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Abstract—Recently, a number of watermarking-based intellec-
tual property protection techniques have been proposed. Although
they have been applied to different stages in the design process
and have a great variety of technical and theoretical features, all
of them share two common properties: 1) they are applied solely
to optimization problems and 2) do not involve any optimization
during the watermarking process. In this paper, we propose the
first set of optimization-intensive watermarking techniques for de-
cision problems. In particular, we demonstrate, by example of the
Boolean satisfiability (SAT) problem, how one can select a subset
of superimposed watermarking constraints so that the uniqueness
of the signature and the likelihood of satisfying the satisfiability
problem are simultaneously maximized. We have developed three
SAT watermarking techniques: adding clauses, deleting literals,
and push-out and pull-back. Each technique targets different types
of signature-induced constraint superimposition on an instance
of the SAT problem. In addition to comprehensive experimental
validation, we theoretically analyze the potentials and limitations
of the proposed watermarking techniques. Furthermore, we
analyze the three proposed optimization-intensive watermarking
SAT techniques in terms of their suitability for copy detection.

Index Terms—Boolean functions, design automation, logic
design.

I. INTRODUCTION

PROTECTING software from piracy is one of the most cru-
cial issues in computer science. The time-to-market pres-

sure drives intellectual property (IP) into the center of several
trends sweeping through today’s electronic design automation
(EDA) and application specific integrated circuits (ASIC) in-
dustries. The requirement for the exchange of IP in the design
of system-on-chip is well documented. From the IP providers’
point of view, there is an urgent need for protection technique(s)
to recoup huge research and development investments on their
IP and to keep profits beyond the reach of pirates.

Watermarking or data hiding is designed to meet this demand.
In essence, watermarking intentionally embeds digital informa-
tion into the software for purposes such as identification and
copyright. Such information could be the author’s name, com-
pany name or other messages highly related to the owner and/or
the legal users of the software. If necessary, this information can
be used in court to prove authorship of the software or proof of
legal users entitled to distribute copies.
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The newly developed constraint-based watermarking tech-
nique [1] first translates and embeds an IP author’s signature
into the original optimization problem as additional constraints.
Then, the watermarked problem will be solved and the solu-
tion remains valid for the initial problem, since all original con-
straints are met. The authorship is provided by showing that a
randomly obtained and functional solution to the initial problem
can rarely satisfy all the signature-based extra constraints.

However, there are two factors that limit the usage of
this generic technique. First, watermark embedding further
constrains the initial problem and we may lose quality in the
(watermarked) solution. In fact, what makes optimization
problems hard and interesting is finding an optimal solution.
In most cases, sacrificing the solution’s quality for proof of
authorship may not be acceptable and this remains as one of the
primary reasons that watermarking has not yet been adopted
by the industry. Second, this technique cannot be used directly
to watermark decision problems because the signature-based
extra constraints may make an originally satisfiable problem
unsatisfiable. Decision problems, represented by the Boolean
SAT problem, play a central role in theoretic computer sci-
ence and find numerous applications in various fields. For
example, SAT is the first computational task shown to be
NP-hard and appears in many contexts in the field of very
large scale integrated (VLSI) computer-aided design (CAD),
such as automatic pattern generation, logic verification, timing
analysis, delay fault testing, and channel routing. In sum,
watermarking techniques that: 1) keep the degradation of the
solution’s quality at the minimal level and 2) can be applied to
protect decision problems are needed. In this paper, we propose
optimization-intensive techniques for such needs. The basic
idea is to embed a message in an optimal way such that the
probability of changing the solution to the decision problem (or
degrading the quality of an optimization problem’s solution) is
minimized.

In the next section, we review the work in relative areas. Then,
we propose the optimization-intensive watermarking method-
ology for protecting decision problems. As an example, we de-
velop three such techniques for the SAT problem. We analyze
these optimization techniques and present the experimental re-
sults before concluding.

II. RELATED WORK

A watermark is a mark embedded into an object for identifi-
cation of the owner and has been used extensively to protect dig-
ital image, audio, video, and multimedia data. Existing water-
marking techniques take advantage of the limitations on human
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Fig. 1. Illustration of the constraint-based watermarking.

visual and auditory systems and cannot be directly applied for
VLSI design IP protection.

