

ABSTRACT

Title of Document: PROCESS CONFORMANCE TESTING: A

METHODOLOGY TO IDENTIFY AND

UNDERSTAND PROCESS VIOLATIONS IN

ENACTMENT OF SOFTWARE PROCESSES

 Nico Zazworka, Doctor of Philosophy, 2010

Directed By: Professor Victor R. Basili

Department of Computer Science

Today’s software development is driven by software processes and practices that

when followed increase the chances of building high quality software products. Not

following these guidelines results in increased risk that the goal for the software’s

quality characteristics cannot be reached. Current process analysis approaches are

limited in identifying and understanding process deviations and ultimately fail in

comprehending why a process does not work in a given environment and what steps

of the process have to be changed and tailored.

In this work I will present a methodology for formulating, identifying and

investigating process violations in the execution of software processes. The

methodology, which can be thought of as “Process Conformance Testing”, consists of

a four step iterative model, compromising templates and tools. A strong focus is set

on identifying violations in a cost efficient and unobtrusive manner by utilizing

automatically collected data gathered through commonly used software development

tools, such as version control systems. To evaluate the usefulness and correctness of

the model a series of four studies have been conducted in both classroom and

professional environments. A total of eight different software processes have been

investigated and tested. The results of the studies show that the steps and iterative

character of the methodology are useful for formulating and tailoring violation

detection strategies and investigating violations in classroom study environments and

professional environments.

All the investigated processes were violated in some way, which emphasizes the

importance of conformance measurement. This is especially important when running

an empirical study to evaluate the effectiveness of a software process, as the

experimenters want to make sure they are evaluating the specified process and not a

variation of it.

Violation detection strategies were tailored based upon analysis of the history of

violations and feedback from then enactors and mangers yielding greater precision of

identification of non-conformities.

The overhead cost of the approach is shown to be feasible with a 3.4% (professional

environment) and 12.1% (classroom environment) overhead.

One interesting side result is that process enactors did not always follow the process

for good reason, e.g. the process was not tailored for the environment, it was not

specified at the right level of granularity, or was too difficult to follow. Two specific

examples in this thesis are XP Pair Switching and Test Driven Development. In XP

Pair Switching, the practice was violated because the frequency of switching was too

high. The definition of Test Driven Development is simple and clear but requires a

fair amount of discipline to follow, especially by novice programmers.

PROCESS CONFORMANCE TESTING: A METHODOLOGY TO IDENTIFY

AND UNDERSTAND PROCESS VIOLATIONS IN ENACTMENT OF
SOFTWARE PROCESSES

By

Nico Zazworka

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Victor R. Basili, Chair
Professor Atif Memon
Professor Amol Deshpande
Professor Marvin Zelkowitz
Professor William Dorland

© Copyright by
Nico Zazworka

2010

 ii

Dedication

I dedicate this thesis to my parents,

Frank and Karin Zazworka,

who made all of this possible.

 iii

Acknowledgements

This dissertation would not have been possible without the support and help of many

individuals.

I would like to thank my parents and family for guiding my education in my early

years and teaching me the importance of education. The studies presented in this

thesis were always a team effort could not have been conducted without the combined

effort of following researchers:

at the University of Maryland: Victor Basil and Marvin Zelkowitz

at the Fraunhofer Center: Forrest Shull, Christopher Ackermann, Michele Shaw,

Daniela Cruzes, and Lucas Layman

at the University of Maryland, Baltimore County: Carolyn Seaman

at the University of Hanover, Germany: Eric Knauss, Kai Stapel, and Kurt Schneider

at the University of Applied Science, Mannheim, Germany: Jan Schumacher, Steffen

Olbrich, Selcuk Imal, Frank Breitinger, and Christian Conrad

I am particularly indebted to my advisor, Victor Basili, for his boundless patience,

motivation, and for letting me pursue my idea of process conformance testing.

I am grateful to the members of my dissertation committee: Victor Basili, Atif

Memon, Amol Deshpande, Marvin Zelkowitz, and William Dorland. Their time and

feedback have improved the quality of this work.

I would also like to thank my friends and roommates, Hassan Sayyadi and Anand

Veeraragavan, for making “4322 Rowalt Drive” feel like home.

 iv

Lastly, I would like to thank Tersha Langdon, for her endless patience during

homework, paper and proposal deadlines, for her proof reading of this thesis, and for

her love and support throughout the time of my studies in Maryland.

 v

Table of Contents
1	
 Introduction ... 1	

1.1	
 Motivation .. 5	

1.1.1	
 Problem Area 1: Software Development Projects and Management 5	

1.1.2	
 Problem Area 2: Empirical Studies ... 8	

1.2	
 Terminology ... 12	

2	
 Research Problem ... 15	

2.1	
 Violation Detection Mechanisms ... 16	

2.1.1	
 Classification of data collection methods ... 17	

2.1.2	
 Cost of Measurement (Cost Tradeoff) .. 19	

2.1.3	
 Intrusiveness of Measurement (Intrusiveness tradeoff) 20	

2.1.4	
 Properties on an Incomplete Approach ... 23	

2.2	
 Violation Understanding and Conformance Improvement 24	

3	
 Related Work .. 27	

3.1	
 Review Procedure .. 27	

3.1.1	
 Systematic Review Procedure ... 27	

3.2	
 Related Work ... 29	

3.2.1	
 Process Centered Software Engineering Environments 29	

3.2.2	
 Process Mining and Process Discovery Approaches 32	

3.2.3	
 Process Verification and Violation Detection Approaches 36	

3.3	
 Conformance in Other Research Areas .. 41	

4	
 Approach ... 46	

4.1	
 Step 1: Conformance Rule Definition .. 48	

4.1.1	
 Study Example .. 52	

4.2	
 Step 2: Conformance Violation Detection ... 55	

4.3	
 Step 3: Gathering supplemental information ... 56	

4.4	
 Step 4: Rule and Process Improvement and Response 58	

4.5	
 Knowledge Packaging and Transfer .. 60	

4.6	
 Tool Support .. 62	

4.6.1	
 CodeVizard Support for Step 2: Process Violation Detection 63	

4.6.2	
 CodeVizard Support for Step 3: Gathering Additional Information 63	

5	
 Research Questions and Study Methodology ... 69	

5.1	
 Limitations in Measurable Processes ... 70	

5.2	
 Research Questions .. 71	

5.3	
 Research Hypothesis .. 76	

5.4	
 Study Methodology .. 81	

5.4.1	
 Study 1: Feasibility Study: Pre-experimental design 84	

5.4.2	
 Studies 2 and 4 (Classroom I and II): Multiple Group Equivalent Time
Samples Designs ... 84	

5.4.3	
 Study 3 (Long term study): Multiple Group Time Series Designs 85	

5.5	
 Contribution of Proposed Work ... 86	

6	
 The Four Studies ... 88	

6.1	
 Overview of Studies ... 89	

6.2	
 Investigated Processes ... 91	

6.3	
 FEASIBILITY: Feasibility Study .. 92	

6.3.1	
 Study Environment ... 93	

 vi

6.3.2	
 Step 1: Conformance Rules .. 94	

6.3.3	
 Step 2: Process Violation Detection ... 95	

6.3.4	
 Step 3: Gathering Additional Information .. 98	

6.3.5	
 Step 4: Process / Rule Improvement ... 102	

6.3.6	
 Investigated Research Questions and Conclusion 103	

6.4	
 CROOM1: First Classroom Study ... 103	

6.4.1	
 Study Design ... 105	

6.4.2	
 Study Results .. 109	

6.4.3	
 Discussion of Results .. 120	

6.5	
 CROOM2: Classroom Study II .. 121	

6.5.1	
 Study Design ... 122	

6.5.2	
 Step 1: Defining Process Conformance Rules 124	

6.5.3	
 Step 2: Violation Detection ... 128	

6.5.4	
 Step 3: Gathering Additional Information .. 131	

6.5.5	
 Step 4: Process/Rule Improvement ... 132	

6.5.6	
 Results ... 133	

6.6	
 PROF: Long Term Study in Professional Environment 154	

6.6.1	
 Collaborative Test Case Development (CTCD) 157	

6.6.2	
 Continuous Refactoring (CR) ... 161	

6.6.3	
 Architecture Conformance (AC) ... 169	

7	
 Validation of Research Questions and Hypotheses .. 177	

7.1	
 Validation of Research Questions .. 177	

7.1.1	
 RQ 1: Feasibility ... 178	

7.1.2	
 RQ 2a: Useful Insights .. 179	

7.1.3	
 RQ 2b: Agreement .. 182	

7.1.4	
 RQ 3: Rule Improvement .. 182	

7.1.5	
 RQ 4: Conformance Improvement .. 184	

7.1.6	
 RQ 5: Rule Transfer .. 187	

7.1.7	
 RQ 6: Overhead Cost .. 188	

7.2	
 Validation of Research Hypothesis .. 194	

7.2.1	
 H1: Precision > 50% ... 194	

7.2.2	
 H2: Recall > 50% .. 196	

7.2.3	
 Precision Improvement ... 197	

7.2.4	
 Conformance Improvement .. 198	

7.3	
 Threats to Validity ... 201	

7.3.1	
 Threads due to Internal Validity ... 201	

7.3.2	
 Threats to External Validity .. 206	

7.4	
 Open Questions and Future Work .. 207	

7.4.1	
 Impact of process variables on conformance .. 208	

7.4.2	
 Process tool support .. 209	

7.4.3	
 Relationship between process conformance and software quality 209	

8	
 Conclusions ... 211	

9	
 Appendix ... 214	

9.1	
 Truck Factor Metric: Definition and Example ... 214	

10	
 Bibliography ... 217	

 vii

List of Tables

Table 1: Classification of three different monitoring methods in Silva and Travassos
... 39	

Table 2: Process Conformance Rule Template ... 48	

Table 3: Study Characteristics .. 90	

Table 4: Summary of Processes and Studies .. 92	

Table 5: Process Conformance Rule for Correctness Process 93	

Table 6: Process Conformance Rule for Correctness Process 95	

Table 7: Gathering additional insights for a random selection of process violations.
For each component the types of changes are listed (“+” meaning the type is present).
Five components (a,b,f,g,h) include change types with high severity. The churn
measure shows how many lines of code were changed relative to the test/review date,
e.g. 50% means that half of the lines were changed. .. 102	

Table 8: Process Conformance Rule for Test-Driven Development 106	

Table 9: Process Conformance Rule for Continuous Refactoring 106	

Table 10: Process Conformance Rule for Pair Switching .. 107	

Table 11: Test-Driven Development Results .. 110	

Table 12: Questionnaire Answers for Test-Driven Development 111	

Table 13: Continuous Refactoring Results ... 112	

Table 14: Questionnaire Results for Continuous Refactoring 113	

Table 15: Questionnaire Results for Pair Switching ... 116	

Table 16: Questionnaire Results for Collective Code Ownership, Question 1 119	

Table 17: Questionnaire Results for Collective Code Ownership, Question 2 119	

Table 18: Process Conformance Rule for the communication practice: Broadcast of
story card and name .. 124	

Table 19: Adjusted Conformance Rule for Test Driven Development 125	

Table 20: Conformance Results for Test Driven Development 134	

Table 21: Implementation classes and test case classes for project Spiel: naming
convention was not followed .. 137	

Table 22: End of study questionnaire results for both teams for Test Driven
Development ... 139	

Table 23: End of study questionnaire results for the distributed development team
(Notfallplan) for Pair Switching ... 143	

Table 24: End of study questionnaire results for the non-distributed development
team (Spiel) for Pair Switching ... 145	

Table 25: Results for Continuous Refactoring for both teams 149	

Table 26: Post Study Questionnaire answers for Continuous Refactoring 150	

Table 27: Violations against the communication practice for both locations of project
Notfallplan .. 153	

Table 28: End of Study Questionnaire results for the communication process 154	

Table 29: Organization of Section 1.6 .. 156	

Table 30: Process Conformance Template (with different versions) for CTCD.
Differences in the versions are highlighted in yellow. ... 157	

 viii

Table 31: Example results for CTCD for project J from November 2009 to July2010:
underlined figures are violations against version 1, red figures are violations against
version 2 of the rule. ... 159	

Table 32: Overall results of violation detection for CTCD and impact of rule
improvement step. ... 161	

Table 33: Process Rule for Continuous Refactoring ... 162	

Table 34: Process Conformance Rule for Architecture Conformance. 172	

Table 35: Overview of evidence for the six research questions. The indicators should
be read the following way: “-“ negative evidence; “0” neither negative nor positive
evidence; “-/+” mixed evidence; “+” positive evidence; “N/A“ no evidence collected
... 177	

Table 36: Effort Estimation for CROOM1 ... 189	

Table 37: Effort Estimation for CROOM2 ... 191	

Table 38: Effort Estimation for PROF .. 193	

Table 39: Results overview for the four research hypotheses The indicators should be
read the following way: “-“ negative evidence; “0” neither negative nor positive
evidence; “-/+” mixed evidence; “+” positive evidence; “N/A“ no evidence collected
... 194	

Table 40: Detailed results on conformance change after feedback to process enactors
... 199	

 ix

List of Figures

Figure 1: Relationship between products, processes, and humans 2	

Figure 2: Classification of process instrumentation methods and tradeoffs between
cost and level of intrusiveness for process instrumentation .. 19	

Figure 3: A sample Test-Driven Development process .. 21	

Figure 4: Detecting a Subset of Process Violations .. 24	

Figure 5: Procedure for Systematic Review of Related Work for this Thesis 28	

Figure 6: Process Centered Software Engineering Environment 30	

Figure 7: Hou et.al. Process Recovery Approach (copied from (Huo M. Z., 2006)) . 34	

Figure 8: Cook and Wolf's approach (figure copied from (Cook, 1999)) 37	

Figure 9: Sorumgard’s Deviation Vector (figure copied from (Sorumgard, 1997)) ... 38	

Figure 10: Process Conformance Testing Approach .. 46	

Figure 11: Sub steps of Conformance Rule Definition ... 49	

Figure 12: Data Flow for a Violation Detection Tool ... 55	

Figure 13: Gathering additional information .. 58	

Figure 14: Rule and Process Improvement Step ... 60	

Figure 15: Knowledge Packaging and Transfer .. 61	

Figure 16: CodeVizard's System View (rotated) shows when software components
are checked in, modified, and deleted. Yellow warning signs represent process
violations against Test Driven Development: these components were added without
having according unit test cases at check-in time. .. 65	

Figure 17: Metric Lines of Code (LOC). Dark red parts indicated larger components.
(Figure rotated) ... 67	

Figure 18: How Research Questions were refined to Hypothesis 77	

Figure 19: Plan of Studies Chronological Overview .. 89	

Figure 20: Detected Violations for Completion Process .. 96	

Figure 21: Detected Violations for Correctness Process ... 97	

Figure 22: One package (LOGIC) with 30 java source files. The yellow (light grey)
and green (dark grey) authors mainly worked on these files. Each circle represents
one commit to the repository. A black triangle indicates that the component is
unexpected (not defined in the project plan). A white triangle shows that the
component is too early in the repository. .. 99	

Figure 23: Subversion Commit Template for Manual Data Collection 107	

Figure 24: Pair Switching for Team KlaRa .. 114	

Figure 25: Pair Switching for Team Zeit .. 115	

Figure 26: Truck Factor Characteristics for both Projects .. 117	

Figure 27: Worst Case Truck Factor for 5 Projects .. 118	

Figure 28: Distributed study setup for the second study in classroom 123	

Figure 29: Log file content of the SkypeContactsStatusTracker tool (developer names
are anonymized using ***) ... 127	

Figure 30: Process violations against TDD in project Notfallplan 129	

Figure 31: Skype Status graph to investigate violations against the communication
practice: Broadcast story card and name .. 130	

Figure 32: Pair Switching Graph for team Notfallplan ... 141	

 x

Figure 33: Pair Switching Graph for team Spiel ... 144	

Figure 34: Truck Factor chart for team Notfallplan .. 146	

Figure 35: Truck Factor Chart for team Spiel ... 147	

Figure 36: Worst case truck factor chart for seven projects 148	

Figure 37: Violation detection results as printed by CodeVizard for Project J on 4th,
April 2010 ... 158	

Figure 38: God Classes as indicators for violating continuous refactoring in project F
... 164	

Figure 39: Number and percentage of God Classes in project F 165	

Figure 40: Number and percentage of God Classes in project J 166	

Figure 41: Feedback process for new violations against the conformance rule 168	

Figure 42: Excerpt of the agreed reference architecture. Arrows in the figure represent
rules that a project has to adhere to. .. 170	

Figure 43: Process Violations against AC for Project J .. 173	

Figure 44: Process Violations against AC for Project F ... 174	

 1

1 Introduction

Building high quality software products within time and budget remains the most

challenging task in software engineering. Reports from the Standish Group

(Rubinstein) indicate that “Software development shops are doing a better job

creating software than they were 12 years ago”, but still only “35% of software

projects in 2006 can be categorized as successful meaning they were completed on

time, on budget and met user requirements”. The “Chaos Reports” are often cited in

conjunction with the “Software Crisis” and opinions exist that the study might be

biased towards failing projects (Glass). However, project managers and researchers

have come to understand that a series of challenges exist when building a software

product.

To overcome these challenges and to build better products software developers and

researchers have formulated and advanced ideas about how they can support software

development in order to increase the chances of developing a product of superior

quality. Part of these ideas manifests themselves in guidelines or in “a set of

instructions” (i.e. software processes) that when being followed by developers

improve certain quality aspects of the final product.

 2

Figure 1 illustrates the relationships. For example, developers performing software

inspections help to improve the correctness of a product, or programmers following

an agile software development lifecycles (e.g. Scrum) promise it to be more flexible

to late changes of product requirements. The two examples show that processes can

focus on very different dimensions of the product. Further, the activities and steps

defined by these processes can differ in the amount of specificity and detail.

One of the dilemmas with processes is that humans perform them. Hence, software

development processes inherit a broad range of human issues that play a central (if

not the most important) role when executing them. For example, when a project

manager decides to implement a new process, such as Pair Programming, into the

development environment she/he has to be aware of potential problems, such as

initial resistance from developers to the practice. Various research efforts support this

claim. In a qualitative study introducing Pair Programming to a development team,

Gittins and Hoppe (Gittins and Hope) report that in the initial survey “28% of

Figure 1: Relationship between products, processes,
and humans

 3

developers preferred to work independently, 57% didn’t think they could work with

everyone, and 57% stated that pair programmers should spend on average 50% of

their time alone”. Williams and Kessler (Williams and Kessler) write, “Most

programmers are long conditioned to working alone and often resist the transition to

pair programming. Ultimately, however, most make this transition with great

success.”

Besides the ability to adapt to new processes each developer possess a very unique set

of skills. These skills can reach from technical knowledge (e.g. about different

programming languages) to the ability to write error free and understandable code, to

the proficiency to perform a complete code review. In a multi-national, multi-

institutional study of assessment of programming skills of first-year computer science

students conducted by McCracken et.al. (McCracken, Almstrum and Diaz) results

showed that students scores were very diverse and the distribution of scores had bi-

modal characteristics (even if they were taught the same material). In fact, the authors

state that “We need to keep in mind that different groups of students have different

needs and strengths; we must ensure that the results from one group do not obscure

our view of the other.”

Lastly, lots of processes are defined as a set of steps, like one would define an

algorithm to be run (repeatedly) on a computer. However, humans are not computers

and might forget to execute specific steps or intentionally modify the process for their

own reasons. The latter scenario can be caused by shifting priorities (e.g. time

pressure to finish a project) or by process definitions that cannot be executed by the

developer on a recurring basis.

 4

Besides human involvement in the development process, a set of project and

environmental variables influence process performance and project success. For

example, software lifecycles will compensate differently for late changes in the

software requirements. Or, different organizational structures (e.g. outsourcing of

code development) will require different processes and management strategies. In

practice, processes are hardly ever executed in isolation but are part of a framework

of processes. For example, if one studies the number of defects that can be found by

code reviews one has to consider in which phase code reviews are performed in the

overall development lifecycle: performing code reviews continuously in an iterative

model will lead to different results than performing code reviews in only one of the

later phases in the waterfall model. Also, carrying out other processes to identify

defects (e.g. unit testing) might affect the number of defects found by code reviews.

Many of these challenges in software engineering are described in Fred Brook’s essay

“No Silver Bullet: Essence and Accidents of Software Engineering” (Brooks).

All these issues play a critical role that determines if a process can be executed as

originally designed by its inventors. If a process is not executed as intended, then its

output will differ from the intended output. In other words, quality characteristics of

the software product will change. To sum up and to conclude, the assumption and

motivation for this research work is the following:

Research assumption:

Following the process as intended increases the chance of building a product

with the desired quality characteristics.

 5

If this is true then:

Not following the process as intended introduces a risk that the desired quality

characteristics cannot be achieved.

Therefore, detecting process violations and improving process conformance is the

main goal of this thesis.

1.1 Motivation

Every part of research has to be motivated by real issues coming either from the

research community itself or from outside (e.g. the industry) that are required to be

solved. Therefore, I will motivate the work by presenting two example areas that

illustrate the importance of investigating process conformance. In the first example

area (Section 1.1.1), the focus will be on project management and how monitoring

and improving process conformance can help illuminate the shortcomings of

processes in building better products. The second example (Section 1.1.2) area will

illustrate that process conformance plays a critical role in the execution of empirical

studies in the research field of software engineering.

1.1.1 Problem Area 1: Software Development Projects and

Management

During the development of a software product, processes, methods, techniques, and

best practices are applied. The rationale behind a chosen set is the manager's or

programmer's belief that these intended activities improve a set of project-important

quality characteristics, e.g. completing the product in time and cost, or assuring high

 6

reliability and maintainability. Not following the defined processes leads to an

increased risk of not achieving these goals.

Several works in the practical, applied software engineering field recognize the

importance of investigating process conformance:

ISO

The need to check for process conformance has been widely noted in the field of

software process improvement and quality management. Various ISO standards

emphasize process conformance: ISO 9000 recommends we "initiate action to

prevent the occurrence of any nonconformities relating to product, process and

quality system" (Standardization, International Organization for) and ISO 12207 on

software life cycle processes states "It shall be assured that those life cycle processes

(...) comply with the contract and adhere to the plans." (International Organization

for Standardization)

CMM

The importance of complying with a process is part of SEI’s1 well-known Capability

Maturity Model (CMM2) and its successors. Humphrey (Humphrey) writes that if

process violations are not identified they will “accumulate and degrade it [the

1 Software Engineering Institute, Carnegie Mellon University: http://www.sei.cmu.edu/

2 CMM: Capability Maturity Model characterizes the state of companies current software practices and has been

developed at Carnegie Mellon University. Capability Maturity Model is a service mark of Carnegie Mellon

University. CMM is registered in the U.S. Patent and Trademark Office

 7

process] beyond recognition”. Humphrey further points out that if developers are

carrying out the process in their own way that they will “continue to make and

remake the same mistakes”. CMM introduces steps that describe that process

activities should be reviewed. However, the model does not define how to do this nor

does it provide tools to do so.

To support Humphrey’s view, a study investigating the relationship between

conforming to CMM processes and software correctness by Krishnan and Kellner

(Krishnan and Kellner), the results “(…) indicate that software projects that

consistently adopt the CMM practices exhibit significantly lower numbers of defects.

Thus, our results provide a link between consistent software processes and reduced

field defects in the resulting product.” They provide evidence for a correlation of

process conformance and product quality characteristics (i.e. correctness). To assess

the amount of conformance to a CMM practice project managers had to rate their own

conformance on a 5-point scale. A set of 45 software projects in one organization was

investigated in this study.

Industrial Case Studies

More specific results of varying degree and effects of process conformance can be

found in a case study by Arisholm et al. (Arisholm, Skandsen and Sagli). They

describe process improvement activities in a real world project using a Rational

Unified Process3 model (RUP). They report “In this case study, testing was performed

too late in comparison with the prescribed process. Although it is, in retrospect,

3 www.IBM.com/Rational , registered trademark of IBM

 8

uncertain whether this lack of process conformance could have been avoided by the

development team, it is likely that it contributed to many costly last-minute changes to

the software.” This case study provides evidence for a negative impact of a lack of

process conformance on the development cycle. The case study’s method for

detecting process deviations was interviews with the developers. When searching for

reasons for low process conformance the researchers state that “One explanation for

this lack of process conformance was that the initiation and execution of the Genova

process [scaled down version of RUP] at Braathens were quite informal”.

In the studies in professional environments presented in this thesis I will provide

additional evidence that a lack of process conformance contributes to late projects. In

the first study a lack of conformance to a process that lays out a development plan for

the software could be identified, and indeed, the project was late in the end. For

detailed results please see Section 6.3.

1.1.2 Problem Area 2: Empirical Studies

Empirical studies of processes in computer science help us understand the effect of

different approaches and what environmental variables influence their behavior.

Understanding and quantifying the effectiveness of a process in different

environments helps selecting the right process in a given environment, and to verify

that a process actually works as expected. While studying a process, different study

designs can be used, e.g. controlled experiments. These experiments provide evidence

for the process’ applicability and effectiveness.

The importance of process conformance is especially stressed in the field of software

engineering due to issues that arise when performing empirical studies.

 9

When studying a process, the process itself is the central controlled variable of the

experiment. It also can be seen as the treatment of the experiment. A number of other

independent variables (e.g. experience of process enactors) can be either controlled,

randomized, or uncontrolled. The measures for effectiveness of the process are

typically the dependent variables.

The process, as being the most important controlled variable, is often times assumed

to be executed as defined. In other words, it is controlled by explaining the steps and

importance of the process to the process enactors. In many cases, the proper

execution of the process is then taken for granted and not further validated. Working

with humans, however, introduces a larger set of concerns and random behaviors:

After explaining the process, study subjects might still have a different understanding

of the steps to be executed depending on various factors. These factors include but are

not limited to:

Desire to succeed: subjects might have their own goals in mind when executing a

process. In the classroom, subjects might be (or might not be) motivated by a grade

they receive for performing the process. In industrial settings, process enactors might

be differently motivated based on their role in the organization. For example, a

quality assurance manager might be more motivated when executing a quality process

than a temporarily hired student programmer.

Personal skills: some processes, process steps, or process definitions might be

complex and hard to understand and require an amount of upfront training. If training

is not provided, differently skilled subjects will follow the studied process more or

less closely.

 10

Prior experience: subjects might behave differently based on their prior experience

with the process, or similar processes. For example, subjects having had negative

experience with the studied process in the past might tend to modify the process

steps, specifically the steps that they see as cause for the negative impact.

Duration and long-term motivation: In long-term studies subjects might intentionally

or unintentionally leave out steps of the process or modify them in other manners. For

example, some of the process steps might be too hard, or infeasible, or too costly to

execute.

Several research works have emphasized these issues: Shull et al. (Shull, Carver and

Travassos) state that: "Data collection of all types in empirical studies must address

the question of process conformance. Empirical results are not of much use if the

researcher cannot be sure of which process produced them!"

Further, evidence has been presented that supports the belief that process

conformance is an essential ingredient when performing controlled experiments. And

that subject’s conformance indeed varies:

In an empirical study investigating reading techniques conducted by Lanubile and

Visaggio (Lanubile and Visaggio) researchers found that "(...) less than one third of

Checklist reviewers could be trusted to have used the checklist and one fifth of the

PBR [PBR = perspective based reading] reviewers could be trusted to have followed

the assigned scenario." They concluded that "This experiment provides evidence that

process conformance issues play a critical role in the successful application of

reading techniques and more generally, software process tools."

 11

Another study on reading techniques by Laitenberger et al. (Laitenberger, Atkinson

and Schlich) reported: “With PBR it is possible to check process conformance

explicitly by examining the intermediate documents that are turned in. We did this,

and determined that the subjects did perform PBR as defined.” Interestingly, the first

experiment investigated conformance with post study interviews. The second one

used artifacts collected during process execution. Both studies come to very different

results regarding conformance. A standardized way to detect and measure

conformance would have helped to understand whether the subject’s conformance

differed or whether the process differed.

More recent work of Kou and Johnson (Kou) builds mechanism to classify different

kinds of Test Driven Development. Their survey on related work shows that

experimental results investigating the impact of Test Driven Development is highly

diverse. They state that “[…] research on TDD suffers from the “process compliance

problem”. In other words, the experimental designs do not have mechanisms in place

to verify that subjects who are supposed to be using TDD practices are, indeed, using

them.” In one of their studies verifying a classifier to distinguish between test-first

and test-last order they conclude: “A provocative result of this study is that half the

episodes (46) were classified as test-last, even though the subjects were instructed to

do test-first development.” 4

4 In our own work (described later in Chapter 6.2) investigating conformance to XP practices results show that

students followed Test-Driven Development in at most half of the cases.

 12

The reasons for subjects to violate processes can vary. Basili et al. (Basili, Shull and

Lanubile) point out that human subjects are often motivated by their own goals during

the study:

"Subjects are not malicious, but will sometimes concentrate on successfully

accomplishing what they see as the goal, even if it means straying from the process

assigned." (Basili, Shull and Lanubile). In an experiment investigating the

effectiveness of a reading technique to detect defects in requirement specifications

they found that the student subjects reported many false positives because they

believed that the more defects they find the better the grade they will receive from the

professor.

In summary, the above sources provide evidence for process compliance problems in

empirical studies. Some research work has tried to check for conformance at the end

of the study through an end-of-study questionnaire. However, no generally applicable

and scientifically accepted approach has been presented yet to check for conformance

in studies during their execution. This work will propose such an approach and will

check its validity by applying it in typical controlled study settings in classroom.

1.2 Terminology

Throughout this thesis a set of expressions and terms is going to be used that first

need introduction. This chapter will provide detailed explanations and definitions.

Process (in software engineering) is usually a set of steps performed by process

enactors on an input (i.e. software artifacts) producing a desired output. The output

can either be a transformed version of the input (e.g. code development) or a product

 13

distinct from the input (e.g. extracting a list of defects from a requirements

document).

I am going to use the term process in a different, much broader sense. Process will be

an umbrella term for a vast set of terms used by software engineering literature such

as: software life cycle model, method, technique, software process, and practice.

These terms mainly distinguish between different levels of process application. For

example, high level software life cycle models can be decomposed into lower level

processes, e.g. the waterfall life cycle can be decomposed into processes for

requirements specification, design, coding, and testing. Processes can be further

decomposed into methods and techniques. However, what they all have in common is

a set of instructions or expectations that have to be followed in order to produce

outputs. Further, I include weak and informal descriptions of processes, such as

guidelines and practices, that only define “what should be done” and not “how

exactly it should be done” (e.g. as a sequence of steps). An example guideline could

be that “all developers in a team should write test cases”. Guidelines do not define

specific steps but will still be testable in the proposed approach of this thesis.

Process Definition is the representation of the process that can be communicated

across process designers and enactors. It can be thought of as a model containing the

process specific details. On the scale of process specificity, a definition can range

from an informal guideline, given in natural language, to a formal process

specification that describes the order of expected steps of the process (e.g. given as a

finite state machine).

 14

Process Enactment (also executed process) is a series of actions performed by the

process actors in reality. Process enactment includes the steps that were performed,

their order, the quality of execution, and the time or effort spent in executing the

steps.

