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ROBUSTNESS IN THE PRESENCE OF MIXED PARAMETRIC
UNCERTAINTY AND UNMODELED DYNAMICS

Michael K.H. Fant  André L. Titsf John C. Doyle*

Abstract

It is shown that, in the case of mixed real parametric and complex uncertainty, the
structured singular value can be obtained as the solution of a smooth constrained opti-
mization problem. While this problem may have local maxima, an improved computable
upper bound to the structured singular value is derived, leading to a sufficient condition

for robust stability and performance.

0. Introduction

An inherent tradeoff in modeling is between fidelity and simplicity. It is desirable to
have models which closely match reality, yet are still easy to analyze. This tradeoff arises in
modeling uncertainty. For example, a single norm-bounded perturbation simplifies analysis
but may be too conservative. Introducing more structure may improve the model fidelity
but typically complicates the analysis. It is often very natural to model uncertainty with
real perturbations when, for example, the real coefficients of a differential equation model
are uncertain. It is important, however, to remember that such parametric variations
are in a model, not in the physical system being modeled. Models with real parametric
uncertainty are used because, in principle, they allow more accurate representation of some
systems.

The structured singular value (SSV or p) was introduced to study structured uncer-
tainty in linear models [1-3]. It is defined in such a way as to give a precise characterization
of robust stability and performance, in an H, sense, for a rich variety of uncertainty de-

scriptions (Small ¢ Theorem [2]). There is a large literature on robustness, particularly
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for unstructured uncertainty, and connections with H, theory. A brief historical review of
the literature most directly influencing the development of u-based methods will be given
after the notation is introduced.

Much of the subsequent research on p has focused on computational schemes, with
reasonable success for problems involving only complex uncertainty. Complex perturba-
tions are typically used to represent uncertainty due to unmodeled dynamics, or to “cover”
the variations produced by several real parameters. In the p framework, complex uncer-
tain blocks also arise for problems of robust performance, and thus practical applications
of i always involve at least one complex block. Although there are important outstanding
issues to be resolved in cdmputation of p for complex perturbations, substantial progress
has been made and y is being applied routinely to large engineering problems. This paper
focuses on computation of p for mixed real parametric and complex uncertainty, which is
fundamentally more difficult than for complex perturbations.

The major issues in computing pu, or its equivalent, are the generality of the problem
description, the exactness of analysis, and the ease of computation. Existing methods for
real perturbations emphasize just two of these three issues. A general and, in principle,
exact method is a brute force global search using a grid of parameter values (e.g. [4,
5]). This inevitably involves an exponential growth in computation as a function of the
number of parameters, and taking fewer grid points to avoid this gives up exactness. This
“exponential explosion” limits the usefulness of exhaustive global search methods, although
simple search in some form will always play an important role in practical control design.

Tentatively, a reasonable requirement on a computational scheme would seem to be
that the typical time to compute solutions scales in some polynomial way with the size
of the problem. This is compatible with the conventional view in computational linear
algebra, where, for example, the QZ iteration for computing singular values is considered
an acceptable approach. From this point of view, progress is being made in reducing
the computational burden of exact methods [6-8], but no general, exact, polynomial-
time algorithms are available. Nevertheless, this work suggests some promising research
directions, and these will be discussed in the final section.

An approach to obtaining exact results with more modest computation is to restrict
the problem description. The best example is Kharitonov’s celebrated result for polyno-

mials with coefficients in intervals [9]. While few models with engineering motivation fit
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the allowable problem des'cription, Kharitonov’s theorem inspired a great deal of research.
Progress is being made in this direction by allowing more general uncertainty descriptions
at the expense of more computation (e.g. [10-12]). Unfortunately, the results so far indi-
cate that even modest departure from the interval polynomial problem leads to exponential

explosion.

The approach taken in this paper could be characterized as being very general and
computationally attractive, but potentially inexact. Following the methods developed for
p in the case of complex perturbations, the main idea is to get upper and lower bounds
using local search methods which are computationally inexpensive, but may fail to find
global solutions. One then seeks to prove that the local methods yield global solutions,
or that the bounds one gets are tight enough to be of value in problems of interest. The
strategy taken in this paper has been very successful in the case when all perturbations
are complex and appears to have promise for the general case as well, although it is clear
that the latter is much more challenging. In the final section, some speculations will be
presented on how the results in this paper might be combined with the work in [6-8] to

obtain an approach which is general, efficient, and exact.

The balance of the paper is organized as follows. In Section 1, the SSV framework is
introduced and a brief historical review of the literature most influencing the development
of pu-based methods is given. In Section 2, it is shown that p can be obtained as the
optimal value of a smooth constrained optimization problem. Geometric interpretation of
this result is discussed in Section 3. The framework of Sections 2 and 3 is used in Section 4
to derive a new computable upper bound on u. In Section 5 the new bound is shown to
be mathematically equivalent to that given in [3] for the case of nonrepeated real scalar
blocks. A serious and valid criticism of the literature on p is the lack of tutorial material,
thus limiting the readership primarily to experts. While it is beyond the scope of this
paper to correct this deficiency, Section 6 contains some simple examples and numerical
experiments which should both motivate and illustrate the use of the theory. Also, the
next section give some historical background. Finally, Section 7 offers some speculation
about the future directions for research in this area. All proofs are given in Appendix A.

Appendix B contains data used in the experiments of Section 6.
Many of the results of this paper have appeared, without proof, in [13].
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1. Preliminaries

1.1. Framework

Throughout the paper, given any square complex matrix M, we denote by T(M) its
largest singular value, by (M) its smallest singular value, by M its complex conjugate
and by M its complex conjugate transpose, and we let pr(M) = max{|)\| : A is a real
cigenvalue of M}, with pr(M) = 0 if M has no real eigenvalue. If M is Hermitian, we

H indicates its

denote by A(M) its largest eigenvalue. Given any complex vector z, z
complex conjugate transpose and ||z|| its Euclidean norm. The empty set will be denoted

by 0. Finally, while j (italics) will be used as a running index, j (slanted) will denote /1.

Given an n X n complex matrix M and three nonnegative integers m,, m., and mg,
with m := m, + m. +m¢ < n, a block structure K of dimensions (m,, m., me¢) associated

unth M is an m-tuple of positive integers

IC = (k’l,...,kmr ) kmr+1,...,kmr+mc ’ kmr+mc+1a---,km) (11)

m

such that > k; = n. Given a block structure X, consider the family of block diagonal
g=1

n X n matrices

X}c = {blOCk diag(é{[kl, e 76;%Ikm,’6fjk ., 68 Ik

mp+1) " YT me

A, L AG )

myptme?

