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Abstract

Number theory has proven to be an effective tool in harmonic analysis, used to ex-
tend existing theories (e.g., sampling theory, fast transform computations) and develop new
approaches to problems (e.g., interpolation). Number theoretic methods have also been
successfully applied to the analysis of periodic point processes, leading to computationally
straightforward algorithms for several parameter estimation problems.

We first present modifications of the Euclidean algorithm which determine the period
from a sparse set of noisy measurements. The elements of the set are the noisy occurrence
times of a periodic event with (perhaps very many) missing measurements. The approach
is justified by a theorem which shows that, for a set of randomly chosen positive integers,
the probability that they do not all share a common prime factor approaches one quickly as
the cardinality of the set increases. A robust version is developed that is stable despite the
presence of arbitrary outliers. We then use these algorithms in the analysis of periodic pulse
trains, getting an estimate of the underlying period. This estimate, while not maximum like-
lihood, is used as initialization in a three-step algorithm that achieves the Cramer-Rao bound
for moderate noise levels, as shown by comparing Monte Carlo results with the Cramer-Rao
bounds. We close by discussing our work on deinterleaving. Here we discuss a variation
on Weyl’s Equidistribution Theorem, which works for noisy measurements. We then use
periodogram-like operators in a multistep procedure to isolate fundamental periods.




1 Introduction

Problems in harmonic analysis and synthesis are intertwined with their applications in signal
and image processing. Some recent advances in this analysis have used number theory to
extend existing theories (e.g., sampling theory, fast transform computations) and develop
new approaches to problems (e.g., interpolation). Number theoretic methods have also
been successfully applied to the analysis of periodic point processes. The purpose of this
note is to discuss several recent developments in which number theory has been used to
develop algorithms for several classes of parameter estimation problems. These results will
be presented at the 1996 IEEE SSAP Workshop [4].

We first present modifications of the Euclidean algorithm which determine the period
from a sparse set of noisy measurements [2, 3]. The elements of the set are the noisy
occurrence times of a periodic event with (perhaps very many) missing measurements. The
proposed algorithms are computationally straightforward and converge quickly. A robust
version is developed that is stable despite the presence of arbitrary outliers. The Euclidean
algorithm approach is justified by a theorem which shows that, for a set of randomly chosen
positive integers, the probability that they do not all share a common prime factor approaches
one quickly as the cardinality of the set increases. The theorem is in essence a probabilistic
interpretation of the Riemann Zeta Function. In the noise-free case this implies convergence
with only ten data samples, independent of the percentage of missing measurements. In the
case of noisy data simulation results show, for example, good estimation of the period from
one hundred data samples with fifty percent of the measurements missing and twenty five
percent of the data samples being arbitrary outliers.

We then use these algorithms in the analysis of periodic pulse trains, getting an estimate
of the underlying period [4, 18]. This estimate, while not maximum likelihood, is used as
initialization in a three-step algorithm that achieves the Cramer-Rao bound for moderate
noise levels, as shown by comparing Monte Carlo results with the Cramer-Rao bounds. An
approach using multiple independent data records is also developed that overcomes high
levels of contamination.

We close by discussing our work on the deinterleaving of multiple periodic pulse trains
[5]. Here we give a variation on Weyl’s Equidistribution Theorem, which shows that noisy
phase-wrapped data is equidistributed on [0, 1) almost surely. We then use periodogram-like
operators in a multistep procedure to isolate fundamental periods.

2 Modified Euclidean Algorithms

Our first problem begins with a set of noisy occurrence times of a periodic event with (per-
haps very many) missing measurements. We have developed modifications of the Euclidean
algorithm for determining the period from this set [2, 3]. This problem arises in radar pulse
repetition interval (PRI) analysis, in bit synchronization in communications, in biomedical
applications, and other scenarios. We assume our data is a finite set of real numbers

S = {s;}j=1, With s; = k;7 + ¢+ 1, (1)



where 7 (the period) is a fixed positive real number, the k,;’s are non-repeating positive
integers, ¢ (the phase) is a real random variable uniformly distributed over the interval [0, 7),
and the 7;,’s are zero-mean independent identically distributed (iid) error terms. We assume
that the 7;’s have a symmetric probability density function (pdf), and that |n;| < § for all j.
We develop an algorithm for isolating the period of the process from this set, which we shall
assume is (perhaps very) sparse. In the noise-free case our basic algorithm, given below, is
equivalent to the Euclidean algorithm and converges with very high probability given only
n = 10 data samples, independent of the number of missing measurements. We assume
that the original data set is in descending order, i.e., s; > s;41. For this first algorithm, we
assume an a prior: threshold 7y, where 0 < 79 < 7. Variations on this algorithm include a
data-adaptive threshold (see Section 2.3).

Modified Euclidean Algorithm

S= {3]'};'1=1a with §5 = ij+ ¢+77j7

Initialize : Sort the elements of S in descending order.

1.) After the first iteration, append zero.

2.) Form the new set with elements s; — s;.1.

3.) Sort in descending order.

4.) Eliminate elements in [0, 7] from end of the set.

5.) Algorithm is done if left with a single element. Declare 7 = s;. If not done, go to (1.).

