Stepwise Assertional Design of
Distance—Vector Routing Algorithms

*

Cengiz Alaettinoglu, A. Udaya Shankar

Institute for Advanced Computer Studies
and Department of Computer Science
University of Maryland
College Park, Maryland 20742

ca@isi.edu, shankar@cs.umd.edu

UMIACS-TR-92-39, CS-TR-2869
August 1993

Abstract

There are many kinds of distance—vector algorithms for adaptive routing in wide—area com-
puter networks, ranging from the classical Distributed Bellman—Ford to several recent algorithms
that have better performance. However, these algorithms have very complicated behaviors and
their analyses in the literature has been incomplete (and operational). In this paper, we present
a stepwise assertional design of a recently proposed distance—vector algorithm. Our design starts
with the Distributed Bellman—Ford and goes through two intermediate algorithms. The proper-
ties established for each algorithm hold for the succeeding algorithms. The algorithms analyzed
here are representative of various internetwork routing protocols.

* This work is supported in part by National Science Foundation Grant No. NCR 89-04590, and by RADC and DARPA
under contract F30602-90-C-0010 to UMIACS at the University of Maryland. The views, opinions, and/or findings contained
in this report are those of the author(s) and should not be interpreted as representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency, RADC, or the U.S. Government.

Contents

1 Introduction

2 Preliminaries: System Model and Proof Rules
3 Algorithm A1l

4 Algorithm A2

5 Algorithm A3

6 Algorithm A4

7 Concluding Remarks

15

24

26

28

1 Introduction

Adaptive routing protocols are responsible for choosing optimal routes for data packets in wide-area store-
and-forward computer networks such as the Internet. In these networks, each link has a cost (indicating
the current traffic on the link) that changes with time; furthermore, links can fail and recover. We refer to
such changes as topology changes. A routing protocol must monitor these topology changes and adapt its
routes accordingly.

In a routing protocol, each node maintains for each destination a neighboring node id, referred to as its
next—hop. The node forwards data packets destined for the destination to its next—hop. The next—hop
can be nil, in which case the node does not know where to forward data packets for that destination. The
objective can be informally stated as follows: (a) the succession of next—hops for the destination from any
node should lead to the destination (unless the destination is unreachable); and (b) the cost of this next—hop
path should be minimum amongst all paths from the node to the destination.

A popular approach to routing is the distance—vector approach, which is based on the Bellman-Ford
algorithm [5]. In this approach, each node maintains for each destination a set of distances, one for each
of its neighbors; and chooses a neighbor with minimum distance as the next—hop. Thus, each node requires
O(N xe) space, where N is the number of nodes in the network and e is the average degree of a node. However
it is well known that the straight-forward distributed implementation of the Bellman-Ford algorithm can have
long-lived loops (of the order of distances) [14]. In fact, the ARPANET initially used this Distributed
Bellman—Ford algorithm, but because of long-lived loops, it was replaced in 1979 by a brute—force “link
state” algorithm which requires O(NN?) space at each node (to maintain a view of the network topology with
a cost for each link).

Since 1979, many new kinds of distance—vector algorithms have been proposed [15, 19, 10, 21, 3, 6, 17, 9]
which avoid long—lived loops by using various node coordination mechanisms. For example [15, 19, 10] use
diffusion computations [4] to avoid loops entirely. References [21, 3, 17, 9] avoid long—lived loops, but not
short—lived loops, i.e. loops that disappear in time proportional to N or less. In [21], each node maintains
for each destination a set of paths (in addition to the distances), one for each of its neighbors. The intention
is that the path maintained at node u for a neighbor is the next-hop path of the neighbor with node u
appended to the front. Long-lived loops are avoided by not choosing a neighbor as a next—hop if the path
maintained for that neighbor contains a loop. However maintaining and exchanging paths is expensive and
requires O(N x e x H) storage at each node, where H is the length (in number of links) of a maximum

length shortest cost path between any two nodes (note that H can be as high as N). References [3, 17, 9]

overcome this problem by having nodes maintain prefinal nodes instead of the paths. The prefinal node for
a destination is intended to be the last node before the destination on the next—hop path. Using the prefinal
nodes, a node can reconstruct the path to any destination (see Section 6), thereby avoiding long-lived loops.

Understanding distance—vector algorithms, particularly the new ones, is difficult. The analyses in the
literature of the above algorithms (e.g. showing that optimal paths are eventually achieved) are operational
and incomplete. In this paper, we present a stepwise assertional design of distance-vector algorithms. We
go through the following steps:

(1) We start our design with the Distributed Bellman—Ford algorithm, referred to as A1. We prove that
after any succession of topology changes, the nodes that can still reach the destination eventually
achieve and maintain optimal next—hop paths.

(2) We next obtain an algorithm, called A2, by adding a path—exchange mechanism to A1. We prove that
A2 converges to optimal paths in O(N) steps, assuming synchronous execution of the network; i.e.
the routing algorithm executes in steps, and in each step all (and only those) messages that are send
in the previous step are received. This proves that A2 avoids long—lived loops.

(3) We next obtain an algorithm, called A3, by adding to A2 a constraint that a node chooses a neighbor as
the next—hop for a destination only if the neighbor is also the next—hop for all intermediate destinations
on the path to the destination.

(4) Our fourth algorithm, called A4, is obtained from A3 by replacing paths with prefinal nodes.

For each algorithm Az, the safety and progress properties satisfied by the previous algorithms hold. In
the case of A2 and A3, it is straightforward to check that the proofs for the previous algorithms continue
to hold with minor modifications. For A4, we establish that A4 is a well-formed refinement [11] of A3;
thus, all safety and progress assertions satisfied by A3 hold for A4 [11].

Many algorithms proposed in the literature use similar mechanisms to algorithms A1 through A4. For
example, Old Arpanet Routing Algorithm [14], Routing Information Protocol (an Internet standard) [7],
and Inter-Gateway Routing Protocol [8] are variations of A1. Inter-Domain Routing Protocol (ISO draft
standard) [18], Border Gateway Protocol (an Internet standard) [12], and the algorithm in [21] are variations
of A2. The algorithms in [3, 17, 9] are variations of A4. Hence, understanding the properties of algorithms
A1 through A4 is very useful in understanding various internetworking routing protocols. We introduce A3
because showing that properties of A2 hold for A4 is not simple (whereas showing that properties of A2
hold for A3, and properties of A3 hold for A4 is simple).

In section 2, we present our system model and proof rules. In sections 3, 4, 5, 6, we describe A1, A2,

A3, and A4, respectively. In section 7, we give concluding remarks. A preliminary version of algorithms

A1 through A4, without most of the analysis, was presented in [1].

2 Preliminaries: System Model and Proof Rules

We use state transition systems and fairness requirements to specify routing protocols, and safety and
progress assertions to describe their behaviors (e.g. [11, 20, 13]).

A state transition system consists of a set of state variables, a set of events, and an initial condition
on the state variables. The state variables define the set of system states. Each event e is specified by an
enabling condition, referred to as enabled(e) and an (atomically executed) action, referred to as action(e);
together they define a set of state transitions for the event.

