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Abstract

In this paper we present a new approach to the solution of the output feedback
robust control problem. We employ the recently developed concept of information
state for output feedback dynamic games, and obtain necessary and sufficient con-
ditions for the solution to the robust control problem expressed in terms of the
information state. The resulting controller is an information state feedback con-
troller, and is intrinsically infinite dimensional. Stability results are obtained using
the theory of dissipative systems, and indeed, our results are expressed in terms of
dissipation inegualities.

Key words: Output feedback robust control, nonlinear control systems, informa-
tion state, stability, bounded real lemma, dissipative systems.

1 Introduction

The modern theory of robust (or H,) control for linear systems originated in the work
of Zames {28}, which employed frequency domain methods (see also Zames and Francis
[8], [29]). After the publication of this work, there was an explosion of research activity
which led to a rather complete and satisfying body of theory, see Doyle et al [6]. In
fact, the successful development of this theory is, to a large extent, due to the use of
time domain methods. In addition, significant advances in the theory depended on ideas
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from elsewhere; in particular, extensive use has been made of results concerning dynamic
games, Riccati equations, the bounded real lemma (e.g., Basar and Bernhard [4], Doyle et
al [6], Limebeer et al [16], Petersen et al [18], [19]), and risk-sensitive stochastic optimal
control (e.g., Glover and Doyle [7], Whittle [25]). The solution to the output feedback
robust control problem has the structure of an observer and a controller, and involves
filter and control type Riccati equations.

The time domain formulation of the robust control problem has a natural generaliza-
tion to nonlinear systems, since the Hy, norm inequality || ¥ ||z, < v has an interpretation
which in no way depends on linearity (of course, use of the term “norm”may not be ap-
propriate for nonlinear systems). This inequality is related to the L, gain of the system
and the bounded real lemma. The robust control problem is to find a stabilizing controller
which achieves this H,, norm bound, and can be viewed as a dynamic game problem, with
nature acting as a malicious opponent. A general and powerful framework for dealing with
L, gains for nonlinear systems is Willems’ theory of dissipative systems [27]. Using this
framework, one can write down a nonlinear version of the bounded real lemma, which is
expressed in terms of a dynamic programming inequality or a partial differential inequal-
ity, known as the dissipation inequality (see, e.g., Hill and Moylan [10]), which reduces
to a Riccati inequality or equation in the linear context. Therefore, it is not surprising
that in papers dealing with nonlinear robust control, one sees dissipation inequalities and
equations and dynamic game formulations (e.g., Ball et al [2], [3], Isidori and Astolfi [12],
van der Schaft [21], [22], [23]).

An examination of the references cited above reveals that the state feedback robust
control problem for nonlinear systems is reasonably well understood: one obtains the
controller by solving the dissipation-type inequality or equation which results from the
dynamic game formulation (actually, controller synthesis remains a major difficulty for
continuous—time systems, but the conceptual framework is in place). The output feedback
case is not nearly so well developed, and no general framework for solving it is available in
the literature. By analogy with the linear case, one expects the solution to involve a filter
or observer in addition to a dissipation inequality/equation for determining the control.
Several authors have proceeded by postulating a filter structure and solving an augmented
game problem, (3], [12], [23]. These results yield sufficient conditions, which are in general
not necessary conditions; that is, an output feedback problem may be solvable, but not
necessarily by the means that have thus far been suggested.

In this paper we present a new approach to the solution of the output feedback robust
control problem for nonlinear systems. Our approach yields conditions which are both
necessary and sufficient. The framework we present incorporates a separation principle,
which in essence permits the replacement of the original output feedback problem by
an equivalent one with full information, albeit infinite dimensional. (The continuous-
time problem is also solvable using our approach, at least in principle [14]. The relevant
continuous-time dissipation inequality can readily be written down; however, rigorous
results will require considerable effort. This will be the subject of future papers. Here,
we discuss only discrete-time systems.)
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Our approach to this problem was motivated by ideas from stochastic control and
large deviations theory. In our earlier paper [13], we explored the connection between
a partially observed risk—sensitive stochastic control problem and a partially observed
dynamic game, and we introduced the use of an information state for solving such games.
The information state for this game was obtained as an asymptotic limit of the information
state for the risk—sensitive stochastic control problem. Historically, the information state
we employ is related to the “past stress”used by Whittle [25] in solving the risk—sensitive
problem for linear systems (see also [26]), and can be thought of as a modified conditional
density or minimim energy estimator (c.f. Hijab [9], Mortensen {17]). Basar and Bernhard
[4] also use the past stress for solving game problems for linear systems. The framework
developed in this paper to solve the output feedback robust control problem involves a
dynamic game formulation, and the use of the (infinite dimensional) information state
dynamical system constitutes the above-mentioned separation principle. This idea of
separation, using, say, the conditional density, is well known in stochastic control theory,
see Kumar and Varaiya [15]. Our results imply that if the robust control problem is at
all solvable by an output feedback controller, then it is solvable by an information state
feedback controller.

