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1NUMERICAL METHODS FORM/G/1 TYPE QUEUESGuy Latouche*, G. W. Stewart*** Universit�e Libre de BruxellesD�epartement d'InformatiqueCP 212, Boulevard du Triomphe1050 Bruxelles, Belgium** Department of Computer ScienceUniversity of MarylandCollege Park, MD 20742ABSTRACTQueues of M/G/1 type give rise to in�nite embedded Markov chains whose transitionmatrices are upper block Hessenberg. The traditional algorithms for solving thesequeues have involved the computation of an intermediate matrix G. Recently a re-cursive descent method for solving block Hessenberg systems has been proposed. Inthis paper we explore the interrelations of the two methods.1 INTRODUCTIONQueues of M/G/1 type (for background see Neuts [8]) give rise to embeddedMarkov chains whose transition matrices have the formP = 0BBBBBBBB@B1 B2 B3 B4 � � �A0 A1 A2 A3 . . .0 A0 A1 A2 . . .0 0 A0 A1 . . .... . . . . . . . . . . . . 1CCCCCCCCA : (1.1)Here the blocks are of order m. We will represent the states by ordered pairs(k; `) (k = 0; 1; : : : ; ` = 1; 2; : : : ;m). If these pairs are ordered lexicograph-ically, then k numbers the blocks in the partition (1.1) and ` numbers the3



4 Chapter 1position within the blocks. We say that the state (k; `) is at level k. In typicalapplications, the levels correspond to the number of customers in the queue.The chain is derived by looking at the queue immediately after each customerhas been served. Between these departures many customers can arrive, butat the end only one leaves. This gives P its block Hessenberg structure. TheToeplitz structure says that the levels, except for the �rst, are indistinguishable.If the chain is recurrent, there is a unique vector �T whose components sum toone|we write �Te=1, where e is the vector whose components are one|suchthat �TP = �T. If we set�T = (�(0;1) �(0;2) � � � �(0;m) �(1;1) � � � )then �(k;`) is the stationary probability of being at state ` within level k.The dual case where the transition matrix has the lower Hessenberg formP = 0BBBBBBBB@B1 A0 0 0 � � �B2 A1 A0 0 .. .B3 A2 A1 A0 . . .B4 A3 A2 A1 . . .... . . . . . . . . . . . .1CCCCCCCCA ; (1.2)is also of interest. These are called Markov chains of GI/M/1 type (see Neuts[7] for background). Such chains are derived by looking at a queue immediatelybefore each arrival. Between two arrival epochs, many customers may depart;hence P is lower Hessenberg.These Markov chains have been studied by many authors; we only cite hereNeuts [7, 8], Ramaswami [9], Grassmann and Heyman [1], Latouche [5]. Anumber of iterative procedures have been proposed, usually requiring the de-termination of an auxiliary m�m matrix, called G for queues of M/G/1 typeand R for queues of GI/M/1 type.In contrast to these procedures, Stewart [10, 11] proposes to directly determinethe vector �T, by an approach based on a recursive descent method for solvingblock Hessenberg systems. It turns out that this method also produces thematrix G or the matrix R as a byproduct. Our goal is to show the relationsbetween the two approaches.



Numerical Methods for M/G/1 Type Queues 5In the next section we will introduce the matrix G along with an iterativemethod for computing it. In the following section we discuss the method forsolving block Hessenberg matrices. We then brie
y consider the case of thematrix R.2 THE MATRIX GWe consider here matrices of the type (1.1), and we introduce two auxiliarymatrix of order m, called G and U . They may be de�ned probabilistically asfollows.The (i; j)-element of G is the probability that starting from state (k; i)(k � 1) the chain will �rst appear at level k � 1 in state (k � 1; j).The (i; j)-element of U is the probability that starting from state (k; i)(k � 1) the chain will �rst appear at level k in state (k; j) before itappears at any lower level.A necessary and su�cient condition for the chain to be recurrent is that G bestochastic. For if the ith row sum of G is less than one, there is a positiveprobability that starting from state (k; i) the chain will never arrive at levelk � 1.It is shown in [2] that G and U are related as follows:1: U = A1 +A2G+A3G2 + � � � ;2: G = (I � U )�1A0: (1.3)Hence G satis�es the equationG = A0 + A1G+ A2G2 + � � � ; (1.4)and indeed G is the smallest (componentwise) nonnegative solution of (1.4).It is further shown in [9] that if we partition�T = (�T0 �T1 �T2 � � � )then �T0 satis�es �T0 B̂0 = �T0 ;



