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Chapter 1

Introduction and Background

1.1 Motivation

We live in a fast evolving world, where the demand for smaller technology con-

tinues to grow exponentially. To keep pace, our knowledge of physics at ever-smaller

length scales must also grow. Modern electronics components are so small, for ex-

ample, that thermal effects are important. For these tiny systems, motion is jerky

and chaotic instead of smooth and predictable. Such a radical environment severely

limits our ability to engineer and ultimately fabricate micro-devices. Components in

future technological applications will therefore not be built and assembled piece by

piece, like traditional manufacturing techniques. Instead they will be grown or self-

assembled, probably on template surfaces,1 as modern computer chips are already

made. Before this process can be controlled, however, it must first be theoretically

understood and ultimately modeled. With this goal in mind, surface morphology,

which will undoubtedly play a crucial role in the manufacturing process, has been

the focus of significant research lately.

Among the surfaces studied, stepped and/or vicinal surfaces are perhaps the

most technologically relevant. These surfaces are formed when a solid is cut or

grown close to a crystalline high-symmetry orientation at moderate temperatures

(below the high-symmetry surface roughening transition), making them smooth to
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Figure 1.1: A depiction of two steps forming part of a {111} vicinal surface. Each
sphere represents an atom. The upper step is oriented along the high-symmetry,
close-packed direction, while the lower step makes an angle θ with respect to that
direction.

the macroscopic touch. Closer inspection, however, reveals a series of atomically

flat terraces separated from one another by steps: surface boundaries where the

height changes by an atomic unit (see Fig. 1.1). As already hinted at, stepped

surfaces have great commercial potential; not only can they serve as substrates and

templates for the controlled growth of engineered microstructures, such as quantum

dots,2 but their constituent steps and terraces are potential catalysts for chemical

and biological reactions.1

Properly modeling stepped surfaces is intrinsically a multi-scale problem. Un-

like gas and liquid interfaces, stepped surfaces are inherently anisotropic, meaning

many of their properties depend on orientation with respect to crystal structure.

Whereas the source of anisotropy is the simple packing arrangement of atoms, the

effects of anisotropy can be seen at all length scales. At the microscopic scale,

for example, crystal anisotropy causes surface adatoms and defects to move more

easily in some directions than others. This in turn is reflected at the mesoscopic

scale through the anisotropic energies, fluctuations, and interactions of surface steps.
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At the macroscopic scale, this anisotropy appears in the growth, shapes, and self-

assembly of large surface structures,2–4 and ultimately in the surface morphology as

a whole, familiar to most in the striking shapes of precious and semi-precious gems

such as amethyst and diamond. Understanding surface anisotropy at all length

scales is therefore technologically practical, albeit technically demanding.

The real challenge in constructing a multiscale model is properly bridging

the relevant time and length scales. Whereas a macroscopic stepped surface ap-

pears smooth and is best described by traditional continuum theory, a microscopic

stepped surface is discrete (since individual atoms are resolved), making it best

described by density functional theory or molecular dynamics. Connecting these

two extremes involves at least six orders of magnitude in both space and time.

Ideally one would construct a model that retains atomic resolution, so that crys-

tal anisotropy is naturally included. Unfortunately, the computational demands of

this approach makes simulations of experimentally relevant time and length scales

(millimeters and seconds) nearly impossible.

A powerful alternative approach, employed by the continuum step model,5

describes the evolution of stepped surfaces through the collective motion of their

constituent mesoscopic steps. Here, each step is coarse-grained in the direction par-

allel to its edge, making it mathematically continuous and well behaved. The step

appears to move and fluctuate as adatoms attach to it, detach from it, and move

along it. The fluctuations and net movement of steps not only reflect the under-

lying dynamics of adatoms, but also control the overall surface morphology. Here,

anisotropy is introduced with empirical parameters for the steps that can ultimately

3



Figure 1.2: A schematic showing the vast range of time and length scales required
when modeling vicinal surfaces. The lower-left figure represents the microscopic
scale, where individual surface atoms are resolved and events take place on the order
of picoseconds. In this domain, density functional theory can be used to precisely
calculate the interaction energies between atoms (bond strengths). The middle
figure depicts the mesoscopic domain, where atoms are no longer resolved and steps
become the dominant surface feature. Here steps appear to move and fluctuate
by themselves because atoms are constantly attaching to them, detaching from
them, or running along them. The parameters describing steps can be linked to the
microscopic domain via statistical mechanics. Finally, the upper-right figure depicts
the macroscopic domain, where the surface is composed of countless continuous
steps, all moving and interacting with one another, ultimately controlling how the
surface evolves. This is the domain of the continuum step model, which describes
surface evolution through a set of continuum differential equations relating the step
parameters.

be linked to microscopic interactions using statistical mechanics (via lattice-gas mod-

els, for example). Steps are therefore convenient, coarse-grained structures that pro-

vide a bridge between the discrete, microscopic world of atoms and the continuous,

macroscopic world of experimentally relevant stepped surfaces (see Fig. 1.2).

Within the continuum step model, steps are described with just three parame-
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ters: the step stiffness, the adatom mobility, and the step-step interaction strength.

For isolated steps, perhaps the most important parameter is the step stiffness, which

measures how easily a step fluctuates or wanders perpendicular to its mean orien-

tation. Because of crystal anisotropy, the step stiffness depends on the local step

angle, measured from the the high-symmetry, close-packed direction (see the lower

step in Fig. 1.1). Formally, the stiffness is derived from the step line tension, or

step free energy per unit length, which is just the one-dimensional analog of sur-

face tension. While the line tension controls the equilibrium shapes of single-layer

clusters of atoms or vacancies (which can be thought of as steps that close in on

themselves and are often referred to as “islands”), the stiffness controls the relative

size of fluctuations about the equilibrium shape. A precise theoretical description of

step stiffness, including its anisotropy, is thus an essential ingredient for modeling

the dynamics of stepped surfaces using the continuum step model.

In this thesis, we will focus almost exclusively on the anisotropy of step stiff-

ness, for which it turns out to be difficult to derive general, explicit formulas. To

date, most experimental and numerical treatments vastly oversimplify matters, ei-

ther ignoring the anisotropy altogether, or including it in a simple sinusoidal form

that reflects the underlying surface symmetry. Here we will attempt to rectify this

situation by clarifying the origin and role of step stiffness anisotropy, while also

simplifying its application within experiments and simulations.

This thesis is organized as follows: In the remainder of this Chapter we dis-

cuss the historical origin of step stiffness, as well as describe its context within the

continuum step model. In Chapters 2 and 3 we use a lattice-gas framework to solve

5



for the step stiffness anisotropy in terms of surface adatom interactions, first for

fcc {001} and then for fcc {111} stepped surfaces. In both Chapters we compare

simple and practical low-temperature formulas for the stiffness anisotropy with ex-

perimental data. Towards the end of Chapter 3 we also extend our formalism to

describe a novel experimental system: Ag(111) steps fully decorated by a single

layer of C60. In Chapter 4 we further validate the derived formulas for step stiffness

using VASP (the Vienna Ab-initio Simulation Package) to perform first-principles,

quantum mechanics calculations of the relevant adatom interactions. There we show

that even simple, homogenous systems such as Cu can have significant non-pairwise

adatom interactions. Next, in Chapter 5, we show how our formulas can straightfor-

wardly be incorporated into simulations of the continuum step model, allowing for

quantitative comparison with dynamic experiments that provide new insight into

the anisotropy of step-edge adatom mobility, the remaining parameter describing

isolated steps within the continuum step model. Finally, in Chapter 6, we offer a

summary of results, as well as concluding remarks and challenges for the future.

1.2 Step Stiffness: History and Background

Step stiffness is an intuitive parameter, describing how easily a mesoscopic

surface step bends. As the name suggests, the stiffer a step, the less it fluctuates.

The step stiffness, which we will refer to as β̃(θ, T ), depends on both the local step

angle θ (again, measured from the high-symmetry, close-packed direction) and the

temperature T . An intuition for these dependencies is easily obtained by focusing

6



Figure 1.3: An overhead illustration of a step edge (solid, black line) with local
orientation angle θ. Dark, orange spheres are adatoms, while lighter, blue spheres
are surface atoms. Here a lone terrace adatom, labeled “A,” is in the process of
attaching or detaching from the step edge. Adatom “B,” on the other hand, is
thermally excited out of an energetically favorable close-packed position, forming
four thermal kinks in the process (shown here as a dotted line). The remaining
kinks are all forced, meaning they must be present to give the step its orientation.
The step appears to fluctuate as adatoms move along the step edge and attach and
detach from it.

on the microscopic origin of step fluctuations: the constant movement of adatoms

nearby and along surface steps.

From the perspective of a lone terrace adatom, labeled “A” in Fig. 1.3, a

step edge is an energetically favorable place because it allows the adatom to form

additional bonds with the constituent step-edge adatoms. If the adatom attaches

to a close-packed step (θ = 0), every attachment site is equivalent, so movement

from one site to another is relatively easy. In this case, the adatom will usually

hop along until it eventually finds a step-edge kink, a deviation from the close-

packed direction that is even more energetically favorable because the adatom can

nestle into the kink corner and form additional bonds to other step-edge adatoms.

7



As the adatom attaches to the kink site, the kink itself appears to move, making

the step appear to fluctuate. (Note that a single adatom on a close-packed step

is itself equivalent to two step-edge kinks.) From this perspective, kinks are the

predominant source of step fluctuations, and the more kinks a step has, the more it

fluctuates. This means that steps oriented near the close-packed direction tend to

be stiffer than those closer, since steps nearer generally have fewer kinks.

To understand the temperature dependence of β̃(θ, T ), it is useful to divide

step-edge kinks into two types: those that are geometrically forced, and those that

are thermally activated. Forced kinks must be present to give a step an overall

orientation angle θ. Thus, close-packed steps have no forced kinks, whereas steps

with angle θ have a density tan θ of such kinks, as depicted in Fig. 1.3. All other

kinks are thermally activated. As the temperature rises, the number of thermal kinks

initially increases exponentially, causing the step stiffness to decrease. Eventually,

the number of thermal kinks far surpasses the number of forced, causing all steps

to fluctuate in roughly the same way, regardless of step angle θ. Thus, as a rule of

thumb, step stiffness decreases with an increase in temperature, and simultaneously

becomes more isotropic.

Mathematically, the step stiffness is defined in terms of the step line tension

β(θ, T ):

β̃(θ, T ) ≡ β(θ, T ) + β ′′(θ, T ), (1.1)

where the prime denotes differentiation with respect to θ. Experimentally, the rela-

tive line tension can be directly measured from the equilibrium crystal shape (ECS)

8



Figure 1.4: An STM image of a hexagonal vacancy island on Ag(111) at room
temperature. The overlay shows a cartoon slice through the island as viewed from
the side that clearly illustrates the monolayer depth of the island (which might be
more appropriately called a pit). STM image courtesy of Margaret Giesen.

of adatom and vacancy islands through the famous Wulff construction. Remember

these islands are just groups of adatoms (vacancies) that come together and form a

two-dimensional crystal on top of (within) the surface. The shapes of these islands

are relatively simple, aside from distortions due to thermal effects. For example,

Fig. 1.4 shows a vacancy island on Ag(111) at room temperature which clearly has

a hexagonal shape. The essential idea is that steps bounding the ECS are oriented

at thermodynamically favorable angles (angles having minimal line tension).

The more favorable a given step angle is, the more that step angle appears on the

ECS. Geometrically, the Wulff construction has a simple interpretation. If β(θ, T )

is plotted in polar coordinates and a line is drawn perpendicular to the curve at

every angle, then the region enclosed by all of the perpendicular lines is the ECS,

within a constant. This is depicted in Fig. 1.5, along with the generic temperature

9



dependence of β(θ, T ) and the ECS.

At absolute zero, the ECS is most anisotropic. Assuming adatoms only interact

with nearest-neighbors, the ECS is a perfect square for islands on face-centered-

cubic (fcc) {001} surfaces and a perfect hexagon for islands on fcc {111} surfaces.

This makes sense because at absolute zero there are no thermal effects, so the

ECS is composed of steps with the lowest line tension, namely, close-packed steps.

As the temperature rises, however, the ECS corners become thermodynamically

unfavorable, causing them to round. Simultaneously, thermal kinks begin to form

and β(θ, T ) begins to drop. Near the critical temperature Tc, both the ECS and

β(θ, T ) become circular. Exactly at Tc, β(θ, Tc) = 0, so steps proliferate and the

surface becomes rough. For obvious reasons, this transition is called the “roughening

transition.”

This generic behavior is consistent with our intuition of the step stiffness as

Figure 1.5: By applying the Wulff construction to the polar plot of β(θ, T ) (thick,
dotted line) the ECS (thick, solid line) is obtained. In (a) the process is depicted for
an island on an fcc (001) surface at T = 0, when the ECS is a perfect square assuming
adatoms only interact with nearest neighbors. At temperature above absolute zero,
the corners of the ECS begin to round, as shown in (b). At higher temperatures
still, near the critical temperature Tc, both β(θ, T ) and the ECS become circular.

10



described above. At high temperatures, β(θ, T ) is a circle, so β ′′(θ, T ) = 0. Combin-

ing this observation with Eq. (1.1) implies the high-temperature step stiffness and

line tension are more or less equivalent. At these temperatures, the stiffness, like the

line tension, is isotropic, as our intuition suggested. (Remember at high tempera-

tures the number of thermal kinks becomes so great, all directions look more or less

equivalent.) At lower temperatures, the stiffness and line tension begin to differ, es-

pecially near high-symmetry directions (θ = 0, π/2, 3π/4, and π in Fig. 1.5), where

cusps in β(θ, T ) begins to form, causing β ′′(θ, T ) to diverge exponentially. This

means that the low-temperature stiffness is very anisotropic, again, as our intuition

suggested. (Remember, at low temperatures, forced kinks—the number of which

change with step angle—are the predominant source of fluctuations).

1.2.1 Step Stiffness as a Gauge for Step Bending

The significance of step stiffness was not fully appreciated until fairly recently.

Traditionally, it was assumed that β(θ, T ) was the key thermodynamic parameter

describing step fluctuations. To a certain extent this is true. As long as the tem-

perature is relatively high, β(θ, T ) ≈ β̃(θ, T ). However, at low temperatures the

assumption fails, and the stiffness gains a character all its own.

The argument was first laid out in a response6 from Fisher, Fisher, and Weeks

to a paper on capillary waves and surface tension by D. B. Abraham.7 In his paper,

Abraham calculated exactly, via the nearest-neighbor Ising model, several properties

of one-dimensional interfaces (steps for our purposes). His results generally agreed

11



Figure 1.6: In the left image, a close-packed step fluctuates θ about its equilibrium
angle θ = 0 (dashed line). In the right image, a step “torqued” by an amount ρ
fluctuates ∆θ about its equilibrium angle θ (dashed line).

with the more traditional capillary-wave theory, but with the wrong coefficients

involving the line tension. In their response, Fisher, Fisher, and Weeks argued that

there was no disagreement, as long as the anisotropy of the line tension is considered,

so that the line tension is replaced by the stiffness!

The basic idea is straightforward. Imagine a close-packed step (θ = 0) of

length L. What is the free energy required to bend the step, or tilt it by a small

amount θ? In the process of bending the step, the length increase to L′ = L sec θ,

as shown in the left image of Fig. 1.6. The change in free energy ∆F is thus

∆F = L′ β(θ, T ) − L β(0, T ),

= L sec θ β(θ, T ) − L β(0, T ). (1.2)

Now, if θ is small, we can Taylor expand both β(θ, T ) and sec θ about θ = 0:

β(θ, T ) = β(0, T ) + β ′(0, T ) θ +
1

2
β ′′(0, T ) θ2 + ..., (1.3)

sec(θ) = 1 + θ2/2 + ... (1.4)

12



Plugging these into Eq. (1.2) and noting by symmetry that β ′(0, T ) = 0, as our

Wulff plots in Fig. 1.5 convey, we find

∆F ≈ 1

2
L [β(0, T ) + β ′′(0, T )] θ2. (1.5)

Notice the last term is not proportional to the line tension alone, but rather the line

tension plus its curvature, a.k.a, the stiffness. In their response they wrote: “The

resistance to small distortions, which form the basis of capillary-wave theory, is thus

controlled by an ‘effective’ interface tension.” This “effective” tension was later

appropriately coined stiffness, since it measures how easily a step thermodynamically

bends, as Eq. (1.5) suggests.

One shortcoming of the above argument is that it only works when β ′(0, T ) =

0, which is generally only true for close-packed steps. An obvious question then

arises: Does the argument still hold for steps at arbitrary angles? The answer is

yes, as first discussed by Leamey et al.8 and further developed by the Akutsus.9

In the Akutsu’s paper, they consider a step having orientation angle θ and length

L sec θ. They treat θ as a fluctuating variable by introducing the Andreev free

energy10 G(ρ, T ), related through a Legendre transform to F (m ≡ tan θ, T ) (here

we bury the θ dependence into the step slope m) :

G(ρ, T ) = min
m

G̃(m, ρ, T ) (1.6)

G̃(m, ρ, T ) ≡ F (m,T ) − ρm

where ρ—the conjugate variable to m—can be thought of as a “torque” that main-

tains the slope (see the right image in Fig. 1.6). The equilibrium step slope m∗ and

13



angle θ∗ are determined by minimizing G̃(m, ρ, T ) with respect to m, as Eq. (1.6)

suggests. More explicitly, we have

∂G̃(m, ρ, T )

∂m
= 0 ⇒ ∂F (m,T )

∂m
= ρ. (1.7)

The last equality yields m∗ as a function of ρ, which is inserted into G̃(m, ρ, T ) to

complete the Legendre transformation and yield the Andreev free energy G(ρ, T ) ≡

G̃(m∗(ρ), ρ, T ). Just as the Helmholtz free energy is the appropriate potential de-

scribing systems at constant temperature, the Andreev free energy is the appropriate

potential describing steps subjected to a constant “torque” ρ. We will revisit the

Andreev free energy G(ρ, T ) later in Chapter 2, where we derive an analytic formula

for the step stiffness anisotropy on fcc {001} surfaces.

To continue our argument, we consider the change in G̃(m, ρ, T ) when a step

with equilibrium slopem∗ is tilted away from that slope by an amount ∆m ≡ m−m∗.

We begin by expanding G̃(m, ρ, T ) about m∗:

G̃(m, ρ, T ) = G(ρ, T ) +
∂G̃(m, ρ, T )

∂m

∣

∣

∣

∣

∣

m=m∗

∆m+
1

2

∂2G̃(m, ρ, T )

∂m2

∣

∣

∣

∣

∣

m=m∗

(∆m)2 + ...

(1.8)

It follows from Eq. (1.7) and Eq. (1.6), respectively, that

∂G̃(m, ρ, T )

∂m

∣

∣

∣

∣

∣

m=m∗

= 0, (1.9)

∂2G̃(m, ρ, T )

∂m2

∣

∣

∣

∣

∣

m=m∗

=
∂2F (m,T )

∂m2

∣

∣

∣

∣

m=m∗

, (1.10)

so we can bring G(ρ, T ) to the other side of Eq. (1.8) and find

∆G̃ ≡ G̃(m, ρ, T ) −G(ρ, T ) ≈ 1

2

∂2F (m,T )

∂m2

∣

∣

∣

∣

m=m∗

(∆m)2. (1.11)

14



Finally, we note that F (m,T ) = β(m,T ) L sec θ = β(m,T )L
√

1 +m2, so that

∂2F (m,T )

∂m2
= β̃(m,T ) L cos3 θ, (1.12)

while

∆m = sec2 θ ∆θ. (1.13)

Plugging these into Eq. (1.11), we have our final result (where we once again high-

light the θ dependence implicit in m):

∆G̃ ≈ 1

2
L sec θ β̃(θ, T ) (∆θ)2. (1.14)

This equation is analogous to Eq. (1.5), as desired. Thus, regardless of the overall

step angle θ, the stiffness is an appropriate measure for the free energy required to

bend the step.

1.2.2 Step Stiffness as Steps “Inertia” or “Diffusivity”

Although it is appealing and intuitive to view the step stiffness as a gauge

for how easily steps thermodynamically fluctuate, there is another perspective that

further accentuates its profound nature. From this perspective, the step is viewed

as the path that a particle constrained to move in one dimension traces out through

time. As we will now see, this powerful and beautiful analogy clarifies the role of

step stiffness.

To exploit the analogy, we imagine the step fluctuates about the y-axis (or,

equivalently, we orient our y-axis to be parallel to the average step orientation).

With this done, we can describe the step position using a continuous function x(y, t)
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Figure 1.7: In (a), a portion of a step is shown, along with the constituent step-edge
adatoms. In (b), the step is coarse-grained so it can be described by a continuous
function x(y,t). Notice the terrace in (a) contains a couple adatoms, which we
assume are in thermodynamic equilibrium with the step.

(Maryland notation). We illustrate such a step in Fig. 1.7 and show how it is coarse-

grained. Our analogy begins to take shape by dividing Eq. (1.14) by the step length

L sec θ. This gives the change in step free energy per unit length ∆g̃:

∆g̃ ≡ ∆G̃

L sec θ
≈ 1

2
β̃(θ, T ) (∆θ)2. (1.15)

For small step fluctuations, ∆θ ≈ ∂x/∂y, so Eq. (1.15) becomes

∆g̃ ≈ 1

2
β̃(θ, T )

(

∂x

∂y

)2

. (1.16)

This subtle change of variables allows us to compare ∆g̃ to the energy of a particle

of mass m traveling with velocity v. Specifically, by replacing y with time t in

Eq. (1.16), so that ∂x/∂y is replaced by velocity v ≡ ∂x/∂t, we have the energy

mv2/2, provided the stiffness is interpreted as mass. (In making this analogy, the

time is fictitious, so there is really nothing “dynamical” going on with the step.) This

means that the stiffness is the thermodynamic “inertia” of a step, in the sense that

the step is analogous to the time-evolved path (world-line) of a particle constrained
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to move in one dimension. As such, it plays a very important role in describing

step motion, ultimately quantifying the step response to other steps, to atomistic

mass-transport processes, and to external driving forces.

We can take this analogy even further by computing the average squared

displacement of the step edge C(y) = 〈[x(y) − x(0)]2〉. Again, we imagine the step

traces out the time-evolved path of a particle constrained to move in one-dimension,

only now we imagine the movement is diffusive, so that C(y) is analogous to the more

familiar average distance squared C(t) a one-dimensional random-walker travels:

C(t) = 〈[x(t) − x(0)]2〉 = 2D̃t, (1.17)

where D̃ is the diffusion coefficient (we use the tilde to remind us that the time is,

again, fictitious). We wish to determine the proper combination of step parameters

that is analogous to D̃. Our intuition suggests that stiffer steps correspond to the

world lines of particles with smaller diffusion coefficients and vice versa. As we will

now show, this turns out to be fundamentally correct.

To prove this intuitive result and facilitate the calculation of C(y), we Fourier

transform the step edge:

x(y) =
1√
2π

∫

dq xq e
iqy. (1.18)

In this case, Eq. (1.16) becomes

∆g̃ =
1

2π

∫

dq
1

2
β̃(θ, T )q2|xq|2. (1.19)

Using the equipartition of energy theorem, we know each mode has kBT/2 worth of
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energy in equilibrium. We thus have

〈|xq|2〉 =
kBT

β̃(θ, T )q2
. (1.20)

With this, we can determine C(y):

C(y) = 〈[x(y) − x(0)]2〉

=
1

2π

∫

dq dq′〈xqxq′〉(eiqy − 1)(eiq
′y − 1)

=
kBT

β̃(θ, T )
|y|, (1.21)

where we have used Eq. (1.20) in a generalized form, namely,

〈xqxq′〉 =
kBT

β̃(θ, T )q2
δ(q + q′). (1.22)

Comparing Eq. (1.21) to Eq. (1.17), we find the analogy we were looking for. Specif-

ically,

D̃ ∼ 1

2

kBT

β̃(θ, T )
. (1.23)

As we expected, the stiffer the step, the smaller the diffusion coefficient. To avoid

confusion, the combination of terms on the right hand side of Eq. (1.23) is usu-

ally written11 in terms of the step diffusivity b2. The term “diffusivity” brings to

mind diffusion, but reminds us that the dynamics only correspond to the analogous,

yet fictitious, one-dimensional random walker. Still, the analogy provides yet an-

other perspective from which we clearly see the importance of step stiffness when

quantifying step dynamics.

In short, the stiffness is the key thermodynamic parameter describing step

movement and fluctuations. We can interpret its meaning in three ways, all useful
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in their own right. In the first, we imagine a step bends or fluctuates about its

equilibrium orientation by a small amount. In this case, the stiffness measures the

thermodynamic ease of the fluctuations, regardless of whether they are about a close-

packed orientation or some other orientation, as Eqs. (1.5) and (1.14) show. In the

second and third interpretations, we envision a step as the path a particle constrained

to move in one dimension traces out through time. If the path corresponds to that

of a particle moving with velocity v, the stiffness corresponds to the particles mass

or inertia. If, on the other hand, the path corresponds to a random-walker, then

the stiffness corresponds to the inverse diffusion coefficient or more traditionally, the

inverse diffusivity.

1.3 The Role of Step Stiffness in the Continuum Step Model

Having established an intuition for step stiffness and rigorously quantified

its meaning from multiple perspectives, we now discuss its crucial role within the

continuum step model,5 where it serves as one of three key parameters. Remember

this model describes surface evolution through the collective dynamics of constituent

steps, assumed to be continuous. Before we can quantify the net step dynamics and

have any hope of modeling the overall surface morphology, we must first quantify the

fluctuations and movement of a single, isolated step. To do so, we will again imagine

the step can be described by a continuous function x(y, t), as in Fig. 1.7. Our goal

is to quantify the step movement by calculating its velocity ẋ(y, t) ≡ ∂x(y, t)/∂t.

Based on our newly developed intuition, it is not surprising that step stiffness

19



critically affects step velocity. In particular, there are three important domains5,12–15

defining the movement of an isolated step based on the underlying adatom dynamics:

attachment-detachment (AD), terrace-diffusion (TD), and periphery-diffusion (PD).

The first two domains describe steps that fluctuate because they exchange adatoms

with the terrace. In the AD regime, the adatoms diffuse relatively quickly on the

terrace, making their attachment to and detachment from steps the bottleneck to

net movement. In the TD regime, on the other hand, the diffusion along the terrace

is relatively slow, making it the bottleneck to net step movement. In both cases,

the step velocity is proportional to the step stiffness.5,13,14

In the PD regime, however, steps do not exchange adatoms with the ter-

race. Instead, steps fluctuate because adatoms diffuse along their periphery. In this

regime, we assume the adatom attachment and detachment rates are negligible, so

the step length is essentially conserved. The PD regime turns out to be especially

important at lower temperatures, when adatoms no longer have enough thermal

energy to detach from steps. For our purposes, this regime is most relevant because

we are interested in the anisotropy of step stiffness, which becomes significant when

the temperature is low. In the PD domain, the step velocity can be written

ẋ(y, t) =
∂

∂y

{

Γ(x′)

kBT

∂

∂y

[

β̃(x′) K(x′, t)
]

}

+ η(y, t). (1.24)

where kBT is the thermal energy, Γ(x′, T ) is the adatom mobility along the step edge

(which is anisotropic itself), K(x′, t) is the step curvature, and η(y, t) is correlated,

conserved noise:

〈η(y, t)η(y0, t0)〉 = 2Γδ(t− t0)δ
′′(y − y0). (1.25)
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In these equations and those that follow, we no longer explicitly show the tempera-

ture dependence. Furthermore, for notational convenience, we use a prime to denote

differentiation with respect to y and occasionally suppress the θ dependence within

the step slope x′(y, t) = m ≡ tan θ.