6; E R, 6; E ®, ch' E @kmr+mc+q)</€mr+mc+q},

where for any integer k, Iy denotes the k x k identity matrix. The ‘repeated real scalar’

blocks 671y, correspond to parametric uncertainty, one ‘repeated complex scalar’ block

641k, +, can be used to represent frequency (see [3] for details; several blocks of the latter

type are introduced here mostly for the sake of uniformity) and the ‘full complex’ blocks

ch correspond to unmodeled dynamics.?

Definition 1.1.[1|The structured singular value px(M) of a complex n X n matrix M with
respect to block-structure K is 0 if there is no A in Xk such that det(I — AM) = 0, and

(Argglx{E(A) cdet(I — AM) = 0}) (1.2)

? Note that non-repeated complex scalars §¢ can be viewed indifferently as repeated

complex scalar blocks 6¢Ix, with k = 1, or as full complex blocks A€ € €'*!,

4



otherwise. []

Directly from Definition 1.1, it is easily shown that

pr(M) < (M) < F(M) (1.3)
and that, for any U,V € Ux, D € Dy,

px(M) = p(DUMV D™1) (1.4)

where

Uc = {U € X : TUR =1}

and

Dy = {block diag(D1,..., Dm,4mer @11k, ymo g1+ dmedh,y,)
0 < Dy = DI e €*>* 4, > 0}.

For the purely complex case (m, = 0), the pr inequality is always an equality and
the & inequality is an equality when 2m, + m¢ < 3 [1,14]. The pr expression typically
has nonglobal local maxima while every local minimum of the & expression is global.
Extensive computational experience has suggested that it is easy to obtain U € Ux making
pr(MU) close to the latter, even when m¢ > 1. These bounds formed the basis for early
computational approaches to y for m, = 0, because local search methods could be used to
make the bounds reasonably tight [1,15,16].

Unfortunately, when m,>0 the bounds in (1.5) may be arbitrarily far off, even for
problems with engineering motivation. In [3] an improved upper bound was obtained but
no practical way to compute it was given. This paper provides an alternative maximization
to the pg expression which is equal to px (M) at its global maximum. The new expression
suggests a geometric interpretation based on the concept of ‘multiform numerical range’.
Also, an upper bound mathematically equivalent to the one in [3] is obtained, but with

much better computational properties.

®  Note that, if m, = 0, pg can be equivalently replaced by the spectral radius p.
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1.2. Historical Perspective
In this section, we will briefly review the ideas that most influenced the original
development of the p theory. These remarks are essentially from earlier papers [1,2], but

are repeated here for the convenience of the reader.

An obvious influence was the work in so-called Robust Multivariable Control Systems
from the late 1970s (see, for example, [17]) which in turn drew heavily on earlier work
in stability analysis ( e.g. [18-22]), particularly small gain and circle theorems. These
theorems established sufficient conditions for stability of nonlinear components connected
in feedback. The emphasis in the robustness work was on small gain type conditions
involving singular values that were both necessary and sufficient for stability of sets of
linear systems involving a single norm bounded but otherwise unconstrained perturbation.
Another emphasis for much of the robustness theory was on using singular value plots to
generalize Bode magnitude plots to multivariable systems.

While methods based on singular values were gaining in popularity, it became evident
that their assumption of unstructured uncertainty was too crude for many applications.
Furthermore, the problem of robust performance was not adequately treated. Freudenberg
et al. [23] studied these issues using differential sensitivity and suggested that something
more than singular values was needed. It was a natural step to introduce structured
uncertainty of the type considered in this paper (see [24] for an early treatment). The
so-called conservativeness of singular values rested in the fact that the bounds in (1.3)
could be arbitrarily far off, and research was begun to provide improved estimates of p,

with an initial focus on the nonrepeated, complex case (m, = m, = 0).

It was obvious that the sharper bounds in (1.5) could help alleviate the conservative-
ness somewhat. These bounds were similar to the multiplier methods that were used in
nonlinear stability analysis to reduce the conservativeness of small gain type methods [21],
but the use of both upper and lower bounds, and the questions of how close the bounds
were and how to efficiently compute them were new and open. That the lower bound is
equal to p is relatively straightforward and not surprising. What is remarkable, even in
retrospect, is that the upper bound is also an equality for m¢ < 3 and close for m¢ > 4.
The equality results Were.ﬁrst proven in [1], while the m¢ > 4 case has only experimen-
tal evidence. Although by now that evidence is extensive, it remains an important open

question to further characterize the exact nature of the upper bound for m¢ > 4.

6



There was substantial numerical evidence for the upper bound results some time before
they were proven. Engineers at Honeywell’s Systems and Research Center, particularly Joe
Wall, began routinely using a simple generalization of Osborne’s routine [25] to approxi-
mate the upper bound in (1.5) and gradient search to find a local maximum for the lower
bound. Osborne’s algorithm minimizes the Frobenius norm rather than the maximum
singular value, and the scalings produced can be used to approximate the upper bound.
The consistent closeness of the bounds, usually within a few percent, suggested that there
was a deeper connection between the bounds. Ironically, minimizing the Frobenius norm
remains the cheapest method of approximating the upper bound. Safonov [26] suggested
a somewhat less general approximation to the upper bound based on Perron eigenvectors
which is comparable to Osborne’s in speed and accuracy.

While the p framework arises naturally in studying robust stability with structured
uncertainty, it also can be used directly to treat the problem of robust performance with
structured uncertainty [2]. This is a consequence of the intimate connection between pu
and linear fractional transformations (LFT) [3,14]. In retrospect, it is clear that Redheffer
had developed the foundation of this connection in his work on LFT in the late 1950’s [27,
28]. In fact, Redheffer had even proven that the upper bound in (1.5) was an equality for
the case where m, = m, = 0 and m¢c = 2. While Redheffer’s results were not well known
in the control community until the y theory was already well developed, the rediscovery
of his work has since had an important influence, not only on the further development of

1t but in other areas as well (e.g. see [29]).

