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Abstract

The Jacobian and stiffness matrices of a novel, six-DOF parallel minimanipulator are de-
rived. The minimanipulator consists of three inextensible limbs, each of which is driven by a
five-bar linkage to improve its positional resolution and stiffness. All of the minimanipulator
actuators are base-mounted. It is shown that, at the central configuration of the minima-
nipulator workspace, the stiffness matrix can be diagonalized (decoupled). It is also shown
that the minimanipulator can be designed to possess direct or torsional isotropic stiffness
properties. Moreover, velocity relationships for the minimanipulator drivers are derived and

guidelines for obtaining high stiffness are established.
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1 Introduction

Parallel mechanisms have been used for applications in which the requirements for accuracy,
rigidity, load-to-weight ratio, and load distribution are more important than the need for a
large workspace.

Stewart (1965) introduced his famous six-degree-of-freedom (six-DOF) platform as a
motion simulator. Recently, many researchers have suggested the Stewart platform as a
robot manipulator (e.g., Hunt, 1983; Fichter, 1986). Other six-DOF parallel manipulators
have also been introduced and studied in the literature (e.g., Kohli et al., 1988; Hudgens
and Tesar, 1988; Tsai and Tahmasebi, 1991a).

Dualities of serial and parallel manipulators were demonstrated by Waldron and Hunt
(1987). For example, inverse kinematics of a serial manipulator is much more difficult than
its direct kinematics; whereas, for a parallel manipulator, the opposite is true. Closed-form
solutions have been obtained for direct kinematics of certain parallel manipulators (e.g.,
Griffis and Duffy, 1989; Nanua et al., 1990; Innocenti and Parenti-Castelli, 1990; Tahmasebhi
and Tsai, 1991).

Gosselin and Angeles (1988, 1989) considered isotropy of the Jacobian matrix in optimum
kinematic design of planar and spherical three-DOF parallel manipulators. Arai et al. (1990)
also used the Jacobian matrix in optimal design of a six-DOF parallel manipulator. Stiffness
matrices of parallel manipulators, which are closely related to their Jacobian matrices, have
been studied by Kerr (1989) and Gosselin (1990).

In this paper, the expressions for the Jacobian and stiffness matrices of a three-limbed,
six-DOF parallel minimanipulator are derived. The minimanipulator was introduced by Tsai
and Tahmasebi (1991a, 1991b) to obtain high positioning resolution and high stifiness in fine-

manipulation operations.! In addition, the stiffness matrix at the central configuration of

LA patent application has been filed for the minimanipulator.



the minimanipulator and velocity relationships for the minimanipulator drivers are used in

establishing design guidelines.

2 Description of the Minimanipulator

Let subscript © in this section and the rest of this work represent numbers 1, 2, and 3 wn a
cyclic manner. The minimanipulator contains three inextensible limbs, P;K;, as shown in
Figure 1. The lower end of each limb is connected to a simplified five-bar linkage driver and
can be moved freely on the base plate. The desired minimanipulator motion is obtained by
moving the lower ends of its three limbs on its base plate. Two-DOF universal joints connect
the limbs to the moving platform. The lower ends of the limbs are connected to the drivers
through three more universal joints. Note that one of the axes of the upper universal joint is
collinear with the limb, while the other axis of the upper universal joint as well as one of the
axes of the lower universal joint are always perpendicular to the limb. This arrangement 1s
kinematically equivalent to a limb with a spherical joint at its lower end and a revolute joint
at its upper end, as shown in Figure 2. The minimanipulator drivers are shown in Figure 3.
Point C; is the output point of a driver. At point D;, there is an actuator on each side of
the base plate to drive links D;A; and D;B;. The simplified five-bar drivers are completely

symmetric. That is
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As a result, coordination between actuator rotations can be easily accomplished. Namely,
angular displacement of an output point (; is obtained by equal actuator rotations, and its
radial displacement is obtained by equal and opposite actuator rotations.