Eq. (1.24) is essentially the diffusion equation describing the random hops

of adatoms along the step edge. To derive it, we let ds ≡
√

1 + (x′)2 dy be the

differential distance along the step and c(s, t) be the step-edge adatom concentration

(number of adatoms per unit length). If we assume the adatom diffusion constant

along the step edge DPD(s) = DPD(x′(s)) depends on the step slope x′ at s, then

the diffusion equation reads

∂c(s, t)

∂t
=

∂

∂s

[

DPD(s)
∂c(s, t)

∂s

]

(1.26)

where the term in square brackets is just the net flux of adatoms at s. To convert

the left-hand side of this equation to velocity, we multiply by the adatom area Ω.

This gives

vn(s, t) ≡
∂ [Ωc(s, t)]

∂t
=

∂

∂s

{

DPD(s)
∂ [Ωc(s, t)]

∂s

}

(1.27)

where vn(s, t) is the normal step-edge velocity.

To proceed further, we utilize the Gibbs-Thompson relation to connect the

adatom concentration with the thermodynamic step chemical potential µ(s, t) (the

free energy required to add a step-edge adatom at position s):

c(s, t) = ceq e
µ(s,t)/kBT , (1.28)

where ceq is the equilibrium adatom concentration. For small µ(s, t)/kBT , we can
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rewrite Eq. (1.28) as

c(s, t) − ceq ≈ ceq
µ(s, t)

kBT
. (1.29)

This suggests we redefine the concentration so that it is measured from its equilib-

rium value [c(s, t) − ceq → c(s, t)]. Plugging this into Eq. (1.27) gives

vn(s, t) = Ω
∂

∂s

[

ceq
DPD(s)

kBT

∂µ(s, t)

∂s

]

. (1.30)

Thus, the step velocity is driven by gradients in the step chemical potential µ(s, t)

along the step edge. If the change in the gradient of µ(s, t) along the step edge

is large, then adatoms quickly moves down the gradient, causing the step to move

quickly as well.

To arrive at Eq. (1.24), we need only connect µ(s, t) with β̃(s). This can be

done by writing both the total number of step adatoms N and the total step free

energy F as functionals of x(y, t):

N [x(y, t)] =

∫

x(y, t)

Ω
dy, (1.31)

F [x(y, t)] =

∫

β(s) ds =

∫

β(x′)
√

1 + (x′)2 dy. (1.32)

With these functionals, we can express the step chemical potential as a functional

derivative of F with respect to N :

µ(x′, t) =
δF

δN
=

δF [x(y, t)]

δx

δx

δN

= −Ω
d

dy

{

∂

∂x′

[

β(x′)
√

1 + (x′)2
]

}

. (1.33)

The basic idea is straightforward: the addition of an adatom causes the step to

lengthen and bend, which in turn costs free energy. As before, the step stiffness
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turns out to be the central thermodynamic parameter defining the step movement.

We make the connection concrete with the following simplifications:

d

dy
= x′′

∂

∂x′
, (1.34)

x′ = tan θ → ∂x′

∂θ
= 1 + (x′)2, (1.35)

∂β(x′)

∂x′
=

∂β(θ)

∂θ

1

1 + (x′)2
. (1.36)

With some algebra, this allows us to express the chemical potential as a function of

θ:

µ(θ, t) = Ω
−x′′

[1 + (x′)2]3/2
β̃(θ)

= Ω K(θ, t) β̃(θ), (1.37)

where K(θ, t) is the step curvature. Plugging this into Eq. (1.30) yields Eq. (1.24),

provided two things: First, we define the adatom mobility to be Γ(x′) ≡ Ω2DPD(x′)ceq,

which is proportional to the adatom step-edge diffusion constant, as the name “mo-

bility” would suggest. Second, we assume the temperature is low enough so that

the step fluctuations are not too wild, implying x′ is small and ds ≈ dy.

By itself, Eq. (1.37) is significant. It says that the larger the step curvature

and/or step stiffness, the larger the chemical potential. Since adatoms move from

high to low chemical potential, we see that steps with large curvature quickly become

flat, while steps with small stiffness (far from high-symmetry orientations) quickly

move and readjust until they have larger stiffness.

Finally, it is worth mentioning that Eq. (1.24) is a fourth-order differential

equation, which ultimately requires two derivatives of β̃(θ) with respect to θ. Thus,
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the step velocity is extremely sensitive to the anisotropy of β̃(θ), which we already

argued is extreme at lower temperatures. This is in contrast to the step mobility

Γ(θ), which only requires one additional derivative with respect to θ. The sensitivity

of step velocity to the anisotropy of step stiffness therefore requires an accurate

formula for β̃(θ) in order to properly model step flow in the PD domain. Deriving

such a formula will be the subject of the next two Chapters.

In summary, we have shown that the step stiffness plays a crucial role in

describing step dynamics. Not only have we developed an intuition for step stiffness

based on the fundamental step defects, kinks, but we have also rigorously defined

its meaning. Briefly, step stiffness is a measure for how easily a step fluctuates. It

is large and anisotropic at low temperatures (with high-symmetry steps being the

stiffest), and it becomes smaller and more isotropic as the temperature approaches

Tc, where it ultimately becomes negligible. In both the AD and TD domains, the

velocity of a step edge is proportional to the step stiffness. In the PD domain,

which is relevant at lower temperatures, however, two additional derivatives of the

stiffness are required, making the velocity extremely sensitive to step orientation

and stiffness anisotropy.

24



Chapter 2

Step Stiffness on {001} Surfaces

In this Chapter, we focus on deriving an analytic formula for the anisotropy of

step stiffness on fcc {001} surfaces. We begin with a brief introduction to lattice-gas

models, which will form the basis of our calculations, not only in this Chapter, but

in Chapters 3 and 4 as well. We use such a model to derive a low-temperature for-

mula for the step stiffness anisotropy assuming adatoms only interact with nearest-

neighbors (NN). Although the formula is appealingly simple, comparisons with ex-

periments on Cu(001) have shown it underestimates the stiffness by a factor of 4 in

directions away from the close-packed directions. A subsequent estimate of the stiff-

ness in the two high-symmetry directions alone suggested that inclusion of attractive

next-nearest-neighbor (NNN) interactions could fully explain the discrepancy. To

address this problem, we introduce the solid-on-solid (SOS) model to calculate the

full anisotropy of step stiffness, as defined by Eq. (1.1), assuming adatoms interact

with both NNs and NNNs. At low-temperatures, our result reduces to a simple,

transparent expression. The effect of the strongest trio (three-site, nonpairwise)

interaction can also be easily incorporated by modifying the interpretation of the

two pairwise energies.
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2.1 Ising Expansion on a Square Lattice

The orientation dependence of β(θ) and β̃(θ) on {001} surfaces can be deter-

mined by first calculating the free energy F (θ) of a single step oriented at a fixed

angle θ. Because of the four-fold symmetry of the surface, all calculations can be

done in the first octant alone (from 0◦ to 45◦, which is mirror-symmetric with the sec-

ond octant, from 45◦ to 90◦). To approximate F (θ), we perform a low-temperature

Ising expansion of the partition function, as done by Rottman and Wortis.16

We begin by considering a step on a square lattice (representative of {001}

surfaces) with one end fixed to the origin and the other end, a distance L away,

fixed to the point (M ≡ L cos θ, N ≡ L sin θ), as depicted in Fig. 2.1. We assume

the constituent adatoms form a “lattice-gas,” occupying only preferential, high-

symmetry positions predefined by the crystal substrate. We furthermore assume

the adatoms interact with one another by forming a finite number of “bonds” (such

as NN, NNN, ...), the strength of which are fixed by the relative adatom positions.

In Fig. 2.1, the single-layer island (or compact adatom-filled section) is in the lower

region, separated by the step edge — which is drawn as a bold solid line — from the

upper part of the figure, representing the “plain” region. Within such a lattice-gas

framework, the energy of the step edge En is just the energy of the broken bonds

required to form it. If we assume that adatoms only interact with NNs, then the

sum of all the broken NN bonds (dotted lines in Fig. 2.1) is

En = ε(M +N + 2n), n = 0, 1, 2, . . . , (2.1)

where ε, sometimes17 called the “Ising parameter,” is the bonding energy associated
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Figure 2.1: A step on a square lattice (fcc {001}) is shown from above, with the
lighter blue spheres representing surface atoms, and the darker orange spheres rep-
resenting adatoms. The step, shown as a thick, solid line, connects the origin with
the point (M = L cos θ,N = L sin θ). All M+N broken NN bonds required to form
the step are shown as dotted lines. Since this is the shortest possible step connect-
ing the origin and (M,N), it contains only forced kinks and its energy is minimal:
E0 = ε(M + N). Other higher energy steps necessarily have thermal kinks, which
increase the microscopic step length.

with the “severed half” of the NN lattice-gas bond: Since the NN lattice-gas energy

ε1 is attractive (negative), and half of it is attributed to the atom on each end, it

“costs” a positive energy ε = −1
2
ε1 for each step-edge atom. Because longer steps

require more step-edge atoms, the step energy is only a function of the microscopic

step length: M +N +2n (this should not be confused with the macroscopic, exper-

imentally measurable step length L). Thus, E0 corresponds to the shortest possible

step, one with only forced kinks (geometrically required). Higher-energy steps nec-

essarily have thermal kinks which require the addition of two more step-edge links –

corresponding to one more step-edge atom – one going away from the fixed endpoint
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and one going toward it. Because this corresponds to two more broken bonds, in

general, En+1−En ≡ ∆E = 2ε. With these energies, we can write down the partition

function Zθ, assuming θ is fixed but L is large enough so that integer values of M

and N can be found:

Zθ = gM,N(0)e−E0/kBT + gM,N(1)e−E1/kBT + ... (2.2)

where kBT is the thermal energy and gM,N(n) corresponds to the number of ways a

step of length M +N + 2n can be arranged between the two endpoints.

For low temperatures, only the first term in Eq. (2.2) need be considered

(Appendix A provides the leading correction term, which gives a correction of order

exp(−2ε/kBT )). To lowest order, then, F = −kBT lnZθ is

F ≈ E0 − kBT ln

(

M+N

M

)

, (2.3)

where we have inserted the value of gM,N(0) obtained from a simple combinatorial

analysis.16,18 After taking the thermodynamic limit (M , N � 1) and using Stirling’s

approximation, F becomes

F ≈E0−kBT [(M+N) ln(M+N)−M lnM−N lnN ] . (2.4)

Remembering M = L cos θ, N = L sin θ, E0 = ε(cos θ + sin θ), and dividing by the

macroscopic step length L gives the low-temperature anisotropy of the line tension

β(θ) = F/L:

a||β(θ) = ε(cos θ + sin θ) + kBT [(cos θ + sin θ) ln(cos θ + sin θ)−

cos θ ln(cos θ) − sin θ ln(sin θ)] , (2.5)
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where a|| is the NN distance. Using Eq. (1.1), we can now easily find the anisotropy

of the low-temperature step stiffness β̃(θ):19

β̃(θ)a||
kBT

=
2

sin(2θ)
√

1 + sin(2θ)
. (2.6)

Here it is worth mentioning that the energetic portion E0 of the low-temperature

line tension does not contribute to the stiffness because it is a linear combination

of sin θ and cos θ. As such, the addition of its second derivative with respect to

θ cancels with itself. This turns out to be true regardless of the type of pairwise

interactions included in the bond-counting model.20 (Chapter 3 provides another

example for fcc {111} surfaces.) Thus, in a very general sense, the low-temperature

step stiffness is largely an entropic effect.

In a recent paper,19 Eq. (2.6) was shown to underestimate the experimentally

observed stiffness by a factor of 4 for steps oriented away from the close-packed

direction. In that paper, the anisotropy of the stiffness was experimentally measured

using two independent methods: direct measurement of the diffusivity on vicinal

Cu surfaces with various tilts and examination of the shape of (single-layer) islands.

The agreement of the two types of measurements assures that the underestimate

is not an anomaly due to step-step interactions. In the same paper, the effect of

next-nearest-neighbor (NNN) interactions ε2 was crudely estimated by examining a

general formula obtained by Akutsu and Akutsu,21 showing a correction of order

exp(−ε2/kBT ), which was glibly deemed to be insignificant. In subsequent work

the Twente group22 considered steps in just the two principal directions and showed

that if one included an attractive NNN interaction, one could evaluate the step free
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energies and obtain a ratio consistent with the experimental results. This group

later extended their calculations23 to examine the stiffness.

We address the discrepancy between experiment and theory in the next sec-

tion, where our goal will be to compute the step line tension β(θ) and the stiffness

β̃(θ) as functions of azimuthal misorientation θ, when NNN (in addition to NN)

interactions contribute. Since it is difficult to generalize the low-temperature ex-

pansion of the Ising model,16,24,25 we instead study the SOS (solid-on-solid) model,

which behaves very similarly at low temperatures and at azimuthal misorientations

that are not too large, but can be analyzed exactly even with NNN interactions.

This derivation is described in Section 2.2, with most of the calculational details

placed in Appendix A. In Section 2.3 we derive a simple expression for the stiff-

ness in the low-temperature limit, presented in Eq. (2.20). We also make contact

with parameters relevant to Cu(001), for which this limit is appropriate. In Section

2.4 we extend the formalism to encompass the presumably-strongest trio (3-atom,

non-pairwise) interaction, showing that its effect can be taken into account by shift-

ing the pair energies in the preceding work. The final section offers discussion and

conclusions.

2.2 NNN SOS Model on a Square Lattice

Including NNN interactions in the low-temperature expansion of the square-

lattice Ising model lifts the remarkable degeneracy of the model with just NN bonds.

In that simple case, as we saw earlier, the energy of a path depends solely on
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the number of NN links, independent of the arrangement of kinks along it; thus,

the energy E0 of the ground state is proportional to the number of NN links of

the shortest path between two points, and the entropy is related to the number

of combinations of horizontal and vertical links that can connect the points.16,18

Including NNN interactions causes the step energy to become a function of both the

length of the step and the number of its kinks, eliminating the simple path-counting

result.18 It can then become energetically favorable for the step to lengthen rather

than add another kink. This causes the NN energy levels to split in a non-trivial

way, making it possible for a longer step to have a lower energy than a shorter step.

A related complication is that the expansion itself depends on the relative strength

of the NNN-interaction: Instead of an expansion just in terms of exp(−|ε1|/kBT ),

the expansion also is in terms of exp(ε2/2kBT ). Hence, to take the NNN-expansion

to the same order of magnitude as the NN-expansion, an unspecified number of

terms is required, depending on the size of the ratio ε2/ε1.

Since the NNN Ising model cannot be solved exactly and we cannot generalize

the low-T expansion, we turn to an SOS model, which was used in earlier examina-

tions of step problems, most notably in the seminal work of Burton, Cabrera, and

Frank,26 and later used for steps of arbitrary orientation by Leamy, Gilmer, and

Jackson.8 It was also applied to an interface of arbitrary orientation in a square-

lattice Ising model.27

Although the SOS model can be treated exactly, the result is somewhat un-

wieldy. Fortunately, at low temperature—the appropriate regime for the experi-

ments under consideration—the solution reduces to a simple expression.
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2.2.1 Description of Model

Consider a step edge of projected length L separating an upper adatom-free

region from a lower adatom-filled region (see Fig. 2.2). The step edge is completely

described by specifying its height yi at position i (0 ≤ i ≤ L). The energy of the

step edge depends on the number of broken bonds required to form it. Let V and

H represent the vertical and horizontal NN bond strengths divided by kBT , and let

U and D represent up-diagonal and down-diagonal NNN bond strengths over kBT .

Then the step-edge energy E ≡ E({∆i}) depends only on ∆i ≡ yi − yi−1.

For clarity, we consider two examples. First, if ∆i = 2 (as is the case between

columns a and b in Fig. 2.2), then between positions i and i+1 there are 2 broken H-

links, 1 broken U -links, and 3 broken D-links. There are also 2 broken V -links, but

Figure 2.2: A finite-sized step edge whose projected length is L. The step has height
yi at position i (0 ≤ i ≤ L). The height difference yL − y0 is fixed; thus, the step
edge makes an angle θ with the horizontal axis, and has an overall slope m. The
energy of the step edge is found by counting the number of broken links required to
form it. Here all NN and NNN broken links are shown.
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this number is independent of ∆i, since every step-edge configuration of projected

length L requires exactly L broken V -links. Similarly, if ∆i = −2 (as is the case

between columns c and d in Fig. 2.2), then there would be the same number of

broken H-links, but there would now be 3 broken U -links and 1 broken D-links

(that is, the number of broken U and D links switch from the previous case). From

these examples we see that, in general, there are |∆i| broken H-links, |∆i − 1| broken

U -links, and |∆i + 1| broken D-links. It therefore follows that the step-edge energy

is

E({∆i})
kBT

=

L
∑

i=1

(

V +H |∆i| + U |∆i−1| +D |∆i+1|
)

≡
L
∑

i=1

K(∆i). (2.7)

Because we seek the orientation dependence of β and β̃, we constrain the step

to have an overall offset Y ≡ yL−y0 ≡ L tan θ =
∑L

i=1 ∆i. (Equivalently, we specify

that the overall slope of the step is m ≡ tan θ.) The constrained partition function

is therefore

Z (Y ) ≡
∑

{∆}
δ

[

Y −
L
∑

i=1

∆i

]

e−E({∆i})/kBT , (2.8)

where {∆} is the set of all ∆i each of which ranges over all integers. From Z(Y )

we can find the orientation dependence of the free energy F (Y ) = −kBT lnZ(Y ),

the projected free energy per length f(m) = F (Y )/L, and the line tension (or free

energy per length) β(θ) = f(m) cos θ (since the step length is L/ cos θ); thence, we

can find the stiffness β̃(θ) = β(θ) + ∂2β(θ)/∂θ2.

For future reference, note that the process of extracting an atom from the
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step-edge and replacing it alongside the edge, creates two pairs of ∆ = +1 and

∆ = −1, costing 4H according to Eq. (2.7) and removing a net of 2 NN bonds,

so that H = −ε1/2kBT = εk/kBT . Similarly, we compare the energies of two NN

atoms, abutting [the lower side of] a step edge ({∆i}= 0) at i0 and either parallel

or perpendicular to the edge. In the first case, ∆i0 = +1 and ∆i0+2 =−1, with an

added energy of 2H + 2(U+D) according to Eq. (2.7). In the perpendicular case

∆i0 = +2 and ∆i0+1 =−2, implying an added energy of 4H + 4(U+D). Counting

bonds we see that the parallel configuration has one more ε1 bond and two more ε2

bonds than the perpendicular configuration. Invoking H =−ε1/2kBT , we see that

U+D=−ε2/kBT ; if U=D, then D=−ε2/2kBT . The factor-of-2 difference between

broken links in Eq. (2.7) and broken bonds was noted (for H links) already in the

classic exposition by Leamy et al.8 An alternate argument, presented over a decade

ago,28 for this factor of 2 is that the ragged edge is created by severing bonds along

the selected path through an infinite square. This leads to the formation of two

complementary irregular boundary layers (with opposite values of {∆i}, so that the

associated energy of each is half that of the broken bonds (at least when U=D).

2.2.2 Evaluation of the Free Energy

As detailed in the first part of the Appendix A, the sum in the Fourier trans-

form of Z(Y ), which we denote by W (µ), factorizes. Thus, it can be written as

W (µ) = exp [−Lg(iµ)/kBT ] ,
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where g(iµ) is the reduced Andreev10 free energy per column. To evaluate the

inverse transform, we exploit the saddle point method and obtain (see Appendix A

for details)

Z(Y ) ≈ exp

[

−L
(

ρ0 tan θ +
g(ρ0)

kBT

)]

, (2.9)

where the saddle point (µ0 = −iρ0) is defined implicitly by the stationarity condition

−g
′(ρ0)

kBT
= m ≡ tan θ. (2.10)

Here, prime (as in g′) denotes a derivative with respect to ρ. This result can be

regarded as applying a “torque” to the step to produce a rotation θ = tan−1m from

the minimum-energy, close-packed orientation.8

Taking the logarithm of Eq. (2.9), we find the projected free energy per column

f(m) as a Legendre transform of the reduced Andreev10 free energy per column

g(ρ0):

f(m)

kBT
≈ ρ0m+

g(ρ0)

kBT
. (2.11)

Note that this expression is valid only for L� 1; for finite-sized systems, corrections

are required. As standard for Legendre transforms,29 we have

f̈(m)

kBT
= − kBT

g′′(ρ0)
, (2.12)

where f̈ ≡ ∂2f/∂m2. Using β(θ)a = f(m) cos θ and m = tan θ, with a the lattice

constant of the square (i.e., the column spacing, which is (1/
√

2) the conventional

fcc lattice constant), we can rewrite the stiffness as

β̃(θ)a = f̈(m)/ cos3 θ, (2.13)
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or, similar to results by Bartelt et al.,30

kBT

β̃(θ)a
= −g

′′(ρ0)

kBT
cos3 θ. (2.14)

Thus, we only need g′′(ρ) to find the stiffness as a function of m or θ.

Of course, ρ0 in g′′ must be eliminated in favor of m via Eq. (2.10). The details

for the general case are somewhat involved. Here, we simplify to the physically

relevant case of U = D and, defining S ≡ H + U + D = H + 2D, just quote the

results:

g′′ (ρ0)

kBT
= −m

[

2 sinh ρ0

C(S, ρ0)
+ coth ρ0

]

+m2 (2.15)

where C(S, ρ0) ≡ coshS − cosh ρ0 and ρ0(m) is found by inverting

m =
sinh ρ0 sinhS

C(S, ρ0) [sinhS − C(S, ρ0) (1 − e−2D)]
. (2.16)

Some details can be found in the Appendix A. Since Eq. (2.16) is a quartic equation

for cosh ρ0 or eρ0 , the explicit expression for ρ0(m) is rather opaque. However, at

low-temperatures, a simpler formula emerges, as shown in the next section.

2.3 Low-T Solution: Simple Expression

At low temperatures, we find that the appropriate root for ρ0 diverges. Then

we can write cosh ρ0 ≈ sinh ρ0 ≈ eρ0/2. Of course, H ∝ 1/T so that coshS ≈ eS/2.

With these approximations, Eq. (2.16) becomes quadratic in eρ0 :

m =
eρ0+S

(eS − eρ0)[eS − (eS − eρ0)(1 − e−2D)]
(2.17)

Likewise, the expression for g′′(ρ0), Eq. (2.15), becomes

g′′ (ρ0)

kBT
= −m

[

2eρ0

(eS − eρ0)
+ 1

]

+m2. (2.18)
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Solving for eρ0 in Eq. (2.17) and inserting the solution into Eq. (2.18) gives

g′′ (ρ0)

kBT
= −m

√

(1 −m)2 + 4me−2D. (2.19)

so that, from Eq. (2.14), and recalling D=−ε2/2kBT , we arrive at our main result,

a simple, algebraic expression for β̃ as a function of m:

kBT

β̃a
=

m
√

(1 −m)2 + 4meε2/kBT

(1 +m2)3/2
(2.20)

=
sin(2θ)

√

1 − (1 − 2eε2) sin(2θ)

2
. (2.21)

We examine Eq. (2.20) in several different limiting cases. When ε2 = 0, this reduces

to

kBT

β̃a
=

m+m2

(1 +m2)3/2
, (2.22)

=
sin(2θ)

√

1 + sin(2θ)

2
, (2.23)

as in Eq. (2.6), when we solved for the stiffness assuming only NN interactions are

relevant. Interestingly, at θ = 45◦, Eq. (2.20) shows a simple dependence on ε2,

namely,

kBT

β̃a
=
eε2/2kBT

√
2

. (2.24)

Of course, this reduces to the venerable Ising result of 1/
√

2 in the absence of NNN

interactions (ε2 =0).16,17,31

By considering just the lowest and second lowest energy configurations,22,23

Zandvliet et al. obtained the result23 (expressed with our sign convention for ε2) for

the maximally misoriented case m=1
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kBT

β̃a
=

√
2

1 + e−ε2/2kBT
, (2.25)

which has, for the attractive ε2 of primary concern here, some qualitative similarities

to Eq. (2.24) (including the value 1/
√

2 for ε2 = 0) but is too small by a factor of

2 for ε2/2kBT � 0; even the coefficient of the first-order term in an expansion in

ε2/2kBT is half the correct value. For the opposite limit of repulsive ε2, Eq. (2.25)

levels off (at
√

2), in qualitative disagreement with the actual exponential increase

seen in Eq. (2.24).

Fig. 2.3 compares Eq. (2.20) to corresponding exact solutions [found by numeri-

cally solving Eqs. (2.14), (2.15), and (2.16)] at several temperatures when ε2 = ε1/10.

We see that Eq. (2.20) overlaps the exact solution at temperatures as high as Tc/6.

As the temperature increases, the stiffness becomes more isotropic, and Eq. (2.20)

begins to overestimate the stiffness near θ = 0◦.

0.2 0.4 0.6 0.8 1
m = tan Θ

0.1

0.2

0.3
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kB T
�����������������������
Β
�

 HΘL a Ε2 = Ε1�10

low-T = TC �10

low-T = TC �6

low-T = TC �3

T = TC �10

T = TC �6

T = TC �3

Figure 2.3: The range of validity of Eq. (2.20) is examined by comparing it to exact
numerical solutions of the SOS model at several temperatures. In the legend Tc
refers to the NN lattice-gas (Ising) model; for |ε1| = 256meV, Tc = 1685K.
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Finally, in Fig. 2.4 (using the experimental value32 εk = 128 meV ⇒ ε1 = −256

meV), we compare Eq. (2.20) to the NN-Ising model at T = 320K, as well as to

the experimental results of Dieluweit et al.19 For strongly attractive (negative) ε2,

kBT/β̃a decreases significantly. In fact, when ε2/ε1 is 1/6, so that −ε2/2kBT =

(ε2/ε1)(εk/kBT ) ≈ (1/6)4.64, the model-predicted value of kBT/β̃a has decreased

to less than half its ε2 =0 value (viz. by a factor of 0.46, vs. 0.63 if Eq. (2.25) is used),

so about 3/2 the experimental ratio. If ε2/ε1 increases even further, kBT/β̃a further

decreases and develops positive curvature, causing an endpoint local minimum to

appear at θ = 45◦. We can determine when this occurs by expanding Eq. (2.20)

0.2 0.4 0.6 0.8 1
m = tan Θ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

kB T
�����������������������
Β
�

 HΘL a T = 320 K

Exp’t

Ε2 = Ε1�4

Ε2 = Ε1�6

Ε2 = Ε1�10

Ε2 = Ε1�25

Ising NN

Figure 2.4: Eq. (2.20) is plotted for a variety of different values of D = −ε2/2kBT ,
where ε1 and ε2 are NN- and NNN-interaction energies, respectively, in a lattice-gas
picture. The solid curve denoted “Ising NN” corresponds to ε2 =0. The dots labeled
“Exp’t” are taken from Fig. 2 of the paper by Dieluweit et al.19 and were derived
from the equilibrium shape of islands on Cu(001) at 302K, with the line segments
serving as guides for the eye. To minimize clutter, we omit similar data derived
from correlation functions of vicinal surfaces at various temperatures. Note that
for ε2 = ε1/4 a maximum has developed near tan θ= 1/2 that is not evident in the
experimental data.
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about m = 1:

kBT

β̃a
=
e−D√

2
+

(

eD

8
√

2
−3e−D

4
√

2

)

(m−1)2+. . . (2.26)

Setting the coefficient of (m − 1)2 to zero gives −2D = ε2/kBT = − ln(6) ≈ −1.8,

which corresponds to a value of kBT/β̃a =
√

3/6 ≈ 0.29, about 2/5 the value at

ε2 =0. For T = 320K and εk = 128 meV, this corresponds to ε2/ε1 ≈ 0.2. However,

for the NNN interaction alone to account for the factor-of-4 discrepancy between

model/theory and experiment reported by Dieluweit et al.19, Fig. 2.4 shows that

ε2/ε1 ≈ 0.3 would be required.

