TR-86-48

ETempo: A Clock Synchronization Algorithm for

Hierarchical IANs - Implementation and Measurements

by

Satish K. Tripathi and Shu-jen H. Chang

TR-86-48

ETempo: A Clock Synchronization Algorithm for

Hierarchical LANs - Implementation and Measurements
by

Satish K. Tripathi and Shu-jen H. Chang

This research was supported in part by the National Science Foundation under

grant 01R-85-00108.

ETempo: A Clock Synchronization Algorithm for
Hierarchical LANs - Implementation and Measurements

Satish K. Tripathi and Shu-jen H. Chang
System Research Center,
UMIACS, and
Department of Computer Science,
University of Maryland
College Park, MD 20742

Abstract

The Tempo clock synchronization algorithm is extended for hierarchical LANs. An
implementation of the new algorithm, ETempo, is presented. Because of the unavailabil-
ity of a two-level hierarchical LAN, it is emulated using a single LAN. The simulation
procedures and other design issues are discussed. Behavior of ETempo is measured for a

variety of parametric values.

1. Introduction

Synchronization of events is an important research area in a distributed system
[Lamp82]. The problem is hard in a geographically distributed system because the com-
munication delays are usually large and unpredictable. In a Local Area Network (LAN),
however, such delays are usually small and bounded. In this paper we address the issue

of clock synchronization in hierarchical local area networks.

Consider a large automated factory environment. Multiple computers may be
needed to coordinate the activities of various instruments and operations. An unfinished

part may move from one shop to another for work and this involves coordination and

~1-

synchronization among the shops. Time synchronization seems to be one of the essential

requirements in the factories of the fulure.

In an automated factory with multiple shops (Figure 1.1), each shop usually has a
number of workstations (robots, etc.) and these workstations are connected to each other
via a local area network. In addition to the workstations, the LAN also connects local
databases and provides connection to the outside world. A part under manufacturing
process may move from shop to shop before getting completed. Within a shop, the
activities at various workstations have to be synchronized to a fine level, so that when a
part arrives at a station the station is ready to work on it. When parts move from one
shop to another shop we still need workstations of the two shops to be synchronized.
Because a larger mechanical movement may be needed for the part to move from one
shop to another, the synchronization between two shops may not have to be at the same

level as within a shop. We assume that the shops are connected via a higher level LAN.

In this paper, we assume that a high level LAN is connected to nodes, which are
also connected to LANs at lower levels. We present an extension to the clock synchroni-
zation algorithm Tempo [Guse83], ETempo, to deal with two level hierarchical LANS.
ETempo is implemented on the local Ethernet, which emulates a hierarchical LAN, and

behavior of ETempo is measured for a variety of parametric values.

The Tempo algorithm uses a central controller to direct the synchronization activi-
ties. This is different from the other existing algorithms that adopt a distributed
approach for fault-tolerance. The algorithms proposed by Lamport and Melliar-Smith
[Lamp82| require a large number of messages for each synchronization round, which
somewhat limits the algorithms’ practical use. A more efficient algorithm is proposed by

Halpern, Simons and Strong [Halp83], which does not require a majority of nonfaulty

9.

\ Administrative
Databases
Qutside Link High Level LAN
@) Q 9
Q Q Q
LAN 1 LAN 2 LANN
]
O

o %

”E

7

V

\\\\\

|
%//ﬁ//ﬁ%/)

v

SHOP 1

SHOP 2

SHOP N

——> Conveyer Belt

Figure 1.1. Factory of the future.

processes. Authentication is a required feature of this algorithm, and O(n?) signatured
messages are exchanged at each round. Lundelius and Lynch [Lund84] also proposed a
fault-tolerant, unauthenticated algorithm. The messages exchanged at each round are
compatible with that of [Halp83], however, the size of adjustment is independent of the
number of faulty processes as is the case of [Halp83]. In the algorithm devised by Sri-
kanth and Toueg [Srik84|, not only logical clocks are synchronized, their rates of drift
from the real time can also be minimized to the drift rates of the underlying hardware
clocks, thus “optimal accuracy” is achieved. The two algorithms proposed by Marzullo
and Owicki [Marz83| use a different theoretical framework and error model, which makes

comparisons with other work difficult.

