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I evaluated (1) the effects of a native submersed aquatic plant species, Vallisneria 

americana, on the colonization success of a non-native and highly invasive submersed 

aquatic species, Hydrilla verticillata, through field and greenhouse experiments; and (2) 

the effects of H. verticillata propagule density on its colonization success of patches 

dominated by the native species.  Results of the field study, located in a tidal freshwater 

region of Chesapeake Bay, suggest that pre-existing vegetation did not have significant 

negative effects on H. verticillata colonization.  However, pre-existing H. verticillata 

biomass and H. verticillata colonization success were strongly correlated.  In contrast, 

results from the greenhouse study showed that V. americana had a strong inhibitory 

effect on H. verticillata colonization by fragments and increasing H. verticillata fragment 

density again increased colonization success.  Reduced water column nutrient 

concentrations, resulting from V. americana growth, appeared to negatively affect 

successful rooting and subsequent colonization by H. verticillata.
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Chapter 1: Background Information 

Introduction 

The concept of priority effect predicts that the first species to establish will have a 

competitive advantage over later arriving species.  Frequently, when one species 

establishes first it is capable of inhibiting growth, and reducing survival of subsequent 

arrivals (Keever 1950, Parenti and Rice 1969).  For example, the initial density of plant 

propagules may greatly affect competitive outcomes (Grace 1987).  Early arrivals may 

produce shade, which inhibits the growth of later arrivals, or root growth may inhibit 

germination of other species (Parenti and Rice 1969).  Priority effects may also be 

dependent on plant size, for example juveniles of a given species may be competitively 

superior while the adults are competitively inferior (Grace 1985).  However, it is also 

possible for the first arriving species to facilitate the establishment of other species 

(Connell and Slatyer 1977).   

The idea that first arrivals have an advantage over later arrivals has important 

implications for the field of restoration ecology.  Invasions of undesirable species may 

indeed be slowed or halted by the pre-establishment of native plant species (Madsen 

2000).  However, very little research has been conducted relating to the efficacy of such 

“biological control” methods in natural systems.  Pre-existing vegetation may alter the 

outcome of competitive interaction or may decrease the chance that arriving propagules 

can colonize or establish in an area.  I chose to research the latter mechanism, using 

submersed aquatic macrophyte communities as the model system.  The term “aquatic 

 1 
 



 

macrophyte” is a confusing one (Sculthorpe 1985).  In this paper I refer to “macrophytes” 

strictly as vascular plants and do not consider algal species.  

The introduction of non-indigenous species is a potential cause of native 

macrophyte displacement (Chambers et al. 1993).  Chronic reductions and compositional 

changes in macrophyte communities in Chesapeake Bay have been documented since the 

time of European settlement, particularly in the last century (Orth and Moore 1983, 

Carter et al. 1985, Davis 1985).  Exotic species have resulted in cumulative monetary 

losses in the United States of approximately $97 billion over the last 75 years (OTA 

1993). Hydrilla [Hydrilla verticillata (L.F.) Royle] is a submersed aquatic plant that 

causes substantial economic hardships, interferes with various water uses, displaces 

native aquatic plant communities, and adversely affects freshwater habitats (Langeland 

1996).   

In this study, I evaluated the effects of pre-existing native submersed macrophytes 

on the colonization success of H. verticillata in the field and in greenhouse mesocosms.  

The primary goal of this research was to determine whether pre-existing vegetation 

inhibits or facilitates the establishment of H. verticillata.  The secondary goal of this 

research was to elucidate the mechanisms that regulate H. verticillata colonization 

success.  If colonization success is reduced in vegetated areas, is the response due to a 

preemption of resources, such as nutrients and light, or is it due to a physical barrier 

created by native vegetation that does not allow roots from arriving propagules to reach 

the substrate? 
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The Problem of Invasive Species 

The issue of invasive species has become one of global concern.  Human 

alteration of the planet has resulted in biotic additions leading to the rearrangement of 

Earth’s biotic systems (Vitousek et al. 1997).  The introduction of non-native species can 

alter the patterns of many ecosystem processes (Chapin et al. 2002).  Concerns about the 

spread of non-indigenous species and the effects of these species on their new 

environments dates back at least to the time of Charles Darwin (Ludsin and Wolfe 2001).  

Nearly 50% (1570 invading species) of the terrestrial flora of New Zealand is composed 

of introduced species (Heywood 1989).  Out of 24 nature reserves distributed throughout 

the world, not one was “without at least one species of invasive vertebrate and at least 

several species of invasive vascular plants” (Usher et al. 1988).  We can only assume that 

the situation has gotten worse in such areas in the last 15 years.  In these terrestrial nature 

reserves Macdonald et al. (1989), report the following impacts of ecosystem disruption: 

 

1. Acceleration of soil erosion rates (feral mammals) 

2. Alteration of biogeochemical cycling (feral pigs, invasive nitrogen fixers, salt 

accumulators) 

3. Alteration of geomorphological processes (dune and marsh grasses) 

4. Alteration of hydrological cycles (phreatophytes, Phytophthora, invasive 

trees) 

5. Alteration of fire regimes (invasive grasses and shrubs) 

6. Prevention of recruitment of native species (alien plants, mammals, and ants) 

 

Native submersed macrophytes are being displaced by introduced species at an 

alarming rate.  Anthropogenic sources of these nonindigenous plant species include; 
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aquaculture, aquarium and pond trade, bait trade, and shipping (Mooney and Hobbs 

2000).  Successful introductions of exotic species may be intentional or unintentional.  

On the global scale, native freshwater macrophyte species have been displaced by 

Myriophyllum spicatum and H. verticillata in North America, Elodea canadensis in 

Europe, and E. nuttallii, Egeria densa, and Cabomba caroliniana in Japan (Chambers et 

al. 1993).  Locally, M. spicatum displaced the three dominant native species in the 

Susquehanna Flats between 1958 and 1963 before its population crashed, putatively as a 

result of the Lake Venice disease (Bayley et al. 1978).  The rapid dominance and 

displacement of native species by H. verticillata has been particularly dramatic 

(Langeland 1996, Madsen and Owens 2000). 

Submersed macrophytes are important to regulating a broad range of ecosystem 

processes in aquatic ecosystems (Carpenter and Lodge 1986).  Not only do macrophyte 

communities improve water quality (Carter et al. 1988), but they also provide important 

feeding and rearing habitats for waterfowl, fish, invertebrates and many other organisms 

(Kantrud 1990).  Different species of submersed macrophytes contribute varying 

proportions of their primary production throughout the water column (Stevenson 1988) 

and play key roles in nutrient cycling (Kufel and Kufel 2002).  Thus, when native species 

are displaced by nonindigenous species, regulation of these ecosystem processes may be 

altered. 

In general, plant communities are subject to various degrees of community 

restructuring resulting from natural and anthropogenic disturbances.  Temporal changes 

in species composition are more common in some habitats than others (Clements 1916).  

The aquatic habitat is one that is very prone to disturbance and thus may experience more 
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invasion pressure and compositional change.  Flood events are an important source of 

disturbance to macrophyte communities.  Floods influence the current velocity of 

streams, sediment deposition rates, and nutrient loading to aquatic systems (Bornette et 

al. 2001).  Water flow can both negatively and positively affect macrophyte growth 

(Madsen et al. 2001).  High stream velocity may directly affect macrophytes by causing 

mechanical damage to the tissues or scouring the benthic zone and removing vegetation.  