Noise-free simulation examples demonstrate successful estimation of 7 for n = 10 with
99.99% of the possible measurements missing. In fact, with only 10 data samples, it is pos-
sible to have the percentage of missing measurements arbitrarily close to 100%. There is,
of course, a cost, in that the number of iterations the algorithm needs to converge increases
with the percentage of missing measurements. In the presence of noise and false data (out-
liers), there is a tradeoff between the number of data samples, the amount of noise, and
the percentage of outliers. The algorithm will perform well given low noise for n = 10, but
will degrade as noise is increased. However, given more data, it is possible to reduce noise
effects and speed up convergence by binning the data, and averaging across bins. Binning
can be effectively implemented by using an adaptive threshhold with a gradient operator,
allowing convergence in a single iteration in many cases. Simulation results show, for exam-
ple, good estimation of the period from one hundred data samples with fifty percent of the
measurements missing and twenty five percent of the data samples being arbitrary outliers
(2, 3.



2.1 Simulation Results

We assume that 7 = 1 for all simulations, which makes it easier to evaluate our results.
All estimates and their standard deviations are based on averaging over 100 Monte-Carlo
runs. The number of data points is given by n. Estimates of 7 are labeled 7, and std(7)
is the experimental standard deviation. The threshold value of 7y = 0.357 = 0.35 was used
throughout. (The value 7, was set data-adaptively in later experiments.) The value of iter
is the average number of iterations required for convergence, and %miss denotes the average
number of missing observations expressed as a percentage of the total possible number of
observations.

1.) Noise-free estimation.
In this example we examine the effects of changing n and the percentage of missing observa-
tions on the modified Euclidean algorithm of Section 2. The data are noise-free, i.e., n; =0
for all j. In this case the algorithm converges to the exact value of 7 = 1 with standard
deviation equal to zero, or in some cases for small n to some multiple of 7. The jumps in
the k;’s were modeled as uniformly distributed on the (discrete) interval [1, M]. Results are
shown in Table 1 where %miss denotes the experimentally determined average percentage
of missing observations, and ter is the average number of iterations required to converge.
The top half of Table 1 illustrates the effect of changing M, and therefore changing the
percentage of missing observations. Given insufficient data the algorithm will converge to a
multiple of 7. Columns labeled 7, 27, etc., indicate the percentage of runs that converged
to these values. The algorithm is able to choose 7 correctly based on n = 10 data samples,
even with 99.998% of the possible observations missing. Convergence in the noise-free case
depends on n but is independent of M, as implied by the analysis of Section 2.2.



The bottom half of Table 1 illustrates the effect of changing n for M fixed. Reliable
results are achieved for n > 10.

Table 1: Results from Simulation 1, noise-free estimation of 7 with the modified Euclidean
algorithm.

w
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n | M | %miss | iter T
10 [ 10T | 81.69 3.3 100%
10 | 102 | 97.92 10.5 100
10 | 103 | 99.80 46.5 100
10| 10 | 99.98 | 316.2 100
10 | 10° | 99.998 | 2638.7 | 100
4 |10%| 97.84 15.2 82%
6 | 102 | 97.81 14.2 97
8 | 10%2] 97.96 10.2 98
10 | 102 | 97.95 10.2 99
12 (102 | 97.95 8.6 100
14 1 102 | 97.97 7.4 100
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2.) Uniformly distributed noise.

We repeat Simulation 1 with the addition of noise. The gaps in the data are modeled
as uniformly distributed as in Simulation 1. The 7,’s have uniform distribution, given by
Jo(m) ~U [—%, %] Increasing M generally requires more data to maintain the same accuracy
in 7, and results in larger std(7). The bottom half of Table 2 shows the effect of increasing
noise with n and M fixed.

Table 2: Simulation 2 results, estimation of 7 from noisy measurements using the algorithm.

n| M| A |%miss| iter 7 std(7)
10 | 101 | 1073 | 81.37 | 4.35 | 0.9987 | 0.0005
10 | 102 | 1073 | 97.88 | 9.67 | 0.9980 | 0.0010
50 | 103 [ 10~3 | 99.80 | 16.0 | 0.9969 | 0.0028
10 [ 10' [ 1072 | 80.85 | 4.38 | 0.9888 | 0.0046
10 [ 10' | 1072 | 81.94 | 4.45 | 0.9883 | 0.0051
10 | 10' | 107t | 81.05 | 4.33 | 0.8857 | 0.0432

2.2 Theoretical Basis

Our algorithm is based on several theoretical results, which we now present. We also present
short proofs and a sketch of a long proof, as these are of independent interest.
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The Euclidean algorithm is a division process for the set of integers Z. The algorithm

is based on the property that, given two positive integers a and b, a > b, there exists two
positive integers ¢ and r such that

a=q-b+r,0<r<b.

If r = 0, we say that b divides a, and denote this by bla. This property of the set of integers,
combined with the fact that if a,b € Z \ {0} then a - b # 0 (Z has no zero divisors), make
Z a unique factorization domain. Thus in Z every non-zero element may be written as the
product of powers of irreducible integers, or primes. The Euclidean algorithm also holds in
more general algebraic structures called Euclidean domains.

The Euclidean algorithm yields the greatest common divisor of two (or more) elements
of Z. The greatest common divisor of two integers a and b, denoted by gcd(a,bd), is the
product of the powers of all prime factors p that divide both a and b. We may represent the
algorithm applied to a,b, a > b, as follows:

a=b-qu+mr : 0<ri<b
b=7‘1'(h+7‘2 i< <

Theo =Th—1 Qx+ 7k : 0< 7 <Tp_1

Thk—1 =Tk gk .