A behavior of the state transition system is a sequence of the form (sg, fo, $1, f1,...), where the s;’s are
systemn states, the f;’s are event names, sy is an initial state, and for each ¢ > 0, (s;, s;41) is a transition of
fi- A behavior can be infinite or finite (in which case it ends in a state). In the following definitions, we
consider behavior ¢ = (sg, fo, s1, f1,..).

An event can be subject to a weak fairness. A behavior o satisfies weak fairness for event e iff (1) o is
finite and e is not enabled in the last state of o, or (2) ¢ is infinite and either e occurs infinitely often or is
disabled infinitely often in o.

We use two types of safety assertions in this paper: invariant assertions and unless assertions. An
invariant assertion is of the form Invariant(A) where A is a state formula, i.e. a formula which is true or false
at each state. By definition, Invariant(A) holds for a behavior o iff every state s; in o satisfies A.

An unless assertion is of the form A unless BV &£, where A and B are state formulas and & is a set of
event names. By definition, A unless BV & holds for a behavior o iff for every state s; in o satisfying AA—B,
at least one of the following hold: (1) s; is the last state (o is finite), or (2) s;41 satisfies AV B, or (3) f; is
in £. The event set £ can be empty, in which case we simply write A unless B.

A safety assertion holds for a state transition system iff it holds for every behavior of the system.

Our progress assertions are of the form A leads—to BV £, where A and B are state formulas and £ is a
set of event names. By definition, A leads—to B V £ holds for a behavior ¢ iff for every s; in o that satisfies
A, there is a j > ¢ such that s; is in ¢ and satisfies B or f; is in o and belongs to £. The event set £ can
be empty, in which case we simply write A leads—to B. Given a state transition system and a set of fairness
requirements, a leads—to assertion holds for the system iff it holds for every behavior of the system which

satisfies the fairness requirements.

We next list the proof rules used in this paper. We use Initial as a state formula specifying the initial
condition. Given an event e, we use {A}e{B} to mean the Hoare—triple {A A enabled(e)}action(e){ B}, i.e.,

in any state that satisfies A, if e is enabled then its occurrence results in a state that satisfies B.

Invariance rule: Invariant(A) holds if for some state formula C| the following hold:
- Initial = A
- for every event e, {A A C'}e{A}

- Invariant(C).

Implication rule: Invariant(A) holds if for some state formula C, the following hold:
- Invariant(C')

- C= A

Unless rule: A unless B V £ holds if for some state formula C, the following hold:
- for every event e ¢ £, {AAN-BAC}e{AV B}

- Invariant(C).

Leads—to rule: A leads—to B V £ holds if for some state formula C', the following hold:
- for every event e ¢ £, {AAN-BAC}le{AV B}
- for some event e with weak fairness, {A A =B A C}e{B}
- Invariant(A A C = enabled(e))

- Invariant(C).

Closure rules:
o A leads—to BV & holds if Invariant(A = B) holds.
o A leads—to BV & holds if for some state formula C': A leads—to C'V £ and C' leads—to BV £ hold.
e A leads—to BV & holds if A = A1 V Ay, Ay leads—to BV &, and As leads—to BV &€ hold.
o AN B leads—to (C'V(AA D))V E holds if A unless C'V € and B leads—to D V & hold.

These rules are similar to the rules in [13, 2]. Tt is straightforward to show their soundness (e.g. [11, 20]).

3 Algorithm Al

We consider a computer network whose nodes and links form an arbitrary directed graph such that if there
is a link from node u to node v, then there is a link from node v to node u. Let NODES be the set of nodes,

and LINKS (C NODES x NODES) be the set of links. Node v is a neighbor of node w if (u, v) is a link. Let

neighbors(u) denote the set of neighbors of u. A sequence (zg,...,z,) of nodes is a path iff (z;,z;41) is a
link for 0 < ¢ < n. A path is simple if no node 1is repeated.

A routing protocol is specified by a state transition system and a set of fairness requirements. Each node
u has a set of state variables and a set of events. Each link (u,v) has a state variable, called C'hannely,,
indicating the sequence of messages in transit. Channely, initially equals (), the null sequence. The events
of a node can access the state variables of the node, send messages to outgoing links, and receive messages
from incoming links. A link (u, v) behaves as a FIFO queue, except when it fails, in which case Channely, is
set to {); for notational convenience, we group this failure event among the events of node u. We assume that
each receive event has weak fairness; this is a convenient way to model finite message propagation delays.

Conventions: We use u,v,w,z,y,z to range over NODES; in some (explicitly stated) cases, they
range over NODESU {nil}. We use v, w to range over neighbors(u). We use z to indicate the destination
node. We use ¢, k, d, newcost to range over IT U {0, 00}, indicating a distance or a cost, where It is the set
of positive integers. We treat oo as a number higher than any number in It; e.g. o0 plus any number is co.
Given a set S of numbers, min S denotes the smallest number in S. If S is empty then min S returns oo.

Table 1 specifies the state variables and events of an arbitrary node in A1, the Distributed Bellman—Ford
algorithm. (Refer to the table in the following discussion.) Node « maintains the cost of each outgoing link
(u,v) in state variable Linkcosty (v). Linkcost,(v) equals oo iff the link is failed; it can change its value at
any time due to link failure, link recovery and link cost change events. Linkcost,(v) is never 0.

For each destination z, node u maintains in state variable Distvia, (v, z) an estimate of the distance to
z via neighbor v. Tt equals oo if node u believes z cannot be reached via v. The state variable Nhop,(z)
indicates the next—hop for destination z. Tt equals neighbor v only if Distvia, (v, z) is minimum among
all neighbors. Nhopy(z) equals nil iff Distviay,(v,z) equals co for all neighbors v. Node u also maintains
state variable Dist,(z) in which it stores the distance via its next—hop, except when v = z (in which case
Dist,(z) = 0).

Nodes exchange information about their distances to various destinations. Specifically, node v sends
messages of the form (v, d_vector), where d_vector is a set of (z,d) pairs such that d = Dist,(z); note that
d can be co.

When Linkcost, (v) changes (either because of link failure, recovery or change in cost), Distvia, (v, z), and
if needed Nhop,(z) and Dist,(z), is updated for each destination z (for details see procedure Update& Send
in table 1). If the distance of any destination z has been affected (i.e. Dist,(z) has changed), node u sends
a message to its neighbors containing the (z, Dist, (2)) pairs for all affected destinations z.

Additionally, when link (u,v) recovers, u sends a message to v containing the (z, Dist, (z)) pairs for all

destinations z. This 1s to ensure that if u offers a better path for some destination z, node v will choose u
as its next—hop. This also ensures that if a network become connected after being disconnected (due to a
set of link failures), nodes in different partitions obtain paths to each other.

When node u receives a (v, d_vector) message, it updates Distvia, (v, z), and if needed Nhop,(z) and
Disty(z), for each destination z in d_vector. If the distance of any destination has been affected, node u

sends a message to its neighbors containing the (z, Dist, (z)) pairs for all affected destinations z.