Increased stream velocity indirectly affects submersed vegetation negatively by 

increasing turbidity through the resuspension of sediments and altering sediment 

characteristics.  Moderate increases in stream flow may facilitate gas exchange between 

macrophytes and the water (Madsen et al. 2001).  Additionally, periodic flooding events 

function to increase species diversity by distributing propagules and creating disturbances 

for weaker competitors to colonize.  Anthropogenic modifications of the landscape alter 

these disturbance regimes (Melillo et al. 1993, Vitousek et al. 1997, Riis and Sand-Jensen 

2001, Van Breemen et al. 2002).  Land-use change also alters the erosion, sediment 

transport, and deposition rates of watersheds.  Agriculture, urban development, highway 

construction, silvicultural practices, and surface mining all increase the amount of erosion 

and the subsequent amounts of sediment delivered to aquatic ecosystems (Novotny and 

Olem 1994). 

Invasion Ecology 

An ecosystem’s invasibility is a function of both environmental characteristics 

and species traits.  Shea and Chesson (2002) state that “both effects and responses of 

resident species in a community determine whether that community provides 

opportunities for invasion.”  In order to successfully invade a new area the plant species 
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must first overcome geographic, environmental, reproductive, and dispersal barriers 

(Richardson et al. 2000).  Many species traits have been proposed as being advantageous 

to invasion success.  For a species to become established, it must first survive the 

transition phase.  When comparing the relationships between characteristics of plant 

species (between invasive and noninvasive species) and completion of an invasion 

transition, positive correlations occur between successful invasion completion and 

number of seeds produced, history of invasion, if the family or genus is invasive, 

vegetative reproduction, dispersal mechanism, range area, and height.  Negative 

correlations exist between invasion success and variability of seed crop, seed mass, and 

length of juvenile period (Kolar and Lodge 2001).  Also, models predicting invasiveness 

are more accurate when considering the geographical range of the species (Goodwin et al. 

1999).  Species having larger native ranges are more invasive than species originating 

from smaller regions. 

Characteristics of the environment are also important when considering the 

potential for invasion success.  Successful invasion of natural areas is not only dependent 

on dispersal, establishment, and survival but also the formation of a patch suitable for 

colonization (Hobbs 1989).  In one study, important predictors of the potential for a site 

to become invaded included number of native species present, whether the site was an 

island or mainland, and whether or not it was a nature reserve (Lonsdale 1999).  

However, other species (e.g. Alliaria petiolata) are capable of invading systems that have 

experienced no patch creation resulting from disturbances (Meekins and McCarthy 

2001). 
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The creation of patches by the removal of alien species can benefit the re-

colonization of native species.  Research on the invasive species Delairea odorata (Cape 

ivy) has shown that its removal from a habitat can increase the abundance of native 

seedlings by 86%.  But, in this same experiment, nonnative seedling abundance increased 

by 85% as a result of Cape ivy removal (Alvarez and Cushman 2002). 

Several methods of controlling invasive plants exist, and each technique has 

advantages and disadvantages.  Control methods include preventing the entry of the 

species, mechanical control, chemical control, and biological control (Groves 1989).  

Diverse assemblages of native plants have been shown to reduce invasion in some cases 

(Elton 1927, Tilman 1997, Kennedy et al. 2002).  It is believed that greater diversity 

leads to greater community stability through higher productivity and competition 

(Lehman and Tilman 2000).  Thus, it seems plausible that promoting native plant 

diversity could be a form of biological control of invasive species.  However, other 

research has shown that more diverse communities are more likely to be invaded (Levine 

and D'Antonio 1999, Lonsdale 1999, Levine 2000).  The relationship between 

community diversity and invasibility is one that needs further research. 

A great deal of research has been conducted in the area of competitive 

interactions in terrestrial plants (Schoener 1983, Goldberg and Landa 1991, Goldberg et 

al. 1999), and to a lesser extent in emergent plants (Brewer et al. 1998, Grace and Wetzel 

1998), and macrophytes (Mccreary 1991, James et al. 1999, Spencer and Ksander 2000).  

Unfortunately, very little research has been conducted relating to the effects of pre-

existing aquatic vegetation on the colonization success of new arrivals.  Research on 

terrestrial plants has shown that propagule availability is an important regulator of 
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colonization dynamics (Foster 2001).  Aquatic plants with an “always ready” strategy, 

such as vegetative reproduction from fragments, colonize disturbed areas much more 

effectively than species with no such strategy (Barrat-Segretain and Bornette 2000).  

Many of these species traits associated with the “always ready” strategy (such as long 

distance dispersal capability, bare soil seedling “safe site”, and clonal reproduction) 

coincide with the characteristics of “persistor” species (Gross 1990).   

Species Characteristics of Study Organisms 

I evaluated the effect of pre-existing native vegetation (Vallisneria americana 

Michx. – wild celery) on the colonization success of an invasive species (H. verticillata) 

in field and greenhouse mesocosms.  Hydrilla verticillata (Figure 1.1) is a highly 

invasive species of submersed macrophyte native to tropical Asia.  This plant may be 

perennial or annual, monoecious or dioecious (Cook and Lüönd 1982).  Hydrilla 

verticillata is a rooted vascular macrophyte that exhibits a canopy-forming growth 

structure.  This plant typically branches infrequently until it reaches the surface of the 

water where it forms thick mats of vegetation.  It may grow at depths of greater than 7 m 

in clear water.  Occasionally, H. verticillata may become uprooted and survive in a free-

floating form.  Hydrilla verticillata is capable of growing in water with varying 

chemistries and nutrient concentrations (Cook and Lüönd 1982).   
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Figure 1.1.  Hydrilla verticillata (scale bar = 1 cm). 

 
The dioecious variety of H. verticillata was first discovered in the United States in 

1960 in two locations in Florida, and by the early 1970s it was found in all major 

drainage areas in the state.  The first U.S. record of the monoecious strain of  

H. verticillata was recorded in the Washington D.C. area in 1982 (Steward et al. 1984).  

This introduction most likely resulted from H. verticillata’s escape from transplanting 

and caging experiments conducted in 1980 using plants misidentified as the native 

Elodea canadensis (Steward et al. 1984).  Hydrilla verticillata is now reported in 16 

states, mostly in the South, but ranging up the West Coast as far as Washington and up 

the East Coast as far as Maine (Figure 1.2).  The initial introductions of H. verticillata are 

suspected to be the result of ornamental plant importations and the aquarium trade.  
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Subsequent anthropogenic dispersal is most likely attributed to recreational boat use and 

the intentional introduction to lakes by fishermen. 

 
 

 

Figure 1.2.  US distribution of Hydrilla verticillata (USGS 2003) 

 

Hydrilla verticillata distribution is generally limited by its temperature tolerance.  

Growth of this species is regulated by temperature (Steward 2000, Best et al. 2001).  The 

dioecious type commonly found in the southern states photosynthesizes optimally at 

temperatures greater than 320 C (Barko and Smart 1981).  Hydrilla verticillata 

germination from tubers and turions is also determined by temperature (Spencer et al. 
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2000, Spencer and Ksander 2001).  In an experiment comparing monoecious H. 

verticillata and V. americana, 50% of the V. americana germinated at 13o C compared to 

0% H. verticillata germination at this temperature (Rybicki and Carter 2002). 

Hydrilla verticillata is an extremely productive plant capable of producing 4.2 g 

dry wt. m-2 d-1 in culture (Debusk et al. 1981).  The ecosystem effects of this biomass 

production are both positive and negative.  Increases in dissolved oxygen, pH, thermal 

stratification, and decreases in suspended particulate matter and chlorophyll-a 

concentrations are associated with vegetated sites in the Potomac River (Carter et al. 