The concept of constraint-based watermarking methodology
is introduced for the purpose of IP protection in [1]. This generic
scheme has been successfully applied at the level of algorithms
[2], behavioral synthesis [3], logic synthesis and physical design
[1], [4], as well as in field programmable gate array designs [5].

Fig. 1 illustrates the general approach. First, we convert the
initial design problem into an optimization problem. Then,
we build the watermarking engine that takes the optimization
problem and the signature as input and returns a solution with
the owner’s signature embedded. From this solution, we obtain
the watermarked IP.

An effective watermark must provide high credibility, low
overhead, high resilience, perceptual invisibility and has to be
transparent to the CAD tools, as well as be able to protect all
parts of the IP. To apply such technique, we assume that: 1)
there exists a well-defined interpretation that maps the IP to so-
lutions of a hard optimization problem; 2) there exist algorithms
and/or software packages that solves the optimization problem
efficiently; and 3) the optimization problem has a large solu-
tion space with acceptable quality to accommodate the owner’s
watermark.

These assumptions restrict this approach to optimization
problems. In this paper, we extend it to the decision problem,
SAT. We mention that many heuristics have been developed
to solve this problem [6], [7] and rigorous analysis has been
conducted based on well-defined random models [8], [9].
The former gives us tools to solve the problem and the latter
provides us theoretical background. Most of the current avail-
able SAT solvers solve the problem by systematic search
(such as GRASP [7], ZChaff [10], POSIT [11], NTAB [12],
REL_SAT and REL_SAT_rand [13], Satz and Satz-rand [14]);
stochastic local search (such as GSAT and WalkSat [15]); or
by translating to 0–1 integer programming problems [15].

III. CONSTRAINT-BASED WATERMARKING IN AN

OPTIMIZATION FASHION

The essence of the constraint-based watermarking method is
to cut the solution space by adding extra constraints into the
design process of the original IP. This brings us the tradeoff be-
tween overhead and credibility (see [16] for a detailed analysis).
Briefly, the tighter the extra constraints, the more difficult to
solve the optimization problem and, hence, the more degrada-
tion of solution quality we may have.

For most optimization problems, we are guaranteed the exis-
tence of valid solutions despite their quality. For example, any
graph of vertices is -colorable in the graph vertex coloring
problem. But the decision problems have only two different
solutions: YES or NO. For the constraint-based watermarking
technique to be effective, we make the following assumption.

Watermarking Assumption

The decision problem to be watermarked must have an
answer YES and have many different ways to achieve this
answer.
This basic assumption corresponds to the “large solution

space” requirement for the constraint-based watermarking on
optimization problems. Since the watermarked IP has to main-
tain the correct functionality, meaning the YES/NO answer in
case of the decision problem, the question arises immediately
“Will the YES/NO answer stay unchanged as we watermark the
decision problem?”

It is not hard to construct counter-examples, where we turn
a satisfiable SAT formula into unsatisfiable by adding extra
constraints, such as additional clauses. In general, adding
constraints may cut the solution space. That is, some of the
solutions that give the YES answer to the original problem
may not make all the extra constraints true and therefore will
not be considered as solutions to the watermarked problem. In
the worst scenario, the signature-based constraints can make
the solution space empty and give NO as the answer to the
watermarked problem. The proposed optimization version of
the constraint-based watermarking is designed to avoid this by
only embedding part of the author’s signature.

The idea of optimization-intensive watermarking comes from
the following observation. The purpose of a watermark is to
provide evidence of authorship. This is achieved by showing
the probability that a random generated solution from the initial
problem meets all of the signature-based constraints is so small
that it is unlikely to happen. An authorship with 100% certainty
can never be established, even when all the watermarks are dis-
covered in the IP. So we do not have to embed the entire signa-
ture as long as we can provide a convincing proof of authorship.

Specifically, we create a set of constraints from the to-be-em-
bedded watermark. Each constraint makes some solutions in-
valid, and the constraints do not have the same effect in cutting
the solution space. For example, the formula

can be easily satisfied, and it is still satisfiable after we
add new clauses like , but it becomes
unsatisfiable if we add .

For hard decision problems, there is no simple test that tells us
which constraint will cut the solution space slightly and which
one may completely change the answer to the problem. In the
optimization constraint-based watermarking techniques section
we will present in the next section, we intend to add a subset
of the constraints from the signature based on certain statistical
information while optimally keeping the YES/NO answer to the
original decision problem.