Simplified five-bar linkages and inextensible limbs are used to improve positional reso-



lution and stiffness of the minimanipulator. Since the minimanipulator actuators are base-
mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can
be obtained. In addition, to achieve even load distribution, the minimanipulator is made
completely symmetric. Namely, both triangles Dy D; D3 and P; P,P; are made equilateral
and the joint axes at points Pi, P, and P; are made parallel to lines P, Py, P Py, and Py Py,
respectively.

Instead of simplified five-bar linkages, other two-DOF mechanisms such as regular five-
bar linkages, pantographs, bidirectional linear stepper motors, or X-Y positioning tables can

be used as drivers for the minimanipulator (Tsai and Tahmasebi, 1991a).

3 Jacobian Analysis

First, let us define the fixed base reference frame (XYZ) and the moving platform reference
frame (UVW). The base reference frame is shown in Figure 3. The origin of the base reference
frame (point O) is placed at the centroid of triangle Dy Dy D5 . The positive X-axis is parallel
to and points in the direction of vector Dy Ds. The positive Y-axis points from point O to
point D;. The Z-axis is defined by the right-hand-rule. Similazly, the origin of the platform
reference frame (point G) is placed at the centroid of triangle P, Py P3 (see Figure 4). The
positive U-axis is parallel to and points in the direction of vector P, Ps. The positive V-axis
points from point O to point P;. The W-axis is defined by the right-hand-rule.

In this paper, without loss of generality, welet Zg,; = 0. If Zg; > 0 for a minimanipulator,
a simple transformation should be applied to the coordinates of the points used in the
following derivations.

Referring to Figure 5, we can write the following vector equation

OR; = OG + GP; + BR; (3)



Taking the time derivative of both sides of the above equation with respect to the base

reference frame yields

By By BuP < OGP 4 Bob < PR, (4)
where V and @ denote linear and angular velocities, respectively. The right superscript for
a velocity vector stands for a point or a rigid body, whereas the left superscript refers to a
reference frame in which the velocity is expressed. The base, the platform, and limb P;R;
reference frames (rigid bodies) are denoted by B, P, and L;, respectively. The terms rigid
body and reference frame are used interchangeably, because every rigid body can be used as
a reference frame and every reference frame can be viewed as a massless rigid body (Kane
and Levinson, 1985). Angular velocity of limb P;R; in the base reference frame can be found
from

Bli — Pgli . BP (5)

As shown in Figure b, let ; be the angle from vector GF; to vector P K, measured about a
unit vector I; which is collinear with the axis of the revolute joint at point F; and points in

the direction of vector P15 P 4.2 Then
Bpli = 3.1, + Baf (6)

where 7; is the time-derivative of 7;. Substituting the above expression for 2% in equation

(4), we obtain
PYT - PV 4 BP G + (1T + P37 « PR, (")
or

PyR = PV 4 Baf « GRi + 0T < PR; )

2The subscripts are cyclic. If i = 2, ¢ + 2 represents 1. If i = 3, i + 1 and i + 2 represent 1 and 2,

respectively,
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The Z-component of Byt is equal to zero. Therefore, we can conclude from the above

equation that
s (%57 T )
= (ry x PR;) -, |

where 7, 1s a umit vector in the Z-direction. Let

o, = ; X P R; (10)
Then
- P e ——
fig sV GR; x i, . BgP
i = e L (O ) (11)
Jize

where p; . is the Z-component of the vector 1;. Also, let

o _ Hie ;o My
e T v Py =
iz Hi =

where p;, and p;, are the X and Y-components of vector fi;, respectively. Substituting
equation (11) into equation (8), and solving for the X-component of the resulting equation,

we obtain

V," = (g — il aita) - VO A+ [(GR; x 7g) — ! (GR; % 1.)] - Bab (12)

@

B R; . B+R; . . . . .
where V" is the X-component of vector ~ V" and 7, is a unit vector in the X-direction.

x

Similarly, we can obtain the following equation
V™ = (g — i) DV + [(GR: x ) — il (GR: x 1)) - Bw” (13)

B.,.R; . N B—R; . . . . .
where © V" is the Y-component of vector ~ V' and 7, is a unit vector in the Y-direction.