Though the distributed algorithms may handle arbitrary faults, extension of any of
these algorithms to work in a hierarchical network seems rather complicated, especially if
the number of nodes in the hierarchical network is not small. Since Tempo’s centralized
approach can easily be incorporated in a hierarchical LAN] it is selected for implementa-

tion.

In Section 2, we present the Tempo and ETempo algorithms. Section 3 discusses
the implementation issues of ETempo. A simulation methodology for measurement is
also outlined. In Section 4, we present measurement results for a variety of parametric

values. Finally some concluding remarks are given in Section 5.
2. The Clock Synchronization Algorithm

2.1. The Tempo Algorithm

The Tempo algorithm [Guse83] adopts a centralized approach to synchronize

clocks. An elected “master” process polls each “slave” process to estimate the clock

-4-

difference between the hosts on which the two processes are running. As the clock
differences are measured, a network average clock skew is computed using a fault-
tolerant averaging function. This function finds the largest set of clocks that did not
differ from each other more than a predefined quantity and averages the time offsets of
these clocks. This measure prevents clocks with large drift rates from adversely affecting
the other clocks. Each clock is then corrected for an amount equal to the difference
between the network average skew and the clock skew between the slave’s and the
master’s clocks. In case the master process fails, detected by slave process not receiving
any message from the master over a long period of time, the slave processes will elect a
new master. The operations assumed by the master and slave processes are outlined in

Figure 2.1.

2.2. The ETempo Algorithm

The Tempo algorithm can easily be adapted to a two-level hierarchical network
[Chan86]. Clocks in the individual low-level LAN can be synchronized with the Tempo
algorithm, and clocks of the “low-level masters” can be synchronized using the ETempo
algorithm. Since each low-level LAN has a master process to direct local synchroniza-
tion, these low-level masters are spokespersons for their networks and may elect a “mas-
ter of masters’”’ among themselves to be in charge of synchronization of their clocks using
ETempo. As the clocks of the low-level masters are synchronized through this “high-
level”” synchronization, local clocks of the individual low-level LAN may be asked to syn-

chronize with their master’s clock.

There is little procedural difference between the high-level and the low-level syn-
chronization except that a low-level master may wish to synchronize local clocks regu-

larly during the idle period between two high-level synchronizations. The operations of

Figure 2.1. Procedures of Tempo executed by the master and slave processes.

Master process:

LOOP
if this is time to start synchronization, do
BEGIN
poll each slave to estimate clock skew from master’s clock, deltq; ;
compute network average clock skew, netdelta ;
compute correction for each clock where corr; =netdelta —delta, ;
inform slaves to correct their clocks, and correct its own, if needed;
sleep until next synchronization round;
END
UNTIL time to quit.

Slave process:

set timer for election;
LOOP
if receiving message from master before timeout
BEGIN
process the incoming message;
reset election timer;
END
else
start election protocol and exit;
UNTIL ordered by master to quit.

ETempo are sketched in Figure 2.2. As in Tempo, a timeout mechanism is used to
detect node failure. If a low-level master fails, the slave processes of that low-level LAN
will elect a new master, the new master then synchronizes with the other low-level mas-
ters. If the high-level master fails, a new high-level master will be elected among the
other low-level masters (They are nontheless the slave processes for this high-level syn-
chronization). However, if a low-level network is disconnected, clocks in that network

will not be synchronized until that LAN is reintegrated.

