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ABSTRACT

This paper considers a discrete-time system composed of AK infinite capacity queues that com-
pete for the use of a single server. Customers arrive in' i.i.d batches and are served according to a
server allocation policy. Upon completing service, custpiners either leave the system of are routed
instantaneously to another queué according to some random mechanism. As an alternative to sim-
ply randomized strategies, a poliicy based on a Stochastic Approxi?ma,tion algorithm is proposed to
drive a long-run average cost to a given value. The motivation can be traced to implementation

issues associated with constrained optimal strategies.

A version of the ODE method as given by Metivier and Priouret is developed for proving a.s.
convergence of this algorithm. This is done by exploiAting the recurrence structure of the system
under non-idling policies. A probabilistic representation the solutions to an associated Poisson
equation is found most useful for proving their requisite Lipschitz continuity. The conditions which
guarantee convergence are given directly in terms of the model data. The approach is of independent
interest, as it is not limited to this particular queueing application and suggests a way of attacking

other similar problems.
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I. INTRODUCTION

In recent years, there has been widespread interest in Stochastic Approximation algorithms
as a means to solve complex engineering problems [5,15]. As a result of the increasing complexity
of applications, focus has shifted from the original Robbins—Monro algorithm to more sophisti- -
cated versions, and this has led in particular to the study of projected Stochastic Approximation
algoﬁthms driven by Markovian “noise” or “state” processes.

Such algorithms have the follb‘wihg‘ form. Let {n(n), n = 0,1,...} be the sequence of iterates
which take values in‘ a compact convex subset G of R?, and let {X(n), n = 0,1,...} be the state

process which takes values in some Borel subset S of R*. They are related by the recursion

"7(" +1) = Ie{n(n) +:a,,+1f(n(n),X(n+ 1)} n=0,1,. (11)

with 7(0) in G, where Il denotes the ;nea,rest-point projection on G, f is a Borel mapping GX S —

IR? and the step size sequence {@yn4+1, n = 0, 1,...} satisfies the conditions 0 < @y | 0, Y g Gn = ©
and Y o2, a? < 0o. A complete specification of the algorithms (1.1) requires that the conditional
probability distribution of X(n + 1) given (X(0),7(0), X(1),...,X(n),n(n)) be postulated for each

n=0,1,.... Forinstance, the Markovian dependencies alluded to easlier require
P[Xnt1 € BIX(0),7(0), X(L),-- o, X(m), 2()] = pinimy(X (); B) n=0,1,...(12)

for every Borel subset B of S, where {u,, 7 € G} is a family of one-step probability transition

kernels on 5.

The central question in the theory of Stochastic Approximations is concerned with the conver-
gence properties of the iterate sequence {n(n), n = 0,1,...}. For the Robbins—Monro algorithm,
direct martingale arguments have been given by Gladyshev [9] to establish a.s. convergence. How-
ever, in more complex situations such as (1.2), the direct probabilistic approach does not work,
and this failure prompted the development of the so—called ODE method. In all its forms, the
ODE method proceeds in two separate steps. The first step relies on the Kushner—Clark Lemma in
order to identify a deterministic ODE, the stability properties of which determine the limit points
of {n(n), n = 0,1,...}. The second step is probabilistic in nature and depends on the algorithm
being considered; its purpose is to show that asymptotically (in the mode of convergence of interest)

the output sequence of the original algorithm behaves like the solution to the ODE.

In their monograph [14], Kushner and Clark have given general conditions for successfully

completing this second step. In more structured situations [15], Kushner has shown how weak
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convergence methods — through various tightness properties — pave the way to convergence in
probability of the sequence {(n), n = 0,1,...}. In the Markovian case, Metivier and Priouret [20]
have established a.s. convergence by making use of properties of the Poisson equation associated
with the transition kernels {u,, 7 € G} appearing in (1.2). Key to their analysis are various

properties of Lipschitz continuity (in %) of the solution to this Poisson equation.

Unfortunately, in all these references, the conditions underlying the second’ step of the ODE
method are given in implicit form and are often hard to verify in specific situations. What seems
required is a more operational convergence theory where conditions are given directly in term of
themodei data. For instance, this was dene by the authors [16] in the Markovian situation when

the state space S is finite, in which case (1.2) reduces to

PLXnt1 = 91X (0);7(0), X(1),.., X(m), ()] = P,y () n=01,..(13

for every y m S for some family {P(5), n € G} of one-step transition probabilities with P(n) =
(Pzy(n))- A comprehensive convergence theory was developed under the mild condition of Lipschitz
continuity for the one-step transition probabilities 7 — pzy(7). This was achieved by using a variant

of the approach proposed by Metivier and Priouret, and leads to an a.s. convergence result.

When the state space S is countably infinite, the situation is much more difficult and no general
results seem available, which guarantee a.s. convergence in terms of explicit conditions on the model
data. The main technical difficulty in the approach of Metivier and Priouret stems from the fact
that several quantities of interest are no longer bounded and that the requisite properties of the
solution to the Poisson equation are now much harder to obtain. This paper presents arguments
for establishing these smoothness properties and the a.s. convergence of the algorithm. Although
the discussion is carried out in the context of an adaptive control problem for a specific queueing
system, the approach is of much wider applicability and should be of use in analyzing a large class
of Stochastic Approximations driven by a Markov chain on a countable state space. The approach
relies on the recurrence structure of the controlled system [18], and on a probabilistic interpretation

of the solution to the Poisson equation derived from it [25).

The queueing system considered here is noev briefly deseribed; a precise model formulation is
available in Section 2: Consider a system composed of K infinite capacity queues that compete
for the use of a single server. Time is slotted with the service requirement of each customer
corresponding exactly to one time slot. At the beginning of each time slot, the controller gives

priority to one of the queues according to some prespecified dynamic priority assignment, and the
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selected queue is given service attention during that slot. However, due to a variety of reasons
ranging from server failure to exogenous interferences, with a positive probability, the service fails,
in which case the service of that customer is rescheduled at a later time in accordance with the
service allocation policy. When in a given time slot the service succeeds, the customer is either
declared serviced and leaves the system at the end of the slot, or is routed to one of the other
queues with a fixed probability, depending on both source and destination queues. In the present
paper, the failures are assumed generated through independent Bernoulli processes, with possibly
class-dependent parameters, and this independently of the arrival mechanism. New customers may
arrive in batches, which are modelled as an arbitrary K-dimensional renewal procé_ss, to capture

partial correlations between arrivals from different classes in a given slot.

This queueing system and its variants consitute useful models for studying resource allocation
issues in several application areas, including computer systems and data ﬁetworks, and as such -
théy have received a great deal of attention in recent years. Klimov [12] studied a continuous-
time version of this system, and proved that a strict priority policy minimizes the discounted cost
associated with a cost-per-slot linear in the queue sizes. Tsoucas and Walrand [27] considered an

adaptive version of Klimov’s problem where the service distributions are unknown.

The case where no routing is allowed has been much studied. For such systems, Sidi and
Segall [26] derived the joint equilibrium distributioﬁ of the queue size under a fixed priority scheme.
Several authors [3;4,7,10] have shown that the pc-rule minimizes a variety of performance measures
associated with the aforementioned linear cost structure. In [21], Nain and Ross considered the
situation where several types of traffic, say voice, video and data, compete for the use of a single
synchronous communication channel. They formulated this situation as a system of K discrete-
time queues and found the service allocation strategy minimizing the long-run average of a linear
expression in the queue sizes of K — 1 customer classes, under the constraint that the long-run
average queue size of the remaining customer class does not exceed a certain value. Extending
some of the optimality results from Baras, Ma and Makowski [4], they showed that if the constraint
can be met, then the optimal policy g is a Markov sta,tioha,ry policy with the following structure:
There exist two static work-conserving service assignment policies (of which yec-rules are oﬁly one
description), say § and g, and a scalar #* in (0,1). At the beginning of each time slot, a coin with
bias n* is flipped, and the policy g implements channel rights according to the outcome via gandg
with probability n* and 1 —n*, respectively. The bias * is determined so as to meet the constraint.

This result was extended by Altman and Shwartz to the case where the constraint is also given
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through a linear combination [1,2].

These results are typical in that analysis often identifies a policy ¢ of interest which is Markov
stationary. Unfortunately, this policy may not be readily implementable due either to a lack of
knowledge of the actual values of some parameters [13] or to computational difficulties inherent to
its definition. The situation treated by Nain and Ross is a good case in point, for there non-trivial
off-line corﬂputations are required in order to actually compute the value of ‘the bias 7*, even if all

parameters are known.