Let us define the 6 x 1 twist vector of the platform (Z) as
T = (14)

If the 6 x 1 vector of velocity components at the lower ends of the limbs (g) is given by

- B—R, B—R, B"—Rg B‘7R2 B*‘*Rg B—;R3 T 1K
g=[V,, 'V, V., V., V., v, (15)
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Then, we can define the 6 x 6 Jacobian matrix (/) by
g=Jz (16)

Referring to equations (12) and (13), we can express the Jacobian matrix as

ﬁ’a: - P‘/l,;rﬁz)T [(GRL X ﬁm) - IL;.yT(GRl X 1 )}T

(

(ﬁy - lull,yﬁ’Z)T [( GRI X ﬁ'y) - Iu';,yy(CT’Rl X Ty )]I
(e — . ,72)" [(GRy x #1a) — pth o(GRz x 71,)]"
(

J = (17)
T_Zry - /.lvgyyﬁz )T [(GRQ X ﬁu) - ﬂéyy(GRQ X Ty )}T
('T—lm - ,Ug'wﬁz)T {(GRg X 7—21‘) — ,lL'{}ym(GRg X Mg )]T
(y — p,7i.)T [(GRs x fy) — py (G Ry x 70.)]7
where superscript T' denotes transpose. Let Ji, Jy.. .., Jg be the column vectors of J. Ex-
panding equation (17), we get
Ji=[1, 0,1, 0, 1, of (18)
Jo=1[0, 1, 0, 1. 0, 1J7 (19)
T ! ! ! ! ! ! T
J3 = — [/‘1@7 M1y Moz Moy M3 o /L:;,y] (20)
—y (Yr1 — Yg)
Zg —uy, (Yri— Ya)
_ —y . (Yr2 — Ya)
Jy = (21)

Zg — ,lt;,y (Yr:2— Yg)
~p3y (Yrs — Ya)

| Zg — p5, (Yrs — Ya) |

-3



[—Za = py , (Xa = Xg1)]
—11, (Xa — Xp1)
~7Zg — pthy (Xg — Xg2)
—pty, (X — XR.2)
—Zg — py, (Xo — Xp3)
—p3, (Xo — Xpa)

(Yo — Yr1]
Xr,1 — X¢g
Yo — Yr,
Jo = (23)
Xgr,2 — Xg

Yo — Yrs

| Xr,3 — Xg |

where (Xp;,Ypi, Zp;), (Xr:,YR:, Zr:), and (Xg,Ya, Zg) are the coordinates of points
P;, R;, and G, respectively. Note that the Jacobian matrix is a function of the minima-

nipulator configuration and dimensions.

4 Stiffness Analysis
From equation (16), we can conclude that
bq = Jbz (24)

where 8¢ and 6z represent displacements of the lower ends of the limbs and the platform,

respectively. Equation (16) and the principle of virtual work can be used to derive the

8



following equation (Asada and Slotine, 1986).

F=J'f (25)
where
_ Fp
F=| (26)
Mp

where Fp and Mp are the force and moment applied to the platform and

}E:[fl,m, fl,y, fz,m fZ,ya f3,:z’a fz,y]T (27)

where f; . anci fiy are the X and Y-components of the force applied at point R;. The forces

and displacements at the lower ends of the limbs are related by the following equation.

f = réq (28)

where % is a 6 x 6 diagonal matrix whose elements have units of force per unit length. From

equations (24), (25), and (28), we can conclude that
F=JkJsx (29)

In what follows, we set & equal to the 6 x 6 identity matrix, because we are only interested in
the effect of the minimanipulator dimensions on its stiffness. Therefore, the stiffness matrix
for the platform (K) is expressed as

K=J"J (30)
Note that K is a symmetric, positive semidefinite matrix. Elements of the lower triangular

portion of K are given in Appendix A.