-8-

Figure 2.2. Procedures of ETempo as executed by the high-level master and slave processes.
Master process:

LOOP
if it is time to synchronize local clocks, do
BEGIN
poll local clocks to determine clock skews;
compute average clock skew for the low-level LAN;
compute correction for local clocks and inform local clocks
to make adjustment;
END;
if it is time to synchronize with other low-level masters, do
BEGIN
poll each low-level master to determine clock skews;
compute average clock skew for the high-level LAN;
compute corrections for low-level masters and ask them to adjust;
make necessary adjustment and inform local clocks to adjust, too;
END
sleep until next high/low level synchronization round, whichever comes first;

UNTIL time to quit.
Slave process:

set election timer;
LOOP
if election timer expires
start election protocol and exit;
if it is time to synchronize local clocks, do
BEGIN
poll local clocks to determine clock skews;
compute average clock skew for the low-level LAN;
compute correction for local clocks and make clock adjustment;
END;
if receiving message from the high-level master, do
BEGIN
process the incoming message;
reset the election timer;
END;
UNTIL ordered to quit.

When a low-level master corrects its clock due to the high-level synchronization, it

has a few options as to whether to propagate this adjustment to other clocks in its

-

network. First, it may ask local clocks to immediately reset to their master’s time.
Secondly, it may choose not to propagate the adjustment but waits until the next low-
level synchronization round to synchronize the local clocks. Thirdly, it may ask the

other clocks to adjust by the same amount. The issue is discussed more thoroughly in

[Chan86].

3. The Implementation Issues

3.1. Environment of the Implementation

For a single LAN, we implement the Tempo algorithm on the local 10 MB-Ethernet
available at the Computer Science Department of the University of Maryland. The
implementation is on three hosts running UNIX 4.3 BSD, namely, GYRE, MIMSY, and

TOVE. Table 2.1 gives the machine specifications for these hosts.

A process is created on each of the three hosts for clock synchronization. The
implementation is based on the time server, the time ‘““daemon’, provided in the UNIX
4.3 BSD, in which the Tempo algorithm is implemented. Since the algorithm uses a cen-
tralized scheme, a master process must be elected. Processes communicate with each
other through socket, which is the basic data structure for communication between

hosts. In the implementation, datagram socket is used because the communication proto-

col supporting the other socket type, the stream socket, would usually incur long com-

Table 2.1 Machine Specifications of the Participating Hosts.

Name Type of VAX | Physical Memory | Number of Disks | Max. No. of Users
Gyre 750 5M 2 48
Mimsy 780 10M 6 112
Tove 750 5M 2 48

-8-

munication delay, especially when messages are lost and retransmissions are necessary.

3.2. The Time Synchronization Protocol

The messages exchanged by the processes are termed the “time synchronization
protocol” (T'SP) in the time daemon [Guse85a]. With some modifications to accommo-

date our study, the list of messages are:

TSP_ANY: matches any type of commands,
TSP_ADJTIME: informs recipient to adjust its clock,
TSP_ACK: generic acknowledgement,

TSP_MASTERREQ: asks for master’s name,
TSP_MASTERACK: master acknowledges master request,
TSP_MASTERUP: master informs slaves that master is up,
TSP_SLAVEUP: slave indicates to master that slave is up,
TSP_ELECTION: slave announces candidacy for master,
TSP_ACCEPT: non-candidate endorses support for candidate
TSP_REFUSE: rejects candidate,

TSP_CONFLICT: two or more masters present,
TSP_RESOLVE: resolves conflicts in election,

TSP_QUIT: master informs candidates to quit,
TSP_TIMEREQ: requests for logical clock time,
TSP_TIMEREPLY: reply the request for logical clock time,
TSP_STOP: master announces end of synchronization.

y

Using a particular sequence of these commands, an election protocol is defined.

3.3. The Election Protocol

There are two instances where the election protocol is used [Guse85b). First, dur-
ing system start-up a master process has to be designated to coordinate synchronization
activities. Second, a slave process, after a “long” period of wait receives no message
from the master, becomes a candidate for the master, and starts the second phase of the

election procedure.