The procedure terminates when 751 = 0. This gives ged(a, b) = 7.

This procedure can be extended to work on S. The symbol ged(k1, ..., k,) is the greatest
common divisor of the set {k;}, i.e., the product of the powers of all prime factors p that
divide each k;. Note that this is not the pairwise ged of the set {k;}. If ged(ky, ..., kn) =1,
the set {k;} is called mutually relatively prime. If, however, ged(k;, k;) = 1 for all ¢ # j,
the set {k;} is called pairwise relatively prime. If a set is pairwise relatively prime, it is
mutually relatively prime. However, the converse is not true (for example, consider the
set {35,21,15}). The computation of the gcd of a set of more than two integers uses the
following proposition. There is also a natural extension of the gcd to multiples of a fixed
7> 0.

Proposition 2.1
(3.) ged(ki7,..., kn7) = Tged(ky, ..., kn), (2)

(ii.) ged(ky, ..., kn) = ged(ka, ..., kn_g, (8cd(kn-1, kn))) - (3)

Proof : See Leveque [14], page 16. O

The standard Euclidean algorithm, as shown above, involves repeated division. In our
problem, we are dealing with numbers that are essentially “noisy integers.” Remainder terms
could be noise, and thus could be non-zero numbers arbitrarily close to zero. Subsequent
iterations in the procedure may involve dividing by such small values, which would result in
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arbitrarily large numbers. Thus, the standard algorithm is unstable under perturbation by
noise. However, the algorithm may be changed so that the process of subtraction replaces
division by making use of the following proposition. So that (k; — k;41) € N, we assume
that the k;’s are sorted in descending order.

Proposition 2.2
ng(kl, ceay k‘n) = ng((kl - k2), (kg — k‘3), ey (kn—l - kn)) kn) . (4)

Proof : Let a be a positive integer such that a|k; for j = 1,...,n. Then, o|(k; — kj41) for
Jj=1,...,n—1, and o|k,.

Conversely, assume {3 is a positive integer such that 8|(k; —k;;q) for j =1,...,n—1, and
Bkn. Therefore, there exists positive integers ¢ and d such that ¢3 = k, and dB = (k,_1—k,).
Thus, d3+k, = (d+¢)B = kn_1, and so §|k,—1. By complete induction, 8|k, for j = 1,...,n.

Therefore, since the sets {k;} and {(k; — k;+1)} U {k»} have the same divisors, their ged’s
are equal. O

We will also need the following related result. The proof is very similar.
Proposition 2.3

ng((kl — kz), (kg - k3), ey (kn—l - kn)) = ng((kl - kn), (kQ — kn), ey (kn—l - kn)) . (5)

Proof : See [2]. O

We are now ready to give the justification of our modified algorithm. We assume the s;’s
are sorted in descending order, i.e., s; > s > --- > s,. This allows a more straightforward
visualization of our algorithm. We form a new set by subtracting adjacent pairs of these
numbers, given by s; — s;;1. After this first operation, the phase information has been
subtracted out, and the resulting set has the simpler form

S = {s] ;-‘;11, with s; = K;7 +17;,

where K; = k; — kj1 and m; = 1; — n41. In subsequent iterations of the algorithm, the
data will maintain this same general form. Because of the n; perturbations we establish
a threshold 7 and, after the subtraction of adjacent pairs, we declare all numbers in the
interval [0,7] to be zero and eliminate them from the set. Choice of 7 is dictated by the
distribution of the 7;’s, with 0 < 7y < 7. We then append zero, sort, subtract adjacent
pairs, and threshold. By appending zero, we adjoin the previous non-zero minimum to
the set. The algorithm is continued by iterating this process of appending zero, sorting,
subtracting, and eliminating the elements in [0,7,]. It terminates when all but one of the
elements are in [0, 7], i.e.,“equal to zero.” By the propositions above, this element is equal
to ged(K, ..., Kp-1) - 7 & error term.

We will see in the following discussion that ged(K, ..., K,_1) — 1 with probability 1
as n — oo. Moreover, we will see that this convergence is very fast, which shows that the
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proposed modified Euclidean algorithm yields 7 with a high probability for small (n = 10) to
moderate (n & 100) values of n, depending on the distribution of the 7;’s and the percentage
of outliers. Let P = {p1,p2,ps,...} ={2,3,5,...} be the set of all prime numbers. Let

[e.0]

(&)= Y n, R(z) > 1 (6)

n=1

denote the Riemann zeta function. In 1736, Euler demonstrated the connection of the zeta
function with number theory by proving that

() = g‘ln-z I (11,.)-;: JR(2) > 1. ™
= j=1 j
We show the following.
Theorem 2.1 Given n (n > 2) randomly chosen positive integers {ky,...,kn},
P{ged(ky, ..., ka) = 1} = [(()] ™" . (8)

Theorem 2.1 follows directly from the following. We let {1,...,£}" denote the sublattice
of N™ with coordinates ¢ such that 1 <c¢ < /.

Theorem 2.2 Let
N, () = card{(ky, ..., ky) € {1,...,€}" : ged(ky, ..., kn) =1},
For n > 2, we have that
jim 220 _ o))t ©)

f—o0 7

We eliminate the phase information in the data by the subtraction of adjacent elements
in the set. But then, rather than working with {ki,...,k,}, we are working with {(k; —
kz), ceey (kn_]_ ha kn)}.