The information state feedback controller we obtain has an observer/controller struc-
ture. The “observer”is the dynamical system for the information state py(z):

P = F(pr-1,ur-1,Y%)

(the notation is introduced in §2). The “controller”

ur = 4" (pr)

is determined by a dynamic programming inequality,

W(p) > inf sup {W(F(p,v,9))};
ueUyeRp

and the value function W (p) solving it is a function of the information state. This dy-
namic programming inequality is an infinite dimensional relation defined for an infinite
dimensional control problem, namely that of controlling the information state. Our solu-
tion is therefore an infinite dimensional dynamic compensator, Figure 1. In a sense, the
solution is “doubly infinite dimensional”.
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Figure 1

While there is a separation principle, the task of “estimation”is not isolated from that
of “control”. The information state carries observable information that is relevant to the
control objective, and need not necessarily accurately estimate the state of the system
being controlled. The control objective is taken into consideration and so the resulting
state estimate is suboptimal, but nonetheless more suitable to achieving the control ob-
jective, relative to an observer designed with the exclusive aim of state estimation. Thus
the information state represents the optimal trade—off between estimation and control for
the robust control problem.

We begin in §2 by formulating the problem to be solved. Then in §3 we consider
the state feedback problem; it is hoped that our treatment of this problem will clarify
certain aspects of our solution to the output feedback problem, which is presented in
§4. Note, however, that the solution to the state feedback problem is not used to solve
the output feedback problem. Our results are obtained in a rather general context, and
as a consequence the use of extended-real valued functions is necessary; of course, if
one imposes various regularity and non-degeneracy conditions, this can be avoided. We
remark that while the key ideas for our solution were obtained from stochastic control
theory, this paper makes no explicit use of that theory, and is in fact self-contained and
purely deterministic.



2 Problem Formulation

We consider discrete-time nonlinear systems (plants) ¥ described by the state space
equations of the general form '

Try1 = b(zk, uk, wi),
(1) k41 = l(iEk,Uk,'LUk),

Yre1 = h(zi, up, w).

Here, z € R™ denotes the state of the system, and is not in general directly measurable;
instead an ouput quantity yx € R? is observed. The additional output quantity z; € R? is
a performance measure, depending on the particular problem at hand. The control input
isur € U C R™, and w; € R" is a disturbance input. For instance, w could be due to
modelling errors, sensor noise, etc. The system behavior is determined by the functions
b:R"xR™" xR - R :R*"XR™" xR = R, A:R"XxR™" xR — RP. Itis
assumed that the origin is an equilibrium for the system (1): 4(0,0,0) =0, {(0,0,0) = 0,
and £(0,0,0) = 0.

The output feedback robust control problemis: given v > 0, find a controller u = u(y(-)),
responsive only to the observed output y, such that the resulting closed loop system ¥*
achieves the following two goals;

1. X* is asymptotically stable when no disturbances are present, and

2. T* is finite gain, i.e., for each initial condition z¢ € R™ the input-output map X7,
relating w to z is finite gain, which means that there exists a finite quantity £*(zo)
such that

(2)

TR zil? < 2 Ens Jwil? + B%(wo)

for all w € £,([0,k — 1],R") and all £ > 0.

Since 7o = 0 is an equilibrium, we also require that 8*(0) = 0.

Of course, S will also depend on ~.

Note that we have specified the robust control problem in terms of the family of
initialized input—output maps {£% };,er~, Whereas the conventional problem statement
for linear systems refers only to the single map . This is often expressed in terms of
the Ho, norm of X§: '

A | 2 llea (11,000, R9)
3 | 26 lHe = sup 22) )
( ) 0 welz([0,00),R7), w#0 ” w H£2([O,oo),R,")

For linear systems, the linear structure means that the solvability of the robust control
problem is equivalent to the solvability of a pair of Riccati difference equations (and a
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coupling condition), under certain assumptions, and so implicitly all the maps X} are
considered. For nonlinear systems, our formulation seems natural and appropriate (see
[10], [24]), since otherwise if we were to follow the linear systems formulation, one would
need assumptions relating non-zero initial states zo to the equilibrium state 0 (such as
reachability). The formulation adopted here has also been used recently by van der Schaft
[23]. A solution v = u* to this problem yields

as is the case for linear systems. It is also apparent that in place of the £, norm used in the
definition of the finite gain property, one could substitute any other £, norm [24], or indeed,
any other suitable function, and the corresponding theory would develop analogously.

3 The State Feedback Case

In this section we consider the special case where complete state information is available,
i.e., where h(z,u,w) = z. It is not assumed that the disturbance is measured. For an
alternative presentation of the state feedback problem, see [2].

3.1 Problem

The system ¥ is now described by

Tirr = b(zk, uk, wi),
(5)

Zk+1 — l(l‘ka U, wk)7

where u € S is a state feedback controller, i.e., those controllers for which ux = a(zs),
where 4 : R* — U.

The state feedback robust control problem is: given v > 0, find a feedback controller
u € S such that the resulting closed loop system X* achieves the following two goals;

1. ©* is asymptotically stable when no disturbances are present, and

2. ¥* is finite gain, i.e., for each initial condition zo € R" the corresponding input-
output map ¥ relating w to z is finite gain, which means that there exists a finite
quantity 8%(zo), with 8*(0) = 0, such that

i et £ 97250 il + B%(w0)
(6)
for all w € £5([0,k — 1],R"), and all £ = 0.

Before attacking the full problem, we consider the finite time problem, where stability
is not an issue.



3.2 Finite Time Case

Let Sk, denote the set of controllers u defined on the time interval [k, ] such that for each
j € [k, 1] there exists a function #; : RU=¥1)" — U such that u; = @;(z ;).