The protocol for the first instance, illustrated in Figure 3.1, works as follows. Each
process broadcasts a MASTERREQ message at system start-up, if no MASTERACK is

received, the process assumes itself to be the master, and checks again if any

-9-

send MASTERREQ

no receive yes
ASTERACK ?
status = slave
no receive yes

MASTERUP ?

keep master’s id

status = master status = slave

—

send CONFLICT
to first master

Figure 3.1. Election of the master at system start-up.

MASTERUP message is in its received queue. If no MASTERUP message is received,
this slave process becomes the master. On the other hand, if a process receives a
MASTERACK message, it keeps the sending master’s identification and waits for some

specified time for other potential masters to respond. If more than one MASTERACK

-10-

message is received, this slave process sends a CONFLICT message to the first master
whose identification has been kept. The master process that receives a CONFLICT mes-
sage gains control over the others by issuing a RESOLVE command. Upon arrival of
this RESOLVE command, each potential master acknowledges reception of the message.
The master that has sent earlier the RESOLVE message then sends a QUIT message to
each of the masters that received the RESOLVE message. When a master receives a

QUIT message, it relinquishes the mastership.

The protocol for the second instance, depicted in Figure 3.2, is implemented in the
function “election”. Election is called by a slave when its election timer expires, i.e.,
when the slave has not received any message from the master over a prescribed period of
time. This slave process becomes a candidate for master and broadcasts an ELECTION
message. If a master process is alive and well, it sends a QUIT message to the candidate.
If a new master comes up, the candidature is withdrawn. Other slave processes have
two choices upon receiving the ELECTION message. They can either refuse or accept
the candidate depending on the arrival time of this message. A slave process will accept
the first candidate and reject other candidates whose ELECTION messages arrive
shortly after the first request. If a candidate receives a REFUSE message, the candida-
ture is withdrawn. If another slave process also announces its candidacy, the candidate
receiving this ELECTION message sends a REFUSE to that candidate. The possibility
of such collision is reduced by changing the value of the election timer using exponential

backoff. A candidate becomes a master only when no other processes object to it.

3.4. The Computation of Clock Skews

A good estimate of the clock skew is important to the accuracy of the algorithm.

Since the synchronization interval is likely to be in the order of minutes, it is probable

~11-

broadcast ELECTION

receive
QUIT ?

receive
REFUSE?

withdrawm
candidacy

withdrawm
candidacy

status = master send REFUSE

sto

Figure 3.2. Election started by a slave process at the detection
of master node failure.

that both the master and slave processes will be swapped out during the idle period
between resynchronizations. For this reason, we do not burden the processes with the
time-stamping responsibility, where timestamps are used in measuring clock differences.
It may be several seconds before a swapped process can respond to a master’s inquiry.

Therefore, the timestamping facility of the Internet Control Message Protocol (ICMP) is

-12-

used in computing the clock difference.

3.5. The Implementation of ETempo The implementation of ETempo closely
resembles with that of Tempo. The messages exchanged and the election protocol
described earlier also apply to ETempo. Because a real hierarchical LAN is not available
for this study, a two-level LAN is emulated by assuming each of the hosts GYRE,
MIMSY, and TOVE to be the master of a single LAN, while the Ethernet connects these

three low-level LANSs.

3.5.1. The Simulation Procedure

The simulation consists of two steps. In the first step, clocks on the three hosts are
synchronized periodically, with clock skews between hosts and adjustments at each
round recorded in a “trace” file for use in the second step. These synchronization runs
emulate low-level synchronizations that are supposed to interleave with high-level syn-
chronizations. In the second step, master clocks of different LANs are synchronized.
The high-level synchronization proceeds in a similar fashion as the low-level synchroniza-
tion except that physical clocks are not reset in this simulation. Between high-level syn-
chronizations, a low-level master emulates synchronization of local clocks by reading a
correction data from the proper trace file and updates its logical clock. Each low-level
master keeps track of total adjustments made on its clock, regardless of whether the

adjustment is called for from the high-level or the low-level synchronization.