Corollary 2.1 Let {k1,...,kn} be n (n > 3) randomly chosen positive integers, with k; >
kiy1, and let K; = kj — kjp for j=1,...,n—1. Then

P{ged(Ky,...,Kn1) =1} =[¢C(n=1)]"" .
Sketch of Proof of Theorem 2.2 : Let |z| = maxy<,{k : k € Z}. Claim :

Nn(e)=e"—Z(L€J)n+Z (L e J>n“ 2 ([ﬁJYJF

Di D pi<p; \ Pi " Dj Pi<pj <Py " Dj

Proof of Claim : Choose a prime number p;. The number of integers in {1,...,£} such that
¢

p; divides an element of that set is [-]. (Thus, we can have p; > ¢, because LI%J = 0.)
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Therefore, the number of n-tuples (ki,...,k,) contained in the lattice {1,...,£}" such that
p; divides every integer in the n-tuple is (independence)

()

If p; - pj|k, then p;|k and p;|k. Therefore, the number of n-tuples (k1,...,k,) contained
in the lattice {1,...,£}" such that p; and p; both divide every integer in the n-tuple is

() + (59 (575

where the last term is subtracted so that we do not count the same numbers twice (in a
simple application of the inclusion-exclusion principle).

Inductively, we can see that the number of n-tuples (ky, ..., k,) contained in the lattice
{1,...,2}" such that p;,p;,px,... all divide every integer in the n-tuple is given by the
inclusion-exclusion principle as

(5 - T (55) . = (5l) -

But this counts the complement of N, (¢) in the lattice {1,...,£}". Therefore,

mo=r-S (1) + 5 (50) - £ (5m) «

pi<p; \ Pi"Pj pi<py<p \ Pi " Pj-

Now,

1 Z n
e pi<Pjg-:--<pk (Lpz “Pjco-- Dk

n
N I ey
¢ Pi<pj<...<pp <L Di DPj-... Pk
k
_ Zi
p<t P"
. k
< Z -
pprimepn)
. k
< |\Xm) UeN\{y.
J

] . .. . ’ . N, (0 .
Since n > 2, this series is convergent. Therefore, each term in the expansion of %—z is
convergent.



Recall the M&bius function p :

pl) = 1,
(m) = 0 if m is divisible by the square of a prime,
K B (=) ifm=py-pe-...:pr, wherepy,po,...,p, are all distinct primes.

Euler showed that
1 1

1=+ Y- %

e — +
Y44 p" Pi<pj (pz : p]) P;i<p; <Dk (pz ) pj ’ pk)n
ﬂ -
= 2o ()™

where the last sum is over m € N. For n > 2, this series is absolutely convergent. This last
equality follows because for j, k,m,n € N,

R Z“(?)=Xk:%%u(d)=

¥ (mj)"

where we have used the fact that both series in the first term converge uniformly and thus

can be rearranged in any order.
k
1
Mk = Z j_n 3
j

Let
with sum over j € N\ {1}. Since n > 2 and the sum is over j € N\ {1},

Since the k™ term in the expansion of I—V%Q is dominated by My, and >, M}, is convergent,
we may apply the Weierstrass M test, and evaluate term-by-term. We use the fact that
z—1< |z] <z for all z, and so limg_e J%L = 1. Therefore, we have

- lmg (f" P> (L£J>n *Z (51) T (Lp“p_g?) ! )
S 1Y+ Y 2 1

5P pi<p (p: - pﬂ) Pi<p;<pr (Pi - pj - Px)"

_ yHm)

n
m

()",



where the last sum isover m € N. 0O

Euler derived the following remarkable formula -

_ 1(27r)2k
20(2k) = (—1)** @R

(2k*™™ Bernoulli Number) . (10)
This allows us to generate the following table. We can now see why the algorithm works
with as few as 10 data points.

Table 3: Some values of the Zeta function {(n) and 1/{(n).

¢(n) |1/¢(n)
1.64493 | 0.6079
1.08232 | 0.9239
1.01734 | 0.9830
1.00407 | 0.9959
1.00099 | 0.9990
1.00024 | 0.9998
16 | 1.00001 | 1.0000

— =
wooocn.&-wﬁ

We can also estimate the convergence rate for all the integers.
Proposition 2.4 Let w € (1,00). Then
lim [{(w)]—1 =1,

(e des]

conwverging to 1 from below faster than (1 — 2'=%).

Proof : Since

and w > 1,

1<CW) =1+ ot bt
—C(w)_ Qw 3w 4w Fw T

1 1 1 1 1 1
< 1+§;+2_w+4—w'+...+4—w+§u‘+u-+'8—wl+u-
4—times B—E;mes
2\ 1 1
- Z(z_w) T1-% 1-2-w’

k=0 2w

As w — o0, 1/(1 — 2'7%) — 1*. Thus, by the Squeezing Theorem,

(W] ' —1 asw—ro00. O
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2.3 Variations of the Algorithm

In this section we consider the effects of noise and outliers on the modified Euclidean algo-
rithm described above. The modified algorithm replaces division, as required in the stan-
dard Euclidean algorithm, with repeated subtraction in order to gain stability with respect
to noise. Error analysis of this approach is complicated by the facts that the algorithm
is iterative and that the algorithm sorts the data. Therefore, this analysis involves order
statistics.