We say that the network is in a symmetric state if for every link (u,v), link (u,v) is up iff link (v, u) is
up. In the rest of this section, we prove that after any succession of topology changes that leaves the network
symmetric, for every node u and every destination z reachable from u, eventually the next—hop path starting
from u leads to z and has minimum cost among all paths from u to z. To specify this formally, we define

the following functions (on the system state):

UPLINKS. Set of up links. Formally,
={(u,v) € LINKS : Linkcost,(v) < o0}.

Symmetric. Boolean.

= true iff [Y(u,v) € LINKS : (u,v) € UPLINKS iff (v,u) € UPLINKS].

Nhoppath(u, z). The succession of next—hops for z starting from u. Formally,
= {(®g,..., &) such that z¢ = u,
fori € [0.n—1]: Nhopy,(2) = €341, A @i & {xo, ..., 21U {nil} U{z}, and

tn =2 V Nhopy, (2) =nil V x, € {xg,..., 2n_-1}.

Availablepaths(u, z). The simple paths from u to z over up links. Formally,
={{wo,..,xn) o =u AN xn =2z A [forie[l.n]: (z;-1,2;) € UPLINKS A #; € {®o,...,2i-1}] }.

Reachable. Set of node pairs (u, z) such that u can reach z. Formally,
={(u, z) : Availablepaths(u,z) # {} }.

Path_cost({xg, ..., 2,)). The cost of path (xy,...,2,). Formally,
Z?:_ol Linkcosty, (zi+1) n >0

=4 0 n =0 (i.e. path equals (zg))

00 n <0 (i.e. path equals (})
Note that the path cost is co if any link cost in the path is co.

Cost(u, z). The cost of a minimum cost path from u to z. Formally,

= min{ Path_cost(p) : p € Availablepaths(u, z)}.

HighestCost = max{Cost(u, z) : (u, z) € Reachable}.

TC. The set of topology change events. Formally,
= {LinkFailure,(v), Link Recovery, (v, ¢), LinkCostChange, (v, c) : (u,v) € LINKS A c€ It}

Conventions: We use the term distance when we refer to the values of state variables Dist, (z) and
Distviay (v, z), either in the nodes or in transit in the channels. We say “distance d in transit for destination
z” to mean there is a message in transit whose d_vector contains a (z,d) pair. We use the term cost, and
not “distance”, when we refer to the current values of link costs, e.g. Path_cost, Cost. Note that costs can
not change unless a topology change happens.

Notation: For any non—empty sequence {(zo, ..., Z,), last({zg,..., x,)) denotes x,, tail({xg, ..., xn))
denotes (x1,...,2,), and head({xq, ..., 2,)) denotes xy. When applied to a null sequence, head({)) =

last({)) = nil and tail({)) = (). We use @ as the concatenation operator for sequences, i.e. {xg, ..., n)@{yo, ..

<x1a"'axnay0a"'aym>~

We define a boolean function Has_optimal_path(u, z) that is true iff the next—hop path starting from u
reaches z and has optimal cost; note that this implies that all nodes on the next—hop path also have optimal

next—hop paths to z. Formally:

Has_optimal_path(u,z) = last(Nhoppath(u,z)) =z

'aym>:

A [V& € Nhoppath(u, z) : Dist,(z) = Cost(x, z) = Path_cost(Nhoppath(x, z))]

The desired objective can be stated as follows, where A is some state formula (that can depend on the

routing algorithm):

o Symmetric A (u,z) € Reachable leads—to TC V (u,z) € Reachable A Has_optimal_path(u,z) A A

o Symmetric A (u,z) € Reachable N Has_optimal_path(u,z) A A unless TC

That is, after any succession of topology changes that leaves the network in a symmetric state, if there
are no further topology changes, then every reachable node u eventually achieves a stable optimal path to
z. We point out that most routing algorithms, including the ones in this paper, do not satisfy the above
property if A = true. That is, it is possible for a node to achieve an optimal next—hop path and then switch
to some other non—optimal path. However, eventually, it will find an optimal next—hop path and also satisfy
A; once this is achieved, the optimal next—hop path is stable.

The following assertions M; and M, specify an appropriate A for algorithm A1:

(My) Symmetric leads—to TC V
[V(u,z) € Reachable : Has_optimal_path(u,z) A [Vv € neighbors(u) : Channely,(z) = {}]]

(Msy) Symmetric A [V(u,z) € Reachable : Has_optimal_path(u,z) A [Vv € neighbors(u) : Channely, (2) = {)]]
unless TC

where C'hannely, (2) is a state function which denotes the sequence of messages in Channely, that contain

a distance for destination z. Formally,

Channely,(z) = {mg,mq, ..., my,) such that
[Bpo, - -+, Pat1 - Channelyy, = po@{mg)@p1@(m)@ ... Qp, Q@(m,)Qp, 41 A
Vi,0<i<n,3d:(z,d) € m] A
Vi,0<i<n+1,Vméep;,Vd: (z,d) & m].

Theorem 1. A1 satisfies M1 and Ms.

Proof of Theorem 1
Readers who are interested in the algorithms but not in the proofs can skip this proof.

Conventions: For a leads-to assertion “A leads—to TCV B”, we refer to A as the left side of the assertion,
and B as the right side. We use the same convention for “A unless 7C V B” and for “Invariant A = B”.
Most of our leads-to assertions have the form Symmetric A A leads—to 7C V B, that is, if Symmetric
and A holds, then eventually B holds or a topology change occurs. When informally describing such an
assertion, for brevity, we just say “if A holds then eventually B holds”. The same convention is used with
assertions of the form “Symmetric A A unless 7CV B”. We assume the following precedence of operators:
-, A, V, =, Invariant, unless, leads—to. We say cost of a node pair (u,z) and distance of a node pair
(u, z) to mean Cost(u, z) and Dist, (z) respectively.

The following assertions express rather obvious relationship between neighboring nodes:

(B1) Disty(z) =d A (v,u) € UPLINKS leads—to TC V Distvia,(v,z) = d+ Linkcost,(v)

(B2) Invariant (v,u) € UPLINKS A Channely,(z) # () = (2, Dist,(z)) = last(Channelyy(2))

(Bs3) Invariant (v,u) € UPLINKS A Channelyy(z) = {) = Distvia, (v, z) = Disty(z) + Linkcost, (v)

(B4) Invariant (v,u) € UPLINKS A Distviay (v, z) # Disty(z) + Linkcost,(v)
= (z,Disty(z)) = last(Channelyy(2))

(Bs) min Channely, leads—to TC V m = front(Channely,)
(Bs) Channely, = (m)@x leads—to TC V [Jy: Channely, = x@Qy]
(B7) (z,d) in Channely, leads—to TC V Distvia,(v,z) = d + Linkcost,(v)

(Bg) (z,d) = front(Channely,) leads—to TC V Distvia,(v,z) = d+ Linkcost,(v)

By, By, B3, B4, By and Bs deal with the distances of neighboring nodes to a destination z and the
distances to z in transit between the neighboring nodes.

