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Abstract
The inclusion of output constraints in the on-line optimization problem solved by Quadratic
Dynamic Matrix Control (QDMC) can result in a closed-loop unstable system, even when
the corresponding unconstrained algorithm is stable. The presence of constraints in the op-
timization problem produces a nonlinear closed-loop system, although the plant and model
dynamics are assumed linear. This paper quantifies the effect of output constraints on both
nominal and robust stability for single-input single-output (SISO) processes. Stability condi-
tions are provided which can be used to select the QDMC parameters and constraint window.
The ability of these conditions to capture the nonlinear effect of the constraints is illustrated
through examples that demonstrate that tuning rules developed for the unconstrained case
should not be used with output constraints. An example with dead time error is used to

illustrate the use of this framework to guarantee the robustness of constrained QDMC with
respect to modeling error.

Keywords: Quadratic Dynamic Matrix Control, Model Predictive Control, Robust Con-
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1 Introduction

Model Predictive Control (MPC) encopasses a large class of process control algorithms shar-
ing the common characteristic of explicitly using a model of the process to predict future
behavior and take control action by optimizing some performance objective. A performance
measure made popular because of its simplicity and its successful use in industrial appli-
cations is a quadratic objective function that includes the predicted deviation from desired
setpoint values over a future horizon. In the QDMC formulation (Garcia and Morshedi,
1986), the objective function also includes a penalty term on excessive control moves and its
minimization is carried out on-line at each sampling point, subject to satisfaction of hard
constraints on several process variables.

The great attraction of QDMC is that the straightforward formulation of an optimization
problem will result in satisfaction of the control specifications. Saturation constraints on the
manipulated variables, as well as performance and safety constraints on outputs and other
state variables can be taken care of by simply listing them and minimizing the quadratic
objective function subject to their satisfaction. When the model used for prediction is
linear, the on-line optimization is a Quadratic Program (QP), for which efficient algorithms
exist, especially if the similarity of the optimization problems that are solved at successive
sampling points is taken into account (Ricker, 1985). Formulations that use nonlinear models
for prediction have also been developed. In this case, the on-line optimization is a Nonlinear
Program, which with appropriate mathematical techniques and / or approximations can
be transformed into a series of QPs (Li and Biegler, 1989; Peterson et al., 1990). Eaton
and Rawlings (1990) also consider the parametric sensitivity of the optimal solution. An
industrial application of QDMC that utilizes a nonlinear model is described in Garcia (1984).

There are, however, certain issues that make the use of QDMC more complex than it 1s
apparent. The on-line optimization solves an open-loop control problem, given the informa-
tion available up to that point. The control action that is calculated at a sampling point
is optimal only if the sequence of control moves found by the optimization is implemented
uninterrupted. This will not happen, though, because a new optimization problem will be
solved at the next sampling point utilizing in the prediction the newly acquired information
from the measurements. The fact that QDMC is implemented as a closed-loop control sys-
tem is not incorporated in the on-line optimization. Closed-loop stability cannot be assumed
simply because the on-line optimization finds a solution. This issue of closed-loop stability
is complicated by two facts: first, there is always uncertainty associated with the model used
in the prediction; second, the presence of constraints in the optimization problem results
in a nonlinear closed-loop system even if the model and plant dynamics are assumed lin-
ear. In the unconstrained case, robust linear control theory can be used to study robustness
with respect to modeling error (see, e.g., Prett and Garcia, 1988). For the constrained case,
Zafiriou (1989) suggested a framework that allows the translation of the robust stability of
the constrained, and therefore nonlinear, closed-loop system into robustness conditions for
a set of linear systems.

This paper focuses on the effect of hard output constraints on the closed-loop stability of
QDMC. The ability to include output constraints in the on-line optimization distinguishes
QDMC from other efficient methods that deal with constraints on the manipulated variables
(e.g., Campo and Morari, 1990). It has been pointed out, however, that output constraints



can result in very aggressive controllers (Zafiriou, 1989; Ricker et al., 1989). This paper
quantifies their effect on stability and provides a methodology for selecting the QDMC
parameters so that robustness with respect to model-plant mismatch is guaranteed. It is
demonstrated that tuning rules that have been developed for the unconstrained case (Garcia
and Morari, 1982), not only may not work well for the output constraint case, but they
may actually be the cause of stability problems when output constraints are included in the
on-line optimization.

