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Abstract

The requirement to evaluate a gain over the whole signal
space is one of the restrictions in the well-known small
gain theorem. Using the concepts of local gain and strict
causality a local form of small gain theorem is proposed,
which can be used to analyze input magnitude dependent
stability problems of feedback nonlinear systems, such as a
Volterra system. Since only finite order Volterra series can
be handled in practice, an uncertainty model is derived to
address the robustness issue of approximating a nonlinear
system by a finite Volterra series in the context of closed-
loop control. The local small gain theorem is then used to
analyze the feedback properties of the uncertain Volterra
system and a sufficient condition for robust stability is
obtained.

1. Introduction

The small gain theorem plays a fundamental role in the
analysis of nonlinear feedback systems using input-output
notations. It was first proposed by Sandberg [1] and
Zames [2], and comprehensively discussed in [3,4]. It
has found wide applications in analysis where it is desired
to show bounded-input bounded-output stability of a non-
linear feedback system, such as in adaptive control [5],
nonlinear internal model control [6] and robust nonlinear
control [7].

The small gain theorem, in its traditional form, has some
restrictions on its application. One of the restrictions, as
pointed out by Hill [8], is that the affine gain formulation
can inhibit adoption of input-output stability methods, and
s0 a generalization form of the small gain theorem was
proposed there. Another restriction lies in that the gain
defined as an operator norm over the entire input space
may not exist; even if exists in theory, its calculation may
be too difficult to carry out. Several chemical process
control examples were given to reveal this restriction in
[9], and a so called set gain was proposed (but not used for
feedback analysis).

Volterra series are an important input-output represen-
tation of nonlinear dynamic systems [10, 11]. During the
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past decades, its representation properties have received
intensive investigation (e.g. [12, 13]). For chemical pro-
cess systems, in particular, strong industrial interest has
been expressed recently [14]. Unfortunately, very lit-
tle progress has been made on investigating the feedback
properties of Volterra systems. One possible explanation
of this situation might be that there were not appropri-
ate tools available to systematically solve the problem.
Indeed, the closed-loop stability problem of a Volterra
system is intertwined with the convergence problem, and
the latter is extremely difficult to analyze quantitatively in
general.

In this paper, a novel form of the small gain theorem is
given and then used to address the feedback properties of
uncertain Volterra systems.

2. A Local Form of Small Gain
Theorem

The basic formulation for a feedback system can be ex-
pressed in the functional form

y = H)
e = u-y )

where u denotes the external input, y the output and e the
actual input to the operator H. u, y and e are functions of
time f; usually they are defined for t € R, (nonnegative real
number) and take values in R. For simplicity of notation,
the systems discussed hereafter are assumed to be single-
input single-output systems.
Let Pr be the linear map Pr : R, — R, such that with
fr(®) 4 Pyf(r) we mean that,
Fr(t) = { s (()t,)} ’> STT Vi, T € R, @)
An extended normed space L, is defined as
Lye = {fOlfr() €Ly, VT > 0}, 1<p<oco (3)
where L, = {f : [0,00) — R | [;* [f(®)Pdt < oo} for 1 <
p <ooand L., ={f :[0,00) — R |esssup |[f(®)| < oo}.
For simplicity of notation, we use L. 0 represent an ex-
tended normed space for some value 1 < p < oo.
Let H: L, — L,. H is said to be causal if and only if
PrHPy = PrH, VT € R,. It is said to be L-stable if and
only if there exists a finite constant -y such that



[|(Hu)r|) < yl|lur|l, Vu € L.and T € R, 4)

If H is causal and L-stable, then ||Hu|| < v||u||, Yu € L,.
The system gain of H, as defined in the small gain

theorem, is _ \[(H)r|
YH= SUp ——— (5)
T>0,us0 [Jer|
The small gain theorem states that if the system gain vy <
1, then the closed-loop system is L-stable with ||er]] <
L lurl} and [lyrl] < 2
The system gain vy as defined in (5) should be evaluated
along all possible inputs u € L,. As such, there are two
restrictions in the small gain theorem:
(a) Many systems of practical interest do not possess such
system gains. For example, if we consider a nth-order
Volterra operator, say H = Hy,, n > 1, then we know from
the property of Volterra operators that, for any u € L, and
any constant ¢ > 0, the following equality holds

lcH e - w)rll _ o [ICHT|

fewd ¢ ol ©
Suppose there exist a system gain 7, then
WCHu)rl| < yallurll, Vu € L M
It must be true that
lHW < - yallurl], Yu € L ®

This suggests that (™! - +,) is also a system gain. Since ¢
can be any positive constant, the only possibility for this to
be true is v, = oo or v, = 0 (this is a trivial case). Hence,
this system does not have a system gain.