Process Conformance (also process compliance) is the concept that describes how

closely a process enactment complies with the process definition. This follows earlier

definition (Sorumgard): Process conformance is the degree of agreement between the

software development process that is really carried out and the process that is

believed to be carried out.

Process Violations are errors in process enactment that violate the process definition,

i.e. specific non-conformances. For example, process violations are omission of steps,

modification of steps, rearrangement of the order of steps, or the introduction of new

steps. Additionally, violations include poor qualitative execution of steps.

 15

2 Research Problem

The observations and findings from the previous chapter highlight the importance of

investigating process conformance. Before proposing methods to do so, a more

precise description of the research problem is presented in this chapter. The problem

will be broken down into sub problems and tradeoffs that exist when solving these

problems will be discussed.

The main research question this work is trying to answer can be stated and broken

down as follows:

 (A) Can mechanisms be built to detect process violations in software

processes

(B) and are those findings useful for

• understanding which aspects of the process are not being applied

properly and why?

• improving conformance and increasing chances of achieving desired

quality characteristic of the software product?

 16

The research question can be broken down into two parts. Each of these parts is

discussed in greater detail in the two following subsections. The first part (A) is

concerned with the formulation and detection of violations against a planned and

expected process. The challenge is to build a method that is on the one hand general

enough to detect process violations for wide range of software processes and on the

other hand cost efficient enough to be feasible to be applied in practice. The second

part (B) is concerned with the interpretation of the violations in the context of the

analyzed process within the observed environment (e.g. the software development

project). Finally, part (B) questions how one can improve conformance in the long

run so that the processes’ quality goals can be predicted more precisely.

2.1 Violation Detection Mechanisms

In order to detect process violations during process execution one has to compare the

actual executed process (i.e. the process enactment) to the process definition. To do

so, the executed process has to be instrumented and measured. Ideally, one could

measure all steps of the process including the quality with which it was executed and

the time it took to execute the steps. In reality (i.e. in empirical studies and in

industrial software projects) the amount of measurable steps of a process is limited by

two tradeoffs that have to be balanced:

The cost of measurement has to be considered and should be proportional to the gain

of knowledge produced by finding process violations. Ignoring the cost could lead to

an approach that in theory can be shown to have certain properties, but will not be

 17

applicable in practice due to economic reasons. Further considerations concerning the

cost are given in section 2.1.2.

Measurement activities can be too intrusive and may change the behavior of the

process enactors and therefore the process execution itself. Details on intrusiveness

are given in section 2.1.3.

In addition to these two tradeoffs there might be a set of privacy concerns attached

with the instrumentation methods. For example, video and screen capturing of

process enactors might also capture non-process relevant parts, such as email or

personal conversations.

Before going into details on these two tradeoffs, I will discuss which instrumentation

types exist and how the different types can be roughly classified.

2.1.1 Classification of data collection methods

A number of different methods help instrumenting and measuring process execution.

They can be roughly divided into data acquisition methods that take automatic

measurements5 and methods that involve manual effort (Figure 2: y axis). The latter,

manual methods require a fair amount of human involvement in the phase of

producing measurements or in the phase of analyzing the data. For example, manual

effort is required from the process enactors in order to fill in checklists and create

5 Example for such tools are: Hackystat (Johnson, Kou and Agustin), UMDInst ,,

Subversion(http://subversion.tigris.org/), CVS (www.nongnu.org/cvs), Cruise Control

cruisecontrol.sourceforge.net/)

 18

measurements. And, manual post analysis of video data requires additional effort

from the data analyst.

Further, one can classify these data collection activities into existing and

supplementary collected data (Figure 2: x-axis). Existing data is data that is already

collected as part of the software project (e.g. a bug tracking system or a code

repository). Supplementary data is data that is not yet collected, and requires

additional cost to be collected (e.g. developers filling in checklists for the purpose of

conformance measurement).

Both classification characteristics for measurement methods are likely to vary from

project to project and from one process to another. Different projects will collect a

different set of existing measures and different processes will require different types

of automatic and manual data collection activities. For example, one project might

already employ a version tracking system, whereas another one does not.

Accordingly, some processes will be harder to measure automatically, e.g. if one

wants to measure the thought process of subjects while they are executing a process

one will likely have to use a manual method , such as an interview or questionnaire.

 19

2.1.2 Cost of Measurement (Cost Tradeoff)

The first tradeoff to be considered when measuring a process is the cost required to

measure and analyze process conformance. Process instrumentation methods that are

existing and already applied will require no or little additional cost (e.g. when they

need to be slightly modified). However, even if the data comes for free, additional

cost has to be spent during the data analysis process.

Supplementary methods will always require spending additional cost in data

collection and analysis.

When comparing the cost of automatically collected data to manually collected data it

is likely that the latter will be more expensive due to the human involvement.

Figure 2: Classification of process instrumentation methods and tradeoffs
between cost and level of intrusiveness for process instrumentation

 20

A successful approach for detecting process violations will have to consider the cost

tradeoff and primarily focus on the cheaply available, existing and automatically

collected data.

As a rule of thumb, in industrial settings the cost overhead of the data collection and

analysis methods has to be proportional to the gained insight and payoff in increased

productivity triggered by improved process conformance. In empirical study settings

where the process manager, i.e. the researcher, wants to limit threats to validity he or

she will usually spend even more effort on ensuring process conformance.

2.1.3 Intrusiveness of Measurement (Intrusiveness tradeoff)

Whenever new manual methods for process instrumentation are used they are likely

to influence the way process enactors execute the original, non-instrumented process.

Firstly, methods that make enactors feel that they are being observed can change their

behavior. This effect, also known as the Hawthorne effect (Roethlisberger and

Dickson), embodies a strong threat to internal and external validity in controlled

experiments. Subjects might stick to the process because they feel that their

conformance is being studied. In a regular (unobserved) environment, however, the

subjects might modify the process more freely.

A second issue can be that instrumentation methods impair the natural flow of a

process by interrupting the enactors. For example, an instrumentation method

compromising a check list that needs to be filled after each step will constantly

interrupt enactors. Therefore, instrumentation methods should have a low level of

intrusiveness. As a guideline, one should first use all possibly available automatic and

unobtrusive instrumentation and only apply manual, intrusive methods if absolutely

 21

necessary. If one has to choose intrusive methods it is recommended to ask the

process enactors whether they felt they were being observed, or if the instrumentation

method interrupted their workflow.

Figure 2 illustrates the tradeoffs for process instrumentation methods and provides

examples for an imaginary project.

To exemplify the tradeoffs, Figure 3 visualizes an example process graph for Test

Driven Development. The idea of the process is that developers first implement a test

case before writing the implementation of a function. A possible process flow is

illustrated in Figure 3 and could require first creating empty classes for test and

implementation, then iteratively creating test cases and implementing functionality.

Optionally, developers are allowed to submit their changes to the code repository

after they finish implementing the function (in the figure SVN=Subversion). When all

necessary functionality is implemented, the developer should mark the task in the

Figure 3: A sample Test-Driven Development process

 22

issue tracking system as completed. For the objective of this example one should

assume that a SVN repository and a bug tracker are already part of the regular

software development environment.

Investigating the different steps of the process will require different methods and it

will differ in the amount of measurement cost. As an example, the steps “Commit

Changes to SVN” and “Mark issue as completed” are cheap to measure since existing

systems (SVN and issue tracker) capture this kind of data implicitly (i.e. existing

data) and can be queried. The first steps of creating files on the local development

machine could be measured by instrumentation tools (e.g. Hackystat (Johnson, Kou

and Agustin)). The cost of measurement includes installing these tools and post

processing the collected data. Last, the steps of iteratively creating test cases and

implementation could be measured by either providing developers with a checklist

that keeps track of the order of implemented functionality or by capturing screen

content for a manual post analysis. The first solution might introduce effects that

change the usual behavior of developers. The second approach requires costly post

data analysis and inherits a set of privacy issues (e.g. capturing screen content with

private information such as email content). In practice, these steps are costly or even

infeasible to measure in the long run (e.g. over the duration of the project). In

summary, one might not be able to measure all steps that are given in the above

picture. This circumstance can be found in almost any process applied in practice, and

it will influence the properties of the research question and approach.

 23

2.1.4 Properties on an Incomplete Approach
As explained in the last section, within a fixed budget for measurement activities, the

use of existing and automatic available data sources is recommended first. But

measuring only a subset of process steps will hide certain details of the process

execution and therefore will result in an approach that cannot detect all violations that

occur. However, even detecting a subset of all process violations can give a fair

amount of insight into process execution, as will be demonstrated in the studies that

follow.

Based on the cost and intrusiveness tradeoff, the approach presented in this thesis

will be able to show the presence of violations but not their absence. In other

words, it will be able to detect violations against the process definition but not be able

to prove that a process has been followed completely. The approach is therefore

sound but not complete and can be thought of as “Process Conformance Testing” (as

opposed to “Software/Product Testing”).

Figure 4 illustrates the concept of violation detection by using limited measurement

data. The red box shows that the process enactment in the picture violates the process

definition in three different ways. Operating on a subset of data (in the figure: box

Measured Process) allows only for the detection of a subset of actual violations.

 24

2.2 Violation Understanding and Conformance Improvement

The first part of the research problem is concerned with the detection of violations

against the defined process. Once violations are identified the person investigating

process conformance has to be given the ability to improve conformance. A couple of

questions arise when violations are detected, such as:

• What do the violations mean?

• How severe are the violations?

• What are the reasons for these violations?

Figure 4: Detecting a Subset of Process Violations

 25

Therefore the second part of the research question is concerned with “what are the

right procedures and tools to further investigate identified violations?” These

mechanisms should be able to give insight into different dimensions of the violations

such as:

Number/percent of violations: that is, how often (out of all possible cases) did the

developers not follow the process. For example, it would be perceived differently if a

violation occurs in every second instance of the executed process, or just in 1% of all

instances.

Type of violations: in the example process given in Figure 3 different steps can be

violated. For example, if developers forget to close the issues in the last step then this

type of violation would require a different reaction than a violation against the steps

of implementing test cases prior to functionality.

Timing of violations: Violations in different stages of the software development life

cycle might be perceived differently. For example, violating Test Driven

Development in late stages of the projects might be more severe since there might be

not enough time to test the code thoroughly.

Location of violations: if violations can be attached to specific parts of a software

system then the location might play a role in how to react. For example, violations

against Test Driven Development can be assigned to the source component that was

not developed according to the process. Then, violations occurring in core

components of the software system might be more severe.

Additional measures and information: additional measures can give further insight

and understanding of the violations. For example, determining the developers

 26

associated with the violation can answer the question if only a few, or if all

developers have problems following the process. This gives insight into the

applicability of the process. Besides developers, different software measures can

explain violations. For example, one might find that, in all the cases that the process

was violated, the software components were extremely small (e.g. measured by lines

of code). Depending on the process, one might conclude that the process is not

applicable for small software components.

The last challenge in the process of improving conformance is how to use the

understanding gained from the set of detected violations and to determine if the

process violations have a deeper meaning. For example, violations can be symptoms

of root causes that are often not immediately visible: developers might skip specific

steps because of time pressure. Or, the process might not have been explained to them

precisely enough. In other cases, a process might not be applicable in the given

development environment and might need to be refined.

 27

3 Related Work

As already stated, different parts of the applied and empirical software engineering

fields have recognized process conformance as important ingredient for process

analysis and improvement, e.g. ISO (Standardization, International Organization for)

(International Organization for Standardization) and CMM (Krishnan and Kellner)

report about desired activities to investigate conformance. In the empirical field,

researchers have found process conformance to be important when running

experiments (Lanubile and Visaggio) (Laitenberger, Atkinson and Schlich) (Kou)

(Shull, Carver and Travassos). Related approaches to monitor, assess, and enforce

process conformance have been proposed in the past and are presented in the

following sections,

3.1 Review Procedure

In order to find closely related approaches focusing on investigating whether software

developers are following a planned process a systematic review (Kitchenham,

Pfleeger and Pickard) has been conducted. The goal of the review is to find all related

research that tries to answer the stated research questions (Chapter 5). In the

following I will describe the procedure of the review and its results.

3.1.1 Systematic Review Procedure

To find related research articles I used the Google Scholar search engine

(http://scholar.google.com). The advantage of the search engine is that is searches a

 28

long list of publishers, journals and conference proceedings6. Different keywords for

paper titles were used and are reported in the results section. Filtering of the results

for all keywords was done in two steps: first the title and conference name could

reveal that the work is not significant, second the abstract and conclusion were used

to filter further.

The second step of the review was an inspection of the referenced works in both

directions. That means that the list of references in the document itself was inspected

and the list of referring documents was inspected too (Google Scholar provides this

information).

6 Work by Walters Invalid source specified. showed that precision and recall measures of Google Scholar are

higher than competing digital libraries. Therefore Google Scholar can be justified to be used in such a search.

Figure 5: Procedure for Systematic Review of Related Work for this
Thesis

 29

Iteration Keywords7 Identified
documents

Remaining
after
filtering by
title,
abstract, and
conclusion

Additional
sources from
referenced
documents

Additional
sources from
referring
documents

1 Process Conformance
Process Compliance
Process Mining
Process Extraction
Process Discovery
Process Validation
Process Violation
Process Verification
Process Enactment
Workflow Mining
Process Non-Conformance
Process Non-Compliance
Process Nonconformance
Process Noncompliance8

564 29 1 3

The criterion used for inspecting and filtering the results by title and abstract was that

the work had to deal with process conformance of software processes (and not

business processes, or medical processes).

3.2 Related Work

3.2.1 Process Centered Software Engineering Environments

Multiple research activities, mostly developed in the early 1990s, focus on building

process centered software engineering environments that support process enactment

of software processes in an automated fashion (Bandinelli, Fuggetta and Ghezzi)

7 Further it was selected in Google Scholar to search articles in the field of “Engineering, Computer Science, and

Mathematics.” (this option can be found in the advanced search options)

8 The exact Google Scholar search string was: “Process Conformance” OR “Process Compliance” OR “Process

Mining” OR “Process Extraction” OR “Process Discovery” OR “Process Validation” OR “Process Violation”

OR “Process Verification” OR “Process Enactment” OR “Workflow Mining” OR “Process Non-Conformance”

OR “Process Non-Compliance” OR “Process Nonconformance” OR “Process Noncompliance”

 30

(Broynooghe, Parker and Rowles) (Leonhardt, Kramer and Nuseibeh) (Reis, Reis and

Abreu) (Schramm, Verlage and Knauber) (Kroeger, Jacobs and Marlin). The goals of

these environments is on the one hand to provide process designers with a process

modeling language to express processes in an explicit form (e.g. PML: Process

Modeling Language (Broynooghe, Parker and Rowles), SLANG: SPADE Language

(Bandinelli, Fuggetta and Ghezzi), APSMEE-PML (Reis, Reis and Abreu), ProLan

(Schramm, Verlage and Knauber)) and on the other hand to support the process

enactors with an electronic system that lists the activities they have to execute next.

Further, some of the environments (e.g. SPADE (Bandinelli, Fuggetta and Ghezzi))

are able to collect data from external tools automatically (such as a compiler).

Different storage solutions (e.g. object oriented databases (Broynooghe, Parker and

Rowles)) are used to keep track of process evolution.

Figure 6: Process Centered Software Engineering
Environment

 31

Figure 6 illustrates a general model of a process centered environment. The process

designer uses a process modeling language to convert the process into an explicit

form. Then the system uses this description to hand out tasks to the set of developers.

Some of the proposed systems are not centralized as shown in the figure, but are

decentralized (Leonhardt, Kramer and Nuseibeh).

The systems require that all development processes are translated into the specific

process modeling language and that process enactors invest effort in maintaining the

state of the process and strictly follow it. Bruynooghe et al. (Broynooghe, Parker and

Rowles) claim that “Ensuring conformance to process is often espoused as the main

benefit of process enactment. For example, one can guarantee the timely performance

of mundane repetitive tasks, which otherwise may be neglected by process

participants".

Very recent work by Mishali et al. (Mishali) presents a system (TDD Guide) that

supports developers performing Test Driven Development (TDD). In contrast to

earlier approaches the system is tailored to one specific agile practice. It observes the

steps of creating test and implementation classes in the developer’s IDE and warns if

the TDD practice is violated. The system assumes that developers know which steps

they have to follow for TDD and acts passively (i.e. does not enforce the process). In

the case study presented, data collected through questionnaires indicated that the

system helped developers follow the practice. However, it was not investigated (e.g.

through a control group) if developers follow TDD with higher conformity using the

tool than without using it.

 32

Commonalities and Differences to this work

The work presented in this thesis takes a different approach for improving

conformance to a software process. Instead of telling the developers what to do the

approach analyzes process data and gives developers feedback on what they did

wrong. Further, the approach will not be restricted to one specific process

specification language (e.g. FSMs, Petri Nets) but will allow defining the process in

any formalism of choice. I see this as an important property of a general approach.

Different processes will require different models because each model brings along a

different power of expressiveness. For example, FSMs are not able do model

concurrency without state explosion, or Petri Nets are only able to defines temporal

properties (e.g. in which order steps have to be carried out) but not qualitative

properties (e.g. how steps have to be carried out). Another good example for the

necessity of general models are guidelines that do not define steps at all. For example,

the guideline “Always write sufficient documentation” does not define steps but

developers should still adhere to it. FSMs and Petri Nets are not appropriate modeling

mechanisms for such kind of development rules.

3.2.2 Process Mining and Process Discovery Approaches

The goal of approaches performing process mining is to discover process models

from observed data. Those approaches assume that the process model is not given in

advance, but can be constructed by investigating different type of data sources (e.g.

logs or software artifacts).

 33

One of the first and highly cited approaches that infers a process model has been

presented by Cook and Wolf (Cook, Process discovery and validation through event-

data analysis.) (Cook and Wolf, Discovering models of software processes from

event-based data.). Assuming that process data is captured in the form of an event

stream (the authors do not give specifics on how to measure this data in practice)

three different known techniques (i.e. KTail, Markov, RNet) are used to construct

finite state machines (FSMs) that represent the process model.

In more recent work Hou et al. (Huo, Zhang and Jeffery, An exploratory study of

process enactment as input to software process improvement. In) (Huo, Zhang and

Jeffery, A Systematic Approach to Process Enactment Analysis as Input to Software

Process Improvement or Tailoring) build upon Cook and Wolf’s work and extend it

to map higher level events, such as major phases during the software development

lifecycle. They show in a pilot case study that it was possible to build a high level

Petri Net modeling dependencies between three high level processes (Collect

Requirement, Software architecture design, Analysis). Mined low level activities

were manually mapped to high level process elements by experts. Then this

discovered model was compared to an expected one so deviations could be identified.

Figure 7 (from their paper) illustrates their process.

 34

Work by Jensen and Scacchi (Scacchi and Jensen) investigates how events can be

extracted from existing historical data sources in Open Source Software Systems

(OSSS). They describe how software repositories, forums, and issue trackers are

promising candidates for event data mining.

Rubin et al. (Rubin, Günther and van der Aalst) describe in their work how software

repositories can be used to derive explicit process models. Their ProM framework

“provides a variety of algorithms and supports process mining in the broadest

sense.” Their idea is to map activities extracted from logs of the software repository

(i.e. Subversion) to higher level events. For example, a modification of any source

Figure 7: Hou et.al. Process Recovery Approach (copied from (Huo,
Zhang and Jeffery, An exploratory study of process enactment as input

to software process improvement. In))

 35

code file in the “/tests” directory was mapped to an event that describes that test cases

were modified. In a case study they investigate several OSSS (i.e. five ArguUML

subprojects) and derive a Petri Net that shows the order in which major parts of the

software were created. They also describe how such a model can be used to check the

compliance of activities in accordance to a Petri Net. Further, they describe an LTL

checker to analyze the repository logs (i.e. the LTL rule defined that “developers

working on the source code should not write tests as well”). The LTL checker, which

is described in more detail in (De Beer and Van Dongen), does not require deriving a

formal model first but is used for checking the collected data directly.

Commonalities and Differences to this work

The approach presented here assumes that the process is given and does not have to

be mined and extracted from data. Therefore, this work is trying to answer different

research questions. The assumption that a process definition is given is reasonable to

make. In the studies conducted (in professional and classroom environments), the

person interested in studying conformance usually had a good idea about what the

expected process should look like. For example, in the professional programmer

study the process was explicitly defined in an Excel spreadsheet. In the classroom

study, the researchers picked well-known eXtreme Programming practices that were

defined in literature. In the ongoing industrial case study the project manager

provided verbal definitions of the processes and guidelines that he expects the

developers to follow.

 36

Additionally, my approach builds a whole framework with steps that describes the

process, starting with defining how and what data has to be collected to detect process

violations, and ending in a step that describes what actions can be taken to avoid non-

conformance in the future. The approaches described above often do not investigate

those steps. For example, the Cook and Wolf approach does not define what data to

collect and how this can be done at reasonable cost and without interfering with the

process itself.

The LTL checker presented in (De Beer and Van Dongen) defines undesired temporal

patterns in the collected logs. Our work also defines undesired patterns in collected

data. As explained in the previous section, picking one formalism (i.e. LTL) restricts

what kind of patterns one can find (i.e. only temporal ones). Our approach allows a

much broader range of checks, such as checks for qualitative measures (e.g. through

code metrics) and checks of guideline rules that do not define a temporal order.

3.2.3 Process Verification and Violation Detection Approaches

The following research aims at verifying process execution and detecting violations

against process definitions.

Cook and Wolf (Cook and Wolf, Software process validation: quantitatively

measuring the correspondence of a process to a model.) offer a theoretical approach

on how to measure the distance between an executed and defined process. Their work

is based on the event based framework that was introduced earlier by the same

authors. An executed process is expressed as a stream of events. They propose

 37

different string distance metrics to qualitatively assess the differences from the

process model stream.

Figure 8 shows the principle idea of the approach. In comparison to the work

proposed here Cook and Wolf’s approach requires a formal process model and the

induction of event streams on both ends. The proposed approach will neither require

converting collected data (e.g. data from a code repository) into events, nor process

models that can be converted into event streams. Besides detecting deviations the

proposed approach will expand beyond solely detecting violations. It will help to

Figure 8: Cook and Wolf's approach (figure copied from (Cook and Wolf,
Software process validation: quantitatively measuring the correspondence of

a process to a model.))

 38

understand what data has to be collected and how conformance can be improved

based on the findings.

Another approach to assess conformance as quantitative measurement was proposed

by Sorumgard (Sorumgard). His idea is to take a series of scalar process

measurements (e.g. total time spent, number of defects found) and to calculate a

deviation vector based on the measured data and an expected vector. This method

assumes that a process, when executed correctly, will always produce the same

measurements.

In comparison to the proposed approach this approach does not provide insight into

what steps of the process were violated. Further, Sorumgard’s approach is applicable

after all measurements have been taken (i.e. after the study, at the end the project).

The proposed approach will be able to give live feedback on detected violations.

Silva and Travassos (Silva and Travassos) discuss different methods for observing

process execution in experimental settings. The discussed methods are Cognitive

Figure 9: Sorumgard’s Deviation Vector (figure copied from
(Sorumgard))

 39

Labs, Remote Monitoring, and Metric Collections. The authors highlight the

importance of avoiding the introduction of a Hawthorne effect. In Cognitive Labs

settings, subjects are video recorded (screen, subject and audio) and observed through

a one sided mirror. Remote Monitoring captures screen content only (by the use of

special software), and the last approach (Metric Collection) collects process metrics.

The latter is the one this thesis follows. They estimate the artificiality, cost (software

license, researcher effort), coverage (i.e. amount of insight into process execution),

specificity (of applicability), and time (online or offline) of the three approaches.

Their classification is shown in Table 1.

The evaluative judgment of the different items in the table was done by

argumentation and not established through experiments. I will argue against three of

their classifications for the method of metric collection. First, the cost of collecting

metrics should be downgraded to low while the time that has to be spent in data

analysis for Remote Monitoring is magnitudes higher than Metric Collection. My

argument is the following: remotely monitoring screen content will take about as long

as it took the developer to execute the process. Especially for long lasting processes,

Table 1: Classification of three different monitoring methods in Silva
and Travassos

 40

costs can be infeasible. For example, monitoring Test Driven Development for seven

developer teams over five days, as will be presented in the second study, would take

weeks to analyze. However, in the study installing and analyzing the relevant

measures took one day for each development day (and live results could be used to

give subjects feedback). Second, the approach presented here shows that the

specificity of the type of processes that can be monitored is not as high as claimed.

The experiments show that very different processes could be investigated. From my

experience one of the processes in the second study that was not investigated was if

programmers really followed Pair Programming. I could not find a reasonable

measure in the collected data (i.e. Subversion) that indicated if the programmers

really took the assigned roles and if both worked together on writing the code.

Interestingly, Remote Monitoring could also not have covered this process that takes

place outside the measured environment (i.e. the screen content). Third and last, the

approach presented here of using metrics will be able to report violations almost as

timely as the other approaches. If desired, the approach can be run in intervals of one

minute to produce the detected process violations. Again, these arguments are

subjective and need further empirical investigation.

In the remainder of the paper Silva and Travassos introduce a tool to perform

Perspective Based Reading. The tool has strong commonalities with the earlier

mentioned process centered software tools that support developers by presenting the

next steps of the process. The researchers describe how log data from this tool can be

used to identify if subjects skipped certain screens (each screen is a step in the

 41

process). However, they do not report whether and how often this was the case in the

two studies they conducted.

In recent work, Thomson et al. (Thompson, Torabi and Joshi) present an approach

based on conditions that are checked against collected process data. This idea is

similar to the construction of algorithms that detect violations in this work. The

conditions in Thomson’s paper define process states and values that should hold all

the time. The approach presented in this thesis formulates this the other way around:

conditions that should never happen. Besides the commonalities, the work presented

here goes beyond purely building mechanisms to detect violations. It cares about how

software processes can be measured and how violations can be inferred from the

processes’ definition. Further, the work presented here has to be shown applicable to

different real software processes. Thomson’s work was only evaluated on a small and

artificially created banking example (the example showed how cash is deposited at a

bank).

3.3 Conformance in Other Research Areas

When approaching solving problems in one research area (Computer Science) it is

sometimes worth looking if similar issues have been addressed in other research

areas. This can help identify terminologies and concepts that can be adapted for

another domain. The following paragraph summarizes some of that work that helps to

find and understand research questions related to conformance in our field.

“Drug Compliance in Therapeutic Trails” is work by Pol Boudes (Boudes)

summarizing issues arising in medical research. In this field subjects (i.e. patients)

 42

have to follow processes for taking medicine to better their health. Medical

experiments are therefore concerned if patients follow the instructions (e.g. the

frequency and order of intake) precisely. Without providing all related works that

Boudes references in his survey, following evidence has been found by medical

researchers:

“In clinical practice, roughly one-third of patients comply adequately, one third

comply somewhat adequately, and one-third do not comply at all”. This indicates that

patients have, as well as software developers, problems following the recurring steps

of a process precisely.

“Poor compliance affects the course of many diseases, even those with a fatal

prognosis”. A relationship between following a process and its affects has been

established in this field. This is also one of the most interesting research questions in

our field. Further, “Poor compliance is the most common cause of nonresponse to

medication.”

“Because poor compliance can undermine the execution and validity of clinical

trials, it represents an essential parameter in the analysis of the results”. In medical

experimentation measuring of compliance has become a standard. This is not the case

in software engineering experimentation yet.

“We discuss two possibly coexisting scenarios: (1) the participant takes an incorrect

quantity of the study medication, and (2) the participant takes the correct quantity but

in an incorrect manner (e.g., the wrong schedule of intake or the use of forbidden

concomitant medication).” Interestingly, the proposed work presented here will also

 43

distinguish between syntactic and semantic conformance violations that mirror the

same principle: the first is concerned about the order of executed steps, the second

one about their quality.

“Although poor compliance is easily defined in theory, it is frequently difficult to

measure in practice.” This seems to be true also in software engineering. Defining

the difference between a planned and executed process (e.g. as presented by Cook

and Wolf) seems easy compared to the difficulty of measuring (and defining) a

process precisely in practice.

“In fact, when patients are able to explain their noncompliance, they mention two

main reasons: ‘I forgot’ and ‘I didn’t have the drug handy’ “. In software

engineering we have not explored yet why developers are not following the process.

“Irrespective of the disease or disorder studied, self-administered treatments are

associated with poor compliance […], and compliance with long-term treatment is

worse than adherence in short-term studies […].” These are also interesting

questions in our field: do self-managed processes show more violations? And, is

process conformance better in short term studies of process conformance?

“Many studies have shown that factors such as age, education, gender, intelligence,

and race have only a limited influence on compliance”. Another interesting question

in our field is if certain programmer types (e.g. novice vs. expert, “Hacker” vs.

software engineer) show different conformance levels.

“The design of drug containers and packages may influence compliance.” Boudes

argues that that the easier drugs are packed and the clearer statements about their

process of intake is described the better the conformance. In software engineering we

 44

can see “process packaging” as how well a process is integrated in the usual

development cycle. For example, does the programmer have to do 10 clicks to

perform the process in a separate tool? Or, is the process nicely integrated into the

IDE and requires only little overhead? How does integration influence the overall

conformance?

“Questioning patients is the most widely applicable method for evaluating

compliance. […] Careful questioning might identify over half of the noncompliers”.

The conclusion is that most patients admit in interviews to be non compliant. In our

study conducted in classroom with students we made similar observations. Students

(who were not graded based on conformance) admitted to have followed a set of XP

practices only poorly. However, in an organizational context the honesty of answers

might change.

“The reliability of data from interviews depends on the quality of the relationship

between the patients and the clinical staff”. We can learn from this that in attempts to

measure conformance through interviews we first have to gain the trust of the

developers. For example, we might explicitly explain how the collected data will be

used and who is going to see it.

“A memory-equipped electronic device […], a control system that checks the hour

and date when the medication package is opened, can automate pill counts”. Tools to

support the patient have been built. Workflow management systems also support the

automation of process execution.

“These devices also detect ‘‘white-coat compliance,’’ that is, increased compliance

just before and just after appointments with the investigators.” If compliance to a

 45

software process increases around the time developers are made aware of it, then this

awareness process should be repeated frequently to keep up the high level of

compliance.

 46

4 Approach

In order to address the research problem stated in earlier chapters I developed a step-

by-step approach to identify and investigate process violations was developed. At the

highest level the approach follows a four step iterative process as shown in Figure 10.

Each area in the picture represents one step. Steps are executed by different roles and

each step takes defined inputs from the previous step to produce defined outputs for

the next step.

Primarily three different roles are important in the model:

1. Process manager: the person(s) interested in studying the process. In a

professional environment this will be the person who tries to monitor and

Figure 10: Process Conformance Testing Approach

 47

improve the process (e.g. a manager, or a process coach). In research settings

where the investigated process is checked for conformance this would

typically be the researcher.

2. Process enactors (developers/subjects): this is the group of people performing

the process. Typically, these roles are performed by software developers,

testers and reviewers; depending on the investigated process. In empirical

study settings these are typically the subjects performing the process to study.

3. Conformance analyst: the person(s) investigating process conformance. This

role is ideally performed by an independent person, or in very small settings it

can be performed by the process manager. The analyst is responsible for

extracting process definitions, performing conformance analysis, investigating

violations, and discussing possible improvements with the process manager.