6 Chapter 1and given �T0 we can compute �Tk recursively in the form�Tk =  �T0 B̂k + k�1Xi=1 �Ti Âk�i+1! (I � U )�1;where Âk =Xi�kAiGi�kand B̂k =Xi�kBiGi�k:The recursion for �Tk is homogeneous in �T0 ; hence one can solve it with anunnormalized �T0 and later normalize �T so that it sums to one. On the otherhand, with additional calculations it is possible to normalize �T0 at once (see [6]for details). This algorithm is, in essence, Gaussian elimination; computing Gcorresponds to the forward elimination phase, computing �T as outlined abovecorresponds to the backward substitution phase.These equations indicate one reason why it has long been of interest to de-termine the matrix G, which was seen as the key to the whole computationalprocedure. Several algorithms have been proposed, among which the followingrequires the least number of iterations [3]:1: G0 = 0;2: U�+1 = A1 + A2G� +A3G2� + � � � ; � = 0; 1 : : : ;3: G�+1 = (I � U�+1)�1A0; � = 0; 1 : : : : (1.5)The two matrix sequences monotonically converge respectively to G and U .Turning to practical matters, we �rst note that we cannot form the in�nitesums required by the algorithm. However, since P is stochastic,1X�=0A�e = e; (1.6)and we must have lim�!1A� = 0. Thus there is an index M such that A� isnegligible for � > M , and we can truncate the sums in (1.5). Let us call theresulting iterates GM;�.



Numerical Methods for M/G/1 Type Queues 7Since M is �nite, we can then evaluate the expression (1.5.2) by nested multi-plication. Speci�cally,1: UM;�+1 := AM ;2: UM;�+1 := UM;�+1GM;� +A�; � = M � 1;M � 2 : : :1: (1.7)The iteration can take advantage of special structure in the matrix. First, ifthe Ak are sparse, then the work in forming the products in (1.5.2) can bereduced. Second, if A0 is of less than full rank, then so is G, and we can takeadvantage of this fact as follows.Let rank(A0) = r, and let A0 = V Wwhere V and W are m � r and r �m matrices. Then from (1.5.3)G� = [(I � U�)�1V ]W � SW;and we can write (1.7.2) in the formUM;�+1 := (UM;�+1S)W + A�:If the rank of A0 is small| speci�cally less than m=2|the computation ofUM;�+1S followed by the computation of (UM;�+1S)W will be cheaper thanthe direct computation of the matrix product UM;�+1GM;�.An alternative characterization of the matrix G will be useful in the sequel.Let us think of P as partitioned into four blocks:P = �B1 P0�P�0 P��� ; (1.8)with P0� = (B2 B3 B4 � � �); (1.9)P�0 = 0BBB@A000... 1CCCA ; (1.10)



8 Chapter 1P�� = 0BBBBB@A1 A2 A3 � � �A0 A1 A2 . . .0 A0 A1 . . .... . . . . . . . . .1CCCCCA : (1.11)In view of (1.6) and the irreducibility of P , the matrix P�� is properly sub-stochastic. The matrix G satis�es the equationQ��0BBB@ GG2G3... 1CCCA = 0BBB@A000... 1CCCA ; (1.12)where Q�� = I � P��. In fact each row of (1.12) is just (1.4) multiplied by apower of G. In order to prove that the only solution consists of powers of G,we use an argument similar to that of [4], Equation (13).3 BLOCK HESSENBERG SYSTEMSThe approach taken in this section is based on the following observation. LetP�� and Q�� be de�ned as in the last section. Equation (1.12) implies that ifwe can solve block Hessenberg systems, we can compute G. One possibility isGaussian elimination. In this paper, however, we consider an alternative thathas certain advantages when the matrix of the system is sparse or when A0 isof defective rank. The algorithm is quite general and does not depend on theblock Toeplitz structure of Q��; however, to keep our notation consistent, wewill continue to work with P��. Since we cannot work with in�nite matrices,we will truncate P�� and Q�� to be of order N .The algorithm is a recursive descent method for solving the linear systemQ��x = b:Partition Q�� in the form Q�� = �Qnw QneQsw Qse� :Here the subscripts refer to points in the compass. In our application the orderof Q�� will always be a power of 2, and the partitioning will be chosen to split



Numerical Methods for M/G/1 Type Queues 9Q�� exactly in half. Note that Qsw is an almost empty matrix with A0 sittingin its upper right-hand corner.Now consider the systemQ̂�x̂nx̂s� � �Qnw Qne0 Qse��x̂n̂xs� = �bnbs� : (1.13)Assuming that we can solve block Hessenberg systems of half the size of theoriginal, we can solve (1.13) by the following algorithm:1: Solve Qsex̂s = bs,2: Solve Qnwx̂n = bn �Qnex̂s.We will now show how to patch together the solutions x̂s and x̂n to get thesolution x of the original equation.As in the last section, suppose A0 has the factorizationA0 = VW;where V and W are of full rank r. Let Qnw be of block order t, and setE = 0BBBBBBB@ 0...0t+ 1 V...0 1CCCCCCCA and F = � t0 � � � W 0 � � � 0 �: (1.14)Set 1: X = FQ̂�1;2: S = I + FQ̂�1E;3: Y = Q̂�1E: (1.15)It can be shown that if we partitionx̂T = (x̂T1 � � � x̂Tt x̂Tt+1 � � � x̂TN )then x = x̂� Y S�1x̂t:An implementation of this method has been described in [11], and we willonly point out some salient features. The matrices X and Y are called patch