1988).  These sites were dominated by H. verticillata at the time of the study.  However, 

dense populations of H. verticillata can diminish the value of aquatic ecosystems for 

humans (Langeland 1996), and wildlife (Brown and Maceina 2002, Valley and Bremigan 

2002). 

Hydrilla verticillata has specialized growth, physiological, and reproductive 

characteristics that have permitted it to become a dominant species in a broad range of 

freshwater ecosystems (Langeland 1996).  This exotic species typically demonstrates an 

exponential growth rate during its establishment phase.  Environmental factors are 

considered to be important regulators to the expansion of this species, however to date no 

simple linear relationships have been found (Madsen and Owens 2000).  These results 

failed to consider biotic factors such as competition and herbivory.  It is likely that the 

distribution of H. verticillata is related to complex biotic and abiotic interactions. 

It may be ascertained from the information above that H. verticillata has many of 

the species traits associated with other invasive species.  Hydrilla verticillata has a 

history of invasion and covers a broad geographical range in its region of origin.  Elodea 
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canadensis, also from the family Hydrocharitaceae, is native to North America. This 

macrophyte has become an invasive species in Europe and is now one of the most 

common macrophytes in Danish streams (Riis and Sand-Jensen 2001).  Hydrilla 

verticillata produces large quantities of vegetative propagules in the form of fragments 

and turions.  These fragments are capable of floating in the water column for periods of 

weeks before settling and rooting (personal observation) and thus serve as long distance 

dispersal mechanism.  Finally, H. verticillata may be considered to have an “always 

ready” strategy associated with successful colonization of new areas.   

Vallisneria americana is also a macrophyte of the family Hydrocharitaceae.  This 

plant forms basal rosettes with leaves that may reach 2 m in length depending on water 

quality and depth (Korschgen and Green 1988).  Unlike H. verticillata and E. canadensis, 

this species has no means of vegetative reproduction other than stolon formation.  

Vallisneria americana does produce seeds, however seed masses settle close to the parent 

and may not disperse very far (Kaul 1978).  Thus, this species does not exhibit an 

“always ready” strategy.   

In general, quantitative data is lacking for biotic controls in macrophyte species 

declines and the mechanisms by which invasive macrophytes appear to out-compete 

native species (Chambers et al. 1993).  Interactions between H. verticillata and  

V. americana frequently result in the exclusion of one of the two species.  Research 

shows that H. verticillata is the superior competitor under high sediment nutrient 

availability (Van et al. 1999, Rybicki et al. 2001), however other research has shown  

V. americana to be the superior competitor when grown in sediments with elevated 

nutrient availability (Smart et al. 1994).  There is also weak evidence based on shoot 
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elongation rates that V. americana out-competes monoecious H. verticillata under cooler 

conditions (Rybicki and Carter 2002). 

In the next chapter, I present results of research that I conducted examining the 

effects of V. americana on the colonization success of H. verticillata in both field and 

greenhouse experiments.  I also show the effects of H. verticillata propagule density 

indirectly in the field where experimental units were placed in different patch densities, 

and directly in the greenhouse where I controlled H. verticillata fragment input.  In 

chapter 3, I frame the results of these experimental manipulations in the greater context 

of ecological theory and aquatic plant management. 

Hypotheses 

H0-1 (Null Hypothesis): Pre-existing vegetation has no effect on Hydrilla verticillata 

colonization. 

 

H1:  Hydrilla verticillata colonization success is inhibited by pre-existing vegetation. 

H1A:  Native vegetation provides a physical barrier to colonization by  

H. verticillata only through the preemption of space and/or light. 

 

H1B:  Native vegetation preempts resources (space and/or light and/or nutrients). 

 

H2:  Hydrilla verticillata colonization is facilitated by pre-existing vegetation. 

H2A:  Native vegetation serves as an anchor point for H. verticillata propagules. 

 

H0-2:  (Null Hypothesis): Hydrilla verticillata colonization is independent of propagule 

density. 

 

H3:  Hydrilla verticillata colonization success is dependent on propagule density. 
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To test these hypotheses, I conducted complementary field and greenhouse 

experiments that test for differences in H. verticillata colonization success among 

experimental units that were planted with live plants, planted with plastic plants, and left 

unplanted.  I predicted that if H1 was true, then colonization success would be lower in 

planted trays than in unplanted trays.  If H1A was true then colonization success would be 

reduced more in experimental units planted with plastic plants than in unplanted units.  If 

H1B was true, then colonization would be most reduced in experimental units planted with 

live plants.  If H2 was true, then experimental units planted with plants or plastic plants 

would experience more colonization by H. verticillata.  If H3 was true, then experimental 

units that received more propagules would experience different colonization success than 

those that received fewer propagules.   
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Chapter 2: Effects of Vallisneria americana on colonization 

success of Hydrilla verticillata 

Introduction 

An ecosystem’s invasibility is a function of species traits and environmental 

characteristics.  Species traits such as vegetative reproduction and high propagule output 

are often associated with a species’ invasiveness (Kolar and Lodge 2001).  A system’s 

invasibility may be related to how well the existing species use available resources and 

the type and frequency of disturbance that the system receives (Connell and Slatyer 

1977).  Systems that are more disturbed typically experience more invasion pressure from 

exotic species (Meekins and McCarthy 2001), whereas a community with a low level of 

niche opportunity, is less likely to be successfully invaded by non-native species (Shea 

and Chesson 2002). 

Pre-existing vegetation may inhibit the colonization of later arriving species 

through the preemption of resources such as light or nutrients (Grace 1987).  When one 

species successfully establishes itself, it may lower these factors below the critical limit 

of other species (Tilman 1982).  Conversely, early arrivals may facilitate the 

establishment of other species that manage to disperse propagules into the area (Levine 

1999).  Frequently, facilitation occurs by modifying environmental conditions such as 

pH, nutrients, or oxidation or water or sediments.  These environmental alterations render 

the habitat more hospitable to other species.  Pre-existing vegetation may also provide 

safe-sites by trapping propagules of other species and thereby creating local pockets of 

colonization. 
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Propagule pressure and disturbances to the environment relate both to the 

invasiveness of a particular species as well as to the invasibility of an environment 

(Williamson and Harrison 2002).  Propagule pressure is defined here and elsewhere as 

the number of individuals introduced as well as the number of release events (Allendorf 

and Lundquist 2003).  Increasing propagule pressure enhances the likelihood of 

successful colonization.  Environmental disturbance may result in several outcomes.  

First, disturbances may remove potential competitors and thus facilitate colonization by 

competing species.  Disturbances may also modify the environment, by altering sediment 

chemistry.  Physical alterations to the environment can foster the colonization of 

invaders, but such disturbances may contribute to community stability (Barrat-Segretain 

and Bornette 2000). 

Disturbances to a system may be either fine scale or coarse scale.  In aquatic 

environments, local disturbances may result from boating events, or from wildlife 

activities such as grazing, nesting, digging, etc.  Coarse scale disturbances are frequently 

caused by storm events, eutrophication, and water level changes.  Disturbances on 

different spatial scales typically occur on different temporal scales as well, with finer 

scale disturbances generally more frequent than larger scale disturbances.  Recovery from 

disturbance also occurs more rapidly when the disturbance is on the fine scale versus the 

coarse scale (Foster et al. 1998).   