2.4 Effect of Trio Interactions

In addition to the NNN interaction, trio (3-atom, non-pairwise) interactions

may well influence the stiffness. The strongest such interaction is most likely that

associated with 3 atoms forming a right isosceles triangle, whose sides are at NN

distance and hypotenuse at NNN separation. In a lattice gas model, there is a new

term with εRT times the occupation numbers of the 3 sites.33 Note that this trio

interaction energy εRT is in addition to the contribution 2ε1+ε2 of the constituent pair

interactions. If we count broken trios and weight each by R, we find an additional

contribution to Eq. (2.7) of R times

4|∆i| + 2δ∆i,0 + 2 = 2|∆i| + |∆i+1| + |∆i−1| + 2, (2.27)

where we have converted the Kronecker delta at i=0 to make better contact with

Eq. (2.7). Thus, without further calculation we can include the effect of this trio by

replacing H by H+2R, U by U+R, D by D+R, and (trivially) V by V +2.
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By arguments used at the end of Section IIA, we recognize R=− 1

2
εRT . Con-

sequently, the effective NN lattice-gas energy is ε1+2εRT and, more significantly the

effective NNN interaction energy is ε2+εRT . Thus, εRT must be attractive (negative)

if it is to help account for the discrepancy between the model and experiment in

Fig. 2 of the paper by Dieluweit et al.19 Furthermore, by revisiting the configura-

tions discussed in the penultimate paragraph of the Introduction, we find that the

kink energy εk becomes − 1

2
ε1 −εRT . Thus, for a repulsive εRT , |ε1| will be larger

than predicted by an analysis of, e.g., step-edge diffusivity that neglects εRT . Lastly,

the close-packed edge energy, i.e. the T = 0 line tension β(0)=− 1

2
ε1 −ε2, becomes

− 1

2
ε1 −ε2 −2εRT

2.5 Discussion and Conclusions

We now turn to experimental information about the interactions, followed by

comments on the limited available calculations of them, often recapitulating the

discussion by the Twente group.22 All the experiments are predicated on the belief

that at 320K there is sufficient mobility to allow equilibrium to be achieved. If the

NNN interactions are to explain at least partially the high stiffness of experiment

compared to Ising theory, the NNN interaction must be attractive and a substantial

fraction of ε1. Since compact islands do form on the Cu(001) surface, it is obvious

that ε1 is attractive. If ε2 is also attractive, as required for reduction of the overes-

timate of kBT/β̃, then the low-temperature equilibrium shape has clipped corners

(octagonal-like, with sides of alternating lengths), as noted by the Twente group.22

41



No evidence of such behavior has been seen. The lack of evidence of a decreasing

stiffness near θ ≈ 45◦ suggests that ε2/ε1 is at most 1/5.

There is implicit experimental information for ε2: from island shapes17 and

fluctuations34 β(0) = 220 ± 11 meV. Since related measurements showed 1

2
ε1 =

−128meV, we deduce ε2 = −92 meV if εRT is insignificant. These values imply

that ε2/ε1 is somewhat larger than 1/3, which seems unlikely in light of the unob-

served predictions about the shape of islands in that case (cf. the end of Section

2.3).

To corroborate this picture, one should estimate the values of ε1 and ε2, as well

as εRT , from first-principles total-energy calculations. In contrast to Cu(111),35,36

however, no such information even for ε1 has been published for Cu(001); there are,

however, several semiempirical calculations which found εk ≈ 0.14eV.37 To address

this shortcoming, we have carried out calculations38 of the relevant pairwise and

multi-atom interactions on Cu(001) using the VASP package,39–42 as detailed in

Chapter 4. Our calculations suggest that ε2 is indeed attractive, and that ε2/ε1 is

about 1/8.

In calculations based on the embedded atom method (EAM), which work best

for late transition and noble fcc metals, the indirect (“through-substrate”) interac-

tions are expected to be strong only when the adatoms share common substrate near-

est neighbors; then the interaction should be repulsive and proportional to the num-

ber of shared substrate atoms.43 If the NN and NNN interactions on Cu(001) were

purely indirect (“through-substrate”), we would then predict ε2 =1

2
ε1>0. However,

whenever direct interactions (due to covalent effects between the nearby adatoms)
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are important, they overwhelm the indirect interaction. Our calculations in Chap-

ter 4, which find both ε1 and ε2 attractive (negative), therefore suggest that direct

interactions are significant at both NN and NNN separations on Cu(001).

It is also not obvious a priori whether multi-atom interactions also contribute

significantly. In EAM calculations, longer range pair interactions and multisite non-

pairwise interactions are generally very-to-negligibly small. [For homoepitaxy, the

only semiempirical result is that they are insignificant for Ag on Ag(001).44] Still,

such calculations probably underestimate the actual values of these interactions

since there is no Fermi surface in this picture, and it is the Fermi wavevector that

dominates long-range interactions. Indeed, our calculations in Chapter 4 indicate a

repulsive right-triangle trio interaction εRT with sizable magnitude (perhaps compa-

rable to |ε2|, consistent with a priori expectations.43,45,46) However, as we discussed

at the end of section 2.4, such a repulsive interaction would diminish rather than

enhance the effect of ε2, increasing the discrepancy between experimental step stiff-

ness and theory. As we will discuss in Chapter 4, we believe the introduction of a

quarto (4 atom, non-pairwise) interaction can alleviate the discrepancy.

In summary, NNN interactions may well account for a significant fraction,

perhaps even a majority, of the discrepancy between NN Ising model calculations

and experimental measurements of the orientation dependence of the reduced stiff-

ness;19 the effect is even somewhat greater than estimated by the Twente group.22,23

However, inclusion of ε2 is not the whole answer, nor, seemingly, is consideration

of εRT . One possible missing ingredient is other multi-site interactions, most no-

tably the quarto interaction mentioned above and discussed in detail in Chapter
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4. Since direct interactions are probably important, there is no way to escape do-

ing a first-principles computation; we continue to use the VASP package to extend

our preliminary calculations detailed in Chapter 4.47 A more daunting (at least for

lattice-gas aficionados) possibility is that long-range intrastep elastic effects may

be important. Ciobanu and Shenoy have made noteworthy progress in understand-

ing how this interaction contributes to the orientation-dependence of noble-metal

steps.48
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Chapter 3

Step Stiffness on {111} Surfaces

Just as we derived a low-temperature formula for the anisotropy of step stiff-

ness on fcc {001} surfaces in Chapter 2, here we derive an analogous formula for

fcc {111}. Specifically, we seek formulas for β(θ) and thence β̃(θ) ≡ β(θ) + β ′′(θ) as

functions of the azimuthal misorientation θ, assuming just nearest-neighbor (NN)

interactions in plane and an underlying {111} surface. Such surfaces are character-

ized by a six-fold symmetric triangular (hexagonal) lattice, allowing all calculations

to be done in the first sextant alone (from 0◦ to 60◦). In contrast to β(θ), we

shall find that at low T , β̃(θ) is insensitive, under plausible assumptions, to the

symmetry-breaking by the second substrate layer, so that plots from 0◦ to 30◦ suf-

fice. Although an analytic solution exists for the orientation dependence of the NN

line tension on a square lattice,16,24,49 only an implicit solution to a 6th-order equa-

tion has been found for a hexagonal lattice.50 This makes comparisons to experiment

rather arduous, particularly when trying to compare data on β̃(θ), which is related

to β(θ) through a double derivative with respect to θ. Fortunately, we will see that

a remarkably simple formula exists for the orientation dependence of β̃ at tempera-

tures which are low compared to the characteristic energy of step fluctuations (i.e.

the kink energy or the energy per length along the step). For noble metals, room

temperature lies in this limit, facilitating direct comparisons to experiment.

45



This work is motivated by results from Chapter 2, where we found that the

square-lattice NN Ising model underestimates β̃ by a factor of 4 away from close-

packed directions on Cu{001}. We also showed that much (but not all) of this dis-

crepancy could be understood by considering the addition of next-nearest-neighbor

(NNN) interactions. For the triangular lattice, we will see that such a longer-range

interaction is not required to describe the orientation dependence of β̃.

In the following section, we characterize steps on a hexagonal lattice and per-

form a low-temperature expansion of the lattice-gas partition function, assuming

only NN bonds are relevant, and derive both β(θ) and β̃(θ). We obtain a remarkably

simple expression for the latter in Eq. (3.14). Since this low-T limit is determined by

geometric/configurational considerations, it becomes problematic near close-packed

orientations (θ= 0◦), where the kinks must be thermally activated. Therefore, we

make use of exact results to assess in several ways how small θ can be before the

simple expression becomes unreliable. In Section 3.2, we present three general re-

sults for island stiffness that are valid in the experimentally-relevant low-T limit

when configurational considerations dominate the thermodynamics. We show that

the line tension cannot be [re]generated from the stiffness and that the stiffness can

have full 6-fold symmetry even though the substrate and the line tension have just

3-fold symmetry. Accounting for such 3-fold symmetry with a lattice-gas model

on a hexagonal grid requires an extension from the conventional parameterization;

we posit an orientation-dependent interaction between 3 atoms at the apexes of an

equilateral triangle with NN legs. In Section 3.3, we compare our results to ex-

periments on Ag and Cu{111} surfaces, showing that Eq. (3.14) provides a good
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approximation and, thus, that NNN interactions are much less important than on

Cu{001}. Next, in section 3.4, we extend our analysis to Ag(111) steps decorated

by C60. To compare with experiment, we derive an expression for the anisotropy of

the decorated step line tension. We use this formula to predict that the attractive

interaction between Ag and C60 is around -126 meV per molecule. We also study

the decorated island perimeter fluctuations. In the process we show that the NN

attractive interaction between two C60 molecules is roughly -87 meV. To our knowl-

edge, these are the first experimental estimates of their kind. The final section offers

a concluding discussion. Three appendices (B.1 - B.3) give detailed calculations of

the leading correction of the low-T expansion, of explicit analytic and numerical

results based on Zia’s exact implicit solution,50 and of Eq. (3.14) as the low-T limit

of Zia’s solution.

3.1 Ising Expansion on a Triangular Lattice

3.1.1 Triangular Lattice Step Energy

As in Chapter 2, we begin by doing a low-temperature Ising expansion of the

partition function. To make this calculation symmetric with the last, we introduce

a linear operator L that transforms the coordinates of a point on a square lattice

(M ,N) to those on a triangular lattice (M ′,N ′); cf. Fig. 3.1b. This operator finds

the position of a point in a coordinate system whose positive y-axis is bent at 60◦
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with respect to the positive x-axis:








M ′

N ′









= L









M

N









=









1 −1/
√

3

0 2/
√

3

















M

N









. (3.1)

With the aid of L, we can see how E0 changes on a triangular lattice. To

begin, we imagine a step in the first sextant (from 0◦ to 60◦ degrees in the plane)

starting at (0,0) and ending at (M ′, N ′). Such a step is shown in Fig. 3.1b. As

before, the bold solid line represents the step edge with the bottom region a layer

higher than the top (or, alternatively phrased, it separates the upper, adatom-free

region from the lower, adatom-filled region). The broken bonds required to form

the step will have only three orientations: 0◦, 60◦, and 120◦. If we consider the

shortest step between the two points (corresponding to energy E0), then there will

be exactly M ′ +N ′ broken bonds oriented at 0◦ and 60◦ (these bonds are analogous

to those oriented at 0◦ and 90◦ on a square lattice). There will be another M ′ +N ′

X

Y

(M,N)

X’

Y’

(M ,N )’ ’

Figure 3.1: There is a one-to-one correspondence between the shortest-distance steps
connecting points on a square lattice [(a), left panel] and the shortest distance steps
connecting points on a triangular lattice [(b), right panel]. This figure shows two
corresponding steps. Analogous to the M +N broken bonds oriented at 0◦ and 90◦

on a square lattice, there are M ′ + N ′ broken bonds oriented at 0◦ and at 60◦ on
a triangular lattice. However, there are another M ′ +N ′ broken bonds oriented at
120◦ on a triangular lattice.
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broken bonds oriented at 120◦ (drawn as bold, dashed lines in Fig. 3.1). In total,

there will be 2(M ′ +N ′) broken bonds. Since ε is the energy of these severed bonds,

EM

0 = 2ε(M ′ +N ′). Thus, the energy is proportional to the step length, as was the

case on a square lattice. Using L to write M ′ and N ′ in terms of M and N gives

EM

0 = 2ε

(

M +
N√
3

)

= 2εL

(

cos θ +
sin θ√

3

)

. (3.2)

3.1.2 Triangular Lattice Step Degeneracy

Next we consider the degeneracy factors gM(n) on a triangular lattice. For

the ground state gM(0) there is a one-to-one correspondence between the shortest

distance steps connecting two points on a square lattice and the corresponding steps

on a triangular lattice (see Fig. 3.1). Therefore, we know that the degeneracy factor

gM

M ′,N ′(0) for steps of energy EM

0 on a triangular lattice must be identical to gM ′,N ′(0)

implicit in Eq. (2.3)! More precisely, if we assume the point (M ,N) is in the first

quadrant, and (M ′, N ′) is in the first sextant, then on a square lattice, shortest-

distance step-links are oriented at either 0◦ or 90◦, whereas on a triangular lattice

they are oriented at either 0◦ or 60◦ (i.e. in the first sextant, the shortest path

cannot have links oriented at 120◦). In both cases, the individual step-links can

only be oriented in one of two directions and, therefore, besides the transformation

between coordinates, the total number of path arrangements is the same.

Using Eq. (2.3) and Stirling’s approximation, we find the low-temperature free
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energy (Appendix B.1 provides the lowest-order correction):

F ≈ EM

0 − kBT ln[gM ′,N ′(0)] ≈ EM

0 − kBT×

× [(M ′+N ′) ln(M ′+N ′) −M ′ lnM ′ −N ′ lnN ′] . (3.3)

Alternatively, we can transform Eq. (2.4) for the square lattice to the triangular

lattice by just replacing N/M ≡ tan θ with (2 tan θ)/(
√

3−tan θ). (This ratio is just

N ′/M ′, so it might be termed tan θ′.) [We must also make a simple (and ultimately

inconsequential) change to E0.]

We now take the thermodynamic limit (M ′, N ′ � 1) and write M ′ and N ′

in terms of M ≡ L cos θ and N ≡ L sin θ via Eq. (3.1). Then dividing by L and

defining51

η±(θ) = cos θ ± sin θ√
3
, η0(θ) =

2√
3

sin θ, (3.4)

all non-negative in the first sextant, we straightforwardly find the step-edge line

tension (or free-energy per unit length52) β(θ):

a‖β(θ) = 2εη+(θ) − kBT [s+(θ) − s−(θ) − s0(θ)] , (3.5)

where a‖ is the nearest-neighbor spacing and

si(θ) = ηi(θ) ln ηi(θ), i = +, 0,− . (3.6)

For the special case of the maximally kinked orientation, Eqs. (3.4) – (3.6) reduce

to

akβ(30◦) = 2ε− kBT ln 2, (3.7)
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where ak = (
√

3/2)a‖ for the {111} surface. This result for the maximally kinked

case (including steps at θ=45◦ on a square lattice) was derived earlier from a direct

examination of entropy.53

For specificity, we recall some established results. For a hexagonal lattice with

just nearest-neighbor attractions, the critical temperature Tc is long known:54

kBTc = 2ε/ ln 3 ≈ 1.82ε . (3.8)

From the equilibrium shape of islands over a broad temperature range, Giesen et al.17

deduced that the free energy per lattice spacing in the maximally kinked directions

is 0.27 ± 0.03eV on Cu{111} and slightly smaller, 0.25 ± 0.03eV, on Ag{111}.

Combining these results with Eq. (3.7), we find ε is 0.126eV on Cu{111} and 0.117eV

on Ag{111}. In both cases, then, room temperature is somewhere between Tc/9 and

Tc/8.

3.1.3 Main Result: Simple Expression for Low-T Stiffness

As shown just above, the step-stiffness β̃ = β(θ) + β ′′(θ) computed from

Eq. (3.5) depends to leading order only on the combinatoric entropy terms s0 and

s± of Eqs. (3.5) and(3.6). Hence,

d2si
dθ2

≡ s
′′

i = −ηi ln ηi +
η

′

i

2 − η2
i

ηi
, (3.9)

so that55

s̃i ≡ si + s
′′

i =
η

′

i

2 − η2
i

ηi
. (3.10)
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With this notation, the reduced stiffness is

β̃a‖
kBT

= s̃0 + s̃− − s̃+, (3.11)

where

s̃0 =
2√
3

cos 2θ

sin θ
, (3.12)

s̃± =
−2 cos 2θ ∓ 2

√
3 sin 2θ

3 cos θ ±
√

3 sin θ
. (3.13)

Adding these terms together gives our main result – a remarkably simple form for

the reduced stiffness in the low-temperature (T � ε/kB) limit:

kBT

β̃a‖
=

sin(3θ)

2
√

3
=

3m−m3

2
√

3(1 +m2)3/2
, (3.14)

where m ≡ tan θ.

3.1.4 Synopsis of Exact Results and Application to Range of Break-

down of Low-T Limit Near θ=0

To test how low the temperature should be for Eq. (3.14) to be a good ap-

proximation, we compare it to a numerical evaluation of the exact implicit solution

of the Ising model. The derivation of this solution, outlined by Zia,50 gives a 6th

order equation for β(θ). In essence, after conversion to our notation, his key result

for the step free energy β is given by56

βa‖
kBT

= η0(θ)ψ1(θ, T/Tc) + η−(θ)ψ2(θ, T/Tc), (3.15)
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where the ψ’s are the solutions of the pair of simultaneous equations for the angular

constraint,

sinhψ2 − sinh(ψ1−ψ2)

sinhψ1 + sinh(ψ1−ψ2)
=
η−
η0

=

√
3 cot θ −1

2
, (3.16)

and the thermal constraint,

coshψ1+coshψ2+cosh(ψ1−ψ2)=f(z)≡ 1 + 3z2

2(z − z2)
, (3.17)

where z ≡ exp(−2ε/kBT ) = 3−Tc/T , via Eq. (3.8). The ratio η−/η0 of Eq. (3.16) is a

monotonically decreasing function which is ∞ at θ=0◦, 1 at θ=30◦, and 0 at θ=60◦.

In these high-symmetry directions, Eqs. (3.16) and (3.17) yield analytic solu-

tions for β and β̃:

β(0)a‖
kBT

= 2 cosh−1

(−1 +
√

3 + 2f

2

)

(3.18)

β̃(0)a‖
kBT

=
2

3

√

2(3 + 2f)(f −
√

3 + 2f)√
3 + 2f − 1

(3.19)

β(π/6)a‖
kBT

=
2√
3

cosh−1

(

f − 1

2

)

(3.20)

β̃(π/6)a‖
kBT

=
2
√

3(f − 3)(f + 1)

f + 3
. (3.21)

Details are provided in Appendix B.2. Akutsu and Akutsu57 also derived these

equations, in different notation58 and from the more formal perspective of the imag-

inary path-weight method. Symmetry dictates that the solution at θ = 60◦ = π/3

is the same solution as that at θ = 0◦. Furthermore, at T = Tc, f(z) = 3, so

Eqs. (3.18)-(3.21) all go to 0, as expected.

To find β̃ in general directions, we solve Eqs. (3.16) and (3.17) [or, equivalently,

Eq. (B.9)] numerically. As Fig. 3.2 shows, once T decreases to nearly Tc/9, Eq. (3.14)
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more or less coincides with the exact numerical solution for the stiffness. At such low

temperatures (compared to Tc), the approximation only fails below some very small,

temperature-sensitive critical angle θc. Although it might seem easy to determine

this angle by eye, estimating it quantitatively turns out to be a subtle and somewhat

ambiguous task. We discuss two possible estimation techniques below.

In the first approach, we estimate θc to be the angle θ1 at which the curvature

of the exact solution changes sign. The points on the solid curve in Fig. 3.3 show

θ1 at several temperatures ranging from Tc/9 to Tc/4. At temperatures near and

above Tc/4, θ1 does not reliably estimate θc because there is a sizable curvature-
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Θ = Π�24

T�Tc

Figure 3.2: As the temperature drops close to Tc/9 (just below room tempera-
ture for Cu and Ag{111} surfaces), the numerical evaluation of the exact stiff-
ness50 approaches the solid line representing the low-temperature approximation
given in Eq. (3.14). The small circles indicate evaluations using the exact results of
Eqs. (3.19) and (3.21). At Tc/9, when θ decreases, the exact solution begins to devi-
ate from the approximation when its curvature changes sign near θ ≈ π/100 = 1.8◦.
The scale here is linear, in contrast to the logarithmic scale of Fig. 2 of Dieluweit
et al.19 The inset shows more fully how the exact stiffness approaches the low-
temperature limit for the particular azimuthal angle θ=π/24=7.5◦.
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independent difference between the exact solution and the approximation given in

Eq. (3.14) evident even at θ = 30◦ (see Fig. 3.2). On the other hand, as the

temperature dips below Tc/5, this difference fades, and the use of θ1 to estimate θc

becomes ever more precise.

A second, more fundamental way to estimate θc comes from an examination

of the assumptions required to derive the simple expression for the low-T limit

Eq. (3.14) directly from the exact solutions Eqs. (3.16) and (3.17). In Appendix B.3

we show that to do so θ must be greater than some θ2 satisfying

cot θ2 �
(

4f − 1√
3

)

. (3.22)

4 5 6 7 8 9
Tc�T

2

6

10

14

18

Θ @deg D

Θ1

Θ2

Figure 3.3: Two estimates for the critical angle θc, below which the approximation
given in Eq. (3.14) begins to fail, as a function of Tc/T . The black dots connected
by the solid, blue line represent the first estimate, defined to be the angle θ1 at
which the curvature of the numerically determined inverse stiffness changes sign.
The dashed, red line represents the second estimate, θ2 = cot−1[(4f − 1)/(50

√
3)].

At angles below θc, the three theorems of Section 3.2 break down, and higher order
terms are required in the expansion of the step partition function. At temperatures
between Tc/9 and Tc/8 (roughly room temperature for Cu and Ag{111} surfaces),
θc is on the order of a few degrees.
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To give definite meaning to this inequality, we estimate θc directly from Fig. 3.2 at

a single temperature, say Tc/5. At that temperature, θc is nearly 10◦. If θ2 is to

accurately represent θc, it should also be around 10◦ at Tc/5. We enforce this by

interpreting the ‘�’ in Eq. (3.22) to mean ‘= 1/50.’ The dashed (red online) curve

in Fig. 3.3 shows the resulting θ2 as a function of temperature. Clearly θ1 and θ2

are very different estimates for θc. While θ2 is reliable at all temperatures (unlike

θ1), it is less precise than θ1 at lower temperatures. A combination of θ1 and θ2

is therefore the best estimate for θc, being closer to θ1 at lower temperatures, and

closer to θ2 at higher temperatures.

In essence, θc is no more than a few degrees between Tc/9 and Tc/8, regardless
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Figure 3.4: Ratio of the stiffness [solid red curve, left ordinate] and the free energy
per length [dashed blue curve, right axis] for edges oriented in the maximally zig-
zagged (θ = 30◦) and close-packed (θ = 0◦) directions, based on taking the ratios
of Eqs. (3.21) and (3.19) and of Eqs. (3.20) and (3.18), respectively. The line-
tension ratio increases slowly but monotonically to the T=0 limit 2/

√
3 ≈ 1.15. In

contrast, the stiffness ratio plummets toward 0, the value predicted by Eq.(3.14),
providing an indicator how low T must be for this simple low-T formula to be a
good approximation at all angles.
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of which estimation technique is used. We therefore reach the practical conclusion

that Eq. (3.14) is valid for almost all angles at temperatures near and below Tc/8,

which fortunately happens to be around room temperature for Cu and Ag{111}.

Finally, we emphasize that β̃ varies significantly with angle, especially at lower

temperatures (where the equilibrium crystal shape (ECS) is hexagonal rather than

circular). If one wants to approximate β̃ as isotropic rather than using Eq. (3.14),

one should not pick its value in the close-packed direction (viz. θ = 0◦); Fig. 3.4

provides stunning evidence of this conclusion. From Eq. (3.14) we also see that at

low-temperatures the stiffness actually increases linearly with temperature. This

contrasts with its behavior at high temperatures, where β̃ must ultimately decrease

as the ECS becomes more nearly circular and the steps fluctuate more easily.

3.2 General Results for Stiffness in Lattice-Gas Models in Low-Temperature

Approximation

In this section we present three theorems that are valid under two conditions:

First, the energy term in the free energy must be a linear combination of cos θ and

sin θ. From Eq. (3.2) and [implicitly] Eq. (2.3) we see that this property holds true

in general for lattice-gas models, even when considering next-nearest neighbors and

beyond.20 Second, the temperature must be low enough so that the entropy is ade-

quately approximated by the contribution of the lowest order term, kB ln g(0). This

entropic contribution is due exclusively to geometry or combinatorics of arranging

the fixed number of kinks forced by azimuthal misorientation. Hence, it must vanish
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near close-packed directions (0◦ and 60◦ in the first sextant). For angles sufficiently

close to these directions, in our case less than θc, the leading term becomes domi-

nated by higher-order terms, and the three results no longer apply.

3.2.1 No Contribution from Energy to Lowest-Order Stiffness (LOS)

The first theorem is a remarkable consequence of the first condition, that the

energy term in the free energy is a linear combination of cos θ and sin θ. Since

the stiffness β̃(θ) ≡ β(θ) + β ′′(θ) and since cos′′ θ = − cos θ and sin′′ θ = − sin θ,

we see that the lattice-gas energy makes no contribution whatsoever to the low-

T limit of reduced stiffness, as shown explicitly for square lattices long ago.16,18

Thus, we retrieve the result that the leading term in a low-temperature expansion

of the reduced stiffness β̃(θ)/kBT depends only on g(0), which is determined solely

by geometric (combinatoric) properties. Of course, higher-order terms (which are

crucial near close-packed directions) do have weightings of the various configurations

that depend on Boltzmann factors involving the characteristic lattice-gas energies.