2. A Smooth Optimization Problem

Definition 1.1 suggests that one consider matrices A € Xy such that, for some

nonzero T

AMz =z . (2.1)
Without loss of generality, z has unit length, 1.e.,
t€0B:={zeC":|z| =1}

In view of the structure of A, (2.1) imposes some constraints on ‘subvectors’ of z, corre-

sponding to x being split according to structure K. To help the reader’s intuition, we first
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consider the case of uncertainty consisting of a single, possibly repeated, uncertain real

parameter and a single complex block.
2.1. Key Ideas in a Special Case

As a simple special case, consider the block structure
K = (kr;;kc) (2.2)
and the corresponding family of matrices
Xic = {block diag (6"Is,,A°): & € R,A° e Fexko}
Let Q, € R¥*™ Q¢ € R**" be projection matrices defined by
Qr=[Ik, O], Qc =10 Ix].
The constraints on z implied by (2.1) are

6"QrMz = Qrz (2.3)
A°QecMz = Qce . (2.4)

In order for (2.4) to be achieved for some A¢, 7(A°) < b, for given b > 0, it is necessary

and sufficient that

b|QeMz|| > ||Qcz|| -

Similarly, for (2.3) to be achieved for some |6”| < b, it is necessary (but no more sufficient)

that
b|QrMz| 2 || Qrz]] (2.5)
Equation (2.1) now implies additional constraints, namely (if z; # 0,1 =1,...,k;)

(Mz)i _ (Tz);

X, SII]'

i=1,... k (2.6)
(including the case i = j), as these are equivalent to the existence of ¢ € IR such that

((Mz)y =2, t=1,... k.



Thus ux(M) = b1, with b. the smallest b for which some z exists that satisfies all these
constraints. Letting § = b~! and removing the assumption that « has nonzero components,

one obtains the following results for structure (2.2), a special case of Theorem 2.1 below:

(M) = 0 if S(M) =10
Hx T | max{8: ||Q.Mz| > 6||Q.z|,||QcMz| > 0]|Qcz| for somer € Sx(M)} otherwise.

with
Sx(M)={z € 0B : 7;(Mz); = zi(Mz);, i,7j=1,..., kr} . (my=mc=1, mc=0)
Note that the constraint
Zj(Mz); = z2;(Mz);, t,j=1,..., k;
can be equivalently expressed as
cIMEEYy = 2HE Mz 4,5 =1,..., k.
where E%¥ is any n X n matrix whose only nonzero entry is in position (7,J), or as
B MY Ge = 27GMH 2 for all G € {block diag(Gy,, O)}

where Gy, ranges over the set of all k. x k, complex matrices or equivalently over the
set of all k, x k, Hermitian matrices (as any complex matrix M can be decomposed as
M = My + jM,, with My, M, Hermitian).

2.2 General Case

It is readily checked that repeated complex scalar blocks (m, > 0) imply constraints
of the form (to be compared with (2.6) above)

(Mz);  (Mz);

T, z;

with ¢ and j ranging over indices corresponding to the block under consideration. With
this in mind, extension to the case of a general block structure presents mostly notational

rather than conceptual difficulty. Consider the projection matrices @y, ¢ = 1,..., m,

defined by

Qq = block row (Ok,xkys---> Okyxkeor>digs Okyxkgrr- > Okgxbm)
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where, for any positive integers k, k', Oy is the k X k zero matrix and Oy is the k x k'

zero matrix. Also, for ¢ = 1,..., m, + m,, consider the index set J, defined by

g—1 q—1 q
J, = {ka+1, Y okp+2,.., Zk,,} .
=1 p=1 p=1

The result obtained in Subsection 2.1 is then generalized as follows (see proof in Appendix
A).

Theorem 2.1. For any matrix M and associated structure K,

(M) = 0 if Sk(M) =10
s T | max{f: ||Q,Mz| > 6||Qqz|,¢ =1,...,m for some x € Sk(M)} otherwise
(2.7)
with
Sk(M) = {IL € 0B : z;(Mz); =T;(Mz);, (i,5) € U Ty x Jy;
q=1
My+me
:UZ(M:E)] = Q?J(M.’L'),, (7'7]) € U J‘I x JQ}

qg=m,+1

1

Formula (2.7) for px(M) amounts to a constrained maximization over 8 and z in
IR x €". It has some definite computational advantages over the formula defining (M)
m Definition 1.1. The number of variables is limited, the objective and constraints are
mexpensive to evaluate and, after squaring all the norms, objective and constraints become
smooth. However, again, (2.7) may have local maxima which are not global and it is not

clear whether the global maximum can be easily obtained.

Remark 2.1. Finding a point z € Sx(M) may not always be simple. Yet, in the following
two cases, such a point is readily available: (i) if me > 0 then 2 € Sx(M) whenever
2] =1and z; =0foralli € Jg, ¢ =1,...,m,+ my; (i) if M has a real eigenvalue, then

© € Sk(M) with z any corresponding unit length eigenvector. []

Remark 2.2. It should be clear that in the purely real case, i.e., when M is a real matrix

matrix and m, = m¢ = 0, (2.7) still holds if z is restricted to be real. [

Remark 2.3. Some of the constraints defining Sx(M) may seem to be redundant. In

fact, it can be shown that expression (2.7) is no longer valid if any of these constraints
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is removed but that for a generic matrix M (in particular, for one with no zero entries),

roughly 25% of the constraints are indeed redundant. []

Remark 2.4. Following [3], let us define the spectrum of M with respect to K as
spe(M) = {A € Xx : det(M — A) = 0}

and let
0 if spc(M) =10
yi(M) = sup o(A) otherwise.
AGSPIC(M)

Then it is simple to check that

ye(M)=sup {6:]Q,Mz| =6,|Q.z|,8 = 6,¢g=1,...,m for some z € Sxc(M)}
98>0

(2.8a)

if the feasible set in (2.8a) is nonempty, and
(M) =0 (2.8b)

otherwise. Clearly (2.8) is very similar to (2.7). Yet, as pointed out in [3], while v (M) =

i (M) if m, = 0 (no parametric uncertainty), equality does not hold in general, but rather
(M) < px(M) . (2.9)

1

In the case when m, = 0, Sx(M) can be expressed in a simple form, to be used in the

following sections.

Proposition 2.1. Let Gx be the family of Hermitian matrices
G = {block diag (G1,..., Gm,, Ok s1s-+-» Okn): Gq = GH € Cr*Fa}
and let £x be any basis for Gx. Then

S(M)D{z€dB: z*(M"G—-GM)z VG e Gk}

5)
B S (2.10)
—{z€dB: 2"(M"E-EM)z VE € &}

If m, =0, then Sx(M) is equal to the right hand side of (2.10). [}
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3. Interpretation in Terms of the Multiform Numerical Range

Formula (2.7) leads to a characterization of the structured singular value in terms
of the multiform numerical range of some matrices. The multiform numerical range (or

t-form numerical Tange) of a t-tuple of n x n Hermitian matrices Ay,..., Ay is the set
W(Ay,...,A) = {f(z) : =z € 0B}
where f: C" — IR’ has components
fo(z) = :cHAqx, g=1,...,t.
First suppose that m, = m, =0. For a € R, let
Ay(0) =aQlQ, — MHQTQ,M, ¢=1,...,mc, (3.1)
and let Wi(a) be the mo-form numerical range W(A4;(a), ..., Ame (@)). Then?
(M) = inf (Va0 ¢ Wie(a) + RE<) (my = me = 0)(3.2)
with
Ry ={veR™ :v,20, ¢=1,...,mc}.
This follows rather directly if one rewrites the constraints in (2.7) as

eHA,(00)2 <0, ¢=1,...,mc.