»

This implementation issue provides the motivation for the Stochastic Approximation studied
in this paper. In Section 3, the issue is discussed in the broader context of “steering the cost to a
given value”, with a view towards appﬁcaﬁions to constrained optimization [1,2,21]. The problem
is now one of finding the bias * he—eded‘in a simple randomiiation between two policies g_ and
g in order :to steer a long-run average cost to a givén value. The resulting randomized Markov
stationary bolicy — denoted g herefater — can be implemented by means of a projected Stochastic
Approximaiion. This algorithm computes on-line estimates of 7* which are then used in a Certainty
Equivalence controller o based on the special form of g. Theorems 3.1 and 3.2 contain the main
results concerning the performance of this policy a, namely that the policies o and g yield the same
value for the long-run average cost, and that the iterates {#(n), n = 0,1,...} converge a.s. under o
to the bias value #*. This improves on earlier results of the authors [23] for the same algorithm in
the context of the system with two queues with no routing. There, only convergence in probability

was established, albeit under weaker conditions on moments.

The convergence proof for the Stochastic Approximation algorithm hinges on the availability of
bounds on moments of the queue size process which are uniform in the policy, and on the smoothness
properties of solutions to an associated Poisson equation [20, 25]. The bounds are obtained in
Section 4 by means of renewal arguments which relate the queue size to the recurrence times to
the empty state. In Section 5, novel arguments are developed for proving the Lipschitz continuity
for solutiohs to the Poisson equation and for establishing bounds on them. It is appropriate to
stress the methodological value of both Sections 4 and 5, in that ideas therein are by no means
restricted to the competing queue model and can be used mutatis mutandis in many 6ther situations.
However, the approach was developed here for a Stochastic Approximation a.lgori:thm for a specific
model, rather than for general Markov chains with countable state spaces, in order to present the
arguments more clearly, unemcumbered from technical details which often accompany more formal

treatments.
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The a.s. convergence of the Stochastic Approximation scheme defining the implementation a
is established in Section 6, where the various estimates of the previous sections allow for a rather
simple proof. Finally, the cost properties of the policy a are discussed in Section 7 by making
use of the convergence of the Stochastic Approximation and invoking the results on the “Certainty
Equivalence” Principle developed in [24]; the requisite hypotheses of [24] are easily verified for
this system with the help of bounds on solutions to the Poisson equation. The paper concludes
with an a,pp]ica.tionvto the constrained optimization problem discussed by Nain and Ross in [21].
All necesssary conditions are verified and the policy o thus constitutes an implementation of the

Markov stationary policy which is constrained optimal for this problem.

‘A few words on the notation and conventions used thrbughoﬁt the paper: The set of all non-
negative integers is denoted by IN, and R (resp. R+) stands for the set of all real (resp.' positive
real) nuﬁbers. Elements of RX are always intérpreted as K X 1 column vectors, and the k**
component of any element z of R¥ is denoted by zk,:l < k £ K, with a similar convention for
random variables (RVs). Thus an eleﬁlent z of R¥ can also be written as (ml,...,zxj’ (with ’
denoting transpose), and its norm is given by | z |:= Ef=1 |zk|. The elements e and 0 of R¥ are
defined as the vectors e = (1,...,1)" and 0 = (0, ...,0)’ with identical components. The standard
basis {e!,...,eX} for R¥ is denoted by Bk, while Sk is the standard simplex defined by

K
SK:={p€]R.K:Zpk=1 and 0<pr <1, 1<k<K} (1.4)
k=1

The indicator function of a set A is denoted by I[A]. Unless stated otherwise, the notation lim,,

and lim,, are understood with n.going to infinity.

2. MODEL AND ASSUMPTIONS

2.1 The basic random variabies

In this paper, all probabilistic elements are defined on a single sample space § equipped
with the o-field 'of events F. This sa.inple_ space carries the basic RVs Z, {U(n), n = 0,1,...},
{A(n), n = 0,1,..}, {B(n), n = 0,1,...} and {R(n), n = 0,1,...} which take values in IN¥,
Bk, N¥, {0,1}¥ and {0,1,.. .K}K, respectively. The information RVs {H(n), n=0,1,...} are
recursively defined by H(0) :=Z and - '

| H(n+1) = (H(n), U(n), A(n), B(n), (n)); | n=0,1,...(2.1)
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they take values in the information spaces {H,, n = 0,1,...} where Hy := N¥ and H,,; :=
H, x Bk x N¥ x{0,1}¥ x {0,1,...,K}¥ foralln = 0,1,....

These quantities have a ready interpretation in the context of the queueing system described
in the introduction: The number of customers initially in the k** queue is set at i and for each
n = 0,1,..., the state of the system is represented by a RV X(n) of integer components with the
interpretation that at the beginning of the slot [n,n + 1), Xi(n) customers are present in the kt#
queue, including the one receiving service. The following chain of events occurs:

' (i): The control action U(n) is selected with-the convention that Ui(n) = 1 (resp. Ux(n) =0)
if the k" queue is (resp. is not) given service attention during that slot. The fact that
U(n) takes values in Bk guarantees that exactly one queue is given service attention;
(ii): New customers arrive into the system according to the RV A(n) with A,(n) new customers
joining the kt* queue; .
(iii): A complétion of service possibly occurs at the queue that was given service attention during
the slot. This is encoded in the binary RV B(n), where Bi(n) = 1 (resp. Bi(n) = 0)
signifies successful completion (resp. abortion) of service for the k** queue conditioned on

it being given service attention and non-empty; and

(iv): If a service completion occurs at the queue that was given service attention during the
slot, then instantaneously the serviced customer is either transferred to another queue or
it leaves the network. This routing decision is implemented through the variable R(n)
with the following interpretation. If the service completion occurred at the k** queue,
then Ri(n) = £, 1 < £ < K, means that the serviced customer joins the £* queue while
Ri(n) = 0 expresses the fact that this customer leaves the system.

As a result, the successive system states or queue size vectors form a sequence {X(n), n =

0,1,...} of N¥_-valued RVs which are generated componentwise through the recursion
Xi(n +1) = Xi(n)+Ax(n) — I[X(n) # 0]Ux(n)Bi(n)
’ K
+ Y I[Xe(n) # 0)Ue(n) Be(n)I[Re(n) = k]
“£=1
1<k<K, n=0,1,...(22)
with X(0) := E.
At the beginﬁing of each time slot [n,n + 1), the channel controller has access to the initial

queue sizes =, the past arrival pattern A(),0 < i < n, past decisions U(i),0 < ¢ < n, past service
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completions B(¢),0 < i < n and past routing decisions R(7),0 < i < n. Thus, the decision-maker
has knowledge of the RV H(n) which is used to generate the control value U(n) implemented in the
slot [n,n 4+ 1). The selection of this control value is done according to a prespecified mechanism,

which may be either deterministic or random.

2.2 The probabilistic structure

Since fa.ndomized strategies are allowed, an admissible control policy = is defined as any col-
lection {mp, n = 0,1,...} of mappings 7, : H, — Sk, with the interpretation that at times
n =0,1,..., the k** queue is given service attention with probability m,(k; hn) whenever the in-
formation vector hy in H, is available to the system controller. Denote thé collection of all suéh
admissible policies by P.

Let gz(-) and g(-) be -twov probability mass distributions on INX, and fix a service rate vector
p in (0,1]%. Moreover, let P denote a K X K substochastic matrix (pxe, 1 < k,£ < K)i.e., '

‘K

0<pre<l and ) pre<l , 1<kL<K (2.3)
=1
and set
K
pooi=1-Y pre , 1<k<K. (24)
=1

Throughout the discussion, the non-degeneracy condition
0<g(0)<1 (2.5a)

and the finite mean condition

Z lalg(a) < oo (2.5b)

a€NK

are enforced, and it is always assumed that the matrix I — P is invertible, a condition which
is equivalent to the system being open, i.e., every customer eventually leaves the system with
probability one.

' The ﬁlodel is now completely specified by postulating the existence of a family {P™, = € P}
of probability measures on the o-field F which satisfies the requirements (R1)—-(R3) belbw, i.e., for
every policy  in P, } | :

(R1): Forall z in NF,
PT[E =12]:=g¢z(x);
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(R2): For all a in N¥ b in {0,1}¥ and r in {1,2,..., K}¥,

P™[A(n) = a, B(n) = b, R(n) =1 | FoV o{U(n)}]

:=P"[A(n) = a] P[B(n) = b|P"[R(n) = r] n=0,1

K K
- =q(a)- [T (brx + (1 = 08)(A — 1)) - [ irs
k=1 ’ k=1

where for each n = 0,1,..., F, denotes the o-field on the sample space {} generated by
the RV H(n); and '

(R3): Forall ¢ in Bk, 1Sk < K,
P[U(n) = e¥|Fpl i= malk; Hy). o n=0,1,...