4.1 Central Stiffness Matrix

In this section, the stiffness matrix at the central configuration of the minimanipulator
workspace (central stiffness matrix) will be derived. The central configuration is defined as

the configuration where



1. The platform is not rotated with respect to the base.

2. The centroid of triangle P; Py P; (platform) is directly on top of the centroid of triangle
DyD3Ds, ice. Xg = Yo = 0.

Let 'G—R

= v and Zg = (. Using equations

= p. Also, at the central configuration , let lORi

(17) and (30), the stiffness matrix at the central configuration (K *) is found to be

[ 3(v—2p)C l
3 0 0 0 S 0
3(v—=2p)(

0 3 0 o) 0 0

_ 0 0o 0 0 0
Kt = (v=p)? , . (31)

3(v—2p)¢ 3/ ~2prt2p?) (2 ‘

0 2(v-p) 0 2(v—p)? 0 0

_3(w=2p)¢ 3(v2 ~2put-2p° )¢
2(v—p) 0 0 0 2(v—p)? 0
0 0 0 0 () 3u?

It is desirable to eliminate the off-diagonal terms which couple the forces (moments) applied
along (about) the X and Y axes to the rotations (translations) about (along) the Y and X

axes, respectively. Fortunately, this can be easily accomplished by setting

— 32
P=3 (32)

In other words, the platform (triangle P;P,Ps) should be one-half of triangle E,H;H; at
the central configuration. The above result is similar to that obtained by Kerr (1989) in
designing a Stewart-platform-based force and torque transducer. If the condition expressed

in the above equation is satisfied, then

F=rt-p (33)

10



where r is the length of any limb. If equations (32) and (33) are used to substitute for v and

in equation , matrix KT reduces to
¢ tion (31), matrix K+ reduces t

K* = P (34)
3(r = p*)

3(r? — p?)

0 12p?
The above equation can b-e used to determine the relative dimensions of ;he minimanipulator
so that desirable characteristics can be obtained. Note that dimension v (the independent
variable) can be determined from other requirements and constraints such as maximizing
the workspace and the upper bound on size of the base plate.

The diagonal elements of K~ (K] Ky g Ig ) give indications of how well the input
forces or torques are transmitted into forces and torques at the platform (end-effector). The
higher these terms, the higher the force-transmission capability (mechanical advantage) of
the minimanipulator, and the higher the positional resolution of the minimanipulator. For
some applications, it may be desirable to maximize one or more of these stiffness terms. For
other applications, the designer may be interested in isotropic stiffness properties. Note that
it is not possible to make all of the diagonal stiffness terms equal. However, it will be shown
that it is possible to obtain isotropic direct stiffness or isotropic torsional stiffness.

To move the platform in the X or Y-direction, the lower ends of all three limbs should also
move in the X or Y-direction. As a result, elements [}, and K, are constants. Only the
simplified five-bar linkage drivers contribute to increasing the direct stiffness values in the X
and Y-directions. Stiffness terms K3 5, K ,, and I(j ; are functions of two design variables (r
and p). However, Kg ¢ is only dependent on variable p (circumradius of the platform). This

is related to the fact that in order to rotate the platform about the Z-axis, the lower ends

11



of the limbs should move on a circle, which passes through them, in the same direction and
by an equal amount.
The first three diagonal terms of the K* matrix are direct stiffness terms. Equation (34)

shows that by setting

T:\/§p

we can obtain equal direct stiffness values in the X, Y, and Z directions. At this configura-
tion, the angle between any of the limbs and the base plane becomes equal to 45 degrees.
The last three diagonal terms of the /* matrix are torsional stiffness terms. Referring

to equation (34), we notice that by setting
r = V5p

we can obtain equal torsional stiffness values in the XY, and Z directions. At this con-
figuration, the angle between any of the limbs and the base plane becomes equal to 63.43

degrees.