The finite time state feedback robust control problem is: given v > 0 and a finite time
interval [0, k], find a feedback controller u € Sy ;. such that the resulting closed loop system
3* achieves the following goal;

¥¥ is finite gain, i.e., for each initial condition zo € R" the corresponding
input-output map X7 relating w to z is finite gain, which means that there
exists a finite quantity S§(zo), with 8§(0) = 0, such that

{Zf;é |zisal” < 7P T lwil® + By (o)

for all w € £4,([0,k — 1}, R").

(M)

3.2.1 Dynamic Game

For u € So -1 and zo € R™ we define the functional Jy, x(u) for (5) by

®) Joxw) = sup {ilzi+1l2—72|wi!2 : z<o>=xo}.

wez2([01k-1]rRr) 1=0
Clearly,
JZO Wk (u) 2 O’

and the finite gain property of ¥} can be expressed in terms of J as follows:

Lemma 3.1 X} is finite gain on [0, k] if and only if there exists a finite quantity By (zo)
such that

(9) Jzo,j(u) < ,B;:(:Bo), JE [Oak]v

and Bp(0) = 0.

The state feedback dynamic game is to find a control u* € Spi—; which minimizes
each functional Jg, x, zo € R™. This will yield a solution to the finite time state feedback
robust control problem.

3.2.2 Solution to the Finite Time State Feedback Robust Control Problem

The dynamic game can be solved using dynamic programming [4]. The idea is to use the
value function

71—

(10) Vi(z) = inf sup {

1
|2ip1]* = |wil* : 2(0) =2},
u€S0,5-1 ety ([0,j—1],R") 0

i=



and corresponding dynamic programming equation
Vi(z) = infuev supyerr {Vim1(b(z, v, w)) + |i(z, u, w)[* — v*|w|?}
(11)

Vo(z) = 0.

Theorem 3.2 (Necessity) Assume that u® € Spx—_1 solves the finite time state feedback
robust control problem. Then there exists a solution V to the dynamic programming equa-

tion (11) such that V;(0) =0 and V;(z) >0, 5 € [0, k].

ProoF. For z € R™, j € [0, k], define V;(z) by the formula (10), i.e.,

Vi(z) = inf Jp;(u).

u€Sp,j-1

Then we have

Thus V is finite, and since 8¢’ (0) = 0, V;(0) = 0. By dynamic programming (e.g. [4]), V
satisfles the equation (11). o

0 < Vi(e) < B (z), jelok]

Theorem 3.3 (Sufficiency) Assume there exists a solution V to the dynamic program-
ming equation (11) such that V;(0) = 0 and V;(z) > 0, j € [0,k]. Let u* € Sop-1 be a
policy such that u} = uy_,(z;), where @}(z) achieves the minimum in (11); 7 = 0,...,k—1.
Then u* solves the finite time state feedback robust control problem.

PROOF. Standard dynamic programming arguments imply that

Vi(z) = Jex(uw™) = inf  Jpp(w),

uESg,k—1

and so u* is an optimal policy for the game. In particular,

Took(¥7) = Vi(o),
for all zo € R™. Then applying Lemma 3.1, we see that (9) is satisfied with v = v* and
Bt(@) £ Vi(a). o
3.3 Infinite Time Case

We wish to solve the infinite time problem by passing to the limit

(12) lim Vi(z) = V(z),



where Vi(z) is defined by (10), to obtain a stationary version of the dynamic programming
equation (11), viz.,

(13) V(z) = irelf 5;11% {V (z,u,w)) + |l(z,u,w) —72|w12}.

In many respects, this procedure is best understood in terms of the Bounded Real Lemma
[1], [19]. For instance, the finite gain property is captured in terms of a dissipation

inequality [27] (or partial differential inequality in continuous—time). Also, stability results
are readily deduced [10], [27].

3.3.1 Bounded Real Lemma

We will say that ¥* is finite gain dissipative if there exists a function (called a storage
function [27]) V(z) such that V(z) > 0, V(0) = 0, and satisfies the dissipation inequality

(14) V(@) 2 sup {V(b(a,a(e), w)) = 7wl + li(z, ule),w)'}

Theorem 3.4 (Bounded Real Lemma.) Let u € S. The system X% is finite gain if and
only if it is finite gain dissipative.

Proor. If ¥ is finite gain dissipative, then (14) implies

k-1 k-1
(15) Vizr) + 3 lzal < 2730 [wil® + V(o)
=0 =0

for all £ > 0 and all w € £5([0, % — 1], R"). Using the non-negativity of V this inequality
yields (6) with 8%(zo) = V(z¢). Therefore £* is finite gain.