Hydrilla verticillata (L.F.) Royle (hydrilla), of the family Hydrocharitaceae, is a 

highly invasive species of submersed macrophyte native to tropical Asia.  Hydrilla 

verticillata was first discovered in the United States in 1960 in two locations in Florida, 

and by the early 1970s it was found in all major drainage areas in the state.  It is now 
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reported in 16 states, mostly in the South, but ranging up the West Coast as far as 

Washington and up the East Coast as far as Maine (Public communication, USGS 

website; Figure 1.3).1  Hydrilla verticillata has many of the traits that are attributed to 

invasive species.  This aquatic macrophyte has specialized growth, physiological, and 

reproductive characteristics that have permitted it to become a dominant species in a 

broad range of freshwater ecosystems (Langeland 1996).  It also has a history of invasion 

and covers a broad geographical range in its region of origin, two additional traits of 

invasive species.  Hydrilla verticillata produces large quantities of vegetative propagules 

in the form of fragments and turions.  These fragments are capable of floating in the 

water column from days to weeks before settling and rooting (personal observation) and 

thus serve as a long distance dispersal mechanism.  Finally, because this macrophyte 

reproduces primarily from fragments, it has an “always ready” strategy associated with 

successful colonization of new areas (Barrat-Segretain and Bornette 2000).   

The aquatic vegetation in the tidal freshwater portion of Otter Point Creek, near 

Abingdon, Maryland has experienced substantial changes through time.  Hydrilla 

verticillata was first observed at this site in the summer of 2002.  Historical records show 

that the Susquehanna Flats, which are about 20 km northeast of Otter Point Creek, were 

dominated by the native macrophyte species Vallisneria americana Michx. (wild celery), 

Najas sp., and Elodea canadensis before 1960. After this time, the community was 

dominated by the exotic macrophyte Myriophyllum spicatum.  In 1972, all species 

drastically declined as a result of Hurricane Agnes (Bayley et al. 1978).  During the 

summer of 2003, H. verticillata displaced M. spicatum as the dominant species at Otter 

Point Creek (J. Bortz, unpublished data).  Recently, managers at the Otter Point Creek 
                                                 
1 URL: http://nas.er.usgs.gov/plants/docs/hy_verti.html 
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National Estuarine Research Reserve have begun the daunting task of native plant 

restoration in this location dominated by invasive species. 

I tested the alternative hypotheses that pre-existing native vegetation would  

(1) reduce the colonization success of invasive species through the preemption of 

resources (“preemption hypothesis”), or (2) facilitate the colonization of H. verticillata 

by trapping fragments floating through the water column (“facilitation hypothesis”); or 

(3) not have any effect on H. verticillata colonization (“null hypothesis”).  I also tested 

the hypothesis that increasing propagule availability would increase the invasion success 

of H. verticillata (“propagule pressure hypothesis”).  These hypotheses were tested using 

replicated greenhouse and field experiments that measured the colonization success of  

H. verticillata into created patches of V. americana. The study compared the colonization 

success of H. verticillata into experimental units previously populated with V. americana 

and experimental units with no existing vegetation.  I considered the arrival, rooting, and 

tuber production of a H. verticillata fragment to be a successful colonization.  To 

elucidate the mechanisms of any facilitation or inhibition of colonization success, I also 

used experimental units of plastic plants resembling V. americana in the experiments.  

The propagule pressure hypothesis was measured indirectly in the field by placing 

experimental units in areas of varying H. verticillata density and directly in the 

greenhouse by controlling the number of H. verticillata fragments introduced to each 

mesocosm.   

 18 
 



 

Methods 

Study Site 

I conducted the field research at the Otter Point Creek National Estuarine 

Research Reserve, Abingdon, Maryland, USA (39o 27’ N, 76o 16’ W).  This water body 

in the upper Chesapeake Bay (Figure 2.1) contains 106 Ha of tidal freshwater, and the 

maximum depth is 1.5 m.  The Otter Point Creek Reserve is of particular interest because 

H. verticillata was first observed here in the summer of 2002 and had not yet reached full 

coverage by the time of my study (J. Bortz, unpublished data).  In 2002 the submersed 

aquatic plant community at the study site consisted of the following species, listed from 

greatest abundance to least abundance; Myriophyllum spicatum, Hydrilla verticillata, 

Ceratophyllum demersum, Elodea canadensis, Heteranthera dubia, and Potamogeton 

pusillus.   

Field Experiment 

To compare the effects of pre-existing vegetation and to distinguish between 

potential mechanisms of competition, I created an unplanted control treatment (“Bare”), a 

treatment planted with V. americana (“Vallisneria”) and a treatment planted with plastic 

plants resembling V. americana (Plastic).  I used polypropylene strapping to create 

artificial plants.  This material is extremely strong, positively buoyant, relatively cheap, 

and is available in sizes that approximate V. americana leaves (1.3 cm wide by 0.04 cm 

thick).  I cut the polypropylene strapping into 90 cm long pieces and stacked 4 pieces 

together, doubled at the center point, and then melted the strips together at the base with a 
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soldering iron.  Each individual plastic plant measured 45 cm tall and had 8 leaves.  I 

then fastened 17 of these plants into plastic trays measuring 34 x 24 x 9 cm.   

 

 
Figure 2.1.  Map of Otter Point Creek study site. 

 

I mixed equal parts of topsoil and sand to create the substrate for this experiment.  

Sixty empty trays and 30 trays with the plastic plants were filled to within 1 cm of the top 

of the tray with substrate.  The final 1 cm was then filled with sand to reduce the loss of 

substrate to the water column.  On April 14, 2003, 30 of the bare trays were seeded with 

V. americana.  All trays were then placed in the greenhouse and submersed in 20 cm of 

freshwater.  Because of poor germination, I planted 17 live V. americana plants in the 
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previously seeded trays on May 23, 2003.  Resulting V. americana densities were 209 

plants m –2, which is similar to reported natural densities of this species (Korschgen and 

Green 1988).  All trays (30 with live V. americana, 30 with plastic plants, and 30 

unplanted) were then maintained in the greenhouse at the University of Maryland Center 

for Environmental Science’s Appalachian Laboratory for 35 days to permit the  

V. americana to root sufficiently before placement in the field. 

Experiment sites at the Otter Point Creek field location were chosen based on the 

H. verticillata density of the previous year (2002).  I selected two sites that had high  

(>40 %) H. verticillata estimated percent cover in 2002 and two sites that had relatively 

low (<40%) H. verticillata percent cover in 2002.  The final two sites were placed 

midway between the high and low-density sites.  On June 28, 2003 all of the trays were 

transported to the field location and situated in the experiment sites on that day and the 

following day.  Five replicates of each “Bare”, “Plastic”, and “Vallisneria” treatment 

were randomly placed in each site.  Sediments at the site were soft enough to allow the 

trays to be pushed down until the top of the tray was flush with the natural sediment.  

Trays were placed approximately 2 m from one another and fastened in place with 3.05 m 

long 1.27 cm diameter PVC pipe run through the center of each tray. 

I used a portable water current meter (Marsh-McBirney Model 201D) to measure 

current velocity at each of the 6 experimental sites over a 24-hour period between July 25 

and 26, 2003 to test for equal current velocities between sites.  Velocities were measured 

at 10 cm above the sediment surface and just below the water surface.  I also recorded 

depths with a PVC depth rod at each of the sites on the hour during this period.  Above 

ground biomass of each submersed macrophyte species was estimated on September 17, 
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2003 by collecting all above ground biomass in four 1 m2 quadrats in each site.  The 

biomass was not rinsed because I perceived the biomass of attached detritus and 

epiphytic growth to be negligible.  I later dried all biomass at 60 º C for 24 hours and 

weighed the material. 