IV. OPTIMIZATION-INTENSIVE WATERMARKING TECHNIQUES

In this section, we present three watermarking techniques on
the satisfiability problem to explain our optimization-intensive
constraint-based watermarking for decision problems.

Basic Notations:
is a set of Boolean variables, and we

denote a variable ’s complement by .
A literal is either a variable or its complement.
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Fig. 2. Pseudocode for watermarking SAT by adding clauses.

A clause is a disjunction (logic-OR, denoted by ) of one or
more literals. We say a clause is true if and only if at least one
of its literals is assigned value 1.

A formula is a conjunction (logic-AND, denoted by or
omitted when there is no ambiguity) of one or more clauses.
A formula is satisfiable if there is a truth assignment to the
variables, such that all of the clauses are true. For example,
the formula over variables

is satisfiable and one truth assignment
can be ,
where is don’t-care, which means the value of this variable
does not affect the satisfiability of the given formula.

Finally, for the simplicity of our analysis, we allow redun-
dancy in the formula (one variable may appear multiple times
in the same clause and a clause can occur in the same formula
more than once). For instance, , which is
functionally equivalent to over variables and , is legal
under this notation.

A. Adding Clauses

Given a set of Boolean variables, there are truth assign-
ments. This is the potential solution space of any satisfiability
problem over this set of variables. A satisfiable formula has a
nonempty solution space, while an unsatisfiable formula’s so-
lution space is empty. Any clause in a formula is a constraint
that will prune the solution space. For instance, clause
will eliminate all truth assignments that assign both and
to be 0 and, hence, cut one quarter of the solution space.

In the constraint-based watermarking process, a signature is
embedded into the original problem as additional constraints to
limit the choice of solutions. The natural constraint in the SAT
problem is the clause and, therefore, the most straightforward
way to embed signatures is to add new clauses. The extra clauses
will be generated from the signature and any watermarked truth
assignment will satisfy both the initial clauses as well as these
signature-based ones. It is the fact that the additional clauses are
met, which is used to prove the existence of the signature. There
are various ways to interpret a signature into extra clauses, one
is shown in Fig. 2, more details can be found in [3].

What distinguishes this new optimization-intensive wa-
termarking technique from the traditional “blind encoding,”
which embeds all of the signature, is the selective watermark
embedding based on the objective function. The objective
function takes clauses as input and returns a nonnegative value,
which measures the likelihood that adding these clauses will

Fig. 3. Pseudocode for watermarking SAT by deleting literals.

not change the satisfiability of the formula. We will discuss
how to compute the objective function in the next section.
As we explained before, it is impossible to construct such an
objective function that tells exactly which clauses may change
the answer to the formula. We have to test the satisfiability
based on the statistic information of the formula.

B. Deleting Literals

In general, the longer the clause is, the easier it will be sat-
isfied. (A clause with literals is false if and only if all lit-
erals are assigned 0). Based on this observation, we propose the
second watermarking technique.

For example, let

In this example, the message “June 1999” will be embedded,
which is 011 011 111 001 111 in binary, where the first four
digits represent the month (06) and rest for the year (1999). A
nonoptimization version of the above technique, as shown in
Fig. 3 without lines 9, 10, and 11, will skip the evaluation of
the objective function and simply append every new clause
to . In this example, literals , , , , , , , ,
and will be deleted, respectively, from starting with the
second clause

Formula has exactly the same number of clauses as but
with one literal less in each clause (except for single-literal
clauses). It is clear that the solution space of is a proper
subset of that for , so any truth assignment that satisfies
also satisfies . However, we see that in this case that is
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unsatisfiable because of the single-literal clauses and .
Therefore, the traditional method fails.

As illustrated in Fig. 3, in the proposed optimization-inten-
sive watermarking process, the strength of each additional con-
straint is estimated before it is embedded. In this case, for ex-
ample, it may detect that, after deleting literal from the third
clause , the remaining (single-literal) clause can
hardly be satisfied, i.e., preset_threshold and, thus,
the original clause is kept. For the same reason, the
deletion of from the sixth clause is ignored and we get an
optimization-intensive watermarked SAT instance, which is still
satisfiable

C. Push-out and Pull-back

The constraint-based watermarking techniques add signa-
ture-related constraints to the original problem, cut its solution
space and, thus, increase the chance of getting a watermarked
solution. When these additional constraints are too strong to
keep the quality of the solution, we introduce the optimiza-
tion-intensive technique to embed the constraints in a selective
way, which excludes the addition of “bad” constraints. The
“adding clauses” and “deleting literals” techniques work on the
original solution space to make “good” decisions on whether
embedding a constraint or not. They are limited by the size of
the solution space and will not perform well on formulas with
a small number of solutions. The third technique we propose
here breaks this barrier by a two-phase push-out and pull-back
procedure.

