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ABSTRACT

Queues of M/G/1 type give rise to infinite embedded Markov chains whose transition
matrices are upper block Hessenberg. The traditional algorithms for solving these
queues have involved the computation of an intermediate matrix G. Recently a re-
cursive descent method for solving block Hessenberg systems has been proposed. In
this paper we explore the interrelations of the two methods.

1 INTRODUCTION

Queues of M/G/1 type (for background see Neuts [8]) give rise to embedded
Markov chains whose transition matrices have the form

Bi B, Bs B,
Ap Ay A As

P=|0 Ay A A, . |. (1.1)
0 0 Ay A

Here the blocks are of order m. We will represent the states by ordered pairs
(k,£) (k = 0,1,...;¢ = 1,2,...,m). If these pairs are ordered lexicograph-
ically, then k numbers the blocks in the partition (1.1) and £ numbers the
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position within the blocks. We say that the state (k, £) is at level k. In typical
applications, the levels correspond to the number of customers in the queue.

The chain is derived by looking at the queue immediately after each customer
has been served. Between these departures many customers can arrive, but
at the end only one leaves. This gives P its block Hessenberg structure. The
Toeplitz structure says that the levels, except for the first, are indistinguishable.

If the chain is recurrent, there is a unique vector w7 whose components sum to
one — we write w L e=1, where e is the vector whose components are one —such
that #TP = xT. If we set

w' = (T0,1) T0,2) * T(om) T(1,1) )

then m(y, ¢) is the stationary probability of being at state ¢ within level k.

The dual case where the transition matrix has the lower Hessenberg form

B Ay 0 0

By A Ay 0
P=1|Bs Ay A1 A

By As Ay Ay

is also of interest. These are called Markov chains of GI/M/1 type (see Neuts
[7] for background). Such chains are derived by looking at a queue immediately
before each arrival. Between two arrival epochs, many customers may depart;
hence P is lower Hessenberg.

These Markov chains have been studied by many authors; we only cite here
Neuts [7, 8], Ramaswami [9], Grassmann and Heyman [1], Latouche [5]. A
number of iterative procedures have been proposed, usually requiring the de-
termination of an auxiliary m x m matrix, called G for queues of M/G/1 type
and R for queues of GI/M/1 type.

In contrast to these procedures, Stewart [10, 11] proposes to directly determine
the vector w1, by an approach based on a recursive descent method for solving
block Hessenberg systems. It turns out that this method also produces the
matrix G or the matrix R as a byproduct. Our goal is to show the relations
between the two approaches.
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In the next section we will introduce the matrix G along with an iterative
method for computing it. In the following section we discuss the method for
solving block Hessenberg matrices. We then briefly consider the case of the
matrix R.

2 THE MATRIX G

We consider here matrices of the type (1.1), and we introduce two auxiliary
matrix of order m, called G and U. They may be defined probabilistically as
follows.

The (4, j)-element of G is the probability that starting from state (k, )
(k > 1) the chain will first appear at level k¥ — 1 in state (k — 1, j).

The (4, j)-element of U is the probability that starting from state (k, )
(k > 1) the chain will first appear at level k in state (k,j) before it
appears at any lower level.

A necessary and sufficient condition for the chain to be recurrent is that GG be
stochastic. For if the ith row sum of G is less than one, there is a positive
probability that starting from state (k, i) the chain will never arrive at level

k—1.

It is shown in [2] that G and U are related as follows:

1. U=A1+ AG+ AsG? + .-, (13)
2. G=(I-U)"1t4A,. '

Hence (G satisfies the equation
G=Ag+ AGH+ AG* 4| (1.4)
and indeed (G is the smallest (componentwise) nonnegative solution of (1.4).
It is further shown in [9] that if we partition
wl=(mg i ow )

then 7l satisfies

T 5 T
7wy By = my,
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and given wd we can compute 7} recursively in the form

k-1
T = (WQTBk + ZW;FAk—i+1) (I-u)"",

i=1
where R '
Ap =) AGTE
i>k
and R '
By = Z BiGl_k.
i>k

The recursion for w] is homogeneous in m{; hence one can solve it with an
unnormalized 7} and later normalize % so that it sums to one. On the other
hand, with additional calculations it is possible to normalize wd at once (see [6]
for details). This algorithm is, in essence, Gaussian elimination; computing G
corresponds to the forward elimination phase, computing w7 as outlined above
corresponds to the backward substitution phase.