 48

In short, the first step (Figure 10: step 1) of the approach helps extracting the process

definition, eliciting data collection methods and sources, and defining process

violations. In the second step (Figure 10: step 2) these violations are then translated

into machine executable algorithms that can be run on the data collected in the project

or experiment. The third step (Figure 10: step 3) involves gathering insight into

violations and quantifying their severity. The fourth and final step (Figure 10: step 4)

aims at improving the conformance between expected process and process enactment.

4.1 Step 1: Conformance Rule Definition

The first step of the process is performed by the process manager and conformance

analyst. The goal of the step is to elicit and capture the planned processes, the

collected data sources, and to infer an initial set of process violations. All this data

Process	

Name	

A	
 unique	
 identifier	

Process	

Focus	

Product	
 quality	
 characteristics	
 or	
 project	
 characteristics	

that	
 should	
 be	
 improved	
 by	
 the	
 process.	
 Examples	
 for	

product	
 characteristics	
 are:	
 	

• understandability	

• correctness	
 	

• portability	
 	

Examples	
 for	
 project	
 characteristics	
 are:	
 	

• resistance	
 against	
 the	
 loss	
 of	
 personnel	

• efficient	
 training	
 of	
 new	
 personnel	

Process	

Definition	

Formal	
 or	
 informal	
 definition	
 of	
 the	
 process	

Collected	

Data	

List	
 of	
 collected	
 data	
 sources	
 and	
 methods	

Process	

Violations	

Temporal	
 Violations:	
 Temporal	
 patterns	
 in	
 the	
 data	

violating	
 the	
 steps	
 of	
 the	
 process.	

Quality	
 Violations:	
 Measures	
 and	
 thresholds	
 derived	

from	
 the	
 collected	
 data	
 indicating	
 low	
 quality	
 of	
 process	

execution.	

Table 2: Process Conformance Rule Template

 49

will be collected in a central document that is the output of the first step. A template

for this document is given in Table 2 and I will refer to this as Process Conformance

Rule.

The sub activities of the step 1 given in Figure 11 start with the elicitation of the

defined process (Figure 11: step 1) and data sources (Figure 11: step 2). For each

process the process manager should define the expected process. Given the level of

formalism it should be defined as precisely as possible (e.g. verbally, or as finite state

machines).Next, the available data sources should be listed. These are typically all

Figure 11: Sub steps of Conformance Rule Definition

 50

existing data sources related to the process, and depending on the project

infrastructure might include software repositories, bug tracking, task tracking, and

effort tracking systems.

The third step (Figure 11: step 3) is the central step and involves generating process

violations. Process violations are patterns in the collected data that (potentially)

violate the process definition and can be thought of as failing “Test Cases” for

the process. There are two levels of process violations that are important.

First, temporal violations indicate that certain steps are executed in the wrong order

or are not executed at all. Temporal violations aim at “what should be done and in

which order” For example, if the process definition for Test Driven Development

states that “test cases must be implemented before implementation classes” then a

temporal violation would be to find a test class appearing after the implementation

class in the collected data. To infer temporal violations one has to ask: “Which

temporal patterns in the data violate the process definition?”

Second, a process can define certain qualitative aspects. For example, Test Driven

Development not only expects test cases and implementation classes to be in a certain

order, it also requires creating comprehensive and useful test cases. In other words,

test cases should be of high quality. Therefore the second type of process violations is

qualitative violations. These violations aim at how it should be done? Qualitative

violations can be defined by asking: “Which software metric values are indicators of

poor process execution?” Selecting the appropriate metrics, thresholds, and

interpretation models might be difficult in the beginning because one might not yet

understand that specific metric values indicate poor execution of the process. In this

 51

case the analyst should start with a first guess for metrics and thresholds and use the

overall approach (Figure 10) to iterate and improve the selection over time. Another

strategy for selecting the right set of metrics and thresholds is to use historical

information (e.g. from the software repository) to infer reasonable thresholds. The

latter can be seen as derivation of the process from its execution and assumes that the

process was performed appropriately in the past.

In the process of creating a list of violations one might realize that the process

definition does not contain an adequate amount of detail or that it is unclear or

ambiguous. In these cases (Figure 11: step 4) the definition should be enhanced with

these details.

Further, when creating violations one might find the collected data to be insufficient

(Figure 11: step 5) to detect a certain violation. In some cases a small change in the

collected data would allow defining more violations. As an example, the process

analyst might discover that the changes in a code repository are not tagged with the

names of the developers making the changes (e.g. this is the case if all developers are

using the same account to access the repository). Capturing this information,

however, could help to assess process specific violations (e.g. a process could require

that “all developers write test cases”). Capturing this kind of data might be

inexpensive since measurement procedures that are already in place only have to be

slightly changed. In other cases, some processes might be very important to the

organization or the study. As an example, the execution of a safety process might be

exceptionally important when building a life critical system. In these cases, additional

measures and data collection activities can be defined in this step.

 52

To summarize, the procedure of the first step in Figure 11 offers a goal driven

measurement approach that provides only those measures that are needed to identify

potential violations.

4.1.1 Study Example

To exemplify the sub steps described in the previous section I will give a short report

on the construction of one conformance rule for the third study in the professional

environment. In one of the first meetings with developers (process enactors) and the

technical project manager (process manager), the manager said that “All developers

should continuously contribute to test case development”. This statement describes a

guideline that developers should follow and hence represents the expected process in

Figure 10. The collected data sources (Figure 10: step 2) include firstly a Subversion

code repository which contains information about which developers work on which

part of a software system. Secondly it includes an automatic build and test system

providing statistics on line coverage of test cases for each nightly build and test cycle.

Test case development can be tracked in the repository very easily: all test case files

are exclusively stored in a specific directory with the unique name “tests” and the

repository provides information on which developer was working on files in this

folder.

When inferring temporal violations (Figure 11: step 3) and asking “which temporal

patterns in the data violate the process definition?” the first answer might be:

 53

Temporal Violation:

“Active developers are not continuously editing files in the ‘tests’ folder”

Some clarification has to be given for this statement. First, one would solely be

interested in “active” developers, because only “active” developers who have

contributed to code development for a longer time (e.g. the last month) are supposed

to write test cases. Second, the initial definition as given is not precise enough. The

term “continuously” is ambiguous: it does not clarify whether developers are

supposed to write test cases daily, weekly, monthly, or annually.

Therefore a second round of clarification was necessary. In another interview we first

defined that “active developers” are the developers that made at least one change to

source files (i.e. files ending with a specific postfix) in the last 30 days. Second, we

defined that these developers must make at least one change to test code files in the

same time frame. Finally, the violation rule could be rewritten to:

Temporal Violation:

“Developers who made source code changes in the last 30 days and did not make any

test code changes in the same time”

The time window of 30 days can be seen as a parameter of the guideline and might

change in future. The sub steps in this case helped to elicit and improve the

preciseness of the guideline.

 54

A second type of violations, qualitative violations, requires asking “which software

metric values are indicators for poor process execution?” To detect if developers are

constructing low quality test cases a test case line coverage measure can be used. This

measure describes how many distinctive lines of code are executed during test case

execution. As previously mentioned, when defining violations, interest is not based

on whether high test case line coverage promises successful execution of the process

but rather which values or behaviors indicate poor performance. In this case the

process manager defined that a violation is detected if:

Qualitative Violation:

“The test case line coverage is declining over the last 30 days”

To highlight again the importance of both types of rules and how they go hand in

hand one can think of two scenarios: in the first scenario, a single developer could

write very good test cases for the project. This scenario would violate the temporal

part only: the software quality characteristics might still benefit from the high quality

test cases but the guideline is not followed and not all developers will get the same

training in writing test cases. In the second scenario, all developers could collectively

write poor test cases. This scenario would violate the qualitative part only: the

guideline is being followed but not with the necessary quality and the quality of the

product might suffer.

 55

4.2 Step 2: Conformance Violation Detection

The next step in the process (Figure 10: step 2) is to “execute” the defined violations

on the collected data in order to detect violations. Automated tools can be built to

support this process. These automated tools are responsible for extracting data from

the defined sources, calculating required software metrics, and applying the violations

as defined in the previous step. The end result of these automated violation detection

tools is list of violations. As part of this thesis such a tool (CodeVizard) was

developed. CodeVizard is described in more detail in Chapter 4.6. Figure 12

illustrates the tool’s data flow.

Besides the information that a violation is detected the tool should give additional

information about the pattern in the data triggering the violation. For example, the

name of the developers violating the process should be extracted. Or, the exact metric

values that caused the violation.

Figure 12: Data Flow for a Violation Detection Tool

 56

The execution frequency of the tool might vary from one process to another. In most

cases the manager wants to be informed about violations as soon as possible.

Depending on the infrastructure of the project such tools could be integrated into the

nightly build and test cycle to allow process violation detection on a day to day basis.

4.3 Step 3: Gathering supplemental information

After the list of violations has been created it is necessary to investigate them in more

detail. The goal of this step is to get a better understanding of

• what violations means in the context of the process

• how severe the violations are,

• and what triggered the violations in the first place.

To collect this information the process analyst has two options. First, the analyst can

look at additional, related measures. For example, if a process such as test driven

development is not followed properly the analyst can look at the number of test cases

generated after the code, or take a look at metrics such as code coverage (e.g. line

coverage) that give insight into the quality of the current test cases. Further, the

analyst might have a closer look at the components for which the practice was not

followed to examine if only certain types of components are affected.

The second option to consider is to interview the developers causing the violations.

Questions such as:

• Do you think the violation has been detected correctly?

• And if so, why did you not follow the process in this case?

 57

will help to determine if the detection of violation has flaws (e.g. false positive

warnings), and what caused the violation to happen. For example, in the case of test

driven development, developers might argue that in certain cases test classes cannot

be developed beforehand (e.g. for interface or skeleton classes). In other cases

developers might indicate that they skipped process steps to compensate for a late

project that had to be finished as fast as possible.

In either case, the additionally gathered information will help to make a more

educated decision in the next step. This step focuses on changing the process or

violation detection. Figure 13 illustrates the third step. The end result is a more

detailed list of violations enriched by the information gathered in this step.

 58

4.4 Step 4: Rule and Process Improvement and Response

In the fourth and final step decisions have to be made about how the agreement

between the defined and executed process can be improved. The manager’s interest

lies in minimizing violations over time in order to successfully achieve the quality

goals for the developed product. Three different directions can be taken to minimize

violations for the next application of the process:

1. If many of the violations are classified as false positive warnings or warnings

with severity levels below the threshold of interest (i.e. violations that pose no

risk to product quality), then the violation definition has to be changed. This

can include modifying according thresholds (step 1), and detection algorithms

Figure 13: Gathering additional information

 59

(step 2) with the goal of improving the precision (i.e., the true positive rate) of

the detection method. On the other hand, if interviews provide evidence that

the current definitions miss detecting important violations then changes have

to be made to improve the recall of the method.

2. If it turns out that the defined process is not applicable in the current

environment then modification (or tailoring) of the process can help improve

conformance. This can be done by modifying the process’ steps and

definition. To illustrate, the manager might decide that Test Driven

Development should be applied only in the beginning of a project’s lifecycle.

However, one has to keep in mind that a heavy modification will likely also

affect the quality characteristics of the process.

3. Lastly, a manager might think about putting additional effort into enforcement

of the process. This can include providing more resources to execute the

process or giving penalties for not following a process. In empirical classroom

studies where student subjects are graded based on artifacts they create during

the study, e.g. code and documentation, the grade should really depend on

their conformance to the process rather than on their performance. The

subject’s performance can be influenced by the process’ performance, which

is in most cases a dependent variable of the study. In industrial environments

it can mean assigning more time and personnel for executing a process

properly. For example, constantly feeding back process violations can remind

developers of the importance of the process. Or, assigning a dedicated person

to execute the process will help to concentrate on the specifics of the process.

 60

After a decision has been made the process conformance template will undergo the

necessary changes. Figure 14 illustrates the flow and involved actors of the fourth

step.

4.5 Knowledge Packaging and Transfer

After executing multiple iterations of the non-conformance process it is expected that

the process conformance rules will become more and more stable. These rules now

represent transferable knowledge that can be used as the starting point in future

projects, or in future empirical studies investigating the same process.

To package knowledge effectively one has to decide which documents and artifacts to

store during tailoring the rule and process. Three different levels of detail can be

stored. Figure 15 shows three iterations through steps one to four.

Figure 14: Rule and Process Improvement Step

 61

The simplest way to capture knowledge is to only store the latest version of the

conformance rule. This approach is useful for future studies and projects because

these can make use of the optimized rule. However, information gets lost about what

changes the rule has gone through. This might result in repeating some of the earlier

work in the new project.

The second approach is storing the complete version history of the rule, i.e. all

versions and differences between the versions (change deltas). In a new project this

strategy will give a better understanding of which modifications (of the process and

detection) did not work in a previous project. However, the strategy does not include

information on why certain changes were undertaken. The manager might not fully

understand what lead to the different changes of the rule in the past.

Figure 15: Knowledge Packaging and Transfer

 62

The last and most complete approach is to store all versions and all information

that lead to the change.

The changes in a rule are motivated primarily by two artifacts:

• the detailed list of violations received in step three of the approach and

• the managerial decision made in step four.

Storing all these artifacts will help give a better understanding of which changes the

rule went through and why these changes were necessary.

4.6 Tool Support

Steps two and three require tools that support the detection of process violations and a

detailed investigation of those violations. At the time of this thesis no tool was

available that allowed me to encode and execute process violation checks on software

development artifacts, such as code repositories. For this reason, I decided to use and

extend an existing tool (CodeVizard) that was originally developed as part of a class

project (Information Visualization, instructor: Prof. Dr. Ben Shneiderman) for a

different purpose (Hochstein, Nakamura and Basili). CodeVizard started off as a

visualization and inspection tool for Subversion repository data, and it was extended

for this thesis by functionality to identify process violations in an automatic manner.

The tool’s functionality can be divided according to the two steps in Figure 10:

violation detection and gathering additional insights.

 63

4.6.1 CodeVizard Support for Step 2: Process Violation Detection

CodeVizard implements functionality to download and browse software repository

data. In detail, it allows

• retrieving the complete historical data of a Subversion repository

• storing it in a fast and accessible relational database and

• browsing and querying it by using a Java API.

In addition, CodeVizard can compute a wide range of software metrics for Java and

C# code. Thus it enables users to construct complex queries that would not be

possible using Subversion’s API alone, such as:

• Which programmers did modify test classes in the last 30 days?

• Which new code smells were introduced in the last week?

• Which of the test classes in the repository followed a test first order?

With these capabilities the tool supports step two of the conformance process the

following way. To detect a violation based on subversion history, the conformance

analyst has to add a new class (which inherits from ProcessConformanceSensor). The

class has then to be equipped with an according detection function (it overwrites

detectViolations) that returns a list of process conformance violations. The list of

violations can then be generated as often as needed by the tool.

4.6.2 CodeVizard Support for Step 3: Gathering Additional

Information

CodeVizard (Zazworka and Ackermann, CodeVizard: a tool to aid the analysis of

software evolution) helps to support the third step of the approach by offering various

 64

visualizations based on the historical repository data. CodeVizard allows overlaying

indications of the violations generated in the previous step on these visualizations. In

many cases this helps to get a better understanding of violations. For example, it helps

to understand if violations are clustered in one part of the system or if they are more

uniformly distributed. Further, it gives insight into cause effect relationships, e.g., if

violations are triggered by certain events such as a project deadline or a major

refactoring of the software. To illustrate this in detail, a process from the second

study will serve as an example.

Test Driven Development (TDD) was one of the practices checked for conformance

in the classroom study. In short, the practice requires developing unit test case classes

prior to implementing their corresponding code classes. CodeVizard was used to

check for the following violation in the code repositories’ data:

Violation 1: A new implementation class is added to the repository without a

corresponding test class.

After implementing a detection algorithm that matches code and test classes and

checks for test first order, CodeVizard allows the overlaying of violations in its

System View. This view visualizes “life lines” for each file in the repository,

indicating when the file was created, modified and deleted.

 65

Figure 16: CodeVizard's System View (rotated) shows when software
components are checked in, modified, and deleted. Yellow warning signs

represent process violations against Test Driven Development: these
components were added without having according unit test cases at check-in

time.

 66

Figure 16 shows one part of the software (the java package: se.xp10.halt.notfallplan)

and how it developed over a time period of 5 development days (May 24, 25, 26, 27,

30). The commit activity in the repository can be read from the top bar (time ruler).

Five clusters of commit activities (with a two day break for the weekend – May 28,

29) map to the five development days. The view shows further, that on each day new

files were checked into the repository. The yellow warning signs indicate that a

process violation was identified, i.e. the test first order was not adhered to. Following

observations can be made: during the first two development days the practice was

violated often. Six violations were identified for nine newly added components.

Conformance to the practice improved on the later days. In the last two days only

three violations were identified in this part of the system for a total of 14 new

components.

 67

Figure 17: Metric Lines of Code (LOC). Dark red parts indicated larger
components. (Figure rotated)

 68

To gain more insight into the severity of the violations the conformance analyst might

suggest that the size of the components plays an important role. For example, a very

small class not being developed according to TDD might be judged as less severe

than a larger one that implements a lot of functionality. To perform this analysis

CodeVizard allows visualizing code metrics, e.g. a size measure such as lines of code

(LOC), on top of the visualization. Figure 17 shows the same part of the system as

Figure 16 with LOC shown. The Darkest red parts indicate largest components, and

lightest red parts indicate smallest components. The analyst can now inspect if large

classes were developed according to TDD. The picture shows that the two largest

classes (EmergencyActivity and QuestionListActivity) were not developed according

to TDD. This new insight can then be used when discussing violations with the

process enactors and the process manager.

 69

5 Research Questions and Study Methodology

The goal of this thesis is to investigate the research problem by building a framework

and tools to detect process violations as well as perform a series of studies

investigating the feasibility, cost, and applicability of the approach. The studies in

professional and classroom environments aim at investigating why process enactors

are violating process expectations and how these processes can be improved. Before

presenting the work in detail, I will describe some restrictions that apply to the

approach and the developed tool framework:

The approach introduces a general step by step framework that I claim to be

applicable for most software processes. Further, the work presents one possible

implementation of this framework by describing techniques and tools that can be used

to enact the different steps of the framework. Specifically, the tools that have been

developed during this thesis are tailored to mine data captured by Software

Configuration Management Systems (SCMs)9. Validation of the work will

primarily focus on processes that leave traces in SCMs. As will be shown in the

studies, many software processes produce artifacts that can be found in SCMs. There

are two strong arguments for choosing data from SCMs. Firstly, in practice, most

medium to large size software development projects use FCMs to coordinate

development efforts among a group of programmers. Secondly, by using this existing

data no additional collection effort is introduced for measuring process conformance.

9 Also known as: Version Control System, Revision Control System, or Software Repository. Popular version

control systems are Subversion (http://subversion.tigris.org) and CVS (http://www.nongnu.org/cvs/).

 70

The framework aims at finding process violations by applying test cases to the

collected data. The number of identified process violations will depend on the set

(e.g. number and quality) of formulated test cases. As explained earlier, the

approach will never be able to show the absence of violations. In other words, the

approach cannot verify that a process has been executed correctly. This property can

be found in another popular method in software engineering: software testing.

Writing test cases for software can help to find defects but can never show the

absence of any defects in software. As with software testing, the effectiveness of the

approach is dependent on the quality of the formulated test cases. Following the

software testing metaphor, this approach can be described as:

Process Conformance Testing

5.1 Limitations in Measurable Processes

The proposed approach will focus on being generally applicable to a lot of software

processes existing in current software engineering literature. However, some

limitations do exist that prohibit the application for some classes of processes.

A) Implicitly defined and unknown processes: The approach requires an explicit

process definition, as a set of steps or a guideline of what should occur. In

some software environments, processes might be executed without being

made explicit. For example, developers might use tacit strategies and steps to

solve a particular problem, but these strategies and steps might only be

unknown to the process enactor. If it is not possible to extract these steps, and

to formulate a definition based upon them, then no process violations can be

 71

defined. Thus, the approach cannot be applied.

B) Insufficient data: some processes might leave only very little, or no traces and

artifacts that can be checked for violations. For example, a process could

require verbal communication whenever certain code parts are changed (e.g. if

a commonly used code library is changed). If no data on this verbal

communication can be collected then the approach will not be able to check

for violations.

C) Mental processes: a last class of processes that cannot be checked for

violations are processes that are completely executed in the mind of the

developer. For example, a process could require a developer to to have the

three most common security threads in mind when implementing a new

feature to a system. In this case the approach will not be able to check for

violations since it is, at the current state of science, impossible to collect data

on the thought process, when not made explicit, e.g. through think aloud.

In summary, one can classify the set of measurable processes, i.e. the processes that

are checkable for conformance, as the group of processes that can be defined and

leave sufficient traces and artifacts behind.

5.2 Research Questions

To validate this work and to guide the studies a set of research questions and

hypothesis was created. These questions and hypothesis were investigated

incrementally by the different studies. While performing the research the questions

were incrementally refined and transformed into testable hypothesis based upon

feedback from the application of the framework. This natural, empirical learning

 72

process is reflected throughout the following description of the questions, hypothesis,

and studies.

The first research question addresses the feasibility of the approach. It states that the

presented method can be used to identify process violations by using primarily cost

effective, minimally intrusive instrumentation methods. All studies presented here

will address this basic research question by simply showing that at least one violation

can be identified for each of the investigated software processes. The first question

builds the foundation of this work. The following questions and hypotheses build on

top of this question and assume that it can be satisfied and process violations can be

found.

Research Question 1 (R1) – Feasibility

For the set of measureable processes, can the approach be

used to find process violations using minimal intrusive

methods?

 73

The second research question investigates whether the set of identified violations

provide useful insights. Valuable insights contain information on problems with the

process definition, the application of the process, the characteristics of the violations,

and the measures of those violations. These insights can even contain valuable

information on how to design potential changes to the process. Further, I investigate

how the detected violations match the perceived conformance of the process enactors.

The second part assumes that the process enactors are aware of their conformance (or

non-conformance) to the process. Under that assumption, the number of violations

and the perceived conformance of the process enactors should correlate.

Research Question 2 (R2) – Useful agreed upon

insights

(R2A) Do the identified process violations give useful insights

to the process manager and analyst and

(R2B) do they match the perceived conformance of the

process enactors?

Research Question 3 (R3) – Rule Improvement

Can the rules for detecting process violations be iteratively

improved and tailored to the environment?

 74

The third research question aims at tailoring the mechanisms and rules to better detect

violations. It is expected that the initial models and parameters will need refinement

based on feedback from their application. For example, detected process violations

might turn out not to be real violations (false positives) or unimportant violations in

the process context. A large number of false positives (vs. true positives) can lead to a

more costly approach in practice, because every violation will have to be reevaluated

by the process analyst. In the long run, the mechanisms for detecting violations

should report only a few false positives and identify as many true positives as

possible (i.e. have a high recall).

The fourth research question asks whether the insights generated by R2A can be used

to inform the process enactors of problems and if they can use this information to

improve process conformance (i.e. decrease the number of process violations). This

question will help to understand whether enactors are simply forgetting to execute

steps of the process (and need to be reminded), or whether they intentionally modify

the process, e.g. because they see a need for tailoring it to the environment.

Research Question 4 (R4) – Process Enactment

Improvement

Based on the feedback from the violations do the process

enactors improve their conformance?

 75

While building a rule set the conformance analyst will gain extensive knowledge

about various parameters of the execution of both, the conformance process and the

inspected software process. For example, the analyst will learn about the applicability

of the software process, the kind of violations occurring, the frequency of process

violations, and the kind of methods that successfully detect violations using a specific

set of data sources. A successful approach should be able to capture that knowledge

in a reusable format. For example, in a company performing the approach, a manager

should be able to pick a set of rules for a new project from the collection of rules

investigated in earlier projects. It is also possible to use the process rules as a starting

point in another environment, and begin the tailoring process from there. The fifth

research question aims at the reusability of the tailored rules in either the same

environment (e.g. a different project in the same company) or in a different

environment (e.g. in a different company using the same process).

Research Question 5 (R5) – Rule Transfer

Can a new project in (a) the same or in (b) a different

environment make use of the tailored conformance rules?

 76

Every step of the proposed method may require additional effort from the various

roles involved. For example, the manager has to look over the results of the violation

insights (step 3) and make decisions about how to address these in future. The sixth

research question addresses the cost overhead created through the approach.

Answering this question will help a manager estimate the effort involved in applying

the approach, provide the appropriate resources, and ultimately decide if process

conformance analysis is worth performing.

The six research questions presented here investigate the approach from very

different perspectives. The first three questions address the feasibility and

effectiveness of the approach. Those should be answered positively to give strong

support that the research presented here is a successful way to address the problem of

analyzing process conformance. The fourth question deals with the human aspects of

the research (are developers intentionally not following the process?) and either

outcome will be of value for the body of knowledge. The last two questions

supplement the first three and provide further understanding for the portability and

cost effectiveness of the approach.

5.3 Research Hypothesis

To support the research questions given above, a set of testable research hypothesis

was created. Research questions R1 and R2 were disassembled into hypothesis H1

Research Question 6 (R6) – Overhead Cost

What is the cost of the approach for each of the roles?

 77

and H2. Both hypotheses define a clear quality measure (precision & recall) for

identifying violations. Setting a desired quality threshold for the both of them allows

me to test the hypotheses and to make more precise conclusions about whether R1

and R2 are satisfied. In detail, I will provide additional evidence for feasibility (R1)

and usefulness (R2) by showing that the approach finds a reasonable number of

process violations (H2: recall) and valid process violations (H1: precision).

Research Question R3 is refined into Hypothesis H3 that defines how a rule

improvement can be measured and what characteristics it is supposed to show.

Research Question R4 is refined in Hypothesis H4. The Hypothesis defines more

precisely what an “improvement of process enactment” is by providing measures.

Figure 18: How Research Questions were refined to Hypothesis

 78

The first hypothesis investigates the precision of the approach in order to support its

feasibility by a precise measure. Precision is defined as the ratio of the number of true

violations identified and the number of all identified violations. Setting a sufficiently

high precision threshold provides evidence that the method does not provide the user

(i.e. the conformance analyst) with an unfeasibly high number of false positives (i.e.

identified violations that turn out not to be real violations). Setting the precision

threshold to 50% means that after tailoring of the conformance rules, in worst case,

only half of the violations will be a false positive warning.

A second benefit of explicitly measuring precision will be the possibility of

comparing precision between two or more approaches identifying violations. Based

upon my literature search, I have been unable to identify any research that reports on

a precision measure for process violation detection. This is possibly due to the

novelty of the approach. In this case, this work establishes a first baseline for

precision in identifying process violations.

Hypothesis 1 – Precision of violation detection

For a given measurable process, rules can be tailored to

detect process violations using the proposed methodology

with a precision of greater than 50%?

 79

The second hypothesis emphasizes the recall of the approach. Recall is the measure of

how many violations out of all occurring violations can be identified. Recall will

decrease if the models for detection fail to identify real violations. As exemplified in

Chapter 2.1, the approach is limited to the number of violations it can find by the

amount of measurements that can be taken in reality. However, once the set of

possible measurements and different types of process violations is defined one wants

to detect most violations that can be inferred from that data set. Therefore, the recall

in this hypothesis is meant to be the recall for a specific type of violation that is

defined in the conformance template. A second issue with measuring recall based on

collected data is that the number of all (real) violations cannot always be determined

exactly. In most cases, data sets will be too large and therefore too costly to be

searched for all violations in a manual way. In the following studies, I will limit the

costly investigation of recall in the following way: statistical samples of the data will

be investigated (by the conformance analyst and process enactors) to make a

judgment about all true positive violations (for one specific type of violation) in the

sample. This “ground truth” judgment will then be compared to the automatically

identified violation set. I will estimate the true recall by calculating recall based on

the comparison of the two sample sets.

Hypothesis 2 – Recall of violation detection

For a given measurable process, rules can be tailored to

detect a certain type of process violation using the proposed

methodology with a recall of greater than 50%.

 80

The above described limitation and method of investigating the true recall has been

used in the field of software engineering. For example, whenever defect identification

methods and techniques, such as structural testing and code reviews, are studied (with

respect to the number of defects they can identify) researchers estimate the number of

all defects in the software (e.g. by inserting some defects and using those found

compared to those not found as a basis for estimating the percent of defects actually

left in the system: (Knight and Ammann)). However, in most cases the true number is

unknown.

The third research hypothesis investigates the effectiveness of the four step iterative

model in detail. If the iterative model helps tailor the rule set effectively for an

environment (i.e. a software development project) then the precision metric should

increase over time. Violations should be detected more effectively up to a point where

they are stable, where no more improvement can be made.

Hypothesis 3 – Increasing precision over time

The precision of identifying process violations increases

monotonically over time using the methodology.

 81

Hypothesis 4 states that the number of true positive identified process violations will

decrease once developers are informed about these violations. In other words, I

investigate if feedback on non-conformance will have a positive impact on process

conformance.

5.4 Study Methodology

A set of scientific methods can be used to test the research questions and hypothesis.

Typically, these methods define how studies can be designed to provide evidence and

how data analysis should be conducted. Potential study designs range from pre-

experimental designs, quasi-experimental designs, case studies to controlled

experiments. The study designs differ typically in the amount of artificiality in the

study setting and control one has over the variables of the study. On one end of the

spectrum, pre-experimental, quasi-experimental designs and case studies are usually

conducted in vivo, i.e., during actual practice (e.g. at a company with professionals

doing their normal activities). Randomization is not possible and the design provides

little or no control over the variables. On the other end of the spectrum, controlled

experiments are likely to be conducted in vitro, i.e., in an artificial/laboratory

environments but with a higher degree of control of the variables. Quasi-experimental

Hypothesis 4 – Decreasing the number of Violations

After developers are informed about process violations the

number of violations per analysis period will decrease.

 82

designs are a tradeoff between both ends of the spectrum and introduce some control

of variables in a realistic setting. Data analysis methods include quantitative and

qualitative techniques, which define how to collect and analyze data.

For this thesis I used pre-experimental and quasi-experimental designs, as well as

quantitative and qualitative analysis methods to answer, support (or reject) the

hypothesis and questions. The rational not to conduct controlled experiments is the

following:

One of the main claims of the proposed approach is that it can be applied for a whole

range of software processes as applied in practice. The nature of a controlled

experiment would have required building an experiment “around” a designed process

for the purpose of the study. This would have been subject to the criticism of bias in

the selection of the process, i.e., towards choosing a process that “would work” with

the approach. Further, study subjects would have executed a process for the purpose

of the study only, which would also be subject to the criticism of bias as the subjects

would have been focused on process conformance, rather than just applying the

process to achieve the project goals, i.e., the subjects would have been strongly biased

towards following the process since they would have seen it as their primary goal. In

reality however, process enactors will more likely see the process as a tool to reach

software development goals (e.g. finish a product within time and cost). The change

of developer behavior and the selection of the process would have been a threat to

internal and external validity in a controlled setting. Therefore, I considered a

controlled experiment as not being the appropriate approach. It should be noted that

one of the goals of the approach of doing experiential validation is to provide

 83

feedback on the method so it can be improved with each application. Therefore the

chosen studies are rather exploratory in nature, opposed to being confirmatory.