The existence of a sample space (2, F) that carries such a family of probability measures
{P", = € P} is easily established via the Kolmogorov Extension ?Theorem, by taking Q to be the
canonical space N¥ x (Bx x N¥ x {0,1}¥ x {0,1,..., K }K )® equipped with its natural a-ﬁeld:
This modeling approach was adopted in [23] for a special case of the Markov decision process under

consideration; the reader is referred there for additional information.

The reader will readily check that under each probability measure P™, the following properties
(P1)-(P4) hold true, where | '

(P1): The INK_valued RV = and the sequences of RVs {A(n), n=0,1,...},{B(n), n=0,1,...}
and {R(n), n=0,1,...} are mutually independent;

(P2): The sequences {Bi(n), n=0,1,...} of {0,1}-valued RVs are mutually independent i.i.d.
Bernoulli sequences with parameters pi, 1 < k < K;

(P3): The sequences {Rg(n), n = 0,1,...} of {0,1,...,K}-valued RVs are mutually i.i.d. se-

quences with
P[Ri(n) =fl=prt, 1<kL<K; n=0,1,...(2.6)

(P4): The N¥.valued RVs {A(n), n = 0,1,...} form a seqﬁence of i.i.d. RVs with common .
probability distribution g(-). | ‘ A

For 1 < k < K, denote by Ak the first moment of the sequence {Ak(n), n :: 0,1,...} and set

v = "t For future use, define the network traffic coefﬁcient p by

p:=MNI-P) v (2.7)
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where A = (M1,...,Ak) and ¥ = (v4,...,vk)".
2.3 Several families of policies

A policy 7 in P is said to be a Markov policy if there exists a family {gn, » = 0,1,...}
of mappings g, : N — Sk such that n,(H(n)) = ga(X(n)) P™-as. for all n = 0,1,..., with
{X(n), n =0,1,...} generated through the recursion (2.2). When the mappings {gn, n =0,1,...}
are all identical to some mapping ¢ : IN¥ — Sk, the Markov policy 7 is termed stationary and can

be identified with the mapping g itself, as will be done repeatedly in the sequel.

A policy = in P is said to be non-idling or :vork-conserving whenever for all 1 < k¥ < K, the

condition
[ (k; H(n)) > 0, X(n) # 0] = [wn(k; H(n)) > 0, Xi(n) # 0] n=0, 1,.1._.(2‘.8)

holds true P7-a.s.

3. PROBLEM FORMULATION

Let ¢ denote a mapping NX = R. For any admissible policy = in P, set

J(r) := Tm. B [’ni—1 Y- (X)) (3.1)

1=
(whenever meaningful) with the usual interpretation that J () is a measure of system performance
when using the policy =.
3.1 Steering the cost

Consider the problem of steering the cost (3.1) to a given value, i.e., finding a Markov stationary
policy g such that J(g) = V for some constant V determined possibly through design considerations.
As demonstrated by Ross [22], versions of this problem naturally arise in solving constrained MDPs
by Lagrangian arguments. Here the discussion is given under the assumption that there exist two

Markov. (possibly randomized) stationary policies g and § such that
J(g) <V <J(@. (3.2)

For every 7 in the unit interval [0,1] the policy f”, obtained by simply randomizing between the
two policies g and § with bias 7, is the Markov stationaiy policy determined through the mapping

f1:INK 5 Si where

f(k;2) == ng(k;2) + (1 - n)g(k;z), 1<k<K (3.3)
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for all z in IN¥. Note that for n = 1 (resp. 1 = 0) the randomized policy f" coincides with g (resp.
g)- Owing to (3.2), if the mapping  — J(f") is continuous on the interval [0,1], then at least one
randomized strategy f7 meets the value V and its corresponding bias value n* is a solution of the
equation

‘ J(fM=V, nin[0,1], , . (3.4)
so that the identification ¢ = f7 .may take place.

3.2 Implementation issues

Solving the (highly) nonlinear equation (3.3) for the bias value * is usually a non-trivial
task, even in the simplest of situations [17, 21].4 This difficulty may be circumvented by proposing
alternatives to the policy g which bypass a direct solution of the equation (3.3). One pqs’éible
approach is to design (simple recursive) S(;hemes for estimating the value #* which solves (34)
and then to;deﬁne a so—ca,lléd “naive feedback” policy a = _{dn, n = 0,1,...} via the Certainty

Equivalence Principle. Such—a, policy a can be written in the form
an = 9(n)g + (1 - n(n))g . n=0,1,...(3.5)

for some sequence of [0,1]-valued RVs {n(n), n = 0,1,...} which act as “estimates” for the bias value
n*. It is hoped that the effects of controlling and learning about the system will combine to produce
a consistent estimation scheme. In such a case, the sequence of estimates {n(n), n = 0,1,...}
converges to the value n* in some sense, thus providing increasingly better approximations to the
appropriate bias value. This policy a will constitute an acceptable implementation of g provided
J(@) = J(g). |

At this point, the reader may wonder as to how such an estimation scheme can be selected.
If the function 7 — J(f") were continuous and strictly monotone, say increasing for sake of defi-
niteness, thgn the search for #* could be interpreted as finding the zero of the continuous, strictly
monotone function  — J(f") — V, and this brings to mind ideas from the theory of Stochastic
Approzimations [14]. Here, the Robbins-Monro version of these algorithms suggests that a sequence

of bias values {n(n), n'= 0,?1, ...} be generated through the recursion

1

n(n+1)= [n(n) + an41(V - (X(n+ 1))] n=0,1,.. (36)

0

with 7(0) given in [0,1]. In (3.6) the notation [z]}§ = 0V (z A 1) is used for every z in IR, and the

11



»

sequence of step sizes {a,, n = 1,2,...} satisfies the conditions

[ o0
0<a,lO, Zan=oo and Zan2<oo. (3.7

n=1 n=1

If the mapping 7 — J (f") were monotone decreasing, then the Stochastic Approximation
algorithm (3.6) is modified by replacing V — ¢(X(n + 1)) with (X (n+1)-V.

3.3 The results

This paper is devoted to analyzing the behavior of the system under the adaptive policy o
defined through (3.5) and (3.6), and the main results in this direction are now described. To do
this requires the additional assumptions (R4)—(R6) on the data of the problem, where

(R4): There exists some integer 4 > 1 such that for every policy 7 in P, the moment condltlons

E"[|1EM= Y lef"ga(e) < o0

reNK
and
E"|A(m)" = )" lal"qa(e) < oo n=0,1,...
a€ENK
hold true;

(R5): There exist an integer § > 0 and a constant L > 0 in IR such that
le(2)l < L(1+ | 2 |°) =: &(|=])

for all z in INX; and
(R86): The policies g and g are non-idling Markov stationary policies such that (3.2) holds.

The results concerning the policy o are now summarized.

Theorem 3.1. Assume (R1)-(R6) to hold with p < 1 and let the integer exponent v in (R5) satisfy
the condition

26+3<17. (3.8)
If the mapping n — J(f") is strictly monotone, then

lim, p(n) =n* P*-—-as. : (3.9)
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Under these conditions, the system also satisfies a Certainty Equivalence Principle [24]. A
formal version of this property takes the following form. .
Theorem 3.2. Assume (R1)-(R6) to hold with p < 1 and let the integer ezponent vy in (R5) satisfy
the condition
max{3,1+6(1+€)} <~ (3.10)

for some € > 0. Iflim, n(n) = n* in probability under P*, then the convergence

t

J(a) = lim, ;i—l- o(X(s)) = J(g) (3.11)

=0

. takes place in-L}(2, F, P*), so that

J(a) = lim; E® [t_%_l > e(x(9))] = J(9). (3.12)

. =0

Moreover, for any other mapping d : INX — R, if there exist an integer 6§ > 0 and a constant
L' > 0 such that
ld(=)] < Z'(1+ | = |) (3.13)

for all ¢ in INK, then both (3.11) and (3.12) hold for the long-run average cost (3.1) associated
with d provided the condition
max{3,1+8(1+€)} <7y (3.14)

holds for some € > 0.

The restriction that § and §’ be integers is not essential but results in some simplifications in the

notation. An example where the hypotheses of Theorems 3.1-3.2 hold is given in Section 7.

This section closes with a few facts which are easily derived from the enforced assumptions:
Under (R6), the policies f7,0 < 7 < 1, and o are all non-idling since § and g are non-idling.