These equations indicate one reason why it has long been of interest to de-
termine the matrix (G, which was seen as the key to the whole computational
procedure. Several algorithms have been proposed, among which the following
requires the least number of iterations [3]:

1. Go=0,
2. UV+1IA1—|—A2GV—|—A3G12/+”', 1/20,1..., (15)
3. Gy+1I(I—UV+1)_1A0, v=20,1....

The two matrix sequences monotonically converge respectively to G and U.

Turning to practical matters, we first note that we cannot form the infinite
sums required by the algorithm. However, since P is stochastic,

iA,,e: e, (1.6)
v=0

and we must have lim,_. ., A, = 0. Thus there is an index M such that 4, is
negligible for v > M, and we can truncate the sums in (1.5). Let us call the
resulting iterates G ..
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Since M is finite, we can then evaluate the expression (1.5.2) by nested multi-
plication. Specifically,

1. UM,V+1 = AM, (1 7)
2. Umyir = Unys1Gary + Ay, p=M—1,M—2. 1. '

The iteration can take advantage of special structure in the matrix. First, if
the Ay are sparse, then the work in forming the products in (1.5.2) can be
reduced. Second, if Ag is of less than full rank, then so 1s (G, and we can take
advantage of this fact as follows.

Let rank(Ag) = r, and let
Ag=VW

where V and W are m x r and r x m matrices. Then from (1.5.3)
G, =[(I-U,)"'VIW = SW,

and we can write (1.7.2) in the form
Untvt1 = (Un w1 )W + Ay

If the rank of Ay is small—specifically less than m/2—the computation of
Unry41S followed by the computation of (Uns,415)W will be cheaper than
the direct computation of the matrix product Upsp41Gar,p-

An alternative characterization of the matrix GG will be useful in the sequel.
Let us think of P as partitioned into four blocks:

By FPo,
P= , 1.8
(Poo Poo) ( )
with
Pye = (B2 B3 By --+), (1.9)
Ag
0

Py = |[o]. (1.10)
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Ay Ay As
Ao A1 Ay
P,y = | (1.11)

0 Ay A

In view of (1.6) and the irreducibility of P, the matrix P,, is properly sub-
stochastic. The matrix (G satisfies the equation

G Ag
G? 0

Qee |2l =101, (1.12)

where Q4 = I — Pyo. In fact each row of (1.12) is just (1.4) multiplied by a
power of (G. In order to prove that the only solution consists of powers of (&,
we use an argument similar to that of [4], Equation (13).

3 BLOCK HESSENBERG SYSTEMS

The approach taken in this section is based on the following observation. Let
P,y and @4¢ be defined as in the last section. Equation (1.12) implies that if
we can solve block Hessenberg systems, we can compute (G. One possibility is
Gaussian elimination. In this paper, however, we consider an alternative that
has certain advantages when the matrix of the system is sparse or when Ag is
of defective rank. The algorithm is quite general and does not depend on the
block Toeplitz structure of Q4; however, to keep our notation consistent, we
will continue to work with P,,. Since we cannot work with infinite matrices,
we will truncate P,y and ()44 to be of order N.

The algorithm is a recursive descent method for solving the linear system

Qeex = b.

Q — QHW Qne
e QSW Qse '
Here the subscripts refer to points in the compass. In our application the order
of QQye Will always be a power of 2, and the partitioning will be chosen to split

Partition ()4, in the form
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Qse exactly in half. Note that Qs 1s an almost empty matrix with Ay sitting
in its upper right-hand corner.

Now consider the system

2 i3n _ an Qne jn _ bn
o= H)E)-0) o
Assuming that we can solve block Hessenberg systems of half the size of the

original, we can solve (1.13) by the following algorithm:

1. Solve Qses = bs,
2. Solve Quwan = by — Qnets.

We will now show how to patch together the solutions 25 and Z, to get the
solution z of the original equation.