Furthermore, next-nearest-neighbor interactions can (at least partially) lift the g(0)-

fold degeneracy of the lowest energy paths.59

3.2.2 Step Line Tension Not Extractable from LOS

An important corollary is that from the stiffness it is impossible to retrieve the

energetic part of the step free energy, the major component of β(θ) at lower tem-

peratures when the islands are non-circular! Thus, contrary to a proposed method
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of data analysis,60 one cannot regenerate β(θ) from β̃(θ) by fitting the stiffness to a

simple functional form and then integrating twice. In this framework, the linear co-

efficients of cos θ and sin θ can be viewed as the two integration constants associated

with integrating a second-order differential equation.61

3.2.3 LOS on fcc{111} Has 6-fold Symmetry

1. General Argument

Another important result is that the leading term in the stiffness at low tem-

perature has the full symmetry of the 2D net of binding sites rather than the possibly

lower symmetry associated with the full lattice. Specifically, for the present prob-

lem of the {111} face of an fcc crystal, the stiffness β̃(θ) to lowest order has the full

6-fold symmetry of the top layer rather than the 3-fold symmetry due to symmetry

breaking by the second layer. In contrast, the step energy of B-steps ({111} micro-

facets) differs from that of A-steps ({100} microfacets), leading to islands with the

shape of equiangular hexagons with rounded corners, but with sides of alternating

lengths (i.e., ABABAB).

To see the origin of the 6-fold symmetry of the stiffness, suppose without loss

of generality that steps in theX ′ direction have energy EA per lattice spacing, so that

those in the Y ′ direction have energy EB. Furthermore, we must make the crucial

assumption that any corner energy is negligible. Then all shortest paths to (M ′, N ′)

have the same energy M ′EA +N ′EB, with degeneracy still gM ′,N ′(0). Thus, the free

energy is M ′EA + N ′EB − kBT ln gM ′,N ′(0), while that of its mirror point (through

59



the line at θ = 30◦) is N ′EA + M ′EB − kBT ln gN ′,M ′(0). The crux of the proof is

that gN ′,M ′(0) = gM ′,N ′(0). Thus, while the free energies at the pair of mirror points

differ, the energy parts are obliterated when the stiffness is computed (since M ′ and

N ′ are linear combinations of cos θ and sin θ), leaving just the contribution from the

entropies, which are the same to lowest order.

2. Orientation-Dependent Part of 3-Atom Interaction

Within lattice-gas models with only pair interactions, there is no obvious way

to distinguish A and B steps; the minimalist way to obtain different step energies

for A and B steps within the lattice-gas model is to invoke a non-pairwise 3-site

“trio” interaction associated with three [occupied] sites forming an equilateral tri-

angle with NN sides. In contrast to the ones considered heretofore,43,45,62,63 these

novel trio interactions must be orientation-dependent: If the triangle points in one

direction, say up, the interaction energy is positive, while if it points in the op-

posite direction, it has the opposite sign. (Of course, there could be a standard

orientation-independent 3-site term in the Hamiltonian. As in the analogous situa-

tion for squares, we expect that such a term would simply shift the pair interactions,

at least in the SOS approximation as discussed in Chapter 2.59) The contributions

from such a symmetry-breaking interaction would cancel in the interior of an island

(in the 2D bulk), but would distinguish A and B edges. Specifically, each side of

the equilateral triangle is associated with a link, so that 1/3 of its strength can be

attributed to each. Each link has a triangle on both sides, one of each orientation.
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Hence, the difference between the energy per a‖ of A and B steps is 1/3 the difference

between the trio interactions in the two opposite orientations.

For the ground-state, minimum-number-of-links configurations, such a term

will not lift the degeneracy since each configuration has the same 1) number of

horizontal (X ′) links, 2) number of right-tilted diagonal links (Y ′), and 3) differ-

ence between the number of convex and concave “kinks” (i.e., bends). Since this

statement is not true for higher-energy configurations, the 6-fold symmetry is not

preserved at higher orders. Nonetheless, at low T it should be a decent approxima-

tion for the stiffness (much better than for the island shape).

Thus, our result that the breaking of 6-fold symmetry on an fcc {111} is

much smaller for the stiffness than for the free energy, is more general than the

nearest-neighbor lattice gas model which underlies Eqs. (3.5) – (3.6) and the result-

ing Eq. (3.14) derived below. We reemphasize that the necessary assumptions are 1)

that the orientational dependence of the step energy be just a linear combination of

sin θ and cos θ and 2) that no interaction break the degeneracy of the shortest path

corresponding to orientation θ. As above, for angles near close-packed directions,

the higher-order terms become important at lower temperatures than for general

directions. This feature is illustrated in Fig. 3.2 and its associated formalism is

given in Appendices B.1 and B.3.
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Figure 3.5: A comparison between Eq. (3.14) and experiments on Cu and Ag{111}.
Eq. (3.14) appears as a solid black line, while the average of the experimental data
is a thick dashed blue line. The agreement is reasonable at all angles. In either case
the thin dashed red line is a [smoothed] average of the data for the given angle while
the thin solid purple line corresponds to the angle mirror-reflected through a radial
at 30◦, i.e. at 60◦−θ.
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3.3 Comparison to Experiment

In Fig. 3.5 we compare Eq. (3.14) to measurements on Cu{111} and Ag{111}.

The experimental data were derived from the equilibrium shape of 2D islands us-

ing the method described by Dieluweit et al.19 The solid black line corresponds to

Eq. (3.14), while the thick dashed blue line corresponds to the average of the ex-

perimental measurements. Eq. (3.14) captures the overall trend and is satisfactory

at most angles and temperatures. As expected, Eq. (3.14) somewhat overestimates

β̃ near θ = 0◦ (since the T = 0 singularity remains). Furthermore, near θ = 30◦

Eq. (3.14) somewhat underestimates the experimental β̃, but only by a factor of 1/6

for Cu{111} and 1/4 for Ag{111}. This is in striking contrast to the analogous NN

theory for Cu{001} near 45◦, which underestimates β̃ by a factor of 4. Finally, no-

tice there is no clear temperature dependence in the measured data. This is further

evidence that β̃/kBT is a constant at low-temperatures, as Eq. (3.14) suggests.

The agreement between theory and experiment is a pleasant surprise consid-

ering analogous comparisons made for Cu{001}19 found β̃ to be four-times larger

than the theoretical value at large angles (near θ = 45◦). It was later shown22,23,59

that this discrepancy could be partially accounted for by considering next-nearest-

neighbor (NNN) interactions (or right-triangle trio interactions, which turn out to

affect β̃ at low temperatures in the same way). Clearly, the success of Eq. (3.14) sug-

gests that these interactions are less relevant for {111} surfaces. This is reasonable

because the ratio of NNN distance to NN distance is smaller by a factor of
√

2/3

on a triangular lattice compared to on a square lattice. Furthermore, in the close-
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packed direction (θ = 0◦), for every broken NN-bond there are only one and a half

broken NNN bonds on a triangular lattice, compared to two broken NNN bonds on

a square lattice. These simple arguments help explain why NNN-interactions may

increase β̃ by only 20 to 30% on Cu/Ag{111}, as opposed to 400% on Cu{001}

surfaces.

3.4 A Novel Application: C60/Ag(111)

In this final Chapter Section, we discuss a novel application of some of the ideas

developed in the previous sections. Specifically, we consider the shapes of Ag(111)

islands that are fully decorated by a ring of carbon bucky balls, or C60. The growth

of C60 on metal surfaces has been extensively studied.64–67 On Ag(111), there is a

near perfect lattice match, with C60 adlayers forming close-packed hexagonal islands

having 2
√

3 × 2
√

3 R30◦ symmetry with respect to the substrate. C60 is relatively

inert because all 60 of its constituent carbon atoms form three resonant bonds

with their neighbors. In fact, in a recent set of experiments,68 we showed that mass

transport along Ag(111) steps is not affected when C60 attaches to them. Specifically,

the bare regions of Ag(111) steps decorated by a single layer of C60 fluctuated as if

the C60 were not there! This surprising result means the presence of C60 seems to

have little effect on the stiffness of Ag(111) steps, a result which may prove useful in

future organic electronics components. On the other hand, when a ring of C60 fully

decorates a Ag(111) adatom or vacancy island, it appears to have a dramatic effect

on the equilibrium shape of the island. Our recent experiments at room temperature
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show that the equilibrium shape changes from a rounded hexagon to a near-perfect

circle. Although this observation seems at first sight to conflict with the earlier one,

we will show in the following sections that the two are entirely consistent. In the

process, we will derive an accurate expression for the low-temperature line tension of

a decorated step and show that the attractive interaction between C60 and a close-

packed Ag step is roughly -126 meV per molecule, while the NN attraction between

two C60 is roughly -87 meV. To our knowledge, these are the first experimental

estimates of these interactions.

3.4.1 Experimental Observations

At room-temperature (∼ Tc/8.2), Ag(111) islands fluctuate about a fairly

hexagonal equilibrium shape, as we would expect based on the anisotropy of the

step line tension, expressed in Eq. (3.5). When C60 is deposited on the surface,

however, it preferentially attaches to the corners of the Ag(111) islands, causing

them to round, as shown via STM in the left-most image of Fig. 3.6. As more

and more C60 is deposited, the island decoration becomes more complete, growing

outward from the ever-rounding island corners. Eventually, the entire island edge

is fully decorated or “coated,” and the original hexagonal equilibrium shape is no

longer evident, being replaced by a nearly perfect circle. This remarkable shape

change is demonstrated in the middle and right images of Fig. 3.6, where a nearly

bare, hexagonal island is compared with a fully decorated, circular island. The STM

images evoke an analogy between the decorated island and a pearl necklace.

65



Figure 3.6: At room temperature, deposited C60 (bright white dots) decorates the
corners of the hexagonal Ag(111) vacancy (dark brown) and adatom (lighter orange)
islands, as shown in the left image. In the process, the island corners begin to round.
In the middle image, the C60 coverage is low, so only the corners of the hexagonal
Ag(111) adatom island (darker brown on black surface) are decorated. In the right
image, the C60 coverage is larger, so the island becomes fully decorated and its
equilibrium shape changes from a hexagon to a circle.

Interestingly, if the decorated island is large enough, it continues to fluctuate.

Our experimental collaborator C. Tao followed the fluctuations of such an island for

roughly 3500s, taking one STM image per 52s. By digitizing each image, we were

able to determine the position of each C60 and animate their subsequent movement.

Fig. 3.7a shows the first frame of the total animation. By averaging all images

together, we confirmed the equilibrium island shape is a near circle, as Fig. 3.7b

shows. With the positions of each C60 in hand, we could do a statistical analysis of

their relative placement.

Fig. 3.7c shows the distribution of distance between the C60. It is centered

tightly around the C60 diameter of 1 nm, confirming their close-packed structure,

regardless of step angle. Fig. 3.7d shows the distribution of angles between the C60.

To create this histogram, two vectors were drawn from the position of a C60, one

to its neighbor on the right and one to its neighbor on the left. The angle between
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Figure 3.7: The first frame of an animation of a fluctuating Ag(111) step edge at
room temperature fully decorated by C60 is shown in (a). The darker blue region is
the actual STM data where the height cutoff was set so that only the tops of the
decorating C60 could be seen. The lighter orange dots are the digitized positions
of these C60. In (b), all animation images were averaged together to determine
the equilibrium island shape, shown here to be nearly circular. In (c), a histogram
of the distance between C60 shows their close-packed arrangement, while in (d) a
histogram of the angles between each C60 shows their preference for alignment.

these two vectors was then stored, and the process was repeated for each C60. As

the distribution clearly shows, most C60 are aligned with one another, but there

are differences, typically in multiples of ∼ 15◦, where there is a substantial peak,

followed by a smaller peak at ∼ 30◦ and an even smaller peak at ∼ 45◦.

If we are to adequately explain our experimental STM observations of the C60

decoration, we must address and/or include the following key features: (1) The C60
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prefers Ag steps, so there is obviously an attractive interaction between the C60 and

the Ag step-edge adatoms. (2) Once C60 attaches to the step edge, it likes the corners

(or Ag kinked-regions) more than the straighter edges. (3) Regardless of the step

angle, C60 appears to close-pack along the step-edge, suggesting each step-edge C60

is quite mobile and attracted to the other C60. (4) Although there is an attraction

between C60 molecules, the attraction is weaker than the attraction between C60 and

the Ag step-edge. If this were not the case, the C60 would begin to form a second

coating layer before the Ag island is fully coated by the first layer. Likewise, the

Ag-Ag adatom attraction is stronger than the Ag-C60 attraction, otherwise the C60

would tend to permeate into the Ag island, or C60 clumps would form on the bare

parts of the surface. Thus, in order from strongest to weakest interaction strength,

we have Ag-Ag, C60-Ag, and C60-C60. Finally, (5), the C60 causes the equilibrium

island shape to change from a near hexagon to a near-perfect circle.

In the following section, we propose a simple model which incorporates all of

these features. With it, we calculate an estimate for the size of the C60-Ag interaction

εAC . We also derive an equation for the decorated step line tension as a function of

the NN C60-C60 interaction strength εCC . By performing a statistical analysis of the

step fluctuations, we solve for the line tension and hence determine εCC . Finally, we

show that our model is consistent with the experimental observation that a single

layer of C60 does not significantly affect the step fluctuations, even though it has a

profound effect on island shapes.
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3.4.2 Simple Model for Ag(111) Step Edge Decoration by C60

To determine the equilibrium shape of a Ag(111) island decorated by C60, we

calculate the anisotropy of the decorated step free energy F d (here the “d” stands

for decorated). Analogous to our earlier discussion for the bare Ag step, we imagine

the decorated step connects the origin with the point (M ′, N ′) (assumed to be in

the first, mirror-symmetric half of the first sextant), as shown in Fig. 3.8. As before,

at low temperatures the free energy is well approximated by the first term in an

Ising expansion of the decorated step partition function Zd ≈ gd0 e
−Ed

0
/kBT , where

Ed
0 is the ground state energy of the decorated step, and gd0 is the degeneracy of the

ground state. In this case, F d is written

F d ≈ Ed
0 − kBT ln gd0 (3.23)

To determine Ed
0 , we need only count bonds, as we did earlier, only now we have

the Ag broken bonds as well as the Ag-C60 bonds and the C60-C60 bonds.

Ground State Energy of a Decorated Step

The ground state energy Ed
0 of the decorated step is just the ground state

energy of the bare Ag step EM

0 = 2ε(M ′ + N ′) [see Eq. (3.2)] plus the interaction

energies involving C60. We break these interactions into two parts, one part ECC
0

from NN interactions between C60 and one part EAC
0 from interactions between C60

and Ag. Fig. 3.8 illustrates such a ground-state step. Here, the C60 forms NN bonds

εCC with each of its neighbors. When C60 coats a close-packed region of the Ag step,

it forms one NN bond εAC per molecule with the Ag atoms. On the other hand,
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Figure 3.8: A Ag(111) step edge decorated by C60 in its ground state connecting
the origin with the point (M ′, N ′). The lighter-blue solid dots are the substrate
Ag atoms, while the darker-orange solid dots are the Ag adatoms. The step edge
is highlighed by a thin, solid line. The larger, see-through dots are the C60. The
C60 is close-packed and forms not only NN bonds (solid arrows) with each other,
but also bonds with the Ag (solid, grey lines). If the bonds between the C60 are
considered vectors, they come in two types, N ′/2 pointing diagonally up (U) and√

3(M ′ − N ′)/2 pointing horizontally (H). All steps having the same number of H
and U bonds are degenerate. In particular, a degenerate ground state step is shown
as a series of dotted vectors.

when C60 coats a fully kinked region of the Ag step, we imagine the Ag adatoms

rearrange into double-kinks, so the C60 forms two NN bonds with the Ag adatoms

per molecule while simultaneously remaining in registry with the substrate. (The

fully kinked Ag direction is the natural close-packed direction for C60.) This picture

clearly explains why C60 prefers the kinked regions of the Ag step (or the corners

of the Ag islands): it simply forms more bonds with the Ag step-edge atoms there.

Summing everything together we have

Ed
0 = EM

0 + ECC
0 + EAC

0

= 2ε(M ′ +N ′) + ECC
0 + EAC

0 . (3.24)

To prove the step shown in Fig. 3.8 is in the ground state, we note it is
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the shortest possible step connecting the two endpoints. All longer steps require

additional step kinks. Although this lowers the overall energy because of additional

C60-C60 and C60-Ag bonds, there is a net energy gain because of costly broken NN

Ag bonds, which, according to experimental observations, are the strongest. Finally,

there are steps with the same microscopic length, but higher energy. These result

when the Ag double-kinks combine to form triple and higher-order kinks. Such kinks

necessarily cost energy because they cause C60 originally lying in the double-kinks

to lose one of their 2 NN bonds with the Ag adatoms.

To determine the ground state energy as a function of angle, we need to deter-

mine how ECC
0 and EAC

0 depend on M ′ and N ′. We begin with ECC
0 . If we imagine

the C60 NN bonds are vectors, then they come in two types: N ′/2 point diagonally

up (U-bonds), while (M ′ −N ′)a||/aC point horizontally (H-bonds). Here, a|| is the

Ag NN distance, while aC = 2
√

3 a|| is the C60 NN distance. The energy is just the

sum of these bond energies:

ECC
0 = εCC

(

N ′

2
+
M ′ −N ′

2
√

3

)

. (3.25)

By dividing the C60 NN bonds into the H and U varieties, it is also easy to find EAC
0 .

For every H-bond, the C60 forms one NN bond to the Ag, while for every U-bond it

forms two. Thus,

EAC
0 = εAC

(

N ′ +
M ′ −N ′

2
√

3

)

. (3.26)

Combining Eqs. (3.24 - 3.26), we have the ground state energy:

Ed
0 = −εAA(M ′ +N ′) + εCC

(

N ′

2
+
M ′ −N ′

2
√

3

)

+ εAC
(

N ′ +
M ′ −N ′

2
√

3

)

, (3.27)
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where we have rewritten the repulsive Ag-Ag severed bond energy ε (or equivalently

the kink energy) as negative 1/2 the attractive Ag-Ag NN bond energy εAA (adding

“AA” to remind us that it is an interaction energy between Ag adatoms alone). We

now divide by the macroscopic step length L and remember Eq. (3.1), which gives

M ′ and N ′ in terms of θ: M ′ = L cos θ − L sin θ/
√

3 and N ′ = 2L sin θ/
√

3. This

gives our desired result

Ed
0 a||
L

= −εAA
(

cos θ +
sin θ√

3

)

+
εCC

2
√

3

[

cos θ +
(

2 −
√

3
)

sin θ
]

+

+
εAC

2
√

3

[

cos θ +
(

4 −
√

3
)

sin θ
]

. (3.28)

Degeneracy of the Ground State

Calculating the degeneracy of the ground state is relatively easy now that we

have introduced the U- and H-bonds. To do so, we take the analogy between the

C60 and a “pearl-necklace” one step further: we imagine each C60 is either an (U)gly

pearl or a (H)andsome pearl depending, of course, on whether the bond to the right

of the C60 is a U-bond or an H-bond. For example, in Fig. 3.8, the step corresponds

to the following pearl necklace: UUUHHHH, whereas the other degenerate step

corresponds to UHHHUUH. Since all steps with the same number of U- and H-

bonds have the same energy in our model, the degeneracy of our ground state step

can be reworded as a classic statistics problem: how many unique pearl necklaces

can be made from N ′/2 unique but (U)gly pearls and (M ′ −N ′)/(2
√

3) unique and

(H)andsome pearls? The answer gives us gd0 as a function of M ′ and N ′:

gd0 =

( 1
2
√

3
(M ′ −N ′) + N ′

2

N ′

2

)

. (3.29)
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We now take the thermodynamic limit (M ′,N ′ � 1) and use Stirling’s approximation

to find ln gd0 :

ln gd0 ≈ 1

2
√

3

[

(M ′ −N ′ +
√

3N ′) ln(M ′ −N ′ +
√

3N ′) −
√

3N ′ ln(
√

3N ′)−

−(M ′ −N ′) ln(M ′ −N ′)
]

. (3.30)

As we did for the energy, we divide by the macroscopic step length L and rewrite

M ′ and N ′ in terms of θ to get our desired result:

ln(gd0) a||
L

=
1

2
√

3

[

{cos θ + (2 −
√

3) sin θ} ln{cos θ + (2 −
√

3) sin θ} (3.31)

−(cos θ −
√

3 sin θ) ln(cos θ −
√

3 sin θ) − 2 sin θ ln(2 sin θ)
]

.

3.4.3 Main Result: Decorated Step Line Tension Anisotropy

To get the line tension of the decorated step βd, we divide Eq. (3.23) by L

βd a|| ≡
F d a||
L

=
Ed

0 a||
L

− kBT
ln(gd0) a||

L
(3.32)

Combining this with Eq. (3.28) and Eq. (3.31), and dividing by the thermal energy

kBT , we have an analytic formula for the low-temperature line tension of a decorated

step (valid from 0◦ to 30◦, symmetry giving all other angles):

βd(θ) a||
kBT

= − εAA

kBT

(

cos θ +
sin θ√

3

)

+
1

2
√

3

(

εCC

kBT
γ0 +

εAC

kBT
γ+

)

+ γ0 ln γ0 − γ− ln γ− − (γ+ − γ0) ln(γ+ − γ0). (3.33)

where we define the following:

γ± ≡ cos θ + (2 −
√

3) sin θ ± 2 sin θ, (3.34)

γ0 ≡ cos θ + (2 −
√

3) sin θ. (3.35)

73



The line tension, as expected, depends on the three interaction energies: εAA,

εCC , and εAC . Since we already know εAA ∼ 234 meV17 [see Eq. 3.8], by fitting

the experimentally observed equilibrium decorated island shape, we should be able

to determine the other two. In our case, this is especially easy since we know the

equilibrium islands are circular. Thus, via the Wulff construction, we know that βd

should also be circular, so it should not depend on θ! We can therefore equate the

right-hand-side of Eq. (3.33) for any θ. If we do this for the two high-symmetry

directions, θ = 0 (γ± = γ0 = 1) and π/6 (γ+ = 2, γ− = 1, γ0 = 1), then we can

actually cancel out εCC and solve for εAC in terms of εAA:

βd(0) a|| = βd(π/6) a||

−εAA +
εCC + εAC

2
√

3
= −2εAA√

3
+
εCC + 2εAC

2
√

3

→ εAC = (4 − 2
√

3) εAA ≈ 0.54 εAA ≈ −126 meV. (3.36)

We show a polar plot of the decorated step line tension βd in Fig. 3.9 for a

variety of different εAC , with εCC = (1/2) εAC . The anisotropy of βd is a sensitive

function of εAC ; depending on its strength, the equilibrium island shape can contin-

uously change from a hexagon rotated by 30◦ with respect to the bare Ag hexagonal

island, to a near perfect circle (corresponding to the predicted εAC ≈ (4−2
√

3)εAA ≈

0.54 εAA), to a sharpened hexagon with the same orientation as the original bare

Ag islands. It is reassuring that the predicted magnitude of εAC is less than that of

εAA, as we expected based on our experimental observations.

We can now plug the predicted value of εAC into βd(θ) to get a one-parameter

formula for the decorated line tension in terms εCC . In Fig. 3.10 we plot in po-
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Figure 3.9: Polar plots of the line tension of a bare Ag step βA (light, orange
line) in comparison to the line tension βd (dark, purple line) of a step decorated
by C60, for various values of εAC and εCC = 1/2 εAC . If εAC is strong, as in the
upper-left figure, it can actually cause the free energy to rotate by 30◦, so the
expected equilibrium island shape would still be hexagonal, but rotated by 30◦.
On the other hand, if εAC ≈ (4 − 2

√
3)εAA ≈ 0.54 εAA, as in the upper-right

figure, F d becomes nearly a perfect circle, which corresponds to the observed circular
equilibrium islands. Weaker εAC correspond to non-rotated hexagons, with the
weakest interaction actually sharpening the cusps in the free energy, as in the lower-
right figure, causing the original hexagonal island to become even more hexagonal.

lar coordinates the resulting line tension for a variety of different εCC . What we

immediately notice is that εCC seems to have little affect on the anisotropy of the

line tension. For all values tested, the shape is more or less circular. Instead, the

contribution from εCC is relatively orientation independent, causing just a net shift

in the line tension. We thus cannot determine its size by looking at just the deco-

rated island shape change. Still, we can determine simple restrictions on its size. In
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particular, βd(0) should satisfy the following equation:

βd(0) a|| = βd a|| = εAA
(

2√
3
− 2

)

+
εCC

2
√

3
. (3.37)

We can, of course, write similar formulas for any other orientation, but θ = 0 is the

simplest, and since βd is orientation independent, the formula applies for all angles.

Thus, if we can measure βd independently, we can determine εCC . We will discuss

such an independent measurement in the next section.

Figure 3.10: Polar plots of the line tension of a bare Ag step βA (light, orange line)
in comparison to the line tension βd (dark, purple line) of a step decorated by C60,
for εAC = 0.54 εAA and various values of εCC . The images are listed in order of
increasing εCC strength, with the upper-left corresponding to the weakest, and the
lower-right corresponding to the strongest. For all values tested, εCC has little effect
on the anisotropy of βd. For this reason, analysis of the anisotropy of the decorated
equilibrium islands is not enough to determine εCC .
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3.4.4 Measuring the C60-C60 Interaction from Step Fluctuations

Analyzing the fluctuations of islands has proven an effective way to determine

the absolute line tension of the island step edge.12,13,69–71 Here we extend the analysis

to the fluctuations of Ag(111) islands decorated by C60. In the usual treatment, the

equilibrium island shape is determined by averaging many images together. Once

the equilibrium shape is known, the fluctuations of each image island about the

determined equilibrium shape are decomposed into their component Fourier modes.

Using equipartition of energy, each mode has (1/2) kBT . This provides an absolute

energy scale from which the step-edge line tension can be determined.

Analyses of this type usually suffer from two problems: First, for pure islands,

such as Ag or Cu, the number of modes is the number of atoms around the island

perimeter. For modest island sizes, this is a huge number, so it is nearly impossi-

ble to experimentally resolve each mode (each atom). Instead, the island edge is

under-sampled so that typically a hundred or so points are used to approximate its

perimeter. This means that the line tension calculated from a single mode is usually

smaller than the true value,70 because now the total energy is spread among just

a hundred or so modes, each of which necessarily shares more than (1/2) kBT of

energy. One way to avoid this problem is to sum the line tension calculated from

each of the resolved modes together12,69 and then divide by the true number of

modes that should be present. The problem with this approach is that it requires

all resolved modes to fluctuate on the time scale of the experiment, but this is usu-

ally only satisfied for the longer-wavelength, lower-frequency modes. Including any
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other modes will likely skew results. Second, adatom and vacancy islands are usu-

ally unstable on surfaces and tend to decay during the observation time. The usual

solution is to monitor island fluctuations for decays of less than 10%.12,69 How this

actually affects the analysis is still unknown.

Fortunately, in our case, both of these problems are avoided. The first problem

is avoided because we can resolve individual C60 decorating the Ag step, so we know

exactly how many there are and therefore how many modes we should analyze.

The second problem is avoided because the C60 prevent the island from decaying,

so the total number of Ag and C60 remains more or less fixed (one or two C60 do

occasionally break away).