Suppose now that m, #0. Forg=1,...,m (m =m, + m¢) and a € R, let

Ag(a) =aQTQ, — MTQT QM

and for e =1,..., Zf k) le

1=1

Amiq(a) = j(MHEq - E,M)

where the E,’s are the elements of a basis Ex of Gk taken in some arbitrary order, and where
the argument « is used for the sake of uniformity of notation. Then A, (a) = Ag(a)H,

g=1,...,s, with
my
3:m+2k1~2,
=1

1 A related result was obtained in [30].
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and px(M) = 0if Sk(M) = 0 and

pr(M) = né%{\/a: eH A () <0, ¢=1,...,m}
a20

otherwise. Denoting by Wi(a) the multiform numerical range associated with A;(«), ...,

As(w), ie.,
Wi(a)={veR*:3z € 0B s.t. v, =2 A, (a)z, ¢=1,...,s},

we obtain the following result, to be compared with (3.2). Here the set P, C IR is defined
by
P = {v ER’: vg>0,g=1,...,m ;4 :0,q:m—|—1,...,s} :

Theorem 3.1.

pr(M) = é%fo{\/a 0¢ Wk(a)+ Pm} . (me = 0)

1

Let us now define, for any a € R,
cx(o) = min{N(v): v € Wi(a) + Pn }

where N(-) is any given norm in IR satisfying N(e,) < 1, with {e,} the canonical basis,
and let us consider the following algorithm.
Algorithm 3.1. (Computation of ux(M) when m. = 0)

Step 0. Set ag = 7%(M) and k = 0.

Step 1. Set ap41 = ar — cx(a).

Step 2. Set k =k + 1 and go to Step 1. [
A key property of ¢k () (see [30,31]) still holds here (see proof in Appendix A).
Proposition 3.1. cx(-) is continuous and, for any 8 > 0 and @ € R, ¢x(a+8) < ex{a)+p.
O

The following convergence result follows (see [30]).

Theorem 3.2. The sequence {ay} generated by Algorithm 3.1 is monotone nonincreasing
and

AIEI;o \OE = /LK(M) .

13



O

Algorithm 3.1 can bé implemented whenever Wi («) is convex. Since the multiform
numerical range of no more than 3 matrices is always convex (provided these matrices have
size at least 3 x 3) [32-34], this will always be the case when s < 3, i.e., in the case of 3
or fewer complex blocks (m, = 0,m. = 0,m¢ < 3) or 1 real scalar block and one or no

complex block (m, =1,k = 1,m, =0,m¢ < 1).

4. A Computable Upper Bound

Given any block-structure K, the corresponding structured singular value is no greater
than the largest singular value, as the latter corresponds to the least restrictive structure
K = (;;n) (see (1.3)). The following proposition, a consequence of Theorem 2.1 and

Proposition 2.1 (see proof in Appendix A), provides two intermediate bounds.

Proposition 4.1. For any matrix M and associated block-structure £,

pr(M) < (M) < vi(M) <7(M) (4.1)

where

0 if Sx(M) = 0

nic(M) = max ||[Mz|| otherwise

Z:ES)(;(M)

and
vic(M) = \/max {0, inf \[MHM + j(GM —MHG')]} .
Gegx

.

The following theorem is a direct consequence of (1.4) and Proposition 4.1.

Theorem 4.1. For any matrix M and associated block-structure X,
< i "< 1< inf @ D™y 4.2
(M) < Dlélglc n(DMD™1) < Dlél'g;c vk(DMD™ ") < Dléljlgn a(DM ) (4.2)

3

Theorem 4.1 gives two upper bounds which are less conservative than Dien’g a(DMD™1).
K

However, since max IDMD~'z|| may have local maxima that are not global,
ZES)C(DMD_l)

attempts to evaluate nx (DM D™!) may yield strict lower bounds on this quantity and this
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may result in underestimation of px(M). Fortunately, the second upper bound in (4.2)

does not suffer from this shortcoming. Indeed, we can write

. J __1 _ .
Dlen%,c vic(DMD™) = \/maX{O,DE'DLn,fC.?EQn F(D,G)} (4.3)

where F' : Dk X Gk — IR is defined by
F(D,G)=X[MEMp + j(GMp — MEG)) (4.4)

with Mp = DM D=, Thus for any D € Dx, G € Gk, unless F(D,G) < 0 (in which case
px(M) = 0), \/F(D,G) is an upper bound for ux(M). The same upper bound can be

obtained by means of a computationally simpler problem as seen next. For any « € R let

®, : Dk x Gk — R be defined by
3,(D,G) = \MIDM + j(GM — MPG) - aD]. (4.5)
Proposition 4.2. (i) For any D € Dk, G € G,

F(D,G) = maﬁ{a : ¢o(D*, DGD) > 0},
ae

which is the only value « for which ®4(D?*, DGD) = 0. (ii) Moreover

inf  F(D,G) = inf  max{a:®,(D,G) >0} .
DeDx,GeEGK DeDx,GeGk ocR

1

Notice that @4 is the composition of a convex function (A) and an affine function, and

thus is convex. It can be shown that any local minimizer (D, G) for

inf max{a : ®4(D,G) > 0}
DeDk,Gebk velR

is global and this problem can be solved by means of a simple algorithm [35].

Finally, there are noteworthy instances where the new upper bound is equal to the
structured singular value. The next proportion establishes a sufficient condition on @, for

this to hold.
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Proposition 4.3. Let (D,,Gx) € Dk x Gk and let
a, = max{a: P4(Dy,G.) > 0}.

If ®,, is differentiable at (D., G,) with vanishing derivative, then

pc(M) = min ve(DMD™) = vi(DY2 MDY = \/max{o,F(Di”,D:l/?G*D:l/?)}

where Di/2 is the positive definite square root of D, and D,ﬁ_l/2 is its inverse. []
An important case where the conditions of Proposition 4.3 hold is as follows.

Theorem 4.2. Suppose that 5 inf F(D, @) is achieved, say at (ﬁ, G), and that the

Dk ,GeGx
corresponding largest eigenvalue in (4.4) is simple. Then

px(M) = inf ve(DMD™) = v(DMD™) = \/max{0, F(D, G)}.