In the push-out phase, the solution space is enlarged, such
that there will be more room to hide the signature. For SAT
problem, this can be done by either introducing new variables
(and clauses) or deleting clauses. Deletion of clauses may fail
to preserve the validity of the solution and, therefore, we focus
on introducing new variables. When we treat the SAT instance
as a formula over the initial set of variables and a new variable

, the solution space is doubled because is not involved in
the formula and will serve as a “don’t care” variable. It is in
this larger solution that we apply various (optimization-inten-
sive) watermarking schemes to embed the signature and create
a (optimization-intensive) watermarked SAT instance. Once we
solve such instance and get a solution over the extended set of
variables, we can restrict the truth assignment to the initial vari-
ables and the extended solution is pulled back. This is illustrated
in Fig. 4 (c) and (d), where the shaded area is the solution space
for the watermarked formula.

This technique can be combined with the previous ones and
yields a more powerful watermarking method. For example,
with the freedom of adding new variables, we can change the
“adding clauses” technique in the following way: whenever we
detect a dangerous clause, i.e., one that may make the entire for-
mula unsatisfiable, we introduce a new variable to the clause. In
this way, we have better chance to maintain the satisfiability of

Fig. 4. Illustration of the push-out and pull-back. (a) Solution space for the
formula over original variables. (b) Enlarge solution space by introducing new
variables. (c) Prune the solution space by embedding watermark. (d) Retrieve
solution space for the original formula.

the watermarked formula, and we can build new clauses over
the augmented set of variables.

V. ANALYSIS OF THE OPTIMIZATION TECHNIQUES

In this section, we first show the correctness of the proposed
watermarking techniques, then discuss the objective function we
mentioned in the previous section. We analyze the limitation of
these techniques on one widely-used SAT model and conclude
with a discussion on how to detect a watermark from a given
solution.

A. Correctness of the Watermarking Techniques

Let is a formula over a set of Boolean variables
, we first define a partial order “ ” on and

say formula is more constrained than , if the partial order
holds.

Definition 5.1: For two clauses
, , denote if and

only if , i.e.,
, , such that . For the

two formulas , ,
we define if and only if ,

, such that .
It is clear that the above defines a partial order. Given two

formulas and with , then for every clause
(constraints to the SAT instance) in , there exists a clause
in , such that will be satisfied whenever is. For example,

has all the constraints that has.
When a signature is added as extra clauses, the watermarked

formula will become more constrained than the original one and
therefore any watermarked solution will remain valid. In sum-
mary, we have the following observations.

Proposition 5.2: If and is satisfiable, then is
satisfiable and any truth assignment to satisfies .

Proposition 5.3: Let be a (optimization-intensive) water-
marked formula from an original formula , then .
Hence, any watermarked truth assignment to meets the re-
quirement of .
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B. Objective Function

An objective function : measures the
likelihood that a formula can be satisfied. Ideally, any objective
function should assign unsatisfiable formulas a value of
0 easy SAT instances larger values and be nondecreasing over
the partial order ( , ), such as for any
formulas . For example, it can be defined as:

• for any formula
;

• for any clause
;

• extend the notation by denoting as the likelihood
that literal is assigned true.

The only part left to be specified is how to determine the values
of and for a literal and its complementary .
Intuitively, the more often a literal appears in the formula and
the less its complementary occurs, will have a better chance to
receive true. Let be the number of occurrence of and we can
finish the definition.

Zeroth-Order Objective Function:

not defined
(1)

where

(2)

Basically, (1) uses the ratio of the literal occurrences as the
measurement for the assigning variables true/false. If ’s com-
plementary form ’ never appears in the formula, to find a truth
assignment, it does not hurt us at all to make true. And if the
formula does not contain a particular variable, there is no need
to define the objective function on this variable.