To do the statistical analysis, our experimental collaborator C. Tao monitored

via STM the fluctuations of two Ag(111) islands fully decorated by a single layer of

C60. The first data set contained 600 images of a Ag(111) island with a diameter of

around 24nm coated by roughly 78 C60 (again, occasionally one breaks away) . The

second data set contained 300 images of a Ag(111) island with a diameter of around

18nm coated by roughly 60 C60. The image acquisition time was 13.1s for the first

data set and 26.2s for the second. In both cases, because the scanning was relatively

fast, it was difficult to actually determine the position of each C60. Instead, for each

image we determined the edge by setting the height cutoff so only the tops of the

C60 could be seen. We then approximated the edge by a discrete series R(θn), where

θn = nπ/N , with n an integer ranging from −N+1 to N , and 2N = 78 or 60 (one for

each C60, depending on the data set). For both data sets, we could then average all

R(θn) together to find the equilibrium shape 〈R〉, which was always a near-perfect
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Figure 3.11: The measured decorated step line tension βd as a function of the
Fourier frequency k. The light orange dots correspond to the first data set (with
78 C60), while the dark, purple dots correspond to the second data set (with 60
C60). The best modes for analysis are between 5 and 15, and they give a value of
roughly 60 meV/Å. The two insets show how the data was digitized and analyzed.
In (a), an island (dotted line) fluctuates about a circular equilibrium shape (solid,
orange line labeled 〈R〉). The magnitude of the fluctuation, exaggerated in the
schematic, is stored as a discrete list r(θn), where θn = nπ/N (n=-N+1 to N) are
2N equally spaced angles ranging from -179◦ to 180◦, one for each C60. In (b), the
STM data (dark blue) is approximated by a discrete list R(θn) (light, orange dots).
By averaging all images together, the equilibrium shape 〈R〉 is determined, as is
r(θn) = R(θn) − 〈R〉.

circle. To actually do the statistical analysis, we subtracted the equilibrium shape

from each digitized island, leaving us with a new series r(θn) = R(θn) − 〈R〉 which

basically gives the size of the island fluctuations as a function of angle. The insets

in Fig. 3.11 demonstrate this process.

With r(θn) in hand, we Fourier transform to determine the magnitudes rk of

the component Fourier modes:

rk =
1

2N

N
∑

n=−N+1

r(θn)e
ikθn , (3.38)
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where k is a dimensionless number (in contrast to a wavevector) ranging from −N

to N . The factor of 2 here is important, since there are a total of 2N C60 and,

hence, 2N degrees of freedom. This can easily lead to confusion, however, since

Eq. (3.38) is sometimes written with n being strictly positive, so the sum goes from

0 to, say, N ′ ≡ 2N , and the division is by N ′. In any event, if Eq. (3.38) is used,

and the equilibrium island shape is circular, then according to the equipartition of

energy theorem, each degree of freedom has 1/2 kBT of energy (assuming the island

is isolated, so there is no potential energy in the problem), from which the absolute

step line tension βd can be determined,70,72

βd =
1

2
kBT

〈R〉
πk2〈|rk|2〉

, (3.39)

where 〈〉 denotes an average over all images. If βd is plotted as a function of k,

it should be a constant. We show such a plot in Fig. 3.11, where we estimate

βd to be 60 ± 3.4 meV/Å (we only show the positive half of this plot since it is

mirror-symmetric about k = 0).

We arrive at our estimate for βd by considering only modes k = 5 to 15. We

choose these modes because they fluctuate on the time scale of our experimental

measurements. This is explicitly shown in Fig. 3.12, where the correlation function

G(t) = 〈[rk(t) − rk(0)]2〉 is plotted for modes 2 through 9 (mode 1 corresponds to

net island movement, which here is zero because we always center the island). Here

we see that the k = 2 and 3 modes take perhaps 50 images or more to become

uncorrelated. Thus, with 300 or 600 images, we have only 6 or 12 independent

images, making 〈|rk|2〉 too small (in other words, these modes do not fluctuate
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Figure 3.12: The correlation function G(t) = 〈[rk(t)− rk(0)]2〉 plotted as a function
of time (reported as image number) for the first data set (600 images). The longer
the wavelength, the longer it takes for modes to become uncorrelated and G(t) to
saturate. When computing averages, modes 5 through 15 are perhaps best because
they saturate relatively quickly, but not faster than the image acquisition time.

so much on the time scale of our experiment) and therefore βd to large, as seen

in Fig. 3.11. On the other end of the spectrum, the large k fluctuate too fast,

so the average is relatively noisy. The ideal modes, most of which are shown in

Fig. 3.12, become uncorrelated after a few images, so there is enough data to get a

good average, but the fluctuations are not faster than the image acquisition time.72

Conservatively, this corresponds to modes k = 5 to 15. Using these modes, we find

a fairly consistent value for βd around 60 ± 3.4 meV/Å, as quoted above.

Now that we have an estimate for βd, we can use Eq. (3.37) to estimate the

size of εCC . Plugging in we find

εCC ≈ −87 ± 34 meV. (3.40)
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This estimate is consistent with our experimental observations which suggested

|εAA| > |εAC | > |εCC |. As seen in the error bar, however, the estimate is quite

sensitive to the error in the measurement of βd.

3.4.5 The Role of the Substrate

Here we briefly touch upon the effect the substrate might have on our cal-

culations. The major concern is how and where the C60 sits on the surface. For

example, does it rest with a hexagon or a pentagon facing down? Does it sit on

fcc, hcp (hexagonal close-packed), or bridge sites? It turns out that incorporating

both of these issues into our calculations is fairly straightforward. Basically, the

interaction energy εAC can be renormalized to include both effects. Regarding the

first question, we simply imagine εAC represents an average C60, one that sits part

of the time with a hexagon down and part of the time with a pentagon down. In-

corporating where the C60 sits, however, requires more careful considerations. The

problem here is that C60 likes the highly kinked region of the step, not only because

it can get closer to the Ag step edge, but also because along this direction there is

a perfect lattice-match between the C60 and Ag, allowing the C60 to always sit in

the preferential hcp site73 (or perhaps fcc, which according to DFT calculations73

has nearly the same energy). On the other hand, C60 sitting on close-packed Ag

steps cannot always sit in the preferential hcp site. Instead, because of the lattice-

mismatch in this direction, it will likely sit in an average of all sites, hcp, fcc, and

bridge (probably rarely bridge). As before, we incorporate this effect into εAC . In-
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stead of the difference in energy between C60 sitting along a close-packed step and

a fully kinked step only being one εAC bond per molecule, it is now one plus the dif-

ference in the hcp energy and the average of the hcp, fcc, and bridge energies. This

will likely only be a small effect, something on the order of 30 meV, as estimated

from the DFT calculations.73 On the other hand, the C60 may continue to prefer the

hcp site. If this is the case, it may adjust itself slightly to always reside there. This

will induce small kinks in the decorated step which we calculate to be around 15◦,

perhaps explaining the histogram of C60 angles shown in Fig. 3.7d. This effect tends

to minimize the role of the substrate, and the slight rearrangements will not have a

profound effect on our calculations. Note, however, that a lattice-gas model is still

appropriate, since at this temperature the fcc and hcp sites are far more favorable

then other sites.

3.4.6 Why C60 Does Not Affect Ag Step Fluctuations

Before concluding, we return to the original puzzle presented in the introduc-

tory paragraph of this section: if C60 significantly affects the equilibrium island

shape of a decorated step, why does it not also affect the step fluctuations? The

key to this question is, again, the step stiffness. The stiffness, after all, is the pa-

rameter controlling step fluctuations, not the line tension. As we discussed in the

theorem in section 3.3.1, there is no contribution to the lowest-order stiffness from

the ground-state energy. Just like bare Ag steps, the energetic contribution to the

low-temperature decorated step line tension is a linear combination of sines and
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cosines, as Eq. (3.33) demonstrates. Thus, when calculating the decorated step

stiffness, this portion cancels out. Even though εAC and εCC are significant, they

do not affect the step fluctuations. Instead these are controlled by entropic effects

alone. For steps that are only partially decorated, the result remains valid. Here,

however, the entropic effects are also reduced. In fact, the only obvious effect seems

to be the rearrangement of Ag step kinks into double-kinks to accommodate the

C60. This would only remove the highest-frequency oscillations, though, so it is not

surprising that partially decorated steps seem to fluctuate in virtually the same way

as bare ones.

3.5 Concluding Discussion

By generalizing the low-temperature expansion of the nearest-neighbor square

lattice-gas (Ising) model to a triangular lattice, we have found a remarkably simple

formula for the orientation dependence of the {111} surface step stiffness. This

formula, unlike its square lattice analog, fits experimental data well at general angles,

suggesting that NNN-interactions are relatively unimportant on {111} surfaces.

To corroborate this picture and explain the success of Eq. (3.14), we have used

the VASP package39 to perform first-principle calculations. In particular, Chapter 4

discusses calculations of the ratio of the NNN to NN interaction strength. Results38

suggest that this ratio is roughly an order of magnitude smaller on Cu{111} than

on Cu{001}, and essentially indistinguishable from zero. This tentative finding is

consistent with expectations from the semiempirical embedded atom method, which
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predicts that indirect interactions are insignificant/negligible between atoms sharing

no common substrate atoms.43 In Chapter 4 we also discuss the difference in trio

interactions between oppositely oriented triangle configurations.

We expect that our formula, as well as the general 6-fold symmetry of the stiff-

ness (except in close-packed directions), should be broadly applicable to systems in

which multisite or corner energies are small and for which the bond energies are

considerably higher than the measurement temperature. Studies which ignore the

3-fold symmetry breaking on metallic fcc {111} substrates, such as a recent inves-

tigation of nanoisland fluctuations on Pt{111},70 should be good representations.

Many recent investigations74,75 focus on the larger asymmetry of the kinetic coeffi-

cient,76 taking the stiffness to be isotropic. In such cases, this stiffness should not

be characterized by its value in close-packed directions.

Finally, using the ideas developed in this Chapter, we have modeled the dec-

oration of Ag(111) steps by C60. Our model is consistent with experimental ob-

servations and helps explain not only the remarkable shape change decorating C60

induce in Ag islands, but also their surprisingly small effect on the island step-edge

fluctuations. Using our model, we predict that the attractive Ag-C60 interaction

is -126 meV per molecule and the NN C60 attraction is -87 meV. We believe this

model is the first of its kind and should be extendable to a wide variety of decorated

stepped surfaces, allowing a better understanding of how such decoration can be

used to alter and/or control the evolution of microstructures.
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Chapter 4

Extended Lattice Gas Interactions of Cu on Cu(111) and Cu(001):

Ab-Initio Evalution and Implications

Lattice-gas models provide a powerful and convenient route to explore how

microscopic energies influence the statistical mechanics of mesoscopic structures on

crystalline surfaces. Such models underlie most Monte Carlo (and transfer matrix)

simulations. They assume that overlayer atoms (or other adsorbed units) sit at

particular high-symmetry sites of the substrate, an intrinsic assumption of epitaxial

growth, for example. The parameters of the model are then the interaction energies

between such atoms and/or the barriers associated with hops between the high-

symmetry positions.

Lattice-gas models are generally used in two generic ways. In the first ap-

proach, one selects a few energies that are likely to dominate the physics of interest

and then computes with Monte Carlo simulations the desired equilibrium or dy-

namic properties. The dangers of this approach are: a) the properties of interest

may be relatively insensitive to the specific interactions and b) there may be other

interactions that are non-negligible, so that the deduced energies are effective rather

than actual.

The second approach35,77–79 begins by actually computing the (many) energies

of importance, a task that is now possible with efficient density-functional-theory
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packages such as VASP (the Vienna Ab-initio Simulation Package).39–42 This pro-

cess can be used to compute interaction energies between relatively distant neigh-

bors. One should also compute multi-atom interactions, which can also be signifi-

cant.43,45,62,63 This approach is appealing because the calculated interaction energies

can be self-consistently checked for completeness, thereby diminishing the risk dis-

cussed in (b) above. Assuming that one has sufficient computational power to com-

pute all the interactions that contribute at the level of the desired precision, there

is still the danger that the interactions depend sensitively on the local environment,

making a simple lattice gas description inadequate.

These caveats notwithstanding, lattice gas models have been extensively used

in the realm of surface physics to describe such diverse phenomena as phase transi-

tions, concentration-dependent diffusion, and growth. In Chapters 2 and 3, we used

such a model to compute the orientation dependence of step stiffness—the inertial

parameter for steps in the step continuum model5—for the (001) and (111) faces

of Cu.59,80 This work illustrates both successes and some shortcomings of using a

lattice-gas model with just nearest-neighbor (NN) interactions: whereas the step

stiffness on Cu(111) is well described by NN interactions alone, the step stiffness on

Cu(001) requires the inclusion of next-nearest neighbor (NNN) and perhaps even

trio interactions. In this case, a firm understanding of the adatom interactions would

be an ideal way to construct an appropriate theory.

With this goal in mind, we have performed ab-initio calculations to deter-

mine the strengths of interactions between Cu adatoms on Cu(001) and Cu(111).

For these systems we have tested the applicability of a lattice-gas model and have
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determined which interactions are essential and which can be ignored.

Fig. 4.1 shows a summary of the calculated interactions between Cu adatoms

on Cu(111); the corresponding interactions on Cu(001) are analogous. The first row

shows the pairwise interactions of interest. Besides NN interactions (of energy E1),

we have also considered nth nearest-neighbor interactions (of energy En) out to n=4.

Based on our work in the previous two Chapters,59,80 as described above, we expect

NNN interactions to be negligible on Cu(111), but significant on Cu(001).

The second row of Fig. 4.1 shows the trio-interactions of interest. These inter-

actions are the non-pairwise part of the interaction among three nearby adatoms.43,62

These include the trios (Ea/b) for three NN adatoms forming an equilateral triangle

(for which no Cu(001) counterparts exist), the trio (Ec) for three collinear adatoms,

and the trio (Ed) for three adatoms forming a NN-isosceles triangle with apex angle

90◦ on Cu(001) and 120◦ on Cu(111) (the ‘d’ stands for ‘dent’). Based on our work

Figure 4.1: Interactions of interest (only shown for Cu(111); the interactions on
Cu(001) are analogous). Dark blue spheres represent adatoms, lighter orange spheres
represent substrate atoms, and white spheres represent adatoms involved in the in-
teractions of interest. Pair interactions are shown in the top row, and trio interac-
tions are shown in the bottom row.
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in Chapter 2,59 we expect Ed to affect the step stiffness on Cu(001) in the same way

as E2 (so that the effective NNN interaction is E2 + Ed).

As illustrated in the two lower-left sub-figures of Fig. 4.1, when one includes

the substrate layer upon which adatoms are adsorbed, the 6-fold symmetry of the

adsorption layer is reduced to 3-fold. One should then, at least in principle, distin-

guish between the trio interactions Ea and Eb. Whereas Ea triangles are made from

A-microfacets, Eb triangles are made from B-microfacets. As we noted in Chapter

3,80 the difference between Ea and Eb provides the simplest way to account for the

difference between energies of A- and B-steps within a lattice gas framework.

The remainder of this Chapter is divided into three sections. In the next

section we describe the details of our calculations. In Section 4.2 we present and

discuss our results and the implications. Finally, we summarize and offer concluding

remarks in Section 4.3. The attached Appendix C provides details related to the

error analysis of our computations.

4.1 Method

To accurately gauge the relative size of the Cu adatom-interactions of interest

within the framework of density functional theory,81,82 we used VASP,39 together

with the supplied Cu ultrasoft-pseudopotential (with a basis energy cut-off of 17.2

Ry), and the Perdew-Wang ’91 generalized gradient approximation83,84 (GGA). To

speed up electronic relaxation, we used the method of Methfessel and Paxton85 with

a width of 0.2 eV.
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We modeled the surfaces of Cu(001) and Cu(111) by constructing two large

supercells for each surface, one containing up to (14 × 3 × 2) atoms, the other

containing up to (14 × 4 × 2) atoms; we refer to these, respectively, as (3 × 2)

and (4 × 2). Using the (3 × 2) cell, fourth-neighbor pair interactions and beyond

were assumed to be negligible and therefore ignored, whereas using the (4× 2) cell,

for self-consistency, fourth-neighbor pair interactions were included (and ultimately

verified to be negligible). To assure energy convergence to within a few meV, we

sampled the Cu(111) (4×2) supercell using a (6×12×1) mesh of k-points, and the

Cu(001) (4 × 2) supercell using a (5 × 10 × 1) mesh. A similar density of k-points

was used for the (3×2) cells. (Because we never directly compared energies between

cells, maintaining the same density of k-points between cells was irrelevant.)

We began all calculations by filling the first seven layers of the supercell,

thereby producing—when periodically repeated in the three orthonormal symmetry

directions— a series of seven-layer-thick, parallel slabs buffered by seven layers of

vacuum. Here, as in all calculations, the slab lattice parameter was fixed at 3.64

Å—the value obtained from a bulk GGA calculation for a (1 × 1 × 1) supercell

sampled using an (11 × 11 × 11) mesh of k-points. We then computed the slab

energy in two ways: first with constrained relaxation normal to the surface alone,

and second with full relaxation. In both cases, we held the inner three layers of

atoms fixed at their calculated bulk positions, while the outer-layer atoms relaxed

until the net force on them was less than 0.01 eV/Å.

Next we placed adatoms on the top and bottom of the slab. The 7-layer thick-

ness of the slab sufficiently reduced interactions through the slab between opposite
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sides86 (see Appendix C for details). An alternative would be to put adatoms on

just one side of the slab,78,87,88 which would allow thinner slabs to be used for the

substrate. (Since we are considering homoepitaxy, presumably there would be min-

imal charge-transfer effects requiring correction.86) We then recomputed the total

energy in the same ways as before, allowing for both full and constrained relaxation.

We repeated this procedure for a variety of adatom arrangements. This allowed us

to construct a set of independent equations that we could solve to obtain the various

interaction energies of interest.

To illustrate our technique, Fig. 4.2 depicts all Cu(001) calculations. The

figure shows the top (001) surface of the aforementioned seven-layer slab (the [yellow]

boxed region representing the top of the supercell); the lighter gray spheres represent

surface atoms while the darker [orange] spheres represent adatoms. Although the

bottom of the cell is not shown, we constructed it to be identical to the top.

The upper-left subfigure shows the arrangement of adatoms used in our first

calculation. For this arrangement, the top and bottom surface of each supercell

contains one adatom, so that the energy per supercell — after subtracting off the

slab energy—is E0 + E3, where E0 is the energy of introducing and adsorbing an

atom on a clean substrate. Even though interactions beyond third-neighbors are

not accounted for, interactions between supercell images up to third-neighbors are

included.

The top-middle subfigure shows the arrangement of adatoms used in our sec-

ond calculation. Here, the top and bottom of each supercell contains two NN

adatoms. Summing over all intra- and inter-supercell interactions as before, the
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energy of this configuration (again minus the slab energy) s 2E0 + E1 + 3E3.

Continuing in this way, we generated six more equations with the introduction

of just three more unknowns: E2, Ec and Ed. In total, then, we were left with eight

independent equations, of which we could choose any six to solve simultaneously for

the six interaction energies of interest. By comparing solutions from different sets of

Figure 4.2: A summary of calculations performed for Cu(001) using the (3 × 2)
cell. Each sub-figure corresponds to a different arrangement of adatoms (dark-
orange spheres) on the substrate (light-gray spheres) with total energy given by a
different linear combination of adatom interaction energies, and each small rectangle
represents the top of the (3 × 2) cell. When taken together, any six equations can
be solved to determine the six energies of interest.
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equations, we could self-consistently check our energies and also roughly estimate—

by noting the variation in values—the error in the calculations. (See Appendix C

for more details.)

In much the same way—as illustrated in Fig. 4.3—we calculated adatom in-

Figure 4.3: A summary of calculations performed for Cu(111) using the (3× 2) cell.
As in Fig. 4.2, each sub-figure corresponds to a different arrangement of adatoms
(dark-orange spheres) on the substrate (light-gray spheres) with total energy given
by a different linear combination of interaction energies, and each small parallel-
ogram represents the top of the (3 × 2) cell. Here, however, because the triangle
trio interactions depend on orientation, there is an interaction energy Ea for down-
pointing triangles and Eb for up-pointing triangles. When taken together, any eight
equations can be solved to determine the eight energies of interest. (Note that the
up-pointing trio arrangement is not shown above.)
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teraction energies for the Cu(111) (3× 2) cell, the only noteworthy difference being

the evaluation of the NN-trio interaction energies, Ea/b. Instead of eight, there were

now ten independent equations (only nine are shown in Fig. 4.3—the missing con-

figuration is identical to the middle subfigure with up-pointing triangles instead of

down-pointing, so that Ea is replaced with Eb), of which we could choose any eight

to solve for the eight interaction energies of interest.

Finally, the entire process was repeated for the (4 × 2) cells. Although most

of the configurations remained unchanged, the inclusion of E4 required a few addi-

tions and minor modifications in order to obtain the proper number of independent

equations.

4.2 Results and Discussion

The results of our calculations are listed in Table 4.1. Only data for full

relaxation are shown because data for constrained relaxation do not differ in any

significant way: Specifically, data for the fully relaxed Cu(001) (3 × 2) cell differed

from their vertically relaxed counterparts by no more than 13 meV, and often by less

than 5 meV (the differences typically in proportion to the size of the interaction).

Provided the system is not in a metastable state, this observation has powerful con-

sequences: it validates the description of Cu surface energetics using a lattice gas

model, where one assumes atoms sit at preferential, high-symmetry positions. In

other words, while relaxation from these preferred positions inevitably occurs, the

amount of relaxation negligibly changes the various interaction energies of impor-
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tance. We therefore only require a finite number of ‘typical’ or ‘average’ interactions

to fully describe the system, making a lattice-gas model appropriate.89

Besides the interaction energies discussed earlier, estimates for E0, the energy

of introducing and adsorbing an atom on a clean substrate, and Es, the surface

energy per atom, on both Cu(001) and Cu(111) are included (Es was calculated by

comparing slab energies of varying thickness, as discussed in the literature.90) The

surface energies compare well with previous results; in particular, Spĭsák91 found

the surface energy of Cu(001) to be 606 meV/atom, while Wang et al.92 found it

to be 582 meV/atom. Our estimate of 600 meV/atom agrees with both. Similarly,

Wang92 estimated the surface energy of Cu(111) to be 462 meV/atom, in nearly

exact agreement with our result.

The accuracy of our calculations is further confirmed by the excellent over-

all agreement between results using the (3 × 2) and (4 × 2) cells, where energies

E(meV)
Cu(001) Cu(111)

(3 × 2) (4 × 2) (3 × 2) (4 × 2)
Es 600 600 462 465
E0 -3149±16 -3146±14 -2922±15 -2920±12

E1 -332±16 -335±12 -314±19 -323±11
E2 -47±9 -43±6 4±12 1±12
E3 -3±9 -13±8 5±6 3±3
E4 – 2±4 – -1±3

Ea – –
117±23 101±23

Eb 83±23 79±23
Ec -14±11 -16±18 -22±11 -25±13
Ed 51±11 54±11 -11±11 9±23

Table 4.1: Calculated adatom interaction energies (in meV) on Cu(001) and
Cu(111). Here E0 is the energy of introducing an adsorbed adatom on an empty
substrate, and Es is the surface energy per atom, with corresponding units of
meV/atom. See Appendix C for a discussion of error bars.
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would typically differ because of a difference in k-point sampling. Furthermore, the

agreement between cells suggests that longer-range interactions are negligible: a

different cell size means that adatoms are arranged in a different geometry, which

implies that a different number of long-range interactions are ignored. If the long-

range interactions are significant, the calculated energies should differ from one cell

size to the other. Because they do not differ, the long-range interactions are most

likely negligible (unless they happen to cancel each other), confirming our original

assumption.

4.2.1 Pair Interactions of Interest

We begin the discussion of our computed lattice-gas energies with the pair

interactions. We find E1 to be the most attractive on both surfaces. This result could

be anticipated, since stable adatom islands are often experimentally observed on

these surfaces. Furthermore, the strength of the interaction is stronger on Cu(001)

than on Cu(111). This result is consistent not only with bond-order-bond-strength

arguments93 applied to the direct part of the interaction (adatoms have six nearest

neighbors on Cu(111) compared to four on Cu(001)), but also with the general result

for the semiempirical embedded atom method (EAM) formalism that the leading

contribution to the indirect (substrate-mediated) part of the interaction is attractive

(negative) and proportional to the number of shared NN substrate atoms: two for

Cu(001) and one for Cu(111).43

Moving on to higher-order interactions, we find E2 to be a negligible fraction
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of E1 on Cu(111), whereas it is a significant (1/7)E1 on Cu(001). As before, this is

consistent with EAM findings; after all, NNN share no substrate atoms on Cu(111),

while they share a single substrate atom on Cu(001). Furthermore, this explains why

the NN lattice-gas model does not adequately describe the orientation dependence of

the step stiffness on Cu(001), as discussed in Chapter 2, but successfully describes

the same property on Cu(111).59,80 In essence, whereas NNN interactions can be

ignored in the latter case, they cannot be in the former.

Rounding out our analysis of the pair interactions, we find E3 and E4 to be

very small on both surfaces, consistent with the agreement between the (3× 2) and

(4×2) results. (Recall that we did not include E4 in the (3×2) calculations. Earlier

calculations35 also found E3 to be essentially negligible on (111).) Notice, however,

that even though these interactions are quite small, the general trend |En| > |En+1|

is predominantly preserved.

In the only systematic semiempirical investigation of Cu/Cu(001) (or, for that

matter, Cu/Cu(111)) pair interactions of which we are aware, Levanov et al.94 found

values in remarkably decent agreement: E1 = -0.32 eV, E2 = -0.04 eV, and E3 =

+0.01 eV.

4.2.2 Trio Interactions of Interest

We next consider the trio interactions, beginning with the observation that

the largest trio interactions Ea and Eb are equilateral triangular in geometry and

repulsive in nature, a result which agrees with a similar study on Ag(111)78. The
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collinear trio, Ec, on the other hand, is attractive and not as significant, being of

moderate to small size on both surfaces.

As we discussed earlier, the difference between Ea and Eb can account for the

difference in the formation energies of A- and B-steps. Here we find Eb < Ea, imply-

ing B-steps are energetically more favorable than A-steps. If we further assume, as

our calculations suggest, that only E1, Ea/b, and Ec are non-negligible interactions

(specifically, interactions having a magnitude greater than 5 meV when averaged

between the two cell sizes), then from bond breaking arguments, the formation

energies per atom of A- and B-steps, EA and EB, can be written:

EA = −E1 −
1

3
Ea −

2

3
Eb − 2Ec (4.1)

EB = −E1 −
2

3
Ea −

1

3
Eb − 2Ec. (4.2)

Notice that EA + EB = −2E1 − Ea − Eb − 4Ec, that is, to form an A- and B-

step pair, two NN bonds must be broken per atom, along with six trio bonds: one

Ea, one Eb, and four Ec (see Fig. (4.4)). Combining Eqs. (4.1) and (4.2) with our

results [where we average between the (3 × 2) and (4 × 2) cell calculations], we

find EA ' 277 ± 23 meV/atom, while EB ' 267 ± 23 meV/atom, so their ratio

is 1.04 ± .12. These estimates agree with previous results of 0.27 and 0.26 eV,

respectively, by Feibelman using a much larger cell.36 Within error, these estimates

also agree with recent semiempirical EAM calculations that found the two values to

be 263 and 265 meV,95 with a ratio consistent with earlier EAM deductions.96 All

these calculations are consistent with measurements by Giesen,12 who reports ratios

of 1.011 and 0.98; controversy remains as to whether the ratio is marginally larger
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or smaller than unity. As a whole, this simple lattice gas model appears to be quite

successful, then.