10 Chapter 1matrices. As we have seen, Y is used to solve systems of the form Q��x = b.The patch matrix X is used to solve transposed systems. Patch matrices mustbe precomputed, and they are analogous to the elimination phase of Gaussianelimination. It turns out that the bulk of the work, at least for dense matrices,consists of matrix vector multiplications of the form Qnex. If Qne is sparse,operations can be saved in this process. Moreover, the number of columns inthe patch matrix Y is equal to the rank of A0, so that, as in the previous section,the smaller the rank, the more e�cient the algorithm. Unlike the iteration inthe previous section, we do not have to restrict the rank to be less than m=2.The patch matrix Y contains the wherewithal to compute an approximation toG. To see this, partitionY T = (Y T1 � � � Y Tt Y Tt+1 � � � Y TN ):Then it follows from (1.14) and (1.15.3) thatQse0BBB@Yt+1Yt+2...YN 1CCCA = 0BBB@V0...01CCCA : (1.16)On multiplying this equation from the right by W , we getQse0BBB@Yt+1WYt+2W...YNW 1CCCA = 0BBB@V W0...0 1CCCA = 0BBB@A00...0 1CCCA :But this is just a truncated version of the equation (1.12), and it follows thatG �= Yt+1W:Thus we have a new algorithm for computing G.The particular form of our application generates some economies. In practicewe would not only truncate the matrix P�� to be of block order N , but as wedid in the last section, we throw away all Ak for k greater than some integerM .This gives our matrix a banded structure: for large N almost all the matrixQne is zero, and we can take advantage of this sparsity.Let us denote the patch matrices so obtained by GM;N . Then a natural algo-rithm is to start with GM;1 and successively compute GM;2, GM;4, GM;8, and



Numerical Methods for M/G/1 Type Queues 11continue the doubling until convergence. Because our matrices are Toeplitz,Qne = Qsw, and the two matrices have the same patch matrices. This meansthat we can save work in passing from GM;N to GM;2N . Moreover, because ofthe special nature of the system (1.16), we can compute GM;N very cheaply andcheck convergence before going on the the computation of the patch matricesfor the doubled system.Turning now to the computation of �T, we will continue to assume that oursystem has been truncated. We begin by observing that�T(I � P ) � �TQ = 0:Writing this equation in partitioned form, we get(�T0 �T� )�Q00 Q0�Q�0 Q��� = 0:It then follows on eliminating �T� that�T0 (Q00 �Q0�Q�1�� Q�0) = 0: (1.17)This is a small problem of order m which can be solved by standard techniques.Now Q�0 is the block vector whose �rst block is �A0 and whose other blocksare zero. It follows that Q�1�� Q�0 = �Y�W , where Y� is the block vector on theleft of (1.16). Hence the system (1.17) has the form�T0 (Q00 + Q0�Y�W ) = 0:In particular for our truncated systemQ0�Y = � NXi=1 BiYi:Finally, the vector �T� can be computed by solving the system�T�Q�� = ��T0Q0�:4 THE MATRIX RWe consider here matrices of the type (1.2). If we partition P as above, wehave that P0� = (A0 0 0 � � �); (1.18)



12 Chapter 1P�0 = 0BBB@B2B3B4... 1CCCA ; (1.19)P�� = 0BBBBB@A1 A0 0 � � �A2 A1 A0 . . .A3 A2 A1 . . .... . . . . . . . . .1CCCCCA : (1.20)In this case, one proves [7] that there exists a matrix R of order m such thatthe stationary probability vector is given by�Tk = �T0Rk; k � 0; (1.21)and �T0 is a left eigenvector of the matrix B[R] = Pn�1BnRn�1, normalizedso that �T0 (I � R)�1e = 1.The matrix R is equal to A0(I � U )�1, where U is de�ned as in Section 2. Asin the case of the matrix G, several algorithms have been proposed, in orderto compute R, most of which are described and compared in [5]. The iterationcorresponding to (1.5) is given below; the two sequences converge monotonicallyrespectively to R and U .1: R0 = 0;2: U�+1 = A1 + R�A2 +R2�A3 + � � � ; � = 0; 1 : : : ;3: R�+1 = A0(I � U�+1)�1; � = 0; 1 : : : : (1.22)Of particular interest to us is the fact that the matrix R satis�es the followingequation [4]: (R R2 R3 : : :)Q�� = (A0 0 0 : : :); (1.23)where Q�� = (I � P��). This clearly indicates that the matrix R may bedetermined by applying, mutatis mutandis, the recursive descent described inthe preceding section.AcknowledgementsThis work was supported in part by the National Science Foundation undergrant CCR 9115568.
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