By states that if the distance of v is d and the link (v, u) is not failed, then u eventually learns of d. By
follows from B4 and By by the closure.

B, states that if a channel has distances to z, then the last message contains the current distance of the
sender. Bs follows from invariance rule.

B3 states that if no distances to z are in transit, then the distance of the receiver through the sender is
up-to-date. Bjs follows from B; using invariance rule.

B, states that if a distance of node u via a neighbor v is not up-to-date, then the current distance of v
is in the last message in Channely,(z). By follows from By and Bs by implication (left side of By implies
the negation of the right side of Bs; since B3 holds, the left side of B3 must also be false, which implies the
left side of By, which implies the right side of By, which implies the right side of By).

By states that a message in transit eventually advances to the front of the channel. Bg states that the
message in the front of the channel eventually gets removed. Bs follows from leads—to rule (via receive event).
Bs follows from Bg by closure. By states that each distance in link (v, u) is eventually used to update the
distance of u via v. Bg states that the distance in the front of a link (v, u) is eventually used to update the
distance of u via v. Bg follows from leads—to rule (via receive event). Bz follows from Bs and Bs by the

closure.

The following safety assertions state that the values of Symmetric, Reachable, cost of a node pair, and
HighestCost do not change. Each of them holds from the unless rule.

(C1) Symmetric unless TC

(C3) Reachable =S unless TC

(C3) Cost(u,z) = K unless TC

(Cy) HighestCost = K unless TC

We now define functions that, in some sense, characterize the essence of algorithm A1:

In. Maximal subset of Reachable such that (u,z) is a member of In iff
(1) Has_optimal_path(u, z),
(2) for any message (x,d) in transit, Dist,(z) is less than d,
(3) for any node pair (w, #) in Reachable not satisfying Has_optimal_path(w,),
Dist,(z) < Disty(x) and Dist,(z) < Cost(w, z).

Out = Reachable—In.

Lowest. The minimum of the cost of node pairs in Out, the distances of node pairs in Qut, and the
distances in transit between nodes from which the destination is reachable. Formally,
=min({Cost(z, z) : (x,z) € Out} U

{Disty(z) : (u,z) € Out} U
{d: (z,d) € Channely, A (u,z),(v,z) € Reachable}).

The intuition behind a node pair (u, z) being in In is the following: « has an optimal path to z, and this
cannot be affected by any message in transit or by any message that can be generated by other nodes. Note
that if a node pair (u,z) is in In and u # z, then N Hop,(z) # nil and the node pair (N Hop,(z), z) is also
in In. If a node pair (u, z) is in In, then the outgoing channels of u do not contain any (z, d) messages. This
follows from Bg and the definition of In (i.e. since (u, z) is in In, the messages in transit for z have larger
distances than the distance of u, and if an outgoing channel of u contained a message for z, the last message
in that channel for z would contain a distance which was not larger).

The intuition behind Lowest is the following: Lowest never decreases, and keeps increasing as long
as it is less than HighestCost. Furthermore, Lowest > HighestCost iff In = Reachable (this is because
Lowest > HighestCost means that cost of all reachable node pairs are less than Lowest, hence they are not
in Out). In contrast, the minimum distance in transit can decrease or increase without a change in Out; the
same is true for the minimum distance of a node pair in Qut .

We now proceed to prove My and Ms. The proof of M is summarized in Figure 1.

M3y holds from the unless rule; specifically, once the left side of My holds, no receive event of any node

in Reachable is enabled, and all other events belong to 7C. Thus, it suffices to prove M;.
(M3) Symmetric leads—to TC V In = Reachable

Mg states that eventually In contains all reachable node pairs. M; follows from Mz by closure (since

In = Reachable implies right side of M;p). Thus it suffices to prove Ms.
(My) Symmetric leads—to TC V Lowest > HighestCost

M, states that Lowest eventually exceeds HighestCost. Mz follows from My by closure. Thus it suffices

to prove M.
(Ms) Symmetric A Lowest = k < HighestCost leads—to TC V Lowest > k+ 1

M, follows from M5, C7 and C4 by closure. Thus it suffices to prove Ms. We first define the following

functions:

10

M1, (closure) M8 (implication)

M3 (closure) on)
M210 (implication)
M4, (closure) (implication) M11
invariance
(closure) M5 implication) M14 -)
(implication) M13(implication)
C1
M6 M7 M8 B2 B3
M6 (closure) M7 (closure)

M17 Bl M19 B5 B6
(unless) (unless)

Figure 1: Proof of M1. Each arrow indicates that the tail assertion is used in the proof of the head assertion.

Proof rule used is indicated in parenthesis.

DVia(k) = {(u, v, z) : Distvia,(v,z) =k A (v,2) € Out}
DTransit(k) = bag{(u, v, 2) : (z,k) € Channelyy, A (u,z),(v,z) € Reachable}

Note that DTransit(k) is a bag; i.e. if there are two messages whose distance vectors contain the same
(z, k) pair in the same channel, DTransit(k) contains two (u, v, z} triplets.

We next define the following assertions:

11

(Ms) Symmetric A Lowest = k leads—to TC V Lowest > k A |DVia(k)| =0

(M7) Symmetric A Lowest > k A |DVia(k)| =0
leads—to TC V Lowest > k A |DVia(k)|=0 A |DTransit(k)| =0

(Ms) Invariant Lowest > k A |DVia(k)| =0 A |DTransit(k)| =0 = Lowest > k

Mg and M7 state that if Lowest = k, then DVia(k) and DTransit(k) eventually become empty. At that
point, Mg states that Lowest is greater than k. M5 follows from Mg, M7, Mg and C; by closure.

Thus i1t suffices to prove Mg, M7 and Mg, which is done next.

Proof of Mg
The following assertions state that if Lowest > k and DVia(k) and DTransit(k) are empty, node pairs in
Out have both costs and distances higher than k.
(M) Invariant Lowest > k A |DVia(k)| =0 A |DTransit(k)] =0 A Cost(u,z) =k = (u,z) € In
(Myp) Invariant Lowest >k A |DVia(k)| =0 A (u,z) € Reachable A —Has_optimal_path(u,z) = Disty(z) > k
Mg follows from My and Mg by implication. (The details are as follows: From My, the cost of a node
pair in Out is greater than k. From |DTransit(k)| = 0 and Lowest > k, the minimum distance in transit is
greater than k. From My, the distance of a node pair in Out is greater than k; note that if (u, z) is in Out
and Has_optimal_path(u, z), then Dist,(z) = Cost(u, z) > k. Hence Lowest is greater than k.)
Thus it suffices to prove My and M;y. We next proceed to prove Mg.

(My1) Invariant Lowest > k A |DVia(k)| =0 A Cost(u,z) =k = Has_optimal_path(u, z)

My follows from Mj; and Mip by implication. (The details are as follows: Consider a node pair (u, 2)
satisfying left side of My. (u,z) has optimal path (from M;;). Distances of node pairs (w,z) not sat-
isfying Has_optimal_path(w,z) are greater than & (from Mig). Costs of node pairs (w, z) not satisfying
Has_optimal_path(w, z) are greater than k (from M;y; and Lowest > k). Distances in transit are greater
than k (from Lowest > k and |DTransit(k)| = 0).)