To identify any nutrient related mechanisms affecting the colonization success of 

H. verticillata, I analyzed soil pore water for total nitrogen and total phosphorus in a 

subset of the trays.  I installed mini-tension lysimeters in 30 of the trays and collected 

approximately 15 ml of water for analysis during two sampling periods.  The first soil 

pore water collection occurred on July 11, 2003.  Due to time constraints imposed by 

Hurricane Isabel, the final soil pore water collection did not occur in the field.  Instead, 

on September 17, 2003, 30 trays with their associated plants and substrate were collected, 

sealed in plastic bags, and transported to the laboratory to have the soil pore water 

extracted on September 18, 2003 using the lysimeters.  I stored all water samples at  

–19 °C until analysis on January 24, 2004.  Each water sample was digested, autoclaved, 

and analyzed for total nitrogen and total phosphorous on the Lachat QuikChem 

Automated Flow Injection Analysis System (APHA 1998).   

The contents of each tray collected in the field were sifted to separate the 

substrate from the plant material.  Biomass was separated into tubers, turions, and above 

ground biomass for H. verticillata and total biomass for V. americana. All vegetative 

material was dried for 24 hours at 60 º C and then weighed.   

I observed in the field that pumpkinseed sunfish (Lepomis gibbosus) were nesting 

in several of the trays and consequently removing some amount of substrate in these 

trays.  When the trays were collected, there were marks left on the sides of the trays from 
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algal growth indicating how much substrate had been removed.  Based on these marks, I 

quantified the disturbance in each tray as a percent of the substrate that was removed. 

Greenhouse Experiment 

To control environmental conditions and regulate propagule input, I replicated the 

field experiment in greenhouse mesocosms using 30 unplanted mesocosms as controls 

(“Bare”), 30 mesocosms planted with V. americana (“Vallisneria”) and 30 mesocosms 

planted with the plastic plants (“Plastic”).  Plastic plants were created in the same manner 

as for the field experiment with the exception that the plants were 36 cm tall and placed 

in mesocosms measuring 26 cm diameter x 36 cm height.  I began this experiment on 

May 23, 2003.  On August 19, 2003, 10 cm long H. verticillata fragments, collected from 

Little Seneca Lake, Burdette, MD, were added to the each of the treatments in densities 

of 1, 5, or 10 fragments per mesocosm.  The mean dry mass of each fragment was 9.8 ± 

0.1 mg (mean ± SE).  I collected soil pore water from 16 of the containers on August 26, 

2003 and water on November 10, 2003 for the same nutrient analysis as was conducted 

for the field experiment. Biomass was sifted and separated into tubers, turions, and above 

ground biomass for H. verticillata and total biomass for V. americana on November 12, 

2003.   

Statistical Analysis 

One-way ANOVA or a nonparametric equivalent tested for differences among 

treatments in the field and greenhouse experiments.  Because data could often not be 

transformed to meet the assumptions of normality, I used Spearman correlation analysis 

to test for correlations among disturbance, H. verticillata tuber biomass, and total  
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V. americana biomass.  I used an ANCOVA to assess the effects of site-treatment 

interactions on the dependent variable “H. verticillata tuber biomass” based on the 

categorical variable “treatment” and the continuous covariate “pre-existing H. verticillata 

biomass”. 

Results 

Field Experiment 

Above ground H. verticillata biomass at the six sites ranged from 20.4 to  

71.5 g m-2.  Sites 3 and 4 supported 70-72% more H. verticillata biomass than sites 5  

and 6 (ANOVA; F5,18 = 5.50, P = 0.003; Figure 2.2).  Biomass at sites 1 and 2 was not 

significantly different from other sites.  The tidal range from July 25 to July 26, 2003 at 

the six sites averaged 58 cm.  The mean depth at the sites was 45 cm at low tide and 103 

cm at high tide.  Average depth differed by 13 cm between the shallowest site (site 2) and 

the deepest site (site 6).  Water current velocities at the six sites never exceeded  

0.02 m s-1. 
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Figure 2.2.  Existing Hydrilla verticillata biomass at each of six sites in Otter Point Creek 

(n=5/site; mean + 1 SE).  Treatments sharing a lowercase letter are not significantly 

different (Tukey-Kramer hsd multiple pairwise comparisons, α = 0.05). 

 

Soil pore water nutrients in the experimental trays declined between July and 

September 2003 (Figure 2.3).  Total phosphorous was significantly higher in the bare 

treatments than in other treatments on September 18, 2003 (F2,27 = 6.41, P = 0.0053), but 

not on July 11, 2003 (ANOVA; F2,22 = 1.53, P = 0.2386). Total nitrogen did not differ 

significantly between planted and unplanted trays on either sampling date (ANOVA; F2,22 

= 0.78, P = 0.4725 and F2,27 = 1.58, P = 0.2242).  
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Figure 2.3.  Soil pore water nutrient concentrations in samples extracted from the field 

experimental units (means + 1 SE).  B = bare, P = plastic, V = Vallisneria americana.  

Total phosphorus and nitrogen declined from July to September 2003.  Only September 

phosphorus concentrations differed significantly among treatments, where different 

lowercase letters denote significant differences (Tukey-Kramer hsd multiple pairwise 

comparisons, α = 0.05). 

 26 
 



 

 

All treatments accumulated the same amount of total H. verticillata biomass 

(ANOVA; F2,86 = 0.82, P = 0.4424; Figure 2.4A) and above ground H. verticillata 

biomass (ANOVA; F2,86 = 0.62, P = 0.5421).  However, plastic treatments accumulated 

more tuber biomass than the bare or V. americana treatments (Kruskal-Wallis test 

statistic = 17.66, 2 df, P  = 0.0001; Figure 2.4B).  Significant interactions were also 

detected between existing H. verticillata biomass and treatment at the six sites 

(dependent variable = tuber biomass; independent variables = existing H. verticillata 

biomass and treatment; ANCOVA; F5,83 = 13.59, P = <0.0001; Figure 2.5).   
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Figure 2.4.  Effects of Hydrilla verticillata colonization on treatments (mean + 1 SE): (A) 

total H. verticillata biomass; (B) H. verticillata tuber biomass.  Treatment abbreviations 
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are as in Figure 2.3 and different lowercase letters denote significant differences (Tukey-

Kramer hsd multiple pairwise comparisons, α = 0.05. 
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Figure 2.5.  Covariance of site Hydrilla verticillata biomass and treatment (means ± 1 

SE). 

Hydrilla verticillata colonization generally increased with increasing pre-existing 

H. verticillata biomass.  Based on accumulated tuber biomass, significant differences of 

H. verticillata colonization existed between sites (ANOVA; F5,83 = 5.74, P = 0.0001).  

Trays in site 4, the site supporting 66 g m-2 H. verticillata biomass, received significantly 

more H. verticillata tuber biomass than all other sites except for site 2 (Tukey-Kramer 

hsd multiple pairwise comparisons, α = 0.05). 
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Vallisneria americana biomass and H. verticillata tuber biomass were negatively 

correlated (Spearman correlation; rs = -0.306, n = 89, P = 0.0036).  A strong relationship 

between pre-existing H. verticillata biomass at the six sites and H. verticillata tuber mass 

in the experimental trays (Spearman correlation; rs = 0.376, n = 89, P = 0.0003) was also 

detected.  Disturbance and total V. americana biomass were generally positively 

correlated at the six sites, but only significantly so at site 3 (Table 2.1).  Disturbance and 

H. verticillata tuber biomass as well as V. americana biomass and H. verticillata tuber 

biomass were generally negatively correlated at the individual sites, but only significantly 

so in some cases (Table 2.1). 