As mentioned in section 2.2, clock adjustments to a low-level master due to high-
level synchronization may be passed along to local clocks. In this simulation, local clocks
are requested to make the same amount of correction as their master after a high-level

synchronization. Since each clock in a low-level LAN is adjusted by the same amount

-13-

when its master is asked to reset, the clock skew between a slave and its master remains

unchanged, thus, the clock difference and correction data in the trace file is valid and

usable.

3.5.2. The Computation of Clock Skews in a Simulated LAN

The computation of clock skews between two simulated low-level masters is slightly
more complicated than that for a single LAN, because the clock skews now are

differences between the logical clocks.

After a high-level master is elected, it polls the low-level masters in sequence to find
the clock skews between them. If P, (¢) denotes the reading of the master’s physical
clock at real time ¢, Corr, (t) denotes the total corrections made on the master’s clock
up to real time ¢, likewise, P, (t) denotes the slave’s physical clock reading at real time
¢, and Corr, (¢t) denotes the slave’s corrections up to real time ¢, then the difference of

the two logical clocks at real time ¢, delta (¢), is

delta(t y=(P, (t)+Corr, (t))-(P,, (t }+Corr,, (¢))
=(P, (t)Py, (¢))+(Corr, (t }-Corr,, (t)). (3.1)
The difference in the physical clock readings, ie. P, (¢)-P,(f), can be computed
through exchanged timestamps as used in the low-level synchronization [Chan86]. How-
ever, the slaves need to send the cumulative totals of corrections, Corr,(t), to the mas-

ter at polling times so that the master can compute the logical clock difference. Mes-

sages TSP_TIMEREQ and TSP_TIMEREPLY are designed specifically for this purpose.

4. Measurements and Analysis

-14-

4.1. Synchronization Experiments for a Single LAN

The implementation of the Tempo algorithm on our local network allows us to
make measurements over several parameters. The results presented here confirm the

measurements in [Guse83]. The parameters experimented are:

. the interval between resynchronizations,

. the number of times a master polls its slaves in estimating clock skews,
. the maximum round-trip communication delay allowed,

. the initial clock difference,

. the system load during the experiment period.

G N~

We study the clock skews measured at each synchronization round to determine the
effectiveness of the algorithm in keeping clocks synchronized. In our experiments, clock

adjustment is always rounded up/down to the nearest multiple of five milliseconds.

Among these parameters, only the interval between resynchronizations shows a
significant influence on the distribution of clock skews. For example, in three experi-
ments where synchronization takes place every two, four, and eight minutes, respec-
tively, the distributions of clock skews between the hosts Tove and Gyre are shown in
Figure 4.1. In these three experiments, the process on Tove is the master, and each
experiment makes 20 synchronization attempts. The positive clock skews (Figure 4.1)
indicate that Gyre’s clock runs faster than Tove’s. It is interesting to note that with
two-minute interval, the most frequently occurring clock difference is five milliseconds,
whereas it is 10 milliseconds for the four-minute interval, and 15 milliseconds for the
eight-minute interval. When the experiments are repeated with the process on Gyre as
the master, the resulting distributions of clock skews (Figure 4.2) are almost a mirror
image of Figure 4.1. This suggests that the synchronization algorithm is independent of

the placement of the master process.

-15-

<NnZ2mcOm>I=n

<N"ZmCcOmxmn

15— 8 min

8 4 min
[~ = 2 min
» —
10 (— =
i =\
-
5 =
i =\ \
— N
0 N S
0 5 10 15 20 CLOCK SKEW

Figure 4.1. Histograms of clock skews (in ms.) between hosts Tove
(Master) and Gyre at synchronization interval of two, four, and
eight minutes. The abscissa is the frequency of occurrence.

20— 8 min [
- 4 min
| 2 min
15— =
: B
10 |- E
- =
5 =\
- =
0 |

.20 -15 -10 -5 0 CLOCKSKEW

Figure 4.2. Same as Figure 4.1 except for hosts Gyre (Master) and Tove.