Thus it suffices to prove My, and M19. We next proceed to prove Myy.

(My2) Invariant uw # z = Dist,(z) = min{Distvia, (v, z) : v € neighbors(u)}

(My3) Invariant [¥(v,z) € In A v € neighbors(u) : Distviay (v, z) > Cost(u, z)]

(My4) Invariant Cost(u,z) < Lowest N uw# z = [I(v,2z) € In A v € neighbors(u) : Distvia, (v, z) = Cost(u, z)]

M5 states that distance of a node pair equals the minimum of distances via its neighbors. M, follows

from invariance rule.

12

M3 states that distance of a node via a node pair in In is greater than or equal to the cost of the node.
M3 follows from By and Bs by implication (since (v, z) is in In, Dist,(z) = Cost(v,z) and v’s outgoing
channels do not contain a message for z, hence Distvia, (v,z) equals Cost(v,z) + Linkcost,(v), which is
greater than or equal to cost of node pair (u, z)).

M4 states that a node pair with cost less than or equal to Lowest has a neighbor in In and its distance
via this neighbor equals its cost. M4 follows from B and Bs by implication (note that if cost of (u, z) is
less than or equal to Lowest and v is u’s next node on an optimal path, then (v,z) is in In since v has a
smaller cost; also since outgoing channels of v do not contain a message for z, the distance of u via v equals
cost of (u, z)).

My, follows from My4, M3 and Mi, by implication. (The details are as follows: Consider node pair
(u, z) that satisfies left side of My;. From Mg, there is a neighbor v of u such that (v, z) is in In and u’s
distance to z via v equals its cost k. From Mis, u’s distance to z via neighbors in In is not less than k.
From |DVia(k)| = 0 and Lowest > k (left side of My1), u’s distance to z via neighbors in Out is higher than
k. Thus from Mo, u’s distance to z is k and Nhop,(z) is a neighbor v in In. Thus u has optimal path.)

Thus it suffices to prove M. Mo follows from My1, M2 and Mi3 by implication. (The details are
as follows: Consider a node pair (u, z) that satisfies left side of Myy. From —Has_optimal_path(u, z) and
Lowest > k, we have Cost(u,z) > k. From —Has_optimal_path(u, z) and My, we have Cost(u,z) # k.
Thus, Cost(u, z) > k. From Mz, u’s distance to z via neighbors in In is greater than k. From |DVia(k)| = 0
and Lowest > k (left side of M), u’s distance to z via neighbors in Out is greater than k. Thus, from M2,
u’s distance to z is greater than k.)

This completes the proof of Mg.

Proof of M;
We repeat Ms:

(Ms) Symmetric A Lowest = k leads—to TC V Lowest > k A |DVia(k)| =0

Define
(Mys) Symmetric A Lowest > k A |DVia(k)|=n >0 leads—to TC V |DVia(k)|=n—1
(Mys) Lowest > k unless TC

Mg follows from the unless rule. Mg follows from M5, Mg and C by closure. Thus it suffices to prove

(My7) Lowest > k A |DVia(k)] <n unless TC

13

M7 states that if Lowest > k then the size of DVia(k) does not increase. M7 follows from the unless
rule.

M5 follows from My7 and By by closure. (The details are as follows: From By, Distvia, (v, z) eventually
becomes greater than Lowest (since d in By is greater than Lowest), hence decreases |DVia(k)|. M7 ensures
that | DVia(k)| does not increase before Distvia, (v, z) becomes greater than Lowest.)

This completes the proof of Ms.

Proof of M;
We repeat M7:

(M7) Symmetric A Lowest > k A |DVia(k)| =0
leads—to TC V Lowest > k A |DVia(k)|=0 A |DTransit(k)| =0

Define

(Mis) Symmetric A Lowest > k A |DVia(k)| =0 A |DTransit(k)] =n >0
leads—to TC V |DVia(k)| =0 A |DTransit(k)] =n—1

Mg states that if Lowest > k and DVia(k) is empty, then the size of DTransit(k) eventually decreases.

M7 follows from Mig, M1g and C by closure. Thus it suffices to prove Ms.
(Myg) Lowest > k A |DVia(k)| =0 A DTransit(k) bag-subset S unless 7C

Mg states that if Lowest > k and DVia(k) is empty then DTransit(k) does not expand!. Mig follows
from unless rule.

Mg follows from Bs, Bg and Mg by closure. (The details are as follows: From Bj, a message participating
in DTransit(k) advances to front. From Bg, it gets removed, decreasing |DTransit(k)|. Mo ensures that
DTransit(k) does not expand while the message advances to front.)

This completes the proof of M7, and hence of Theorem 1.

End of proof of Theorem 1

Even though we have shown that after any succession of topology changes, the nodes that can reach the
destination obtain optimal paths, this convergence may contain long-lived loops and be very lengthy. For
example, consider the simple network in Figure 2.a. Three are three nodes u, v, and z. Destination node is
z. Assume all link costs are 1. Numbers on the arrows indicate the distances of nodes via their neighbors,
and solid arrows indicate the next-hops to z. That is, node u’s distance to z via z is 1 and via node v is

3. In Figure 2.b, cost of the link (u,z) increases to D such that D > 3. As a result u chooses v as its

1 Bag S is a bag-subset of bag Z iff every element m of S is also an element of Z. Note that, if S contains k instances of
m, then Z contains at least k& instances of m.

14

“De2
(d) e

Figure 2: Long-lived loops.

next-hop, causing a loop, and sends its new distance to v. Upon receiving this message, v will add 1 (i.e.
Linkcost, (u)) to this distance (see Figure 2.c), and send a message back to u, causing node u’s distance to
increase (see Figure 2.d). Node u and v will keep on exchanging messages (referred to as bouncing effect
in the literature), each time increasing their distances by 2 (i.e. Linkcost,(v) + LinkCost,(u)) until node
u’s distance via v exceeds D, at which point u chooses z as its next-hop. This convergence will require
(D —=1)/(Linkcost,(v) + LinkCost,(u)) number of exchanges. Note that if D is oo (i.e. link (u, z) fails, and
thus nodes « and v cannot reach z), they will exchange distances indefinitely (referred to as count—to-infinity
problem). With more realistic network topologies, this behavior can be even more complex, for example:
loops can involve multiple hops and breaking one loop may cause another loop. In the next algorithm, these

problems are avoided.

4 Algorithm A2

Table 2 specifies the state variables and events of a node in A2. (Refer to the table in the following
discussion.) Each node maintains the state variables required for A1l. In addition, node « maintains in
state variable Routeviay(v,z) an estimate of the next-hop path for destination z via neighbor v. Tt is
equal to the null sequence if node u believes z cannot be reached via v. Node u also maintains a state
variable Costsequiay (v, z) which stores the sequence of estimated link costs for the corresponding links in
Routevia, (v, z). State variables Route,(z) and Costseqy(z) store the route and cost sequence via node u’s
next—hop.