5. Correspondence with the Linear Fractional Transformation Approach

In (3], it is shown that in the case of nonrepeated real scalar blocks (kg = 1, ¢ =

1,...,m,), given a > 0, a sufficient condition to insure that px(M) < « is that,
. . — |- 2\1/2 M -1
inf inf F|jC+(I-C*)/"*Dl— |D|<L1 (5.1)
DePx Celx «
where

Cx = {diag(c1,c2,.--ym,,0,...,0) 1 ¢c; € (—1,1)} .
Using the bijection from (—1,1) to R

c

V1—c?

it is easily checked that condition (5.1) is equivalent to

Ct———)g:

inf inf T [(D(—A{) D™ 4 iOYI+GH™?| < 1. (5.2)
o

DeDx Gegk

The following proposition, which holds whether or not there are repeated scalar blocks,

connects (5.2) with (4.3).
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Proposition 5.1. Let o > 0. Then (5.2) holds if, and only if,

inf inf F(D,G)<a®. (5.3)
DeDx GeG

Moreover, the infimum is achieved in (5.2) if, and only if, it is achieved in (5.3). []

Thus, (5.1) implies ux(M) < « in the general case, provided Cx consists now of Hermitian
block diagonal matrices in the place of the scalars, and the infimum of all positive a’s
satisfying (5.1) is identical to the second upper bound in (4.3). The advantage of (4.3) is
that it has much better computational properties. The characterizations in (5.1) and (5.2)
may still be useful in the context of u-synthesis, which uses the upper bounds and He,

optimal control to synthesize controllers. This is under investigation.
6. Examples

The main result of this paper is that obtained in Section 4 of a computable upper
bound to the structured singular value with respect to a structure involving both complex
blocks and real scalars. It was pointed out that the new bound is in general sharper than
that of formula (1.5) corresponding to the assumption that all uncertainties are allowed
to take on complex values. The purpose of the numerical experiments reported here is to
illustrate this last statement.

We begin with an example that can be given some engineering motivation. Although
a complete tutorial on the use of u in analyzing control systems is beyond the scope of
this paper, this example illustrates some of the key issues. Also, it is an example where
the correct answer for real perturbations is known, so we can compare this with what is
obtained using the methods of this paper. We begin with the transfer function model

WS

g(‘b) - Z g2 + 2<iwi3 -}—wzz(l + 7’251)

i=1

with «;, w;, r; and (; all positive constants, and the §; representing real perturbations
which have been normalized such that —1 < ¢; < 1.

Several different physical problems could motivate a model of this type. A mechanical
system consisting of an interconnection of n masses and springs would be the simplest
example. Uncertainty in the value of the spring constants would lead naturally to per-
turbations entering in this way. A very similar problem would be the first n modes of

a flexible structure with uncertainty in the stiffness of the materials. In either case the
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numnerator dynamics are consistent with the assumption that the control input is a force
and the output is a velocity measurement at the same location as the force input. In the
flexible structure literature this is referred to as a collocated sensor and actuator. If this
were a model of a flexible structure to be used in control design, we might want to consider
uncertainty in the damping as well, and would probably add additional perturbations to
cover unmodeled modes.

Another way that an uncertainty description like the one above could naturally arise
is when the §; do not represent any particular known physical mechanism, but are used
to capture the regularities that might be found in input-output data. In any case, it is
important to recognize that, strictly speaking, parameters and perturbations are mathe-
matical objects that occur in our models, not in the physical systems being modeled. We
use explicit representations of uncertainty because we want models which are useful for
control design, but coming up with such models for actual physical systems can often be
quite challenging. For this example, we’ll take n = 3, w1 = .5, ws = 1, wg = 2, and
(; = .01, a; = .2, r; = 1 for all 7. This would correspond to a fairly lightly damped system.

Suppose we use a unity feedback system with a disturbance occurring at the same
location as the force input. Then denoting the output by y, the input by w, and the

disturbance by d, we get

y(s) = g(s)(u(s) +d(s))

u(s) = —y(s)

Suppose we are interested in internal stability of this feedback system as the §; vary. It is
easily verified by examining the Nyquist plot for g that
(1) the system is stable if, and only if §; > —1 for all ¢; if for any ¢, §; = —1 then the
system has an open loop pole-zero cancellation at s = 0 and cannot be stabilized.
(ii) the magnitude (in the Ho, sense) of the closed loop transfer function from d to y is
less than 1 for all s = jw if §; > —1 for all 3.
To apply the methods in this paper it is necessary to obtain the interconnection

structure of Figure 1 with

Hll(S) H]Q(S)

H(s) = [Hm(s) Hn(s)} =C(sI-A)™'B,
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where Hy1(s), H12(s), Ha1(s), and Haz(s) are 3 x 3, 3 x 1, 1 x 3, and 1 x 1, respectively,

and where

r 0.00 1.00 0.00 0.00 0.00 0.00 7

—-0.25 -0.11 0.00 -0.20 0.00 -0.40
0.00 000 000 100 0.00 0.00
0.00 -0.10 -1.00 -0.22 0.00 —0.40
0.00 000 000 0.00 000 1.00

L 0.00 -0.10 0.00 -0.20 —-4.00 —-0.44]

r 0.00 0.00 0.00 0.007

-0.25 0.00 0.00 1.00
0.00 0.00 0.00 0.00
0.00 -1.00 0.00 1.00]”’
0.00 0.00 0.00 0.00

[ 0.00  0.00 —4.00 1.00

1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.10 0.00 0.20 0.00 040

C =

Computation of A, B and C is tedious but straightforward, and easily done by computer.
For a discussion of how to obtain these interconnection structures for general problems,
see, for example [36].

Concerning the robust stability question, the Small gy Theorem [2] asserts that, for
given 6 > 0, the system in Figure 1 is stable for all §; satisfying —§ < é; < ¢ if, and only
if,

sup px(Hi(jw)) < 1/6

with the block-structure £ = (1,1,1;;). In view of (4) in the foregoing discussion, it follows

that
sup prc(Hi1(jw)) =1 . (6.1)

Computation of inf pep, vic(DHiy(jw)D™!) using the algorithm of [35] reveals that

. . -1y )1, fw=0;
pid, VoD () D7) = {0, w0,

Theorem 4.1 together with (6.1) thus implies that

. 1, fw=0;
NK(HII(J“J)):{(), ifw;éO.
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(Note that the upper bound is thus exact at all frequencies.) This example illustrates that if
my # 0, then px (M) is not necessarily a continuous function of M. As seen on Figure 2, it
also illustrates that the “complex” upper bound,® corresponding to the structure (;;1,1,1),
can be quite poor an estimate of the “real” structured singular value.