Suppose the pdf of the 7;’s is given by f,(n), and consider the set of differences obtained
in the first iteration, given by

Y; = 85 — Sj41 = (kj — kjp1)7 + (07 — Mjg1)- (11)

Invoking the zero-mean iid assumption on the 7;’s, the pdf of (1; — 7;41) is given by the
convolution f,(n) * fy(n). So, for example, if f,(n) ~ U[-%5,%] (n is uniformly distributed
with parameter A) then f,.(y) = trily — (k; — kj31)7], the triangle function centered at
(kj — kj41)7. Two points can now be made. First, after the first iteration, the differencing
operation has removed the independence of the error terms. Second, the ordering operation
makes the nature of the dependence in subsequent iterations difficult to determine. Analysis
of order statistics very often rests on an iid assumption, e.g., see Reiss [17]. Without the iid
assumption, this analysis leads into many open questions (see Reiss [17]).

In general, beyond the first iteration the pdf of the subsequent error terms becomes
asymmetric, even when starting with iid 7;’s with symmetric pdf f,(n). This occurs due to
the reordering before differencing at each iteration, and because after the first iteration the
errors are no longer iid. The result is that using the modified Euclidean algorithm can lead
to negatively biased estimates of 7 after the first iteration due to the skewness of the pdf of
the errors. As we will see this can be corrected for by averaging.

In order to illustrate the behavior of the algorithm consider the following example. Let
the set S of equation (1) be generated as follows. Let 7 = 1, n = 100 data samples, the jumps
in the k;’s be randomly selected from a discrete uniform distribution on the interval [1, 10],
and the noise be iid and uniformly distributed as f,(n) ~ U[-0.1,0.1]. A data set S was
generated according to these parameters and used as input to our algorithm. Consider the
results after one iteration, in which the data has been differenced and sorted into descending
order, as plotted in Figure 1. The data are clustered into “steps” around integer multiples
of 7 = 1, as we expect from (11). That the steps are all of the same approximate length is
due to the uniform distribution in the jumps of the &;’s in the original data set S. Other
distributions will result in different proportions. From (11) and the assumptions on the noise
we know that the data has a mean that is an integer multiple of 7 given by (k; — k;j11)7,
with noise symmetrically distributed around this mean. This suggests isolating each step
and averaging the data within each step to reduce noise effects.

A straightforward method for clustering the data is to employ a gradient operator to
determine when a step has occurred. After the first iteration (as in Figure 1) the gradient
is estimated, with large gradient values indicating a step or “edge” in the data. We have
employed a simple estimator by convolving with an impulse response given by [—1,0,1]. This
operator is well known in signal and image processing. A data-adaptive gradient threshold
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go is selected as 10% of the maximum gradient value, and data points above this threshold
are assumed to correspond to the step edges. After the steps have been isolated the step
heights are easily found, and the minimum step height, call it 7, is taken as a coarse estimate
of 7. Referring to Figure 1, all of the step heights are approximately equal to 7, again due
to the original distribution of the jumps in the k;’s used in generating S. We then use 7
to set two thresholds. The first is 7y = 0.357, used to define the neighborhood of zero in
which data will be eliminated during each iteration. The second we take to be y, = 0.67,
used to segment the steps at each iteration. The segmentation proceeds by searching for
jumps in height greater than 1y, and averaging over each segment. The choices of 0.35 and
0.6 are based on extensive simulation experience, and can be more rigorously justified in
specific cases. However, performance is reasonably robust to changes in these weights under
the various scenarios considered. The averaging produces significant data reduction, and
therefore greatly increases the speed of convergence. The gradient operator is applied only
as part of the first iteration, the data reduces rapidly with each iteration and precludes use
of the gradient operator except as part of the first iteration.

We summarize the foregoing in the following algorithm statement. Again we assume
the data is initially sorted in descending order. Recall that appending zero in the first step
appends the previous minimum.

Modified Euclidean Algorithm (With Averaging)

1.) After the first iteration, append zero.
2.) Form the new set with elements s; — s;41.
3.) Sort in descending order.

4.) On the first iteration, apply gradient and obtain 7, yielding 7 = 0.357 and yo = 0.67
(see text).

5.) Average the data over each step, with steps determined by jumps of height .
6.) Eliminate elements in [0, 7] from end of the set.

7.) Algorithm is done if left with a single element. Declare 7 = s;. If not done, go to (1.).

Simulations show that this averaging makes the algorithm more robust. Results are
shown in Table 4. The missing observations were modeled using a Bernoulli process with
parameter )\, A is the noise parameter, and iter is the mean number of iterations required
to converge. Note that A corresponds to the expected percentage of missing observations.
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The top half of Table 4 shows that estimates of 7 degrade as the noise increases, as we
would reasonably expect. The bottom half of Table 4 shows the effects of increasing A, hence
increasing the percentage of missing observations. The performance is essentially unchanged
with 0.6 < A < 0.9. The last entry in Table 4 shows accurate estimation of 7 from 100 data
samples with 5% phase jitter and 90% of the observations missing. It is possible to select
A > 0.9. However, estimation of 7 becomes less reliable. For example, with A = 0.95, 3
out of 100 trials resulted in poor estimates of 7 that in turn resulted in poor estimates of 7,
while the other 97 trials produced estimates close to 7 = 1.