-18-

To measure clock skews accurately, there should be little variation in the communi-
cation delays. Though the variation in the message delays is difficult to measure, we
suspect it is not high in our system, because most round-trip delays are shown to be

under 20 milliseconds (Table 4.1) even if the maximum round-trip delay is set to 40 mil-

liseconds.
Table 4.1 Round-trip communication delay and its frequency count.
o Round-trip Delays (in ms.)
Host Limit

o m 10 20 30 40
Mimsy/Tove 20 7 68
Mimsy/Tove 40 19 48 6 2
Mimsy/Gyre 20 16 59
Mimsy /Gyre 40 14 55 4 2

On our local network, clock adjustment is performed gradually; during every tick
interval of 10 milliseconds, a correction of one millisecond is made, if necessary. There-
fore, the time it takes to establish initial synchronization depends on how clock correc-
tion is actually implemented. It may seem surprising that the measured clock skews are
not sensitive to different system loads. However, because high-priority Internet ICMP
time-stamping facility is used by processes to read the clocks of the other hosts directly,
delays in awaking idle slave processes do not interfere with the timestamps transmitted,
thus, clock skews computed from these timestamps do not seem to be affected by

different system loads (Figure 4.3).

4.2. Experiments for a Hierarchical LAN

For the hierarchical network, we organize the experiments into two groups. In one
group, we fix the high-level synchronization interval and experiment with different com-

binations of low-level synchronization intervals. In the second group, the low-level syn-

-17-

<NZmCOmo:

H
Q

(%}
o

[
o

10

Qo
?Ifl1lllfjlllflll1l1‘
,
w
(=]

=

N

Heavy @
Light

j===\\]

10

15

25 CLOCK SKEW

Figure 4.3. Histograms of clock skews (in ms.) between hosts Mimsy
(Master) and Gyre from runs executed under different system loads.

chronization interval is fixed and the high-level synchronization interval is varied. Table

4.2 summarizes the set-ups of these experiments.

Table 4.2. Experiment Set-ups for High-level Synchronizations.
Experiment High-level Low-level Interval (min.) Max. Sync. | Length
Number Interval (in min.) | Gyre | Mimsy | Tove Count (in hrs.)
H1 10 2 2 2 12 2
H2 10 4 4 4 12 2
H3 10 8 8 8 12 2
H4 10 2 8 4 12 2
H5 10 2 2 4 12 2
H6 10 2 2 8 12 2
H7 40 4 4 4 20 13
H8 60 4 4 4 20 20
H9 80 4 4 4 20 26

-18-

4.2.1. Measurements on Low-level Synchronization Intervals

In a hierarchical network, each low-level LAN may use different synchronization
interval for low-level synchronizations. In Experiments H1-H6 (Table 4.2), the intervals
of the high-level synchronizations are kept at ten minutes while the low-level synchroni-
zation intervals are allowed to vary from two to eight minutes. For Experiments H1-H3,
the distributions of clock skews between low-level masters Gyre and Tove are shown in
Figure 4.4. The distributions are difficult to compare because there does not exist a

characteristic pattern that can be identified with each of the three experiments.

These results are not surprising considering that after a high-level synchronization,

there are two factors causing clocks to deviate (Because we only measure clock

<NZmcOm>o=n

0 5 10 15 CLOCK SKEW

Figure 4.4. Histograms of clock skews between low-level
masters Gyre and Tove of Experiments H1, H2, and H3
(See Table 4.2 for parameter set-ups).

-19-

differences at each round of high-level synchronizations, clock skews measured at such
instances thus become control points for later comparisons). One factor is the drifts
between clocks over the ten-minute interval between high-level resynchronizations. The
other is the total corrections made on each of the two clocks during the same period
from low-level synchronizations within the individual LAN. The time offset between any

two clocks in a hierarchical LAN is bounded by (See [Chan86]):

Ci (tup)-Cj (typ)+ Corry; —Corry; —(6; +6; J(t ~typ)+ Corry; —Corry;
<G (8)-C(t)

< C; (typ)-C; (typ)+ Corry; =Corry; +(8; +8;)(t —typ)+Corry; —Corry; (4.1)

where C; (¢) represents the reading of clock ¢ at real time ¢, typ denotes the time when
the high-level master starts polling a low-level master for the high-level synchronization,
6; 1s the drift rate of clock ¢, Corry; and Corrp; represent the clock adjustments com-
pleted so far on clock ¢ since typ from the high-level and low-level synchronization,

respectively. Similar notation is used for clock j .