As in the last section, suppose Ay has the factorization
Ag = VW,
where V and W are of full rank r. Let @y be of block order ¢, and set

0
(:) t
E= w1 v and F= (0 o W0 0). (1.14)
0
Set .
1. X=FQ',
2. S=I1+FQ'E, (1.15)
3. Y=Q'E.
It can be shown that if we partition
#t = (2] o w w o Ey)

then
r=%—-YS 'z,

An implementation of this method has been described in [11], and we will
only point out some salient features. The matrices X and Y are called patch
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matrices. As we have seen, Y is used to solve systems of the form Qeex = b.
The patch matrix X is used to solve transposed systems. Patch matrices must
be precomputed, and they are analogous to the elimination phase of Gaussian
elimination. It turns out that the bulk of the work, at least for dense matrices,
consists of matrix vector multiplications of the form Quez. If Qe 1s sparse,
operations can be saved in this process. Moreover, the number of columns in
the patch matrix Y is equal to the rank of Ag, so that, as in the previous section,
the smaller the rank, the more efficient the algorithm. Unlike the iteration in
the previous section, we do not have to restrict the rank to be less than m/2.

The patch matrix Y contains the wherewithal to compute an approximation to
(. To see this, partition

YT:(YlT "'YtT Yt?& YJ\?)

Then it follows from (1.14) and (1.15.3) that

Yig1 14
Yigo 0

se . = . . (116)
Yn 0

On multiplying this equation from the right by W, we get

Vi W VW Ag
YigaW 0 0
YN W 0 0

But this is just a truncated version of the equation (1.12), and it follows that
G=ZYi W

Thus we have a new algorithm for computing G.

The particular form of our application generates some economies. In practice
we would not only truncate the matrix P,, to be of block order N, but as we
did in the last section, we throw away all A for k greater than some integer M.
This gives our matrix a banded structure: for large N almost all the matrix
e 18 zero, and we can take advantage of this sparsity.

Let us denote the patch matrices so obtained by G'ar, y. Then a natural algo-
rithm is to start with G'ar1 and successively compute G2, Gara, Gur,g, and
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continue the doubling until convergence. Because our matrices are Toeplitz,
Qne = Qsw, and the two matrices have the same patch matrices. This means
that we can save work in passing from Gy to Gar 2. Moreover, because of
the special nature of the system (1.16), we can compute G'ar v very cheaply and
check convergence before going on the the computation of the patch matrices
for the doubled system.

Turning now to the computation of 77, we will continue to assume that our
system has been truncated. We begin by observing that
s I-P)=7"Q =0.

Writing this equation in partitioned form, we get

T 1 Qoo Qoe
=0.
(770 ﬂ.) (Qoo Qoo)
It then follows on eliminating 7 that
75 (Qoo — Qoe@yd Quo) = 0. (1.17)
This 1s a small problem of order m which can be solved by standard techniques.
Now Q40 1s the block vector whose first block is — Ay and whose other blocks

are zero. It follows that Q._.lQoO = —Y, W, where Y, is the block vector on the
left of (1.16). Hence the system (1.17) has the form

70 (Qoo + Qos Yo W) = 0.

In particular for our truncated system

N
QoY == BiYi.
i=1

T

. can be computed by solving the system

WTQOO = _WEQOr

Finally, the vector =«

4 THE MATRIX R

We consider here matrices of the type (1.2). If we partition P as above, we
have that

Poy = (Ap00 -, (1.18)
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By
B3

Po = |51, (1.19)
Ay Ay O
Az Al Ao .

P = | (1.20)
A3 Az Al .

In this case, one proves [7] that there exists a matrix R of order m such that
the stationary probability vector is given by

wr =wl RF, k>0, (1.21)

and wl is a left eigenvector of the matrix B[R] = 3", <, B, R"~!, normalized
so that 7 (1 — R)~le = 1.

The matrix R is equal to Ag(I — U)~!, where U is defined as in Section 2. As
in the case of the matrix (7, several algorithms have been proposed, in order
to compute R, most of which are described and compared in [5]. The iteration
corresponding to (1.5) is given below; the two sequences converge monotonically
respectively to R and U.

1. Ry=0,
2. UV+1IA1—|—RVA2—|—R12/A3+”', 1/20,1..., (122)
3. Ry+1IA0(I—UV+1)_1, v=20,1....

Of particular interest to us is the fact that the matrix R satisfies the following
equation [4]:

(RR*R® .. )Que =(A0 00 ..), (1.23)
where Q4o = (I — Pyy). This clearly indicates that the matrix R may be
determined by applying, mutatis mutandis, the recursive descent described in
the preceding section.
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