(b) Even if such a system gain exists, its determination is
quite difficult for a general nonlinear system. In fact, a sys-
tematic method for evaluating a system gain using input-
output notations is available only for linear and memory-
less nonlinear systems [4].

The above suggests the necessity for deriving a local
form of the small gain theorem, which only utilizes the
system properties for those input signals that belong to
some subset of L., not the complete set of L,.

Let H be a causal map H : L, — L.. For a given
constant d > 0, let S; be a subset of L, defined by S =
{u(®) : \lurj| < d,¥t,TeR,}.

Definition 1 H is said to be locally bounded if there exists
afinite constanty > 0 such that ||(Hu)r|| < v|lurl|, Yur €
Si and T > 0. The lowest upper bound for v is said to be
a local gain of H with respect to Sy, denoted by vy, i.e.,
YHa=  Sup (K H)r] )
T20,u€5:\ {0} |
The significance in establishing the concept “local gain”
lies in the followings: for many nonlinear system models
only local gains exist; most system models are valid only
for a limited magnitude of input signals; when the system
model is given as a truncated Volterra series, an approxi-
mation of the local gain can be obtained as discussed later
in this paper.

Definition 2 The closed-loop system (1) is said to be lo-
cally stable if and only if there exist a positive constant M
and finite positive constants ky, k; such that

ller|| < killur|] and |lyr|| < kalluz|), V|lurll <M, T>0.
(10)

Remark 1 If the system is locally stable for any M > 0,
then clearly, it is L-stable.

In the traditional small gain theorem, the information used
for the analysis of closed-loop stability is the gains of
each elements along the loop. One can derive the theorem
readily through some algebra, i.c., manipulations with-
out being concerned with the well-posedness issue of the
closed-loop solution. This owes to the fact that all sig-
nals and quantities along the loop are defined in normed
linear spaces. But in the present definitions, they do not
belong to linear spaces anymore. So the argument used
in the derivation of the small gain theorem does not hold
under present settings. For this reason, we need put some
additional conditions on H.

Definition 3 Let H: L, — L,. Iffor all u;,uy € L, with
Pruy(t) = Prus(t), there exist constants 3 < land o > 0
such that

|Pro (Huy — Hup)(D|| < Bl|Pro(us — u2)®)], Ve, T € R,

(11)
where Pr, £ Pr.. — Pr, then, we say that H is strictly
causal.

Some obvious examples of strictly causal systems are:
linear systems with strictly proper transfer functions and
systems with time delays.

Proposition 1 If H is strictly causal, then it must be
causal. But the reverse may not be true.

Remark 2 For strict causality, we only require that there
exists some 3 < 1 such that the inequality (11) holds. But
Jor strong causality [3], the same inequality should hold
forall 8 > 0. Therefore, the strict causality defined here is
a weaker condition than the strong causality. For example,
ifHu = k-u, k < 1, then H is strictly causal but not strongly
causal. It should be mentioned that although not formally
defined as “strict causality,” the same condition had been
used in [4] to address the well-posedness issue of feedback
systems.

Notice that the strict causality of H was defined on L., but
the gain of H was defined on §;. This is an important
difference from the traditional scheme of stability analysis
in the literature. Generally speaking, all physically real-
izable systems possess the property of strict causality for
any inputs (a global property), but the gains may exist only
for a limited magnitude of inputs (a local property). The
concept of “physically realizable systems” is discussed
systematically in [15].



Theorem 1 Assume H is strictly causal and has a local
gainyua < 1 with respect to some Sy. If the external input
satisfies ||ur|loo < (1—7Ha)d, VT > O, thenthe closed-loop
system (1) is locally stable and has an unique solution for
each u. Moreover,

e <

llerflo < 1:77;1,1”uT“°°
Hd

rlle < : [l#r(loo
—YHd

When H is a finite Volterra series model , we can derive
the corresponding results about the strict causality and the
local gain. Consider

H=H +H;+...+Hy (12)

where, Hu(t) = [y ... [oha(my, ..., T)ult = 70) .. .u(t -
T)dTid . . .dT,. A sufficient condition for strict causality
can be stated as follows.