Conversely, assume that ¥* is finite gain. Then we have
0 < Jxo,k(u) < ﬂu(l‘o)
for all £ > 0, where 8 does not depend on k. Write Vi(z) = J;x(u), so that
0 < Vi(z) £ B%=z), forall z€R", k>0.
Now Vi(z) enjoys the monotonicity property
Vi(z) < Viga(z),

and so the limit
(16) Volz) = klim Vi(z)

exists and is finite. Dynamic programming implies that V, solves the dissipation inequality
(14):

Va(z) 2 sup {Va(b(z,a(z), w)) + [I(z, &(z), w)]* — v*Jwl*} .

weRT
Also, it is clear that V,(0) = 0 and V,(z) > 0. Therefore, V, is a storage function, and so
* is finite gain dissipative. O



Remark 3.5 If ¥* is reachable (from 0), that is, if for any z € R™ there exists k; < 0
and w € £y([k;, —1],R") such that zx, = 0 and zq = z, then the finite gain property
for the single input-output map Ef implies the finite gain property for all maps X} .
To see this, select k > 0, w € £,([0,k — 1],R"), and = € R™ There exists k; < 0 and
W € £([k1, —1], R") such that zx, = 0 and z¢ = z. Define

{ w on [k, —1],

w on [0,k —1].

W =

Since X* is time-invariant, (6) implies

k-1
Y lzial* =y lwl® <0,

i=ky

and hence -
Yozl = Pwil < 4(z),
1=0

for some finite quantity ¢ depending only on z. Therefore V,(z), defined by (16) is
bounded above by *(z) 2 #(z). Note that ¢(0) = 0. o

Remark 3.6 The function V, defined by (16) is known as the available storage [27]. If
¥* is finite gain dissipative with storage function V/, then V, < V| and V; is also a storage
function. V, solves (14) with equality.

Under additional assumptions, stability results can be obtained for dissipative systems
[27], [10]. We say that X* is (zero state) detectable if w = 0 and limp_eo 2x = 0 implies
limg_oo zx = 0. X% is asymptotically stable if w = 0, implies limg—,o, x = 0 for any initial
condition.

Theorem 3.7 Let u € §. If &% is finite gain dissipative and detectable, then X* 1is
asymptotically stable.

ProOOF. Setting w =0 in (15) and using the non—negativity of V' we get
k—1
> zipa|? < V(zo), forall k>0,
e

for any initial condition zo. This implies {zz} € £2((0,0),R?), and so limj_. 2 = 0.
By detectability, we obtain lim_.. zx = 0. m|

Remark 3.8 In general, detectability (or observability) is a key property required for
asymptotic stability as it is related to the positive definiteness of the storage functions
[10], [24], but is difficult to check, and will depend on the controller © € §. Detectability
holds trivially in the uniformly coercive case: —vy + v1]z|? < |l(z,u, w)|?, where v > 0,
v > 0.
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3.3.2 Solution to the State Feedback Robust Control Problem

It is clear from the previous section that the state feedback robust control problem can
be solved provided a stabilizing feedback controller can be found which renders the closed
loop system finite gain dissipative. The next two theorems give both necessary and
sufficient conditions in terms of a controlled version of the dissipation inequality, under a
suitable detectability condition.

Theorem 3.9 (Necessity) If a controller u* € S solves the state feedback robust control
problem then there ezists a function V(z) such that V(z) > 0, V(0) =0, and

(17) V(@) 2 iof sup {V(b(z,u,w)) = Y |w]* + |1z, u,w)[2} .

PROOF. Since X*' is finite gain, the Bounded Real Lemma 3.4 implies the existence
of a storage function V, satisfying the dissipation inequality (14):

Va(e) 2 sup {Va(b(a, @(e),w)) + Uz, 3°(2),w)[* = 77w}

Therefore, V, satisfies (17). Also, it is clear that V,(0) = 0 and V,(z) > 0. a

Theorem 3.10 (Sufficiency) Assume that V' is a solution of (17) satisfying V(z) > 0
and V(0) = 0. Let u*(z) be a control value which achieves the minimum in (17). Then
the controller u* € § defined by @*(x) solves the state feedback robust control problem if
the closed loop system L% is detectable.

PROOF. The closed loop system &*" is finite gain dissipative, since (17) implies (14)
for the controller u*; that is, the function V satisfies

V(e) 2 sup {V(b(z,u*(z),w)) + |z, (), w)|* — v?|w|*} .
weRT

Hence by Theorem 3.4, £*" is finite gain. Theorem 3.7 then shows that ¥*" is asymptot-
ically stable. Hence u* solves the state feedback robust control problem. O

LY

Remark 3.11 The utility of this result is that the controlled dissipation inequality (17)
provides (in principle) a recipe for solving the state feedback robust control problem.

4 The Output Feedback Case

We return now to the output feedback robust control problem. As in the state feedback
‘case, we start with a finite time version.

11



4.1 Finite Time Case

Let O, denote the set of output feedback controllers defined on the time interval [k, 1],
so u € O, means that for each j € [k, [] there exists a function 4; : RUT**VP — [/ such
that u; = 4;(yx41,;). For u € Ogpr—1, 1* denotes the closed loop system (1).

The finite time output feedback robust control problem is: given v > 0 and a finite time
interval [0, k], find a controller u € Og_; such that the resulting closed loop system Z*
achieves the following goal,;

Y* is finite gain, 1.e., for each initial condition zo € R™ the corresponding
input-output map ¥} relating w to z is finite gain, which means that there
exists a finite quantity Sy (zo), with B¢(0) = 0, such that

Tio lznl? < 7P TS |wil® + B (xo)
(18)
for all w € £,([0,k — 1],R"),

4.1.1 Dynamic Game

Our aim in this section is to express the output feedback robust control problem in terms
of a dynamic game.

We introduce the function space
£ = {p:R" >R},
and define for each z € R" a function 6, € &£ by

0 iff=az,
82(¢)
—o0 if € # z.