We now consider the calculated strengths of the remaining interactions Ed.

Although they are relatively small on Cu(111), they are fairly sizable and repulsive

on Cu(001). Based on our theory from Chapter 2,59 we expect Ed to renormalize E2

on Cu(001) so that E2 + Ed ' 1/4 E1. Surprisingly, though, we find E2 + Ed ' 0!

Thus, whereas the inclusion of our calculated attractive E2 interactions help explain

the discrepancy between theory and experiment with regards to the orientation

dependence of step-stiffness, the inclusion of our calculated repulsive Ed interactions

actually magnify the discrepancy.

Beyond the tabulated interactions, we also estimated the size of more distant

Figure 4.4: When the atoms (dark orange spheres) are separated along the dashed
line to create an A- and B-step pair, a number of bonds are broken. In the process,
atom 1 shows that two NN bonds (E1) are broken per atom, atom 2 shows that
two NN trio bonds (Ea/b) are broken per atom, and atoms 3 and 4 show that four
collinear trio bonds (Ec) are broken per atom.
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neighbor triangular trio interactions on Cu(001) (interactions we could easily include

because we calculated the energies of more configurations than unknowns for self-

consistency). In particular, we looked at the isosceles triangle trio composed of

two NNN legs and a third-nearest-neighbor hypotenuse and the right-triangle trio

with one NN leg and one third-nearest-neighbor leg. In both cases, the interaction

strengths were nearly zero.

4.2.3 Bulk Energy Per Atom: A Self-Consistency Check

We can obtain the bulk energy per atom Ebu from the calculated lattice-gas

interaction energies. To do so, we note that an extra layer of atoms in the slab can

be thought of as the addition of a bulk layer or an adsorbed layer. In the first case,

the additional energy is just the number of atoms N in the new layer times Ebu.

In the second case, the energy is N times E0 plus the sum of all significant lateral

lattice-gas interaction energies (again, interactions having a magnitude greater than

5 meV when averaged between the two cells). Equating these and dividing by N

gives

Ebu ' E0 + 2E1 + 2E2 + 2E3 + 2Ec + 4Ed, (4.3)

for Cu(001) and

Ebu ' E0 + 3E1 + Ea + Eb + 3Ec, (4.4)

for Cu(111). How well these estimates of Ebu agree provides a stringent gauge

of self-consistency. Not only are the right-hand-sides of both equations indepen-

dently equal, but they are independently equal to Ebu: a quantity that was, itself,
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independently calculated when we determined the slab lattice parameter [using a

(1 × 1 × 1) supercell sampled with (11× 11× 11) k-points]. There we found Ebu=-

3763 meV/atom. This agrees quite well (considering the error) with Eqs. (4.3) and

(4.4), which give, respectively, Ebu=-3741 ± 48 meV/atom and Ebu=-3760 ± 35

meV/atom [averaged between (3 × 2) and (4 × 2) cells]. The self-consistency of

these calculations corroborates the general success of the lattice-gas model.

4.2.4 Sensitivity of Trio Interactions to Step Edge Environment

Considering the overall success of our lattice-gas interactions, the repulsive

nature of Ed on Cu(001) was unexpected. When this interaction is included into

a theory of the orientation dependence of step stiffness, it renormalizes E2 to zero,

effectively making both interactions irrelevant. This leaves the discrepancy between

the NN-Ising theory and experiment unresolved.

One possible explanation is that, near steps, adatoms relax out of their well

defined lattice-gas positions, thus altering their interactions. Accounting for this

would require other significant many-body interactions that make the calculated Ed

effective rather than actual. It is interesting to note, for example, that Ebu is slightly

underestimated by the Cu(001) lattice-gas interactions, suggestive of a too-repulsive

Ed.

To further probe this possibility, we systematically recalculated Ed using a

larger supercell with a realistic step edge.47 Our work, described below, shows that

trio interactions—unlike their pairwise counterparts—are especially sensitive to their
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local environment, complicating a simple lattice-gas description of the surface ener-

getics. In particular, the relaxation of adatoms along steps is large enough to alter

the trio interaction strength. We are thus forced to distinguish between “step-edge”

trios (with energy Es
d) and “bulk” trios (with energy Eb

d), as shown in Fig. 4.5a. This

distinction is especially important when calculating step properties from a lattice-

gas perspective, as we did when calculating the step formation energies and stiffness,

as described earlier. For these properties, we count broken step-edge bonds, which,

for the trios of interest here, necessarily correspond to Es
d, not Eb

d. Because relax-

ation did not play a dominant role in our calculations up to this point, the tabulated

Ed must correspond to Eb
d.

To determine the energy difference between Eb
d and Es

d, we calculated the

energies of four distinct adatom configurations, as depicted in Figs. 4.5(b)-(e). In

these calculations, we used a relatively large supercell (4×4×14) and placed adatoms

in equivalent positions on the top and bottom of a 5 layer thick slab. Although the

slab thickness was smaller than before, we only considered energy differences, so

through-substrate interactions always cancelled out. For configurations (b)-(c), we

did not allow for lateral relaxation, so the adatoms were fixed in their bulk lateral

positions. In this way, the energy difference ∆1 between the two configurations

allowed us to write an estimate for Eb
d in terms of the relevant interactions found in

Table 4.1 (where now we replace the tabulated Ed with Eb
d).

∆1 = 2(E0 + E1 + 2E2 + 2E3 + 2Ea + 2Eb
d). (4.5)

In a similar way, we calculated Es
d, but now we allowed all adatoms to fully
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relax, as Figs. 4.5(d)-(e) illustrate. Here, arrows give the directions and relative

magnitudes of adatom relaxation. Both of these configurations contained a two

adatom wide stripe to simulate the local environment of a step edge. When an

adatom attaches to such a step, the trio formed relaxes in a fundamentally different

way than trios within the step “bulk,” as the arrows clearly suggest. As before, the

energy difference ∆2 between the two configurations allowed us to write an estimate

Figure 4.5: In (a), a step-edge trio having energy Es
d (solid triangle) is distin-

guished from a bulk trio having energy Eb
d (dashed triangle). Within a lattice-gas

framework, these two location-dependent interactions can be replaced by a general
Ed = Es

d and a non-pairwise quarto interaction between four adatoms having energy
EQ = 4/3(Eb

d−Es
d) (thick, solid square). In (b)-(e), the energy of four adatom con-

figurations were calculated to find Eb
d, E

s
d, and thus, EQ. The top of the (4× 4× 5)

supercell is shown as a thin, solid line in (b). In (b) and (c), adatoms were laterally
fixed in their bulk positions, so Eb

d could be determined by subtracting the energy
of configuration (b) from (c). In (d) and (e), on the other hand, adatoms were
allowed to fully relax (the arrows give the direction and relative magnitude of the
relaxation). Here, the two adatom wide stripe served as a minimal step, so Es

d could
be determined by subtracting the energy of configuration (d) from (e).
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for Es
d in terms of the relevant interactions found in Table 4.1:

∆2 = 2(E0 + E1 + 2E2 + 2E3 + 6Ea + Ec + 2Es
d). (4.6)

By subtracting Eq. (4.5) from Eq. (4.6), we can eliminate the most significant in-

teractions (and thus minimize our error):

∆2 − ∆1 = 2(Eb
d − Es

d) + 2E3 + 4E4 + Ec. (4.7)

Solving this for Eb
d − Es

d and using our tabulated energies together with our newly

calculated energies from configurations (b)-(e) (which, as before, we assume have

an associated error of ±30 meV) , we find

Eb
d −Es

d ≈ 40 ± 8 meV −→ Es
d ≈ 12.5 ± 10 meV. (4.8)

We therefore clearly see that trio interactions near step edges have a significantly

different interaction than those in the step bulk.

Interactions like Eb
d and Es

d do not obey the rules of a lattice-gas model because

they depend on the local environment. Fortunately, there is a way to distinguish

these interactions within a lattice-gas framework. The idea is illustrated in Fig. 4.5a,

where we introduce a non-pairwise “quarto” interaction between four adatoms with

energy EQ. Such an interaction would only be a factor for bulk adatoms, distin-

guishing them from step-edge adatoms. To see how this works, we calculate the

energy difference between (1) the three step adatoms connected by the solid trian-

gle and (2) the three bulk adatoms connected by the dashed triangle in Fig. 4.5a. Of

course, if we ignore the quarto interaction and distinguish step-edge trios from those

in the bulk, then the energy difference is just Eb
d − Es

d. On the other hand, if we
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assume there is a general trio interaction Ed = Es
d, then in (1) the energy is just the

pairwise interactions plus Ed, while in (2) it is the same pairwise interactions plus

(3/4)EQ (since three adatoms each share 1/4 of the quarto interaction). Equating

these two, we have

3

4
EQ = Eb

d −Es
d −→ EQ ≈ 53 ± 11meV. (4.9)

This is a substantial interaction that should not be blithely ignored in future calcu-

lations. If we incorporate EQ into our theory for the (001) step stiffness as described

in Chapter 2, then just as we found Ed renormalizes the NN and NNN interactions,

we find EQ only renormalizes the NN interaction. This means that the ratio of the

effective NNN interaction Eeff
2 to the effective NN interaction Eeff

1 is

Eeff
2

Eeff
1

=
E2 + Ed

E1 + 2Ed + EQ
≤ 1

7
. (4.10)

This ratio is actually closer to experimental expectations based on Fig. 2.4 than one

would expect based on just the tabulated E2 and E1 alone, lending credence to the

reality of EQ.

4.3 Conclusions

We have calculated from first principles a variety of different Cu adatom inter-

action energies on both Cu(001) and Cu(111). For the most part, our calculations

have confirmed our expectations. For the configurations tested, the computed inter-

actions proved robust with respect to small, lateral relaxations of the adatoms: an

important requirement for a successful lattice-gas theory. We find E2 interactions
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to be negligible on Cu(111) but significant on Cu(001), explaining why the NN lat-

tice gas model successfully describes the orientation dependence of the Cu(111) step

stiffness, but fails for Cu(001) (see Chapters 2 and 3 for details). We have also used

our calculated lattice-gas interaction energies to determine the formation energies

of Cu(111) A- and B-steps. The resulting estimates for the formation energies agree

well with the literature. As expected, we have shown that for Cu on Cu, adatom

pair interactions drop off quickly with distance, and only the geometrically smallest

trio interactions are relevant. Finally, we have shown that our calculations for the

lattice-gas interaction energies are self-consistent and, when taken together, can be

used to accurately find the bulk energy per atom Ebu.

Among the tabulated results, only Ed seemed to conflict with experimental

expectations. It turns out that these interactions (and we might expect other trio

interactions as well) are quite sensitive to the lateral relaxation of adatoms near step

edges, so extra care was required to determine their strength. Although these kinds

of relaxations can confound a simple lattice-gas description of the surface, we have

shown that the introduction of a four-adatom, non-pairwise “quarto” interaction

can realign experiment and theory.

In closing, first-principle calculations such as the ones described here should

prove useful in determining the limits of lattice gas models applied to all sorts of

systems. Although we began with expectations based on previous theory and exper-

iment, the consistency of our results shows the problem can be worked in reverse;

that is, based on first-principle calculations, we can determine what interactions

need to be included in the system to make a successful lattice-gas model.

106



Chapter 5

Analytic Formulas for the Full Orientation Dependence of Step

Stiffness and Line Tension: Key Ingredients for Numerical Modeling

Numerical study of the shape and evolution of layered island structures on

surfaces has become an active field.60,75,97–100 These investigations typically focus

on the motion of the island boundaries, which amount to variously oriented single-

layer-high steps. Here, as we know well by now, a crucial ingredient in determining

the velocity and evolution of steps is the step stiffness β̃(θ).

If one assumes that step adatoms interact with only nearest-neighbors (NN)

or next-nearest-neighbors (NNN), then it is possible to derive exact solutions for

the line tension based on the Ising or solid-on-solid (SOS) models. These solu-

tions are implicit [see Eqs. (2.14-2.16) for example], making their implementation

into numerical simulations time-consuming and computationally demanding, partic-

ularly when dealing with the stiffness, which requires two additional derivatives of

the implicit line tension. For simplicity, then, numerical studies often97–99 (though

by no means always100) assume an isotropic line tension and stiffness. Except at

high temperatures where an island structure is nearly circular, this approximation

turns out to be poor, especially near facet orientations. The next simplest approx-

imation assumes a sinusoidal variation reflecting the substrate symmetry.60 Again,

there are shortcomings to this procedure, especially near facet orientations. Such
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temperature-independent simplifications allow for only qualitative comparisons with

experiment.

In this Chapter we construct expressions for β(θ) and β̃(θ) that are well be-

haved analytically, being continuous and twice differentiable, and that give an accu-

rate accounting at all orientations and relevant temperatures. While not especially

simple, they are straightforward to construct and easy to implement in numeri-

cal codes such as used in finite-element investigations,101,102 making quantitative

comparisons with dynamic experiments possible. We thus expect our results to be

widely applicable.

Our approach begins with the simple, low-temperature formulas for the ori-

entation dependence, on face-centered-cubic (fcc) surfaces, of the {001} and {111}

stiffness and line tension that we derived in Chapters 1 and 259,80 (This approach is

rooted in the lattice-gas perspective, so is complementary to Shenoy and Ciobanu’s

study of stiffness anisotropy based on elasticity theory.48) Our formulas assume

the step fluctuations are dominated by the rearrangement of geometrically forced

kinks—kinks that are not thermally activated. At temperatures low compared to the

surface roughening temperature (for noble metal surfaces, such as Ag and Cu, room

temperature is considered “low”), the formulas only fail for steps having a negligi-

ble number of forced kinks; that is, steps oriented very close to the high-symmetry

direction. When the step angle is exactly 0◦ (aligned with the high-symmetry direc-

tion), the formulas predict a cusp in the line-tension and an infinite step stiffness,

which is strictly only true at T = 0 for two-dimensional islands. Here we correct

for the non-analytic behavior by splicing our simple, low-temperature formulas with
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small-angle expansions of the exact, implicit solutions based on the Ising and SOS

models.

In the following section, we describe the details of a general expansion for the

stiffness and line tension that is continuous and twice-differentiable. In sections 5.2

and 5.3, we apply this expansion to fcc {111} and {001} surfaces, respectively, to

derive surface-specific formulas for the stiffness and line tension. In section 5.4 we

test the derived formulas in state-of-the-art finite-element simulations and in section

5.5 apply them to a simulation of a relaxing Ag step measured via STM. In the final

section, we offer concluding remarks as well as a synopsis of the derived expressions.

5.1 Explicit Analytic Approximation

At the microscopic level, the step stiffness and line tension arise from the

energy and rearrangement of step edge kinks. It is therefore natural to decompose

β̃(θ) and β(θ) into two contributions: one part originating from geometrically forced

kinks and one part from thermally activated kinks (see Chapter 1 for a thorough

review). Geometrically forced kinks, depicted in the inset of Fig. 5.1, are present

at all temperatures, and give the step an overall orientation θ. The further θ is

from the high symmetry direction, the greater the number of geometrically forced

kinks. Thus, at lower temperatures, as long as the orientation angle of a step is

greater than some small, temperature-dependent cross-over angle θc, there are many

geometrically forced kinks and relatively few thermally activated kinks, suggesting

β̃(θ) and β(θ) can be well described by formulas based on geometrically forced kinks
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Figure 5.1: The contributions to the step stiffness can be decomposed into parts
originating from geometrically forced kinks (lower blue region bounded from above
by the line labeled “low-T”) and thermally activated kinks (the remaining red region,
bounded from above by the line labeled “exact”). At relatively low-temperatures,
the {111} step stiffness is well approximated at angles greater than θc by a relatively
simple, explicit function f(θ), since the thermal part is evidently insensitive to angle.
To account for all angles, the formula can be spliced with a small-angle expansion
of the exact NN Ising model solution (from which explicit forms for the stiffness can
be obtained at θ = 0 and at π/6, depicted here by hollow circles). The solution at
π/6 is used to determine ∆. The expansion coefficients an are obtained by matching
the solutions at θ = 0 and θc. The inset depicts a step edge from above. Each
square represents an adatom which is part of the step edge. The upper-most square
represents a thermally excited adatom, which forms four thermally-activated kinks.
The remaining kinks are geometrically forced—they must be present to give the step
edge an overall angle θ.

alone.

As an example, in Chapter 3 we derived59 a remarkably simple, low-temperature

formula for the {111} step stiffness assuming only NN adatom interactions and ge-

ometrically forced kinks:

kBT

β̃(θ)
≈ sin(3θ)

2
√

3
. (5.1)

At sufficiently low (but experimentally relevant) temperatures, the formula
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works well for steps at nearly all angles, but predicts an infinite stiffness when

θ = 0. Fortunately, the exact, implicit solution based on the NN Ising model can

be explicitly written for steps having this orientation. We can therefore expand

the exact solution about θ = 0 and splice it with our low-temperature solution at

θc, thereby producing an explicit form for β̃(θ) valid at all angles. This idea is

illustrated in Fig. (5.1). Here, an additional orientation-dependent contribution to

the stiffness from thermally activated kinks ∆ is also included for completeness.

Similar to high-symmetry steps, the stiffness of maximally kinked steps (θ = π/6)

can be exactly obtained from the NN Ising model, so that ∆ can be determined

explicitly.

To generalize this approach, we assume β̃(θ) and β(θ) are well described at

angles greater than θc by simple, analytic functions representing contributions from

geometrically forced kinks. Explicit forms for these functions59,80 will be discussed

later. For now, to be general, we simply write them as f(θ).

At sufficiently low temperatures, θc is small, so we may accurately represent

β(θ) and the inverse stiffness β̃−1(θ) at angles less than θc using small-angle ex-

pansions. (We expand the inverse stiffness because, in the θ=0 limit, it vanishes

at low temperatures, making it mathematically better behaved than the stiffness

itself, which diverges). Specifically, we construct an approximant X(θ) to represent

the dimensionless form of the function we wish to expand—either β(θ)a||/(kBT ) or

kBT/(β̃(θ)a||), where a|| is the close-packed distance between atoms (i.e. the atomic
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diameter), and kBT is the Boltzmann energy—we define

X(θ) :=















∑2N−1
n=0 an θ

n if θ < θc

f(θ) if θ ≥ θc

, (5.2)

where n is a non-negative integer between zero and an odd integer 2N − 1. To fully

specify this function, we must find the appropriate expansion coefficients, an. We

obtain their values by matching Eq. (5.2) and its higher order derivatives with the

exact solutions at θ=0 (which can be systematically obtained) and the approximate

(yet accurate) solutions obtained from f(θ) at θ = θc, analogous to performing a

spline fit.103 Specifically, for the boundary conditions at θ = 0, we have

an =
∂nθX(0)

n!
, n < N (5.3)

where ∂nθX(0) ≡ ∂nX(θ)/∂θn|θ=0. The remaining N coefficients are found from the

boundary conditions at θ = θc, which form a set of N coupled linear equations:

2N−1
∑

n=N

n!

(n−m)!
anθ

n−m
c = ∂mθ f(θc), (5.4)

where m is a non-negative integer less than N .

For use in continuum models, β̃(θ) should be continuous and twice-differentiable.

To ensure the second derivative remains continuous at θ = θc, this requires, at min-

imum, N = 3. In this case, Eqs. (5.4) are simultaneously solved to give:

a3 =
20(f −X) − 8f ′ θc + (f ′′ − 3X ′′) θ2

c

2 θ3
c

(5.5)

a4 =
−30(f −X) + 14f ′ θc − (2f ′′ − 3X ′′) θ2

c

2 θ4
c

(5.6)

a5 =
12(f −X) − 6f ′ θc + (f ′′ −X ′′) θ2

c

2 θ5
c

, (5.7)
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where the prime represents differentiation with respect to θ; for brevity we write

f ≡ f(θc) and X ≡ X(0). Note we have also used Eq. (5.3), which implies a0 = X,

a1 = X ′, and a2 = X ′′/2. Because both the line tension and the stiffness are

continuous and symmetric about θ=0, we know that a1 = X ′ = 0. In the remaining

sections we apply this approximation to specific cases where explicit forms for X

and f can be obtained.

5.2 {111} Surfaces with NN Interactions

For {111} surfaces with only NN adatom interactions, Zia found an implicit

form for the full orientation dependence of the step line tension [written earlier in

Eq. (3.15)]:50

βa||
kBT

= η0(θ)ψ1(θ, T/Tc) + η−(θ)ψ2(θ, T/Tc), (5.8)

where η0(θ) ≡ (2/
√

3) sin(θ), η±(θ) ≡ cos(θ) ± (1/
√

3) sin(θ). Here Tc is the

critical temperature of the NN lattice-gas model. The ψ’s are solutions of the pair

of simultaneous equations for the angular constraint,

sinh(ψ1 − 1
2
ψ2) cosh(1

2
ψ2)

sinh(ψ2 − 1
2
ψ1) cosh(1

2
ψ1)

=
η0

η−
, (5.9)

and the thermal constraint,

coshψ1 + coshψ2 + cosh(ψ1 − ψ2) =
y2 − 3

2
, (5.10)

where y ≡
√

(3z + 1)/z(1 − z) and z ≡ 3−Tc/T . These formulas are, in fact, the same

as Eqs. (3.16) and (3.17), only here we modify them slightly for our convenience.
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Figure 5.2: In the upper plot, the orientation dependence of our explicit approxi-
mation for the {111} step stiffness (solid lines) and its inverse (inset, solid lines) are
compared to the exact, implicit solutions (shapes). Because of the six-fold symme-
try of the solution, only the positive half of the first sextant is shown (the negative
half is mirror-symmetric). The lower plot shows the values used for θc (solid dots)
in the construction of the left figure and the corresponding exponential fit (solid
line), good over the temperature range of interest. The fit is expressed in terms of
the kink energy εk, which is related to Tc by Eq. (5.11). The inset shows the sum
of errors (

∑

∆f 2) versus angle in the least square fit for θc. At each temperature,
θc is the angle that minimizes this sum.

The latter can be rewritten z ≡ exp(−2εk/kBT ), where εk is the energy of a kink

on a close-packed step and

εk
kBTc

= ln
√

3 (5.11)
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From Eqs. (5.9) and (5.10) it follows that

ψ1(0) =
1

2
ψ2(0) = cosh−1

(

y − 1

2

)

. (5.12)

With ψ1(0) and ψ2(0) in hand, we can differentiate the constraints, Eqs. (5.9) and

(5.10), set θ = 0, and systematically solve for all the higher order derivatives of

the ψ’s, which, according to Eq. (5.8), are sufficient to find the higher order deriva-

tives of β. We will utilize these higher order derivatives to derive explicit, analytic

approximations for the stiffness and line tension.

5.2.1 Step Stiffness

In this case, X(θ) ≡ kBT/(β̃(θ)a||), which is six-fold symmetric for {111} sur-

faces with only NN adatom interactions. To utilize our explicit analytic approxima-

tion, we require f(θ)—the contribution to the reduced stiffness from geometrically

forced kinks—which we showed in Chapter 3 takes a relatively simple form in the

first sextant (−π/6 to π/6):80

f(θ) =
1

2
√

3

(

sin(3θ) +
3 + y2

√

y4 − 10y2 + 9
− 1

)

. (5.13)

The last two terms, called ∆ in Fig. 5.1, are included to ensure f(θ) matches the

exact solution for steps with orientation angle θ = π/6. The physical origin of the

∆ terms is the thermal fluctuations of a maximally kinked step. Such fluctuations

are relatively inexpensive in terms of energy. They dominate the fluctuation con-

tribution while a significant fraction of the step is not close-packed, so that the

thermal contribution for such orientations is relatively independent of orientation.

Since only the first term has any θ dependence, f ′ and f ′′ are simple to calculate.
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Now only X and its first two derivatives need to be determined. As mentioned

in the preceding section, these can be systematically determined. In particular, we

find [see Eq. (3.19) for a derivation of X],

X ≡ kBT

a||β̃(0)
=

3(y − 1)

2y
√

y2 − 2y − 3
, (5.14)

X ′ = 0, (5.15)

X ′′ =
y3 − 2y2 − 15y + 36

2(y − 1)
√

y2 − 2y − 3
. (5.16)

Of course, based on symmetry, we already knew that X ′ = 0.

By combining the functional forms for f and X and their derivatives with

Eqs. (5.2-5.7), we can plot the stiffness and compare it to the numerically evaluated

exact solution. We show this comparison in Fig. 5.2, where θc was determined

at a variety of temperatures by doing least square fits to the exact solution. The

agreement shown in Fig. 5.2 is very good at low-temperatures and is quite reasonable

at temperatures all the way up to Tc/5. (This behavior is remarkable since slightly

above Tc/5.5, θc becomes greater than 30◦, i.e., the power series is used for the entire

range of orientations. Once |θc| > 30◦, the slope of kBT/a||β̃(θ) no longer vanishes

at 30◦.) At higher temperatures, the angular dependence becomes negligible, so

β̃(θ) become isotropic.

The lower plot in Fig. 5.2 shows the values used for θc, along with an expo-

nential fit:

θc(T ) ≈ 642.26(
√

3)−Tc/T = 642.26 exp(−εk/kBT ). (5.17)

The Arrhenius decay reflects the importance of thermally-activated kinks for |θ| <
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θc.

5.2.2 Step Line Tension

We follow the same procedure for the line tension. In this case X(θ) ≡

β(θ)a||/kBT . In Chapter 3 we derived [See Eq. (3.5)] the contribution (in the first

sextant) to the line tension from geometrically forced kinks:59

f(θ) = −η+ ln z − η+ ln η+ + η− ln η− + η0 ln η0. (5.18)

Just as for the stiffness, we systematically determine X and its first two derivatives
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by differentiating the exact solution, Eqs. (5.8-5.12),

X ≡ a||β(0)

kBT
= 2 cosh−1

(

y − 1

2

)

, (5.19)

X ′ = 0, (5.20)

X ′′ =
2y
√

y2 − 2y − 3

3(y − 1)
−X. (5.21)

The last equation can be rearranged to find the reduced stiffness at θ = 0, as

expressed earlier in Eq. (5.14). With these parameters in hand, we compare our

approximation for the full orientation dependence of the reduced line tension with

the exact, numerically evaluated solution in Fig. 5.3. For the critical angle, we use

Eq. (5.17). As before, the fit works remarkably well at temperatures as high as Tc/5.

5.3 {001} Surfaces with NN and NNN Interactions

For {001} surfaces with just NN interactions, an exact, explicit form for the

full orientation dependence of the line tension was first determined by Abraham and

Reed.49 As we saw in Chapter 2 for Cu(001), however, NNN interactions are often

significant,59 so it is desirable to find a solution including their effects. We denote

by R the ratio of NNN to NN adatom interaction strengths; the latter is assumed to

be attractive (negative), so a positive R indicatives that the NNN interaction also

is.