 

Table 2.1.  Spearman correlations among variables (Dist = percent disturbance, VAtotal = 

total Vallisneria americana biomass, Hvtuber = Hydrilla verticillata tuber biomass) at 

each site. 

Variables 
Site Coefficient n 

Dist * Vatotal Dist*Hvtuber Hvtuber*VAtotal 

1 rs 
P 

1
5 

-0.221 
   0.4294 

-0.018 
   0.9480 

-0.181 
   0.5185 

2 rs 
P 

1
5 

0.488 
  0.0648 

-0.301 
   0.2759 

-0.331 
    0.2275 

3 
rs 
P 

1
5 

0.626 
  0.0125 

-0.627 
   0.0123 

-0.535 
   0.0400 

4 rs 
P 

1
4 

0.055 
  0.8523 

-0.490 
   0.0753 

-0.115  
    0.6945 

5 
rs 
P 

1
5 

0.251 
  0.3661 

-0.334 
   0.2240 

-0.527 
   0.0437 

6 
rs 
P 

1
5 

0.053 
  0.8504 

0.164 
  0.5589 

-0.164 
    0.5599 

Note:  bold text indicates significance at α = 0.05 level. 
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Disturbance in the trays in sites 1, 2, and 3 was about three times that of the trays 

in the other sites (Figure 2.6).  Additionally, bare and V. americana treatments 

experienced 50% less disturbance than trays with plastic plants (F2,86=  3.65, P = 0.0302).  

Because disturbance was a significant factor in the field experiment, sites were classified 

as low disturbance or high disturbance (Table 2.2).  Hydrilla verticillata tuber biomass in 

bare and V. americana treatments did not differ significantly between the two disturbance 

categories.  However, opposing trends were seen in these groups; (1) bare treatments 

accumulated more H. verticillata tuber biomass than V. americana treatments in the high 

disturbance sites, but (2) trays with V. americana accumulated more H. verticillata tuber 

biomass than bare trays in the low disturbance sites.  Trays with plastic plants 

accumulated the same amount of H. verticillata tuber biomass in both high and low 

disturbance sites. 
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Figure 2.6.  Percent disturbance by site (mean + 1 SE). 

 

Table 2.2.  Results from one-way ANOVA of Hydrilla verticillata tuber biomass 

recovered from sites subject to high disturbance and low disturbance. 

 Mean H. verticillata tuber biomass (g m-2) 

Treatment High disturbance sites Low disturbance sites 

B 0.70 a 0.27 a 
P 1.90 b 1.91 b 
V 0.10 a   0.70 ab 

Notes:  Treatment abbreviations: B = bare, P = Plastic, V = Vallisneria americana.  
Different letters after the values indicate significant differences [for high 
disturbance sites (1, 2, and 3) F2,42 = 8.04, P = 0.0011; for low disturbance sites (4, 5, 
and 6) F2,41 = 3.77, P = 0.0315].    
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Greenhouse Experiment 

Total nitrogen (ANOVA; F2,12 = 0.48, P = 0.6314) and total phosphorous 

(ANOVA; F2,12 = 2.34, P = 0.1384) in the soil pore water did not differ significantly 

among treatments 12 weeks after planting V. americana in the experimental units.  

Because few H. verticillata fragments were observed rooting in the V. americana 

treatments, water column nutrients were analyzed instead of soil pore water at the end of 

the experiment to more appropriately reflect the nutrient environment that H. verticillata 

fragments were encountering.  Water column nutrient analyses showed significantly more 

total nitrogen (F2,12 = 5.12, P = 0.0226) in the bare treatments than in the V. americana 

planted treatments, but not the plastic treatments.  No significant differences in total 

phosphorous concentration were observed among treatments (ANOVA; F2,12 = 0.48, P = 

0.6281). 

Total biomass of H. verticillata increased during the study period in all 

experimental units that had H. verticillata fragments introduced to them. Analyses on the 

length and biomass of individual H. verticillata fragments could not be performed 

because fragments unavoidably fragmented during the experiment and at harvesting. 

Fragments trapped at the surface of containers were able to send roots more than 20 cm 

through the water column before penetrating the substrate.  Based on total accumulated 

H. verticillata biomass, H. verticillata colonization success was poorest in the  

V. americana treatments (ANOVA; F2,33 = 6.27, P = 0.0049). Only one H. verticillata 

fragment successfully rooted in any of the V. americana experimental units, and  

H. verticillata fragments appeared very chlorotic in these units.  No significant difference 

was detected in H. verticillata tuber biomass between plastic and bare treatments; but no 
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H. verticillata tubers were formed in V. americana treatments.  Fragments that were able 

to take root were observed to grow more vigorously than non-rooted fragments.  

Spearman correlations revealed positive correlations between rooted H. verticillata 

biomass and total H. verticillata biomass (r = 0.83, n = 36, P < 0.0001) as well as 

between rooted H. verticillata biomass and H. verticillata tuber biomass (r = 0.86, n = 36, 

P < 0.0001). 

One-way ANOVA tested the hypothesis that propagule number influences 

colonization success of H. verticillata fragments.  Increasing propagule numbers greatly 

enhanced the success of H. verticillata colonization (ANOVA; F2,41 = 4.32, P = 0.0198; 

Figure 2.7).  Mean tuber biomass for 1-fragment introductions was 0.34 ± 0.19 g m-2, 

0.68  ± 0.35 g m-2 for 5-fragment introductions, and 2.33 ± 0.94 g m-2 for 10-fragment 

introductions. 
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Figure 2.7.  Effects of increasing Hydrilla verticillata propagule (plant fragments) load to 

mesocosms (means + 1 SE).  No tubers were produced in the Vallisneria americana 

treatment. 

 

Discussion 

Results of the concurrent field and greenhouse experiments were somewhat 

contradictory.  If a successful colonization is defined as the establishment of the invading 

species, then pre-existing vegetation did not affect H. verticillata colonization in the 

experimental units at Otter Point Creek (Figure 2.4A).  Even when considering  

H. verticillata tuber biomass production, a more robust measure of colonization success, 

no differences were detected between bare and V. americana treatments in the field 
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(Figure 2.4B).  However, five out of six sites at Otter Point Creek showed greater tuber 

production in bare treatments than in Vallisneria americana treatments (Figure 2.5).  In 

the greenhouse experiment H. verticillata colonization by fragments was severely 

inhibited by pre-existing populations of V. americana.  Discrepancies between the field 

and greenhouse experiments are most likely a result of nutrient availability, propagule 

flux, scale, and disturbance. 

Nutrient Availability 

Sediment nutrients are considered key determinants to the outcome of direct 

competition between mature H. verticillata and V. americana plants (Smart et al. 1994, 

Van et al. 1999).  Although Smart et al. (1994) reported that V. americana is the superior 

competitor in high nutrient substrates, experiments by Van et al. (1999) showed that  

H. verticillata dominates the competition under elevated nutrient conditions.  Soil pore 

water analyses were remarkably similar in my results.  I originally predicted that 

substrate nutrients would be reduced in treatments with V. americana; however, total 

nitrogen and total phosphorus did not differ among treatments even after V. americana 

had been growing in the trays in the field for seven weeks and in the greenhouse for 12 

weeks.  However, soil pore water samples from the field collected sixteen weeks after 

planting V. americana showed slightly reduced phosphorus levels in the Vallisneria and 

plastic treatments.  Although nutrient reduction in substrates was most likely a result of 

uptake by plants (V. americana and invading H. verticillata), some reduction may have 

resulted from leaching to the water column. 