(1) First order operator (n = 1): If there exists 8 > 0 such
that foo |h1(7)|dT < 1, then the operator is strictly causal;
(2) n-th order operator (n > 2): The n-th order operator
is strictly causal if it satisfies (a) there exists § > 0 such
that |h(ry,..., )| < oo, VY1 € [0,0),i=1,2,...n;
®) f;° - .fooo [h(r1, ..oy 7oy T, - T)ldTL - dT < 00,
i=1,2,...,n-landV7; > 0,j = i+1,..., n Under these
conditions, it can be shown that there exists 0 < A < o0
such that the following holds,

|Pro (Huy — Hup)|| < Ao||Pro(u1 —u2)||, Yo <8 (13)

An approximation of the local gain for a finite Volterra
series can be obtained as follows. Define

A o [ee]
|ha| = / / (re, ..., tldr ...dr, (14)
) 0

Assume that |h,| < oo for all n = 1,2,...,N, and the
input is bounded by ||Prul|- < d for some constant d.
Then

N N
1PrHulo < 3 1PrHalloo < (3 ald™ | Prulos

n=1 n=1

Let N (13
Fa= Y Iald" (16)
n=1

Then ||PrHul|lc < 94||Prullc. Hence, 7z is an upper
bound of the local gain of H and can be used in its place
to obtain the sufficient stability condition of a feedback
Volterra system.

3. Uncertainty description of Volterra
systems

One of advantages of a Volterra series model is its property
of universal approximation to nonlinear dynamic systems
[13]. The modeling uncertainty may come from different
sources, including the migmatch in using an ad hoc system
structure, external disturbances and insufficient informa-
tion in identification. In this paper, we will only consider

those systems which possess Volterra series representa-
tions and the mismatch in kernels and the truncation error
are their exclusive uncertainty sources.

Consider a time-invariant, fading memory operator H.
Let the set of input signals be

K ={u€ CR)| ||l <M,
lu(ty) — u(tz)| < May(ty — 1), ¥t < 12} (17)

for some M; > 0 and M; > 0. It has been shown in [13]
that, for any given ¢ > 0, there exists a finite Volterra
series operator, say & such that

(|Hu-Hullw <€, Yue€ K (18)
Assume HO = 0. A can be expressed as

R M t t
Hu =Z/0 .../0h,,(n,...,T,,)u(t—Tl)...

n=]

u(t—t)dmn .. .dm, (19)

where h, € L; and M < oco. Of course, M depends on e,
Generally speaking, M could be too large to handle for a
quite small €. So, in applications, we will use a truncated
Volterra series H with a smaller M, say N, to approximate
the original operator, namely,

N t t
= S [ [ muem)
n=1

w(t — r,)dry . . .dry (20)

Then the truncation error can be analyzed as follows.
Since

||(Hu), — (Hu), + (Hu), - (ilu)l“oo

< “(Hu)tl; (i{u)t”oo + ”(Hu)t_(ilu)tnloo
< 6+”Z/.../h,,(n,...,T,,)u(t—--rl)...
n=N+170 0
u(t—r)dr .. .dral|eo
< eda i

where, (), means the truncation up to ¢, o is some finite
number because of the assumption &, € L;. From this we
can see that there exists a time-varying, causal operator 6
on K, which is bounded by

16]lco = sup |6(u,n| < 1 (21)
Luek

such that

(Hu), = (Hu), + (o - |V + ) - 6, (22)
The above discussion only covers the case where His ex-
actly equal to the up to Nth order operators in H, and hence
the truncation error is the only source of uncertainty. Usu-
ally, H itself is unknown. In this case, &, may differ from
h,. To establish an uncertainty model for both the kernel
mismatch uncertainty and the truncation error uncertainty,
we first make the following assumptions:
(a) the original system H has a local gain v4 < oo for
ltlloo < ds )
(b) the nominal model A also has a local gain vg4 < oo



for |ul|ec < d. For this to be true, we may assume that
ha €L, n=12,...,N.
Under these assumptions, we have

[(Hu)lloo < valludlloo and [|(Hu)lloo < vlludloo (23)
for all u € S;. Then

|(Hu) — (Hu)l|oo < v+ 78|00

This suggests that there exist a finite number « and a time-
varying, causal operator é, which is bounded by

ll6llco = sup [6(u, )] < 1 24
LueS,y
such that ~
(Hu), = (Hu); + o - ||| oo - 6 (25)

Hence, we can define the uncertainty model R as
R, = a - luflec - 6:, YU € S4 (26)
and the uncertainty family IT as
M={H:H=H+R V6 c A} 27

where, A is a family of time-varying, causal operators
which are known only to satisfy the given norm bound

A={6: sup |6(u, 0| < 1} (28)
LUES,

and « will be called the uncertainty coefficient. Such an
uncertainty family IT may be too general to have practi-
cal significance. This is because a loose description of
uncertainty will produce a very conservative result in the
robustness analysis. To tighten the “size” of the family IT,
we will put an additional restriction on R.