2 Quadratic Programming Formulation of QDMC

This section sets notation for the Quadratic Program that is solved on-line. An impulse
response model is used (see, e.g., Garcia and Morari, 1982):

N
(k) = Y- Houlk - i) + d(k) 1)

where § is the model output and u the manipulated variable. J(k) describes the expected
disturbance effect on the output. H; denote the impulse response coefficients with N the
truncation number, i.e., it is assumed that H; = 0 for « > N. The process is assumed to
be open-loop stable. Other types of models can also be used, e.g., step response models
(Garcia and Morshedi, 1986) or state space descriptions (Li et al., 1989; Ricker, 1990). The
z-transfer function, §*(z), describing the process model is related to (1) through

N .
p(2) = ; Hiz™ (2)

QDMC minimizes a quadratic objective function of the squares of the predicted error
e (setpoint minus predicted output), of the manipulated variable u and its rate of change

Au(l) 2 u(l) — u(l — 1) over a finite horizon P in the future:

k+P
> [T%e(1)? + Bu(l — 1) + D?Au(l — 1)?] (3)

min
Au(k),...,Au(k+M—1)l=k+l

where k denotes the present sampling point. B, D and T are penalty weights. These weights
can, in general, be time varying; in this paper they are assumed constant. M is the number of
moves in the future to be optimized. At time k, it is assumed that u(k+M —1) = u(k+M) =
... =1u(k+ P —1). Since only u(k) will be implemented, and a new optimization problem
is solved at the next sampling point, the input will not necessarily remain constant after M
steps.

One can add constraints on any of the future values of the manipulated variable and
output. In this paper, only output constraints are considered. For the output constraints,
a constraint window is specified. This means that the predicted output values must respect
the bounds for every point of the constraint window. Hence the on-line optimization at k is
subject to output constraints at points k+ws, . .., k+w,, where w;, w,, denote the beginning
and ending points of the constraint window. Note that this prediction is based on the model
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and does not guarantee that the future values will actually be within the prescribed bounds.
Unmeasured disturbances and model error may result in violation, although the on-line
optimization finds feasible solutions.

This constrained optimization problem can be written as a standard QP, as shown in
Garcia and Morshedi (1986):

min®(X) = %XTGX +TX (4)
subject to:
ATX > b (5)
where
X =[Au(k)...Au(k+ M =17 (6)

G, g, A and b are functions of the following:

G=GM,P,B,D,T Hy,...,Hn),
g=9(M,P,B,T,Hy,...,Hy,y(k),u(k —1),...,u(k — N)), (1)
A=A(M,P H,,...,Hy),
b=0b(Hy,...,Hn,y(k),u(k—1),...,u(k — N),yr,yv)

where y(k) is the current output (measurement) and yr, yu are the lower and upper output
constraint bounds respectively.

The optimal solution X* satisfies (Fletcher, 1981):

G -A X g
D=L @
where AT and b are the rows of AT, b for the constraints that are active at the optimum,

and A* is the vector of Lagrange multipliers that correspond to these constraints.
The control action is found from (8):

w(k) = [10 ... 0JX* +u(k—1) 9)

3 Stability of Constrained QDMC

After solving the QP, one finds that some constraints are predicted to be active at the
optimum. Let Jj,...,J, be sets, each of which includes a combination of constraints that
can become active at the optimum of the on-line optimization while operating the control
system. Note that by simply considering all possible combinations of constraints one may
expect n to be very large for the general multi-input multi-output (MIMO) case; however,
only a few J; can actually occur. Zafiriou and Chiou (1989) proposed a procedure for finding
all practically relevant J;s.

Example 1



Let us specify an output constraint at the next 2 sample times, i.e., wy = 1, we = 2:
~03<§(k+1)<03and —03<G(k+2)<03 (10)
The possible J;s are:

Jo: no constraint active

Ji: lower constraint active at k + 1

Ja: upper constraint active at k + 1

Js: lower constraint active at £ + 2

J4: upper constraint active at k + 2

Js: both lower constraints active

Js: both upper constraints active

Jr: upper constraint at k + 1 and lower constraint at k + 2 active
Js: lower constraint at k + 1 and upper constraint at k£ 4+ 2 active

a
For linear model dynamics, Zafiriou (1990) showed that the constrained QDMC is piece-
wise linear, meaning that the dynamics of QDMC for a certain constraint set J; active, are
those of a discrete linear controller. This linear controller, denoted cy,(z), depends explicitly
only on J;; it depends only implicitly on the past and current values of the plant inputs and
outputs. These values together with external inputs (setpoints, disturbances) determine the
J; that corresponds to a sampling point. However, if at different sampling points the QP
solution results in the same J;, the QDMC dynamics at those points are those of the same
linear controller.