Moreover, note from (2.2) that
Xi(n+1) < Xi(n)+ Ax(n) +1, 1<k<K. n=0,1,...(3.15)

- It then follows from (R4) that E™[|X(n)|"] < oo for all n = 0,1,... under any policy x in P. Since
§ < v under either (3.8) or (3.10), it is then immediate from (R5) that

E™[le(X(n))l] < L(1 + E™ [|X(n)|°]) < o0 : (3.16)
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and therefore J(r) is always well defined and finite. A similar argument shows that under the
conditions (3.13) and (3.14), the long-run average cost associated with d is also well defined under

any policy = in P.

4. MOMENT ESTIMATES

4.1. The bounds

The proofs of Theorems 3.1 and 3.2 require that bounds on moments of the RVs {| X(n) |, n =
0,1,...} be available which are uniform over the class of all non-idling policies 7 in P. The
derivation of such bounds is given below, and is based on the key observation that the total number
of customers in the system at any given time ¢ decreases by at hzost one unit in the next time slot
[t,t + 1), and is therefore bounded above by the number of slots it takes for the queue sizes to
empty for the first time after t. This simple fact c@ be used to advantage when combined to the
detailed statistical information obta.iﬁed by the authors on the time until the system einpties [18],

and leads to the following strong estimates.

Theorem 4.1. Assume (R1)-(R5) with p < 1. There ezists a single positive constant K., such

that for every non-idling policy @ in P, the moment estimate
sup, E7[| X(n) "] < Ky < o0 (4.1)

holds true.

Theorem 4.1, the proof of which is presented below, turns out to be a special case of an
intermediate result of independent interest given in Theorem 4.4. Before discussing this more

general result, it is convenient to notice the following simple and useful consequence of (4.1).

Corollary 4.2. Assume (R1)-(R5) with p < 1. Whenever v > 2, the RVs {|X(n)|, n = 0,1,...}
are uniformly integrable under the probability measure P™ associated with any non-idling policy =
in P.
4.2. Recurrence properties

To formalize the argument outlined ea.rlierr, it is necessary to study the recurrence structure
of the process {X(n), n = 0,1,...} under any non-idling policy 7 in P. To that end consider the

RVs {r, £ =10,1,2,...} and {0y, k=1,2,.. .} defined recursively by 79 = oy := 0, and

Tk41 = inf{n > o4y : X(n) = 0} A k=0,1,...(4.20)
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and

Ok41 = inf{n > 7 : X(n) # 0} k=1,2,...(4.2b)

with the convention that 7441 = 0o (resp. k41 = 00) whenever the defining set is empty or when
o = oo (resp. Tx41 = 00). Note that these definitions are different from those given in [18], for
there #(0) denotes the present RV 13. For k = 2,3,... the RV 7 is the time epoch at which the
system einpﬁes itself for the (k—1)"** time after 11, so that o4 is the time epoch when the system
becomes again non empty for the first time after 7.. Moreover, define the RVs {0x, £ = 1,2,...}
by | . :

Okt1 = The1 — Tk V k=0,1,...(4.3)

so that 6, = 1. The following results were obtained in Sections 4-5 of [18].

Proposition 4.3. Assume (R1)-(R5) with p < 1. Under any:non-idling policy = in P, the RVs
{6k, k = l,é,. ..} form a delayed renewal process, the statistics of which are independent of the

policy w, with finite means given by

=2 (I-P)y w4+ 1fe=0] ifk=1
BBlX(0)=2l=q . (44)
=) 17 if k=2,3,...

Moreover, the RV 0, possesses finite moments of order v, and for every integer £, 1 < £ < «, there
ezxists a positive constant Cy (independent of the policy ) such that

E™[r{|1X(0) = 2] < Ce(1 + |a[) (45)

for all z in NK,

In view of this result, it is natural to introduce &£, as the expectation operator with respect
to the distribution of 7, given that X(0) = z and that any non-idling policy is used. Finally, for
reference, denote by G(-) the distribution of the RV 8;(= 1) and by F(-) the common distribution
of the i.i.d. RVs {6, k = 2,3,...}. By definition, the distributions G(-) and F(-) do not coincide.
4.3. A renewal estimate

The (continuous-time) counting process {N(t), ¢ > 0} naturally associated with the sequence

{Tn, n=0,1,..} is defined by

N@t):=max{k>0:7, <t}, t>0 . (4.6)
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with the ready interpretation that N(t) represents the number of times the queue has returned to

the empty state by time . With this notation, the observation made earlier translates into
| X(n) |< TN(n)+1 — 7 n=0,1,...(4.7)

Now, for any monotone non-decreasing mapping r : R; — R, set

Rg(t) := EL[r(Tn@41 — 1)), t20. | (4.8)

o

The subscripts G and = in (4.8) emphasize the fact that the system is started with an initial queue
size = distributed according to the distribution gg(-). Since the sequence {0, £ =2,3,...}isa

non-delayed renewal sequence, it is appropriate to define
Rp(t) = E™[r(TNGt+r)+1 —(t+ 7)), t20 ' . (49)

as this corresponds to a non-delayed renewal process with G >= F.

The first part of this section is devoted to the derivation of a bound on the expected values
{Rg(t), t > 0} for any non-idling policy =, with a view towards generating (via (4.7)) a bound for
the sequence of expected values {E™[r(] X(n)[)], n =0,1,...}. |
Theorem 4.4. Assume (R1)-(R5) with p < 1 and let * be an arbitrary non-idling policy in P.

Under the finite moment assumptions

[+ (o]
ma(r) = / r(6)dG(6) < 0 and mp(r):i= / r(8)dF(6) < oo, (4.10)
0 0 ‘
the condition
co 8 0  poo
Ki(r) = / / r(6 — 1)dtdF(8) = / / r(6 - 1)dF(6)dt < oo (4.11)
o Jo o Ji
implies , _
sup Rg(t) = sup Eg_[r(Tn()+1 — 1)] < oo. : (4.12)
20 £20
Proof: Let rg and rp be the mappings R — R4 defined by
re(t) i= / r(6 —1)dG(6) and rr(t) = / r(0—0)dF(@), t>0.  (4.13)
¢ . t A
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The finiteness conditions (4.10) translate into rg(0) = ma(r) < oo and rr(0) = mp(r) < oo.
Since r takes positive values and is monotone non-decreasing, the indefinite integrals entering the

definition (4.13) are well defined, and satisfy the inequalities

0< / ” 1(6 - 1)dG(8) < / " 18 - 8)dG(8) < / ” +(8 = 5)dG(8) (4.14)

whenever 0A < s < 't. As a result, the mapping rg is well defined and monotone non-increasing.
Similar comments hold for rp.

A standard renewal argument [11, pp. 183] applied to the process {r(Tn(pH+1 — 1), t 2 0}
shows that ' g

t A o] ' '
Ra(t) = / Ri(t — 6)dG(6) + / r(@—1)dG(8), t>0 (4.15)
0 _ e S
whence . '
Rg(t) < / Rp(t - 6)dG(6) + / r(0)dG(6) ' (4.16a)
0 (]
< sup Rp(s)+mg(r), t>0 (4.160)
0<s<t

by the remarks made earlier. This clearly shows that under (4.10), the result (4.12) will hold if the
bound

sup Rp(t) < oo (4.17)
£20

can be established.

When G = F, the renewal equation (4.15) specializes to

RF(t) = rp(t) + /ot Rp(t - 0)dF(0), t>0. (4.18)

Since the mapping 7 is monotone non-increasing and takes non-negative values, it is therefore
integrable as a result of (4.11), whence directly Riemann integrable [11, pp. 190-191]. The fact that
0 < rp(t) < mp(r) for all t > 0 implies that Rp is bounded on finite intervals {11, Thm. 4.2, p.
184]. Finally, note that the distribution F(-) has support on ]N-and. is therefore arithmetic, say
with spa;n d. All requisite conditions are now in place to apply the Basic Renewal Theorem {11,

Thm. 5.5.1, p. 191] to the renewal equation (4.18) to obtain

lim,, Rp(c+ nd) = —ng—— z rp(c + nd) (4.19)
. F

n=0
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for all ¢ > 0, where mp is the first moment of F (which is finite by Proposition 4.3). Since the

mapping rr is non-increasing, it readily follows from (4.19) that for all ¢ > 0,

lim, Rp(c+ nd) < mLF {drF(O) + i drp(nd)}

n=1

< —ml; {drF(O) + /o ” rF(t)dt} (4.20)