To test the hypotheses and answer the research questions, I have conducted four

studies. All four studies follow pre-experimental designs or quasi-experimental

designs (as opposed to controlled experiment designs). Some characteristics of the

studies are given below:

The studies were conducted in vivo, that means “in the field under normal

conditions”. In this case the studied method was used to investigate conformance in

realistically sized industrial projects and realistic classroom experiments. I consider

the classroom studies as in vivo because one of the goals is to identify conformance

in controlled experimental settings. The primary purpose of the classroom

experiments was not to investigate process conformance, but to teach and measure the

effectiveness of a programming paradigm (XP programming) in the classroom. The

conformance measurement was “piggy backed onto this study”.

Because of the nature of the studies, e.g., limited numbers of subjects, the unit of

analysis was not the subjects but the rate at which non-conformance violations

occurred. I use scientifically accepted measures and statistics, such as precision and

recall, to provide evidence for and against the earlier presented hypothesis using these

statistics.

The pre-experimental and quasi-experimental study designs can be outlined as

following for the four studies:

 84

5.4.1 Study 1: Feasibility Study: Pre-experimental design

The goal of the first study was to test if it is feasible to identify process violations

through the inspection of implicitly collected data (i.e. existing data). To do so, one

industrial project was selected and a subset of the proposed steps was applied (steps

1, 2, and 3). The design can be described roughly as a “one shot case study”. The

scientific value of such a study might be low, due to the absence of control. However,

it was used to evaluate if it was sensible to continue this stream of research. The

analysis methods used in this study were of a quantitative nature since it was

conducted a posteriori (after the fact) and developers were not available for further

qualitative analysis.

5.4.2 Studies 2 and 4 (Classroom I and II): Multiple Group

Equivalent Time Samples Designs

The design of the two classroom studies can be best described as a Multiple Group

Equivalent Time Samples Design. This is a quasi—experimental design. In each

study I observed two groups performing XP development. After each development

day (equivalent time samples) conformance analysis was done and a report of

violations was presented to the developers. Analysis methods included both,

quantitative and qualitative methods (e.g. questionnaires), to provide insight into how

often and why developers strayed from the XP processes.

 85

5.4.3 Study 3 (Long term study): Multiple Group Time Series

Designs

The long term case study was conducted with professional developers. Several

projects (multiple groups) and processes were investigated for violations. This is a

quasi—experimental design. Reports of the violations were presented to the

developers at different times depending on the project and process (therefore the time

samples are not equivalent). Analysis methods consisted of a mix of quantitative and

qualitative (i.e. interviews and questionnaires) analysis.

Multiple Group Equivalent Time Samples Design:

R OA1 XA1 OA2 XA2 OA3 XA3 OA4 XA4 OA5 (XP Team A)

R OB1 XB1 OB2 XB2 OB3 XB3 OB4 XB4 OB5 (XP Team B)

Multiple groups (XP teams A and B) are shown in two lines.

Oji denotes an observation in the experiment (i.e. detection of

conformance violations during one development iteration)

Xji denotes a treatment or intervention (in this case conformance

violations were reported to developers or the manager)

R denotes randomization: students were assigned randomly to the

two development groups

 86

5.5 Contribution of Proposed Work

The proposed work contributes in several ways to the scientific body of knowledge.

There are four main contributions given below:

Contribution 1: A step by step approach to define, detect, and investigate process

violations as a measure of process non-conformance issues is presented. This

approach uses a combination of techniques, such as interviews, information

visualization and data mining.

Contribution 2: The work investigates whether identifying process violations is of

value, i.e., if it offers some insights into how developers perceive violations (e.g. if

developers are aware of them), and how managers can use them to earlier detect

problems in a project.

Multiple Group Time Series Design:

OA1 OA2 OA3 XA1 OA4 OA5 OA6 (Project A)

OB1 OB2 OB3 OB4 XB2 OB5 OB6 (Project B)

Oji denotes an observation in the experiment (i.e. detection of

conformance violations during one development iteration)

Xji denotes a treatment or intervention (in this case conformance

violations were reported to developers or the manager)

 87

Contribution 3: The work gives insight into (1) the kind of violations that actually

appear in the set of software development processes investigated in the studies and

(2) how well developers can follow a specific process in the given environment. At

this point in time, the following processes have been investigated (see also Chapter

6):

1. Adherence to a design and development plan (Waterfall/professional)

2. Adherence to a Test and Review process (Waterfall/professional)

3. Test Driven Development (XP/classroom)

4. Continuous Refactoring (XP/classroom)

5. Pair Switching (XP/classroom)

6. Collaborative test case development (Agile/professional)

7. Adherence to architecture conformance (Agile/professional)

8. Continuous Refactoring (Agile/professional)

9. Adherence to communication processes in distributed development

(XP/classroom)

Contribution 4: Last, the work will result in a reusable set of process templates and

detection algorithms that can be used as a basis for other projects and studies.

 88

6 The Four Studies

To validate the different research hypotheses a series of four studies has been

conducted in classroom and professional environments. I will refer to the studies the

following way:

Study FEASIBILITY: pre-experimental feasibility study applied on data from a large

scale project with professionals

Study CROOM1: the first classroom study following a quasi-experimental design

investigating XP practices

Study CROOM2: the second classroom study following a quasi-experimental design

investigating distributed XP practice.

Study PROF: the long term study with professionals in a realistic company setting

As described in the previous chapter, the studies follow different experimental

designs.

 89

6.1 Overview of Studies

A chronological overview of studies is given in Figure 19. Three of the four studies

have been completed. The study with professionals (PROF) is an ongoing effort at a

customer of the Fraunhofer Center Maryland. This study will continue to run even

after completion of this thesis. The studies build evidence for different sets of

hypotheses; later studies investigate the more complicated ones. A comparison of key

facts about the studies is listed in Table 3.

Figure 19: Plan of Studies Chronological Overview

 90

Study FAESIBILITY PROF CROOM1 CROOM2
Date of Study March 2008 Sept 2009 – Dec

2010
May 2009 (5
development
days)

May 2010 (5
development
days)

Publications ESEM 2009:
Technical Paper
(Acceptance
Rate: 40%)
(Zazworka,
Basili and Shull,
Tool Supported
Detection and
Judgement of
Nonconformance
in Process
Execution)

ESEM 2010:
Technical Paper
(Acceptance
Rate: 29%)
(Schumacher,
Zazworka and
Shull)

ESEM 2010:
Technical Paper
(Acceptance
Rate: 29%)
Best Paper
Award
(Zazworka,
Stapel and
Knauss)

Environment Large Company
in Aerospace
Domain

Mid Sized Web
Development
Company in
Washington D.C.

XP Course 2009
at University of
Hanover

XP Course 2010
at University of
Hanover

Number of
investigated
processes

2 3 3 4

Project Size 1 large project:
83kLOC

2 medium
projects:
each 15kLOC

2 small projects:
each 2.3kLOC

2 small
projects: each
5.2kLOC

Developers 7 4 14 15

Project
Duration

3 years 1-2 years 3 months (XP
course):
4 development
days

3 months (XP
course):
5 development
days

Main
Characteristics

• A posteriori
analysis

• Feasibility
study

• Limited
execution of
steps

• Long term
study

• Mid-size web
development
projects

• Developer
interaction

• Integrated
into CMMI
and Agile
Lifecycle

• Classroom
study

• Empirical
investigation
of XP
practices

• Timely
reports of
non-
conformance
each
development
day

• Similar to
CS1 but
with one
distributed
team

• One new
distributed
practice

Table 3: Study Characteristics

 91

Chapter 6 is arranged the following way: firstly, in Section 6.2 I will give some

background on the processes that were applied by the subjects, i.e. the process

enactors. Afterwards, I will present in four subsections (Sections 6.3 - 6.6) the study

environments, study designs, conformance rules, and finally the data that was

collected in each of the four studies. The next chapter (Chapter 7) will describe how

the data answers the research questions and hypotheses.

6.2 Investigated Processes

A variety of software processes and practices were investigated in the studies, ranging

from formally defined ones to practices that are given in natural language. Table 4

summarizes the processes and studies. Some processes, e.g. Completion Process,

were investigated in only one study. For other processes, e.g. Continuous Refactoring,

more data could be collected through application in multiple studies and study

environments.

 92

6.3 FEASIBILITY: Feasibility Study

The initial feasibility study was performed on data captured during a software

development project from an industrial software application in the aerospace domain.

On the one hand, the study demonstrates that there is a sufficient amount of non-

conformance in the execution of processes in real world examples. On the other hand,

it shows that the approach is applicable and powerful enough to uncover real process

Process Short Name Process Aim FEA
S
I-

B
ILITY

PR
O

F

C
R

O
O

M

1 C
R

O
O

M

2

Adherence to a
development
plan in
waterfall
development

Completion
Process
(ComP)

Project
progress
traceability

X

Adherence to a
test and review
plan

Correctness
Process (CorP)

 X

Continuous
Refactoring

Continuous
Refactoring
(CR)

Avoidance of
degrading code
design

 X X X

Pair Switching Pair Switching
(PS)

Improved
collective code
ownership

 X X

Test Driven
Development

TDD Improve
Program
Correctness

 X X

Collective Test
Case
Development

CTCD Developer
training and
improved
program
correctness

 X

Architecture
Conformance

AC Improved
maintainability

 X

Communication
Practice:
Broadcast of
Story Card and
Name

Communication
Practice

Communication,
increased
productivity,
shared
knowledge

 X

Table 4: Summary of Processes and Studies

 93

violations in such projects. However, since the process violation detection was

performed after the project’s lifetime it was not possible to influence the process

executions, such as changing processes (step four of the approach) and reevaluating

the impact of the changes (iterative characteristic of the approach).

6.3.1 Study Environment

The development time of the target application was two years and split into four

phases. Seven programmers worked on developing the software following the

waterfall model and were required to deliver a running and tested version at the end

of each phase. The final size of the application was about 83,000 lines of code

distributed over nearly 2000 components (i.e. Java classes). The following analysis

focuses on the first two phases (version 1 and 2) of the project.

Process	

Name	

Correctness	
 Process	

Process	

Focus	

Process	
 improves	
 correctness	
 on	
 unit	
 /	
 class	
 level.	

Process	

Description	

	

Collected	

Data	

Automatically	
 (existing):	

• Code	
 repository	
 	

Manually:	

• End	
 of	
 unit	
 testing	
 	

• End	
 of	
 code	
 review	

Process	

Violations	

Temporal:	
 	

V1:	
 Modifications	
 to	
 components	
 after	
 finished	
 testing	
 and	
 review	

date,	
 detected	
 by	
 using	
 change	
 data	
 from	
 repository	
 and	
 reported	

finish	
 dates.	

Qualitative:	
 	

none	

Table 5: Process Conformance Rule for Correctness Process

 94

6.3.2 Step 1: Conformance Rules

Two processes were inspected that were planned to track the project’s progress

(Completion Process) and to increase correctness of the code (Correctness Process).

The Completion Process defined a time frame for each component that described the

start time and end time of development. The process definition was given in form of a

list (i.e. an Excel spreadsheet). The Correctness Process included a plan for testing

(i.e. unit testing) and code review activities for each component at the end of the

component’s development time.

Automatically collected data was gathered through the version control system (i.e.

CVS). Programmers had to fill in weekly information about when code review and

testing activities (including bug fixing) were completed. Both of these mechanisms

were part of the normal work environment at this organization.

Conformance rules for both processes were created. Table 5 shows the conformance

rule for the Correctness Process. Table 6 md graddoes the same for the Completion

Process.

 95

6.3.3 Step 2: Process Violation Detection

The algorithms implementing the violation detection for these process violations were

implemented into CodeVizard. For demonstration, the number of detected violations

for both processes is plotted in Figure 20 and Figure 21.

Process	
 Name	
 Completion	
 Process	
 	
 	

Process	
 Focus	
 Process	
 improves	
 traceability	
 and	
 predictability	
 of	
 project	
 progress.	
 	
 	

Process	

Description	

Each	
 developed	
 component,	
 given	
 by	
 its	
 expected	
 java	
 class	
 name,	
 should	

be	
 developed	
 between	
 its	
 start	
 coding	
 and	
 end	
 coding	
 date.	
 A	
 list	
 (Excel	

spreadsheet)	
 defines	
 these	
 dates.	

	
 	

Collected	
 Data	
 Automatically	
 (implicitly):	

• Code	
 repository	
 	

Excel	
 spreadsheet	
 defining	
 start	
 and	
 end	
 coding	
 dates	

	
 	

Process	

Violations	

Temporal:	

Various	
 items	
 can	
 be	
 detected.	
 At	
 a	
 specific	
 time	
 t	
 each	
 class	
 from	
 the	

plan	
 is	
 in	
 one	
 of	
 the	
 three	
 states:	

• before	
 start	
 of	
 coding	
 	

• in	
 coding	
 (after	
 start	
 of	
 coding,	
 before	
 end	
 of	
 coding)	

• after	
 end	
 of	
 coding	
 	

Further	
 each	
 component	
 in	
 the	
 repository	
 can	
 be	
 assigned	
 one	
 of	
 the	
 two	

states:	

• existent	
 in	
 the	
 repository	
 	

• nonexistent	
 in	
 the	
 repository	
 	

Process	
 violations	
 are	
 the	
 following	
 combinations:	

V1:	
 	

{before	
 start,	
 existent}:	
 a	
 class	
 that	
 is	
 too	
 early	
 in	
 the	
 repository	
 	

V2:	
 	

{in	
 coding,	
 nonexistent}:	
 a	
 class	
 that	
 should	
 be	
 in	
 coding	
 	
 phase	

but	
 cannot	
 be	
 found	
 in	
 the	
 repository:	
 slightly	
 delayed	

V3:	
 	

{after	
 end,	
 nonexistent}:	
 a	
 class	
 that	
 should	
 be	
 finished	
 with	

coding	
 and	
 cannot	
 be	
 found	
 in	
 the	
 repository:	
 delayed	

V4:	
 	

{undefined,	
 existent}:	
 a	
 class	
 in	
 the	
 repository	
 that	
 cannot	
 be	

found	
 in	
 the	
 plan:	
 unexpected	

Semantic:	
 	

none	

	
 	

Table 6: Process Conformance Rule for Correctness Process

 96

Figure 20: Detected Violations for Completion Process

0
200
400
600
800

1000
1200
1400
1600
1800
2000

13
-J

un

13
-J

ul

13
-A

ug

13
-S

ep

13
-O

ct

13
-N

ov

13
-D

ec

13
-J

an

13
-F

eb

N
um

be
r o

f c
om

po
ne

nt
s

unexpected early
on time (not yet developed) slightly delayed
delayed on time (developed)

 97

Both graphs show an increasing number of process violations over time during the

first months of development. In the case of Completion Process (Figure 20) the

number of delayed classes (violation V3) increases from the beginning on. Further,

the amount of unexpected classes (i.e. classes not defined in the plan: violation V4) is

very high. At any time, the repository contains more unexpected classes than actually

planned and developed classes. The number of classes being developed too early is

high in the beginning and then decreases; this is logical since these classes fall into

the "on time" category once their planned start date is reached.

As for the Correctness Process (Figure 21), the number of modified components after

testing/review increases steadily from September. In the end of the plotted time

period, 50 classes are marked to have been modified after the testing phase.

Figure 21: Detected Violations for Correctness Process

0

50

100

150

200

250

300

350

10
-J

ul

17
-J

ul

24
-J

ul

31
-J

ul

7-
A

ug

14
-A

ug

21
-A

ug

28
-A

ug

4-
S

ep

11
-S

ep

18
-S

ep

25
-S

ep

2-
O

ct

9-
O

ct

16
-O

ct

23
-O

ct

30
-O

ct

6-
N

ov

13
-N

ov

20
-N

ov

27
-N

ov

Changed	
 aMer	
 test/review	

Not	
 changed	
 aMer	
 test/review	

N
um

be
r o

f c
om

po
ne

nt
s

 98

To provide better insight into the severity of the detected items it is necessary to

investigate the data closer. This is done on a recurring basis, e.g. once a week. As

example for this work, I have selected two fixed dates for demonstration, as shown in

the next subsection.

6.3.4 Step 3: Gathering Additional Information

To get a better understanding about the large number of violations in this project,

CodeVizard was used to inspect the violations in detail. In particular, I used

CodeVizard’s System View to gain insight into when and where violations occurred.

My initial hypothesis, by looking at Figure 20, was that the developers were falling

more and more behind plan (based on the increase in the number of delayed

components) and that the high number of unexpected files can be explained by the

import of external libraries that were not defined in the plan.

However, the visual analysis of the four categories through CodeVizard showed that

all the process violations were distributed uniformly over the number of developers

and the parts (i.e. Java packages and classes) of the software system. Further,

components marked as unexpected were modified heavily and could be found in

almost any of the packages. An example package is visualized in Figure 22. It shows

two sudden increases (September and October) of unexpected components developed

by two programmers.

 99

At this time I was able to interview a project participant with our results. The

participant explained that the static design of the application (developed in the design

phase down to class level) was changed by the programmers during the development.

In many cases, bigger classes were broken down into multiple smaller classes. This

can explain the amount of delayed classes (big classes) and unexpected classes

(smaller classes). The developers did not report those modifications, because the

process did not implement this step. Hence, the components in the project plan were

never updated with this information.

One might now ask which risks this divergence between the project plan and the

actual development implies for the process goal. Remembering the focus of the

Figure 22: One package (LOGIC) with 30 java source files. The yellow (light
grey) and green (dark grey) authors mainly worked on these files. Each
circle represents one commit to the repository. A black triangle indicates

that the component is unexpected (not defined in the project plan). A white
triangle shows that the component is too early in the repository.

 100

process (traceability and predictability of project progress), one can argue that the

plan can no longer provide a precise trace and prediction of the projects progress,

because it differs significantly from the system developed in reality.

A second question a project manager would certainly be interested in is: will my

project be delayed? This question cannot be answered directly. The developers claim

to have implemented the necessary functionality into the split classes of the system.

The project plan however, is not defined in terms of functionality – it is therefore

impossible to check if the functionality in the unexpected classes sums up to the

functionalities in the delayed classes.

It is worthwhile mentioning that, in reality, the first phase of the project was delayed

by two weeks.

For the second process (Correctness Process), Figure 21 indicates that the number

of components modified after testing/review increases significantly around October

8th. For each of the 24 violating source components, CodeVizard can be used to gain

more detailed insights. To demonstrate, I used CodeVizard’s CodeView (see Section

4.6.2) to distinguish six kinds of changes. I assigned two different severity levels

based on the impact the change can have on program correctness (see also Table 7):

• changing documentation (d): low severity (updating code documentation does

not require one to update and rerun any test cases)

• code formatting, e.g. changing code indent, deleting blank lines (no

syntactical change) (cf) - low severity

• code rewriting (syntax change, but no semantic change) (cr) - low severity

• add/delete of debugging (e.g. system.out.print) statements (so) - low severity

 101

• semantic code changes (sc) - high severity

• addition of new functionality (af) - high severity

• deletion of functionality (df) - high severity

The last three categories pose a threat to correctness since these kinds of changes

require retesting and re-reviewing the component. After identifying violations with a

high severity, the manager might be interested in the reasons for these late

modifications. Therefore, the analysis keeps track of the names of the programmers

performing the changes to guide interview sessions.

In cases where a complete manual inspection of all affected files is too costly, the

analyst might either want to draw a random sample from the set of affected

components in order to estimate the total number of high risk items, or first focus on

the ones that promise to pose a high risk. In later case, the relative code churn

measured after the testing/review date can be a helpful guide to these components.

Code churn (Nagappan and Ball) is a measure that describes how much of a

component’s code was changed over time. Table 7 shows an excerpt of the risk

judgment for October 8th.

 102

The analysis showed that more than half of the process violations included dangerous

changes. The risk that the correctness process will not achieve its optimal

performance is certainly elevated by these items.

6.3.5 Step 4: Process / Rule Improvement

Since the investigated project was not observed at development time (but a-posteriori)

I did not have the chance to further investigate the research questions and hypotheses

that require giving advice directly to the manager and process enactors. However, if I

would have the chance then I would advise them to tailor the Completion Process to

account for design changes during the development time of the project. Further, I

Component d c
f

cr so sc af df Churn
(%)

Comp_a + + + + + 30

Comp_b + + + + + + 698

Comp_c + 4

Comp_d + + 2

Comp_e + 2

Comp_f + + + 12

Comp_g + + + 3

Comp_h + + 35

Table 7: Gathering additional insights for a random selection of process
violations. For each component the types of changes are listed (“+”

meaning the type is present). Five components (a,b,f,g,h) include change
types with high severity. The churn measure shows how many lines of code
were changed relative to the test/review date, e.g. 50% means that half of

the lines were changed.

 103

would advise them to retest and review the detected and analyzed classes that pose a

risk to correctness in later states of the development phase.

As for rule improvements, one may think of further optimizing the detection

algorithms for the correctness process: the detection algorithm could eliminate more

false positives by automatically checking for the type of changes in some cases

(documentation changes (d), code formatting changes (cf), and debugging changes

(so)).

6.3.6 Investigated Research Questions and Conclusion

In light of the research questions given earlier, the first study showed that the step by

step approach was able to define violations for two processes and that tools could be

built to extract violations from the collected data. This is evidence for the first

research question: “Can the approach be used to find process violations using

minimal intrusive methods?” Further, the study showed how assessment and

investigation can be performed by using visualization techniques and interviewing

developers. The found violations were classified as risk for the project’s success and

therefore evidence that: “The found process violations give useful insights and match

the perceived conformance of the developer.” (Research Question 2)

6.4 CROOM1: First Classroom Study

The second study took place in a classroom environment and followed a quasi-

experimental design. More specifically, it followed a two group - four equivalent time

samples design. The two groups were formed by students learning new software

development practices as part of their studies at the University of Hannover in

 104

Germany. The four equivalent time samples correspond to the four development

iterations. The iterations took one day each. After each of the iterations, conformance

analysis was performed and feedback was given to the process managers and

students.

The first study mainly served as feasibility study to provide evidence for research

questions one and two, whereas the second study investigates the full range of

research questions presented in Chapter 5, except for Research Question 5 (rule

transfer).

To address the research questions I chose to investigate three popular XP practices in

a classroom setting:

1. Test Driven Development (TDD)

2. Continuous Refactoring (CR)

3. Pair Switching (PS)

Research Question 2 (useful agreed upon insights) was tested by a comparison of the

perceived conformance (of the students) versus the measured one. For Research

Question 3 (rule improvement) I show how detection is tailored towards the

classroom environment. Lastly, Research Question 4 was evaluated using one

instance where developers were actively advised to improve conformance to a

practice during project runtime. Data for Research Question 6 (cost of the approach)

is presented in a later chapter (Chapter 7.1.7).

 105

6.4.1 Study Design

The study took place as part of an XP class taught at the Leibniz Universität

Hannover, Germany (LUH). Conformance analysis was performed remotely at the

University of Maryland, USA (UMD). In the first theoretical part of the course

student developers received lectures about agile development and XP basics. All but

one of the XP practices were taught in this lecture on a theoretical level. The XP

practice Test Driven Development was taught separately in a practical exercise. The

second part of the course was a five day (eight hours per day) development project

where the developers worked on building a software product in an - as close as

possible - industrial environment. On the first day, the two customers introduced their

visions, an initial technical spike was conducted, and the XP specific story cards were

created. The following 4 days were development iterations, each with a duration of

one day. The 14 developers, 11 graduate students and 3 undergraduate students, were

randomly split into two groups with seven developers each. Both groups developed a

different product; in the following I will refer to them as team Zeit and team KlaRa in

accordance with the names of the two products. The implementation language was

Java. The course was not the first of its kind. It was already in its 5th iteration. More

details about the course design can be found in (Stapel, Lübke and Knauss).

 106

Process	
 Name	
 Test	
 Driven	
 Development	

Process	
 Focus	
 Improved	
 correctness.	

Process	
 Definition	
 For	
 each	
 component	
 (i.e.	
 Java	
 class)	
 developers	
 are	
 supposed	

to	
 create	
 a	
 JUnit	
 test	
 class	
 (collection	
 of	
 test	
 cases)	
 prior	
 to	
 the	

development	
 of	
 the	
 component.	
 	
 	

Collected	
 Data	
 Subversion	
 code	
 history.	
 Developers	
 are	
 advised	
 to	
 use	
 the	

following	
 file	
 naming	
 scheme	
 for	
 implementation	
 and	
 test	

classes:	

Implementation	
 class:	
 	

SomeName.java
Test	
 class:	
 	

SomeNameTest.java
Process	
 Violations	
 Temporal:	

(1)	
 Implementation	
 classes	
 (but	
 not	
 interface	
 classes)	
 without	

test	
 classes.	
 Violation	
 detection:	
 Implementation	
 class	
 is	

checked	
 into	
 the	
 Subversion	
 repository	
 before	
 its	
 according	

test	
 class.	

	

Qualitative:	

(1)	
 The	
 line	
 coverage	
 of	
 the	
 test	
 cases	
 is	
 below	
 70%	

(2)	
 The	
 branch	
 coverage	
 of	
 the	
 test	
 cases	
 is	
 below	
 70%	

Table 8: Process Conformance Rule for Test-Driven Development

Process	
 Name	
 Continuous	
 Refactoring	

Process	
 Focus	
 	
 Improved	
 maintainability	
 (extendibility).	

Process	
 Description	
 Refactoring	
 activities	
 should	
 be	
 a	
 continuous	
 part	
 of	
 code	

development.	

Collected	
 Data	
 • Manually:	
 SVN	
 commit	
 template	
 includes	
 change	
 type	

(e.g.	
 refactoring)	

• Implicitly:	
 SVN	
 data	
 provides	
 us	
 with	
 information	
 about	

changes	
 of	
 architecture.	
 Further	
 Code	
 Metrics	
 /Code	

Smells	
 can	
 provide	
 insight	
 into	
 decay	
 of	
 code.	
 	

Process	
 Violations	
 Temporal:	

(1)	
 No	
 refactoring	
 activities	
 in	
 the	
 commit	
 template	
 at	
 all	

(during	
 whole	
 project)	

(2)	
 Large	
 refactoring	
 only	
 in	
 a	
 single	
 stage	
 (e.g.	
 at	
 the	
 end	
 of	

the	
 project)	

Qualitative:	

(3)	
 Increasing	
 amount	
 of	
 code	
 smells	

Table 9: Process Conformance Rule for Continuous Refactoring

 107

Before the start of the programming project the researcher teams from LUH and

UMD agreed to investigate the conformance of the three XP practices. Each of the

three practices was translated into a process conformance template (Tables 8 to 10).

Further, they agreed on the type of data to collect. Automatically and existing data

was derived from the Subversion code repository that the subjects used to coordinate

their work.

Process	
 Name	
 Pair	
 Switching	

Process	
 Focus	
 Code	
 is	
 collectively	
 owned,	
 high	
 Truck	
 Factor	

Process	
 Description	
 Pair	
 Switching:	
 subjects	
 are	
 supposed	
 to	
 switch	
 their	
 pair	

programming	
 partner	
 with	
 each	
 new	
 story	
 card	
 and	
 between	

iterations.	

Collected	
 Data	
 Manually:	
 SVN	
 commit	
 template	
 include	
 name	
 of	
 programmers	

and	
 story	
 card	
 number	

Process	
 Violations	
 Temporal:	

(1)	
 The	
 same	
 developer	
 pair	
 working	
 together	
 on	
 two	

consecutive	
 story	
 cards	
 	

(2)	
 The	
 same	
 developer	
 pair	
 working	
 together	
 on	
 two	

consecutive	
 iterations	

Qualitative:	

(1)	
 The	
 projects	
 Truck	
 Factor	
 is	
 low	

Table 10: Process Conformance Rule for Pair Switching

Figure 23: Subversion Commit Template for Manual Data Collection

 108

Additionally, a small amount of manually collected data was captured. The

researchers provided the developers with a special Subversion commit template10 that

had to be filled in every time developers committed new code to the repository. As

shown in Figure 23 the following manually collected data was provided by the

developers:

• The names of the two programmers in a pair

• The story card id that was implemented or changed by the commit

• The type(s) of change(s) from the set: {new feature, enhancement, refactoring,

bug-fix, test-fix, other}

After each iteration of the XP project, the researchers at UMD created a report with

the results of steps two and three of the presented approach (Figure 10). The report

was sent to the researchers on site before the start of the next iteration. There is a time

shift of 6 hours between UMD and LUH. The researchers specifically planned to use

this time to create the report and thus benefit from the global distribution of the two

sites. From the German perspective, analysis was done overnight.

The report included quantitative analysis describing how many violations occurred

(Figure 10: step 2), as well as visualizations to give better insight into which

components are affected (e.g. Java classes not being developed according to the Test

Driven Development practice) and/or which developer violated the practice (e.g. for

Pair Switching). Further, the report included descriptions of how the violation

10 Subversion provides the developer with a text field every time new code is uploaded. Usually this commit

message is used to describe the changes made to the code base.

 109

detection rules were tailored over time (Figure 10: step 4). Optimizing the rules of the

templates was done by a manual in depth analysis of false negatives and false

positives. A typical example of a false positive was the Java Interface classes that

were wrongly marked as violations in the first version of the Test Driven

Development template.

It was up to the researchers at LUH how to use the reports to intervene with the

ongoing projects. They discussed the violations that were found in the Test Driven

Development practice with the subject groups before the third iteration and advised

them to better adhere to the practice.

After the last iteration the developers received an end-of-study questionnaire that

asked how well they followed the different XP practices. To increase the chance of

receiving the most honest answers developers neither had to provide their name nor

the project they were working on.

6.4.2 Study Results

The following paragraphs summarize the data that was collected during the study, the

violations that were found, and the self reported data the developers provided through

the end-of-study questionnaire.

 110

Test Driven Development (TDD)

Table 11 shows the results for the two groups (Zeit and KlaRa). The conformance

level (in the Table abbreviated with “Conf. Level”) for TDD was calculated as

follows: for each of the four iterations the newly developed Java classes (in Table

“New Classes”) were considered, and it was checked whether unit test classes were

created according to the practice. The conformance level then describes in how many

cases the developers followed the test first practice. As example, if no process

violations could be identified the conformance level would be 100%, if violations can

be found in half of the cases the level would be 50%, and so on.

The data shows that the developers of project Zeit followed the practice in only

27.3% of the cases in the first iteration and scored even lower (14.3%) in the second

iteration. The developers were made aware of their rather poor performance at the

beginning of the third iteration, in a stand up meeting, and improved their

conformance to 60% after iteration three, and to 66% after the fourth and last

 Zeit KlaRa
Iteration New

Classes
Test
First
Follo
w.

Conf.
Level
(%)

New
Classes

Test
First
Follo
w.

Conf.
Level
(%)

1 11 3 27.3 9 5 55.6

2 7 1 14.3 4 3 75.0

3 5 3 60.0 2 1 50.0

4 3 2 66.7 6 5 83.3

Totals 26 9 34.6 21 14 66.7

Combined Conf. Level (%) 48.9
Table 11: Test-Driven Development Results

 111

iteration. The KlaRa team shows better and more stable conformance levels. They

scored between 50% (iteration 3) and 83% (iteration 4) conformance level.