Define:
zi(k) Su(k—j), 1<j<N (11)

and let f describe the QP solution given by (9) for a particular J; (which determines the
rows of AT, b that are included in AT, b):

Fly(k),ulk —1),...,ulk — N);rp(k),d(k)s, 210 ... 01X5 +u(k—1)  (12)

where rp(k) includes all the values of the setpoint from k + 1 to k + P and d(k) is the
disturbance effect at the output at k. Zafiriou (1990) showed that the cj; controller is given

by:
"(Vyf)-f'
: 13
1= (Ve azt— .o = (Vay flazN (13)
Let us define the “state” of the system as z(k) = [z1(k),...,zNn(k)]T where the z;s
are those of (11). Knowledge of z(k) and of the external inputs rp(k), d(k), allows the

computation of z(k + 1) by applying the plant and controller equations on it. Let us denote
by F the operator that maps z(k) to z(k + 1):

2(k +1) = F((k); rp(k), d(k)) (14)

ci(z) =

Define the transfer functions:

JAN —(vyf)Ji .
Qu(z) = 1“‘("‘#1)]52—1—.-._(TL’N)J‘Z—N, 1<j<N (15)
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where A
(¢j)Ji = (szf)-].‘ + (vyf)JiHj 1<7<N (16)
Then the following theorem holds:

Theorem 1 (Zafiriou, 1990) F can be a contraction for all plants in a set 11, only if all
feedback controllers cj,(z), for i such that (V,f);, # 0, stabilize all unconstrained plants in
the set 11, and all transfer functions Q,(z), for it such that (V,f)s, =0, are stable.

Theorem 1 allows one to handle any set Il that robust linear control theory can (for
a discussion of common types of II see Morari and Zafiriou, 1989). One should note that
F being a contraction implies stability of the closed-loop nonlinear system. However, a
violation of the necessary contraction condition does not always imply instability, but it
must be considered as a warning that the control parameters should be modified. A sufficient
condition (Zafiriou, 1990) can be derived but it is often conservative. The examples in the
next sections demonstrate that, at least for SISO systems, the necessary condition is a very
good indicator of stability.

It can be shown that for some J;s the corresponding cy;s are identical; this reduces the
number of cases for which one has to check stability:

Theorem 2 Let J, be a set of active output constraints of the QP, and let J, be another set
of constraints that correspond to the same points in the constraint window as the ones in J,,

but some of them correspond to opposite bounds being reached. Then c;,(z) and c;,(z) are
tdentical.

Proof: See Appendix A.
This theorem can easily be generalized to include constraints on the manipulated variables
and rate of change of the manipulated variables for MIMO processes.

Example 2

Theorem 2 applied to the system of Ex. 1 yields: ¢j, = cg,, cs, = ¢y, €y, = €Jy = CJy = CJj-
a

4 Special Cases

This section considers the effect of some choices of output constraints and tuning parameters
on closed-loop stability. These cases derive their importance from the fact that they may be
considered “natural” (section 4.1) or “safe” (sections 4.2, 4.3) choices. This section explains
how the conditions of section 3 can be used to predict potential problems.

4.1 Constraint at the First Possible Point

The output constraint window is often defined to start at the earliest possible future point,
by selecting w, equal to the dead-time plus one (see, e.g., Prett and Garcia (1988)). This
choice, however, can result in a very aggressive controller. The following theorem quantifies
this observation for SISO systems.



Theorem 3 Let the dead-time in the discrete model be Ny sampling intervals, t.e., Hy =
.= Hn, =0 and Hn, 41 # 0. For the J; set that corresponds to either the upper or lower
output constraint at k+ Ny+1, cj,(2) is a (deadtime plus) one-step-ahead feedback controller
ey (2) = (2N — )71 (p*(2)) 1.