= 1—3; {dmp(r)+ Kr(r)} < 00

where the finiteness of the last bound results from (4.10) and (4.11). In particular,
1 : ‘ .- . .~
lim, Rp(nd +£) < py {dmp(r)+ Kp(r)} < o0, £=1,2,...,d - (4.21)

and therefdre

sup,, Rr(n) < oo. (4.22)

Since N (%) in constant on [n,n + 1), direct inspection of (4.9) shows that Rp(t) < Rp(n) whenever
n <t < n+1 owing to the monotonicity of r, and (4.17) is now immediate since sup,5 Rp(t) =

sup,, Rp(n). |

Proof of Theorem 4.1: Start with the mapping r given by r(z) = z7~! for all z > 0, and observe
that

oo pb 1 0 Y
Ke(r) = /0 /0 (0 - )dedF(9) = /0 67dF(6). (4.23)

Under (R4), Proposition 4.3 and (4.23) imply the conditions (4.10) and (4.11), and a straightforward
application of Theorem 4.4 yields (4.1). ™

5. ON THE POISSON EQUATION

5.1. The Poisson equation

Fix 7 in the unit interval [0, 1] and denote by P" (resp.; E7) the probability measure (resp. ex-
- pectation operator) induced by the policy f7. Moreover, let P? (resp. ET) denote the (conditional)
probability measure (resp. expectatioﬁ operator) induced by the policy f” given that X(0) = z,

with z ranging in IN¥,
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Recall that under P7, the RVs {X(n), » = 0,1,...} form a time-homogeneous Markov chain
over N¥, and let (P"(z,y)) denote the corresponding one-step transition probabilities. It is pla.in
from (3.3) that

P"(z,y) = nP'(z,9) + (1 - 0) P°(z,y) (5.1)
for all z and y in IN® where (P!(z,y)) (resp. (P°(z,y))) are the one-step transition probabilities
under g (resp. g). -

The mapping b : N¥ — IR and the scalar J solve the Poisson equation (associated with the
policy f7) with forcing function c: NK - Rif ~ |

h(z)+J = c(z) + Z;Pf’(x,y)h(y), zin N¥, (52)

- Clearly the solution pair (h, J) to (5.2) depends on 7, and it is the purpose of this section to establish
its regularity properties with respect to . This information is essential both for establishing the
validity of the: Certainty Equivalence Principle [19, 24] and for:studying the convergence of the '
Stochastic Approximation algorithm (3.6) by the method of Metivier and Priouret [20]. ; From now
on, this dependence of h(z) and J on the bias 7 is denoted simply by h(7,z) and J(n) for all z in
NX.

Define the first return time to state ¢ = 0 as the F,-stopping time T given by
T :=inf{n > 0: X(n) = 0} (5.3)
so that T = 7 in the notation of Section 4. For each £ = 1,...,7, set

Ty(z) := &[TY = ENTY, =zin NX (5.4)

where the notation that follows Proposition 4.3 has been used. For easy reference recall the estimate

(4.5), valid under (R5)-(R8), i.e., for each £ = 1,...,7, there exists a positive constant C; so that
Te(z) < Co(14 |z |9, zin N¥, (5.5)

As pointed out already in Section 4, during each slot, at most one customer may leave the
system, so that for each ¢t = 0,1,..., | X(¢)| is necessarily no larger than the forward recurrence
time (expressed in slots) to the empty state, and in particular [X(0)] < T. Since the mapping
z - E(|x|) defined in (R5) is a non-decreasing function of |z|, it is plain from (5.5) that whenever

6§ + 1 < «, the bounds

T-1 T—1
E1 [Z Ic(X(t))l] < E [ZiE(IX(t)I)] < £, [TET)] < o0 (5.6)

t=0 t=0
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hold, and the definition
T-1

C(n,z):= E} [Z c(X(i))], z in INK (5.7)

i=0

is thus well posed. An explicit expression for a solution to the Poisson equation is available and is
now given [8, 25].

Theorem 5.1. Assume conditions (R1)-(R6) to hold with p < 1 and 6 + 1 < 4. A solution pair
(h(n), J(n)) to the Poisson equation (5.2) with h(n,0) = 0 is given by

-

sy = S and hir,2) = Cla,9) - I)Ti(e) . (580)

for all z in N¥ | and the equalities

J(f7) = limy E" [ni - c(X(t))] = J(n) (5:8)
t=0 ’

hold true.

5.2. Lipschitz continuity

The representation (5.8) will be put to use in studying the regularity of the solution pair to

the Poisson equation (5.2). To simplify the presentation of the main result of this section, set
K(z) := &[T?¥T)], zin NX. (5.9)

Theorem 5.2.: Assume (R1)-(R6) withp <1 and§+2 < 7. For all z in N¥X, K(z) < o and
the function n — C(n,z) is Lipschitz continuous on [0,1] with Lipschitz constant 4K (z), i.e.,

| C(n,2) - C(n',2) IS 4K(2) | n 7' | (5.10)

for all p and 7' in [0,1].

Proof: Fix z in INK throughout the discussion. That K(z) and £, [TE(T)] are both finite is plain
from (5.5) under the assumption §+2 < . Below the result (5.10) is established for ¢ non-negative -

in the form _
| C(n,z)- C(n',z) [<2K(z) | n—17'] (5.11)

for all 7 and 7’ in [0, 1], so that the result for a general c is now immediate. Therefore, it suffices to

assume ¢ to be non-negative in the remainder of this proof. The arguments procced in three steps.
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Step 1: Notice that for every IN¥-valued sequence {z(3), i = 0,1,...} with 2(0) = z, the relations

PlX(@)=2z(:),1<i<m]= hl P(z(3),z(i + 1)), m=1,2,...(5.12)
=0
hold as a result of the Markov property of the chain {X(n), » =0,1,...} under P?. The product
form of (5.12) and the linear structure of (5.1) now imply that for each m = 1,2, ..., the mapping
n — P[X(i) = 2(i),1 < i < m] is a polynomial of degree m in 7 over [0,1] and has derivatives of
all orders. '
Set A = [X(5) = 2(3),1< i < m] in (5.12) and observe that

P"[A] === H P(2(3), (i + 1))
=0 (5.13)

= Z[Pl(w(t),w(H 1)) = P(x(t), 2(t + 1))] H P((), 2(i + 1))

t=0 1=0,i#¢t

This suggests defining for every ¢t = 0,1,..., the policy 0¢ (resp. 1;) as the Markov policy that
operates according to f° (resp. f) at time £, and according to f” otherwise. With this notation,

(5.13) now takes the form

dinP}}[X(i) =2z(i),1<i<m]= mz_: PL[A] — P2[A]. (5.14)

t=0

The definition of the policies 0; and 1; implies that P1¢[A] = P3[A] whenever m < t, so that (5.14)

can also be rewritten as

LX) =201 <i<Sml =Y PHA- P4}, m<n (5.15)
t=0

Step 2: To proceed, define

TAm-1
Onimya)i= BT Sm) 3 o(X(0)] = [Z =gy c(X(t»] (5.16)
=0 k=1 =0 ,
for all m = 1,2,.... The definition of T' implies that
[T = K] = [X(t) # 0,0 < t < k, X (k) = 0], | k=1,2,...(5.17)
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so that

Cm(n,2) = f: > PIX (i) = 2(3),1 < i < k] kifc(m(t)) (5.18)

k=1 (2(1),...,z(k))E2Zs t=0
where the second sum is taken over the set Z; given by
Zy = {(z(1),2(2),...,2(k)) € (NKY* : 2(5) #£0,1 < i < k and z(k) = 0}.

k=1,2,...(519)

By arguments made earlier, it is plain that on the event [T’ = k], the bounds | X ()| < k,0 < t < k,

must necessarily hold, and therefore (5;18) reduces to

m - : k-1 . . .‘
Cm(myz) =, > P,’,’[X(i):z_(i),lﬁisk]zc(a:(t)) (5:20)

k=1 (2(1)m(k))EZ] t=0
where the finite set 2|, is given by
Zp = {(=(1),2(2),...,z(k)) € 2k : |2(3)| < k, 1 < i < k}. k=1,2,...(521)

Hence, in view of remarks made earlier in the proof, the mapping n — Cp,(7,2) is a polynomial of
degree m in 7 since it is the sum of a finite number of polynomial functions, each one of degree no
greater than m.