The combined level of both teams is calculated by the total number of classes

developed divided by the ones developed according to TDD. The combined level of

48.9% indicates that study subjects followed the practice on average in about half of

the cases.

The end-of-study questionnaire data shows a similar result. The developers were

asked how often they wrote a test case before the implementation. Subjects could

answer on a scale from “Never”, “Sometimes”, “Most of the time”, and “Always”.

Table 12 shows the results. No subject said the practice was followed all the time, and

only 29% of all developers said that they followed it most of the time. The majority

said they followed it sometimes (57%) or never (14%).

How often did you write

the test case before the

implementation?

Instances Percentage

Never 2 14%

Sometimes 8 57%

Most of the time 4 29%

Always 0 0%

Table 12: Questionnaire Answers for Test-Driven
Development

 112

Continuous Refactoring

The second practice under investigation was Continuous Refactoring. In comparison

to the other investigated practices, the process violations were formulated rather

weakly (see Table 9). The reason for this was that no good description could be found

that describes how much or with what frequency refactoring should be done

according to the XP practice. Developers are asked to refactor code whenever they

feel it is necessary to adapt the design to new requirements or to improve

maintainability. Therefore, I measured the number of times the developer teams

indicated in the Subversion template that they refactored. The objective was to find

out if subjects refactor at all and if there were differences in the amount of

refactorings between the two groups.

The data in Table 13 shows that developers reported to have performed refactoring

activities at a constant frequency. Both projects show about the same refactoring

ratio: 19% (Zeit) and 24% (KlaRa) of all changes included the desired activity. Only

 Zeit KlaRa

Iterat. Changes Refac. Ratio Changes Refac. Ratio

1 11 4 36% 4 1 25%

2 7 2 29% 8 0 0%

3 4 0 0% 9 5 56%

4 15 1 7% 8 1 13%

Totals 37 7 19% 29 7 24%

Table 13: Continuous Refactoring Results

 113

two iterations did not include any refactoring activities (iteration three for team Zeit,

and iteration two for team KlaRa). Therefore, violations of the practice as defined in

the process conformance rule (Table 9) could not be detected. Even if the presented

analysis could not find any violations, it helps to build a stronger baseline: the

refactoring ratios from this study can be used to detect violations when used as

thresholds in a future study.

Further, the self-reported data can help give the numbers more meaning. From the

post-study questionnaire (Table 14) one can see that seven developers said that they

either “never” refactored or that they refactored only “one time”. The other seven

subjects indicated to have done refactorings “few times” or ”with every new story

card”. The answers indicate that the practice was not followed by all developers (at

least three subjects did not refactor as often as the practice recommends); therefore

the computed refactoring ratios of 19% and 24% might still be below an optimal,

desired ratio.

How often did you

refactor?

Instances Percentage

Never 3 21%

One time 4 29%

Few times 6 43%

With every new story card 1 7%

Table 14: Questionnaire Results for Continuous
Refactoring

 114

Pair Switching and Collective Code Ownership

The third XP practice under investigation was Pair Switching and Collective Code

Ownership. The goal of Collective Code Ownership is to ensure that all developers

collectively own the code to be able to make changes and that a loss of a small set of

programmers does not lead to project failure. The practice is not defined as a set of

activities that have to be followed; it rather is a goal, i.e. a desirable state, which is

reached through two other XP practices: Pair Programming and Pair Switching

(particularly switching pairs regularly during iterations).

To detect non-conformance in Collective Code Ownership two measures were

investigated:

1. Temporal: Adherence to the activities defined by Pair Switching.

2. Qualitative: Assessment of the project’s truck factor

As for Pair Switching, I note that the study conductors required that programming

pairs were reshuffled at the beginning of each development day (i.e. each iteration).

That means that the process managers partly enforced the Pair Switching practice.

Figure 24: Pair Switching for Team KlaRa

 115

Pair Switching showed a significant amount of violations. Figure 24 visualizes the

pairs working together on story cards for each of the four iterations in project KlaRa.

A paired point in the figure represents a programmer pair working on one new story

card. The points are ordered along the x-axis by time and day. Points with a cross

mark indicate that the same pair worked on more than one story card consecutively

(i.e. a violation against the process definition). From the second iteration on,

violations indicate that developers did not switch their teammates as they were

supposed to, between two story cards. During the second, third and fourth iteration

they generated nine violations against the practice. For example, SubjectK2 and

SubjectK3 worked on two story cards in a row during the second iteration, and so did

SubjectK4 and SubjectK6 during the same iteration. The graph for KlaRa further

shows that the pairs never change during an iteration (i.e. one development day): the

subjects only switched their partners at the beginning of each day (which was

enforced by the study conductors).

For project Zeit (Figure 25) the Pair Switching was followed the first three iterations

without violations. Developers switched with every new story card. Only during the

Figure 25: Pair Switching for Team Zeit

 116

last iteration, where they worked on a larger amount of story cards, five violations

against the practice could be detected.

Again, the reported conformance from the questionnaire shows a similar result as

before (Table 15). Only one developer agreed to have followed the practice all the

time (this is also true for the data in Figure 24 and Figure 25: SubjectZ7 is the only

one without violations).

The Truck Factor Analysis gives insight into how well the code is collectively

owned at the end of the projects. For this I defined (to my knowledge for the first

time) an analysis technique that builds upon the data collected through the code

repository to assess the Truck Factor. The definition and an example of the Truck

Factor Metric are given in the Appendix 9.1 . As pointed out in earlier chapters one

might not always have a clear understanding as to what the expected measures should

look like in such cases (i.e. which truck factor measure the practice should produce

when followed). Therefore, the data was analyzed with two objectives. The first

How often did you

switch pairs according

to the pair switching

practice?

Instances Percentage

Never 1 7%

Sometimes 3 21%

Often 9 65%

Always 1 7%

Table 15: Questionnaire Results for Pair Switching

 117

objective was to compare the two projects to see if their truck factors differ. The

second objective was to compare the numbers to three non-XP projects that do not

specifically focus on introducing processes to improve Collective Code Ownership.

Figure 26 shows the according truck factor characteristics for both XP projects. The

worst case (i.e. Min), average case, and best case (i.e. Max) scenarios for Zeit and

KlaRa are plotted. The graph shows that Zeit has better worst case performance than

KlaRa: assuming a required code coverage of 80% Zeit can lose four out of seven

programmers, where KlaRa can only lose three developers. The average case

performance is almost equal with a slight advantage for Zeit. Figure 26 also shows

the impact of pair programming: the loss of one programmer can always be covered

by the programmers she/he worked with in a pair. The code coverage for a truck

number of one is in both projects 100% (in worst, average, and best case).

Figure 26: Truck Factor Characteristics for both Projects

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	

Re
m
ai
ni
ng
	
 c
od

e	

co
ve
ra
ge
	
 (%

)	

Number	
 of	
 missing	
 developers	

Zeit	
 Min	
 Zeit	
 Avg	
 Zeit	
 Max	

KlaRa	
 Min	
 KlaRa	
 Avg	
 KlaRa	
 Max	

 118

The second question is how these graphs compare to conventional non-XP projects.

The motivation for this analysis was the theory that if the goal of the XP practice is

reached the collective ownership should be improved compared to projects not

performing such processes. Our non-XP candidates were a large scale 2 year

development project using the Waterfall lifecycle (i.e. from study FEASIBILITY) that

I am describing in more detail in (Zazworka, Basili and Shull, Tool Supported

Detection and Judgement of Nonconformance in Process Execution), and the

development of two research tools developed at the two participating universities:

CodeVizard and HeRa (a requirements editor mostly developed by one programmer).

Figure 27 shows the worst case scenario for all five projects and provides the first

evidence that the three non-XP projects have significant lower (i.e. worse) truck

factors: the loss of two developers leads in all three non-XP projects to a loss of at

least 40% (and up to 85%) of code knowledge, whereas the XP projects would still

preserve 85% (KlaRa) and 92% (Zeit) of knowledge.

Figure 27: Worst Case Truck Factor for 5 Projects

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 Re
m
ai
ni
ng
	
 c
od

e	

co
ve
ra
ge
	
 M

in
	
 (%

)	

Number	
 of	
 missing	
 developers	

Zeit	
 KlaRa	
 Waterfall	
 CodeVizard	
 HeRa	

 119

In the end-of-study questionnaire, subjects were asked how much percentage of the

final system they have worked on, and if they think there are parts that they have

worked on alone with their partner. The results are summarized in Table 16 and Table

17.

How much percent of

the system have you

been working on?

Instances Percentage

<25 % 1 7%

25-50% 5 36%

>50-75% 5 36%

>75%, <100% 2 14%

100% 1 7%

Table 16: Questionnaire Results for Collective Code Ownership,
Question 1

Are there parts you have

worked on alone (with

your partner)?

Instances Percentage

Yes 6 43%

No 8 57%

Table 17: Questionnaire Results for Collective Code Ownership,
Question 2

 120

6.4.3 Discussion of Results

The results of the study show that there were many process conformance violations in

the process execution in the studied environment. Developers especially had

problems following the Test Driven Development practice and one group performed

poorly in following Pair Switching.

The results from the end-of-study questionnaire show that subjects are aware of not

following a particular practice. When they were asked later why they did not follow

Test Driven Development they answered that “the implementation of new features to

satisfy customer needs had a higher priority than following the steps of the process”.

Overall, conclusions for this study can be summarized as followed:

The results show that it was possible to translate three XP practices into the suggested

scheme, to collect data non-intrusively with minimal manual effort, and to formulate

and detect violations against the defined practices (Research Question 1). For most of

the qualitative violations, thresholds and measures were found and tailored during the

execution of the processes. Qualitative violations seem to be harder to define upfront.

However, once found they can potentially be used in study replications or future

projects.

The perceived conformance of the subjects fits the measured one to some extent. For

two practices one could find a significant amount of violations and subjects admitted

to not following the practice at all times (Research Question R2B).

Subjects were advised to improve their conformance to Test Driven Development one

time before iteration three. The impact is visible in the conformance level (Table 11).

 121

The number of violations could be lowered, but they still occurred after this feedback

(Research Question 4).

The study shows that it was possible to improve and adjust the rules to the

environment and practices. For all the rules, I did not have a good understanding of

the qualitative levels before the study but was able to derive measures and thresholds

during the execution to some extent. Further, I was able to catch some special cases

(i.e. Java interface classes) to improve the automated detection of violations

(Research Question 3).

So far, I was unable to find relationships between the adherence to a process and the

resulting quality attributes of the product. However, the truck factor analysis gave

insight into how a practice can help to reduce risks in a project. The KlaRa team

violated the Pair Switching practice more often than Zeit and achieved a lower worst

case truck factor. The major finding related to the truck factor risk is that the XP

practices Pair Programming and Pair Switching appear to be linked to a better truck

factor, when compared to conventional projects.

6.5 CROOM2: Classroom Study II

The second classroom study took place in a similar classroom environment as the first

one and followed the same quasi-experimental design, i.e., an equivalent time

samples design. Again, two groups of students developed a small sized software

application following the XP development methodology. A difference from the first

study was that one of the teams was distributed across two locations (four developers

at Hanover, and four developers at Clausthal). Both locations (in Germany) are about

60 miles (100 kilometers) apart so that development teams had to make use of

 122

electronic communication channels (e.g., Skype11 calls). The researchers (i.e. process

managers) were interested in how distributed XP development compares to regular

(one site) XP development. Specifically, they were curious to see if the XP practices

applied differs in a distributed development and if the provided communication tools

are efficient in distributed XP environments.

As in the first classroom study, three XP practices (TDD, Pair Switching, and

Continuous Refactoring) and one additional Communication Practice: broadcast of

story card and names, were investigated with respect to process conformance.

Therefore, this study could make use of the previously defined process conformance

templates for the three XP practices applied in CROOM1.

6.5.1 Study Design

The study followed the same equivalent time samples design as the first one, with the

following differences:

• Instead of four development days, subjects developed for five days.

• The target applications were developed for Java Android mobile phones. All

study subjects did not have any previous experience in developing Java

applications on that platform. The target application of the distributed team

helps cell phone users in medical emergency situations and was called

Notfallplan (English translation: emergency plan). The application of the non-

11 Skype is a proprietary application that allows voice calls over the Internet. It further allows video calls, and text

message chats. More information about Skype can be found on: http://www.skype.com or

http://en.wikipedia.org/wiki/Skype

 123

distributed team was a game for simulating the blood alcohol concentration

after drinking alcoholic beverages. It was simply called Spiel (English

translation: game).

• The distributed team had two XP coaches present, one at each location. The

customer was located at the Hanover location. Developers at Clausthal could

communicate with the customer via the various electronic communication

channels. Figure 28 shows how the roles of the conformance approach were

distributed across the two locations.

• The end-of-study questionnaire was modified to ask more specifically for

possible shortcomings and improvements of the investigated XP and

communication practices.

Figure 28: Distributed study setup for the second study in classroom

 124

6.5.2 Step 1: Defining Process Conformance Rules

The previously defined process rules for the three XP practices were initially not

changed and used as described in Table 8, Table 9, and Table 10. A rule change

became necessary for Test Driven Development (Table 19) because one of the teams

did not follow the suggested naming convention. For the communication practice

“Broadcast story card and names” a new process conformance template (Table 18)

was developed prior to the start of the study.

Process	
 Name	
 Communication	
 Practice:	
 Broadcast	
 of	
 story	
 card	
 and	
 name	

Process	
 Focus	
 Communication	
 and	
 increased	
 productivity.	

Process	
 Definition	
 Developers	
 should	
 use	
 Skype	
 status	
 messages	
 to	
 broadcast	
 who	

is	
 working	
 on	
 which	
 story	
 card	
 in	
 a	
 timely	
 manner.	

Collected	
 Data	
 Skype	
 Status	
 Log	
 containing:	

• online,	
 offline	
 timestamp	

• changes	
 in	
 status	
 message	

Subversion	
 commits	

Process	
 Violations	
 Temporal:	

• empty	
 status	
 message	
 for	
 more	
 than	
 1	
 hour	

• Subversion	
 commit	
 does	
 not	
 fit	
 SC#	
 or	
 developer	
 names	

• Developers	
 seem	
 to	
 work	
 in	
 two	
 teams	
 at	
 the	
 same	
 time	

	

	
 Qualitative:	

• Incomplete	
 information	
 in	
 Skype	
 status	

	

Table 18: Process Conformance Rule for the communication practice:
Broadcast of story card and name

 125

The communication practice required that subjects, i.e. the developers, maintained the

name of the current pair developers and story card by using Skype status messages.

Skype allows for each user (i.e. machine it is installed on) to provide a status message

(in Skype terminology: mood message) that is shown to all befriended12 Skype users.

For the study, Skype accounts were created for the four workstations that

development pairs worked on, the two XP coaches, and the customer. All of the

accounts were then befriended, i.e. added to each other’s contact lists. The

12 Befriended users are the users that are shown in the contact list of the Skype application. To friend another

Skype user a request has to be sent, and confirmation to that request has to be given by the requested user.

Process	
 Name	
 Test	
 Driven	
 Development	

Process	
 Focus	
 Improved	
 correctness.	

Process	
 Definition	
 For	
 each	
 component	
 (i.e.	
 Java	
 class)	
 developers	
 are	
 supposed	

to	
 create	
 a	
 JUnit	
 test	
 class	
 (collection	
 of	
 test	
 cases)	
 prior	
 to	
 the	

development	
 of	
 the	
 component.	
 	
 	

Collected	
 Data	
 Subversion	
 code	
 history.	
 Developers	
 are	
 advised	
 to	
 use	

following	
 file	
 naming	
 convention	
 for	
 implementation	
 and	
 test	

classes:	

Implementation	
 class:	
 	

SomeName.java
Test	
 class:	
 	

SomeNameTest.java

Process	
 Violations	
 Version	
 1:	

Temporal:	

(1)	
 Implementation	
 classes	

(but	
 not	
 interface	
 classes)	

without	
 test	
 classes.	
 Violation	

detection:	
 Implementation	

class	
 is	
 checked	
 into	
 the	

Subversion	
 repository	
 before	

its	
 according	
 test	
 class.	

Version	
 2:	

Temporal:	

(1)	
 Implementation	
 classes	

(but	
 not	
 interface	
 classes)	
 that	

are	
 not	
 tested	
 by	
 any	
 test	

classes.	
 Violation	
 detection:	

Implementation	
 class	
 is	

checked	
 into	
 the	
 Subversion	

repository	
 but	
 no	
 test	
 class	

accesses	
 this	
 implementation	

class.	
 	

Table 19: Adjusted Conformance Rule for Test Driven Development

 126

communication practice should help to create a global understanding of which

developers are working together on which workstation, and what story card the

development pairs are currently working on. The overall goal is to create a fluent and

transparent environment that decreases the amount of rework (i.e. duplicated work

done on both sites) and increases productivity.

The process description in Table 18 recommends developers to maintain this status

information in a “timely manner”. More precisely, violations against the practice

define, that Skype status messages are not allowed to be left blank for more than one

hour (Table 18: first temporal violation) and that the posted information has to be

complete (Table 18: first qualitative violation). Completeness of information requires

that at least the names of the developers and the story card are maintained in the

status message. To check for outdated or wrong status information the second

temporal process violation defines that data from the subversion repository (i.e. the

names and story card in the SVN commit message as shown in Figure 23) should map

to the one in the Skype status message.

To instrument the Skype status message changes, a small tool, named

SkypeContactsStatusTracker was developed. The tools allows for tracking of status

changes by simulating a Skype client that is befriended with all other accounts. To do

so SkypeContactStatusTracker reads unobtrusively every five seconds the status

messages from all project participants and saves them in a log file13. The tool can be

classified as automatically and supplementary data collection activity according to the

13 More precisely, the log file contains only changes of the Skype status message and the Skype online status

within a five second resolution.

 127

classification scheme given in Chapter 3. It does not change the behavior of the

subjects, but will require additional cost for installing and running it on an additional

workstation. Further, some cost has to be spent in interpreting the log file results. In

this study the tool was run on the workstation of the conformance analyst located at

the University of Maryland.

To illustrate in more detail, a short excerpt of the log file illustrates the collected data

in Figure 29. Four changes of status messages are displayed. The first one shows that

on Tuesday, May 25th, the second pair in Clausthal (pair4-c) went from being

OFFLINE to ONLINE at 3:24am EDT (that is 9:24am in German time zone). In other

words, they logged into their workstation at that time. A status message is missing at

this point in time. As a second example, the last log entry in Figure 29 (change

number (4)) shows a change of status message for pair2-h (the second pair in

Hanover). The status message was changed from

(1)Status changed,1274772259207/Tue May 25 03:24:19
EDT 2010,pair4-c, Mood Message: “”->”” ,OFFLINE ->
ONLINE

(2)Status changed,1274773314721/Tue May 25 03:41:54
EDT 2010,pair3-c, Mood Message: technik lernen mit
E*** ->”” ,ONLINE -> ONLINE

(3)Status changed,1274774730428/Tue May 25 04:05:30
EDT 2010,pair4-c, Mood Message: “”-> Fe****/ Mo****:
Story Card #15 Startbildschirm,ONLINE -> ONLINE

(4)Status changed,1274779411979/Tue May 25 05:23:31
EDT 2010,pair2-h, Mood Message: Story Card: 29
(Notfallbutton), An***, Pa*** -> Story Card: (Grund
Struktur überlegen), An***, Pa***,ONLINE -> ONLINE

Figure 29: Log file content of the SkypeContactsStatusTracker tool
(developer names are anonymized using ***)

 128

“Story Card: 29 (Notfallbutton), An***, Pa***”

to

“Story Card: (Grund Struktur überlegen), An***, Pa***”

which indicates that the same developers continued to work on a second story card.

The number of the story card is not provided; the status message is therefore

incomplete.

6.5.3 Step 2: Violation Detection

As in the first study, the violation detection was performed overnight at the

University of Maryland. Reports of process conformance and according violations for

each of the four practices were sent to the XP Coach in Hanover at the beginning of

each of the development iterations. Discussion of the violations with the process

enactors was done during the daily stand up meeting in the morning.

A violation detection algorithm and conformance analysis for the practice Test

Driven Development and Continuous Refactoring was implemented into CodeVizard.

 129

Figure 30 shows the CodeVizard visualization for violations against TDD in one

package of the project Notfallplan. The small yellow warning icons in the view

indicate that the practice was violated. More precisely, the identified violations

indicate that no test class was found when the source code files were checked into the

repository. One can see in the figure that violations occur at check-in time of new

classes, e.g. on May 24th, two classes were added (ViewFactory and

EmergencyQuestion), and for both no test class were added.

For practice Continuous Refactoring, the subversion commit comments were

extracted and it was counted how many times developers indicated to have refactored

during each development iteration.

The violation detection for the other two practices was done in a more manual way.

For Pair Switching, graphs as already presented in the previous section (Figure 24 and

Figure 25) were created to identify process violations. For the new Communication

Figure 30: Process violations against TDD in project Notfallplan

 130

Practice, broadcast of the story card and name, a new graph was created that shows

the relevant data, e.g. online status, status message, and SVN commit comments.

Figure 31 shows a part of the graph that was created to identify violations against the

communication practice. The light green bars (labeled with online) for each

distributed development pair indicates when they were logged into Skype (Skype

Figure 31: Skype Status graph to investigate violations against the
communication practice: Broadcast story card and name

 131

status: online). From the figure one can conclude that pair3-c (the first pair in

Clausthal) logged in earliest that day at around 9am. The other three teams started

working between 9:15am and 9:30am. On top of the online status the current Skype

status message is displayed on light blue background. For all developer pairs one can

read the names of the developers working together and the current story card that they

are working on. Additionally, some development pairs noted the description of the

story card (which is not mandatory). If one pays closer attention to the developer

names one will find the following inconsistency: developer “al****” worked in pair1-

h and pair2-h at the same time at the beginning of the day, which is impossible. At

10am pair2-h changes their developer names. A logical explanation of this pattern is

that in reality development pairs changed at the beginning of the day (pair switching

is indicated by the double arrow). However, pair2-h forgot to update their status for

the first 40 minutes and violated the practice of keeping the status up-to-date. Once

they noticed this, they changed their developer names, and they also committed the

code that was changed for that story card (#39). In the graph, Subversion commits are

indicated by the cylinder symbol. The commit message is displayed above the

symbol. Ideally, whenever a pair switching occurs one should see changes of status

messages for both teams on one site at the same time.

6.5.4 Step 3: Gathering Additional Information

In this study, as in the last one (CROOM1), the process manager (i.e. the XP coach in

Hanover) acted as bridge between the process enactors and the conformance analyst.

That means that the analyst was not able to interview the enactors during the study.

 132

However, an end-of-study questionnaire that was designed by the analyst focused on

questioning why the enactors could not follow the practices.

During the study the analyst sent daily reports to the process managers, and these

reports were used in the daily stand up meetings to point out process violations to the

developers.

To gather additional insight, CodeVizard and email conversations with the process

managers were used. For example, even before asking the subjects it could be

understood (by looking at CodeVizard) that Test Driven Development was violated

for components that reside in parts of the Android graphical user interface part of the

code. Later investigation found that this was due to a lack of experience in how to test

this code effectively.

6.5.5 Step 4: Process/Rule Improvement

Due to the short study duration no modifications on the processes itself were

performed since the study design aimed on investigating process conformance and

productivity of XP development, and not at tailoring the XP practices.

Overall, managers believed that process enactors (i.e. students) should follow the

practices better. Thus, process enforcement was done by reminding the developers in

the daily stand up meetings by presenting them with the analysis results of the

conformance reports. Finally, an end-of-study questionnaire asked study enactors

about what they would change on the process.

 133

6.5.6 Results

Test Driven Development

Table 20 shows the number of newly introduced components for each of the

development iterations and how often test cases that satisfied version 1 (with the

naming convention) and version 2 (without the naming convention) as described in

Table 19 (conformance rule for TDD) could be found. This statistic gives insight into

the amount of temporal violations as defined in Table 19.

 134

The data in Table 20 indicates that the distributed team Notfallplan followed TDD in

half of the cases (50%) when using the second, optimized version of the rule. This

Iteration (D
ay)

Distributed Team: Notfallplan Non-distributed Team: Spiel
Detection V1 Detection V2 Detection V1 Detection V2

N
ew

 classes

Test
case

in
repository

Estim
ated

%

TD
D

 follow
ed

N
ew

 classes

Test
case

in
repository

Estim
ated

%

TD
D

 follow
ed

N
ew

 C
lasses

Test
case

in
repository

Estim
ated

%

TD
D

 follow
ed

N
ew

 C
lasses

Test
case

in
repository

Estim
ated

%

TD
D

 follow
ed

1 9 0 0% 9 2 22
%

7 2 29
%

7 3 50
%

 Manager Feedback:
- had to learn how to test android components.
- found out that some of the developers in
Clausthal did not know Java and were very
inexperienced.
- We analyzed the tests Wednesday night and
forced our developers to enhance them on
Thursday.
Feedback on Conformance was given to
Developers

No feedback

2 11 5 45% 11 6 54
%

14 1 7% 14 11 79%

 Manager Feedback:
- Testfirst was my main topic for the Thursday
morning stand-up meeting. We decided to improve
the situation and stopped working on new customer
stories until these issues were fixed.
Feedback on Conformance was given to
Developers

No feedback

3 3 3 100
%

3 3 100
%

6 0 0% 6 1 17%

 Feedback on Conformance was given to Developers Feedback on Conformance was given to Developers
4 6 3 50% 6 3 50

%
15 0 0% 15 3 20%

 Feedback on Conformance was given to Developers No feedback
5 1 1 100

%
1 1 100

%
11 0 0% 11 5 45%

Total
30 12 40% 30 15 50

%
53 3 6% 53 23 43%

Table 20: Conformance Results for Test Driven Development

 135

conformance level14 is within the range of the results from the last class room study

(34% and 66%). Therefore, when comparing the differences in the environment, it

seems that the distributed development team, when compared to the non-distributed

development teams of the last study, seemed to have neither a positive nor a negative

effect on the quality of TDD execution. This is not a surprising result, since TDD is

performed locally within one development pair and does not require that development

pairs communicate.

The Notfallplan team could also increase their conformance during the first three days

from 0% to 100%. Reminding developers of the importance of TDD in the daily stand

up meetings seemed to have the desired effect.

When using the tools (CodeVizard) to inspect the violations in detail one can see that

test cases were sometimes developed after the implementation class. This rework was

suggested to the developers by the managers in the daily meetings. Overall, for

Notfallplan, 15 classes (50%) were developed in test first order, 6 classes (20%) were

developed in test last order, and for 9 classes (30%) no test classes could be found.

The data for the non-distributed team Spiel suggests that conformance to the TDD

practice was very low when using the first version of the rule for detecting violations.

Only on the first two days test cases could be found and assigned by using the file

14 Strictly speaking, the rate is the inverse of a violation rate. One cannot necessarily conclude that TDD was

followed in 56% of the cases when implementation classes and test cases appear in the right order in the

repository. Developers could still have developed the classes in the wrong order. However, one can say that in 1-

56%=44% of the cases no test class could be found, and therefore TDD, as defined in Table 8, was violated.

 136

naming convention (version 1). These results reveal that either the developers did not

follow the practice as described in the conformance rule, or that the detection method

for violations was not applicable. The third step of the approach addresses this

question. The tool support that was developed as part of this thesis (CodeVizard)

showed that in general test classes were developed, but that developers did not follow

the mandatory naming convention: developers were supposed to give a test case the

same name as the implementation class and to append the suffix “Test”. For example,

a class Application.java should have a test case named

ApplicationTest.java.

 137

Table 21 shows the test classes and implementation classes of the project, and

illustrates that the naming convention was not followed.

Implementation Classes Test Case Classes

Table 21: Implementation classes and test case classes for project Spiel:
naming convention was not followed

 138

The process manager indicated later that developers had problems testing the code for

the mobile devices (Android platform). No developer had previous experience in

developing this kind of test code. Therefore, developers created new testing solutions

that did not follow the suggested naming scheme. In detail, their test cases were not

pure unit tests anymore that solely test one class or function of the code. The

developed test cases rather executed bigger parts of the system, e.g. a whole use case,

or screen of the application.

This behavior can be seen as an instance of modification of a process to tailor it to a

new environment. After tailoring, the current process rule and violation definition

was not applicable anymore. It had to be changed.

For the changed rule, the question still remained whether the process enactors

implemented these system test cases prior to the implementation classes. A new

process conformance rule (see Table 19: version 2) was developed. The new rule does

not assume a relationship expressed by file and class name, but assumes that if a test

case “uses” an implementation class then implementation class is being tested. “Uses”

means in this context that either objects of the class are instantiated within the test

case, or that one of the class’ static methods or members is used. As with the previous

process rule, one might falsely conclude that the usage of a class in a test case really

tests the functionality of the class. In this case, one would miss violations (false

negatives). However, if no usage pattern between an implementation class and a test

case can be found, one can surely conclude that the implementation class is not being

tested by this test case. If this holds for the relationship of one implementation class

 139

with all test cases, then TDD must be violated, because no test case exists for this

class.

When applying the second rule to the collected subversion data conformance levels

improve (see Table 20) when compared to the first version of the detection rule. On

the first two days process conformance to TDD was above average with 50% (day 1)

and 79% (day 2) of all cases followed. On day 3, conformance drops to 17% and

increases afterwards stepwise to 20% (day 4) and 45% (day 5). Overall, team Zeit

followed TDD in 43% of all cases. Again, this result falls into the range of the

previous classroom study (CROOM1) with 34% and 66%.

When asked for conformance and difficulty in the end-of-study questionnaire answers

of the two teams differed. Team Notfallplan indicated to have followed TDD on

average about half of the time (answer score median: 3). Team Spiel said on average

How well did you follow the process?
 Notfallplan Spiel
1: Never 1 1
2: From time to time 1 2
3: Half of the time 2 2
4: Often 4 1
5: Always 0 0
No answer 0 1
How hard was the process to follow?
 Notfallplan Spiel
1: Very easy 0 0
2: Easy 1 0
3: Neither easy nor hard 3 1
4: Hard 3 2
5: Very hard 1 3
No answer 0 1

Table 22: End of study questionnaire results for both
teams for Test Driven Development

 140

that they followed TDD between “from time to time” to “half of the time” (answer

score median: 2). Further, when asked for the difficulty of the TDD practice, team

Notfallplan said on average that it was “neither easy nor hard” and “hard” to follow

the practice (answer score median: 3). Team Spiel indicated that it was between

“hard” and “very hard” to adhere to the practice (answer score median 4).

Developers further indicated that writing test cases for the Android platform was the

main problem of not being able to follow TDD. Developers said that they “did not

know how to test a particular behavior” and “the technology Android was unknown,

therefore no architecture could be planned”, and “if you do not have a clear idea of

the architecture, you cannot write any test cases”. One developer said that “[…] it

was going better after some time”. Developers also thought that some functionality

was “so simple, that one does not think about writing a test for it”.

Pair Switching

The Pair Switching practice, as described in Table 10, requires the programming pairs

to switch partners every time a story card has been completed. Goal of the practice is

to encourage team work and to indirectly improve collective code ownership.