For u € Op -1 and p € £ define the functional J, x(u) for the system (1) by

2

k-1
09 @ 2w sup o) + T el -l

welg([o,k—I],R") rzo€RR =0

Remark 4.1 The quantity p € € in (19) can be chosen in a way which reflects knowledge
of any a priori information concerning the initial state zo of 2. O

The finite gain property of £* can be expressed in terms of J as follows.



Lemma 4.2 X7 is finite gain on [0, k] if and only if there exists a finite quantity B (zo)
such that

(20) Toag (1) < By (o),
and B3(0) = 0.

It is of interest to know when J, x(u) is finite. For a finite gain system 2%, we write

dom J,x(u) = {p€ € : (p, 0), (p, By) finite },

where we use the pairing [13]

(21) (p,q) = Sup {p(z) + q(=)}.

Lemma 4.3 If each map 3 is finite gain on [0, k], then
(22) (p) 0) < Jp,k(u) < (p> ﬂ}?)v

and so Jpx(u) is finite for p € dom J, r(u).

PROOF. Set w = 0 in (19) to deduce (p, 0) < J,i(u). Next, select w € £,([0,k —
1J,R") and zo € R™. Then (18) implies

k-1
plzo) + 3 lzin* = Ylwil® < pleo) + Bilzo) < (p, BY)-
=0
This proves (22). ‘ O

The finite time output feedback dynamic game is to find a control policy u € Qg -1
which minimizes each functional Js, ;. The idea then is that a solution to this game
problem will solve the output feedback robust cgntrol problem.

4.1.2 Information State Formulation

To solve the game problem, we borrow an idea from stochastic control theory (see, e.g.,
[5], [15]) and replace the original problem with a new one expressed in terms of a new
state variable, viz., an information state [13]; c.f. also [4], [25], [26].

For fixed y1,; € €2([1, 7], R?) we define the information state p; € € by
= 31 2 2 2
Pi(z) = SUPuey,((0,i-1],Rr) SUPzoe R {Po(mo) + Yoo |zin® — P ]
(2
oz =, h(zi, ui, wi) = ¥i41,0 < <5 — 1},

13



If &* is finite gain, then

—oo < pi(z) < (po, BY) < +oo.

A finite lower bound depends on possible degeneracies in the system (1).

In order to write the dynamical equation for p;, we define F(p,u,y) € € by

(24) F(p,u,y)(z) = e {p(&) + B(S, 2, u,9)}

where the extended real valued function B is defined by

(25) Blewwy) = sup (e mw)l = 7lol ¢ HEww) =2, hEww) =y},

Here, we use the convention that the supremum over an empty set equals —co.

Lemma 4.4 The information state is the solution of the following recursion:

p; = F(pj-huj—layj)? .] € [l) k]7
(26)
Po c £.
PrOOF. The result is proven by induction. Assume the assertion is true for 0,...,7—1;

we must show that p; defined by (23) equals F/(pj_1,u;_1,y;) defined by (24). Now
F(pj1,u5-1,4;)(2) = supgern {pj-1(8) + B(&, 2,151, 95)}
= supeern {Pic1(€) + sup,, _ err (1€, w5-1,95) [ — 7w 2
(€, uj-1, wi1) =z, (&, ujm1, wim1) = y;5)}
= pj(z)

using the definition (23) for p;_1 and p;. a

Remark 4.5 Note that we can write

2

J=1
(27) pi(z) Sup {po(ﬁo) + > B(&i b, i yin) ¢ & = 5’7} -

g€t ([0,5],Rm) i=0

We now state the following representation result:

14



Theorem 4.6 Foru € O 1, p € €, such that J, ;(u) is finite, we have the representa-
tion
(28) JPJ(u) = sup {(pj7 0) v Po= p}) .7 S [0) k}
v1,;€4([1,7],.R>)
Proor. We have

SUPy, sen(1,ilR) {(Pi> 0) * po = p}
= SUPy, sy (1) 5) SWPses (0.4 Rr) 1P(60) + I0 Bl6e, Ein, i yint)

= SUP.,ety(f0,j-1,R") SWPspern {P(%0) + T3 |2ia [ — 72 |wi|*}

= ']p,j(u)~
Oa

Remark 4.7 This representation theorem is a separation principle, and is similar to those
employed in stochastic control theory, see [15], and in particular, [5], [13]. o

Theorem 4.6 enables us to express the finite gain property of £* in terms of the
information state p, as the following corollary shows:

Corollary 4.8 For any output feedback controller w € Og 1, the closed loop system L*
is finite gain on [0, k] if and only if the information state p; satisfies

(29) sup  {(p;, 0) : po =16z} < Bi(zo), forall jel0,k],
1,5 €6([1,5],RP)

for some finite B*(zo, k) with B¢(0) = 0.