First-Order Objective Function: From the zeroth-order ob-
jective function, we see that every occurrence of will increase

and decrease . However, the contribution of each
occurrence is related to the length of the clause and this is not
considered in the zeroth-order objective function. The literal in
any single-literal clause has to be assigned true while any single
literal in a clause with many literals is not crucial to the satisfi-
ability of that clause. More specifically, let be the number of
clauses that contains the literal and be the length of the
such clause. Then, we define the first-order objective function
on as

and

not defined
(3)

where

(4)

There are distinct truth assignments for a clause of
length , if the clause contains no two literals which are com-
plements of each other, out of which will have a particular

literal assigned true. Equation (4) is a simple modification of
this fact which enforces to evaluate to at literals from the
single-literal clauses. From this definition, it is easy to verify the
following.

Proposition 5.2: The first-order objective function satisfies:

i) iff the formula does not contain or has ,
but not , as a single-literal clause.

ii) is increasing with respect to and decreasing
with respect to .

iii) is decreasing with respect to .

Case i implies that if the formula does not have or has as
a single-literal clause, then setting true only helps us finding
a solution. When the formula has both and as single-lit-
eral clauses, obviously it is unsatisfiable. Case ii suggests that
the more occurs, the more likely it will be assigned true, and
Case iii says the longer is the clause, the less it contributes to
the objective function since a long clause is easier to satisfy.

Second-Order Objective Function: Although the function
is better than in describing the likelihood of a literal

being assigned true, by no means is it the most accurate. Con-
sidering the two clauses and ,

and will contribute the same amount to by (4).
However, this becomes inaccurate if we know, from the rest of
the formula, that most likely or will be true, while both

and are false. In such a scenario, clause ’s satisfiability
depends more on the value of the literal and it should
contribute more to the objective function than . This
suggests us that we should also study the correlation between
literals. By modifying , we can define the second-order
objective function in a similar way with

(5)

The purpose of introducing objective functions is to provide
criteria that can be used to determine whether an additional con-
straint should be embedded during the optimization-intensive
watermarking process. An objective function estimates the dif-
ficulty of determining the satisfiability of a formula. con-
siders only the occurrence of , and uses the ratio as a measure.

takes into account the length of each clause that a literal
and its complementary appears. In the second-order objective
function, not only and , but also their neighbors (the literals
in the same clause) are considered. Therefore, it provides more
accurate estimation. Of course, better objective functions can be
defined when we use more information from the SAT problem.
Unfortunately, since the objective function will be called fre-
quently, the computation cost of such a function should be as
low as possible. Usually, the accuracy of the objective function
is at the expense of its complexity. For example, both and

can be computed when the SAT instance is read in with
the help of additional storage. However, one more parse of the
SAT instance is required to initialize .

To conclude the discussion on the objective function, we men-
tion that a perfect objective function should be able to tell ex-
actly the satisfiability of an instance. However, such function
cannot be computed in polynomial time unless . For a
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Fig. 5. SAT instance and its watermarked versions. (a) The initial SAT instance. (b) New instance by adding clauses. (c) New instance (same spot as initial) and
new curves by deleting literals. (d) New instance by push-out and pull-back.

given satisfiable formula, the optimization watermarking tech-
niques do not guarantee the watermarked formula still satisfi-
able, but maximizes this probability.

C. Limitations of the Optimization Techniques

The Constant-Probability SAT Model: We adopt the model
for generating random SAT instances. A formula of

this type consists of clauses of variables. A variable is in
the th clause as an uncomplementary literal with probability ,
as a complementary literal with probability , and the th clause
does not contain variable with probability .

Franco and Ho [8] proved that, for this model, almost all SAT
instances can be solved in polynomial time if any of the fol-
lowing conditions hold:

(6)

(7)

(8)

It is also shown that almost all of the randomly generated SAT
have no solution if

and (9)

The curves shown in Fig. 5(a) and [8] show the relationships
between the parameters of model that result in random
instances that are always solvable in polynomial time. Curve I

represents and the region to the left of it (6) are instances
that are always unsatisfiable due to the large amount of clauses.
Curve II’s and the region to its right (7) corresponds to in-
stances that are almost always satisfiable. According to (9), the
instances above curve III are almost unsatisfiable. The shaded
area is a mixture of satisfiable and unsatisfiable problems.