The practice was differently executed for the two teams due to the number and

distribution of developers. For the non-distributed team Spiel seven developers

worked on the code in three pairs plus one additional “free” developer. The free

developer worked on the code by himself. Whenever one pair completed a story card

the free developer was supposed to switch with one of the pair members. The

distributed team Notfallplan had four developers in each location, which required

them to switch all members at one location as soon as a story card was completed at

 141

that location. Developers were never switched across locations. Comparing the two

project teams one could argue that the practice might more often disrupt the

developers in the distributed environment than in the non-distributed one.

The results for pair switching are, as in the last study (Figure 24 and Figure 25),

visualized in form of a graph.

Figure 32 shows the pairs working on different story cards on the five development

days. Each of the developers is visualized as a horizontal line in the graph (subjects

N_S1 to N_S8). A connection, either in green or in red color, indicates that two

developers worked together on a story card. The number inside the pair connection

denotes the story card number. Red pair connections show that a particular pair has

already worked together on the last story card, therefore violating the pair switching

practice.

Figure 32: Pair Switching Graph for team Notfallplan

 142

The sum row on the lower end of the picture shows how many story cards were

completed on each day. One can see that the team increased their throughput of story

cards for each day, from one to twelve cards.

The sum column on the right end of the picture shows how many developers the

developer in that row has worked with. Considering the two teams of four

programmers, one developer had the opportunity to work with three other developers.

The data indicates that this was the case for the upper four developers (in Hanover)

but not for the lower four ones (in Clausthal). Some combinations of developers never

worked together in a pair, e.g. N_S5 and N_S8, N_S6 and N_S7. In the current

definition of Pair Switching this was not defined as a violation. However, the process

managers later indicated that they would have expected that all developers work

together.

Concerning conformance to the Pair Switching practice, one can see that developers

followed the practice better during the first two development days. Only one violation

against Pair Switching can be identified: N_S1 and N_S2 work together on story card

20 and 35 in a row. On the last three days conformance was rather poor. One can see

that developer pairs never switched during one of the last three days. Only at the

beginning of days four and five, did developers change their programming partners.

The quantitative and qualitative data collected through the end-of-study questionnaire

gave further insights into the reasons for the high amount of process violations.

Developers were asked how well they have followed the process, and how hard it was

 143

for them to follow the process. Further, they could freely provide text as to why it was

hard to follow.

The quantitative data for team Notfallplan in Table 23 indicates that developers were

aware of violating the Pair Switching practice. Six out of eight developers said that

they only followed the practice in half or less than half of all cases. When asked about

the difficulty of applying the practice, seven out of eight developers said that it was

“neither easy nor hard”, “easy”, or “very easy”. Only one developer said that

following the practice was “hard”.

Further qualitative data in form of free text15 indicates that developers thought that

switching with every new story card was too frequent. Developers said that “there

were only few times were both pairs finished a card at the same time” and that they

needed more time to “adjust to the new programming partner”. Further, “story cards

15 The answers were provided in German language. The author is a native German speaker and translated the

questionnaire answers, as closely as possible, into English language.

How well did you follow the process?
1: Never 0
2: From time to time 4
3: Half of the time 2
4: Often 2
5: Always 0
How hard was the process to follow?
1: Very easy 1
2: Easy 3
3: Neither easy nor hard 3
4: Hard 1
5: Very hard 0

Table 23: End of study questionnaire results for the
distributed development team (Notfallplan) for Pair

Switching

 144

were too short”. One developer from the Hanover team said that the practice was

changed towards less frequent switching of the development partner after each

iteration, i.e. development day.

The pair switching graph for the non-distributed team (Spiel) shows a very similar

picture as for the distributed team. During the first three days pair switching was

violated only once. During the last two days violations can be found more frequently.

Developer pairs did not switch on the fourth day even though one developer (S_S1)

was available to switch with. Overall, developers worked together with three or four

(out of possible 6) different partners during the five days. Five out of seven

developers took the role of the free developer one time during the project.

Figure 33: Pair Switching Graph for team Spiel

 145

When asked for their conformance to the process all six developers who answered the

questionnaire (one developer did not fill in the questionnaire) said that they followed

it “often”. When asked for the difficulty of the practice, all developers said that it was

“neither easy nor hard”, or “easy” to follow.

The answers given in the qualitative part of the questionnaire once again show that

developers believed that switching with every story card was too frequent and

interrupting. One developer said that, “when working together on a story card for a

long time, it is hard to instruct somebody new [after switching]”. Another developer

said that “Switching [during a story card] is not a pleasant activity, one wants to

finish what one has started”.

The second part of the violations defined in the conformance template aims at the

truck factor. Pair Switching should improve this measure that describes how well

How well did you follow the process?
1: Never 0
2: From time to time 0
3: Half of the time 0
4: Often 6
5: Always 0
No answer 1
How hard was the process to follow?
1: Very easy 0
2: Easy 2
3: Neither easy nor hard 4
4: Hard 0
5: Very hard 0
No answer 1
Table 24: End of study questionnaire results for the non-
distributed development team (Spiel) for Pair Switching

 146

code knowledge is uniformly distributed over the number of developers. Especially in

this study setup one is interested as to whether the difference in environment

(distributed XP vs. non-distributed XP) has an impact on the distribution of code

knowledge.

Figure 34: Truck Factor chart for team Notfallplan

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

re
m
ai
ni
ng
	
 c
od

e	

co
ve
ra
ge
	

number	
 of	
 missing	
 developers	

NoLallplan:	
 truck	
 factor	
 chart	

Min	
 Nofall	
 Max	
 Nofall	
 Avg	
 Nofall	

 147

The truck factor characteristics for both projects are plotted in Figure 34 and Figure

35. The three lines in each graph show how many developers a project could lose in

best, average, and worst case and how much code the remaining developers would

cover. For example, in project Spiel, even a loss of four out of seven developers (57%

of all developers) would only lead to a situation where the remaining three developers

would know between 75% and 95% of the code. When comparing the two graphs

one can see that especially the worst case line (blue line) differs for both projects. If

project Notfallplan would lose 4 out of 8 developers then the right combination of

developers (i.e. the worst case combination) can lead to a situation where the

remaining developers only know about 40% of the code. As it turns out, this worst

case combination is the four developers that were working together in one of the

locations (i.e. in Hanover). In other words, the Hanover group worked on 60% of the

Figure 35: Truck Factor Chart for team Spiel

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

re
m
ai
ni
ng
	
 c
od

e	

co
ve
ra
ge
	

number	
 	
 of	
 missing	
 developers	

Spiel:	
 truck	
 factor	
 chart	

Min	
 Spiel	
 Max	
 Spiel	
 Avg	
 Spiel	

 148

code base exclusively. This finding supports the hypothesis that distributed

development has an (negative) impact on how code knowledge is distributed.

To make the difference more apparent,

Figure 36 visualizes the four XP projects from CROOM1 and CROOM2, and three

projects not applying XP practices (e.g. pair switching). The number of developers

was normalized across all projects to compensate for different numbers of developers

in each project. As explained earlier (Figure 27) the XP projects have significantly

better truck factor characteristics. However, the distributed XP project (purple line:

Notfallplan) falls short when compared to the non-distributed XP projects (blue

lines).

Continuous Refactoring

The continuous refactoring practice advises developers to refactor code often, thereby

avoiding postponing refactoring until code becomes hard to maintain. A violation

Figure 36: Worst case truck factor chart for seven projects

 149

against the practice is detected if developers either do not refactor at all, or in only

one single stage of the project (see conformance rule in Table 9). As described in the

last study, developers had to provide information about when refactorings were

performed through the Subversion commit template (Figure 23). The information was

self-reported.

The data in Table 25 shows for each iteration how many times developers indicated to

have refactored. Both teams refactored their code with each iteration. No violations

against the practice could be identified. The non-distributed team (Spiel) refactored

code in 41% of all cases, the distributed team in 18%. When comparing these two

numbers to the results from the last study (CROOM1: 19% and 24% refactoring

changes), team Spiel refactored about twice as often as the other three teams.

 Notfallplan Spiel

Iterat. Changes Refac. Ratio Changes Refac. Ratio

1 7 1 14% 7 2 28%

2 8 1 13% 7 4 57%

3 6 2 33% 3 2 66%

4 8 2 25% 8 4 50%

5 15 2 13% 12 3 25%

Totals 44 8 18% 37 15 41%

Table 25: Results for Continuous Refactoring for both teams

 150

The answers from the post study questionnaire (Table 26) show that both teams

followed the practice equally. Team Notfallplan said that, on average, that they

followed the practice “often” (median score of answers: 4). Team Spiel said, on

average, that they followed the practice “often” (median score of answers: 4). The

same holds for the question asking about the difficulty of the process. Both teams

indicate that it was “easy” to follow the process (median score Notfallplan: 2, median

score Spiel: 2).

One might be surprised about the very similar questionnaire results since the

refactoring ratio presented in Table 25 differed for both teams: 18% for Notfallplan

vs. 41% for Spiel. It was not possible to investigate this difference further, but

possible explanations are:

• Both teams followed the practice, but teams reported refactorings differently

in the commit template. For example, one team might have reported every

How well did you follow the process?
 Notfallplan Spiel
1: Never 0 0
2: From time to time 2 1
3: Half of the time 0 0
4: Often 4 4
5: Always 2 1
No answer 0 1
How hard was the process to follow?
 Notfallplan Spiel
1: Very easy 1 0
2: Easy 4 4
3: Neither easy nor hard 1 1
4: Hard 2 1
5: Very hard 0 0
No answer 0 1

Table 26: Post Study Questionnaire answers for
Continuous Refactoring

 151

small micro refactoring (e.g. renaming a variable in a class), and the other

might have reported only larger macro refactorings (e.g. refactorings

affecting multiple classes). In a future study, one might want to distinguish

micro and macro refactorings.

• Continuous Refactoring defines that software should be refactored when

required. The software project of team Spiel might have required more

refactorings than the one of team Notfallplan.

• Teams could have been dishonest when reporting refactorings, or when

filling in the end-of-study questionnaire.

When asked for the reasons for difficulties with the practice, developers indicated

different experiences. One developer said that “[Refactoring] Changes lead to

problems for other developers”. This might indicate that developers ran into

difficulties when using the version control system to synchronize their work. One

developer said that refactoring “was easy and fun to do with Eclipse”. This shows

that developers used built-in refactoring functionalities of the Eclipse IDE16. Another

developer pointed out problems with language when using Eclipse: “The XML is

partly in German. [It] cannot be refactored by using [Eclipse’s] refactoring menu”.

16 Eclipse is an open source integrated development environment (IDE) for Java development. It can be

downloaded from: http://www.eclipse.org

 152

Communication Practice: Broadcast of Story Card and Name

The new communication practice, as defined in Table 18, was only applied by the

distributed team (Notfallplan). Violations against the practice are situations where

developers either forget to maintain their Skype status message, or if the information

is incomplete. The first type of violation (temporal violation) includes situations

where developers do not have a status message for more than one hour, or if content

of their status message (e.g. the story card number) does not fit the Subversion

commit comment. Further, situations as shown in Figure 29, where developers forget

to update their names in the status message (and therefore appear to be working in

two teams at the same time), are considered as temporal violations. The second type

of violation (qualitative violation) includes scenarios where developers post a Skype

status, but the status is incomplete, e.g. does not contain a story card number and/or

the names of the developers.

 153

Table 27 shows the temporal and qualitative violations for each of the five

development iterations. The developers at Hanover violated the practice nine times,

and the developers in Clausthal violated the practice four times. At first, it seems that

the Hanover team did twice as bad as the Clausthal team in following the practice.

However, if one considers the amount of completed story cards (the more story cards

are completed the more often developers have to update their Skype status), both

teams were following the practice in about the same number of cases: the Hanover

team generated nine violations while completing 20 story cards (45% violation rate)

and the team at Clausthal violated the practice three times while working on nine

story cards (33% violation rate).

Hanover Location Clausthal Location

Iteration Temporal
Violations

Qualitative
Violations

Completed
Story
Cards

Temporal
Violations

Qualitative
Violations

Completed
Story
Cards

1 0 1 0 1 0 1
2 2 1 5 0 0 2
3 0 0 4 0 0 0
4 2 0 3 0 1 2
5 3 0 8 0 1 4
SUM 7 2 20 1 2 9
Table 27: Violations against the communication practice for both locations of

project Notfallplan

 154

When asked for their conformance, all developers in Hanover said they followed the

practice “often”. The developers in Clausthal believed to have followed the practice

“always”. One possible explanation that developers thought they never violated the

practice is that they violated it only three times during five days. This might have

fallen below the threshold of recognition.

Developers in Clausthal perceived the difficulty of the process easier than the

developers in Hanover. When asked for problems with the process, developers in

Hanover said that “sometimes they forgot to do it”, especially in situations “where

something unexpected happened”.

6.6 PROF: Long Term Study in Professional Environment

After the approach was tuned and initial tool support was built during the initial

feasibility study (FEASIBILITY) and the first classroom study (CROOM1) it was time

How well did you follow the process?
 Location

Hanover
Location
Clausthal

1: Never 0 0
2: From time to time 0 0
3: Half of the time 0 0
4: Often 4 0
5: Always 0 4
How hard was the process to follow?
 Location

Hanover
Location
Clausthal

1: Very easy 0 1
2: Easy 1 3
3: Neither easy nor hard 3 0
4: Hard 0 0
5: Very hard 0 0

Table 28: End of Study Questionnaire results for the
communication process

 155

to apply it in a realistic professional environment. The chosen environment was

provided by a customer of the Fraunhofer Center for Experimental Software

Engineering17 where the author worked part time during this thesis. The Fraunhofer

Center supports the customer by providing them with CMMI consulting. CMMI

(Ahern, Clouse and Turner) is a process framework developed by the Software

Engineering Institute (SEI) that helps to assess how mature a company is in

developing software products. Different CMMI maturity levels (one to five)

distinguish between different levels of maturity. The Fraunhofer Center has helped

the company reaching CMMI Maturity Level three in 2007.

The customer can roughly be described as a software development company18

focusing on web based software systems for government contractors. The company

employs 36 people, of which about one third are serving as developers, one third are

serving as web designers, and one third are serving as other staff. Multiple

applications are developed at a time (about 5) using an agile development lifecycle

(similar to SCRUM (Schwaber and Beedle)). Process conformance analysis was

focused on two of their projects: Project J and Project F. The primary programming

language used in the environment is C#.

17 The Fraunhofer Center is an affiliate of the University of Maryland. Its mission is to transfer technology from

research to practice. The study with professionals helped to contribute to this mission. More information about

the work of the center can be found on: http://www.fc-md.umd.edu

18 The name of the company, their projects, and their developers are sanitized for security reasons. Whenever

particular projects or developers need to be pointed out terms such as “Project A” or “Developer C” will serve as

replacement.

 156

The three investigated software processes can best be described as guidelines.

Guidelines are rules that developers should follow during development in order to

improve quality characteristics of the software product. A typical guideline that was

inspected is Architecture Conformance. This guideline recommends developers to

adhere to one common project architecture by providing them with a set of

architectural rules. The guideline does not define specific steps, or an order of steps.

It requires the guideline to be followed throughout the software development life

cycle.

The following sections and subsections describe, for each of the practices, how the

four steps of the conformance approach were performed. The reader can read these in

two different ways (see Table 29):

To follow a particular practice the sections should be read in the order presented here.

To follow the four steps of the model the reader can go over the sub sections

separately.

 CTCD Cont. Refactoring Architecture Conf.
Step 1: Defining
Conformance
Templates

6.6.1:step1 6.6.2:step1 6.6.3:step1

Step 2: Violation
Detection

6.6.1:step2 6.6.2:step2 6.6.3:step2

Step 3: Gathering
Additional
Insights

6.6.1:step3 6.6.2:step3 6.6.3:step3

Step 4: Process
and Rule
Improvement

6.6.1:step4 6.6.2:step4 6.6.3:step4

Table 29: Organization of Section 1.6

 157

6.6.1 Collaborative Test Case Development (CTCD)

CTCD: Defining Conformance Templates

The guideline Collaborative Test Case Development (CTCD) requires that all

developers in a project contribute to test case development. For the company, this

guideline is important since it ties into one of their organizational goals. The goal

defines that developers should continuously be trained in all core technologies. One

of these core technologies is the ability to develop unit test cases for web

applications.

The complete process conformance template can be found in Table 30. It includes

two versions of violation detection that show how the rule was tailored over time.

Process	
 Name	
 Collaborative	
 Test	
 Case	
 Development	
 (CTCD)	

Process	

Definition	

All	
 developers	
 in	
 a	
 project	
 should	
 contribute	
 continuously	
 to	
 the	

test	
 case	
 development.	

Process	
 Focus	
 Training	
 of	
 personnel,	
 increased	
 program	
 correctness	

Collected	
 Data	
 SVN	
 data	
 provides	
 us	
 with	
 information	
 about	
 which	
 developers	
 are	

actively	
 involved	
 in	
 test	
 case	
 development	
 (create	
 and	
 modify	

source	
 files	
 in	
 a	
 specific	
 test	
 directory).	

Version	
 V1	
 (Sep	
 2009	
 –	
 Feb	
 2010)	
 V2	
 (Feb	
 2010	
 –	
 today)	

Violations	
 An	
 active	
 developer	
 that	
 has	

not	
 contributed	
 to	
 test	
 case	

development	
 for	
 a	
 longer	
 time:	

A	
 developer	
 who	
 has	
 changed	

at	
 least	
 1	
 source	
 code	
 file	

(suffix:.cs)	
 in	
 the	
 last	
 30	
 days	

but	
 has	
 not	
 changed	
 any	
 test	

case	
 files	
 (files	
 in	
 folder	
 tests)	

in	
 the	
 same	
 time	
 period.	

An	
 active	
 developer	
 that	
 has	
 not	

contributed	
 to	
 test	
 case	

development	
 for	
 a	
 longer	
 time.	

A	
 developer	
 who	
 has	
 changed	
 at	

least	
 10	
 source	
 code	
 file	

(suffix:.cs)	
 in	
 the	
 namespace	

Core.*	
 in	
 the	
 last	
 30	
 days	
 but	
 has	

not	
 changed	
 any	
 test	
 case	
 files	

(files	
 in	
 folder	
 tests)	
 in	
 the	
 same	

time	
 period.	

Table 30: Process Conformance Template (with different versions) for CTCD.
Differences in the versions are highlighted in yellow.

 158

To detect violations against the guideline the already collected data in the Subversion

repository can be used. The data stored in the repository provides information on

which parts of the system have been changed and who changed them. The structure of

each of the companies’ development projects demands that the developers store test

cases in a particular folder (in the companies’ terminology: “the Tests namespace”).

Hence, it can be concluded that only developers adding or modifying files in this

folder work on developing test cases for the application.

CTCD: Violation Detection

CodeVizard was used by implementing an extension for detecting the violations as

described in Table 30. The extension allows printing a list of authors and the number

of changes they made to test and implementation classes in the last 30 days.

An example output from the CodeVizard extension is shown in Figure 37. One can

read from the figure that three developers worked on the codebase in a 30 day period

Sun Apr 04 04:13:59 EDT 2010
Sensor CTCD (Collective Test Case Development) – V2 -
Violation 1

Results:

(!) Author: dm scChanges:43 tcChanges:0

 Author: jj scChanges:27 tcChanges:11

 Author: jb scChanges:0 tcChanges:0

Figure 37: Violation detection results as printed by CodeVizard for Project J
on 4th, April 2010

 159

ending on April, 4th 2010. The first developer (dm) made a total of 43 source code

(sc) changes (i.e. changes on implementation classes) and no test case (tc) changes.

Thus, the developer violates the rule of continuously developing test cases. The

second developer follows the guideline by making source code and test case changes.

The last developer (jb) made no changes to test cases, and did not make any changes

to source code files. The developer does therefore not violate the guideline19.

The results for project J over time can be read from Table 31. The cells show if a

particular developer (rows) violates the CTCD guideline in a given time frame of 30

days. The 30 days are counted from the end of a month (columns) on. Therefore, this

table shows approximately if a developer violated the rule in each of the months

19 One might wonder why the developer shows up in this list. This is because this developer changed code

unrelated files that were also stored in the repository, e.g. documentation files and requirements specifications.

Developer Nov09 Dec09 Jan10 Feb10 Mar10 Apr10 May10 Jun10 Jul10

dm 31/34 7/0 10/3 1/1 43/0 38/5 1/3 20/3 7/0

jj 31/8 4/4 1/0 1/0 27/11 0/2 3/4 65/34 7/3

kb -/- -/- -/- -/- -/- -/- 0/0 0/0 0/0

jb 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

de -/- -/- -/- -/- -/- -/- -/- -/- 0/0

al 0/0 0/0 0/0 -/- -/- -/- -/- 0/0 0/0

cn -/- -/- -/- -/- -/- -/- -/- -/- 0/0

af 0/0 -/- -/- -/- -/- -/- 0/0 -/- -/-

rf -/- 0/0 -/- -/- -/- 0/0 -/- -/- -/-

ms 18/1 -/- -/- -/- -/- -/- -/- -/- -/-

Table 31: Example results for CTCD for project J from November 2009 to
July2010: underlined figures are violations against version 1, red figures are

violations against version 2 of the rule.

 160

ranging from November 2009 to July 2010. The first figure in each cell states the

number of source code changes. The second figure shows the number of test case

changes. If a developer did not make any changes during the timeframe in the

repository (e.g. no source code, test case, and any other file change) two dashes are

shown (“-/-“). One can see that only three developers (dm, jj, ms) changed code parts.

In most cases developers followed the rule, only in one instance (marked in red:

March 2010, developer: dm) a violation could be detected.

Further the figure shows how rule tailoring affects the results of the violation

detection. The violations according to the first version of the rule (see Table 30: V1)

are underlined in the table.

CTCD: Gathering Additional Insights

The issues identified in the second step were brought up in monthly meetings with the

project leads for the two projects and the process manager. Since there were not many

violations this simple feedback process was used to judge the violations.

CTCD: Rule and Process Improvement

The process rule was changed one time (see Table 30: version 1 and version 2) to

adjust for the number of false positives detected. The guideline itself was left

unchanged.

Reason for changing the rule was that the first version of the rule was too strict since

it required changing test cases even if only one single source code file was changed.

These violations were judged by the process manager and developers as false

positives because these changes are too small to necessarily require test case changes.

The threshold for source code changes was readjusted in the second version: a

 161

violation will only be detected if developers are changing at least ten source code

files, and no test case file.

Overall, two projects were monitored for a time frame of 12 months. The identified

violations and precision measures for the two versions of the rules are presented in

Table 32. The data shows that the second version of the conformance rule has better

precision.

6.6.2 Continuous Refactoring (CR)

CR: Defining Conformance Templates

The second practice under investigation was a flavor of an already known one from

the classroom studies: Continuous Refactoring. In this environment the technical lead

of the company requires developers to follow object oriented (OO) design rules and

to refactor code as soon as it becomes necessary. The rule definition in this case is

Project Identified violations when using
V1 (last 12 months)

Identified violations when
using V2 (last 12 months)

Project J 5
(4 false positives:
20% precision)

1
(100% precision)

Project F 3
(2 false positives:
33% precision)

1
(100% precision)

Table 32: Overall results of violation detection for CTCD and impact of rule
improvement step.

 162

rather vague since it is often up to judgment of an expert as to whether or not a

system follows OO rules, such as information hiding or encapsulation.

One way to identify potential violations against the practice is to search for symptoms

of process violations. In this case, if design rules are not followed and refactoring is

not done then code might exhibit certain negative features, also known as code

smells. To identify code smells in this work I could make use of previous research

efforts. Code smells, first introduced by Fowler and Beck (Fowler and Beck) , are

indicators for the misuse of, or flaws in object oriented design. Code smells point to

refactoring opportunities. Metric based approaches to automatically detect code

smells in software systems (Lanza and Marinescu) have been proposed and partly

validated.

Process	
 Name	
 OO	
 Rules	
 and	
 Continuous	
 Refactoring	
 	

Process	

Definition	

The	
 design	
 and	
 implementation	
 should	
 follow	
 the	
 principles	
 of	

good	
 object	
 oriented	
 design.	
 Refactoring	
 should	
 be	
 performed	

continuously	
 to	
 adapt	
 design	
 to	
 new	
 requirements.	
 	

Thus,	
 the	
 number	
 of	
 components	
 with	
 design	
 flaws	
 (e.g.	
 code	

smells)	
 in	
 a	
 system	
 should	
 be	
 hold	
 small.	

Process	
 Focus	
 Maintainability,	
 Understandability,	
 Extendibility	

Collected	
 Data	
 SVN	
 data	
 provides	
 with	
 code	
 that	
 can	
 be	
 used	
 to	
 detect	
 Code	

Smells	
 (indicators	
 for	
 bad	
 object	
 oriented	
 design).	
 At	
 the	
 moment	

we	
 are	
 able	
 to	
 identify	
 God	
 Classes	
 with	
 high	
 precision	
 and	
 recall	

(confirmed	
 through	
 code	
 smell	
 study)	

Version	
 V1	
 (Mar	
 2010)	
 V2	
 (Apr	
 2010	
 -­‐	
 today)	

Violations	
 1. A	
 new	
 true	
 positive	

identified/verified	
 God	

Class.	

2. A	
 God	
 Class	
 ratio	

(#God	
 Classes	
 /	
 #	
 All	

Classes)	
 higher	
 than	

10%.	

1. A	
 new	
 true	
 positive	

identified/verified	
 God	

Class.	

2. A	
 God	
 Class	
 ratio	
 (#God	

Classes	
 /	
 #	
 All	
 Classes)	

higher	
 than	
 5%.	

Table 33: Process Rule for Continuous Refactoring

 163

My assumption for defining violations against the process definition (see Table 33) is

that if developers are not following OO rules and if they do not regularly refactor

their code, then they will introduce new code smells (violation 1). In other words

measuring a raise of code smells in a system can point to violations of the rule. This is

an example of a violation using an indirect measure (e.g. a quality measure of the

product) for inferring that a process has not been followed.

In order to detect code smells in this new environment one specific code smell was

selected that seemed most promising for detecting a lack of refactoring activities. The

code smell God Class describes classes that implement too much functionality and

responsibility in a software system. God Classes are usually among the larger classes

of the system and typically originate when developers are adding more and more

functionality to one class. A typical refactoring strategy for resolving God Classes is

to split the class up into multiple ones.

In an initial study it was evaluated that it was feasible to detect God Classes with high

precision (71%) and recall (100%), based on the metrics approach by Lanza and

Marinescu (Lanza and Marinescu). In detail, the judgments for about 80 classes by

four developers of the company were compared to the results of the automatic

approach. Specific details of the study can be found in the according conference

publication (Schumacher, Zazworka and Shull).

The first violation states that whenever a new God Class is introduced a violation is

detected. The second violation was defined as projects having more than 5% of God

Classes (in the first version of the rule: 10%). This violation describes a maximum

threshold that no project should exceed.

 164

CR: Violation Detection

CodeVizard was used for identifying God Classes in projects J and F. CodeVizard

allows to compute a wide range of object oriented metrics and allows composing

them into code smell detection. To exemplify the results, the three figures below

show parts of the violation detection process:

The above screen shot of CodeVizard (Figure 38) visualizes classes in namespace

Controllers over a time period of 10 months (Apr 2009 – Jan 2010). The red sections

in each of the classes’ life lines show when a class became a God Class. For example,

the top most class in the picture (class names were anonymized) became a God Class

in October 2009 for a short period of time, and again in November 2009.

To inspect the overall trend of God Classes CodeVizard allows printing the number

and percentage of God Classes over time.

Figure 38: God Classes as indicators for violating continuous refactoring in
project F

 165

Figure 39 shows the trend of God Classes in project F. The red line and scale on the

left side of the graph show the total number of God Classes. The data shows that,

from the beginning of the project until April 2010, the number of God Classes grows

to a total of ten. Afterwards the number decreases again to a total of eight classes.

Every time the number of God Classes increases a violation is generated according to

the conformance rule. The black line and scale on the right side indicate what

percentage of classes is affected. At the end of the analysis period (August 2010)

about 0.025 (=2.5%) of all classes have the smell. One can immediately see that the

second part of the conformance rule (violation 2: a God Class rate of greater than 5%)

is never violated in project F.

Figure 39: Number and percentage of God Classes in project F

 166

Additionally, in this graph, events (such as meetings with the developers) are overlaid

to illustrate the impact of reporting violations against the practice. The first

intervention that focused on code smells was the initial study performed to validate

the feasibility of the automated God Class classifier. All developers of projects J and

F were subjects of this study. One can see that the linear growth of God Classes (from

July 2009 to Jan 2010) stopped at this point, and that it was more or less stable from

this point on. This behavior is not necessarily evidence of a causal relationship

between raising the awareness of developers and the introduction of God Classes, but

shows some amount of correlation between the two.

The same graph is shown for project J in Figure 40. The total number of God Classes

increases from November 2009 on to a total of nine God Classes. The percentage of

Figure 40: Number and percentage of God Classes in project J

 167

God Classes first raises to a peak of 4.1% and declines, from April 2010 on, to 2.9%.

This shows that more and more classes were added to the system and these new

classes do not have the code smell. One can argue that this trend is a positive one

(even if the total number increases slightly).

The impact of interventions is not as visible as in project F. After the initial study that

trained developers in detecting God Classes a steep raise of classes with the smell is

visible in March 2010. The percentage of God Classes decreases after the second

intervention. This intervention reported the existing God Classes to the developers

using their companywide bug tracking system (JIRA20). These classes were then

individually reviewed by the developers (the review process is given in later sub

section). The decrease of percentage of God Classes might be a delayed effect of the

interventions that reminded developers of the importance of the practice.

CR: Gathering Additional Insights

In order to inform developers of new God Classes in their project and to get feedback

on the validity of the classes a feedback process was created. The process is described

in the following figure.

20 www.atlassian.com/software/jira/

 168

As explained earlier, to report new God Classes the companies’ bug tracking system

(JIRA) was used. As the first step of the process (Figure 41: step 1) all new God

Classes were reported as separate issues in JIRA and were assigned to the project

leads. The JIRA issue requires the project lead to review the class and to answer two

questions:

1. Do you consider the class as a God Class?

2. Can it be refactored?

The three possible outcomes are shown on the bottom of the figure. The first question

will help to understand if the right classes are identified by the automatic approach

Figure 41: Feedback process for new violations against the conformance
rule

 169

and will, in the long run, allow optimizing the code smell detection algorithms (e.g.

the metrics and thresholds).

In the third step of the process, the technical lead of the company reviews the class

and judgment of the project leads. He converts the issues into refactoring tasks that

have to be completed by the project leads (or developers of the project) in step 5.

CR: Rule and Process Improvement

For Continuous Refactoring the accurate detection of refactoring opportunities (e.g.

God Classes) is the primary objective of this step. For God Classes the initial study

showed that it was possible to identify these classes in a subset of all classes of the

system with 71% precision and 100% recall. In other words, all God Classes could be

found, but some of the identified classes turned out to be false positives (29% false

positive rate).