Nutrient assimilation by the shoots and leaves of submersed plants has been 

researched less thoroughly than uptake by roots.  Madsen and Cedergreen (2002) 
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concluded that submersed vegetation in Danish streams acquires adequate amounts of 

nitrogen and phosphorus from the water column.  Results from my study show that water 

column nutrients were lowest in the greenhouse V. americana treatments, although these 

values are not significantly different than the nutrient values for the plastic treatments.  

Because very little epiphytic algal growth was observed in any of the mesocosms, I 

attributed reductions in nutrient concentrations in the water in bare and plastic treatments 

to assimilation by H. verticillata.  Water analyses at the beginning of the experiments 

would have allowed testing whether the V. americana treatments reached this 

oligotrophic state sooner than the other treatments.  I observed that it took many weeks 

before H. verticillata fragments were able to root into the substrate, if they were able to at 

all, suggesting that mineral nutrients in the water column must have been the only 

nutrients available to the fragments during this period. If nutrients were not obtainable to 

sustain the fragments while they produced roots, then colonization was most likely 

inhibited.  Small mesocosms likely allowed the plants to reduce nutrients in the water 

column, in contrast to the field experiment, which was in an open system. 

Propagule Pressure and Timing 

Proximity to a propagule source proved to be strongly related to H. verticillata 

colonization success in the field.  Measurement of propagule flux at the different sites 

was attempted with little success; thus, existing site H. verticillata biomass was used as a 

surrogate for propagule density.  Although it is logical to assume that propagules were 

more abundant near the source, and the data presented here strongly support this 

assumption, it is possible that some colonization resulted from stolon production and not 

from fragments.  Results of the propagule density greenhouse experiment support the 
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field results in that increasing the number of fragments introduced to greenhouse 

mesocosms enhanced the chances of a successful colonization through increased tuber 

production.  

Timing of the propagule introduction may have been a confounding factor in my 

experiment.  I introduced H. verticillata fragments to greenhouse mesocosms in August 

because this is when H. verticillata in the field was experiencing maximum production 

and producing large numbers of fragments.  However, I have observed small numbers of 

H. verticillata fragments floating in the water at Otter Point Creek as early as May.  

Because trays were placed in the field 7 weeks before H. verticillata fragments were 

introduced to the greenhouse mesocosms, colonization likely began in the field before the 

greenhouse. Competitive interactions between plants are often related to the timing of the 

establishment.  If the first species to arrive has more time to establish it has a better 

chance of resisting invasion (Grace 1987).  Because V. americana in greenhouse 

mesocosms was 7 weeks older than V. americana in the field when H. verticillata 

fragments may have begun arriving, the V. americana in the greenhouse may have 

inhibited invasion more successfully.   

Disturbance 

Disturbance played a strong role in the field component of this experiment.  

Because water velocities were negligible at the study site, and I frequently experienced 

defensive behavior by male sunfish nesting in the trays, I am willing to attribute most of 

this disturbance to sunfish nesting.  Sunfish behavior was primarily observed in the first 

month of the experiment.  Table 1.2 demonstrates some interesting trends in colonization 

pressure in the field.  In both high and low disturbance sites, trays with plastic plants 
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accumulated the same amount of H. verticillata tuber biomass.  In the high disturbance 

sites, less H. verticillata colonized the V. americana treatments than the bare treatments.  

This trend was reversed in the low disturbance sites.  If sunfish were the cause of the 

disturbance and kept trays cleared of H. verticillata fragments in the first few weeks of 

the experiment, V. americana may have had a temporal advantage over H. verticillata in 

high disturbance sites.  Again, temporal advantages are the basis of the theory of priority 

effect and strongly influence competitive displacement (Grace 1987). 

The plastic treatments did not qualify as a valid test of the mechanisms affecting 

colonization inhibition or facilitation in the field because they experienced 

disproportionately less disturbance than the other treatments.  While the exact disturbance 

mechanism is unknown, the polypropylene plants were anchored firmly to the trays and 

offered more resistance to substrate removal by sunfish.  In contrast, mesocosms in the 

greenhouse were not disturbed and plastic treatments did not inhibit or facilitate the 

colonization of H. verticillata there.   

Scale 

Submersed aquatic vegetation is capable of modifying its local environment 

(Carter et al. 1988).  The outcome of competition is influenced by a plant’s abilities to 

lower nutrients below the tolerance level of a competitor (Tilman 1982).  Resource 

variation within a habitat is scale dependent (Anderson et al. 2004).  Because the 

mesocosms in the greenhouse were small (19 L) and closed to outside nutrient inputs, the 

effect of nutrient reduction by V. americana on H. verticillata was probably significant.  

Thus, one small tray (34 x 24 x 9 cm) of V. americana in a closed 19 L mesocosm 
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probably had a greater effect on the nutrient levels in the water column than the same tray 

in the open system at Otter Point Creek. 

Management Implications 

Methods for the control of invasive aquatic macrophytes such a H. verticillata 

currently include: herbicides, mechanical harvesters, and biotic controls such as grass 

carp (Ctenopharyngodon idella) and released insects.  Grass carp are indiscriminate and 

illegal in many states, including Maryland.  Control of H. verticillata by introduced 

insects has experienced very little success thus far (Langeland 1996).  Herbicides have 

limited efficacy in moving water and are prohibited in many bodies of water.  Finally, 

mechanical harvesters cause invasions in new areas by releasing large numbers of 

fragments (Owens et al. 2001).   

Native plant restorations have little chance of success if initiated in patches of 

already existing H. verticillata.  Although the conflicting results of the experiments do 

not allow me to conclude that V. americana would inhibit colonization by H. verticillata 

fragments, the results do suggest that pre-existing beds of native V. americana will not 

facilitate the colonization of H. verticillata.  Indeed, a negative relationship between  

V. americana biomass and H. verticillata biomass was evident in the field although 

comparison between bare and V. americana treatments showed no effect on  

H. verticillata success.  Additionally, experiments in the greenhouse mesocosms 

demonstrated that H. verticillata tuber production was eliminated in the presence of 

established V. americana plantings.  If H. verticillata colonization was indeed inhibited 

by reduced nutrients in the water column, then reduction of nitrogen and phosphorus 

inputs to waterways may be a viable management option for controlling further  
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H. verticillata invasions.  Further research in planting larger patch sizes to reduce water 

column nutrients locally is warranted.  Finally, if water column nutrients can be 

decreased, mechanical harvesters may be a viable option under some circumstances. 
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Chapter 3: Broader Theoretical Context and Management 

Implications 

Non-indigenous species exhibit their effects at the individual, population, 

community, and ecosystem levels (Byers et al. 2002).  Byers, Reichard et al. (2002) 

propose several guidelines to reduce the impacts of invasive species.  Efforts to control 

invasive species should be prioritized based on the impacts of the non-indigenous 

species, how likely the species is to spread, system invasibility, and impact thresholds 

(the acceptable abundance of an invasive species before its control or the recovery of 

native species is unfeasible).  Two of the research questions suggested by Byers, 

Reichard et al. (2002) to better address invasive species management are: 1.) Why do 

invasions fail (the need to look at numbers of propagules introduced)? and  2.) What 

limits the spread of non-indigenous species (climate, soils, geology, competition, etc.)?   