Proof: See Appendix B.
Jomputation of the equivalent Internal Model Control (IMC) structure (e.g., Morari and
Zafiriou, 1989) controller ¢(z) yields for the ¢j; of Thm. 3:

CJi —(Ng+1) zx1
)= ———— =2z 17
9(e) =17 . p (17)
This IMC controller inverts the causal part of the model and is the “perfect” controller
(Garcia and Morari, 1982), known to suffer from a number of problems. A direct consequence
is that stability problems will arise if the discrete model has zeros outside the Unit Circle.
Also, this controller is likely to destabilize the system if there is a plant-model mismatch.

Example 3

Consider the following process:

—s+1
(s+1)(2s+1)

with output constraint: —0.3 < § < 0.3. A sampling time T' = 0.3 and a truncation number
N = 40 are used to get the discrete model p*(z). The discrete model has a zero outside
the Unit Circle. Thus, if the constraint window includes point k£ + 1 (wy = 1), Thm. 3
predicts that in the operating regions of J; and J; (as defined in Ex. 1) the control system
will behave as an unstable controller. The simulations of Fig. 1 demonstrate this fact. The
responses of both the unconstrained and the constrained QDMC are shown for two step
output disturbances d(s) of different sizes; the setpoint is zero and wy = w, = 1 for the
constrained case. For the smaller disturbance the response is the same for both cases, and
the system is stable because it remains in the operating region for Jy (unconstrained), in
which the choice of parameters M = 5, P = 50, ' =1, B =0, D = 1 is a good one
in terms of stability. For the larger disturbance, in the unconstrained case the response is
simply appropriately scaled, when compared to the smaller disturbance. In the constrained
case, however, the system moves in the J;/J; region and instability occurs as predicted.
Note that if one looks only at the sampling points, the instability is not apparent at the
output because of exact pole / zero cancellation; the input however (not plotted) does grow
exponentially. Also, the introduction of a slight model-plant mismatch will drive the discrete
output unstable as well. The nonlinear behavior is the result of the inclusion of the output
constraint in the on-line optimization problem. No “physical” bound is reached. a

B(s) =

(18)

4.2 Small Number of Input Moves (M)

The choice of a small M is considered a “safe” one, especially in conjuction with the selection
of a large prediction horizon P. This is valid for unconstrained systems, where these choices
detune the controller. The theory behind them can be summarized in the following theorem:
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Figure 1: Example 3. Solid line ((a) only): output response for d(s) = 0.2/s for both uncon-

strained and constrained. Dashed line: output response for d(s) = 0.5/s; (a) unconstrained,
(b) constrained.

Theorem 4 (Garcia and Morari, 1982; rephrased) Let B = 0, D = 0 and I' = 1.
Then for no model-plant mismatch: (i) For M =1 and a sufficiently large P > N + M — 1,
the unconstrained system is stable. (ii) If the model has a discrete monotonic step response,
M =1 and P = N result in a stable unconstrained control system.

We shall now consider the case M = 1, when output constraints are included in the on-
line optimization. The following theorem gives the expression for the ¢y, that corresponds
to one of the constraints on the future output values becoming active at the optimum of the
QP. (Note that since M = 1, no more than one constraint can be active, assuming linear

independence and feasibility for the QP.)

Theorem 5 Let M = 1. Then for the J; set that corresponds to the upper or lower constraint
on the output at point k + N, in the future, where Ny > Ng+ 1, we have:
1

cil2) = =
( ) ZN“PNa =D

(19)

where we define py (z) = ng___l Hy, ;277 with:

0 ] < N,
HNcuj = Z{El H 1=N, (20)
HJ’ ] > Na

Proof: See Appendix C.

For N, = 1 this reduces to Thm. 3. The examples of this section consider the case N, > 1
to demonstrate that the potential destabilization by output constraints is not limited to the
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Figure 2: Example 4. (a) M =1, (b) M = 2. Solid line: output; dashed line: manipulated
variable

extreme case N, = 1. One can see that the feedback controller given by (19) does not depend
on P, nor on the objective function penalty weights I', D, B. As the following examples
demonstrate, this results in an unstable constrained controller. The examples also examine
the case M = 2 to show that the problem is not limited to M = 1.

Example 4

Consider the process of Ex. 3. This time we will study the effect of the constraint at k + 2
becoming active at the optimum of the optimization solved at k. The roots of (1+5*(2)cy,(2))
are computed for the cjof (19). For stability they have to be inside the unit circle. The
computation is repeated for M = 2. In the second case, c;,depends on P, so we used symbolic
computation software to compute the roots at the limit P — co. The values of the other
parameters are B =0, ' =1 and D = 0. The largest absolute value of a root is:

o For M =1: 1.45;
o For M =2: 2.63.