Remark 4.9 In view of the above, the name “information state”for p is justified. Indeed,
p; contains all the information relevant to the key finite gain property of £* that is
available in the observations y, ;. a

Remark 4.10 We now regard the information state dynamics (26) as a new (infinite
dimensional) control system =, with control u and disturbance y. The state p; and
disturbance y; are available to the controller, so the original output feedback dynamic
game is equivalent to a new one with full information. The cost is now the RHS of (28).
The analogue in stochastic control theory is the dynamical equation for the conditional
density (or variant), and y becomes white noise under a reference probability measure

[13], [15]. 0

Now that we have introduced the new state variable p, we need an appropriate class 7;
of controllers which feedback this new state variable. A control u belongs to Z;; if for each
7 € [1, 1] there exists a map #; from a subset of £77*! (sequences p; ; = p;, pizr1,- - -, p;) into
U such that u; = @(p; ;). Note that since p; depends only on the observable information
Y155 Zo,j—1 C Oo,j-1.
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4.1.3 Solution to the Finite Time Output Feedback Robust Control Problem

In this subsection we use dynamic programming to obtain necessary and sufficient condi-
tions for the solution of the output feedback robust control problem. We make use of the
dynamic programming approach used in [13] to solve the output feedback dynamic game
problem. The value function is given by

(30) Wi(p) = inf sup  {(p;j, 0) : po=p},
u€00,5-1 yety([1,5],RP)

for 7 € [0, k], and the corresponding dynamic programming equation is

{ I/Vj(p) = infUEU SUP,eRP {I/Vj—l(F(pauay))}a ] € [1a k]a

Wolp) = (p, 0).

(31)

For a function W : £ — R*, we write

domW = {pe& : W(p) finite }.

Theorem 4.11 (Necessity) Assume that u® € Og 1 solves the finite time output feedback
robust control problem. Then there exists a solution W to the dynamic programming
equation (31) such that dom Jpx(u®) C dom W;, W;(éo) = 0, W;(p) > (p, 0), j € [0, &].

ProOF. For p € dom J, (u®), define W;(p) by (30), i.e.,

Note the alternative expression for W;(p):

1—1
(32) W;(p) = inf sup sup {p($0)+2|2i+112—72|wi|2}-

u€00,j-1 wey([0,j—1),R7) zo€R™ i=0
For u = u° we see that, using the finite gain property for *°,
Wi(p) < suPyes((o,j-1),R") SUPpeRn {P(ﬂ?O) + i |z P — 72lwi12}
< (p B)
Thus dom J, x(u°®) C dom W;. Also, we have

Wi(p) = (p, 0).

Since B°(0) = 0, (8o, 0) = 0, we have W;(8y) = 0. Finally, the proof of Theorem 4.4, [13]
shows that W; is the unique solution of the dynamic programming equation (31). O
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Theorem 4.12 (Sufficiency) Assume there ezists a solution W to the dynamic program-
ming equation (31) such that 6, € dom W for all z € R™, W;(8) = 0, W;(p) > (p, 0),
j € [0,k]. Let u* € o1 be a policy such that uj = @}_;(p;), where @}(p) achieves the
mintmum in (31); 7 =0,...,k —1. Then u* solves the finite time output feedback robust
control problem.

ProOF. Following the proof of Theorem 4.6 of [13], we see that
Wi(p) = Jox(u”) < Jpp(u)

for all u € Og -1, p € dom Wy. Now

sup {(pk? 0) P Po= 5Ioa U= u*} < I/Vk(ézo)a
ye&2([1,k],RP)

which implies by Corollary 4.8 that £* is finite gain with 8¢ (zo) = Wi (64,), and hence
u* solves the finite time output feedback robust control problem. ]

Remark 4.13 Note that the controller obtained in Theorem 4.12 is an information state
feedback controller. a

Corollary 4.14 If the finite time output feedback robust control problem is solvable by
an output feedback controller u® € Op_1, then it is also solvable by an information state
feedback controller u* € Tg k1.

4.2 Infinite Time Case

Again, we would like to solve the infinite time problem by passing to the limit

(33) lim Wi(p) = W(p),

k—oo
where Wi(p) is defined by (30), to obtain a stationary version of the dynamic programming

equation (31), viz.,

(34) W(p) = inf sup {W(F(p,u,y))}.

ue yERP

.

However, for technical reasons, this is not quite what we do. Instead, we will minimize
the functional

(35) Jp(u) = sup Jpk(u)

k>0

over u € 0. Here, O denotes output feedback controllers u such that for each k, uy =
@x(y1,1) for some map 1 from RP* into U. This makes sense in view of the following
lemma, whose proof is an easy consequence of the definitions (c.f. Corollary 4.8).
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Lemma 4.15 For any output feedback controller u € O, the closed loop system T* is
finite gain if and only if the information state py satisfies

(36) sup  sup  {(p£,0) : po =0y} < B%(20),
k>0 yy ety ([1,5],RP)

for some finite B*(zo) with 5*(0) = 0.

Our results will be expressed in terms of an appropriate dissipation inequality, and so
in the next section we formulate an appropriate version of the Bounded Real Lemma for
the information state system.

4.2.1 Bounded Real Lemma
Let 7 denote the class of information state feedback controllers u such that u; = @(pk),
for some function @ from a subset of £ into U.

;From Lemma 4.15, we say that the information state system =* ((26) with information
state feedback u € T) is finite gain if and only if the information state pj satisfies (36) for
some finite §%(zq) with 8*(0) = 0. For a finite gain system ©¥, we write

domJp(u) = {pe& : (p,0), (p, %) finite },

We say that the information state system =% is finite gain dissipative if there exists
a function (called a storage function) W (p) such that dom W contains §, for all z € R™,
W(p) > (p, 0), W(éo) = 0, and satisfies the dissipation inequality

(37) W(p) = sup {W(F(p,u(p),y))}-

yeRr

Note that if =* is finite gain dissipative and p € dom W, then F(p,@(p),y) € dom W
for all y € R?. Consequently, po € dom W implies pr € dom W for all &£ > 0.