5 Velocity Analysis of the Drivers

Figure 6 shows a simplified five-bar driver. Let 6; and ¢; (driver input angles) be the angles
from the positive X-axis to the vectors D;B; and D; A;, respectively, measured about the
positive Z-axis. D;B; and D, A; are the input links of the driver and vector HI is parallel
to the positive X-axis. In the following analysis, we assume that ¢; > 6; (if ¢; < 6;, 360
degrees is added to ¢;). In addition, only one branch of a driver is considered, because the
other branch can be realized only by disassembling and reassembling the driver. From the

driver geometry, we can write

’D,’C’i = acos&; + beosV; (35)

12



where ; is the angle of line D;C; with line D;B; or line D; A; and ¥; is the angle of line C;D;

with line C;B; or line C;A;. Applying the law of sines to triangle D;A;(;, we get

sin v; sin ¢;

— (36)
a b
or
cosd; = /1 — (a/b)?sin’¢; (37)
From equations (35) and (37), we conclude that
b.C; = [a cos &+ by/1 — (a/b)?sin® & i, (38)

where 7, ; 1s a unit vector in the direction of vector D.C;.

Let 3; be the angle from the positive X-axis to the vector D;C;, measured about the
positive Z-axis. Also, as shown in Figure 6, let the unit vector 7,, be at 90 degrees to the
unit vector #,;, measured about the positive Z-axis. Taking the time-derivatives of both

sides of equation (38), with respect to the base reference frame, we obtain

By & .| &
’ =Ja| (39)
Byt s
where
_ —(a/b)sin & — (a/b)? —=Rlicest 0
Jo=b (a/b)sin ¢ (/)\/W (40)
0 (a/b)cos & + \/], — (a/b)?sin® ¢

and (BVY BY,S) are the radial (in the 7, ; direction) and tangential (in the 7i,; direction)
components of the velocity of point C;. In addition, ¢ and v denote time-derivatives of
angles &; and 1;, respectively. Note that 5, and 7 are related to the input speeds (9, and

qé,-) by the following linear relationships.

6; = b — & (41)

13



$i =i+ (42)
Equations (39) - (42) show that for a given b, the smaller the ratio a/b, the higher the speed

reduction (mechanical advantage) of the driver. Speed reductions by the drivers result in

high stiffness for the minimanipulator.

6 Design Guidelines

Based on the results of the last two sections, the following design guidelines can be estab-

Lished.

e The central stiffness matrix can be diagonalized (decoupled) by making the platform
(triangle Py P, Ps) one-half of the triangle passing through the lower ends of the limbs,

lLe. p=v/2.
o If the central stiffness matrix is decoupled, then
— Direct stiffness isotropy can be obtained by making the limb length equal to v/2

times the circumradius of the platform, i.e. r = v/2p.

— Torsional stiffness isotropy can be obtained by making the limb length equal to

/5 times the circumradius of the platform, i.e. » = v/5p.

— The larger the ratio of the limb length to the platform circumradius (7/p), the

larger the direct stiffness in the Z-direction.

— For a given platform size, the larger the limb length, the larger the torsional

stiffness values in the X and Y-directions.

— For a given limb length, the larger the platform size, the smaller the torsional
stiffness values in the X and Y-directions, and the larger the torsional stiffness in

the Z-direction.

14



e The smaller the ratio of the input link length to the output link length of a driver

(a/b), the higher the stiffness of the minimanipulator.

Note that the minimanipulator will be at or near the center of its workspace during most of
its operations. Therefore, establishing design guidelines based on the central stiffness matrix

1s justified.

7  Summary

In this paper, the Jacobian and stiffness matrices of a three-imbed, six-DOF parallel min-
imanipulator are obtained. The velocity relationships for the minimanipulator drivers are
also derived. It is shown that the stiffness matrix at the central configuration of the mini-
manipulator workspace can be decoupled, if the platform size is made half of the size of the
triangle passing through the lower ends of the limbs. It is also shown that, at the central
configuration of the minimanipulator, ratio of the limb length to the platform circumra-
dius must be equal to v/2 (1/5) for obtaining direct (torsional) stiffness isotropy. Finally,

guidelines for obtaining large stiffness values are established.
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Appendix A - Lower Triangular Elements of K

Ky, = 3
K'gyl = 0
Kss = 3
Ksy = —Hls,x - Fle,x - p",l,x
Ksz = —pyy —fay — iy
Kaz = pihy +phy +phy + i’ + iy + 10
Ksy = —pae (YRs—Ya) =t (Y2~ Yg) = plx (Yra ~ Ya)