Table 4: Estimation of 7 from noisy measurements using the modified Euclidean algorithm
(with averaging).

n | A A 7 (std) zter (std)
100 5] 10 |1.0000 (.0001)| 3.5 (-6)
100 | 5| 1072 | 1.0000 (.0014) | 3.5 (.5)
100 | .5| 107! |1.0002 (.0169) | 3.5 (.6)
100 | .5 | 2 x 101 | 1.0032 (.0212) | 3.5 (.5)
100 | 6| 10-T [0.0998 (.0158) | 3.7 (.6)
100 | 7| 10! |0.9997 (.0200) | 4.0 (.6)
100 | .8 | 107! |[1.0002 (.0202) | 3.9 (.4)
100 |.9| 1077 |[1.0038 (.0213) | 4.2 (.6)

If the data is such that, after the first iteration, there is a relatively large cluster around
the step nearest to zero, then we can readily estimate 7 by finding this step, averaging only
over these data points, and declaring this to be 7. This is the rightmost or lowest step after
the first iteration (see Figure 1). Under our assumptions this mean is an unbiased estimate
of 7. Accurate estimation of 7 from a single iteration assumes that n is large enough, and
the span of the original data set S small enough, to yield sufficient data in the neighborhood
of 7. This is a function of the distribution of the &;’s.

In our example above the missing observations were modeled by taking the jumps in the
k;’s as uniformly distributed on the discrete interval [1, M], with M = 10. Thus, for large
n, after the first iteration the data will cluster in M steps with an expected value of n/M
samples in each step, as in Figure 1. As another model for missing observations we can
employ an iid Bernoulli process to determine if an observation is missing or not, where

P(missing observation) = A
P(observation occurring) = 1— A (12)

For example, with A = 0.6, we expect 60% of the observations to be missing. Given an
element of S, s; = k;j7 + n; + ¢, then the probability that s;11 = kj7 +nj41 + ¢ =
(kj +1)7+ 141 + ¢ is an element of the set S is given by 1 — A. It follows that, after the first
iteration, we expect (1 — A)(n — 1) data samples to be in the lowest step clustered around
the true value of 7. Thus, if n = 101 and A = 0.6, then after the first iteration we expect
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(1 —0.6)100 = 40 data samples to be clustered in the lowest step around 7; the average over
these 40 data samples may then be taken as an estimate of 7.

The single iteration algorithm is a simple modification of the preceding multi-iteration
version. After the (first) difference and sort operations the gradient is applied and the lowest
step isolated. The average over this step is then taken as our estimate of 7. We summarize
the single iteration form of the algorithm as follows.

Modified Euclidean Algorithm (Single Iteration)

1.) Given the set .S, form the new set with elements s; — s;1.
2.) Sort the new set in descending order.
3.) Apply gradient operator and obtain 7, with y, 2 0.67.

4.) Obtain 7 by averaging the data over the lowest step, isolating this step based on the
lowest two jumps of height .

Next we consider the effect of arbitrary outliers. These are, in general, quite harmful
to the estimation of the ged. This is easily seen in the noise-free case because the ged of
a contaminated set may be arbitrarily different from the gcd of the uncontaminated set.
Testing of the algorithms presented thus far shows sensitivity to the presence of even a
single outlier. This is because the outliers will not necessarily fall into the step-like clusters
we expect.

A more robust version of the algorithm can be obtained with the introduction of a step-
width threshold, zg. Let us concentrate on the single iteration approach. After application
of the gradient operator as before, we avoid false edges and clusters occurring below the true
lowest step by requiring the step-width (the number of data samples in a particular step) to
be greater than xg.

The choice of z; is dictated by two considerations, the distribution of the outliers and the
expected number of data samples in the lowest step after the first iteration. This represents a
tradeoff. For example, consider again the Bernoulli model for missing observations. Suppose
A = 0.25 and n = 101. We therefore expect 75 data samples in the lowest step, allowing
us to choose zo = 50, say. The single iteration algorithm employing z, will therefore search
for the lowest step in the data that contains at least o = 50 data samples. Depending
on the distribution and number of outliers it may be extremely unlikely that a step will
occur that simultaneously has a mean less than 7 and has more than zy = 50 data values.
The drawback to employing z, is that setting its value requires some a priori knowledge or
guesswork and is not easily set adaptively. The advantage is that for reasonable scenarios its
use makes the algorithm very robust to the presence of even large percentages of outliers, as
illustrated in the simulation results of the next section. This robust single iteration algorithm
is summarized as follows.
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1. Plot of example data set after one iteration of the modified Euclidean algorithm of Section 2.
The data is sorted in descending order into steps centered around multiples of 7 (7 = 1 in this
example). The stepwidths are a function of the distribution of the k;'s in the original data set S.
The lowest (rightmost) step is centered around the true value of 7 = 1.



Robust Single Iteration Algorithm

1.) Given the set S, form the new set with elements s; — s;1.
2.) Sort the new set in descending order.
3.) Apply gradient operator and obtain 7, with yy & 0.67.

4.) Obtain 7 by averaging the data over the lowest step, isolating the step based on the
lowest two jumps of height y, with step-width greater than x,.

See [2] for simulation of these last two algorithms.