For the simulations, we assume that P = 50 > N + M — 1 is a good approximation of
P — oo. Indeed, the largest root is 2.67 for M = 2, and 1.45 for M = 1. Thus, we expect
potential instability when the output constraint becomes active. This behavior is observed
in Fig. 2 for an output disturbance d(s) = 1/s and w, = w, = 2. O
The next example considers a system with discrete monotonic step response.

Example 5

Let
—s+1+4+e*(25+1)

(s+1)(2s+1)

p(s) = (21)
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Figure 3: Example 5. (a) M =1, (b) M = 2. Solid line: output; dashed line: manipulated
variable.

The continuous response exhibits inverse response. Part (ii) of Thm. 4 is only valid for
discrete monotonic step response systems. For a sampling time 7" = 2 this is true. The
truncation number is N = 15.

The absolute value of the largest closed-loop pole when using the unconstrained QDMC
controller with M = 1 is 0.29. Hence the unconstrained system is stable. Let us specify
an output constraint at k£ + 2 and compute the largest absolute value of the roots of (1 +
7*(z)cy;(2)) for the J; that corresponds to this constraint being active:

o For M =1: 1.54;
o For M = 2: 2.18.

This prediction of instability is verified in the simulations shown in Fig. 3. An output
constraint —0.3 < y(k + 2) < 0.3 is used in the on-line optimization. The parameter values
are M =1lor2, P=15B=0,D=0,T =1. At time 0, a step disturbance d(s) = 2/s is
applied to the plant output. a

The following theorem provides a sufficient condition for the cjthat corresponds to an
output constraint at k¥ + N, to be closed-loop stable. We use the notation S; to denote the
value of the unit step response of 7*(z) at time jT'. The step response coefficients are related
to the impulse response coefficients through

Sjt1 =5 = Hjn (22)

Theorem 6 Let M =1 and J; correspond to the upper or lower constraint on the output at
point k4 N, in the future, where Ny > Ny + 1. Then cy yields a stable closed loop system if
both:

(1) S; < S;41 i p*(1) >0 or S; > Sj41 if (1) <0 for j = Ney...,N —1.

(it) Sn, > 5*(1)/2 if p*(1) > 0 or Sy, < p*(1)/2 if p*(1) < 0.
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Proof: See Appendix D.

The theorem states that if the open-loop unit step response of the model is examined
at time N,T and it is found that (i) the response is monotonic from that point on and
that (i1) it has reached a value equal to at least half the steady-state value, then placing
an output constraint at £ + N, in QDMC will not cause nominal stability problems. The
reader is encouraged to compare this result to Proposition 1 in Scattolini and Bittanti (1990).
Although the predictive controller studied in that paper is unconstrained, it so happens that
the stability question for that linear control system is mathematically the same as the one
under consideration in Thm. 6.

4.3 Large Input Penalty Weight (B)

Another “safe” choice for the unconstrained case is that of a large weight B in the u penalty
term in the objective function. This is based on the following theorem.

Theorem 7 (Garcia and Morari, 1982) There ezists a finite § > 0 such that for B > 8
and for no model-plant mismatch, the unconstrained control system is stable for any M > 1,

P>Ns+1,D=0and T >0.

The following counter-example shows that this is not always true with output constraints,
even for a system that has no inverse response and without putting a constraint at the first
possible point.

Example 6

Let

. 1

pls) =

(5s + 1)(10s + 1)(15s + 1)(20s + 1)

A sampling time T' = 3 is used to get the discrete model 5*(z). A truncation number N = 50
is used. Note that $*(z) has a zero outside the Unit Circle, at -7.8, which means that the
one-step-ahead controller is unstable. Hence, as discussed in section 4.1, a constraint at
point k£ + 1 will result in an unstable control system. We will consider the case with the
constraint placed at point k + 2.