Convention: We use the term route to refer to estimates maintained by nodes of next—hop paths.

The variables Costseq,(z) and Costsequiay (v, z) are auziliary variables; they are needed for verification

only, and do not have to be implemented. (Formally they satisfy the following conditions: (1) they do not

15

affect the enabling condition of any event, and (2) they do not affect the update of any nonauxiliary state
variable [16].)

Algorithm A2 is like algorithm A1, except that A2 uses paths to avoid long—lived loops. Long-lived
loops in the next—hop path for destination z can be avoided by having node u not choose a neighbor v as its
next—hop if Routevia,(v,z) contains a cycle. Another way to achieve the same effect is by having node v
send oo as its distance to node v if node w is in Route,(z). We have chosen the second approach, as specified
in the last five lines of procedure Update&Send in table 2. That is, sending oo as the distance prevents the
receiver from choosing a route with a loop. It does not prevent the receiver from choosing an optimal path.

In addition to exchanging distances, nodes also exchange information about their paths and cost se-
quences. More precisely, node v sends messages of the form (v,d_vector), where d_vector is a set of
(z,d,p, cs,rd) tuples such that either (1) d = rd = Dist,(z), p = Routey(z), and cs = Costseq,(z) if
node w is not in Route,(z), or (2) d = oo, p = (), es = (), and rd = Dist,(z), if node u is in Route,(z).
Fields e¢s and rd are auxiliary fields, and do not have to be implemented (rd is only used in the proof of
Theorem 2).

When Linkcost, (v) changes, Distviay (v, z), Routevia, (v, z), Costsequiay (v, z), and if needed Nhopy(z),
Disty(z), Routey (v, z), and Costseq,(z), are updated for each destination z (as shown in procedure Update& Send
in table 2). If the distance or route of any destination has been affected, node u sends messages to its neigh-
bors for all affected destinations z (as described in the previous paragraph).

When node u receives a (v, d_vector) message, it updates its state variables for each destination z in
d_vector (note that rd is not used to update any state variable). If the distance or route of any destination

has been affected, node u sends messages to its neighbors.

Theorem 2. A2 satisfies M1 and Ms.

Proof of Theorem 2
The proof of Theorem 2 is identical to that of Theorem 1, except that the assertions B;-Bg describing the
relationship between neighboring nodes, are replaced by new assertions Bj-By below.

The main differences between A2 and A1 are reflected in the new B assertions. First, messages in transit
may contain oo as distance even though the sender’s distance is finite (see Ba below). This only happens
when the receiver is on the sender’s route. Second, when the channel between two nodes do not contain a
distance for a destination, distance of the receiver via the sender may not equal the sum of sender’s distance
and the cost of the link between them (see Bz below). By now has two parts By, and Bap; the first part

covers the case when the receiver is not on the route of the sender, and the second part covers the case when

16

it is. Proofs of B;—Bg are identical to their counterparts in A1. (Assertions Bs and Bg stay the same.)
(B1) Dist,(z) =d A Routey(z) =p A (v,u) € UPLINKS
leads—to TCV (u € p = Distviay(v,z) = d+ Linkcost,(v)) V
(u € p = Distviay(v,z) = 00)
(B2) Invariant Channelyy(z) #{) N (u,v) € UPLINKS
= ((z, Disty(z), Route,(z), Costseqy(z), Dist,(2)) = last(Channely,(2)) A u & Route,(z)) V
((z,00, (), (), Disty(2)) = last(Channely,(2)) A u € Route,(z))
(Bs3) Invariant Channelyy(z) = {) A (u,v) € UPLINKS
= (Distvia, (v, z) = Disty(z) + Linkcost,(v) A u & Route,(z)) V
(Distvia, (v,z) = 0o A u € Route,(z))
(Baq) Invariant (u,v) € UPLINKS A Distviay(v,z) # Dist,(z) + Linkcost, (v) A u & Route,(z)
= (z, Disty(z), Route,(z), Costseqy(z), Dist,(z)) = last(Channely,(2))
(Bap) Invariant (u,v) € UPLINKS A Distviay (v, z) # 00 A u € Routey(z)
= (z,00,(), (), Disty(z)) = last(Channely,(2))

(B7) (z,d,p,es,rd) in Channely, leads—to TC V Distviay(v,z) = d + Linkcost,(v)
(Bg) (z,d,p,es,rd) = front(Channely,) leads—to TC V Distvia,(v,z) = d + Linkcost,(v)
(By) Invariant (z,d,p,cs,rd)in Channely, = d=o00 V d=1rd

By states that rd in a message is less than or equal to the corresponding d. Bg follows from invariance rule.

We redefine In, Lowest and DTransit for A2 as follows:

In. Maximal subset of Reachable such that (u,z) is a member of In iff
(1) Has_optimal_path(u, z),
(2) for any message (2, d, p,cs,rd) in transit, Dist,(z) is less than rd,
(3) for any node pair (w, #) in Reachable not satisfying Has_optimal_path(w,),
Dist,(z) < Disty(x) and Dist,(z) < Cost(w, z).

Lowest. Formally,
=min({Cost(z, z) : (x,z) € Out} U
{Disty(z) : (u,z) € Out} U
{rd: (x,d,p,cs,rd) € Channelyy, A (u,2),(v,x) € Reachable}).

DTransit(k) = bag{(u,v,2) : (z,d,p,es,rd) € Channely, N rd=1%k A (u,z),(v,z) € Reachable}.

17

The proof of Theorem 2 is identical to the proof of Theorem 1 with new B assertions. By is required for
M7, Myg and Mig to hold for A2. Except for these changes, every assertion used in the proof of Theorem 1
also holds for A2 (and the proof is identical). Hence M; and M» hold for A2.

End of proof of Theorem 2

Next, we establish that after any succession of topology changes that leaves the network symmetric, A2
achieves optimal paths within N 4+ H steps assuming synchronous execution.

We define a synchronous execution as follows: Each message includes a step counter which is a non—
negative integer. Any message sent by a receive event has step counter one higher than the step counter
of the received message. Any topology change event sets the step counter of all messages (including the
ones being generated) to zero. We require that Receive events are executed such that the sequence of step
counters of the received messages is non—decreasing. Formally, we define Step to be the step counter of the
last message received, and add the following SE condition as a conjunct to the enabling condition of every

receive event:
SFE : step counter of the message to be received = minimum step counter of the messages in transit

Note that Step equals 0 immediately after any topology change.
The following assertions N7 and N state the desired property, that is, reachable node pairs achieve

optimal paths within N + H steps, and other node pairs obtain co distances within IV steps.

(N1) Symmetric A Step =0 leads—to TC V Step< N+ H A
[V(u,z) € Reachable : Has_optimal_path(u,z) A [Vv € neighbors(u) : Channely,(z) = {}]]

(N3) Symmetric A Step =0 leads—to TC V Step < N A [V(u,z) € Reachable : Disty(z) = o]

Theorem 3. Assuming synchronous execution, A2 satisfies N1 and N,.