3 PRI Analysis

The parameter estimation techniques given above lead to an effective method for periodic
pulse interval analysis (see [4, 18]). We assume time is highly resolved and ignore any
time quantization error. We are primarily concerned with a single periodic pulse train with
(perhaps very many) missing observations that may be contaminated with outliers. Our
data model for this case, in terms of the arrival times t;, is given by (1), with the additional
assumption that n; is zero-mean additive white Gaussian noise. Outliers are included as
arbitrary arrival times. The problem, again, is to recover the period 7 and possibly the
phase ¢. With Gaussian noise the minimum variance unbiased estimates for this linear
regression problem take a least-squares form. However, this requires knowledge of the k;’s.
We therefore propose a multi-step procedure that proceeds by (i) estimating 7 directly,
(ii) estimating the k;’s, and (iii) refining the estimate of 7 using the estimated k;’s in the
least-squares solution. This estimate is shown to perform well, achieving the Cramer-Rao
bound in many cases, despite many missing observations and contaminated data. The direct
estimate of 7 (step (i)) is obtained using the modified Euclidean algorithms described above.
While not maximum-likelihood (ML), the modified Euclidean algorithm performs well under
difficult conditions.

We now give the maximum likelihood solution and Cramer-Rao bounds for estimating
7 and ¢. Our analysis has led us to work with the data set {¢;;1 — tj}’;;'ll, so as to avoid
estimating ¢ (which can be unreliable). Given the sample data set S from (1) we may write

tl 1 kl ™

t 1 k

2 | _ 2 [ ) } L™ | (13)
: o T :

tn 1 kg Mn

where kj11 > k;. In compact form this is

t=XB+m, (14)
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where 8 = [¢,7]7 and the definitions of t, 7, and X follow from (13). We eliminate ¢ by
forming the differences y; = t;11 — t; = (kj41 — k)7 + (0j41 — 1), yielding

n k2 - kl 61

Yo k3 — ko 2

) = : T+ : , (15)
Yn—1 kn - kn—l 5n—1

where d; = 111 — n;. Similar to (14) we may write (15) compactly as
y = Xyr + 6. (16)

Equations (14) and (16) are linear regression problems whose least squares solutions yield
the minimum-variance unbiased estimate when the noise is zero-mean Gaussian, e.g., see Kay
[10]. Generally, use of (16) is preferred for estimating 7, avoiding estimation of ¢ which has
high variance. The solution to (16) corresponds to ML estimation and takes the form of a
least squares estimate

? = (XIRy X)) XIR; 'y, (17)

where R; = E[667). We have assumed white noise so R = o;‘;f?,,; where R;s has 2’s on the
main diagonal, —1’s on the first upper and lower diagonals, and zeros elsewhere. In general
Rs is full rank and its inverse can be expressed element-wise as [Rj'];; = min(s, 5) — ij/n,
and is therefore easily computed. Although optimal, use of (17) requires knowledge of Xj.
This is not a problem if there are no missing observations for then k; = j for j = 1,2,...n.
However, when observations are arbitrarily missing then the k;’s are not known in general,
and one is faced with more unknowns than equations in (16).
The pdf of the noise 7 in (14) is multivariate Gaussian, leading to the Cramer-Rao bound
(CRB) for (17)
var{t — 7} > o2(XTR;1X,) 71, (18)

with o5 = 20,. Generally, the CRB is reduced for smaller o,%. Also, for fixed n, it is reduced
when the spread of the k;’s increases.

Now, if 7 were known then X, could be estimated using (1/7) y. Ideally, this estimate
is composed of positive integers, but imperfect knowledge of 7 and the presence of noise will
generally yield an estimate of X, that has non-integer components. We therefore propose to

estimate X  via .
— ¥, (19)
TMEA

where Tiy g4 is the estimate of T obtained via the modified Euclidean algorithm, and

X4 = round

1
round|-] = |- + §_|
is rounding to the nearest integer. A refined estimate of 7 is then obtained by using X\d in
(17) yielding N
7 = (XTR;'X) " XTR;y. (20)
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This result approaches the optimal minimum variance performance when X, 4 1s close to Xg.
The refinement algorithm is summarized as follows.

Refined Estimation Algorithm

1.) Estimate 7 via the modified Euclidean algorithm, calling this estimate Tz 4.
2.) Estimate X via (19).
3.) Refine the estimate of 7 using X, in (20), calling this estimate 7.

Performance analysis of the estimate 7y;g4 depends not only on the distribution of the
noise 7, but also on the distribution of the k;’s. We have completed this analysis for some
specific cases in [4]. We also compare the estimates to Cramer-Rao bounds via Monte Carlo
simulation, revealing the very good performance of the algorithm with many missing obser-
vations and contaminated data (see [4, 18]). We can also apply our estimation procedures to
estimation of the frequency of a single sinusoid in Gaussian noise. We address the problem
[19], using only very sparse noisy zero-crossings with the presence of outliers.
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Table&: Comparison of data from figure?a.,