)

Kso = 3Zg— s, (Yrs— Ya)— o, (Yr2 — Ya) = pi, (Yra — Ya)

Ky = —pg, (ZG — ity (Yra—Ya)) — thy (La—phy (YR - Ya))

~Hiy (ZG ~ 1y (YR — YG)) + sy (YR — Ya)

+/J’/2,x2 (YR,Z - YG) + ﬂll,x2 (Xrﬁyl - hYg)

2

N\ 2
Keq = (ZG — by (Yra - Ye)) + (Za — phy (Yea - Ya)) +
2 -
(Za — #hy (Yra—Ya)) +ihy" (YRa— Ye)'+
lul2,x2 (Yrz — Ya)? + b, (YRy —Ya)*
Ks1 = —3%¢— s, (Xa —Xnr3) — tthy (X — Xr2) — 14 (X — K1)
Ksp = —ps, (Xg = Xns)~ pay (Xa = Xr2) — i1y (Xo — Xroa)
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Kss = —phy (~Za — iy (Xa — Xna)) = thx (-8 — iy (Xo — Xnp)) -
M1 x (‘ZG — iy (X = XR,l)) + N/g,yz (Xg — Xps)+

/2)’2 (XG - XR,2) + Nll,yz (XG - XR,I)

Ksa = ~phy (Xa —Xns) (Ze — iy (Yro = Vo)) = sy (Xo —Xna) (Z = oy (Yrez - Yo)) -
#y (Xe =~ Xp1) (ZG ~ #iy (YR~ YG)) — gy (YR3 = Ya) (‘ZG — iy (Xa — XR,B)) -

ty . (Yr2 — Ya) (—ZG ~ Hyx (XG = XR,z)) — 4 (Yry - Ya) (~ZG — i (X - XR,I))

2 2
Kss = ( (26! /‘3x XG—XR3) '|' /‘zx(XG'XRO)) +
)

2
( ZG_IJ’lx XG XRI +/~qu X(*“XRQ) +
2

(XG - XRZ) + /‘Lly (Xg - )&Rl)
K¢y = —Yra—Yrz—Yr1+3Y¢
‘KGJ = XR,3 + XR,z + XRJ —-3Xg

Koz = —t3x (Yo~ Yra) — e (Yo — Yr2) = p1x (Yo — Yra) -

pay (Xr3 — Xg) = poy (Xp2 — Xa) = w1y (Xr1 — Xg)

Koa = (Xms—Xe) (ZG ~tzy (Yra - YG)) +(Xg2 — Xa) (Ze -ty (YR — Yr_;:)) +
(Xp1 —Xa) (Za - #hy (Yra = Ya)) = iy, (Yo = Yrs) (Yro — Ye) -

2x (Yo = Yr2) (YR - Yo) = pix (Yo = Yra) (Yra - Ye)

K6,5 = (YG - YR,S) <"ZG - ﬂg,x (XG — XR,g)) +(Y¢g — }rﬁyg) (‘“ZG — ”‘/2,x (Xa — XH,Z)) +
(Yo ~ Yr1) (‘ZG -, (Xag - XR,1)> — 3y (Xg — XR2) (X2~ Xa) -

sy (Xa — Xnp2) (Xr2 — Xa) — 1, (X — Xr1) (Xrst — X

Kee = (Ya-Yma) + (Yo~ Yr2)+(Ye—Yr1) + (Xr3— Xe) + (Xr2 — X))’ + (Xr1 — Xa)?
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\
R ¢
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>

R., R,, and R, are connected to drivers.

Figure 1 - Represntation of a Minimanipulator



— Revolute Joint

Limb

Output Point of a Two-DOF Driver

Figure 2 - Kinematic Equivalent of a Limb



Figure 3 - Simplified Five-Bar Linkage Drivers



Platform

R, R, and R, are connected to drivers.

Figure 4 - Kinematic Equivalent of a Minimanipulator



Figure 5 - Parameters Used in Jacobian Analysis



Figure 6 - Parameters Used in Velocity Analysis of Drivers