Recall that almost all physically realizable systems are
strictly causal and this is of crucial importance to the well-
posedness of a feedback system. To assure a closed-loop
system, which has an uncertainty model in the loop, having
appropriate properties, we require R to satisfy the follow-
ing condition: for any u;, u with Pru; = Pru;, there exist
finite numbers 3 > 0 and o > 0 such that

|1Pro R(u1, 1) = ProR(u2, Ollco < Bl|Prott1 — Pro oo

for all T. Accordingly, we use IT to represent suclgzaglg
uncertainty family. It is clear that IT € IT. To see if or not
such a restriction on R is reasonable, we will consider two
examples as follows,

Example 1 Let H(s) be any stable and proper transfer
function. If the nominal model A(s) is also stable and
proper, one can show that (H - H) satisfies (29), and hence
H € IT; if A(s) is improper, then H not in I1.
Example2Let H: L, — L, and A : L, — L. If for all
uy,uy € L, with Pru) = Pruy there exist finite numbers
1, B2 and o1, 02, such that

|1Pro,(Hur — Hug)lloo < BillPro, (U1 — 12]| 0
forall T, i = 1, 2, then one can show that (H — f) satisfies
(29), and hence H € I1.

From these examples we can see that I contains a quite
general class of uncertain systems.

4. Robustness analysis of uncertain
feedback Volterra systems

We will investigate the nonlinear control problem by us-
ing an Internal Model Control structure (IMC). There are
several advantages in using an IMC over classic feedback
control[6, 16].

Consider an additive uncertainty family IT = {H :
Hu(t) = Hu(t) + (R(u, 7)), u € S4}, where, the nomi-
nal model A is assumed to be a time-invariant, stable and
causal operator, and the unstructured uncertainty R is de-
fined by (26) and (29). An IMC-based control system takes
the form of figure 1. The disturbance z is assumed to be
independent of the dynamics of the plant and hence, those
disturbances which are not independent of the dynamics
are assumed having been included in I1. In the diagram,
Cy is the nominal compensator which is designed based
on A, and Cs is the generalized filter. As long as closed-
loop stability is concetned, the above IMC structure can
be rearranged as figure 2.

u-z -e | Crll’] Ci{luc l R }__’yq

Figure 2: The closed-loop equivalent system for robust
stability analysis

Assume that Cpy has a local gain yey for ||uf]lee < M
and yeu - M < d, which is needed to guarantee u, € Sy,
and Cy has a system gain - (not only a local gain). From
the local small gain theorem, a sufficient condition for the
closed-loop robust stability can be obtained as follows.

Theorem 2 The IMC system is robustly stable if

(a) CyCy is strictly causal with the property lim, .o 3 = 0;
(b) yryem < o

() [|lu=2lJoo < M3} ~ cryem).

Proof Since u, € S; is assumed by yeyM < d, what
remains to be examined is under what condition the in-
equality [|uf||cc < M holds true. From the local small gain
theorem, a sufficient condition for this to be true is,

(a’) RCy Gy be strictly causal;

®) yrYemyr < 15



©) llu=2llo0 < M7 = vRYCM).
Since
R(u,t
Y& = sup (R, )] oc

tueSe  |Melloo

gup o]l A o

Lu€S,; ]} oo

< @ (30)

a sufficient condition for (b’) and (¢’) to be true is
that (b) and (c) hold true. Since R satisfies inequal-
ity (29), it can be shown that RCyCy is strictly causal
if CyCs is strictly causal with the property lim,_o 8 =
0. 0O

Remark 3 (a) The requirement “ CyCy is strictly causal
with the property limy,_o B = 07 is, in fact, quite weak.
This is because C; usually acts as a low-pass filter. For
example, if C; is a linear stable operator and has a strictly
proper transfer function, then CpCr will satisfy the re-
quirement; (b) Since we have assumed that Cy and C;
have local gains, the case where there is a pure integra-
tion element along the forward path will not satisfy this
sufficient condition.

5. Concluding Remarks

Using the concept of local gains and strict causality, a lo-
cal form of small gain theorem has been derived. The
proposed method can be used to address the input mag-
nitude dependent stability issue, which is unavailable in
traditional functional analysis methods. This new result
is useful in analyzing the properties of feedback Volterra
systems and the stability of inverse Volterra series [17].

Uncertainty modeling for a nonlinear system is a very
challenging issue. In the case where a finite Volterra se-
ries is used as a nominal model for a nonlinear system,
two different uncertainty models have been derived, one
for the truncation error and the another for both the trun-
cation error and the kernel mismatch. Both models can be
estimated via identification procedures. A robust stability
condition has been established through the use of the local
small gain theorem. The work is aiming at establishing a
control-relevant identification method by using these re-
sults.
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