My research has addressed some of these points by investigating the invasion 

success of Hydrilla verticillata based on propagule density and species interactions.  My 

results did not show any strong inhibition of H. verticillata by Vallisneria americana in 

field experiments, but strong colonization inhibition by V. americana in greenhouse 

mesocosms.  Additionally, existing H. verticillata patch density was strongly correlated 

with colonization success in the field and releasing more H. verticillata fragments into 

greenhouse mesocosms enhanced the colonization success of this species.  In the 

following discussion I frame the results of my research into the broader context of 

ecological theory and aquatic plant management. 
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Issues of scale are a fundamental problem of ecology (Levin 1992).  Conflicting 

results of my research were most likely a result of spatial and temporal differences in 

scale.  The fact that colonization was inhibited by Vallisneria americana in the 

greenhouse most likely resulted from the fact that mesocosms were small and nutrients 

were depleted more rapidly in planted mesocosms.  Alternatively, V. americana may 

have lost its temporal advantage in the field because H. verticillata propagules were 

introduced to greenhouse mesocosms 7 weeks after they probably began colonizing field 

mesocosms. Spencer and Ksander (2000) studied competition between H. verticillata and 

Potamogeton nodosus.  They found that P. nodosus was the superior competitor when 

propagules of both species were pre-sprouted, but when tubers of each species were 

permitted to emerge on their own, H. verticillata experienced more initial growth and 

coexisted with the former species.   

The scaling issue of planting size warrants further investigation.  Mesocosms in 

this experiment were small (88 L) and closed (no nutrient and propagule inputs from the 

outside).  Vallisneria americana is capable of reducing phosphate in soil pore water 

lower than H. verticillata (Wigand et al. 1997), suggesting that in mesocosm situations it 

has a lower R* (Tilman 1982) and may therefore have a competitive advantage.  It has 

also been shown that submersed macrophytes can uptake all of their mineral nutrients 

through their leaves (Madsen and Cedergreen 2002).  In addition, water quality 

(dissolved oxygen, secchi depth transparency, and chlorophyll-α concentrations) is 

improved in dense macrophyte beds (Carter et al. 1988).  Thus, because submersed 

macrophytes alter their environment and because V. americana is particularly good at 

reducing nutrients, it seems plausible that larger plantings of V. americana may limit 
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resources available to invading species more than smaller plantings.  In addition, if  

V. americana is capable of trapping H. verticillata fragments, larger plantings will reduce 

“edge effect” (perimeter to interior ratio).  In water less than 1 m, H. verticillata 

fragments might be confined to the edge.  In deeper water, larger plantings would not be 

advantageous because H. verticillata fragments could drop in from above as occurs in 

seagrass beds colonized by macroalgae (Bell et al. 1995). 

The topic of how biodiversity relates to an ecosystem’s susceptibility to invasion 

has received a great deal of attention recently.  This relationship appears to be controlled 

by scale.  Frequently, small areas with high diversity offer some resistance to invasion 

(Tilman 1997, Kennedy et al. 2002), but at the regional scale native species diversity is 

positively correlated with exotic species presence (Lonsdale 1999, Levine 2000).  

Submersed macrophyte communities in temperate zones are composed of relatively few 

species.  Seed stratigraphy of a tidal freshwater area in Chesapeake Bay showed only six 

species between 340 and 1980 B.C. (Davis 1985).  If the theory that increased 

biodiversity reduces invasion is true, then native submersed macrophyte communities in 

temperate zones are at severe risk of being invaded.  Peterson, Allen et al. (1998) claim 

that functional diversity is important for recovering ecosystems after disturbance.  

Perhaps this is why the macrophyte community was so slow in recovering after Hurricane 

Agnes in 1972 (Orth and Moore 1983).   

Disturbance (substrate removal by sunfish) played an important role in my 

experiment.  Maintaining a natural disturbance regime is important to an ecosystem’s 

functioning and community structure (Hobbs and Huenneke 1992).  However, 

disturbance may also increase the invasibility of a system (Hobbs 1989).  For example, 
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physical disturbances (removal of matrix vegetation) and higher nutrients in wetland soils 

increase the spread of Phragmites australis (Minchinton and Bertness 2003).  Similarly, 

large-scale disturbances that remove native vegetation will likely promote H. verticillata 

invasion because this is a highly opportunistic species.  However, the small-scale 

disturbances that occurred in this experiment appeared to inhibit H. verticillata 

colonization in field experiments. 

Propagule pressure and source-sink dynamics may interact in invasion ecology.  

Classic source-sink theory maintains that export of excess production in source habitats 

can maintain populations in sink habitats that would not otherwise support a population 

(Pulliam 1988).  Environments with a high invasion resistance (Shea and Chesson 2002) 

could potentially be overcome by increased propagule pressure.  For example, 

competition for resources by one species may inhibit the successful invasion of another 

species thus making this a sink habitat for the latter species because mortality of the 

invading species would exceed production.  However, if the source population of the 

invading species produces enough propagules, the invasion resistance of the native 

population would potentially be reduced and permit a successful invasion.  A theoretical 

example of this phenomenon would be a reservoir where the photic zone is dominated by 

a species that resists invasion by H. verticillata.  When the occasional H. verticillata 

fragment lands in this zone, colonization is inhibited by existing vegetation.  However,  

H. verticillata fragments may colonize deeper waters because its light requirements are 

more plastic than most species.  This deepwater population could then grow and produce 

enough propagules (fragments) to overwhelm the competitive abilities of plants in 

shallow waters, thus transforming the sink population into a source population.   
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Finally, the use of plant harvesters to control submersed macrophytes is 

frequently discouraged because the process creates large numbers of fragments that can 

re-colonize an area or spread the invasion.  If the source of the H. verticillata inhibition in 

the greenhouse mesocosms was indeed a nutrient deficiency, then harvesters might be a 

potential control method where water column nutrients are sufficiently low.  A logical 

time to use a harvester would be in June or July when carbohydrate stores in  

H. verticillata are at their lowest (Madsen and Owens 1998, Owens and Madsen 1998).  

However, if the results of H. verticillata inhibition were a result of a temporal advantage 

given to V. americana, then early season cutting may actually increase the spread of H. 

verticillata.  Thus, plant harvesting where native vegetation exists should be conducted 

later in the season. 

In summary, pre-existing V. americana strongly inhibited tuber formation of  

H. verticillata in greenhouse experiments.  In the field, although H. verticillata 

colonization was no more successful in bare treatments than V. americana treatments, 

five out of six sites showed greater H. verticillata tuber production in bare treatments 

than in V. americana treatments.  Although I cannot explain why site 4 experienced more 

colonization success in V. americana treatments I can speculate that it may be because 

this site was the only one that had a relatively high biomass of existing H. verticillata 

while experiencing a low disturbance regime.  I conclude that, in situations of high H. 

verticillata biomass and high disturbance, or low H. verticillata biomass and low 

disturbance, planting V. americana may function to reduce colonization by H. 

verticillata.  Hydrilla verticillata tuber formation was strongly influenced by patch 

density in the field and the number of fragments introduced to the greenhouse 
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mesocosms.  This would suggest that reducing fragment availability would reduce  

H. verticillata colonization success. 

Future research should consider the production of axillary turion production by  

H. verticillata and how this affects the colonization success of this species in pre-existing 

beds of native vegetation.  Because H. verticillata fragments were able to rest on top of 

plants and send roots down to the substrate, competition for light did not appear to be a 

factor in these experiments.  Axillary turions that fall below the canopy of pre-existing 

vegetation may experience more competition for light.  Nutrient reduction in the water 

column appeared to negatively affect the viability of H. verticillata fragments because 

they are dependent on these nutrients until the fragments successfully root.  Although 

axillary turions that fall below the canopy of pre-existing vegetation may experience 

more competition for light, their proximity to the substrate surface may allow their roots 

to access nutrients more rapidly than H. verticillata fragments.  Thus, turions may be 

superior to fragments in their colonization ability under low-nutrient situations.  
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