Since Cyn(7, z) is a polynomial in 7 for each m = 1,2, ..., the derivative Cm(n, z) exists in the

interval [0, 1]. To compute it, differentiate (5.20) and use (5.14)~(5.15) to conclude that

m-—1 TAm-—1 TAm-1
Cm(m,2) = 3 EX [ > ars m]c(X(s))] - EY [ > oars m]c(X(s))] . 62

s=0 8=0

The very same argument that lead from (5.14) to (5.15) now implies that whenever 0 < k < ¢, the

relation .
. k-1 k-1
El [I[T =k c(X(s))] =E% '[l[T. =k c(X(s))] (5.23)
- 8=0 8=0

holds. Therefore (5.22) can be rewritten (in the manner of (5.16)) as

C’m(n,m) = ’f Ei’_ [T/\in:_l t<T< m]c(X(s))] - E% [T/\mel 1ft<T < m]c(X(s))] . (5.24)

t=0 s=0 8=0
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On the other hand,

m-—1
S o

t=0

m-1

35

t=0

TAm-1
e sobext]

=0

El [l[t <T] T/\mel 1T < m]E(T)]

=0

<3 6.t < T < mire(r)
t=0

< £, [T24(T))] (5.25)

" by elementary calculations. A similar bound holds for the terms corresponding to the policies 0; in
(5.24). It then follows from (5.24) and (5.25) that the derivative Cp, (9, %) of Cm(, ) is bounded
on [0,1] by 2K (=), and this uniformly in m, i.e.,

|C‘m(17, x)‘ < 2K(z) m = 0;1,...(5.26)
for all 7 in [0, 1]
Step 3: The easy estimates
T-1
0< C(n,2) — Cm(m2) = BI[UT > m] 3 e(X(®))] < EI[1IT > mITHT)]
t=0

m=0,1,...(527)

imply via the Monotone Convergence Theorem that lim,, Cp(n,2) = C(n, ) uniformly in 7 since

EL[TET)] < oo. Consequently, with0 <np<n' <1,

IC(‘O, .’l)) - C(’I', (L‘)I = ]-immlcm(777 z) - Cm(n', m)l

n
= lim,, / Cm(y,z)dy (5.28)
n
< 2K(z)ln— 1|
upon making use of (5.26), and this establishes (5.11). : -

Note that the estimate (5.27) shows that C(n, ) is continuous under the weaker condition §+1 < 7.

5.3. Corollaries

Theorem 5.2 has several useful consequences which are now given in the next few corollaries.
The first such corollary is obtained by combining Theorems 5.1 and 5.2 in a straightforward manner;

details are left to the interested reader.
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Corollary 5.3. Under the hypotheses of Theorem 5.2, the functions n — J(n) and n — h(n,z),

with & ranging in IN¥, are Lipschitz continuous on [0,1], i.e., for all 5 and 7' in [0,1],

k(0)

[J(n) = (") < 470y 0) “In—'| (5.29)
and
|h(n,2) ~ h(n', )| < 4Kn(z) - |n — 7] (5.30)
with |
K@) = K(2)+ ng; Ty(z), oin NX. (531)

The behavior of the Libschitz constants K(z) and Kx(z), and of the solution h(n,z)for |:v|
large is needed in some of the arguments given in Section 6. The estimates on the Lipschitz

constants. are given first.

Corollary 5.4. Assume (R1)-(R6) with p < 1 and § + 2 < 7. There exist a positive constant C
such that
|K(z)] < C (1 + |=]|**?) (5.32a)

and
|Kn(z)| € C (1 +]2]°?) (5.32b)
for allz in NX,
Proof: Note from (R6) and (5.9) that
K(z) < L&, [T*(1+ T°)]

< 2LE, [T**?] < 2LCs42 (1 + |2|°H?) (5.33)

with the last inequality following from (5.5), so that (5.32a) holds wherever C' > 2LCs42. The
inequality (5.32b) is readily obtained from (5.31) upon making use of (5.5) and (5.32a). - n

The _growth of solutions to the Poisson equation can now be described.

Corollary 5.5. Assume (R1)-(R6) with p < 1 and § + 1 < . There exists a positive constant B,
such that for every 7 in [0,1], : _
| h(n, ) < Bx (14 | = [**) (5.34)
as T ranges over N¥,
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Proof: By the remark following the proof of Theorem 5.2, the mapping 7 — C(7,0) is continuous

on [0,1] and therefore bounded there. By straightforward arguments,

T-1
z 2 c Ii(z) - su
| (n,2) |< B} ; | (X (®)) I] t T0) o2, 100n0) (5.35)
< &[TET)] + BiTa(z)
for all z in N¥, with
1
B := m . 021,1721 |C(n,0)]. (5.36)

The passage from (5.35) to (5.34) is validated by the same arguments as the ones given in the proof
of Corollary 5.4. ||

Finally, this section concludes with a bound on the moments of the RVs {h(n(n), X(n+1)), n =
0,1,...}.

Corollary 5.8. Assume (R1)-(R6) with p <1 and r(6 4+ 1) + 1 < v for some integer r = 0,1,....
There ezxists a positive constant H, such that the bound

sup,, E%[|h(n(n), X(n+ D)['] < H, (5.37)

holds.

Proof: Corollary 5.5 immediately implies
| b(n,2) I”< [2Bal” (1+ | 2 FC+D), o in NK (5.38)
for every 7 in [0, 1], so that
E[| h(n(n), X(n+1)) |"] < |2Bu|" (1 +E*[| X(n+1) 1’(”1)]) . n=0,1,...(5.39)

The conclusion (5.37) is now obtained from Theorem 4.1 upon selecting H, = |2B4|"(1+ K.,) since
r(6+1)<y-1 [ |
6. CONVERGENCE OF THE STOCHASTIC APPROXIMATIONS

8.1. The ODE method

This section is devoted to proving the convergence of the recursive scheme (3.5)—(3.6) when

the policy o is in use. For sake of concreteness, the mapping n — J(f") is assumed monotone
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increasing throughout the discussion. This is done with the understanding that were the mapping
n — J(f") monotone decreasing, the recursion (3.6) would have to be changed accordingly and the
technical conditions modified in an obvious manner. Details are left to the interested reader.

The following additional assumption (R7) is imposed in order to carry out the analysis.

(R7) The equation
KM=V, 0<q<l (6.1)

has a unique solution n*, and for some € > 0,

[ =V](n-n") >0 (6.2)

whenever 7 # #* and |p — 1*| < € in [0,1].
The condition (6.2) is tantamount to local monotonicity and in practice, is often verified by estab-
lishing some stronger monotonicity property on n — J(f") such as (R7bis) below.

(R7bis) The mapping [0,1] — R : n — J(f") is strictly monotone, say monotone increasing for

sake of definiteness.

In Section 7, condition (R7bis) is shown to hold for a steering problem which arises from a con-

strained optimization problem.

The proof of Theorem 3.1 given below uses a version of the ODE method which was proposed
by Metivier and Priouret in [20]. The arguments combine the deterministic lemma of Kushner and
Clark [14] with a probabilistic result based on properties of the Poisson equation (5.2). This key
result is given the next proposition, the proof of which is delayed till the second part of the section.

To state the result, consider the RVs {Y(n), n =0,1,...} given by

Y(n) := J(f"™) - (X (n + 1)) n=0,1,...(6.3)
and for every t > 0, pose
k-1
m(n,t) = max{k>n:Za,-§t} . n=0,1,...(6.4)
i=n

Theorem 6.1 Assume (R1)-(R6) with p <1 and 26 + 3 < . For each t > 0 the convergence

k
lim, ( sup | EaiY(i) |) =0 P%-a.s. (6.5)

n<k<m(n,t) ;-
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takes place.

Proof of Theorem 3.1. As shown in [14, 20], the convergence (6.5) underlines the P%-a.s.
convergence of the estimates {n(n), n = 0,1,...} to n*. The reader is invited to consult [14,20]
for a complete exposition of the arguments which are now briefly summarized: Interpolate the
estimate sequence {7(n), n = 0,1,...} by a piecewise linear function %(”) : [0,00) — R such that
7©(t,) = n(n) at time ¢, = Z:‘;ola; for all n = 0,1,.... Moreover, define a sequence of left shifts
{7"™(), n =0,1,..}, ie., 7™ (t) = 7°(t — t,,) for all ¢ > 0, in order to bring the “asymptotic
part” of {n(n), n =0,1,...} back to a neighborhood of the time origin.

Now observe that the recursion (3.6) can be written in the form

1

n(n+1) = [n(n) + ang1 [(V = J(f7™)) + Y (n)] . n=0,1,...(6.6)

and that from any convergent subsequence {7(™)(:), m = 0,1,...} a further convergent subse-
quence {n(mv)(-), p=0,1,...} can then be extracted by standard boundedness and equicontinuity
arguments. It is then easy to see from Theorem 6.1 that its limit 9(-), and for that matter the limit

of any convergent subsequent, satisfies the ODE
P =V-JF"®), t>0, 5*0)in[0,1]. (6.7)

Owing to (R7), this ODE is asymptotically stable with a unique stable point #* in [0,1]. A simple
shifting argument now implies 7*(¢) = #* for all ¢ > 0 and this completes the proof. These

arguments are standard and are therefore omitted here in the interest of brevity. [ |

The remainder of this section is devoted to a proof of (6.5).