The Small ¢ Theorem also gives a precise characterization of robust performance.
Namely, the system in Figure 1 is stable for all §; satisfying —6 < é; < 6 and the worst-
case performance (i.e., the worst-case Hy, gain from d to y) is strictly less than § if, and
only if,

sup i (H(jw)) < 1/8

with the augmented block-structure K = (1,1,1;;1). In view of (1) and (:7) in the discus-

sion above, it follows that
sup o (H(je)) = 1
w

The results of computation of infpep, vi(DH(jw)D™!) for w > 0 using the algorithm
of [35] are plotted in Figure 3. Again it is seen that the supremum over frequency of
this upper bound is identical to that of the structured singular value.® For comparison, a
plot of the “complex” upper bound, corresponding to the structure (;;1,1,1,1), is shown in
Figure 4.

The final examples involve square transfer matrices H(s) = C(sI — A)"'B + E of
dimension 2 X 2 and 5 X 5 and with A, B, C and E generated randomly. We computed the
upper bound to pux(H(jw)) obtained in Section 4 on a grid of values of w (logarithmically
spaced, with 20 points per decade) for the following structures K, all consisting of scalar
blocks only: (7) all scalars are allowed to take on complex values, (77) some of the scalars are
restricted to be real, and (4i7) all the scalars are restricted to be real. In the 2 x 2 case (two
scalar blocks) the structured singular value in case (ii7) was also computed exactly (it can
be evaluated by finding the roots of a system of two bilinear equations in two variables). A
typical sample of the results we obtained is displayed in Figures 5 to 17. The four curves

in Figures 5 to 14 correspond (top to bottom) to structures (;;1,1), (1;;1), and (1,1;;) (for

equal to the SSV in this three block case

¢ Computation of pg(H(jw)) for all w was not attempted as it requires, for each

frequency, computation of the global maximum of a constrained optimization problem of

the form (2.7).
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the bottom two curves) respectively.” In Figures 15 to 17, the three curves correspond to
structures (5;1,1,1,1,1), (1,1;;1,1,1), and (1,1,1,1,1;;), respectively. For validation purposes,
the matrices corresponding to Figures 5 and 15 are given in Appendix B.

Clearly, in most cases, the upper bound derived in Section 4 is significantly less conser-
vative than that obtained by assuming possibly complex uncertainty. Note that in many
cases (Figures 5, 7, 8, 10, 13) the maximum over frequency of the new upper bound is

essentially identical to the maximum over frequency of the exact structured singular value.

7. Future research

The main result of this paper is the computable upper bound in (4.5) for p with struc-
tures having both real and complex blocks. While this yields a tremendous improvement
over the upper bound in (1.5), it still does not give an exact method for computing . A
lower bound for 4 can be found from (2.7) by local search,® but since (2.7) may have local
maxima which are not global this may not yield u. It would be reasonably inexpensive
to compute these two bounds and, obviously, x4 would be between them. However, it is
possible that the bounds could be far apart.

What are the prospects for a general, exact, computationally attractive method for
computing p for real perturbations? One promising possibility is suggested by a research
direction initiated by de Gaston [6-8]. This work begins with an upper and lower bound
which may also be far apart. The bounds are refined, however, by partitioning the domain
of the perturbations and computing the bounds for subdomains. While the growth of this
tree of subdomains can be exponential, it is conjectured that the number of subdomains can
be kept manageable by standard tree-pruning involving comparing the bounds of different
domains. Unfortunately, the bounds themselves have exponential explosion. A promising
research direction is to combine a subdomain partitioning scheme with the bounds in this
paper. This would eliminate the exponential explosion in the computation of the bounds.
Then the critical issue would be the growth in the number of subdomains on which the
bounds would be computed. If a scheme could be found to keep this growth manageable,
it would lead to the desired efficient, general, exact method of computing p. This idea is

currently under investigation.
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Appendix A.

The following lemma is used in the proof of Theorem 2.1 below.

Lemma A. Let § > 0, 2 € C", and let ¢ € {1,..., m, + m.}. Suppose that
1@y Mz = 6[|Qqz| . (A1)
Then (i)
wz(m)J = fj(M:l:)i, 1,7 € Jq (A.Z)

if, and only if, for some § € [-1,1],
§(Mz); = bz;, 1 € Jq (A.3)
and (ii)
zi(Mz); = z;(Mz);, 2,7 € Jy (A.4)
if, and only if, (A.3) holds for some § € C, |6] < 1.

Proof. We prove the first equivalence (the second one follows similarly). First suppose
(A.2) holds. If (Mz); = 0 for all ¢ € J, then, in view of (A.1), z; = 0 for all 7 € Jy, so that
(A.3) holds with any 8. Suppose now that (Mz);, # 0 for some iy € J, and let

b=y,
= (o),

20

(A.5)

Let 2 € J,. If (M2); = 0 then it follows from (A.2) with (¢,7) = (¢,%0) that z; = 0, so that
(A.3) holds for i. If (Mz); # 0, then using (A.2) with (¢,7) successively equal to (z,%0)
and (%9, ), then (A.5), one gets

Ox; _ 0z;, _ Oz,
(Mz)i — (Mz)i,

(Mx)io =t

ig
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so that, again, (A.3) holds for . To prove the converse, suppose now that (A.3) holds.
Let 1 € J,. If (Mz); = 0 then (A.3) implies that z; = 0, so that (A.2) holds for ¢ and any
J € Jg. Finally, for any (7, 5) such that (Mz); # 0 # (Mz);, (A.3) yields, since § is real

9.’17,' — 6= 9:Ej N 9.75]‘
(Mz); (Mz);  (Mz);

so that (A.2) holds. [

Proof of Theorem 2.1. Let 7 (M) denote the right hand side in (2.7). We first show
that pux(M) > Te(M). If Sk(M) = 0, it holds trivially. Otherwise, the feasible set for
(2.7) is nonempty. Thus let (6, z) be feasible for (2.7). We show that pux(M) > 6, which
establishes the claim. If § = 0 this holds trivially. Thus assume 6 > 0. In view of Lemma
A, there exists 6; € [-1,1], ¢=1,...,m;, 65 € C, 65| <1, ¢ =1,...,m¢, such that

5;(M$), = fz; Vie Jq

and, for ¢ = 1,...,m,,

5;(M:C),' = fz; Vie er-i-q

le.,

6,QeMz = 0Qz, g=1,...,m,,

5;er+qM$ = 0Qm, +¢7, g=1,...,m¢.