As in Chapter 2, we rely on the solid-on-solid (SOS) model, which provides

an excellent approximation for the line tension and stiffness at reasonable temper-

atures (∼ Tc/2 based on our comparisons with the imaginary path weight random-

walk method developed by the Akutsus21). In that Chapter, we solved the SOS
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model exactly,59 yielding the following implicit form for the reduced line-tension

[just multiply Eq. (2.14) by cos θ]:

β(θ)a||
kBT

= ρ0(θ) sin θ + g(ρ0(θ)) cos θ, (5.22)

where ρ0(θ) is found by inverting

tan θ =
2 sinh ρ0 sinhS

(coshS − cosh ρ0) [2 sinhS − (coshS − cosh ρ0)(y + 1)]
, (5.23)

while g(ρ0) is

g(ρ0) = S − ln

(

y + 1

y − 1
+

2

1 − y

sinhS

coshS − cosh ρ0

)

. (5.24)

These last two equations are just Eqs. (2.16) and (A.6) rewritten with y ≡ 1− 2zR,

S ≡ −(R + 1/2) ln z, z ≡ (1 +
√

2)−2Tc/T = exp(−εk/kBT ), while Tc is the critical

temperature for R = 0 (just NN interactions):

εk
kBTc

= ln(1 +
√

2), (5.25)

where the kink energy εk now refers to a close-packed step on an {001} surface. We

will utilize the exact, implicit solution Eqs. (5.22-5.24) to determine the parameters

required to find an explicit approximation for the stiffness and line tension below.

5.3.1 Step Stiffness

To begin, we again let X(θ) ≡ kBT/(β̃(θ)a||). The symmetry of {001} surfaces

require X(θ) be four-fold symmetric. We showed in Chapter 2 that the contribution

from geometrically forced kinks to the reduced inverse stiffness is well approximated
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in the first quadrant (−π/4 to π/4) for |θ| > θc by the following function [see

Eq. (2.20)]:59

f(θ) =
sin(2θ)

2

√

1 − y sin(2θ). (5.26)

By differentiating Eq. (5.26), f ′ and f ′′ are easily obtained.

To determine X, X ′, and X ′′ (and, potentially, any higher order derivatives),

we utilize the exact solution of the NNN SOS model. Eq. (5.23), for example, implies

that ρ0 = 0 when θ = 0. With some effort, it can be shown that

X =
2 sinhS

(coshS − 1) [2 sinhS − (coshS − 1)(y + 1)]
(5.27)

X ′ = 0 (5.28)

X ′′ =
1

X

2 coshS + 1

coshS − 1
− 4

[

coshS − 1

sinhS

y + 1

2
+X

]

. (5.29)

As required by symmetry, X ′ = 0.

Combining the functional forms for f , X, and their derivatives with Eqs. (5.2-

5.7), we can plot the inverse step stiffness and compare it to the numerically evalu-

ated exact solution, just as before. We show this comparison in Fig. 5.4, where θc

was determined by doing least square fits to the numerically evaluated exact solution

(with R = 1/5). The agreement shown in Fig. 5.4 is excellent at low-temperatures

and is very reasonable at temperatures all the way up to Tc/5, as was the case for

the {111} solution.

Although it was not initially obvious, the relative size of the NNN interaction

R has little effect on θc. This fortuitously implies that a single θc works for all values

of R, as depicted in the lower plots of Fig. 5.4.

With this in mind, the values used for θc were determined just as they were
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Figure 5.4: In the upper-left plot the orientation dependence of the explicit approx-
imation for the {001} step stiffness (solid lines) and its inverse (inset, solid lines)
are compared to the exact, implicit solutions (shapes). Because of the four-fold
symmetry of the solution, only the positive half of the first quadrant is shown (the
negative half is mirror-symmetric). The upper-right plot shows the values used for
θc (solid dots) in the construction of the upper-left figure and the corresponding
exponential decay fit (solid line) good over the temperature range of interest. The
fit is expressed in terms of the kink energy εk which is related to Tc by Eq. (5.25).
The inset shows the sum of errors (

∑

∆f 2) versus angle in the least square fit for
θc. At each temperature, θc is the angle that minimizes the sum of error. The
two lower plots show the {001} inverse stiffness for a variety of different R at two
temperatures, Tc/9 and Tc/5 (the extremum of the temperature range of interest).
Notice that for a given temperature, all curves align at an angle greater than the
largest critical angle θmaxc . This behavior means θc, practically speaking, does not
depend on R at these temperatures.

for the {111} case, but with R = 1/5. These are shown in the upper-right plot

of Fig. 5.4, as well as a simple fit that is accurate over the temperature range of

interest:
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θc(T ) ≈ 384.86e−εk/kBT = 384.86(1 +
√

2)−Tc/T . (5.30)

Again, the Arrhenius decay is anticipated since θc represents the angle below which

thermally activated kinks on close-packed segments become important.

Finally, we point out that the {001} step stiffness is much more anisotropic

than its {111} counterpart. In fact, at Tc/6 the anisotropy is as large as the {111}

anisotropy at Tc/9. Furthermore, θc is less sensitive to temperature than its {111}

counterpart. This follows from the relative ease of thermally activating kinks on

{111} steps, requiring only the breaking of one NN bond, as compared to two for

{001} steps. For {111} steps, then, the angle θc below which thermally activated

kinks become important is larger than for {001} steps.

5.3.2 Step Line Tension

We proceed as usual, letting X(θ) ≡ β(θ)a||/kBT . The contribution from geo-

metrically forced kinks is found by solving the low-temperature form of Eq. (5.23),

which becomes quadratic in eρ0−S. Solving gives

eρ0−S =

√

1 − y sin(2θ) + y sin θ − cos θ

(1 + y) sin θ
. (5.31)

Plugging this into Eq. (5.22) yields an excellent approximation f(θ) for the reduced

line tension X(θ) valid in the first quadrant (−π/4 to π/4) for |θ| > θc:

f(θ) = cos θ



S + ln
(1 − y)

(

sin θ + cos θ −
√

1 − y sin(2θ)
)

(1 + y)
(

sin θ − cos θ +
√

1 − y sin(2θ)
)



+ (5.32)

sin θ

[

S + ln

√

1 − y sin(2θ) + y sin θ − cos θ

(1 + y) sin θ

]
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Differentiating twice straightforwardly gives f ′ and f ′′. Eq. (5.32) can be written

more compactly by defining and inserting w(θ, y) ≡
[

cos θ −
√

1 − y sin(2θ)
]

/ sin θ,

as done in Table 5.1.

This leaves X and its derivatives. They too can be explicitly determined from

the exact solution. Setting both θ = 0 and ρ0 = 0 (as Eq. (5.23) demands) in

Eq. (5.22), we find X:

X = g(0)

= S − ln

(

y + 1

y − 1
+

2

1 − y

sinhS

coshS − 1

)

. (5.33)

Similarly, it can be shown that

X ′ = 0, (5.34)

X ′′ =
(coshS − 1)[2 sinhS − (coshS − 1)(y + 1)]

2 sinhS
−X. (5.35)

This last equation can be rearranged to give the reduced step stiffness, as previously

written in Eq. (5.27).

By combining the functional forms for f and X and their derivatives with

Eqs. (5.2-5.7), we can plot the reduced line tension and compare it to the numeri-

cally evaluated exact solution. We show this comparison in Fig. 5.5, where θc was

determined from Eq. (5.30) and R = 1/5 (other values yield equally good agree-

ment). As before, the approximation works well at temperatures up to Tc/5 (and,

in this case, perhaps even higher).
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Figure 5.5: The orientation dependence of the explicit approximation for the {001}
line tension (solid lines) is compared with the numerically evaluated exact result
(shapes). Because of the four-fold symmetry, only the positive half of the first
quadrant is shown (the negative half is mirror symmetric).

5.4 Implementation into Simulations

We have recently implemented our formulas into state-of-the-art finite-element

simulations.101,102,104 Here, the equilibrium shape of adatom and vacancy islands

was found numerically by determining the surface of constant chemical potential

[see Eq. (1.37)]:

µ(θ, t) = K(θ) β̃(θ), (5.36)

where K(θ) is the step edge curvature. In all simulations, the step stiffness β̃(θ)

was approximated using our derived analytic solutions. Fig. 5.6, for example, shows

a variety of simulated islands, both for (111) and (001) surfaces. The first column

shows the equilibrium shapes of islands when either the temperatures or the ratios

R of NNN to NN interaction strengths is varied. As we expect, based on our
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theoretical considerations from Chapter 1, lower temperature islands have sharper

corners, whereas higher-temperature islands become ever-more isotropic. Also, for

(001) islands, as R approaches unity, the initially rounded squares develop into

rounded truncated-squares, reflecting the fact that at T = 0 the equilibrium island

develops an additional stable facet oriented along fully-kinked directions.

Beyond equilibrium phenomenon, we have also simulated step dynamics. In

all such runs, we chose the dominant mass-transport mechanism to be step-edge

diffusion. Steps therefore evolved according to Eq. (1.30):

vn(θ) =
∂

∂s

[

Γ

kBT

∂µ(θ)

∂s

]

=
Γ

kBT

∂2

∂s2

[

K(θ)β̃(θ)
]

. (5.37)

where vn is the normal velocity of the step, s is the direction tanget to the step,

and Γ is the step-edge adatom mobility, assumed here to be isotropic. The second

column of Fig. 5.6 shows sample simulations of island relaxation from initial out-of-

equilibrium configurations. Again, the dynamics are consistent with our theoretical

expectations. The upper-right figure, for example, illustrates fast relaxation from

high-curvature portions of the step.

5.5 A Novel Application: Ag(111) Depinning

Finally, to once again connect our theoretical work with experiment, we are

using our simulations to describe the non-equilibrium relaxation of a Ag(111) step

recently observed in a novel STM experiment. This step was initially pinned by

surface contaminants in a configuration that would normally be highly unfavorable

(Fig. 5.7a). During STM scanning, the uppermost pinning point was removed,
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Figure 5.6: Testing the analytic formulas for step stiffness: The top row corresponds
to (111) steps, while the bottom row corresponds to (001) steps. In the first column,
simulated equilibrium shapes are shown at different temperatures and—for (001)
steps—different values of R (the ratio of NNN to NN interaction strength). The
island areas are scaled for illustration purposes. In the second column, simulated
islands at Tc/9 are shown as they relax from initially out-of-equilibrium configu-
rations. The upper island starts as a square, while the lower island starts as a
circle.

and the step was thereafter observed to relax to an energetically more favorable

configuration (Figs 5.7b-d). At the temperature of observation (413 K, or roughly

Tc/6.2), the step kinetics are dominated by the diffusion of adatoms along the step
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Figure 5.7: The top row shows STM images of a relaxing Ag(111) step initially
pinned. In (a) two pinning points (bright white) are shown. As the scanning con-
tinued, the top pinning point was removed, and the step was allowed to relax to
a new equilibrium configuration (b-d). In (e) preliminary simulation results show
qualitative similarities, though, in this case, the adatom mobility was assumed to
be isotropic.

edge, so the relaxation is predominantly area preserving. With this in mind, the

relaxation can be theoretically described with just two parameters: the step stiffness

and the adatom mobility along the step edge, as Eq. (5.37) shows. As discussed in

Chapter 1, the higher-order derivates make the step velocity very sensitive to the

step stiffness anisotropy, so our derived analytic formulas are especially apt here. In

particular, their use will allow us to isolate the effects due to mobility anisotropy.

To date, not much is known about the adatom mobility. Although it was

originally believed to be no more anisotropic than the stiffness,105 recent exper-

iments68 suggest otherwise. Specifically, analysis of fluctuating Ag(111) steps at
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room temperature (Tc/8.2) revealed adatom mobility to be perhaps ten times more

anisotropic than step stiffness. To further explore this possibility, we are systemat-

ically varying the degree of mobility anisotropy in our simulations to fit the STM

measurements of the relaxing Ag(111) step. In the process, we hope to determine

(1) the relative degree of stiffness and mobility anisotropy; (2) how step relaxation

is affected by this anisotropy; and (3) the origin of mobility anisotropy. Preliminary

results, shown in Fig. 5.7e, look promising.

5.6 Summary and Concluding Remarks

We have constructed explicit, twice-differentiable approximants for the full

anisotropy of step stiffness and line tension on both {001} and {111} surfaces

of fcc crystals. These expressions are accurate over a broad range of experimen-

tally relevant temperatures; they fail only when the stiffness is nearly isotropic, i.e.,

when their use is no longer required. Implementation into continuum simulations

is straightforward and efficient. They are much more usable than numerically ex-

tracting solutions from the underlying 6th-order equations, and more flexible and

convenient than constructing immense look-up tables as functions of angle and tem-

perature from such a procedure. Our expressions are greatly superior to conven-

tional explicit formulas for step stiffness and line tension, which usually take the

form of simple sinusoidal variation that neither carry temperature dependence nor

accurately capture the anisotropy (extreme for the step stiffness) observed at lower

temperatures. For clarity and convenience, we summarize our results in Table 5.1.
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We have implemented these formulas into state-of-the-art finite-element simulations

and are currently using them to compare with recent experiments monitoring the

relaxation of depinned steps on Ag(111).106
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Table 5.1: Summary of results for approximants of dimensionless inverse stiffness

and line tension. X ≡ X(0), while f ≡ f(θc). The upper part of the table (dark

red) refers to the steps on the hexagonal-lattice face, with just NN interactions. The

lower part (blue) refers to the square-lattice face; by setting R=0, one retrieves the

simpler formulas for just NN interactions.
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Chapter 6

Final Summary and Outlook

In this thesis, we have carefully analyzed the origin and nature of step stiffness

anisotropy. Although we have approached the subject theoretically, we have consis-

tently relied on experiment for verification. We have furthermore striven to make

our results practical, especially for use in simulations, which we hope will ultimately

be used to predict and model novel systems. In what follows, we outline some of

our key results, as well as discuss remaining questions that should be addressed in

future studies.

6.1 Overview

In Chapter 1 we showed that step stiffness is a crucial parameter describing

the fluctuations of mesoscopic surface steps within the continuum step model. By

focusing on steps, this model provides a natural link between the microscopic move-

ment of atoms and macroscopic surface evolution. The anisotropy (or orientation

dependence) of step stiffness reflects the underlying crystalline structure of the sur-

face. At high temperatures, adatoms move in all directions more or less equivalently,

so stiffness anisotropy is not significant. At temperatures low with respect to the

kink-formation energy, however, adatom movement is easier in some directions than

in others, so stiffness anisotropy becomes important. At these relatively low tem-
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peratures, the equilibrium shape of adatom and vacancy islands develop nearly flat,

faceted edges close to high-symmetry orientations, where the line tension develops

sharp peaks that are nearly cusps (see Fig. 1.5). Since the stiffness is related to the

line tension through two angular derivatives, as expressed in Eq. (1.1), the stiffness

anisotropy is extreme at these temperatures. For many practical solids, such as the

noble metals, this is true even at room temperature, because the kink-formation

energy is relatively large. When modeling the surfaces of these solids, we must

properly treat the inherent anisotropy, especially when working with step stiffness.

In Chapter 1 we also discussed in detail how step stiffness can be conceptually

understood from three perspectives. First, the stiffness is a measure for how easily

a step thermodynamically bends or fluctuates. This is perhaps the most straight-

forward way of thinking about step stiffness since, as the name suggests, stiffer

steps bend less. This interpretation is summarized in Eqs. (1.5) and (1.14), where

we showed that, regardless of the overall step angle, the stiffness is proportional to

the energy required to reorient (bend) the step by a small amount.

Alternatively, the step stiffness can be thought of as the “inertia” or “diffu-

sivity” of a step. In both cases, the step itself is considered the time-evolved path

of an imaginary particle constrained to move in one dimension. In the first case,

the particle is treated classically, and the path is considered continuous. Here, the

stiffness is analogous to mass when writing the step free energy per unit length,

as Eq. (1.16) demonstrates. From this perspective, just as a very massive particle

responds little to driving forces, so too do stiffer steps, regardless of whether the

forces originate from other steps or from external sources. Similarly, in the second
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case, the particle is treated as a discontinuous random-walker. Here, the stiffness is

analogous to the inverse diffusion coefficient, or more traditionally the inverse dif-

fusivity, as Eq. (1.23) demonstrates. Thus, just as a particle with a large diffusion

constant moves about quickly, so too does a step with a small stiffness.

In the last part of Chapter 1, we discussed the role of step stiffness within the

continuum step model. There we showed that the normal velocity of a step whose

movement is driven by the diffusion of adatoms along its edge (periphery diffusion) is

proportional to the angular curvature of the step stiffness [see Eq. (1.24)]. Periphery

diffusion is dominant at lower temperatures, when adatom detachment from steps

is negligible. At these temperatures the stiffness is already extremely anisotropic,

so Eq. (1.24) implies the step velocity is even more anisotropic! Again, intimate

knowledge of step stiffness anisotropy is crucial.

With this in mind, in Chapters 2-5 we derived and analyzed accurate and

practical formulas for the anisotropy of step stiffness. In Chapters 2 and 3 we relied

on lattice-gas models to derive remarkably simple formulas for the low-temperature

step stiffness on fcc {001} and {111} surfaces, respectively [see Eqs. (2.20) and

(3.14)]. On {001} surfaces we showed that the theoretical stiffness anisotropy re-

quires next-nearest-neighbor (NNN) interactions to match experiments on Cu(001).

Here we also showed that three adatom, non-pairwise “trio” interactions could sig-

nificantly affect the stiffness anisotropy and should not be ignored. Interestingly,

in Chapter 3 we showed that such higher-order interactions are not required to de-

scribe the experimental stiffness anisotropy on Ag and Cu(111) surfaces. In large

part, this is because NNNs on {111} surfaces are relatively further apart then they
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are on {001} surfaces, thus reducing the direct part of the interaction. Furthermore,

unlike their {001} counterparts, NNNs on {111} surfaces do not share any substrate

atoms, reducing the indirect part of the interaction as well.

In the second section of Chapter 3, we also derived three low-temperature

“theorems.” The first states that the derived, low-temperature step stiffness is

solely an entropic effect, regardless of the pair interactions (or even the strongest

{111} trio interaction) included in the model. This remarkable result even holds

true for decorated steps, as we showed at the end of the Chapter. As a consequence,

we have our second “theorem,” which states that the low-temperature line tension

cannot be derived from the stiffness, since the line tension depends on both entropic

and energetic effects. Finally, the third “theorem” states that the low-temperature

step stiffness can have a higher symmetry then the line tension. Again, this follows

from the first theorem, since the energetic component of the line tension—the part

that cancels when calculating the stiffness—can have a different symmetry than the

entropic component.

To further validate our low-temperature formulas for step stiffness, we used

VASP to calculate from first principles the absolute size of a variety of different

adatom interactions in Chapter 4. Fig. 4.1 depicts the calculated interactions and

Table 4.1 summarizes the results. In particular, we verified the insignificance of

NNN interactions on Cu(111) and their significance on Cu(001), providing a con-

sistent picture of step stiffness from a theoretical, experimental, and computational

perspective.

Beyond pairwise interactions, we also looked at trio interactions, which turned

134



out to be significant on both surfaces. Specifically, on Cu(111) we calculated

the strengths of the orientation dependent A- and B-trios composed of three NN

adatoms. In Chapter 3, we showed how these trios could distinguish between the for-

mation energies of A- and B-steps within a lattice-gas framework. Our calculations

[Eqs. (4.1) and (4.2)] are consistent with this conjecture and with the experimen-

tally observed difference between the A- and B-step formation energies. (Although

for Cu(111) the difference is too small to distinguish within error. We are currently

extending our work to Pt(111),47 where the experimentally observed difference is

larger.)

On Cu(001) we calculated the strength of the trio composed of three adatoms

forming a NN hypotenuse triangle. As we discussed in Chapter 2, this trio can

renormalize the NN and NNN interactions, and therefore significantly affect the

step stiffness, as Eq. (2.27) shows. Surprisingly, our original calculations yielded a

repulsive trio that renormalized the NNN interaction to zero, leaving the discrepancy

between the theoretical and experimental step stiffness unresolved. More careful

analysis, however, revealed the trio interaction is sensitive to adatom relaxation. In

particular, trios near step edges, which are the relevant ones when calculating the

step stiffness from lattice gas broken bonds, are less repulsive than those within the

step “bulk.” Of course, this description is inconsistent with a lattice-gas framework,

where one assumes adatoms always sit in high-symmetry positions. We therefore

introduced a non-pairwise, four-adatom “quarto” interaction that could distinguish

step-edge trios from “bulk” trios, as Eq. (4.9) demonstrates.

In Chapter 5, we extended our low-temperature formulas for step stiffness so
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that they can be used efficiently within simulations. Because our low-temperature

formulas were derived by considering the action of geometrically forced kinks alone,

they always failed below a small, temperature-dependent critical angle θc. (Steps

below this angle have virtually no forced kinks, so their movement is dominated

by thermal kinks.) To compensate for this shortcoming, we combined our formulas

(via a spline fit) with small-angle expansions of the exact solutions based on the

Ising or SOS models. The end result was a set of continuous, twice-differentiable,

analytic formulas for both the line-tension and stiffness, summarized in Table 5.1.

These formulas were furthermore tested in finite-element simulations, as illustrated

in Fig. 5.6. Most recently, we have used these simulations to model a depinned

Ag(111) step at room-temperature, where the dominant mass-transfer mechanism is

periphery diffusion. For such a system, the simulation only requires two parameters:

the step stiffness and the step-edge mobility. By matching simulations to experiment

and utilizing our accurate formulas for step stiffness, we hope to isolate the mobility

and determine its anisotropy, which intriguingly has recently been measured to be

roughly ten times that of the stiffness.68

In short, we have derived many useful formulas for the anisotropy of step

stiffness. Of the derived results, perhaps the most promising is the formula for the

line tension of Ag(111) steps decorated by C60, as expressed in Eq. (3.33). To derive

the formula, we focused on the possible positions the C60 could sit along the step

edge. The decorated step free energy was then just a function of these positions.

This idea should be extendable to many other heteroepitaxial systems. In our case,

it allowed us to determine the equilibrium shape of decorated islands, from which we
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estimated the size of the C60-Ag interaction energy [see Eq. (3.36)]. With this, we

could write the line tension as a function of a single variable: the C60-C60 interaction

energy. This interaction had little effect on the shape of the decorated islands, so

we estimated its magnitude by studying the island fluctuations [see Eq. (3.40)]. To

our knowledge, these are the first estimates of their kind.

6.2 Outlook for the Future

In our analysis of step stiffness anisotropy, we have always assumed that steps

are in equilibrium, at least locally. (Equilibrium concepts, such as step chemical

potential and the thermodynamic limit may apply, for example, to a small yet

macroscopic piece of a larger system not fully in equilibrium.) Of course, this

assumption is not always true. For example, our formulas are most applicable at

low temperatures, but at these temperatures it may take a long time for systems to

fully relax. Impurities can also complicate matters, as we saw at the end of Chapter

5 when modeling Ag steps initially pinned in what would normally be far-from-

equilibrium positions. When applying our derived formulas to such non-equilibrium

systems, care should therefore be taken. For these systems, even formulas connecting

step velocity and step stiffness, such as Eq. (1.24), are potentially problematic. After

all, these formulas are all based on the Gibbs-Thompson relation linking the step

chemical potential with the local adatom concentration [see Eq. (1.37)]. When such

a system is pushed far from equilibrium, the relationship will at some point fail,

as will our formulas for step stiffness. Exactly how and under what conditions the
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failure occurs should be more carefully addressed and quantified in the future.

Another issue that deserves more attention is how long-range interactions orig-

inating from surface strain affect step stiffness anisotropy. Our formulas were all

derived using lattice-gas models containing, at most, interactions involving near-

est and next-nearest-neighbors (this includes the trio and quarto interactions we

discussed). Step-step interactions are long-range, however, and become very signif-

icant when the density of steps increases. These interactions will certainly modify

our formulas. For heteroepitaxial systems, lattice-mismatch induced strain will fur-

ther modify our formulas. As spearheaded by Ciobanu and Shenoy,48 future work

should study the relative size of these effects and quantify their importance.

Finally, more work should be done extending the ideas presented in this thesis

to other, more novel systems, such as the Ag steps decorated by C60 discussed at the

end of Chapter 3. Quantifying how molecules such as C60 alter surface step proper-

ties can provide more than just energetic information; it can also link the symmetry

of a molecule with its effect on the shapes of surface features. Further quantifying

effects like these will undoubtedly prove useful when engineering microscopic surface

structures in the future.

138



Appendix A

{001} Stiffness: Calculational Details

A.1 Leading Term in Low-Temperature Expansion

In this appendix we discuss the lowest-order correction to the ground state

entropy of the step running from the origin to an arbitrary particular point. We can

rewrite Eq. (2.2) as

Zθ = gM,N(0)e−E0/kT

[

1 +
gM,N(1)

gM,N(0)
e−∆E/kT + ...

]

. (A.1)

Then, assuming the exponential is small, we have

F ≈ E0 − kBT

{

ln[gM,N(0)] +
gM,N(1)

gM,N(0)
e−2ε/kBT

}

. (A.2)

A combinatorial analysis16,18,107 shows that

gM,N(1) =

(

M+N

M−1

)

(M+1) +

(

M+N

N−1

)

(N+1) (A.3)

Then Eq. (2.4) generalizes to

F ≈ E0 − kBT [(M+N) ln(M+N) −M lnM −N lnN

+e−2ε/kBT
M3 +N3

MN

]

. (A.4)
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A.2 Partition Function

To carry out the sum in Eq. (2.8), we consider the Fourier transform of Z(Y ):

W (µ) ≡
∫ ∞

−∞
dY eiµY Z (Y )

=
∑

{∆}
exp

L
∑

j=1

(iµ∆j −K (∆j))

=

[ ∞
∑

∆=−∞
exp (iµ∆ −K (∆))

]L

, (A.5)

where K (∆) ≡ (V +H |∆| + U |∆ − 1| +D |∆ + 1|) is the energy in Eq. (2.7),

associated with adjacent columns with height difference ∆. Carrying out the sum-

mation in Eq. (A.5) gives

g (iµ)

kBT
≡ − 1

L
lnW (iµ) = V + U +D − lnB(iµ), (A.6)

where

B(iµ) ≡ 1 +
e2D

eH+U+D+iµ − 1
+

e2U

eH+U+D−iµ − 1
. (A.7)

Thus, the original partition function Z(Y ) is:

Z (Y ) =
1

2π

∫ ∞

−∞
dµ e−iµYW (µ) (A.8)

=
1

2π

∫ ∞

−∞
dµ exp

[

L

(

−iµ tan θ − g(iµ)

kBT

)]

For L� 1, we can evaluate this inverse transform by steepest decent approximation.