Theorem 4.16 (Bounded Real Lemma.) Let u € Z. Then the information state system

—u

=" is finite gain dissipative if and only if it is finite gain.

PROOF. Assume that =Z* is finite gain dissipative. Then (37) implies

(38) Wi(ps) < W(po)

for all £ > 0 and all y € £5([1, k], R?). Setting py = &5, and using the inequality W(p) >
(p, 0) we get
(pka 0) < I/V((si’:o)

for all £ > 0, y € £,([1, k], R?). Therefore =* is finite gain, with 8*(zo) 2 W (6 )-
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Conversely, assume that =* is finite gain. Then
(P, 0) < Jpi(u) < (p, B)
for all £ > 0, p € dom Jp(u). Write Wi(p) = J, x(u), so that
(p, 0) < Wilp) < (p, B%), k20, p€ domJy(u).
Now W} is monotone non-decreasing:
Wii(p) < Wi(p)-

To see this, note that

k-1
Wi(p) = sup sup {p(wo) + 2zl - 72lwi|2} :

wely([0,k-1],R7) zgcR" i=0

Then given € > 0, choose w' € £,([0,k — 2],R") and zj such that

k—2
Wioi(p) < plzo) + Z |21{+1|2 —yHwi? + ¢,
1=0

and define w € £,([0,k — 1],R") by setting w = v’ on [0,k — 2] and wx_1 = 0, and let
zo = xj. Then

Wi(p) = p(zh) + 55 1z |? — v wi]?
> p(zo) + Tisg |2t [P — YA wil? + |2

Z I/V}C_l(p) —£.
Since € > 0 is arbitrary, the monotonicity assertion is verified.

Therefore the limit
(39) Wa(p) = lim Wi(p)

exists and is finite on dom W,, which contains dom J,(u). We now show that W, satisfies
(37). Fix p € domW,, y € R?, € > 0. Select k > 0 and ¢,  such that

Wa(F(p,u(p),y)) < (Pr-1,0) +¢, -

where p;, 7 = 0,1,...,k — 1 is the corresponding information state sequence with F, =
F(p,a(p),y). Define y; x by setting

Y ife=1,
yi =
Yi-1 i1 22,
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and let p;, 7 = 0,1,...,k denote the corresponding information state trajectory with

po = p. Then
Wa(p) = (px, 0)
= (Pr-1, 0)

> Wa(F(p,u(p),y)) — ¢

Since y is arbitrary, we have

Wa(p) = sup Wo(F(p,u(p),y)) —e.
yeRr

This inequality implies that W, solves (37). (Actually, W, solves (37) with equality.)
By definition, W,(p) > (p, 0). This and (36) imply W,(6g) = 0. Thus =* is finite gain

dissipative. a

Remark 4.17 The function W, defined by (39) is called the available storage for the
information state system. If =* i1s finite gain dissipative with storage function W, then
W, < W, and W, is also a storage function. W, solves (37) with equality.

As in the case of complete state information, we can deduce stability results for the
closed loop system X*. Stability here means internal stability, and so we must concern
ourselves with the stability of the information state system as well.

For the remainder of the paper, we will assume that h satisfies the linear growth
condition:

(40) h(z,u,w)] < C(lz] + fwl).

We say that £* is (zero state) z-detectable (resp. {ly—z—detectable) if w = 0 and
limg—oo 2 = 0 implies limgooo zx = 0 (resp. {z:} € £([0,00),R%) implies {zx} €
£,(]0,00),R")) and asymptotically stable if w = 0 implies limg_.o, zx = 0 for any initial
condition.

For u € O and y € £([0,00),R?), T* is uniformly (w,y)-reachable if for all z €
R™ there exists 0 < a(z) < 400 such that for all £ > 0 sufficiently large there exists
zo € R™ and w € £,([0,k — 1],R") such that z(0) = zo, 2(k) = z, Az, ui, wi) = Yiy1,
t=20,...,k—1, and o

k-1

(41) jzol® + > lwil* < ().

1=0

Given inputs v € O and y € ¢;([0,c0), RP), we say that the information state system
=* is stable if for each z € R"™ there exists K, > 0, C, > 0 such that

(42) lpe(z)] < C, forall k> K,
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provided the initial value pg statisfies the growth conditions

(43) —afzl’ —ay < po(z) £ —ailef’ +ao,

where a1, a}, aq, a5 > 0.

Theorem 4.18 Let u € Z. If =* is finite gain dissipative and L* is z—detectable, then

¥ is asymptotically stable. If =* is finite gain dissipative and L* is {y—-z—detectable and
uniformly (w,y)-reachable, then =* is stable.

PROOF. Inequality (38) implies

k-1
(44) up  sup [p(an) + 3 sl | < Wio)
wely([0,k—1],R") zoeR " 1=0
for all £ > 0. Let zo € R™ and select p = é;,. Then (44) gives, with w = 0,
k=1
S sl < W(6e) < oo,
i=0

for all £ > 0. This implies {z;} € £,((0,00),R?), and so limp~c 2zx = 0. By z—
detectability, we obtain limg_.., ¢ = 0. Therefore ¥* is asymptotically stable.