Next we compute the largest absolute value of the roots of (1 + §*(z)cs,(2)) for the J;
that corresponds to the upper or lower constraint at k+2, for several values of B. The other
parameters are set to M =2, P =50, D = 0 and ' = 1. These values are listed in Table 1,
which also includes the corresponding values for the unconstrained case for comparison. For
the unconstrained case, the control system is stable for all values of B. When a constraint is
placed at k+2 however, the stability condition predicts that the closed-loop system is slightly
unstable. Increasing B even further makes no difference. Figure 4 shows the response to a
unit step output disturbance for B = 1000, when the constraint —0.3 < §(k +2) £ 0.3 is
used. The predicted instability is verified. The simulations are identical for the other values
of B in Table 1. Note that if a B = 1000 was used without the output constraint, essentially
no control action would be taken due to the huge penalty on the manipulated variable. The
presence of a constraint, even at the second future point, results in very large values for the
manipulated variable and in instability. a

(23)
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Table 1: Example 6. Largest absolute value of the roots of (1 + §*(2)cys,(2)), for different

values of B.
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The above example also serves to demostrate that even in cases of processes without
inverse response characteristics, one cannot assume that nominal stability is guaranteed.
The reason is that after sampling, the discrete model 7*(z) often has zeros outside the unit
circle. For rational continuous transfer functions with at least three more poles than zeros
this will always happen for small sampling times. In such cases the one-step-ahead controller
will be unstable and the type of stability problems that can be caused by output constraints
are likely to appear. One should note, however, that such problems may also occur at larger
sampling times. A rigorous treatment of the effect of sampling time on the location of the
zeros of discrete models is given in Astrom et al.(1984). Zafiriou and Morari (1985) give a
detailed account of the effect of sampling time selection on the performance of some standard
discrete linear control algorithms.

5 Robust Design

This section demonstrates the use of the contraction condition in designing a robust QDMC
controller with output constraints.

We select a simple first order system with a time delay:
e—TdS

1r>($)=SJrl

(24)

For the dead time, we use the value 7, = 1 in the model p(s), and allow up to 15% error in
the true deadtime. This error can be described as additive error [X in the discrete model.

This computation can be found in Zafiriou and Morari (1986). The set II of possible plants
is described as:

I = {p(s) : [p"(™T) = () < Li(w), 0 Sw < /T (25)

where p*(z) is the discrete plant, §*(z) the discrete model and w is the frequency.

Robust linear control theory provides a robust stability condition for a linear controller
applied to a plant in this type of set II (Zafiriou and Morari, 1986). Hence, Thm. 1 reduces,
in this case, to the requirement that all feedback controllers cj,(z) stabilize the linear (with
all constraints removed) closed-loop system for the model §*(z) and satisfy

Jay CJ; (ejWT) 7

s
; = - - r 1 <w < — 2
ﬂ‘]; 1 + p*(eJWT)CJ,'(erT) a(w) < [ 0 WS T ( )
In the simulations we introduce model-plant mismatch by using
6—0.853 .
pls) =~ T (27)

as the actual plant. A sampling time T" = 0.1 is used.

The set point is 0 and the constraint specification on the output is: —0.3 <y < 0.3. The
theoretical tools that were developed in the previous sections apply to constraint windows
of any length; however we choose the simple case of a window length of 1 (w, = w,) in order
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Figure 5: Robustness condition (y,;) for up to 15% dead time error. (a) No constraint active.
Solid line: M = 2, D = 0.13; dashed line: M =5, D = 0.20. (b) Constraint at wy(= w.)
active. Dash and dot: wy = w, = 11; solid line: wy = w, = 12, M = 2, D = 0.13; dashed
line: wp = we =12, M =5, D = 0.20.

to highlight the effect of the constraint. Since our model has a dead-time of 10 sampling
intervals, the beginning point w; cannot be less than 11.

The J; corresponding to a constraint at k + 11 results in the ¢j, of Thm. 3. Although
this is stable for no model error for this process, it is very sensitive to model error. This is
shown by the robustness condition pj, plotted as a function of frequency in Fig. 5. Since
this controller is independent of the tuning parameters, the condition cannot be reduced to
below 1 by tuning. Hence we can not impose a constraint at the first possible point because
of model uncertainty.

We will now study the case, where the constraint is placed at time k+12 (wy = w, = 12).
From Thm. 5 we know that for M = 1, the other tuning parameters have no effect on cy,.
Hence we will use M greater or equal to 2.

Let us first consider the following values: M =2, P =20, B=0,D =0.13 and I" = 1.
Figure 5 shows that the robustness condition is satisfied for the unconstrained QDMC, but
the cj, corresponding to the constraint active is not robustly stable. Let us observe how the
system rejects a step output disturbance. First, let us simulate the response to d(s) = 2/s.
Figure 6 shows that the closed-loop system is stable, although close to instability with a
response that may not be acceptable in practice. One can verify that the peaks of the values
of the manipulated variable occur when the constraint is predicted active. Next, increase
the disturbance to d(s) = 2.5/s. For the unconstrained case, as expected from linear control
theory, the response is simply scaled appropriately, and therefore not plotted. However, as
Fig. 7 shows, the constrained controller is unstable.