6.2. A proof of Theorem 6.1

The Poisson equation (5.2) implies the relations
E"h(n, X (n+ 1)) | Fu] = k(n, X (n)) + J (1) — c(X(n)) n=0,1,...(6.8)

for all 0 £ n < 1. It then follows from (5.8b) and (6.3) that

=Y (n) = ¢(X(n + 1)) - J(n(n))
= h(n(n), X (n + 1)) = E"™[h(n(n), X (n +2)) | Fas1]
=70 4+ z® 4 7O n=0,1,...(6.9)
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with

Z{) = h(n(n), X (n+ 1)) — E"™[k(n(n), X (n+ 1)) | ], (6.10a)
Z2 = E"™[h(n(n), X (n+ 1)) | Fa] = E"*D[h(n(n + 1), X (n+2)) | Fasa] (6.100)

and

z = E"I[h(n(n + 1), X (n+ 2)) | Fasa] = E"[h(5(r), X (n +2)) | Fata] (6.10c)

for all » = 0,1,.... It now suffices to show that

)
lm su a-ng) =0 P® — a.s. 6.11
" (nsesf(n,t) PR - (611

i=n
forallt>0andall k=1,2,3.

This will be done in three steps. To facilitate the presentation, define the RVs {S%k), n =
0,1,...} by
n-1

5F =3 a,;2Y n=1,2,...(6.12)

1=0
for k = 1,2,3, with S{9 = §§? = §{» = 0.

Step 1: The RVs {Zgl), n=0,1,...} form a (P%, F,) martingale-difference, whence {Sgl), n =

0,1,...} is a zero mean (P?, F,)-martingale. Routine calculations show that

n-—-1
wno 57590 )= o, 0[St 120 (619
=0
< sup, B* [|h(n(n), X (n+ 1))] -4 3" a? (6.14)
=0
<4H; ) i (6.15)

i=0

The passage from (6.14) to (6.15) uses the estimate (5.37) given in Corollary 5.6 (with r = 2
since 26 + 2 < v — 1). It is plain from (3.7) that the left handside of (6.13) is finite, and the
(P%, Fn)-martingale {SS), n = 0,1,...} is thus uniformly integrable under P*. By the Martingale
Convergence Theorem, the RVs {S,(zl), n=0,1,...} converge a.s. under P* (to an a.s. finite limit),

in which case they form a Cauchy sequence P%-a.s. and (6.11) follows for k = 1.
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Step 2: For k = 2, note first the relations

¢
Sz(zi)l _ ng) - Z a; Z§2)

i=n

£
==Y (aic1 — &) E"O[h(n(i), X (i + 1)) | F) (6.16)

t=n

+ a1 E"™[R(n(n), X (n+ 1)) | Fa] — acE" D [R(n(L+ 1), X (£ + 2)) | Fes1]
valid for all 0 < n < £. Define the RVs {K,, n =0,1,...} by
K, := E"™[h(n(n), X (n+ 1)) | Ful n=0,1,...(6.17)
and set
B, =sup,, E°[| K. |"]. r=1,2,...(6.18)

It is clear from (5.37) (with r = 1,2) and Jensen’s inequality that B; < Hy < oo and B; < H; < 0.

With this notation, (6.16) can be rewritten as
¢
| SEh ~ SP IS an-1lKal + Y (aic - ai) | Kil + ael Kea | (6.19)
i=n
for all 0 < n < £ since a,, | 0. Upon defining the RVs {S,, n =1,2...} and {R,, n=0,1,...} by

n

Sn =Y (i1 — a;)|Ki| n=12,...(6.20)
i=1
and
n
R, = Z |lail*| Kis1]?, n=0,1,...(6.21)
=0
(6.19) now becomes
| 51 — 5P |< @noa|Kal+ | Se = Sngr | +ae|Keqa (6.22)
forall0<n <.
The definition (6.20) implies
n
E*[S.) < B1 Y (@i-1 - a;) = By(ao — a,) < Byao. n=0,1,...(6.23)

=0
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Since Sy, < Sn+1, the limit So = lim, S, exists and therefore E%[S,] < Bjag by using the
Monotone Convergence Theorem on (6.23). Consequently, Soo < 00 P¥-a.s. and the RVs {S,,, n =

0,1,...} form a Cauchy sequence P*-a.s., i.e.,

lim, supys,, | Se— Sp41|=0 P% —a.s. (6.24)

To handle the first and last terms of (6.22), observe that R, < R,+1, hence the limit Ry, := lim, R,

exists and satisfies

E°[Ro]< By Y al < o0 (6.25)

=0
by virtue of the Monotone Convergence Theorem. Consequently, lim,R, = Re < o0 P%-a.s.,
whence lim,,a,_1|K,| = 0 P%-a.s. or equivalently
lim, sups>, as-1|Kel =0 P*-a.s. (6.26)
by the Cauchy convergence criterion. Making use of (6.24) and (6.26) readily leads (via (6.22)) to
the conclusion (6.11) for k = 2.
Step 3: For k = 3, observe that (6.8) and the estimates of Corollary 5.3 readily yield the estimates
| E"[h(n, X (n+ 1)) | Fa] = E[A(5, X (n+1)) | Ful |
= | h(n, X (n)) - h(#, X (n)) + J(n) — J(#) |
< 4K(X(n)) | n—17] n=0,1,...(6.27)

for all 5 and # in [0,1], where

K(z):= K(z)+2 K(0) Ty(z), zin N. (6.28)
T1(0)
The recursion (3.6) implies
| n(n+1) = n(n) |< @ny1 |V —e(X(n+ 1)) | n=0,1,...(6.29)
and the inequality

| Z® |< 4ap,41Q(X (n + 1)) n=0,1,...(6.30)

is now obtained from (6.27), upon setting
Q(e) := K(2)(V 4 |e(z)]), = in N¥. (6.31)
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Under (R5), with the help of (5.5) and (5.32a), it is a simple exercise to check that
Q(z) £ C(1+ [2)***?), =zin N¥ (6.32)

for some positive constant C. Consequently,

E® [E a,-|z§3>|] <C-Y a2E® [1 +IXG+ 1)|26+2] (6.33)
=0 =0
<C(1+K,)-Y al (6.34)
=0

for all n = 0,1,..., where the passage from (6.33) to (6.34) is a simple consequence of (4.1) (since
26 +2 < 4—1). Now, in exactly the same way as in Step 2 of the proof, this uniform bound (6.34)

implies

¢
lim,, sup,y, (Z a;|Z§3)|) =0 P*-a.s. (6.35)

t=n

and (6.11) obviously holds for k£ = 3. [ |
7. CONVERGENCE OF THE ADAPTIVE POLICY AND APPLICATIONS

This final section contains a proof of Theorem 3.2, as well as the discussion of an application that

arises in constrained optimization.

7.1. A proof of Theorem 3.2.

The proof follows from the general results obtained by the authors [24] on the Certainty Equiv-
alence Principle when specialized to “simply randomized” policies. First note that the (assumed)
convergence lim,, 7(n) = n* in probability under P*, when combined to Theorem 7.2 of [24)], implies
the key convergence condition (C) [Ibid., Section 4]. Consequently, the convergence (3.11)-(3.12)
follows from Theorem 3.1bis in [Ibid.] provided the hypotheses of Theorems 4.2 and 5.1bis of [Ibid.]
are satisfied. These hypotheses consist in the tightness of the RVs {X(¢), ¢t = 0,1,...} under P¢
and of bounds on the moments of the RVs {¢(X (1)), h(n*, X (1)), t = 0,1,...} under various policies.
It is easy to check that these conditions are all implied by the following condition:

There exist € > 0 and a positive constant C, such that for every non-idling policy = in P, the

bounds

sup, E”[IX(1)["+] < Ce, (1.1)
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sup; E™[|e(X(1))[*+] < C. (7.2)

and

sup, E™[|h(n*, X (t))['*] < C. (7-3)
hold.

Observe that by virtue of Theorem 4.1, the bound (7.1) readily holds whenever 1+ ¢ <y —1.
By assumption, c is of polynomial growth with rate §, so that (7.2) holds if §(1 +€) < v — 1 by the

remark made earlier. To obtain the third bound (7.3), observe from (5.34) that for every ¢ > 0,
|A(n*, X (n))|'+€ < |2Bp]* (1 + |X(n)|(5+1)(‘+1)), n=0,1,...(74)

and (7.3) follows with (1 + €)(1 + 6) < v — 1 by again making use of Theorem 4.1. Consequently
(7.1)-(7.3) will hold provided ¢ is chosen positive such that 1+ (1 + 6)(1 +¢) < 7.