Limitations on the Optimization Techniques: Under the “wa-
termarking assumption,” a to-be-watermarked SAT instance be-
longs to the region to the right of curve II as shown in Fig. 5(a),
where the solution space is large. After we embed the signature,
the SAT instance and/or the curves may change. We do not want
the new instance to fall in the area left of curve I or above curve
III, where the probability that the new instance is unsatisfiable
is almost 1. Even for a satisfiable watermarked instance in the
shaded region, it usually becomes hard to find a truth assign-
ment. We now graphically analyze the impact of the proposed
watermarking techniques.

Adding clauses: Assuming the message is random, and the
length of a new clause is chosen in accordance with the initial
instance, then the watermarked instance is still a random SAT
problem of the same type, except that the number of clauses has
increased. This is shown in Fig. 5(b), where curves I–III remain
the same, the new instance is right above the initial one, which
indicates an increment of with the same and . It is clear that
if we keep on adding new clauses, the watermarked instance will
cross curve II, making the instance hard to solve and eventually
becomes unsatisfiable.

Deleting literals: If we delete literals based on a random
message, our optimization strategy will keep us from deleting
single-literal clauses and eliminating any variable completely
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from the formula. Therefore, the new instance will be a formula
on the same set of variables with the same number of clauses. In
the chart [Fig. 5(c)], the new instance shares the same po-
sition as the initial one. However, all of the curves have moved
toward right because of the decrement of due to the deletion
of literals. When there are only a few literals left, will become
extremely small and all of the curves will cross the SAT instance
and make it unsatisfiable.

Push-out and Pull-back: In this technique, new variables
only appear in the clauses corresponding to the signature, so
it is not appropriate to use the same model. However, the idea
can be illustrated by Fig. 5(d), the initial instance is moving
along -axis as we add new variables, then moving up as we
append new clauses. New variables are introduced whenever the
new instance moves close to curve II and the addition of a new
variable keeps the watermarked formula in the region under the
“watermarking assumption.” Technically, there is no limitation
on this technique, if any number of new variables can be added.

D. Copy Detection

Detecting copies is one of the fundamental problems for dis-
tributing IPs among different users. An embedded watermark is
useful only if the IP provider can detect it and prove his/her au-
thorship to the third party, which is the sole goal of copy detec-
tion. Our key idea used to protect the SAT solution is to prune the
solution space based on the signature and then get the solution
from this small space. The strength of the authorship depends
on the size of the solution space for the watermarked problem
relatively to the original one. Here, we outline the approaches to
retrieve watermarks embedded by the “adding clauses,” similar
results hold for the other techniques.

In the “adding clauses” method, the solution is forced to sat-
isfy extra clauses according to the signature. Suppose the signa-
ture is translated to clauses of length , respec-
tively. Let

(10)

Then, we have the following.
Proposition 5.3: A random assignment makes all clauses

true with a probability , and the probability that it satisfies at
least clauses is

Corollary 5.4: For 3-SAT, where all clauses have length 3

(11)

It is easy to see from the expression of that this prob-
ability can be arbitrarily small, when both and are large

enough. Thus, this method provides high credibility for signa-
tures of large instances. In practice, for a given SAT instance,
from the limitation of the technique we can determine the max-
imal number of constraints we may introduce. Then, according
to the level of credibility we want to achieve, we can calculate
the minimal constraints we have to add to the original problem
and then fine tune the objective function.

VI. EXPERIMENTAL RESULTS

We have implemented our proposed optimization-intensive
watermarking techniques and applied them to a set of instances
from DIMACS SAT benchmarks [17], the SAT Competition in
Beijing, China [18], the Planning set [19], the All Interval Series
[20], and the bounded Model Checking set [21].

The DIMACS benchmark suite contains the inductive infer-
ence, circuit fault analysis and constant density model sets. The
inductive inference instances are generated from the problem
of inferring the logic in an 8-input, 1-output “blackbox.” The
circuit fault analysis set is based on test-pattern instances
for single-stuck-at faults, while the constant density model
instances are random P-SAT. Two instances are taken from the
SAT Competition in Beijing, China. One of the instances is
a block world panning problem (Sussman anomaly on three
blocks) and the other is a VLSI design for a 2-bit maximizer.
The Planning set consists of instances of the seven blocks world
planning problem taken from SATPLAN. The All-Interval
Series problem is an arithmetic problem which occurs in serial
musical composition. Lastly, the bounded Model Checking
set is composed of real industrial hardware designs taken
form the IBM research lab for verification technologies. More
information on these benchmark sets can be found at [6].