Feasibility of (6,z) for (2.7) also implies that there exists AS € CFmrtmetaxbmrtmeta
o(AS) <1, such that

C
Aq er+mc+qM:v :ng,.-i-mc—i—qm; q: 1,...,mC .
Thus, the matrix

1
A = 4 block diag (67 Tkys - 60 I, 85T 6% I AL, A )

mp41?°° myptme?

is such that A € Xk, 7(A) < 67! and AMz = z. The latter implies that det(I—AM) = 0,
so that px(M) > 6. Conversely, let us now show that ux(M) < Tx(M). If ux(M) =0,
it holds trivially. Thus suppose ux(M) > 0. Let § = ux'(M). By definition of pux(M),
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there exists 65 € R, ¢ = 1,...,m,, é;
g=1,...,m¢g, with

|61 < 1, g=1,...,m,,
|5§|§1, g=1,...,m.,
—AC _

o(A;) <1 g=1,...,mg,

such that

A = 6 block diag (8] Ir,, ..., 87, I, 61 8¢

Mme

Iy

met17° " myptme?

satisfles det(I — AM) = 0, i.e., for some z € dB,

AMz =z .

€ C, q = 17---,mc, ch € Ckmr+mc+qumr+mc+q,

(A.6a)

(A.6b)

(A.6¢)

AL, . A ) € Xk(6)

(A7)

We show that (671, z) is feasible for (2.7), thus completing the proof. From (A.7) it follows

that
, 1
6QeMz = ngac, g=1....,m,,

1
5;er+qM$ = Ser+q$a g=1,...,mc,

1
c
AL Qmpm Mz = ng,+mc+q$, ¢=1,...,mc .

In view of Lemma A, it follows from (A.8) that, for ¢ = 1,...,m,
zi(Mz); = 7j(Mz); V5 €J,
and, for g = 1,....m,
zi(Mz); = z;(Mz); Vi, € Jm,4q
and thus, z € Sx(M). Finally, (A.6), (A.8), and (A.9) imply that, for ¢ =1
1Mz > 2@,z

|

Proof of Proposition 3.1. Defining ¢ : 0B x IR — IR® by
pi(z,a) =a@Aj(a)z i=1,...,s,
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oune has, for any real «,
c(a) = min{N(p(z,a) +v) : 2 € IB, v € Pn} .

Since, when a varies locally around any given & and « varies over 0B, ¢(z, @) is bounded, it
is clear that, for o around &, v can be restricted to lie in some compact subset V(&) of Pyy,.
Continuity of ¢(-) at & then follows from continuity of ¢ and compactness of B x V(&).
Now, let 8 > 0 and o € R. From the definition of A;(a),7 =1,...,s, it follows that, for
any = € 0B,

Lp(ac,a + ﬂ) = 90($>a) + ﬂQ(J?)
where Q(z) € R® is given by
[ 1Q1=]? T

o | [Qmall?
Q) = | 19n

Thus we have :
ot B) = mig Np(a,a+ ) +v)

vEPm

— min N(p(e,a) +v + BQ(x)) .

z€OB
vEPm

Using the triangle inequality we obtain, since 8 > 0

(e + ) < min [N(p(z, @) +v) + BN(Q(2))] -

Since the norm N satisfles N(eq) < 1, we have, for z € 0B
NQ@) < D N(IQuzl*e,) < 3_l1Quel” =1
g=1 g=1

and thus

c(a+8) < min [N(o(z,a) +v) + 8] =cla) + 5 .

vEPm
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Proof of Proposition 4.1. The first inequality holds trivially if Sx(M) = 0. If not, sup-
pose that (ux(M),z.) solves (2.7). Then, for ¢ = 1,...,m, ||Q@Mz.| > px(M)||Qqz«,

so that

1Mz % = 1QuMai]® > pi(M) Y 1Qqz|® = pi(M) -
¢=1 g=1

Since z. € Sx(M), this first inequality in (4.1) holds. The second inequality also holds
trivially if Sx(M) = 0. If S (M) # 0, then, in view of Proposition 2.1, for any & € Sx(M),
G € glC)

| Mz|*> = 2" MY Ma = e [MPIM + j(GM — MGz < NMPM + j(GM — M7 G)]

and thus ) )
M) = Mz
nic(M) ,cmax | Mz

< inf XMHEM +j(GM — MEG)]

T Gegk

< max{0, Giélé,c ANMEM + j(GM — MEG))}

= vi(M) .
Finally, the last inequality in (4.1) is clear since Gk contains the zero matrix and since
FHM) = MMEIM). O
Proof of Proposition 4.2. First, (4.4) can be rewritten as

F(D,G) = m%ﬁ{{a AMEMp + j(GMp — MEG) — aI] > 0}
aE

= maﬁ{a ND'MED*MD™ + j(GDMD™! — DM DG) - al] > 0} .
aE

Next, since every D € Di is nonsingular, it follows that

F(D,G) = lllklﬁ}{{a NMED?M + j(DGDM — M2 DGD) — aD?*] > 0} .
o€

= max{«a : ®,(D?, DGD) > 0}.
«elR

Also, for given (D, G) € Dx x Gk, since D > 0, ®(D, G) is strictly decreasing as a function
of . Thus (i) holds. Claim (ii) follows from the fact that the map Dx x Gk — Dx X Gk
defined by (D, G) — (D?,.DGD) is a bijection. []

Proof of Proposition 4.3. From the fact that the derivative a ®,, at (D.,G.) exists
and vanishes, it follows that, for any D € Dy, G € Gk,

%X[MH(D* +tDYM + j(G M — MEG,) — au(Ds +tD)]| =0
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and

%;\[MHD*M + j((Gx +tG)M — ME (G 4+ tG)) — D]

t=0
Using a classical result on derivatives (or generalized gradient) of eigenvalues of Hermitian

matrices (see e.g., [37]), we may rewrite these two equalities as

e# LIMH(D, £ 1D)M + (GM = MPG,) = an(Ds +1D)

i 2. =0  (A.10)

1=0

and

d
2 = [MUD. M + j(Gy +1G)M — MY (G, +1G)) - a.D.]

where z, is any unit length eigenvector corresponding to the largest eigenvalue of
MEDM + j(G.M — MPG.) — a.D. .
(A.10) and (A.11) yield respectively
sH(MYDM — a,D)z, =0 (A.12)

and

eH(GM - MGz, =0 . (A.13)

Since D € Dk is arbitrary, (A.12) implies that
1Q,Mz.||* = au|Qqz«]l?, g=1,....m (A.14)

and, since G € Gk is also arbitrary, together with (A.13) this implies that (z.,/ay) is
feasible for (2.7) (note that (A.14) implies that «, is nonnegative). Thus /a, < px(M).