Proof of Theorem 3
The rest of Section 4 is a proof of Theorem 3. Readers interested in the algorithms but not in the proofs
can skip to Section b.

Conventions: We use step# to refer to the step number of a message.

We recast the assertions relating the states of neighbor nodes assuming synchronous execution:

(D1) Step=n A (v,u) € UPLINKS A Dist,(z) =d N Routey(z) =p A Costseq,(z) =cs AN ugp
leads—to TCV Step < n+1 A Distviay(v,z) = d+ Linkcost, (v)
A Routeviay (v, z) = (w)@Qp A Costsequiay (v, z) = (Linkcost, (v))@cs

18

(D3) Step=n A (u,v) € UPLINKS A Dist,(z) =d N Routey(z) =p A Costseq,(z) =cs AN u€p
leads—to TCV Step < n+1 A Distviay(v,z) = >

A Routeviay (v,z) = () AN Costsequiay(v,z) = ()

(D3) Invariant Step =n A (u,v) € UPLINKS A
u & Route,(z) N Distviay(v,z) # Disty(2) + Linkcost, (v) N Routeviay(v,z) # {(u)QRoute,(z) =
last(Channely,(2)) = (z, Disty(2), Routey(z), Costseqy (z), Dist,(z)) with n < step# <n+1

(Dy) Invariant Step =n A (u,v) € UPLINKS A
u € Route,(z) N Distviay(v,z) # 0o A Routeviay(v,z) £ () =
last(Channely,(2)) = (2,00, (), () with n < step# <n+1

(Ds) front(Channely,) = (z,d,p, cs, rd) with step# =n A d # o
leads—to TC V Step =n A Distviay(z) = d+ Linkcost,(v)
A Routeviay (v, z) = (w)@Qp A Costsequiay (v, z) = (Linkcost, (v))@cs

(Dg) front(Channely,) = (z,00,p, es, rd) with step# =n
leads—to TC V Step =n A Distvia,(z) = o

A Routeviay (v,z) = () AN Costsequiay(v,z) = ()

Suppose link (v, «) is not failed. Given any state of v’s distance, route and cost sequence to z, D; states
that if u 1s not on the route from v to z, then u eventually learns of v’s state within one step. D5 states that
if u 18 on the route from v to z, then u eventually learns within one step that v has a distance of oo, route
of (), and cost sequence of (). Dz and D, (and D5 and Dg) make the same distinction. D and Dy follow
from invariance rule. Dy and Dg follows from the leads—to rule (via receive event). Dj follows from Ds, Bs,
and Dy by closure. D, follows from Dy, Bs, and Dg by closure.

Define (zq,...,z,) to be a ud-path from xg to x, if VO < i < n: (2, 2;41) € LINKS]. Note that ud-path
does not distinguish between up and down links.

Some safety assertions:

(Fy) Invariant Route,(z) is a simple ud-path
Routevia, (v, z) is a simple ud-path

(z,d,p,cs,rd) in Channel,, = pis asimple ud-path A u & p

(F2) Invariant |Routeviay(v,z)] < N A |Routey(z)] < N A [(z,d,p,es,rd) in transit = [p| < N]

19

(F3) Invariant Distviay(v,z) =sum {c: ¢ € Costsequiay(v,z)}
A Disty(z) =sum {c: ¢ € Costseq,(2)}

A(z,d,p,es,rd) in transit = d =sum {c: ¢ € ¢s}]

F; follows from invariance rule. F states that route lengths (in number of links) are bounded above by
N. E; follows from E; by implication (since a simple path may contain at most N nodes).
F5 states that all distances equal the sum of the link costs in the corresponding cost sequences (we assume

sum {} = c0). E3 follows from invariance rule.

We define the following:

Consistent_distances. Boolean function. True iff (1) distance of any node pair equals path cost of its
route, (2) distance of any node pair via a neighbor equals path cost of its route via that neighbor, and
(3) any distance in transit in a message equals path cost of the route in the same message. Formally,
= [Vu,z € NODES : Dist,(z) = Path_cost(Routey(2))]
A Vu,z € NODES Yv € neighbors(u) : Distviay (v, z) = Path_cost(Routeviay (v, z))]

A V(z,d,p,es,rd) in transit : d = Path_cost(p)].

Done. Set of node pairs. Formally,

={(u, z) € Reachable : [Vx € Routey(z) : Has_optimal_path(xz,z) A [Vv € neighbors(x) : Channely,(z) = ()]]}

The proof of Nj is summarized in Figure 3. A2 achieves N; in two stages: first within N steps
Consistent_distances(z) is established; after that within H steps Done = Reachable is established (which

implies the right side of N7). Formally,
(N3) Symmetric A Step =0 leads—to TC V Step < N A Consistent_distances

(N4) Symmetric A Step = j A Consistent_distances
leads—to T7C V Step<j+ H A Done = Reachable

N follows from N3, N4 and Cy by closure. Ny follows from N3 by closure. Thus it suffices to prove N3
and Ny.

Proof of N3
We define the following:

k_Consistent({xo,...,&n), {(co, ..., cn)). Boolean function where {xg, ..., x,) is a ud-path and ¢;’s are costs.
True iff the link costs of the first & links (#;, #;41) equal respectively the first & costs ¢;. Formally,

=true iff for ¢ € [0, ..,min(k — 1, n — 1)] : ¢; = Linkcost,, (zi41).

20

N1 (closure)

N10 (closure)

N11 (closure)

N8
(unless)

El

D3 E1 M12 N17 B6
(unless)

Figure 3: Proof of N1.

k_Consistent_Routes. Boolean function. True iff all routes are k—consistent. Formally,

21

= [Vu,z € NODES : k_Consistent(Routey(z), Costseqy(2))]
A Vu,z € NODES v € neighbors(u) : k_Consistent(Routeviay, (v, z), Costsequiay (v, 2))]

A [V(z,d, p,es,rd) in transit : k_Consistent(p, cs)].

Note that the first argument of k_Consistent in the definition of k_Consistent_Routes is a ud-path (from
Fy).

(Ns) Symmetric A Step =0 leads—to TC V Step < N A N _Consistent_Routes

Ny states that within N steps all routes are N-consistent. N3 follows from N5, Fy and E3 by closure.
(For the Routevia part of Consistent_Distances, the details are as follows: From FEs, Distvia,(v,z) =
sum {c: ¢ € Costsequia, (v, z)}. From N_Consistent_Routes (right side of N5) and |Routevia, (v, z)| < N

(F2), we have that Distviay, (v, z) equals the current cost of Routeviay (v, z).) Thus it suffices to prove Ns.

(Ng) Symmetric A Step <k A k_Consistent_Routes

leads—to TC V Step <k+1 A (k+ 1)-Consistent_Routes
(N7) Symmetric N k_Consistent_Routes unless TC

N state that if at step k all routes are k—consistent, then within one more step all routes are (k + 1)-
consistent. N7 state that once k_Consistent_Routes is established, it continues to hold. N7 follows from
the unless rule. Ny follows from Ng, N7 and C} by closure (since O—consistency is true for any route at any
step).