6.6.3 Architecture Conformance (AC)

AC: Conformance Rule Definition

One of the companies’ goals is to employ a standardized architecture across all

database driven web applications. The common architecture should help to increase

maintainability and make it easier to switch developers across projects (e.g. decrease

risks when loosing development personal). Further, it should help to identify parts

that are used by all projects, and can be outsourced into a common companywide

code library. The code library should help to increase the correctness of the

application (since commonly used code can be tested more thoroughly), and the

 170

productivity within the project (since commonly used code does not have to be

reinvented in each project).

At the time of executing Step 1 of the conformance approach, this architecture was

not made explicit. That means it existed in the minds of the developers (mostly the

project leads). Therefore, an initial effort had to be spent to make this knowledge

explicit and to agree on the appropriate architecture. The latter was necessary because

not all developers had the same mental model of the architecture.

In three meetings with the companies’ technical lead and four project leads a list of

43 architecture rules was defined with the help of software dependency graphs

(Zimmermann and Nagappan). An example graph is given in Figure 42. The

hexagons in the picture show the main components (i.e. C# namespaces) of a project:

Core (contains the data model and DB access), Web (contains logic for web sites),

Tests (contains test cases), and CommonLib4Net (refers to the common library used

Figure 42: Excerpt of the agreed reference architecture. Arrows
in the figure represent rules that a project has to adhere to.

 171

by all projects). The arrows between the components define access relationships.

Green arrows suggest that at least one class in the namespace has to access the

namespace on the other end of the arrow. For example, classes in the Core namespace

should access one the common library (CommonLib4Net) at least one time. Red

arrows indicated that classes within a namespace are not allowed to access the

namespace on the other end of the arrow. For example, classes in Core are not

allowed to access classes in the Web namespace.

These relations were further refined for all sub namespaces. Additionally, rules were

created that express “existence requirements”. Existence requirements state that a

project is required to have certain namespaces. For example, each project following

the standard architecture has to have Core, Web, and Tests namespaces. A selection

of all architecture rules is presented in the conformance template in Table 34.

 172

AC: Violation Detection

In order to detect violations against the set of architecture rules, defined in the

conformance rule in Table 34, another extension was implemented into CodeVizard.

This extensions is responsible for extracting access relationships from C# code that is

stored in the Subversion repository. In detail, it iterates over the C# classes of one

version and decides for each pair of classes C1 and C2 if the classes access each other

(and the direction of access). Accesses include: the use of a class (instanciation),

method calls, inheritance relationships, and use of parameters of a class (including

Process	
 Name	
 Architecture	
 conformance	
 (AC)	

Process	

Definition	

Database	
 driven	
 web	
 applications	
 should	
 follow	
 common	
 project	

architecture	
 and	
 use	
 common	
 libraries.	
 The	
 architecture	
 rules	
 are	

given	
 in	
 the	
 violation	
 section	
 of	
 the	
 conformance	
 template.	

Process	
 Focus	
 Maintainability	
 (e.g.	
 decrease	
 of	
 code	
 duplicates)	
 ,	
 Correctness	
 (e.g.	

common	
 architecture	
 features	
 are	
 well	
 tested),	
 lower	
 truck	
 factor	

risk	
 (e.g.	
 avoids	
 new,	
 not	
 understandable	
 architectures	
 and	
 designs)	

Collected	
 Data	
 SVN	
 data	
 provides	
 us	
 with	
 information	
 about	
 file	
 and	
 directory	

names,	
 as	
 well	
 as	
 used	
 features	
 of	
 the	
 common	
 architecture.	

Version	
 V1	
 (Sep	
 2009	
 –	
 Dec	
 2009)	
 V2	
 (Dec	
 2009	
 –	
 today)	

Violations	
 Project	
 not	
 having	
 the	

following	
 namespaces:	

(1) Web
(2) Web.Util
...
(11)Test.Models
(12)Test.Properties
(13)Test.Util

Project	
 not	
 satisfying	
 the	

following	
 access	
 relationships	

(“1+”	
 means:	
 at	
 least	
 one	

access;	
 “0!”	
 no	
 access	

allowed):	

ID FROM TO ACCESS
(14)Web.* Core.* 1+
(15)Web.* Test.* 0!
...
(41)Core.Util Core.Controllers 0!
(42)Core.Util Core.Models 0!
(43)Core.Util Core 0!

Project	
 not	
 having	
 the	
 following	

namespaces:	

 (1) Web
(2) Web.Util
...
(11)Test.Models
(12)Test.Properties
(13)Test.Util

Project	
 not	
 satisfying	
 the	

following	
 access	
 relationships	

(“1+”	
 means:	
 at	
 least	
 one	
 access;	

“0!”	
 no	
 access	
 allowed):	

ID FROM TO ACCESS
(14)Web.* Core.* 1+
(15)Web.* Test.* 0!
...
(32)Core.Utils Core.Models 0!
(33)Core * 0!
(34)* Core 0!

	

Table 34: Process Conformance Rule for Architecture Conformance.

 173

static parameters). Accesses are restricted to static relationships, e.g. dynamic

bindings (through reflection) are not considered.

The second responsibility of the extension is to apply the ruleset on the extracted

relationships. For rules that express a desired access relationship (in Table 34: “1+”

rules) the extension checks whether at least one subclass of a namespace access the

desired namespace. If this is not the case, a violation against the rule is detected. For

rules that express undesired access relationships (in Table 34: “0!” rules) the

extension checks if no sub class of the first namespace accesses the namespace of the

second namespace. If at least one access realtionship can be found then a violaton is

detected.

The extension further allows to print the results in csv format for Excel import.

Figure 43: Process Violations against AC for Project J

 174

The identified violations can then be visualized over time as shown in Figure 43.

Each of the rows in the figure represents one of the AC rules (from V2 in Table 34).

The columns show months. Each cell indicates if a process violation at the beginning

of the month could be found (dark red cells with figure “1”) or if no violation was

detected (light cells with figure “0”). The sum of violations can be found in the last

row (SUM). The data from project J indicates that early in the project a lot of

violations were detected. 26 out of 34 rules were violated. In November 2009 most of

these violations were resolved. Additional three violations were resolved in April

2010. At the last point of measurement the project violated only three of the

formulated rules.

The indentified violations for project F are visualized in the same manner in Figure

44. At the beginning of the project (April 2009) most rules are violated (26 out of 34).

Figure 44: Process Violations against AC for Project F

 175

The violations are resolved very early in the project. Four months into development,

only two violations still exist. Only in November 2009, for a short time, two more

violations can be identified. At the end of the analysis period, two architectural

violations reside in the code.

AC: Gathering Additional Insights

The identified violations were discussed with the technical lead and the two project

leads of project J and project F in meetings. First, the amount of initial violations in

the projects could be explained by the project leads. They said that since no or only

little code is present at the beginning of a project, all rules that either expect certain

namespace or access relationships to exist are violated. Therefore, the severity of

violations at project start can be judged as negligible.

The meetings further helped to inform the project leads of violations that could be

resolved in later versions of their software systems. In particular, for project J, three

violations were resolved in April 2010 that were reported in meetings. For project F,

two violations were reported (in November 2009) and could be resolved immediately.

AC: Rule and Process Improvement

The process rules for architecture conformance were tailored one time (from V1 to

V2). This became necessary since not all project leads agreed after a first round of

analysis to the defined rule set of 43 architecture rules. In particular, once a violation

was detected they argued that some of these rules might be applicable to only a subset

of projects, but should not be part of the common rule set. Therefore, rules that turned

out not to be applicable in general, were deleted from the list (the second version

contains a smaller set of 34 architecture rules).

 176

This change is an instance of tailoring a process, since the process definition was

changed. The detection of the rules was accurate in all cases (precision 100%). In

future, the company considers applying two rule sets to each of the projects. One

general rule set as presented here, and one customized for each of their projects that

encodes specifics of the project’s architecture.

Overall, for both inspected processes the number of violations could be reduced over

time from initial 26 violations to 2 (project F) and 3 (project J) violations.

 177

7 Validation of Research Questions and Hypotheses

The four studies presented in the previous chapter provide different levels of

supporting evidence for the six research questions and four hypotheses. This chapter

elaborates on these findings. First, in section 7.1, evidence for the research questions

is summarized. Second, in section 7.2, evidence for the research hypothesis is

presented. After discussing the evidence found, section 7.3, will explain the threats to

internal and external validity. Finally, in section 7.4, open questions and future work

will be presented.

7.1 Validation of Research Questions

 RQ 1:
Feasibility

RQ 2a:
Useful
insights

RQ 2b:
Agreement

RQ 3:
Rule
Improve-
ment

RQ 4:
Process
Enactment
Improve-
ment

RQ 5:
Rule
Transfer

RQ 6:
Overhead
Cost

FEAS ComP: + ComP:+ ComP:
N/A

ComP:
N/A

ComP:
N/A

ComP:
N/A

N/A

CorP: + CorP:+ CorP: N/A CorP:
N/A

CorP: N/A CorP:
N/A

CROOM1 PS: + PS:+ PS: + PS: 0 PS: N/A PS:N/A 12.1%/
6.25% CR: 0 CR: 0 CR: + CR: - CR: N/A CR:N/A

TDD: + TDD: + TDD: + TDD: + TDD: + TDD:N/A
CROOM2 PS: + PS: + PS: + PS: + PS: - PS: + 9.1%/

6.26% CR: 0 CR: 0 CR: + CR: - CR: N/A CR: +
TDD: + TDD: + TDD: + TDD: + TDD: + TDD: +
CP: + CP: 0 CP: 0 CP: 0 CP: - CP: N/A

PROF CTCD: + CTCD:
+

CTCD: + CTCD: + CTCD: + CTCD:
N/A

3.4%/
1.01%

CR: + CR: + CR: 0 CR: 0 CR: 0 CR: 0

AC: + AC: + AC: + AC: + AC: + AC: N/A

Table 35: Overview of evidence for the six research questions.
The indicators should be read the following way:

“-“ negative evidence;
“0” neither negative nor positive evidence;

“-/+” mixed evidence;
“+” positive evidence;

“N/A“ no evidence collected

 178

Evidence for the six research questions is summarized in Table 35. The table gives

details on how each study (rows) can support the different questions (columns). When

necessary, processes are further given in each cell of the table. A “+” in a cell

indicates that positive evidence could be found for in a specific study for a specific

research question. A “0” indicates that neither positive nor negative evidence could

be found (no evidence), or that the results are pointing in both directions. In this case

the data provides no clear support for a “yes” or “no” answer. A “-“ sign in the cell

indicates that the evidence supports a “no” answer to the question. The “N/A” value

represents cases were no evidence could be collected in the given study.

7.1.1 RQ 1: Feasibility

The first research question asked if the approach can be used to find process

violations using minimal intrusive methods. Almost all studies and processes provide

positive evidence for this research questions. In all cases the process conformance

approach and template could be used to translate existing, realistic software processes

into the template and to define a set of violations using mostly existing project data.

In most cases this data was stored in software repositories that were used to

coordinate development activities among a group of developers. In studies CROOM1

and CROOM2 a small amount of manual data was collected through subversion

commit templates. Further, in almost all cases the method could help to identify real

process violations. That means, for each process (except Continuous Refactoring in

the classroom studies) at least one true positive violation could be identified.

Therefore, the studies provide a large body of evidence that the approach is feasible

and promises to be applicable to a large set of software development processes that

 179

are applied in practice in classroom and in professional environments. For the

Continuous Refactoring practice baselines could be build that describe how often

refactoring activities are expected but no violations could be identified so far in the

studies. Overall this can help to define stricter violation rules in future.

It should be again noted that the processes were not picked for investigation, but were

the ones available and chosen by others (e.g. the researchers designing the XP course

and the software managers in the professional environments). To some extend it can

be argued that this process comes close to a random selection from the real population

of applied processes in the field.

7.1.2 RQ 2a: Useful Insights

The first part of the second research questions asks if the detecting process violations

is actually useful and provides valuable insights. As stated in the earlier chapter,

valuable insights contain information on problems with the process definition, the

application of the process, the characteristics of the violations, and the measures of

those violations. These insights can even contain valuable information on how to

design potential changes to the process.

For two of the processes one can argue that this goal could not be reached fully. For

the Continuous Refactoring practice (CR) in the classroom environment baselines

could be build that to some extend describe how often code refactoring should be part

of change activities. However, many of the above described insights are missing. For

example, even if it could be shown that refactoring ratios of 20% are below a desired

ratio it was not yet possible to identify problems with the definition or application of

the process, or to design potential changes to improve conformance. One valuable

 180

insight gained was that the initial violation definition (see Table 9: no refactoring

during the whole project, or only one refactoring in a single stage) is too weak. The

same holds for the Communication Practice. Violations showed that developers

forgot to update their Skype statuses, or that they provide incomplete information.

Again, identification of causes and solutions to improve conformance are missing.

For the other seven processes useful insights could be gained from the violations. For

the Completion Process (ComP) I could show that developers deviated from the plan

and that there were steps missing that require documenting these deviations. For the

Correctness Process (CorP) I showed that an additional step in the code review phases

could help to retest changed components to lower the risk of faulty code. For Pair

Switching (PS) insights could be gained that show that the frequency of switching

pairs is an essential variable, and that switching pairs too often bears conformance

problems.

For Test Driven Development (TDD) the results indicate that novice developers

perceive this practice as very difficult, especially when they work with previously

unknown technologies (i.e. Android). The classroom teams had to be reminded and

forced in some situations to develop test cases. Even if this result might not hold in

more mature environments, results indicate that TDD requires discipline and control

to be followed.

For the Collective Test Case Development (CTCD) practice violations could be

identified that helped providing developers with instant feedback. In the two

identified cases of process violation these developers adhered to the process after

 181

violations were reported to them. Due to the low number of violations it was not

necessary to change the definition of the practice.

For Continuous Refactoring (CR), when applied in PROF, it was shown that

identifying code smells in the professional environment indeed points in many cases

to missed refactoring opportunities. Developers perceived these insights as useful and

based on these observations a new process could be defined that includes the

identification and report of code smells. When compared to the results in the

classroom studies, code smells are more promising in identifying violations against

CR than measuring refactoring ratios (i.e. number of refactoring per number of

changes). However, when I applied the code smell detection to the small classroom

applications, then no code smells could be identified in the rather short term of

development. One explanation for this is that the specific code smell used, i.e. God

Classes, is less apparent in small application than in larger ones. Therefore,

identifying violations against CR in small applications will either require a different

set of code smells or a different method overall.

For Architecture Conformance (AC), rules could be effectively built and applied that

point to violations against standard architecture rules. The identified violations

provided insights for managers and developers. Analysis of violations over time

helped managers understand that, at the beginning of a project, many rules are

violated. But this is understandable because many parts of the architecture were not

built yet. When developers were informed of violations they could effectively correct

most of them.

 182

7.1.3 RQ 2b: Agreement

The second part of the second research questions asks if the measured conformance

matches the perceived conformance of the developers. In the classroom study, end-of-

study questionnaires were used to assess this question. In almost all cases results from

the questionnaire matched the ratio of identified violations. For example, for often

violated practices such as TDD, developers said that they only followed the practice

in half or less of the time. One exception for perceived conformance was the

Communication Practice. Developers believed that they followed this practice in most

or all times. However, violations were identified for both development groups that

show that the practice was violated in 9 out of 20 times for the first group and 3 out of

9 times for the second group. One possible explanation could be that developers were

not aware of violating the practice, e.g. when they forgot to maintain they Skype

status message.

In the professional environments I was able to receive positive feedback from the

developers and manager on reported violations. This provides to evidence that that

reported conformance issues correlate with actual occurring ones.

7.1.4 RQ 3: Rule Improvement

The third research question asks whether the rules for detecting process violations can

be iteratively improved and tailored to the environment. In 5 out of 10 cases rules had

to be tailored and therefore satisfy the iterative approach of the model.

For TDD several technical process issues that were not understood initially required

tailoring. For example, some specifics, such as which java compilation units were

 183

required to be tested, but were not understood completely at the necessary level of

detail at the beginning of the project. The benefit of the iterative character of the

approach was demonstrated by the analysis of false positives leading to an improved

detection of violations.

For Architecture Conformance rules describing the expected common architecture

needed tailoring after applying them to a set of projects. In this case the violation

detection was accurate but the process definition needed to be improved to fit the

collective mental model of the companies’ common software architecture. This

instance of tailoring provided evidence that the approach allows for tailoring through

evolving the process definition.

Collective Test Case Development required tailoring to account for developers that

are only changing an insufficient number of components during an analysis period.

As with TDD, the tailoring affected the way how violations are detected.

The remaining 5 processes that did not yet go through the improvement step can be

categorized in the following way. For three processes (Pair Switching,

Communication Practice and Continuous Refactoring in PROF) the initial process

violation detection strategies proved effective from the beginning on. That means the

initial guess how to identify violations did not require to be changed. Therefore these

processes are not necessarily a “no” answer to this research question since they did

not require tailoring. For the two processes investigated in the first study

(FEASIBILITY) no tailoring was done due to the nature of the a posteriori study. The

last process (Continuous Refactoring in CROOM1 and CROOM2) was not yet

tailored because insufficient evidence was collected to support that developers in the

 184

two projects did not refactor often enough. However, the results show that the initial

violation definitions (see Table 9: no refactoring during the whole project, or only one

refactoring in a single stage) are too weak and need tailoring.

7.1.5 RQ 4: Conformance Improvement

The fourth research question asks if process enactors improve their conformance

when provided with feedback on process violations. In 7 out of 10 instances, process

enactors were educated about violations at least one time during the time of each of

the studies. Overall, the response to the feedback on process conformance varies.

For TDD, conformance could be improved after providing feedback. In CROOM1

developers of team Zeit were made aware of their poor conformance and an

improvement (increase of conformance level of 46%) could be measured in the next

development iteration. However, even after being reminded, developers did not

follow the process all the time. This also holds for CROOM2 were the process

managers made TDD a top priority after observing low conformance levels on the

first day (see Table 20). The TDD observations suggest that if a process is considered

as very important by the process manager it can be enforced to some extent on the

enactors, even if it is hard to execute for them initially.

For Pair Switching in CROOM1 and CROOM2 the number of process violations

increased towards the end of the study. Subjects argued in CROOM2 that this process

bears a problem because switching (and breaking up pairs) was done too often.

Additionally, the process manager indicated that this was a problem of the process.

The results suggest that process enactors will intentionally violate a process if they

see a problem with the steps of the process (or the frequency of executing the steps).

 185

This is an important insight that supports the theory that process enactors will tailor

processes automatically and intentionally if the effectiveness and applicability of the

process is questioned by the enactors. In the case of Pair Switching applied in non-

distributed environments it could be further shown that the tailoring towards less

switching did not have a negative effect on one of the process’ goals: providing good

collective code ownership. Therefore, as an insight in defining the process for Pair

Switching, one can recommend tailoring the practice towards less frequent switching

of programming partners in the given classroom environment.

The communication practice was violated steadily and developers indicated later that

they believed they followed this practice. This instance might indicate that process

enactors are not always aware of violating the process. In other words, they did not

intentionally modify the steps of the process. In the questionnaires developers

indicated that they forgot to execute the process when unexpected events occurred.

Therefore, one might conclude that some processes require better support (e.g. tool

support) to remind developers to execute the process steps.

Collective Test Case Development in the study PROF was violated only twice during

the analysis period of twelve months for projects F and J. In both cases, feedback was

provided to the two developers violating the practice and in the following iteration

they did not violate the practice. Therefore, reminding developers could have caused

the change in behavior.

Continuous Refactoring (CR) was reported to the process enactors by identifying

missed refactoring opportunities twice during the project. The first time enactors

performed a code review to identify God Class code smells. The second time they

 186

were presented with a pre-selection of classes that were potentially infected with the

smell (based on the automatic classification). Enactors had two weeks to review and

comment on these potential violations. In the timeframe between the initial study and

the end of the review phase the relative number of God Classes increased in both

systems (see Figure 39 and Figure 40). Increasing the awareness of violations against

CR did not show an immediate effect. After the end of the review, in both systems,

the relative number of God Classes decreased. This points to the fact that the newly

developed code contained less God Classes. This can be an effect of increasing

awareness of God Classes in the system: developers are introducing less God Classes

than before. Overall the results are mixed and future analysis is necessary to provide

more insight whether refactoring opportunities are missed less often than before and

therefore that CR is followed more closely.

For Architecture Conformance, process enactors were made aware of their violations

by providing details on the violations through the project’s bug tracking system (i.e.

JIRA). Developers resolved the outstanding issues or commented on the validity of

the architectural rules. Overall this feedback mechanism helped to decrease the

number of architectural violations and newly introduced violations in both projects

over time. This positive impact could be caused by the feedback provided to the

developers.

 187

7.1.6 RQ 5: Rule Transfer

The fifth research questions asked if a new project in either the same or a different

environment can make use of previously defined and tailored process templates and

violation detection mechanisms.

For the three processes that were investigated in the second classroom study

(CROOM2) the tailored rules from the first study (CROOM1) could be indeed used as

a starting point. For Pair Switching the rules did not require further tailoring in the

second study. Continuous refactoring was applied as in the first study. Last, TDD was

used as in the first study and further tailored towards the changed application

technology (i.e. Android) and developer behavior (i.e. not following the

recommended naming convention) in the second study.

For transferring rules from one environment to another environment (e.g. from

classroom to professional) no evidence can be yet presented that shows this to be

feasible. The one practice that was investigated in two environments (i.e. classroom

and professional environments) was Continuous Refactoring. However, data

collection methods differed in both scenarios significantly. Whereas the process

enactors in the classroom setting reported on refactoring activities, the enactors in the

professional environment did not report on it, but refactoring violations were

measured indirectly through a product measure: code smells. The difference in

measurement techniques also required a change in how violations were defined and

identified. Thus, conformance rules were not just tailored versions of the previously

applied versions. When comparing the two approaches of identifying violations

against CR one can still learn important properties for future rule application. On the

 188

one hand, the code smell idea (i.e. in particular the God Classes) worked especially

well in identifying violations in the mid-sized professional project. However, it could

not help to identify violations in small projects, because no God Classes could be

identified. Thus, project size is a key variable when identifying God Classes. On the

positive side, the code smell approach did not rely on additional manual data

collection (i.e. through commit templates) and is therefore less expensive and less

prone to falsely reported data. On the other hand, measuring refactoring ratios (i.e. in

CROOM1 and CROOM2) could help to build support that the practice is executed by

the developers. However, setting a fixed threshold for an expected minimal

refactoring ratio turned out to be complicated. More research is necessary to

understand if this model for detection is feasible.

7.1.7 RQ 6: Overhead Cost

The sixth research question asks about the overhead cost for the different roles of the

approach. To answer this question an estimate of the costs was generated after the

studies.

CROOM1

This four day development effort included overhead cost for process enactors through

filling in subversion commit templates. Further, managers and enactors spent time

discussing process violations in stand up meetings. The highest cost was spent by the

process analyst since initial analysis models had to be created. Table 36 summarizes

the estimated effort data.

 189

The cost measures presented in above table show the effort that was spent by the

enactors during the studies, but does not include the cost of developing the tools used

for data analysis (e.g. CodeVizard). However, the cost for the analyst included effort

that was required to adapt tools. For example, a adaptation for the detection of

violations against Test Driven Development is included in the cost.

Role Estimated hours spent (and
activities) per day on
conformance issues
/analysis

Estimated
total hours
spent
during 4
developme
nt days on
conforman
ce issues/
analysis

Tota
l
work
hour
s

Percentage
of time
spend with
conforman
ce
issues/anal
ysis

Process
Analyst (1)

8h: creating models to
detect violations, creating
reports on violations,
sending reports to process
manager

32h 32h 100%

Process
Manager (1)

0.5h: reading conformance
reports (20 minutes) and
discussing violations (10
minutes) in daily stand up
meetings

2h 32h 6.25%

Process
Enactors (14)

0.5h: ca. 10 times filling in
svn template a day (10 * 2
minutes=20 minutes); 10
minutes discussing
violations in daily stand up
meeting

2h 32h 6.25%

Total (all
actors: 1
analyst, 1
manager, 14
developers)

15.5h/day 62h 512h 12.1%

Total without
Process
Analyst

7.5h/day 30h 480 6.25%

Table 36: Effort Estimation for CROOM1

 190

Overall the data shows that about 12.1% of time of all enactors and 6.25% of

developers and managers was spent to perform the conformance analysis in this

study. Most time was spent by the analyst who had to build and adapt the model for

violation detection and had to create reports (i.e. Word documents) that were send to

the manager at the end of each development day.

CROOM2

For CROOM2 the cost of the conformance analysis spent by the process analyst could

be lowered since most (3 out of 4) conformance templates and detections mechanisms

could be reused from the first study. Effort estimates are shown in Table 37.

 191

The relative time spent in conformance activities could be lowered in this study to

about 9% due to the existing analysis models. For process enactors and managers the

effort spent was the same (i.e. 6.25%) as in the first study.

Role Estimated hours spent (and
activities) per day on
conformance issues
/analysis

Estimated
total hours
spent
during 5
developme
nt days on
conforman
ce issues/
analysis

Tota
l
work
hour
s

Percentage
of time
spend with
conforman
ce
issues/anal
ysis

Process
Analyst (1)

4h: creating models to
detect violations, creating
reports on violations,
sending reports to process
manager

20h 20h 100%

Process
Manager (1)

0.5h: reading conformance
reports (20 minutes) and
discussing violations (10
minutes) in daily stand up
meetings

2.5h 40h 6.25%

Process
Enactors (15)

0.5h: ca. 10 times filling in
svn template a day (10 * 2
minutes=20 minutes); 10
minutes discussing
violations in daily stand up
meeting

2.5h 40h 6.25%

Total (all
actors: 1
analyst, 1
manager, 15
developers)

12h/day 60h 660h 9.1%

Total without
Process
Analyst

8h/day 40h 640h 6.25%

Table 37: Effort Estimation for CROOM2

 192

PROF

For the professional study effort estimates were created for the time period between

January 2010 and August 2010. The data was derived from timesheets and meeting

notes that were created during the analysis period. The number of process enactors

was reduced to the ones that were mainly engaged in the development and the

processes. Developers that were not fully included in the analysis cycle (e.g.

developers who sat in meetings, but their project was not checked for violations) were

excluded from the analysis. The timeframe was chosen since in that period all

developers worked on a single project that was analyzed for conformance. Table 38

summarizes the effort data.

 193

The effort data shows that in the professional environment overhead cost was less

than in the classroom study. A total of estimated 3.4% was spent including the

process analyst, and 1.01% when excluding the process analyst, in process

conformance activities.

Role Estimated total hours spent during
from Jan 2010 to Aug 2010 on
conformance issues/ analysis

Total
work
hours

Percentage
of time spent
with
conformance
issues/analys
is

Process
Analyst (1)

16h/month=128h: creating
models to detect violations,
creating reports on violations,
sending reports to process
manager and enactors, meeting
with process manager and
enactors

128h 100%

Process
Manager (1)

2h/month=16h: defining process
conformance templates,
discussing violations,
implementing improvements

ca.
1280h

1.25%

Process
Enactors (3
most
involved
developers)

1.5h/month=12h: providing
feedback on potential violations,
meeting with process manager and
analyst, performing code smell
study

Ca.
1280h

0.9%

Total (all
actors: 1
analyst, 1
manager, 3
developers)

128h+ 16h + (3*12h)=180h 5248h 3.4%

Total
without
Process
Analyst

52h 5120h 1.01%

Table 38: Effort Estimation for PROF

 194

7.2 Validation of Research Hypothesis

7.2.1 H1: Precision > 50%

The first hypothesis states that for a given project and process it is possible to tailor

the process violation detection mechanisms towards a precision of at least 50%. That

means, in worst case the detection will report a maximum of 50% false positives (i.e.

potential violations that turn out not be real violations).

Data for the hypothesis was collected in the professional environment the following

way. Each violation was rechecked by either the process manager, or the process

enactors, or both parties to make the final judgment whether the identified violations

are indeed valid. For Collective Test Case Development and the second version of the

violation detection strategy (see Table 30) the identified two violations were judged

 Hypothesis
1:
Precision >
50%

Hypothesis
2:
Recall >
50%

Hypothesis
3:
Precision
Improvement

Hypothesis
4:
Conformance
Improvement

FEAS ComP: N/A
CorP: N/A

ComP: N/A
CorP: N/A

ComP: N/A
CorP: N/A

ComP: N/A
CorP: N/A

CROOM1 PS: N/A
CR: N/A
TDD: N/A

PS: N/A
CR: N/A
TDD: N/A

PS: N/A
CR: N/A
TDD: N/A

PS: N/A
CR: N/A
TDD: +

CROOM2 PS: N/A
CR: N/A
TDD: N/A
CP: N/A

PS: N/A
CR: N/A
TDD: N/A
CP: N/A

PS: N/A
CR: N/A
TDD: N/A
CP: N/A

PS: -
CR: N/A
TDD: +
CP: -/+

PROF CTCD: +
(100%)
CR: + (71%)
AC: + (100%)

CTCD: N/A
CR: + (100%)
AC: N/A

CTCD: +
(+73%)
CR: + (+29%)
AC: 0 (+0%)

CTCD: +
CR: -/+
AC: +

Table 39: Results overview for the four research hypotheses
The indicators should be read the following way:

“-“ negative evidence;
“0” neither negative nor positive evidence;

“-/+” mixed evidence;
“+” positive evidence;

“N/A“ no evidence collected

 195

as valid violations. Therefore precision was in this case 100%. For Continuous

Refactoring the classes that were marked as missed refactoring opportunities (i.e.

classes with the God Class code smell) were reevaluated in the review process

described in Figure 41. A precision of 71% was reached in successfully identifying

the classes that require refactoring. For Architecture Conformance all reported

violations were indeed violations against the defined architecture rules. The precision

of the approach is therefore 100%. Overall, all processes and violation detections in

the professional environment could be tailored towards having a precision of 71%.

When testing this hypothesis based on the three data points gathered in the

professional environment one can formulate the null hypothesis as:

H0: true precision median <= 50%,

Let X be a random variable that indicates whether a detection for an arbitrary process

is less or equal than 50% (i.e. X=0) or greater than 50% (i.e. X=1). X is then

binomially distributed. The claim of the null hypothesis is that, overall, more

processes will reach a precision of less or equal 50% than there are processes

reaching more than 50% precision. In other words, P(X=0) >= P(X=1).

To calculate the probability (p-value) that given the data (3 data points indicating

X=1) one is falsely rejecting the null hypothesis (e.g. error type I) one can use a

binominal test:

 P(3 observations X=1 | P(X=1)=0.5=P(X=0)) = 0.5 * 0.5 * 0.5 = 0.125

 196

This means that with a probability of 12.5% one would reject H0 even if the true

precision median is 50%.

Depending on the chosen significance level (α-level) one can or cannot reject the null

hypothesis: when choosing an α-level of 0.2, as typically used in exploratory studies,

one can reject the null hypothesis (i.e. 0.125 < 0.2). When using the more commonly

used α-level of 0.05 one cannot reject the null hypothesis. Therefore the data does not

provide statistical significant evidence for H1 on a statistical significant level of 0.05.

