

Second, Third, and Fourth Order Joint Pdfs
of the Cauchy Noise Observations Used in Section V.B

We start with the Gaussian bivariate, third-order, and fourth-order joint pdfs, namely

1 1
folz,y) = ————=ex {———————————;—x2——2 Ty + 2}
G( y) 271_\/1—_;7 P 2(1_0‘)[ — 2P Y ]

_ 1 L 2 2.2 4 .2 5
fo(u,z,y) = (%)S/QMGXP{—m_pQ)[u + (14 p%)z" +y° — 2puz — 2pay]

—t

1
V= e

] u? 4 sv? + sz + y? = 2puv — 2rvz — 2pzy
A 2(1 - p?)

1,2, k+1,k42)
fo (10, 2,y) = —

(27)

(uvxy)TA(uv:cy)}

(3]

—

et

RS

=t ~—

- s —-r 0 . 2k k=lgy_ )2
where A = P ) with s = le?pm and r = -p—:(—gz;‘:%—)
0 —r s —p P P

0 0 —-p 1

2

Suppose X is Gaussian distributed and ®(z) = \/1_ . e=t"/2dt, then the transfor-
mation X = (YY) where

(z) = @71 [}-'tan_1 T+ ‘-1)-] .

s

implies that Y™ is Cauchy distributed; the inverse transformation ¥ = ~!(X) is given by

»=1(z) = tan ([CP(J:) _ %] Tr> .

The first and second order derivatives of ¥(z) are given by

o S@ 0T [Texslibe)]
{7 e s o VS
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and

(o) = [ZBBHT I (00 %) 2ol
Vo (14 22)?
2z
1+ 22

= ()l ()" ~ Y'(e)

Furthermore, the bivariate, third-order, and fourth-order joint pdfs are given by

flzy) = fald(a), vyl (2)d' (v),
Flu,z,y) = falb(w),d(z), ()l (w)d' ()9 (y),

and
FORMLID v 2 y) = falt(u), (), (), ()] (' (v)' (=)' (y),

respectively.

Moreover, the partial derivative 'a% f(z,y) can be computed as
a N 2 41 Il’ ! A
52 (@) = fould(e), b (y)e' (@) (v) + falp(e), bly)l¥" (2)9"(y)

where 9'(z) and 3"'(z) have been evaluated above and

d v—u

fou(u) = afalu) = faluv) (£ ).

Consequently, we can deduce that
2 (o) = fold(e), YoM, ) (210 (0) = f(2,)M(2,)
where
- 2
Ma,y) = P o) v () - o

Similarly,

a%f(w,y) _ f(z,y)M(y,2)

and thus finally

S F(e9) + 5 Fley) = [M(2,) + My, 2)f(z)
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Figure 1. Graph over the region [0,16]x[0,16] of the optumal one-step
memory nonlinearity for discrimination of Rayleigh vs. lognormal

processes.
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Figure 2. Plots of the error probabilities for the i.i.d. discriminator
TO) | the optimal memoryless discriminator T(1), and the optimal

one-step memory discriminator T @fora sample size of n = 25.
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Figure 3. Plots of the error probabilities for the i.i.d. discriminator
T , the optimal memoryless discriminator Tm, and the optimal
one-step memory discriminator T @fora sample size of n = 50.
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Figure 4. Graph over the region [-233,233]x[-233,233] of the optimal

one-step memory nonlinearity for signal detection in Cauchy noise with

T=1.



Figure 5. Graph over the region [-233,233]x[-233,233] of the optimal
one-step memory nonlinearity for signal detection in Cauchy noise with
T=15,



Table 1. Efficacy

T ii.d. optimal Markov optimal
L.O. memoryless L.O. one-step
1 0.3320 0.3733 0.4003 0.4242
5 0.0922 0.1512 0.3921 0.4253
15 0.0316 0.0567 0.4138 0.4260
30 0.0158 0.0288 0.4225 0.4270
Table 2. ARE
T i.i.d. optimal Markov optimal
L.O. memoryless L.O. one-step
1 1.000 1.124 1.206 1.278
5- 1.000 1.640 4.253 4.614
15 1.000 1.794 13.10 13.48
30 1.000 1.817 26.67 26.95