Unlike low-level synchronizations where clocks are actually reset and the adjust-
ments are performed gradually, corrections in the simulated high-level synchronization
are instantaneously “completed” because physical clocks are not reset. Only the adjust-
ment is accumulated. Therefore, the term C;(typ)-C;(typ)+-Corry;~Corry; in the
above equation becomes zero right after each high-level synchronization as corrections on
the two clocks will eliminate the skew. That leaves two terms that can influence the
clock skew: the term associated with drifts between clocks, (6; +6;)(f~tgp), and the

low-level correction term Corrp; —Corry; .

Because physical clocks are not reset, the drifts between two clocks during the

high-level synchronization interval can be estimated as the difference of two

-20-

consecutively measured physical clock skews (Table 4.3). We also keep track of the total
corrections made on each clock from low-level synchronizations during the ten-minute
interval. For Experiments H1-H6, the drifts between clocks over the ten-minute interval
may be quite consistent, however, the total corrections made on individual low-level
master during the same period are independent and the difference of the total corrections
is not predictable. Therefore, with the two factors interacting together, it is difficult to
trace the difference in experimental set-ups from the resulting distributions of clock

skews. This can be demonstrated by the experimental data (Experiment H4) in Table

Table 4.3. Measurements of Clock Skews and Drifts between Gyre and Tove (in ms).
Syne. Round Interval=>5min Interval=10min Interval=20min
’ Skew Drift Skew Drift Skew Drift
1 -21705 -14805 -48000
2 -21715 -10 -14825 -20 -48045 -45
3 -21725 -10 -14845 -20 -48085 -40
4 -21735 -10 -14870 -25 -48130 -45
5 -21745 -10 -14890 -20 -48175 -45
6 -21755 -10 -14910 -20 -48215 -40
7 -21795 -40 -14930 -20 -48260 -45
8 -21805 -10 -14955 -25 -48305 -45
9 -21815 -10 -14970 -15 -48350 -45
10 -21825 -10 -14995 -25 -48390 -40
Between Gyre and Mimsy.
S Round Interval=>5min Interval=10min Interval=20min
yne. foun Skew Drift Skew Drift Skew Drif
1 -6285 -13565 -163764
2 -6295 -10 -13580 -15 -163794 -30
3 -6305 -10 -13595 -15 -163824 -30
4 -6315 -10 -13605 -10 -163844 -20
5 -6315 0 -13645 -40 -163879 -35
6 -6325 -10 -13655 -10 -163904 -25
7 -6335 -10 -13670 -15 -163934 -30
8 -6340 -5 -13705 -35 -163958 -34
9 -6345 -5 -13720 -15 -163994 -36
10 -6355 -10 -13735 -15 -164024 -30

-21-~

44. Let Corrp; in Equation (4.1) represents the total adjustment made on Mimsy’s
clock from low-level synchronizations, and Corry;represents the total adjustment on
Gyre’s clock. In synchronization round 4 of Table 4.4, Corr;; is 30 milliseconds, and
Corry; is -10 milliseconds, the drift between the two clocks is -10 milliseconds, therefore,
the logical clock difference is 30 milliseconds. However, in Round 8, seemingly larger
drift and corrections result in a smaller clock skew of 10 milliseconds. This explains the

randomness in the distribution of clock skews in the high-level synchronization.