“ % jitter | TyEea mean(std) I T mean(std) ] v/CRB ”
2 | 1.0000 (0.0007) | 1.0000 (1.826 x 10-°) | 1.829 x 10-°
4 1.0000 (0.0011) | 1.0000 (3.587 x 10_5) 3.669 x 105
6 1.0003 (0.0016) | 1.0000 (5.056 X 10_5) 5.532 x 1078
8 1.0000 (0.0022) | 1.0000 (7.427 x 107°) | 7.366 x 10~°
10 1.0002 (0.0028) | 1.0000 (9.275 x 107°) | 9.228 x 10~°
15 0.9998 (0.0043) | 1.0000 (1.438 x 10"4) 1.387 x 10~*
20 1.0000 (0.0054) | 1.0000 (1.907 x 107*) | 1.836 x 10~*
25 0.9999 (0.0072) | 1.0000 (2.210 x 10*) | 2.308 x 10~*
30 | 1.0007 (0.0084) | 1.0000 (1.583 x 10~2) | 2.758 x 10+
35 0.9999 (0.0110) | 0.9994 (3.401 x 10—3) 3.222 x 104
40 1.0008 (0.0139) | 0.9996 (6.216 x lb';3) 3.672x 107
45 1.0052 (0.0426) | 0.9999 (3.285 x 10_2) 4,178 x 10~*
50 1.0133 (0.0741) | 1.0041 (5.830 x 1072) | 4.792 x 10~*

Figure 223Monte Carlo estimation results (Wlthout outliers, A = 0.25, N = 100,z, = 5). Solid
= CRB, x = Tyga, dash (*) = T, and dash-dot (+) =

Normalized MSE (dB)
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Figure 2b:Monte Carlo estimation results (without outliers, A = 0.50, N = 100,z = 5). Solid
= CRB, x = Tmga, and dash (*) = T.
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Figure 3: Monte Carlo estimation results (without outliers, A = 0.75, N = 100, z, = 5). Solid
= CRB, x = Tiga, and dash (*) = T.
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Figure 4: Monte Carlo estimation results (with 5% outliers, A = 0.25, N = 100,z, = 15).

Comparison of T versus 1" (full versus selected data reuse in the refinement algorithm). Solid

= CRB, x = Tyga, dash-dot (o) = T, dash (*) = T".
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Figure 5: Realizations of 1" for different percentages of jitter near threshold, with experimental
parameters matching those of figure 4.



25 % jitter

o
i)
T

Estimate of T

80

100 120

1.02+

Estimate of T

0.98

140 180 200
realization
. 30 % {itter
20 40 60 80 100 120 140 160 180 200
realization - -
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4 Deinterleaving

We close by discussing our work on deinterleaving. Our data model is the union of M
copies of (1), each with different periods or “generators” I' = {7;}, k;;’s and phases. Let
7 = max;{7; }. Then our data is

M ,
A=, i+ kigmi + i}y, (21)

where n; is the number of elements from the ™ generator, {k;;} is a linearly increasing
sequence of natural numbers with missing observations, ¢; is a random variable uniformly
distributed in [0, 7;), and the 7;;’s are zero-mean iid Gaussian with standard deviation 30;; <
7/2. We think of the data as events from M periodic processes, and represent it, after
reindexing, as A = {o},. Assuming only minimal knowledge of the range of {r;}, namely
bounds Ty, Ty such that 0 < T, < 7; < Ty, we phase wrap the data by the mapping

owor=(5)-5- 3]

where p € [Ty, Ty], and |-| is the floor function. Thus (-) is the fractional part, and so
<I>p(al) € [0, 1).

Definition 4.1 A sequence of real random variables {z;} C [0,1) 4s essentially uniformly
distributed in the sense of Weyl if given a,b, 0 <a <b< 1,

%card {1<j<n:z;€ab]} — (b—a) (23)

as n — 0o almost surely.

Weyl’s Theorem is presented in [6]. For our variation, we assume that for each i, {k;;} is
a linearly increasing infinite sequence of natural numbers with missing observations such
that k;; — oo as j — oo. We must make this assumption because the result is only
approximately true for a finite length sequence.

Theorem 4.1 For almost every choice of p (in the sense of Lebesgue measure) ®,(cy) is
essentially uniformly distributed in the sense of Weyl.

Moreover, the set of p’s for which this is not true are rational multiples of {7;}. Therefore,
except for those values, ®,(w;;) is essentially uniformly distributed in [0,1). Moreover, the
values at which ®,(c;;) = 0 almost surely are p € {7;/n : n € N}. These values of p cluster
at zero, but spread out for lower values of n.

We then map the phase wrapped data by non-linear variations on the periodogram,

1 - o, .1 . ap_ oy
Flog, p) = =Y cos® 1 2r—) +i—= sin® ' (2r—), 24
(o9) = 37 S cost 2 2) iy B sin = 22 4)
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for r = 2,3,.... Now, the periodicity of sin and cos gives us that

cos? (21D, (ay)) = cos? L (2 )
p
and o
sin? (27 ®,(v)) = sin® (21 =) .

By Theorem 4.1, the random variables ®,(o;) are uniformly distributed on [0, 1) for almost
every choice of p. We can then compute the distributions of the real and imaginary parts of
F. The “noise-like” behavior of ®,(ay) for a.e. p leads to a “flat” range for F. However, at
p € {r;/n : n € N}, we have increasingly strong peaks as n decreases. In turn, this gives the
following. Let iy denote the index of the most prolific generator, and R, & denote the real
and imaginary parts.

Theorem 4.2
max (RF — |SF|) =7 - (25)

We then isolate the data generated by 7;, by convolution with a pulse train of width 7;,,
and subtract it out. We then repeat the process, terminating when A equals the empty set.
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