On the other hand, in view of Proposition 4.2 (ii), the definition of a. implies that

Oy >

> iwf  F(D,G)
DeDyx ,GeGk

and it follows from (4.2) and (4.3) that /o > px(M). Thus /oy = ux(M). The claim

then follows from Proposition 4.2 (i).
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Proof of Theorem 4.2. Let (D, Gx) be a minimizer for F(D, G) and let a, = F(D,,G.).
Since the largest eigenvalue of (M Mp, + j(G«Mp, — M G.)) is simple, we have

rank (ME Mp, + j(G.Mp, + M{{ G.))=n-1
Given D# > 0, this implies that

vank (MY DM + j(D.G.D.M — M®D,G.D.) — aD,)=n— 1. (A.15)

On the other hand, in view of Proposition 4.2 (i),
®,.(D? D,G.D,) = 0. (A.16)

It follows from (4.5), (A.15) and (A.16) that the largest eigenvalue of the matrice in
(A.15) is simple and thus ®,, is differentiable at (D%, D,G.D,). Since (D.,G,) mini-
mizes F(D,G) it follows from Proposition 4.2 (i) that the derivative of ®,, vanishes at
(D?,D,G,D,). The claim then follows from Proposition 4.3.

Proof of Proposition 5.1. We show that (5.2) holds and the infimum in (5.2) is achieved
if, and only if, (5.3) holds and the infimum in (5.3) is achieved. Extension to the case when

the infima are not achieved is left as a simple exercise. Specifically we show that, given
D € Dk, G € Gk,
M
& [(D(--)D“1 + I+ G <1
o

if, and only if,
F(D,aG) < a?,

(note that G' € Gk if, and only if, aG € Gk). This equivalence follows from the following

sequence of equivalent inequalities, where the notation Mp = DM D™! is used:
d [(D(ﬁ)u—l +jGY(I + G2)—1/2] <1,
«@
MN_ 1. 2\—1/2 " MY 1. 2\—1/2
(D — D7 G+ G) (D{—)D + JG)I + G?) <I,

()] [o(E)o ] <11
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[(D(‘M)D—l +jG)]H [(D (%)D‘l +jG)] —-G*<I,

(M Mp + j(aG)Mp — ME(aG)) < T ,

T(MEMp + j((aG)Mp — ME(aG))) < a? .

m

Appendix B.

The A, B, C, E matrices that were used to generated Figures 5 and 15 are as follows.

For Figure 5,

—8.0902 x 10~2  1.2686 x 10~! —3.5762 x 10~! —4.8575x 10~% —3.7808 x 10~}
1.8962 x 10~1  4.1289 x 10!  6.1862 x 10~!  1.0322 x 10!  7.7984 x 107!
A= | —-4.8243 x 10! 4.1642x 10~}  2.4450 x 10~!  —5.6185 x 107! —4.8248 x 107!
—1.8448 x 10~3  2.4564 x 10~}  —6.5441 x 10~2  6.7149 x 10~!  —5.2891 x 10~*
71872 % 1072 —3.3682 x 1071 1.2945 x 10!  5.4038 x 10!  —4.4566 x 10~?
2.2105 x 1072 —1.4448 x 10~}
—4.3877 x 1072 4.2382 x 1071
B=|-83498 x 10~! 3.9127x 107! |,
~1.4370 x 107! 2.4036 x 107!
1.8585 x 1071 —1.7599 x 1071
- —5.0249 x 1072  2.3438 x 10~®  6.4024 x 107! —1.8836 x 10~* —1.3455 x 10"
T —3.6203 x 10~} —2.1268 x 10! —2.3698 x 10! —6.4769 x 10~' —1.6309 x 107! |’
- 2.3845 x 107! —8.0438 x 107!
~ 13.8387 x 107! 6.8429 x 107! |’
and for Figure 15,
r—4.5509 x 10~1  5.3934 x 107!  —9.0161 x 10~3  5.6126 x 10~'  2.4023 x 107! 7
—4.9641 x 1072  —4.0575 x 107!  —-3.3601 x 10~* —5.8569 x 10~! —6.1047 x 10~*
A= | —-28742x10~2 —2.6343 x 10~2 2.1769 x 102  1.7907 x 10~  7.2380 x 10~*
—1.5319x 1071 2.3885 x 10~} —2.7023 x 107!  1.9057 x 107! 2.9318 x 107!
| 52573 % 10~ 81813 x 10~}  6.1384 x 107! 24381 x 102  4.9339 x 107! ]
F—2.6256 x 10~! 25961 x 10~!  8.8551 x 107!  —6.4732x 1072  6.3857 x 1072
5.1035 x 10~!  4.8261 x 1072 —1.5665 x 1071 —4.1377 x 10~!  2.4904 x 10~
B = |—87380x 102 =1.3578 x 10~ —1.8021 x 10~! 6.1830 x 10~*  7.3116 x 10!
—3.7540 x 10~! —5.2973 x 10~!  3.7967 x 10~!  3.1948 x 10~!  —3.4212 x 107!
| 1.5306 x 10~ —5.9548 x 10~}  5.1851 x 10~!  3.0709 x 10~'  1.0449 x 107! |
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r—1.3036 x 10~! —6.6165 x 1072  4.3862 x 107! 6.6575 x 1072 9.5535 x 102
—6.8446 x 1071 —3.0868 x 10~!  1.3999 x 10~'  —4.5997 x 107! 1.1329 x 10~*
C=| 43439 x 107! 3.1450 x 1072 —2.2062 x 10! —5.4526 x 107! 2.3548 x 107! | ,
3.9745 x 1071 4.0280 x 101 —3.0315 x 107!  7.0834 x 10~!  5.4871 x 101
[ —1.0055 x 1071 4.0313 x 10!  —3.5256 x 10~!  3.9585 x 102  4.4990 x 10~?
- 3.4802 x 107! 7.9979 x 1071 4.5178 x 10~!  —1.5375 x 101 —2.4380 x 107!
—2.8164 x 107!  —~1.2299 x 10~1  6.6314 x 107!  —2.6890 x 10~! —1.1213 x 10~}
E=1 27349 x 10~! —6.7474 x 10~' —4.5236 x 10~  3.7879 x 10!  —5.2324 x 10~!
—6.7545 x 10~'  —3.5034 x 10!  3.1562 x 10!  —7.0583 x 107!  3.4941 x 10!
L 2.4558 x 101 —1.9770 x 10! —1.8149 x 10!  6.9694 x 10~*  —2.2861 x 10!
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