Also, £5—z—detectability implies {z;} € £2([0,0), R"), and by assumption (40), {yx} €
25([1, 00), RP) since w = 0.

So now suppose that {yx} € £2([0,00), R?). We wish to show that =* is stable. The
dissipation inequality implies
pr(z) < (p, 0) < W(p) < +oo

for all pg € dom W, k > 0. For the lower bound, the hypothesis imply, given z, for all &
sufficiently large there exists zo and w such that 2(0) = zo, (k) = z, and

k-1

|zol* + 3 [wil* < afe)

=0

for some finite non—negative . Thus
pe(z) 2 po(zo) — 7* Ty lwil®

> —(aj +yH)alz) -
for all k sufficiently large. Therefore =* is stable. O

.

Remark 4.19 The behavior we are attempting to capture here is that of eventual finite-
ness (and in fact boundedness) of the information state. The criteria used to imply
stability are modelled on those used in the state feedback case, and are of course difficult
to check in practice. These conditions simplify greatly under appropriate nondegeneracy
assumptions. Note that it is feasible that X* is stable, with =* unstable; this corresponds
to an unstable stabilizing controller.
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4.2.2 Solution to the Output Feedback Robust Control Problem

We begin this subsection with a proposition which asserts that if the output feedback
robust control problem is solvable by an information state feedback controller, then there
exists a solution to the dissipation inequality (45) below, using the Bounded Real Lemma
4.16. However, this result is not adequate for a necessity theorem, since it is expressed
a priort in terms of an information state feedback controller. The necessity theorem
(Theorem 4.21 below) asserts the existence of a solution of the dissipation inequality
assuming only that the output feedback robust control problem is solved by an output
feedback controller, which need not necessarily be an information state feedback controller.

Proposition 4.20 If a controller u* € T solves the output feedback robust control problem,
then there exists a function W(p) such that dom W contains 6, for all z € R™, W(p) >
(p, 0), W(bo) =0, and

(45) W(p) = inf sup {W(F(p,w,y))}.
eV yeRr

PrRoOOF. The Bounded Real Lemma 4.16 implies the existence of a storage function
W, satisfying the dissipation inequality (37):

Wa(p) > sup {Wa(F(p,a'(p),v))}.
yERr

Therefore W, satisfies (45). Also, we have ¢, € dom W, for all z € R*, W,(p) > (p, 0),
and Wa(éo) = 0. O

Theorem 4.21 (Necessity) Assume that there exists a controller u® € O which solves the
output feedback robust control problem. Then there exists a function W(p) which is finite
on dom J,(u®), satisfies W(p) > (p, 0), W(éo) = 0, and solves the dissipation inequality

(49)-

Proor. Define
Wi(p) = inf J,(u),

where J,(u) is defined by (35). Then we have
(r, 0) < Wp) < J(w) < (p,8),

and so W is finite on dom J,(u°®). Clearly W(p) > (p, 0) and W (&) = 0. It remains to
show that W satisfies (45).

Let € > 0. Choose u € O such that

(46) W(p) > sup {(px, 0) : po=p}—ec.
k>0, ye([1,k],R7)
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Select any y € R?. For any sequence ¥, %2, ..., define a sequence y;,y2,... by
Y ifz =1,
Y =
gio1  if > 2,
and a control % € O by

ﬁi(gla .. '1gi) = ui+1(y’gl7 cee 7gi)'

Let p; and §; denote the information state sequences corresponding to pg = p, u, y1,¥2, - -

and po = F(p,uo,y), &, §1,2, . - . respectively. Note that pr = pr_,. Now choose y1,72,. ..
and k£ > 1 such that

W(po) < (Pr-1,0) +e.
Then
(47) (P, 0) = W(F(p,uoy)) — .

Combining inequalities (46) and (47), we obtain
W(p) > W(F(p,uo,y)) — 2e.

Since y was selected arbitrarily, we get

W(p) > sup W(F(p,uo,¥y)) — 2,
yeRP
and therefore
Wi(p) > inf sup W(F(p,u,y)) — 2¢.
welU yeRP

;From this, we see that W satisfies (45), since € > 0 is arbitrary. O

Theorem 4.22 (Sufficiency) Assume that W is a solution of (45) satisfying 6, € dom W
for allz € R™, W(p) = (p, 0) and W(8) = 0. Let @*(p) be a control value which achieves
the minimum in (45). Then the controller u* € I defined by @*(p) solves the information
state feedback robust control problem if the closed loop system T¥ is l—z—detectable and
uniformly (w,y)-reachable.

PROOF. The information state system =*" is finite gain dissipative, since (45) implies
(37) for the controller u*. Hence by Theorem 4.16, =*" is finite gain. Theorem 4.18 then

shows that ¥*" is asymptotically stable and Z*" is stable. Hence u* solves the information
state feedback robust control problem. -0

Remark 4.23 As in the state feedback case (§3.3.2), the significance of this result is that
the controlled dissipation inequality (45) provides (in principle) a recipe for solving the
information state feedback robust control problem.

Corollary 4.24 If the output feedback robust control problem is solvable by an output:

feedback controller u® € O, then it is also solvable by an information state feedback con-
troller v* € 1.
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