7.2.2 H2: Recall > 50%

The second research hypothesis states that for a given process and project, violations

detection can be optimized to identify at least 50% of the real violations for one

specific violation type. As explained in the original hypothesis, the recall of the

approach can be estimated by taking a subset of items and manually identifying

violations on them. Since this is an effort intensive task it could be only performed for

one process in the professional environment. In this environment the process enactors

examined a subset of all classes in a system for being God Classes (i.e. having missed

to be refactored according to the Continuous Refactoring process). Thus, the specific

violation type was the identification of God Classes, which is one out of many ways

to identify missed refactoring opportunities. For two projects subsets of about 40 files

were randomly chosen and examined. Detailed information on the experimental

designs is presented in (Schumacher, Zazworka and Shull). The classes that were

identified by the enactors were compared to the set of classes picked by the automatic

 197

solution (i.e. the God Class classifier). In this study all classes that were found to be

God Classes by the enactors were also identified by the algorithm. Therefore, this

experiment provides evidence for the hypothesis since a recall of 100% could be

reached for identifying God Classes.

As with precision in section 7.2.1 this result does not hold when trying to reject the

null hypothesis with a binominal test on a significance level of 0.05. The p-value of

the test is 0.5. Therefore, the evidence presented for H2 is not statistically significant.

7.2.3 Precision Improvement

The third research hypothesis states that the four step iterative model will help

improve the precision of the violation detection over time. Precision measures were

assessed in study PROF and a positive change can be recognized throughout the set

of processes.

For the first process, Collective Test Case Development (CTCD), the initial precision

(see Table 30: version 1) was relatively low with 20% and 33% (see Table 32 for

measurement results). For the tailored version (v2) precision could be improved to

100%. This is an average gain of +73% (out of a maximum of 100%).

For the second process Continuous Refactoring the initial precision of the approach

was 71%. This is the precision of the God Class classifier identifying the right classes

as God Classes. The classifier works on a set of software metrics as described in

(Lanza and Marinescu) and (Schumacher, Zazworka and Shull) (i.e. a complexity

metric: weighted method count; a coupling metric: access to foreign data; and a

cohesion metric: tight class cohesion). If the three metrics are out of certain bounds

(defined through thresholds) a God Class is detected. In (Schumacher, Zazworka and

 198

Shull) it is shown that one can tailor the metric thresholds to achieve a precision of

100% for the data collected in the code smell study (while holding the recall constant

at 100%). Therefore precision can be raised in this case from 71% to 100%.

For the last process, Architecture Conformance, all identified violations were indeed

true positives according to the defined rule set from the beginning on. Thus, the initial

precision was 100% and could not be further improved. The later change of the

architectural rule set did not affect this behavior (see conformance rules in Table 34:

V1 and V2). As explained in 0, the change of architecture rules is an instance of

tailoring the process, and not a tailoring of how violations are detected.

As with precision in section 7.2.1 this result does not hold when trying to reject the

null hypothesis with a binominal test on a significance level of 0.05. The p value of

the test is 0.125 assuming improving and not improving precision is equally

distributed with each of the events having a probability of 0.5. Therefore, the

evidence presented for H3 is not statistically significant.

7.2.4 Conformance Improvement

The fourth hypothesis investigates in detail the impact of feedback on process

violations; the H0 hypothesis is that feedback has no impact on future process

conformance. The null hypothesis can be rejected if process enactors are improving

their process conformance whenever violations are reported to them in the previous

analysis cycle.

As already discussed for Research Question 4 in Section 7.1.5 the results depend on

the process. For each process I analyzed whether after feedback to the process

 199

enactor’s conformance was improved (positive evidence) or worsened (negative

evidence).

Process
Name

Study and
Team

Time of
Feedback

Violations
(violation
rate)
before

Violations
(violation
rate) after

Evidence
Based on

violations

TDD CROOM1 Zeit Before 3rd
iteration

6 (85.7%) 2 (40%) positive

 CROOM2
Notfallplan

Before 2nd
iteration

9 (100%) 6 (55%) positive

 CROOM2
Notfallplan

Before 3rd
iteration

6(55%) 0 (0%) positive

Pair Switching CROOM2
Notfallplan

Before 3rd
iteration

2 (25%) 4 (100%) negative

 CROOM2
Notfallplan

Before 4th
iteration

4 (100%) 7 (77%) negative

 CROOM2
Notfa
llplan

Before 5th
iteration

7(77%) 8(73%) negative

 CROOM2 Spiel Before 4rd
iteration

1(33%) 5(63%) negative

Communication
Practice

CROOM2
Notfallplan

Before 2nd
iteration

2 3 negative

 CROOM2
Notfallplan

Before 3rd
iteration

3 0 positive

 CROOM2
Notfallplan

Before 4th
iteration

0 3 negative

 CROOM2
Notfallplan

Before 5th
iteration

3 4 negative

Continuous
Refactoring

PROF Project J Jan 20 2010 %GC:2.25% %GC:2.75% negative

 PROF Project J March 23
2010

%GC:2.75% %GC:3.75% negative

 PROF Project J Apr 14 2010 %GC:3.75% %GC:3.70% positive
 PROF Project J Jun 15 2010 %GC:3.70% %GC:2.9% positive
 PROF Project

F
Jan 20 2010 %GC:2.9% %GC:2.8% positive

 PROF Project
F

March 23
2010

%GC:2.8% %GC:3.45% negative

 PROF Project
F

Apr 14 2010 %GC:3.45% %GC:2.5% positive

 PROF Project
F

Jun 15 2010 %GC:2.5% %GC:2.5% -

CTCD PROF Project J March 2010 1 0 positive
 PROF Project

F
Dec 2009 1 0 positive

AC PROF Project J Apr 2010 6 3 positive
Table 40: Detailed results on conformance change after feedback to

process enactors

 200

In Table 40 results are presented for this analysis. Out of six processes in three cases

conformance could indeed be improved all the time in 6 instances of providing

feedback. The processes are Test Driven Development, Collective Test Case

Development and Architecture Conformance. The probability of this happening by

chance is p=0.01521 assuming that negative and positive changes are equally

distributed with having each a chance of 50%. Therefore, when combining the results

of the three processes this result is significant on a level of 0.05. As a result one can

reject the null hypothesis in this case. For two of the six processes (Communication

Practice and Continuous Refactoring) the results varied. For Continuous Refactoring

results got better (positive evidence) towards the end of the projects which might

indicate a delayed effect of providing feedback. For the Communication Practice

conformance got better one time but worsened in three cases. For one process, Pair

Switching, feedback affected the results in a negative way, i.e., conformance declined

in all cases after feedback. This is the process were enactors and managers identified

micro process issues due to too frequent switching of pair programming partners. All

these results are not statistical significant when tested with a binominal test on a

significance level of 0.05.

Overall, one can conclude that the initial hypothesis that process conformance always

improves when providing feedback was too simple and naive. When looking for

reasons why for some processes this was the case and for others it was not, one can

identify several explanations. For the processes that were considered as extremely

21 P(all 6 instances are positive) = 0.56=0.015 (binominal test)

 201

important and valid by the process managers, such as TDD, AC, and CTCD, positive

change could be observed. Further for AC, developers helped to formulate the

architectural rules and had therefore impact on the design of the practice. Processes

that were either flawed (i.e. Pair Switching frequency) or not yet fully understood (i.e.

Communication Practice) were in the set of processes that were not followed, even

after feedback, and require being changed (or better supported) in future.

7.3 Threats to Validity

As with any study the presented four studies bear threats to internal and external

validity. This section discussed these threats in detail.

7.3.1 Threads due to Internal Validity

Threats to internal validity describe problems with the experimental design that allow

circumstances other than the treatment to influence the experimental results.

History

Historical events can change the outcomes of experiments independent of the applied

treatment. In case of identifying process violations one can imagine that external

events that were occurring in the different software projects will influenced the

behavior of the process enactors. After all, software projects are typically executed in

highly dynamic environments with changing parameters (e.g. changing requirements,

changing deadlines, change of personal and task priorities). These dynamics are also

 202

reflected in the presented approach through its iterative character. Process definitions

and violation detections might change over time with the dynamics of the project.

I investigated this threat in the last three studies by examining especially high

amounts of violations in detail. Interviews with the managers and process enactors

were used to do this. For example, in the classroom studies, process enactors tended

to violate Pair Switching increasingly towards the last development day. My

investigation of the cause through interviews with the process manager showed that

the last day was usually the busiest one, where developers tried to complete a

shippable product. Therefore this additional pressure could be identified as having an

influence on process conformance. In the professional environment the high number

of violations against architecture conformance could be explained by the initial build

up of the software. In this early phase it was normal that not all architectural rules

were adhered to yet.

In the professional environment analysis was performed less frequently than in the

classroom environment. Several historical events did happen that may have

influenced the behavior of the developers. For example, in between analysis reports

developers had to finish releases of the software after six week development sprints.

Further, both projects had phases, e.g. requirement elicitation phases, were only very

little development was done: Table 31 shows months where all developers in the

project (Project J) changed less than 10 source code files. Therefore, they could not

violate Collective Test Case Development in that month.

 203

In summary, dynamics in a software project will always be presents and cannot be

ruled out as causes for changed behavior. The applied model reflects these dynamics

through its iterative character.

Maturation

The threat of maturation describes the effects of subject behavior that changes over

time due to learning effects. E.g. subjects might execute a process more precisely and

effectively after some time because they increasingly learn and understand the

process. As with the history threat this is behavior one will expect when process

enactors, especially in classroom settings, execute a previously unknown process.

One cannot rule out this threat for many of the studies and processes, especially the

classroom studies that were of short duration. However, in some cases strategies were

in place to limit the impact of maturing subjects. In the two classroom studies,

subjects practiced Test Driven Development in a practical exercise during the course

and before the actual study. This should lower the initial learning effect at the

beginning of the experiment. Pair Switching and Continuous Refactoring were taught

on a theoretical level before the beginning of the study. For Pair Switching, subjects

tended to violate the practice towards the end of the study. Therefore, one can argue

that a maturation effect did not affect the subject’s conformance (i.e. one would

expect poor conformance in the beginning of process application). Continuous

Refactoring could have been influenced by maturation of subjects that learned over

time how to refactor their own software.

In the professional environment the inspected processes were the ones that were

already practiced for a long time in the organization. Therefore, learning effects are

 204

limited and should only be present for new development staff joining the

organization. In this case new developers could increasingly become better at

following a process and improve their conformance automatically without being

impacted by conformance feedback.

Instrumentation

This threat describes changes in outcomes caused by changes in instrumentation,

observers, or how scores are counted. For all of the studies and inspected processes

instrumentation methods were held constant (i.e. did not change) during the process

application. The only changes that were done during the studies are the changes to the

methods being responsible for identifying process violations. These methods were

tailored mainly based on false positives and it was shown that they were more

effective in identifying the right violations. These changes were documented and are

presented thought the various versions in the process conformance template.

One possible threat to the validity of the collected data was the partly self reported

data used in the classroom studies. Refactoring activities were reported by the process

enactors as part of the Subversion commit template. Subjects could have indicated

that they did refactoring without really doing it, or they could have forgotten to

indicate refactoring changes even when doing them. Evidence that this was not the

case is presented through the background questionnaires that showed a general fit to

the self reported data.

Statistical Regression and Selection of Subjects

The threats of statistical regression and selection of subjects describe biases caused

the methods how subjects for the studies are recruited and assigned to the

 205

development groups. This threat was limited by the following actions. In the

classroom study subjects were randomly assigned to the development teams. Further,

subjects were regular students signing up for the XP course. In the professional

environment the two chosen projects were the ones most active and important to the

organizations at the time of analysis. There was no evidence that these projects are

problematic (e.g. cause cost and time overruns). Therefore, the projects and

developers represent a valid subset of the organizations projects and developers.

Experimental Mortality

Describes the threat of the loss of subjects and therefore biases towards characteristics

of the group of subjects continuing in the study.

In the classroom experiment no subjects left the project during the study. In one

instance one subject did not provide answers to the end-of-study questionnaire in the

second classroom study. In the professional environment one developer left the

organization during the time of the study. This could have impacted results in

following way. An improvement in conformance could have been affected by the loss

of a developer who conforms poorly to the process. For processes where developers

could be tracked back to violations (e.g. CTDC) I could analyze that this developer

was not responsible for the majority of violations. For the processes where this was

not feasible (e.g. AC and CR) one cannot be sure if mortality could have affected the

results.

 206

7.3.2 Threats to External Validity

Threats to external validity are the treats that exist when generalizing the research

results, or applying the methods in new environments (e.g. with a different population

of developers, or different measurement variables such as different software

processes).

One specific threat to external validity is the interaction effects of the selection of the

subjects and the treatment. In other words, one needs to make sure that the subjects

(i.e. the population) of the studies are representative. In Chapter 1 of this work it is

outlined that the presented approach aims at investigating process conformance for

two specific populations: the first population being students in classroom studies, the

second one being professional developers in real world software projects. As for the

first population, the studies conducted were using students (i.e. 29) on graduate levels

in computer science in two universities in Germany. The population is in many ways

representative for students used in typical classroom experiments. In particular the

skills of the 29 students varied and the taught material differed from one university to

the other. However, not all conclusions and behaviors might be reflected by the total

population. In particular there could have been cultural influences that do affect the

results and might not generalize. For example, observing students in other countries

might lead to different results than the ones in Germany. Further, the studies do not

include junior level students. Therefore not all of the results might generalize for the

overall population of students used in classroom experiments.

As for the population in the professional environment, the two environments had a

wide range of professional software developers with different levels of experience

 207

(ranging from less than one year to more than 7 years of development experience

(Schumacher, Zazworka and Shull)). Further the development lifecycles were very

different reaching from a very planned and static waterfall lifecycle in FEASIBILITY

to a very iterative and agile lifecycle used in PROF. Further, the project size differed

to a considerable amount from code in the 100kLOC range developed by ten

developers (in FEASIBILITY) to smaller projects with two developers in the 10kLOC

range in study PROF. Last, different programming languages were used for the

different application types in the two studies with professionals.

Last a set of eight different and realistic software development processes has been

investigated that share in common that they have not been set up for the purpose of

conformance measurement but for producing software in classroom and professional

environments.

In summary, the four studies conducted in the scope of this thesis might not rule out

all threats to external validity but present evidence from valid and different enough

environments to provide overall evidence that the presented approach is not limited to

a specific environment or populations of processes and subjects.

7.4 Open Questions and Future Work

The presented work proposes and evaluates an approach to identify and inspect

process violations for software processes. The four studies show that violations are

apparent in software development processes and that various factors may affect

process conformance. In some sense, this thesis presents a way to detect issues with a

process definition and shows that issues exist, but provides only little support in how

to resolve or prevent these issues.

 208

Based on this observation several important research questions can be formulated that

are worth investigating in future:

7.4.1 Impact of process variables on conformance

One of the important research questions is how can we help process designers in the

future to create software processes that are one the one hand effective and on the

other likely to be followed by process enactors. At this point in time, problems during

the application can be identified but little is known about the “ingredients” of a

successful process. Important process parameters to investigate in future are (and are

not be limited to):

• The complexity of a process that might influence how well enactors can

remember a process in detail.

• The likelihood of forgetting process steps due to a process design that allows

skipping steps (e.g. if future steps do not depend on previous steps)

• The subjective perceived importance to the manager, the development team,

or the individual developer.

• The influence of enactors helping to design the process, instead of not being

involved in the process modeling.

• The way process descriptions are formulated and communicated across the

development team.

• The role of tools that support process steps, or remind process enactors to

execute process steps.

 209

• How a process fits the environment.

7.4.2 Process tool support

One possible approach to improve conformance are tools that build upon this work

and provide developers with more active feedback about process violations during

process execution. Future work should investigate how to technically integrate these

tools into existing software development environments (e.g. IDEs, such as Eclipse).

For example, in an IDE such as Eclipse, TDD could be supported by guiding the

developer through the steps of firstly developing the test case and secondly

implementing the class itself. Further research is necessary to understand whether

developer perceive these tools as useful (rather than interrupting) and if resulting

process conformance is affected positively.

7.4.3 Relationship between process conformance and software

quality

As explained in the first chapter, the motivation of this work builds on the assumption

that not conforming to a process will also likely result in a product with decreased

quality. For example, not following Test Driven Development will likely result in a

product that is less correct, thus having more defects. Future research should therefore

investigate two important questions. First, more evidence should be collected to

confirm the assumption for a cause effect relationship between process conformance

 and product quality. Second, it will be of interest how the two variables,

conformance and quality, are connected: can we assume a linear relationship between

 210

the two of them? For example, does a decrease of 10% of process conformance lead

to a, sometimes acceptable, decrease of 10% in product quality?

 211

8 Conclusions

In this work I have presented a methodology for formulating, identifying and

investigating process violations in the execution of software processes. The

methodology consists of a four step iterative model, compromising templates and

tools. A strong focus is set on identifying violations in a cost efficient and

unobtrusive manner by utilizing automatically collected data gathered through

commonly used software development tools, such as version control systems. The

presented approach can be thought of as “process testing” and is powerful enough to

show the presence of process violations but not their absence.

To evaluate the usefulness and correctness of the model a series of four studies have

been conducted in both classroom and professional environments. A total of eight

different software processes have been investigated and tested. The results of the

studies show that the steps and iterative character of the methodology are useful for

formulating and tailoring violation detection strategies and investigate violations in

classroom study environments and professional environments, using minimal

intrusive methods. The overhead cost of the approach is shown to be feasible with a

3.4% (professional environment) and 12.1% (classroom environment) overhead.

All the investigated processes were violated in some way, which emphasizes the

importance of conformance measurement. This is especially important when running

an empirical study to evaluate the effectiveness of a software process, as the

experimenters want to make sure they are evaluating the specified process and not a

variation of it.

 212

Further, investigation of feedback about violations to the process enactors shows that

conformance will not improve in all cases by merely presenting violations back to the

process enactors. For example, if the process enactors see problems with the process,

such as too frequent switching in the XP practice Pair Switching, they tend to

continue violating the process. This is important feedback to the process designers.

And, some processes, such as Test Driven Development, sound simplistic in their

definition but do require a fair amount of discipline to follow, at least by novice

programmers. Test Driven Development was violated in four observed classroom

projects at least 33.3% to 65.4% of the time and developers indicated this practice to

be hard to follow.

For some processes potential improvement could be suggested: for Completion

Process and Correctness Process, additional steps could have helped to keep the

development plan up-to-date, or to retest and re-review components that were heavily

modified after their being in the validation phase of the project.

Different approaches for detecting violations were presented for the agile Continuous

Refactoring (CR) practice. It was shown that the identification of code smells, i.e.

God Classes, led to very good precision and recall in identifying missed refactoring

opportunities. Contrarily, measuring the relative amount of refactoring changes did

not lead to a sufficiently strict enough measure for identifying violations against CR.

Future research is needed to investigate which aspects of a process promise to be

“human compatible”, i.e. promise to be likely to be adhered to by enactors. Another

future stream of research is to investigate what impact non-conformance has on the

 213

quality of the resulting software product, i.e. if not following a process leads indeed

to decreased quality characteristics.

 214

9 Appendix

9.1 Truck Factor Metric: Definition and Example

The truck factor has been defined by the eXtreme Programming Community as: “The

number of people on your team that have to be hit with a truck before the project is in

serious trouble”22. A high truck factor is desirable since it lowers the risk of project

failure when losing personnel. Collective Code Ownership is the XP practice which

helps in avoiding a low truck factor (Beck), situations where a small set of

programmers owns a large part of the code base exclusively. To my knowledge, this

measure has been proposed informally only so far and I am the first to derive this

number by using information about code ownership from a code repository. The basic

assumption of our analysis is that a source component (e.g. a Java file) in the

repository is collectively owned by the developers who made changes to it (i.e. edited

it).

The table on top exemplifies a toy system with three developers (A,B,C) and three

components (File 1, File 2, File 3). After extracting which developers modified which

22 Truck Factor Definition: http://www.agileadvice.com/archives/2005/05/truck_factor.html, retrieved June 26th,
2010

 215

components from the code repository data one can generate different scenarios where

one can assume that a certain subset of developers has been “hit by a truck”. For each

component one can decide if the remaining developers have knowledge about it (light

cells with “+” sign) or not (dark cells with “-“ sign). A coverage number covx(n) then

describes the percentage of the components that would still be known by the

remaining developers if n developers are absent. There are three types of coverage

numbers: (1) the minimum (x = min), i.e. the worst case, is the remaining coverage

when the set of developers with the most exclusive knowledge leaves, (2) the average

(x = avg) coverage, and (3) maximum (x = max), i.e. the best case, is the coverage

when the set of developers with the least exclusive knowledge leaves. The three

coverage curves can be plotted as shown in the lower figure to visualize the truck

factor characteristics of a project.

To define the truck factor (i.e. a single number) the manager has to define a threshold

for code coverage. The truck factor can then be read from the chart by finding the

intersection of the coverage number with one of the three curves. Typically, a project

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	
 1	
 2	
 3	

Re
m
ai
ni
ng
	
 c
od

e	

co
ve
ra
ge
	
 (%

)	

Truck	
 Number:	
 number	
 of	
 missing	
 developers	

Min	
 Avg	
 Max	

 216

manager who wants to lower the risk of a project would be most interested in the

worst case (i.e. x = min) curve since it shows the developers that are least

dispensable.

Therefore the truck factor is defined as:

tfx, c = max {n | covx(n) ≥ c}

For example, the worst case 60% coverage truck factor of our example would be:

tfmin, 60% = max {n | covmin(n) ≥ 60%} = 1

 217

10 Bibliography

Zazworka, N. and C. Ackermann. “CodeVizard: a tool to aid the analysis of software

evolution.” Poster Session, International Symposium on Empirical Software

Engineering and Measurement. Bolzano-Bozen, Italy: AVM/IEEE, 2010.

Zazworka, N., V.R. Basili and F. Shull. “Tool Supported Detection and Judgement of

Nonconformance in Process Execution.” 3rd International Symposium on Empirical

Software Engineering and Measurement (ESEM), 2009. 2009.

Zazworka, N., et al. “Are Developers Complying with the Process: An XP Study, ,.”

4th International Symposium on Empirical Software Engineering and Measurement

(ESEM). Bolzano, Italy: ACM, New York, 2010. 1-10.

Zimmermann, T. and N. Nagappan. “Predicting defects using network analysis on

dependency graphs.” 30th international conference on Software engineering. Leipzig:

ACM, 2008. 531--540.

International Organization for Standardization. Information Technology - Software

life cycle processes. 1995.

Williams, L.A. and L.A. Kessler. “All I really need to know about pair programming

I learned in kindergarden.” Cummunications of the ACM 43.5 (2000): 108-114.

Ahern, D.M, A. Clouse and R. Turner. CMMI Distilled: A Practical Introduction to

Integrated Process Improvement. Boston MA: Addison-Wesley, 2003.

Arisholm, E., et al. “Improving an Evolutionary Development Process.” EuroSPI.

Pori, Finland, 1999. 940-950.

Bandinelli, S., et al. “SPADE: an environment for software process analysis, design,

and enactment.” In Software Process Modelling and Technology (1994): 223-247.

 218

Basili, V. R., F. Shull and F. Lanubile. “Building Knowledge through Families of

Experiments.” IEEE Trans. Softw. Eng. 25, 4 (Jul. 1999), 456-473. (1999).

Beck, K. Extreme Programming Explained: Embrace Change. Addison Wesley, 1999.

Boudes, P. “Drug Compliance in Therapeutic Trials: A Review.” Controlled Clinical

Trials, Volume 19, Issue 3, June 1998, Pages (1998): pp.257-268.

Broynooghe, R.F., J.M. Parker and J.S. Rowles. “PSS: A System for Process

Enactment.” Proceedings of First International Conference on Software Process,

IEEE Computer Society Press. 1991.

Brooks, F. P. “No Silver Bullet Essence and Accidents of Software Engineering.”

Computer 20, 4 (Apr. 1987), 10-19. (1987).

Cook, J. E. and A. L. Wolf. “Discovering models of software processes from event-

based data.” ACM Trans. Softw. Eng. Methodol. 7, 3 (July), 215–249., 1998.

—. “Software process validation: quantitatively measuring the correspondence of a

process to a model.” ACM Trans. Softw. Eng. Methodol. 8, 2 (Apr. 1999), 147-176.

(1999).

Cook, J. E. “Process discovery and validation through event-data analysis.” Tech.

Rep.CU-CS-817-96. Department of Computer Science, University of Colorado at

Boulder,Boulder, CO., 1996.

De Beer, H.T. and B. F. Van Dongen. “Process Mining and Verification of

Properties: An Approach based on Temporal Logic.” On the Move to Meaningful

Internet Systems 2005: CoopIS, DOA, and ODBASE: OTM Confederated

International Conferences, CoopIS, DOA, and ODBASE 2005, volume 3760 of

Lecture Notes in Computer Science. 2005.

 219

Fowler, M. and K. Beck. Refactoring: improving the design of existing code. Addison

Wesley Longman, Inc., 1999.

Gittins, R. and R. Hope. “A study of Human Solutions in eXtreme Programming.” in

13th Workshop of the Psychology of Programming Interest Group. 2001.

Bournemouth: UK, 2001. 41-51.

Glass, R.L. “The Standish report: does it really describe a software crisis?” Commun.

ACM 49, 8 2006 йил August: 15-16.

Humphrey, W. Managing the Software Process. Reading, Massachusetts: Addison-

Wesley, 1989.

Huo, M., H. Zhang and R. Jeffery. “A Systematic Approach to Process Enactment

Analysis as Input to Software Process Improvement or Tailoring.” Software

Engineering Conference, 2006. APSEC 2006. 13th Asia Pacific,pp 401-410, 2006.

—. “An exploratory study of process enactment as input to software process

improvement. In.” Proceedings of the 2006 international Workshop on Software

Quality (Shanghai, China, May 21 - 21, 2006). WoSQ '06. . New York: ACM, 2006.

Hochstein, L., et al. “Experiments to Understand HPC Time to Development.”

CTWatch Quarterly, Vol 2, No. 4A (2006).

Johnson, P. M., et al. “Practical Automated Process and Product Metric Collection

and Analysis in a Classroom Setting: Lessons Learned from Hackystat-UH.” In

Proceedings of the 2004 international Symposium on Empirical Software Engineering

(August 19 - 20, 2004). International Symposium on Empirical Software Engineering.

IEEE Computer Society, Washington, DC, 136-144. 2004.

 220

Kitchenham, B.A., et al. “Preliminary guidelines for empirical research in software

engineering.” IEEE Transactions on Software Engineering 28 (2002) (8) (2002): 721–

734.

Knight, J. C. and P. E. Ammann. “An experimental evaluation of simple methods for

seeding program errors.” 8th international Conference on Software Engineering.

London: IEEE Computer Society Press, Los Alamitos, CA, 1985. 337-342.

Kou, Hongbing, Johnson, Philip M. “Automated recognition of low-level process: A

pilot validation study of Zorro for test-driven development.” In Proceedings of the

2006 International Workshop on Software Process. 2006.

Krishnan, M. S. and M. I. Kellner. “Measuring Process Consistency: Implications for

Reducing Software Defects.” IEEE Trans. Softw. Eng. 25, 6 (Nov. 1999) (1999):

800-815.

Kroeger, T., D. Jacobs and C. Marlin. “Implementing Process Enactment within a

Process-Centred Software Development Environment.” Proceedings of the Australian

Software Engineering Conference. ASWEC. IEEE Computer Society, Washington,

DC, 151., 1998.

Laitenberger, O., et al. “An experimental comparison of reading techniques for defect

detection in UML design documents.” Journal of Systems and Software, Volume 53,

Issue 2, 31 August 2000 (2000): 183-204.

Lanubile, F. and G. Visaggio. “Evaluating Defect Detection Techniques for Software

Requirements Inspections.” ISERN Report no. 00-08. 2000.

Lanza, M. and R. Marinescu. Object Oriented Metrics in Practice. Berlin: Springer,

2006.

 221

Leonhardt, U., J. Kramer and B. Nuseibeh. “Decentralised process enactment in a

multi-perspective development environment.” In Proceedings of the 17th

international Conference on Software Engineering. ACM, New York, NY, 255-264,

1995.

Nagappan, N. and T. Ball. “Use of relative code churn measures to predict system

defect density.” ICSE. St. Louis, Missouri, USA: IEEE Computer Society Press,

2005. 284-292.

McCracken, M., et al. “A multi-national, multi-institutional study of assessment of

programming skills of first-year CS students.” SIGCSE Bull. (2001): 125-180.

Mishali, O., Dubinsky, Y., Katz, S. “The TDD-Guide Training and Guidance Tool for

Test-Driven Development.” Lecture Notes in Business Information Processing,

Springer Berlin Heidelberg, pp 63-72, 2008.

Scacchi, W. and C. Jensen. “Data mining for software process discovery in open

source software development communities.” In Proc. Workshop on Mining Software

Repositories, page 96, . 2004.

Schumacher, J., et al. “Building Empirical Support for Automated Code Smell

Detection.” International Symposium for Empirical Software Enginieering. Bolzano,

2010.

Schwaber, K. and M. Beedle. Agile Software Development with Scrum. Prentice Hall

PTR, 2001.

Schramm, W., et al. “Software Process Enactment Based on an Object Oriented

Description.” Proceedings of the 4th International Workshop Software Engineering &

its Applications, Toulouse. 1991.

 222

Silva, L. F. and G. H. Travassos. “Tool-Supported Unobtrusive Evaluation of

Software Engineering Process Conformance.” In Proceedings of the 2004

international Symposium on Empirical Software Engineering (August 19 - 20, 2004).

International Symposium. 2004.

Shull, F., J. Carver and G. H. Travassos. “An empirical methodology for introducing

software processes.” SIGSOFT Softw. Eng. Notes 26, 5 (Sep. 2001), 288-296. 2001.

Sorumgard, S. “Verification of Process Conformance in Empirical Studies of

Software Development.” (1997).

Standardization, International Organization for. Quality systems - Model for quality

assurance in design, development, production, installation and servicing. 1993.

Stapel, K., D. Lübke and E. Knauss. “Best Pratices in eXtreme Programming Course

Design.” 30th International Conference on Software Engineering. Leipzig, Germany:

IEEE, 2008. 769-776.

Rubin, V., et al. “Process mining framework for software processes.” In: Wang, Q.,

Pfahl, D., Raffo, D.M. (Eds.), Software Process Dynamics and Agility, ICSP 2007,

Lecture Notes i 2007.

Rubinstein, D. “sdtimes.com.” 2007 йил 01-March. Standish Group Report: There’s

Less Development Chaos Today. 2009 йил 10-November

<http://www.sdtimes.com/article/story-20070301-01.html>.

Reis, C. A., et al. “Flexible Software Process Enactment Support in the APSEE

Model.” Proceedings of the IEEE 2002 Symposia on Human Centric Computing

Languages and Environments (Hcc'02). IEEE Computer Society, Washington, DC,

112, 2002.

 223

Roethlisberger, F.J. and W.J. Dickson. Management and the Worker. Cambridge,

Mass.: Harvard University Press, 1939.

Thompson, S., T. Torabi and P. Joshi. “A Framework to Detect Deviations During

Process Enactment.” Computer and Information Science, 2007. ICIS 2007. 6th

IEEE/ACIS International Conference on , vol., no., pp.1066-1073, 11-13 July 2007.

2007.