We watermark each of these instances using regular tech-
niques without optimization, then apply the optimization-in-
tensive techniques to embed the same message. The message,
which we assume is infinitely long, is embedded ten bits at a
time. We solve the watermarked formula and embed the next
ten bits, if we can find a satisfiable assignment. We stop when
the watermark makes the problem instance unsatisfiable and the
length of the embedded message measures the power of the wa-
termarking technique. The results show that in most instances,
much longer messages can be embedded by the new techniques
before changing the problem to unsatisfiable. Both the initial
and watermarked instances are solved by WALKSAT, GRASP,
zChaff, or satz [6], depending on the type of instance. All in-
stances are solved instantaneously on one of these solvers, and
therefore the runtime overhead is negligible. Note that the use
of any or all of these solvers on any of these instances has no im-
pact on the quality of the watermarking approach. Some of the
instances used to test our approach are solved easier by different
types of algorithms, therefore only affecting the runtime of the
solvers. For example, the logistics-planning problems are easier
to solve with a local search algorithm, while All-Interval Series
instances are very difficult for local search algorithms such as
WalkSAT, but rather easy for systematic algorithms like satz.

Among the techniques we proposed, the “adding clauses”
method has the best performance in terms of the length of the
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TABLE I
IMPROVEMENT, IN TERMS OF THE LENGTH OF MESSAGE BEING EMBEDDED,

OF THE OPTIMIZATION-INTENSIVE TECHNIQUE OVER REGULAR

WATERMARKING TECHNIQUE

Instance Without Optimization Improvement
Optimization Intensive Ratio

2bitmax_6 990 1650 66.67%
3blocks 240 540 125%

ais6 580 1000 72.41%
ais8 290 600 106.90%

ais10 310 880 183.87%
ais12 230 540 134.78%

bmc-ibm-2 340 640 88.24%
ii8a1.cnf 1900 1400 -26.32%
ii8a2.cnf 4900 3100 -36.73%
ii8a3.cnf 3900 6700 71.79%
ii8a4.cnf 3900 3900 0%
ii8b1.cnf 3800 6800 78.95%
ii8b2.cnf 4900 8900 81.63%
ii8b3.cnf 4900 8900 81.63%
ii8b4.cnf 3900 11600 197.44%
ii8c1.cnf 3900 7500 92.31%
ii8c2.cnf 8900 13000 46.07%
jnh201 960 1200 25%
jnh209 320 710 121.88%
jnh218 290 650 124.14%

logistics.a 170 270 58.82%
logistics.b 610 840 37.70%
logistics.c 510 750 47.06%

ssa7552-038 2000 3700 85%
ssa7552-043 1320 3100 134.85%
ssa7552-160 1240 4100 230.65%

Average Improvement 85.76%
Median Improvement 81.63%

embedded message before changing the problem to unsatisfi-
able. We first generate a long random bit-stream as our message,
then create clauses of variable lengths according to this message
and append them to the original problem. Table I reports the
maximal length of the bit-steam that we can take before turning
the problem to unsatisfiable. As one can see from Table I, we
achieve an average of 85% improvement.

We also test the proposed methods on random 3-SAT in-
stances, where the literal per clause ratio is fixed at 4.25. These
instances are in the range of “hard-to-be-solved” [9]. Although
all the problems are known to be satisfiable, it is not expected
that many satisfying assignments exist. Therefore, the “water-
marking assumption” does not hold. When we try to watermark
these problems, very limited message can be embedded (less
than 100 bits), and the optimization-intensive techniques do not
help that much. [Imagine an instance very close to curve II in
Fig. 5(a)].

VII. CONCLUSION

Current watermarking techniques can only be used for the
protection of IPs which are related to optimization problems.
The need for effective methods to protect decision problems is
urgent because of their numerous applications in various fields.

In this paper, we propose the first set of optimization-intensive
watermarking techniques for decision problems. The basic con-
cept of these techniques is to select a subset of the signature
and embed it as the watermark. Theoretically, we showed that
this partial signature will provide convincing authorship and an
average of 85% improvement, in terms of the amount of infor-
mation embedded, is achieved in practice when we implement
this idea to watermark a set of benchmark SAT instances.
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