An identical analysis applies for the long-run average cost associated with d; details are left to

the interested reader. [ ]

7.2 An application to constrained optimization

Consider the following situation discussed by Nain and Ross in [21]. Several types of traffic,
say voice, video and data, compete for the use of a single resource (or server). The performance
requirements for this system are defined by the minimization of a weighted average of the number of
video and data packets subject to the constraint that the average number of voice packets waiting
for service does not exceed V. This situation can be modelled by a system of K competing queues

with P = 0. For a precise definition of the performance measures, set

K-1

e(z):=zx and d(z):= Z dizk (7.5)
k=1

for all z in IN¥, where dy,...,dg_, are positive constants. Denote by J,(x) (resp. Jy()) the
long-run average cost (3.1) associated with the cost ¢ (resp. d) when using the policy = in P. The

constrained optimization problem (Py) is then formulated as
(Pv): Minimize J4(+) over Py (7.6)

where Py := {r € P: J.(x) < V}.
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Assume the problem to be feasible and non-trivial, i.e., Py is non-empty and the policies which
minimize Jy are not in Py. In that case, Nain and Ross [21] showed that there exist two strict

priority policies § and g and a bias n* satisfying the equation
Jc(f") = V1 n in [0’ 1] (7'7)

such that 7 defined through (3.3) is optimal. While the policies § and g can be found explicitly,
the determination of n* is a difficult task since for 0 < 7 < 1 the evaluation of J.(f") requires
solving a Riemann-Hilbert problem. That this computational difficulty can be circumvented by
making using of a Stochastic Approximation—based policy is the content of the following.
Theorem 7.1 Assume (R1)-(R5) with p < 1 and v > 5. The scheme (3.5)—(3.6) solves the
constrained optimization problem (Py) provided it is feasible.
Proof: Nain and Ross [21, Thm. 3.1, pp. 885-886] showed that if the problem is feasible and
non-trivial, then there exist Markov stationary policies § and g such that (7.7) has at least one
solution. In fact, both policies are fixed priority policies with g giving highest priority to queue K,
and g giving lowest priority to queue K, while the relative priorities of the other queues otherwise
identical. Moreover, the mapping 7 — Ju(f") is monotone non-decreasing. It is shown in Lemma
7.2 below that this mapping is in fact strictly monotone increasing. When 4 > 5, the conditions
of Theorems 3.1 and 3.2 are readily verified with § = 1. Hence, lim, #9(n) = n* P%*-a.s. so that
Jo(@) = J(f7) = V and Jy(a) = J4(f7), i.e., a is a policy in Py and is thus also constrained
optimal.

If the problem is trivial, i.e., J,(§) < V, then g solves (Py). In that case, the same arguments
imply that lim,, n(n) = 1 P* — a.s., and optimality follows. [ |

In the case K = 2, the two policies § and g are necessarily the fixed priority rules for queue 1
and 2, respectively. In this case, the adaptive policy does not assume any prior information on
the statistics of the system, provided (R1)—(R5) hold with vy > 5. In this case, the optimality was
obtained by Shwartz and Makowski [23] under a slightly weaker assumption (namely v > 3), blit
the convergence (3.10) was only in probability.

This section concludes with the following monotonicity result which was needed in the proof
of Theorem 7.1.
Lemma 7.2. Under (R1)-(R5) the mapping n — J.(f") is strictly monotone increasing on [0, 1].

Proof: It is plain from (5.8) that proving the strict monotonicity of n — Jc(f") is equivalent to
proving the same for  — C(9,0). Fix 7 in [0, 1] and recall the definition (3.3) of the policy f7.
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The representation (5.22) of the derivative of Cy,(7,0) can be written in the form

utri0)='3 B S =05 m]xx<s>]

8=0

E 1[T = ¢] Z 1[T < m) XK(.s)]

s=0

m=1

CT =4 ZXK(s)

=0

AL

1T =4 ZXK(S)” (7.8)

t=0 ¢=t+1

where (5.23) was used. If it were possible to show bounds of the form
A(L,t,8) == E [T = ()X k(s)] — E} [1[T = )Xk ()] > €(4,1,5) (7.9)

with €({,t,8) > 0forall 0 < s < £and 0 <t < £, and €(¢,t,3) > 0 for at least one such triple
(¢,1,8), then necessarily for some m, 0 < Cp(7,0) < Cruy1(n,0) < ... and the strict monotonicity
would follow from the second equality in (5.28).

Fix t and £ such that 0 < t < £. It is easy to see that A({,t,8) = 0 whenever 0 < s <t < £,
so that only the case 0 < t < s has to be considered in order to prove (7.9). This is done by the
following coupling arguments.

Let P be a probability measure on (€, ) under which (P1)~(P4) hold and X (0) = 0. Moreover,
let {8(n), n = 0,1,...} be a sequence of i.i.d. Bernoulli RVs with parameter » which is also
independent of the RVs {A(n), B(n), n =0,1,...} under P.

The key point of the proof is to construct on § a pair of processes {X°(n), n = 0,1,...} and
{X'(n), n =0,1,...} such that (i) {X°(n), n =0,1,...} (resp. {X'(n), n =0,1,...}) under P
is statistically indistinguishable from {X(n), n = 0,1,...} under P* (resp. Py*), and (ii) a simple
comparison leads to (7.9). To that end, for each i = 0,1, define the process {X*(n), n = 0,1,...}

by the recursion

Xi(n+1) = Xi(n) + Ax(n) - I[Xi(n) # 01U}(n)B(n) n

1,...(7.10)

with X*(0) = 0, where the sequences {Ui(n), n = 0,1,...} and {Bi(n), n = 0,1,...} still need to
be specified.

For i = 0,1, the control actions {U(n), n = 0,1,...} are defined by

Ui(n) = B() F(X(m)) + (1= B() g(X'(n) , 7 #1 (7.11a)
U°(t) = g(X°(t)) (7.116)
Ul (t) = g(X'(t)) (7.11c)
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so that the RVs {X°%(n), n =0,1,...} (resp. {X(n), » =0,1,...}) are governed by the policy 0;
(resp. 1;).

Only the service sequences {B(n), n = 0,1,...}, ¢ = 0,1, need to be specified. First,
set B°(n) = B(n) for all n = 0,1,... and observe from the construction (7.10)—(7.11) that
the distribution of {X%(n), » = 0,1,...} under P obviously coincides with the distribution of
{X(n), n = 0,1,...} under Py*. The construction of the process {B!(n), n = 0,1,...} is some-
what more involved, and is done below. In order to facilitate the coupling argument, the actual
service duration of each customer will be defined in such a way so as to have identical length (for

each w in Q) in both processes. Set
Bl(n) := B(n) n=0,1,...,t—1 (7.12)

and observe from (7.10) that in order to determine the process {X(n), n = 0,1,...}, it suffices
to provide the values of B}(n) at times n such that U'(n) = ¥, 1 < k < K. For all i = 0,1 and
1<k <K,set

7i(1) := min{n > t : U(n) = e*} (7.13b)
7h(£) := min{n > ri(£ - 1) : Ui(n) = €*}, £=2,3,...(7.13b)

and define
Bi(ti(0)) == Be(1R(8)), 1<k<K £=1,2,...(7.14)

With these definitions, the actual number of times each customer is served is identical in both
systems, while the sequences {B(n), n = 0,1,...} (under P}*) and {B(n), n = 0,1,...} (under
13) are statistically indistinguishable. Consequently, the distribution of {X(n), n = 0,1,...} under
P coincides with the distribution of {X (n), n = 0,1,...} under P}t. Moreover, by construction
(with the notation of (5.3)), it is easy to see that 7% = T and X% (n) < Xk(n)foralln =0,1,...
P a.s., whence

AL, t,8) = E [T = 4 (Xk(s) - X%(s))] > 0. (7.15)
Finally, for s =t + 1, observe that on the event
A:=[T° =€) n [X%(@) #0] N [X2(t) #0 forsome k=1,2,...,K — 1] n[Bk(t) =1], (7.16)
the equality X% (¢ + 1) = X%(¢ + 1) = 1 holds, and that P[A] > 0. Consequently,
ENT = 0 [Xk(s) - X%(3)]] := e(£,t,t + 1) > P[A] > 0 (7.17)
and the result is established. |
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