The saddle point occurs on the imaginary axis (µ = −iρ), at the value ρ0 given by

the stationary-phase condition:

−g
′ (ρ0)

kBT
= m ≡ tan θ. (A.9)
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Calculating the derivative from Eqs. (A.6) and (A.7), we find

m = B′(ρ0)/B(ρ0), (A.10)

where prime stands for ∂ρ. The leading contribution to this integral (A.8) is just

the integrand evaluated at this point:

Z(Y ) ≈ exp

[

−L
(

mρ0 +
g (ρ0)

kBT

)]

. (A.11)

A.2.1 Analysis of g′′(ρ) and specialization to U = D

From Eqs. (A.6), we find

g′ (ρ)

kBT
= −B′(ρ)/B(ρ) (A.12)

and

g′′ (ρ)

kBT
= −B′′(ρ)/B(ρ) + [B′(ρ)/B(ρ)]

2
. (A.13)

This can be simplified, by Eq. (A.10), to

g′′ (ρ0)

kBT
= −mB′′(ρ0)/B

′(ρ0) +m2, (A.14)

the quantity needed for computing the stiffness as a function of m. While straight-

forward, computing the derivatives with the general form for B (Eq. (A.7) with

ρ = iµ) is quite tedious. A slight simplification emerges if we specialize to the

physically relevant case U = D. Then, with S ≡ H + 2D, we have

B(ρ) = 1 +
e2D

eS+ρ − 1
+

e2D

eS−ρ − 1

= 1 − e2D +
e2D sinhS

coshS − cosh ρ

≡ 1 − e2D +
e2D sinhS

C(S, ρ)
, (A.15)
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so that

B′(ρ) = e2D sinhS
sinh ρ

C2(S, ρ)
, (A.16)

and

B′′(ρ) = e2D sinhS

[

cosh ρ

C2(S, ρ)
+

2 sinh2 ρ

C3(S, ρ)

]

. (A.17)

Inserting these expressions into Eq. (A.10), we have

m =
sinh ρ0 sinhS

C(S, ρ0) [sinhS − C(S, ρ0) (1 − e−2D)]
. (A.18)

Similarly, with Eq. (A.14), we find

g′′ (ρ0)

kBT
= −m

[

2 sinh ρ0

C(S, ρ0)
+ coth ρ0

]

+m2. (A.19)

Appendix B

{111} Stiffness: Calculational Details

B.1 Leading Term in Low-Temperature Expansion

For the triangular lattice we find important differences from the square lattice

for the higher-order terms. Specifically, we consider how g(1) changes. In contrast

to g(0), we cannot simply replace M and N with M ′ and N ′. There is no one-to-one

correspondence between paths of energy E1 on a square lattice and those of energy EM

1

on a triangular lattice. This failed correspondence for higher terms follows from the

observation that EM

1 -configurations are only one link longer than EM

0 -steps, whereas

E1-configurations are two links longer than E0-steps: EM

n+1 − EM

n ≡ ∆EM = ε, or

EM

n = ε

(

2N√
3

+ 2M + n

)

, n = 0, 1, 2, ..., (B.1)

142



Hence, we require a separate combinatorial analysis.

We imagine a step of energy E1 in the first sextant. Such a step (see Fig. B.1)

will have either: (1) (M ′ + 1) links oriented at 0◦ (denoted “X-links”), (N ′ − 1)

links oriented at 60◦ (denoted “Y-links”), and one link oriented at 120◦ (denoted

“Υ-links”), or (2) (M ′ − 1) links oriented at 0◦, (N ′ + 1) links oriented at 60◦, and

one link oriented at −60◦. In the first case, the problem can be reworded as follows:

how many ways to arrange an (M ′+N ′+1)-lettered word with (M ′+1) X’s, (N ′−1)

Y’s, and one Υ. In the second case, the problem is the same, only with M and N

switched. Thus, the solution of this traditional combinatorial problem gives the

X’

Y’

(M ,N )’ ’

Figure B.1: Two equivalent steps having energy EM

1 . The dashed step contains
(M ′ + 1) X-links, (N ′ − 1) Y-links, and one Υ-link, while the solid step contains
(M ′ − 1) X-links, (N ′ + 1) Y-links, and one Υ-link.
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total number of next-to-shortest paths gM(1):

gM(1) =

(

M ′+N ′+1

M ′+1

)

N ′ +

(

M ′+N ′+1

N ′+1

)

M ′. (B.2)

With gM(0/1) and EM

n in hand, we can write the low-temperature partition

function expansion for a triangular lattice. Using Eq. (2.3) and expanding the

logarithm as in Eq. (A.2), we have

F ≈ EM

0 − kBT

{

ln[g(0)] +
gM(1)

g(0)
e−∆EM/kBT

}

. (B.3)

Taking the thermodynamic limit (M ′, N ′ � 1) and using Stirling’s approximation

gives

lnM ′F ≈ EM

0 −kBT [(M ′+N ′) ln(M ′+N ′)−M ′ lnM ′−N ′ lnN ′

+ e−ε/kBT
M ′3+N ′3+M ′N ′2+N ′M ′2

M ′N ′

]

. (B.4)

The pair of cross-factors in the last coefficient are absent in Eq. (A.4) for the square

lattice.

The correction term becomes non-negligible when the final term in Eq. (B.4)

becomes of order unity. At low T this occurs only near close-packed directions, so for

small values of θ. In this regime, to lowest order in θ, N ′ = (2L/
√

3) sin θ → 2Lθ/
√

3

and M ′ = L cos θ −N ′/2 → L. Then the critical value of θ is

θ(β)
c ≈

√
3

2
e−ε/kBT =

√
3

2
z1/2. (B.5)

Specifically, based on Eq. (B.5) and using ε ≈ 0.12 eV for Cu{111}, we find that

θ
(β)
c is 0.353◦, 3.18◦, and 5.51◦ for T/Tc of 1/9, 1/5, and 1/4, respectively. As clear

from Fig. 3.3, this criterion turns out to underestimate the values for θc obtained
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in Section II.D, mainly because Eq. (B.5) was derived from an expression for β(θ)

instead of β̃(θ) (which should depend more sensitively on θ). over the plotted

thermal range.

B.2 Exact Formulas for Line Tension and Stiffness in Mirror Direc-

tions

B.2.1 General results for all orientations

In this appendix, we derive Eqs. (3.18) – (3.21) for the mirror-line directions

θ = 0◦ and θ = 30◦ from Zia’s implicit exact solution.50

To begin, because β̃ = β+β ′′ (where the prime represents differentiation with

respect to θ), it follows from Eq. (3.15) that

β̃a||
kBT

= 2η′0ψ
′
1 + 2η′−ψ

′
2 + η0ψ

′′
1 + η−ψ

′′
2 . (B.6)

We can simplify Eq. (B.6) by finding relationships between the various derivatives

of the ψ’s. Differentiating Eq. (3.17) with respect to θ, regrouping, and using

Eq. (3.16), we get

ψ′
1η0 + ψ′

2η− = 0. (B.7)

Differentiating again yields

ψ′′
1η0 + ψ′′

2η− + ψ′
1η

′
0 + ψ′

2η
′
− = 0. (B.8)

Using Eq. (B.8), we rewrite the last part of Eq. (B.6) (containing ψ′′
1 and ψ′′

2) in

terms of just ψ′
1 and ψ′

2. Then, using Eq. (B.7) we eliminate ψ′
2 in favor of ψ′

1. We
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are then left with an equation relating β̃ to only ψ′
1:

β̃a||
kBT

=

(

η′0 − η′−
η0

η−

)

ψ′
1 =

2ψ′
1√

3 cos θ − sin θ
. (B.9)

For general angle, we must evaluate ψ′
1 numerically. However, for the two high-

symmetry directions we can obtain analytic results that allow us (with the aid of

Eq. (3.15) for β) to write explicit expressions for β̃, as presented in the next two

subsections.

B.2.2 Results for θ = 0◦

At θ = 0◦, Eq. (3.15) reduces to

βa||
kBT

= ψ2(0), (B.10)

0 Π�12 Π�6 Π�4 Π�3
Θ

5

6

7

8

9

Ψ2HTc�8LΨ1HTc�8L

Figure B.2: Numerical evaluation of ψ1 (dashed red curve) and ψ2 (solid blue curve)
as functions of angles at temperature Tc/8 equivalent to room temperature for the
experimental systems Cu and Ag {111}. Note that the linear behavior near one
limit and the divergent slope near value zero at the other. At higher temperatures
the curves are qualitatively similar but progressively smaller in magnitude.
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assuming that ψ1(0) is finite. Furthermore, near θ = 0◦, Eq. (3.16) can be inverted

and the sinh’s combined to get

sinh(ψ1 − 1
2
ψ2) cosh(1

2
ψ2)

sinh(ψ2 − 1
2
ψ1) cosh(1

2
ψ1)

=
2√
3
θ. (B.11)

For Eq. (B.11) to hold at θ = 0◦,

ψ2(0) = 2ψ1(0). (B.12)

Eq. (3.17) therefore becomes:

2 coshψ1(0) + cosh(2ψ1(0)) = f. (B.13)

Solving this for coshψ1(0) and taking the positive root, we find:

coshψ1(0) = cosh(1
2
ψ2(0)) = 1

2
(−1 +

√
3 + 2f), (B.14)

consistent with the assumption of finite ψ1(0). Solving for ψ2(0) and combining with

Eq. (B.10) yields Eq. (3.18).

Correspondingly for β̃, at θ = 0◦ Eq. (B.9) becomes

β̃(0)a‖
kBT

=
2√
3
ψ′

1(0), (B.15)

while Eq. (B.7) becomes

ψ′
2(0) = 0, (B.16)

provided ψ′
1(0) is finite. We obtain ψ′

1(0) by differentiating Eq. (B.11) with respect

to θ and then setting θ = 0◦ so that Eqs. (B.12) and (B.16) apply. This give

ψ′
1(0) = 1√

3
tanhψ1(0)[1 + 2 coshψ1(0)]. (B.17)

By combining this with Eq. (B.14) for coshψ1(0), we see that ψ′
1(0) is indeed finite,

as we earlier assumed. Thus, Eq. (B.15) becomes Eq. (3.19), as desired.
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B.2.3 Results for θ = 30◦

At θ = 30◦ = π/6, Eq. (3.15) becomes

β(π/6)a‖
kBT

= 1√
3
[ψ1(π/6) + ψ′

2(π/6)] . (B.18)

Furthermore, near θ = π/6, η0/η− ≈ 1 + 2
√

3 ∆θ, where ∆θ ≡ θ − π/6. Inverting

Eq. (3.16) we therefore have

sinhψ1 + sinh(ψ1 − ψ2)

sinhψ2 − sinh(ψ1 − ψ2)
≈ 1 + 2

√
3 ∆θ, (B.19)

By inspection, at θ = π/6 (∆θ = 0), one solution to this equation is just

ψ2(π/6) = ψ1(π/6). (B.20)

Plugging this result into Eq. (3.17) and solving for ψ2(π/6) gives,

coshψ2(π/6) =
f − 1

2
. (B.21)

Combining this with Eq. (B.18) (where we now know ψ1(π/6) = ψ2(π/6)) results in

Eq. (3.20).

As for β̃, at θ = π/6, Eq. (B.9) becomes

β̃a||
kBT

= 2ψ′
1(π/6), (B.22)

while Eq. (B.7) becomes

ψ′
1(π/6) = −ψ′

2(π/6). (B.23)

Like before, we can find ψ′
1(π/6) by differentiating Eq. (B.19) with respect to θ.

Taking the result and setting θ = π/6, so that Eqs. (B.20) and (B.23) apply, gives

ψ′
1(π/6) =

√
3 sinhψ1

coshψ1 + 2
. (B.24)
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Finally, we combine this result with Eq. (B.21) for coshψ2(π/6) = coshψ1(π/6) and

Eq. (B.22), to get Eq. (3.21), as desired.

B.3 Rederivation of Eq. (3.14) from exact solution

In this appendix, we re-derive Eq. (3.14) directly from the exact solution for

β(θ) given in Eqs. (3.16) and (3.17). To do so, we just assume coshψ2 � η−/η0

(remember that η−/η0 decreases from ∞ at θ = 0◦ to 1 at θ = 30◦, so that, between

these angles, this condition also implies that coshψ2 � 1). In this case, Eq. (3.16)

can be solved to give

coshψ1 ≈
η0

η−
coshψ2. (B.25)

Thus, if coshψ2 � η−/η0 > 1, then coshψ1 � 1. We show here that these assump-

tions for coshψ1,2, together with the low-temperature replacement of f(z) by 1/(2z)

in Eq. (3.17), are enough to derive Eq. (3.14).

When coshψ1,2 � 1, then coshψ1,2 ≈ sinhψ1,2 ≈ eψ1,2/2. With these approxi-

mations, Eqs. (3.16) and (3.17) become remarkably simple:

eψ1 + eψ2 = 2f(z), (B.26)

eψ2 =
η−
η0
eψ1 . (B.27)

Solving this pair of equations for eψ1 and eψ2 gives

eψ1 =
2f(z)η0

η0 + η−
, eψ2 =

2f(z)η−
η0 + η−

. (B.28)
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If we then replace f(z) by its low-temperature limit, 1/(2z), Eq. (3.15) becomes

βa||
kBT

= η0 ln

[

η0

z(η0 + η−)

]

+ η− ln

[

η−
z(η0 + η−)

]

. (B.29)

By noting η0 + η− = η+, and using the definition for z, Eq. (B.29) can be easily

simplified to Eq. (3.5), from which Eq. (3.14) for β̃ was derived.

By deriving the approximation given in Eq. (3.5) (and thus Eq. (3.14)) in this

way, we can determine when the approximation becomes invalid. Specifically, we

require coshψ1,2 � 1. As we showed, the more restrictive of these inequalities is the

one involving coshψ1, since coshψ1 is necessarily smaller than coshψ2 in the first

sextant by a factor of η0/η− (which is less than 1). Thus, the main assumption is

coshψ1 � 1, which, from Eq. (B.28), is just

2f(z)η0

η0 + η−
� 1. (B.30)

The solution to this equation, which we call θ2, is given by the following inequality:

cot θ2 �
4f − 1√

3
. (B.31)

Because cot θ decreases from ∞ at θ = 0 to 1/
√

3 at θ = π/6, we know that angles in

the first sextant that are greater than θ2 will also satisfy the inequality in Eq. (B.31).
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Thus, Eqs. (3.5) and (3.14) are valid in the first sextant at all angles above θ2.

Appendix C

Evaluating Lattice Gas Interactions: Numerical Details

In Table 4.1 energies are listed with error bars. Here, the source of error was

predominantly due to interactions between adatoms through the substrate. Whereas

increasing the slab thickness would have reduced this error, the required computa-

tional time would have increased significantly.86 Instead, we effectively reduced error

by averaging results over a set of self-consistent calculations. More precisely, we cal-

culated the energies of more adatom arrangements than were necessary to solve for

the interaction energies of interest. By choosing different sets of arrangements to

solve for the same interaction energies, we could self-consistently check our results

while at the same time estimate error. Typically, interaction energies changed little

from one set of arrangements to another, though differences could be on the order

of 10-30 meV. We therefore assumed each total energy calculation carried an error

of 30 meV. With this assumption, the propagation of error was easily calculated.

As an example, using the first six adatom arrangements shown in Fig. 4.2, we

could simultaneously solve the corresponding six equations for the six interaction

energies of interest. Assuming the six configurations correspond to energies ξi ± 30

meV, i=1,2,. . .6, then, for example, E1 is

E1 =
1

12
(5ξ0 − 10ξ1 + 2ξ2 + ξ4 + 4ξ5 + 2ξ6), (C.1)

where ξ0 corresponds to the energy of the slab without any adatoms. The error in
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this estimate is therefore

4E1 =
1

12

√
52 + 102 + 22 + 1 + 42 + 22 4E (C.2)

= 1.02 4E, (C.3)

where 4E ≡ 30 meV. Similarly, solving for E2 gives

E2 =
1

4
(E0 − 2E1 + E4), (C.4)

with corresponding error

4E2 =
1

4

√
1 + 22 + 1 4E (C.5)

= 0.61 4E. (C.6)

Continuing in this way, we estimated the error of all the calculated interaction

energies of interest. We then repeated the process for different sets of six arrange-

ments of adatoms. Of course, different sets yield different errors. By averaging over

results from sets of arrangements with the least error (which inevitably agreed the

most), we reduced the error even further.

One potential danger of using this method of error analysis is the presence

of systematic error that doesn’t average to zero. Of course, were this the case, we

would expect all calculated interaction energies to be systematically renormalized by

an error-dependent, fixed amount. Considering we have calculated many interaction

energies to be approximately zero, we know that the systematic error is most likely

negligible. Furthermore, we estimated Ebu in two ways: first, using Eqs. (4.3) and

(4.4), and, second, using a single-atom, bulk supercell that contains neither adatoms

nor a substrate. Because the two ways of calculating Ebu are so dissimilar, we can
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safely assume systematic error, if any exists, is different between the two. Because

the two estimates agree remarkably well, the systematic error again is most likely

negligible.
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Appendix D

Notation Guide

θ: angle between step tangent and step high-symmetry, close-packed direction

θc: critical step angle below which thermal kinks are important

T : temperature

Tc: NN Ising model critical temperature

kB: Boltzmann’s constant

t: time

Ω: adatom projected area

a||: distance between adatoms parallel to step edge

m: step slope

ρ: step “torque”, or conjugate variable to m

F (θ): step free energy

β(θ): step line tension, or step free energy per unit length

β̃(θ): step stiffness

G(ρ): Andreev step free energy

g(ρ): Andreev step free energy per unit length

x(y): Maryland notation for step position.

Γ(θ): adatom mobility

K(θ): step curvature
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c(θ): adatom concentration

vn(θ): normal step velocity

E : step energy

ε: Ising parameter, or energy of severed half of lattice-gas NN bond

ε: lattice-gas bond energy

Ei, i = 1, 2, 3...: VASP calculated adatom pairwise interaction energy

Ex, x = a, b, c, d: VASP calculated adatom trio interaction energy

EQ: VASP calculated adatom quarto interaction energy
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Appendix E

Mathematica Notebooks

Here we provide images of two mathematica notebooks created to analyze the

C60 data presented at the end of Chapter 3. The first notebook, surfacePhysic-

sModules.nb, includes a number of useful surface physics programs, including code

for finding the step correlation function. The second notebook, c60fluxForThesis.nb,

relies on the first. It includes code for determining the position of individual C60

from STM images, as well as code for performing the analysis of island step-edge

fluctuations. The actual files are available upon request.
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[14] B. Blagojević and P. M. Duxbury, Phys. Rev. E 60, 1279 (1999).

[15] N. C. Bartelt, J. L. Goldberg, T. L. Einstein, and E. D. Williams, Surf. Sci.
273, 252 (1992).

[16] C. Rottman and M. Wortis, Phys. Rev. B 24, 6274 (1981).

[17] M. Giesen, C. Steimer, and H. Ibach, Surf. Sci. 471, 80 (2001).

[18] J. W. Cahn and R. Kikuchi, J. Phys. Chem. Solids 20, 94 (1961).

[19] S. Dieluweit, H. Ibach, M. Giesen, and T. L. Einstein, Phys. Rev. B 67,
121410(R) (2003).

[20] C. Herring, Phys. Rev. 82, 87 (1951).

178



[21] N. Akutsu and Y. Akutsu, Surf. Sci. 376, 92 (1997).

[22] R. V. Moere, H. J. W. Zandvliet, and B. Poelsema, Phys. Rev. B 67, 193407
(2003).

[23] R. V. Moere, H. J. W. Zandvliet, and B. Poelsema, Phys. Rev. B 68, 073404
(2003).

[24] J. E. Avron, H. van Beijeren, L. S. Schulman, and R. K. P. Zia, J. Phys. A:
Math. Gen. 15, L81 (1982).

[25] R. K. P. Zia and J. E. Avron, Phys. Rev. B 25, 2042 (1982).

[26] W. K. Burton, N. Cabrera, and F. C. Frank, Phil. Trans. Roy. Soc. (London)
Series A-Math and Phys. Sci. 243, 299 (1951).

[27] T. W. Burkhardt, Z. Phys. 29, 129 (1978).

[28] H. J. W. Zandvliet, H. B. Elswijk, E. J. van Loenen, and D. Dijkkamp, Phys.
Rev. B 45, 5965 (1992).

[29] M. Kollar, I. Spremo, and P. Kopietz, Phys. Rev. B 67, 104427 (2003).

[30] N. C. Bartelt, T. L. Einstein, and E. D. Williams, Surf. Sci. 276, 308 (1992).

[31] H. J. W. Zandvliet, Phys. Rev. B 61, 9972 (2000).

[32] M. Giesen-Seibert and H. Ibach, Surf. Sci. 316, 205 (1994).

[33] Explicitly, the contribution to the lattice-gas Hamiltonian of all NN bonds is
ε1Σ〈i,j〉ninj , where the site-occupation variable ni=0, 1, and the summation is
over all NN pairs of sites. It is well known that ε1 → −4J1 in the corresponding
Ising model, so that Tc is determined by sinh(|ε1|/2kBT ) = 1. Unfortunately,
the variety of notations in papers on this subject can and often do lead to
confusion. In the papers by Van Moere et al.,22,23 ε1,2 have the opposite sign
of our ε1,2. In Giesen et al.17 and somewhat implicitly in Dieluweit et al.,19

the so-called Ising parameter, ε, is εk=2J=− 1

2
ε1.

[34] C. Steimer, M. Giesen, L. Verheij, and H. Ibach, Surf. Sci. 329, 47 (2001).

[35] A. Bogicevic, S. Ovesson, P. Hyldgaard, B. I. Lundqvist, H. Brune and D. R.
Jennison, Phys. Rev. Lett. 85, 1910 (2000).

[36] P. J. Feibelman, Phys. Rev. B 60, 11118 (1999).

[37] Using EAM, C. S. Liu and J. B. Adams, Surf. Sci. 294, 211 (1993) found
εk=139meV. Using a pair-potential expansion from a first-principles database
of surface energies, L. Vitos, H. L. Skriver, and J. Kollár, Surf. Sci. 425, 212
(1999) obtained εk=163meV. With an spd tight-binding model, F. Raouafi, C.
Barreteau, M. C. Desjonquères, and D. Spanjaard, Surf. Sci. 505, 183 (2002)
calculated εk=146meV.

179



[38] T. J. Stasevich, T. L. Einstein, and S. Stolbov, Phys. Rev. B 73, 115426
(2006).

[39] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

[40] G. Kresse and J. Hafner, Phys. Rev. B 49, 14 251 (1994).

[41] G. Kresse and Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

[42] G. Kresse and Furthmüller, Phys. Rev. B 54, 11169 (1996).

[43] T. L. Einstein, Handbook of Surface Science Vol. 1 (Elsevier Science, Amster-
dam, 1996), Chap. 11.

[44] I. Vattulainen, unpublished, private communication, in conjunction with J.
Merikoski, I. Vattulainen, J. Heinonen, and T. Ala-Nissila, Surf. Sci. 387, 167
(1997).

[45] T. L. Einstein, Langmuir 7, 2520 (1991).

[46] T. L. Einstein, Surf. Sci. 84, 497 (1979).

[47] R. Sathiyanarayanan, T. J. Stasevich, and T. L. Einstein, unpublished.

[48] V. Shenoy and C. V. Ciobanu, Surf. Sci. 554, 222 (2004).

[49] D. B. Abraham and P. Reed, J. Phys. A: Math. Gen. 10, L121 (1977).

[50] R. K. P. Zia, J. Stat. Phys. 45, 801 (1986).

[51] In deriving the equivalent of our Eq. (3.5) for honeycomb lattices, N. Akutsu,
J. Phys. Soc. Jpn. 61, 477 (1992) noted that what we call η±(θ) can be written
(2/

√
3) sin(θ ± π/3).

[52] H. Ibach and W. Schmickler, Phys. Rev. Lett. 91, 016106 (2003), This simple
equivalency does not hold for stepped surfaces in an electrochemical system,
where the electrode potential φ is fixed rather than the surface charge density
conjugate to φ.

[53] G. Schulze Icking-Konert, M. Giesen, and H. Ibach, Phys. Rev. Lett. 83, 3880
(1999).

[54] G. H. Wannier, Rev. Mod. Phys. 17, 50 (1945).

[55] The calculation can be facilitated by writing ηi ≡ ai cos θ+bi sin θ and then us-
ing Eq. (3.10) to show s̃i = [(b2i−a2

i )(cos2 θ−sin2 θ)−4aibi sin θ cos θ]/[ai cos θ+
bi sin θ] .

180



[56] Eq. (3.17) bypasses several intermediate quantities that are important for
Zia’s50 general treatment but cumbersome here. Our ψ2 has the opposite
sign from Zia’s, and our angle θ—which vanishes for close-packed step
orientations—differs by 30◦ from his. Note also that interchanging ψ1 and
ψ2 on the LHS of Eq. (3.16) inverts the LHS, from which it is easy to see
that β(θ) of Eq. (3.15) is symmetric about θ = 30◦. The LHS of Eq. (3.17) is
obviously invariant under the interchange of ψ1 and ψ2.

[57] N. Akutsu and Y. Akutsu, J. Phys.: Condens. Matter 11, 6635 (1999).

[58] In Eqs. (4.30)-(4.33) of Akutsu and Akutsu,57 their W corresponds to our z2

and their angles, like Zia’s,50,56 differ from ours so that their π/2 is our 0 and
their 0 is our π/6.

[59] T. J. Stasevich, T. L. Einstein, R. K. P Zia, M. Giesen, H. Ibach, and F.
Szalma, Phys. Rev. B 70, 245404 (2004).

[60] M. Ondrejcek, W. Swiech, C. S. Durfee, and C. P. Flynn, Surf. Sci. 541, 31
(2003).

[61] J. Krug (private communication).

[62] G. Ehrlich and F. Watanabe, Langmuir 7, 2555 (1991).

[63] B. N. J. Persson, Surf. Sci. Rept. 15, 1 (1992).

[64] E. I. Altman and R. J. Colton, Phys. Rev. B 48, 18244 (1993).

[65] T. Sakurai, X. D. Wang, T. Hashizume, V. Yurov, H. Shinohara, and H. W.
Pickering, Appl. Surf. Sci. 87-8, 405 (1995).

[66] E. I. Altman and R. J. Colton, Surf. Sci. 295, 13 (1993).

[67] T. Jung, R. Chlittler, J. K. Gimzewski, and F. J. Himpsel, Appl. Phys. A 61,
467 (1995).

[68] C. Tao, T. J. Stasevich, T. L. Einstein, and E. D. Williams, Phys. Rev. B 73,
125436 (2006).

[69] S. Kodambaka, V. Petrova, S. V. Khare, D. D. Johnson, I. Petrov, and J. E.
Greene, Phys. Rev. Lett. 88, 146101 (2002).

[70] F. Szalma, H. Gebremariam, and T. L. Einstein, Phys. Rev. B 71, 035422
(2005).

[71] S. V. Khare and T. L. Einstein, Phys. Rev. B 54, 11752 (1996).

[72] K. L. Man, A. Pang, T. J. Stasevich, F. Szalma, T. L. Einstein, and M.
Altman, unpublished.

181



[73] L.-L. Wang and H.-P. Cheng, Phys. Rev. B 69, 165417 (2004).

[74] G. Danker, O. Pierre-Louis, K. Kassner, and C. Misbah, Phys. Rev. E 68,
020601 (2003).

[75] P. Kuhn and J. Krug, in Multiscale Modeling of Epitaxial Growth Series,
edited by A. Voigt, Basel, 2005, Birkhäuser, cond-mat/0405068.
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