Table 4.4. Components Contributing to Deviations in Logical Clock Times.
Sync. Round | Corrpgipe, | =Corrgye | (8; 46,) *Intvl | logical clock difference
2 0 10 -15 -5
3 0 10 -15 -5
4 30 10 -10 30
5 5 10 -40 -25
6 5 0 -10 -5
7 10 10 -15 5
8 30 15 -35 10
9 0 0 -15 -15
10 10 5 -15 0

4.2.2, Measurements on High-level Synchronization Intervals

In Experiments H7-H9, the low-level synchronization interval is kept at four
minutes for all low-level LANs, while the high-level synchronization interval varies from
40 to 60 to 80 minutes. The distributions of clock skews between low-level masters Tove
and Gyre are shown in Figure 4.5. It is observed that longer interval between resyn-
chronizations does in fact cause wider clock separation. For instance, the average clock
skew between low-level masters Tove and Gyre is 8.2 milliseconds in H7, 9.5 milliseconds
in H8, and 16.8 milliseconds in H9. Though the clock skew is still governed by Equation

(4.1), however, due to the fact that the high-level synchronization interval is significantly

-22-

6 - N
= N
F — %f
R 5 = %{;}3 =
E = Y B
Q a4 £ =§3§' s
E = =§2':.‘ =§.'.-:
N 3 5 =N ENIEN B
C E E% =§ =§ 2 ::jf:'
= BN ENTENE B
Y 2 N N BN =X
N N NN [
§ N N NN N
LN A R NN N |
-5 0 5 10 15 20 25 30 CLOCK SKEW

Figure 4.5. Histograms of clock skews between low-level
masters Tove and Gyre of Experiments H7, H8, and H9
(See Table 4.2 for parameter set-ups).

longer than the low-level synchronization interval, the drift factor in this case thus plays

a more important role, and results in a clearer distribution pattern than earlier measure-

ments.

5. Concluding Remarks

Experiments with the Tempo algorithm on the local Ethernet have shown
encouraging results. Consistent with measurement results presented in |[Guse83], the
clock separation on the three participating hosts is less than 20 milliseconds when these
clocks are synchronized every ten minutes. The drifts between clocks over the synchron-
ization interval account for a major part of the clock skew, which implies a close syn-
chrony right after each synchronization. The close synchrony may be attributed to rela-

tively low network load, which makes more accurate measurements of clock skews possi-

ble .

-23-

For clocks in a two-level hierarchical LAN, the clock skews are not large, either.
The master clocks of different LANs are synchronized to within 20 and 30 milliseconds,
when the high-level synchronization is spaced 40 and 80 minutes apart. Clock drifts
over a longer interval cause larger skews, however, because of local synchronizations in

the individual low-level LAN, the resulting clock skews are quite small in this case.

From our experiments, we feel ETempo can be used to synchronize clocks in a two
level network, if the overall network load is not heavy and good estimate of clock skews

is achievable. Extension of ETempo to a multi-level network needs further study.

Acknowledgment

The original ideas for this research were conceived while Tripathi was visiting
University of Erlangen, W. Germany. He would like to thank Alexander Von

Humboldt-Stiftung and Professor Herzog for support while in Germany.

References

[Chan86] Shu-jen Chang, Clock synchronization in a hierarchical network, M.S. thesis,
University of Maryland, Aug. 1986.

[Guse83] Riccardo Gusella and Stefano Zatti, TEMPO, time services for the Berkeley
local network, Report No. UCB/CSD 83/163, University of California, Berke-
ley, Dec. 1983.

[Guse85a] Riccardo Gusella and Stefano Zatti, The Berkelsy UNIX 4.3BSD time syn-
chronization protocol: protocol specification, Report No. UCB/CSD 85/250,
University of California, Berkeley, June 1985.

[Guse85b] Riccardo Gusella and Stefano Zatti, An election algorithm for a distributed
clock synchronization program, Report No. UCB/CSD 86/275, University of
California, Berkeley, Dec. 1985.

[Halp83] J. Y. Halpern, B. B. Simons, and H. R. Strong, An efficient fault-tolerant algo-
rithm for clock synchronization, IBM RJ4094, 1983.

[Lamp78| L. Lamport, Time, clocks, and the ordering of events in a distributed system,

-24-