Next, we tune the parameters in order to satisfy the robustness condition. After a trial
and error procedure, we select M = 5 P = 20,B = 0,D = 0.2, I' = 1. The output
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constraint is still at k& + 12. To satisfy the contraction condition, first we need to have all
the roots of (1 -+ p*(2)cs,(z)) inside the unit circle for both Jis. We can compute that for
the new parameter values, the magnitude of the largest root is 0.9048 when the constraint is
active and 0.9050 for the unconstrained case. Second, we have to plot yuj for both Jis and
check to see if they are both below 1. One can see in Fig. 5 that the robustness condition
is satisfied for the unconstrained controller with a relatively large ‘margin’. The tuning
parameter values are selected because they satisfy the condition for the J; that corresponds
to the constraint being active as well. These results are confirmed by the simulations shown
in Fig. 7. Thus, the contraction condition proved efficient in designing a robustly stable
QDMC controller with output constraint.

6 Concluding Remarks

The theory and examples presented in this paper show that the inclusion of hard output
constraints in the on-line optimization problem solved by QDMC may result in very aggres-
sive control systems that are unstable or sensitive to modeling error. This should not lead
one to conclude that output constraints ought not to be used in QDMC. The theory can
predict when a stability problem exists and usually offer a way to address it. What is clear
though is that one should not rely on tuning rules that work for the unconstrained case. The
stability guarantees behind these rules are no longer valid. In the case of the “small M”
rule, not only there is no stability guarantee anymore, but the rule actually suggests values
for M that are inadvisable for the constrained case.

An important aspect of the robust design methodology described in this paper, is the fact
that the design is based on the effect of the QDMC parameters on the robustness conditions
for the constrained closed-loop system and requires no exhaustive simulations to check all
possible situations. All the simulations given in the paper are used to confirm the behavior
predicted by the stability conditions. One should note that the simulations are kept as simple
as possible to make the nonlinearity of the control system clear.

Future work in this area will look at the effect of “softening” the constraints. Assuggested
by Ricker et al.(1989), allowing the constraints to be violated should in general result in less
agressive control actions. An open question is how to determine the “degree” of softening,
without having to resort to the usually impossible task of simulating all possible cases. The
framework used in this paper is ideal for this task.

A Proof of Theorem 2

If a lower or upper bound on the output is specified for the future time k+1, the corresponding
expressions of this output constraint in the QP formulation (5) are (see for instance, Garcia

and Morshedi (1986)):

ZuX 2 yr —y(k) — ZuV (28)
~ ZaX 2 —yv +y(k) + ZuV (29)

with
V=[Au(k—1) ... Au(k— N +1)]F (30)
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where Zy;, Za are row vectors, independent of the past u(k — 1),...,u(k — N) and the
measurement y(k). These inequalities are repeated for each point in the constraint window
(l:wb,...,we). ’ o

Assume, without loss of generality, that we can write for the A, b, that correspond to J,:

Afz[agl]andi)az[ﬂal} (31)
&7 1302

such that the subscript 1 corresponds to the constraints that are identical in J, and Jp, and
2 refers to opposite active constraints. (In general one has to simply reorder the rows of A,
b.) Note that the matrix on the far left-hand side in (8) is independent of the z;s or y(k).
Thus, one can differentiate:

G o —oa (vij:)Ja (Vz'jg)Ja
“of 0 0 || (Vi | = o | (Veha)n | 1<iSN (3
—ag 0 0 (vxj’\ZQ)Ja (vxj!BGQ)Ja

One can proceed in the same way for differentiation with respect to y(k). Equation (32)
represents a square system of equalities, which has a unique solution.
Now let us do the same for J;. In this case, from (28) and (29) it follows that

. T
AT — [ f‘;;,z ] (33)
and .
(vxj/Bal)Ja = (VIJ’BM)-& 1 5.7 <N
(vz‘jﬁag).]a = —(vxjﬂbz)Jb 1< J < N (34)
(Vy/Bal)Ja = (Vylgbl)Jb
(vyﬂaz)-fa = _(vyﬁbz)Jb
where
by = [ gbl ] (35)
b2
From (32), (33) and (34) one obtains:
(vszzl)Ja = (vxjAzl)Jb ]' —<—j —<— N
((‘%j:\\%gh = —((va,-igzgh 1<j<N
yay)Ja = y1\by JJb 36
(VUA’;g)Ja - —(VyAZ;)Jb . ( )
(ijX:)Ja = (vsz;;)Jb 1<j<N

(Ve XD, = (VymXi)a

The last two equations of the system (36) combined with (12) yield:

(vyf) s = (Vyf) b
(szf)i = (Vx,-f)j,, 1<j<N (37)

Then from (13) and (37) we conclude that ¢y, (2) = ¢5,(2).
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B  Proof of Theorem 3

Assume that the lower or upper bound § on the output constraint is predicted active at time

k 4+ Ny + 1. The predicted output is:

i/(k+Nd+1)=iH.-u(k+Nd+1—z‘)+d(k)=?7 (38)

1=1

where d(k) 2 y(k) — TN, Hiu(k —1) is the estimate of the disturbance at the current sample
point obtained as in Garcia and Morshedi (1986). Since H; = ... = Hn, = 0, we can solve

(38) for u(k) 2 f and then differentiate to get:

H. — H. -1
J J+Ng+1 an

(Vx,-f).h = d (Vyf)J.' =

39
Hpy 41 (39)

Substitution of (39) into (13) and use of (2) yields the desired result.

Hy o1

C Proof of Theorem 5

Assume that the lower or upper bound 7 on the output constraint is predicted to be reached
at time k + N,.

N N
§(k + N,) Z u(k + No—j) +y(k Z ) =17 (40)
N . A
& u(k) = =x; g—y(k)+ > (Hj — Hy,45)u(k —5)| = f (41)
2= Hj j=1
Then H_H )

Vo, g = et and (Vo s = == 42

(Va, ) SV and (V,f)J, o (42)

Substitution into (13) produces the desired expressions.

D Proof of Theorem 6

We need that all roots of (14+5*(2)cy,(2)) lie inside the unit circle for the ¢z, given by (19). This
translates into a requirement that the roots of (YN H;)zN-"Nat Hy,p12V"Ne=l4.. .4+ Hy =0
are inside the unit circle. A sufficient condition for this to happen can be obtained from the
dominant coefficient theorem (e.g., p. 116 of Jury, 1964), which in this case results in the
condition:

Na
|2 H| > [Hypsa| + - + | Hnl (43)
=1
By using (22) one can easily see that satisfaction of conditions (i) and (ii) of the theorem
imply satisfaction of (43) and therefore nominal stability for the c;under consideration.
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Notation

AT = matrix of inequality constraints
b = vector of bounds of inequality constraints
B = penalty weight on manipulated variable
cs;(z) = feedback controller for J;
d(l) = disturbance effect on the plant output at {** sampling point

Ry
N
—
g
fl

estimated disturbance on the model output at /** sampling point
output disturbance transfer function

penalty weight on change of manipulated variable
Quadratic Program solution

operator mapping z{l — 1) to z({)

linear term vector in objective function

Hessian

it* impulse response coefficient

set of active constraints

present sampling point

number of imput moves to be optimized
truncation number

dead time in sampling intervals

discrete model and plant transfer fucntions
continuous model and plant transfer fucntions
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He 2
Il

Y
S TR A T

P s o)

Z
I

3
h-d;—\
— N
B ~—
—
'U'U*
—~—~
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P = Prediction horizon
q(z) = IMC controller
Qu(z) = defined in Eq. (15)
rp(l) = vector of P future setpoint values at {** sampling point

n
|

+*" step response coefficient
sampling time
manipulated variable at [** sampling point

~
Il

u(l)

wy, w, = beginning and ending points of constraint window
z(I) = closed-loop system state vector at I** sampling point
X = vector of optimization variables

Il

lth

y(1)
(1)

YL, Yu

output measurement at [** sampling point
model output at /** sampling point
lower and upper output bounds

i

Greek letters
I' = penalty weight on predicted output error

Au(l) = uw(l)—u(l-1)
ps;, = defined in Eq. (26)
II = set of possible plants
(¥;);. = defined in Eq. (16)
w = frequency
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Subscripts and superscripts

= corresponding to set J;

transpose

corresponding to optimal solution or discrete transfer function
= corresponding to active constraints
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