Thus it suffices to prove Ng. Ng follows from Dy, and Dy by closure. To see this, suppose the route and
the cost sequence of a node v are p and cs, respectively (p and ¢s are k—consistent). Then in at most one
step, the route and the cost sequence of a neighbor u via v either become (u)@p and {Linkcost, (v))@es, or

become () and (). In either case, they are (k 4+ 1)—consistent.

Proof of Ny
We first define the following:

depth(u, z). Minimum length (in number of links) of a minimum cost path from « to z. Formally,
=min{|p| : p € Availablepaths(u,z) A Path_cost(p) = Cost(u,z)}.
Note that depth(z, z) = 0 since |{z)]| = 0.

k_Reachable. Subset of node pairs in Reachable with depth less than or equal to k. Formally,
={(u, z) € Reachable : depth(u,z) < k}.

Some safety assertions:

(Ng) depth(u,z) =k unless TC

22

Ng states that the value of depth(u, z) does not change. Ng follows from the unless rule.

(Ng) Symmetric A Consistent_distances unless TC

Ny follows from the unless rule.

(N1o) Symmetric A Step = j N Consistent_distances leads—to TC V Step < j+k A k_Reachable C Done

Nig states that once consistent distances are obtained, within & steps, Done will contain all nodes in
k_Reachable. Ny follows from Nig by replacing & by H (note that H_Reachable = Reachable from the
definition of H). Thus it suffices to prove Nyg.

(N11) Symmetric A Step = j N Consistent_distances A k_Reachable C Done

leads—to TC V Step <j+1 A (k+ 1)_Reachable C Done
(N12) Invariant Step >0 = (z,z) € Done

N1y states that once consistent distances are obtained and Done contains all nodes in k_Reachable, within
one step Done will contain all nodes in (k + 1)_Reachable. Ny, states that Done includes 0_Reachable after
all messages generated by topology change events are received (at this time, outgoing channels of z do not
contain any message for destination z). Nig follows from Ny, N1y, N12, and Ng by closure. Nys follows from
Fy using the invariance rule (from F;, a message received by z does not contain a distance for z, hence z

always has an optimal path).

(N13) Symmetric A Step = j A Consistent_distances A k_Reachable C Done A depth(u,z)=k+1
leads—to TC Vv Step < j+1 A (u,z) € Done

(N14) Symmetric A Consistent_distances NS C Done unless TC

N3 states that once consistent distances are obtained and Done contains all nodes in k_Reachable, within
one step a node u in Reachable with depth k& + 1 will join Done. Ni4 states that once consistent distances
are obtained, Done does not shrink. N4 follows from the unless rule. Ny follows from Ng, Ni3, Ni4, and

C' by closure. Thus it suffices to prove Ni3.

(N1s) Invariant Symmetric A Consistent_distances A k_Reachable C Done A depth(u,z) =k +1

= Has_Optimal_Path(u, z)

(N1g) Symmetric N Step = j A Consistent_distances A k_Reachable C Done A depth(u,z) <k+1
leads—to TC Vv Step < j+1 A [Vo: Channely,(z) = {}]

N1y states that if consistent distances are obtained and Done contains all nodes in k_Reachable, a node

at depth k& + 1 has an optimal next—hop path. Nig states that once consistent distances are obtained and

23

Done contains all nodes in k_Reachable, within one step, outgoing channels of a node pair (u, z) at depth
k + 1 will not contain any messages for z.

N3 follows from Nys, Nig, and Ny4 by closure.

Ny follows from Ds, F; and Mj2 by the implication. (The details are as follows: Consider (u,z)
satisfying the left side of N15. Consider v, a next node on a shortest length optimal path from u to z. From
the definition of depth, depth(v, z) = k. From the left side of Ny5, the outgoing channels of v do not contain
any messages for z. Hence, from Dz, Routevia, (v, z) is an optimal path. From Consistent_distances (left
side of Nis) and B, distances via all other neighbors of u equal cost of some path. Hence, from M3, u has

an optimal path.) Thus it suffices to prove Nys.

(N17) Symmetric A Consistent_distances A k_Reachable C Done A depth(u,z) < k+1

A sum {|Channely,(2)| : v € neighbors(z)} < n unless TC

Ni7 states that once Consistent_distances is achieved, and Done contains k_Reachable, the number of
messages in the outgoing channels of a node u at depth k& 4+ 1 does not increase.

Nig follows from Ny7 and Bg by closure. Np7 follows from the unless rule. This completes the proof of
the theorem.

End of proof of Theorem 3

5 Algorithm A3

Table 3 specifies the state variables and events of a node in A3. (Refer to the table in the following
discussion.) A3 differs from A2 only in the procedure Update&Send.

In A3, the node id’s are considered totally ordered. Node u chooses a neighbor v as its next—hop for
destination z iff (i) v is the minimum node in Best_hops,(z), and (ii) v is the minimum node in Best_hops, (z)
for every node # in the route to z via v. If there is no such v, then the next-hop is nil. (See definition of
Min_best_hop(z) in the table.)

Procedure Update& Send considers a destination z as affected if (1) distance for z has changed, or (2) route
for z has changed, or (3) some node x on Route,(z) is affected. This ensures that if the next—hop changes
for a destination x, which is on the route to another destination z, the next—hop for z also changes.

This way of choosing next-hops and affected destinations ensures that during convergence (when the
routes are not stable), the following property P holds: the next—hop of u for destination z is also the
next—hop for all intermediate destinations on Route,(z).

Note that in A3, node u may choose the next—hop for destination z to be nil, when in fact there is a

24

neighbor v, and chosing v as the next-hop to z satisfies P. Although it may seem that this slows down the
convergence, there is a good reason for doing this: if the minimum node in Best_hops,(z), say w, does not

satisfy P, then it means that u has inconsistent distances via v and w.

Theorem 4. A3 satisfies M1 and Ms.

Proof of Theorem 4

Proof of Theorem 4 is identical to proof of Theorem 2 with the following changes. We redefine In and Lowest
for A3 as follows:

In. Maximal subset of Reachable such that (u,z) is a member of In iff
(1) Has_optimal_path(u, z),
(2) for any message (2, d, p,cs,rd) in transit, Dist,(z) is less than rd,
(3) for any node pair (w, #) in Reachable not satisfying Has_optimal_path(w,),
Disty(z) < min{ Distviay, (v, 2) : v € neighbors(w)} and Dist,(z) < Cost(w,).
Lowest. Formally,
=min({Cost(z, z) : (x,z) € Out},
{Distviay (v,z) : (u,z) € Out A v € neighbors(u)},
{rd: (x,d,p,cs,rd) € Channely, A (u,z),(v,z) € Reachable}).
We modify the assertions M2 and Mi4 as follows:
(My2) Invariant uw# z A Disty(z) # oo = Dist,(z) = min{Distvia, (v, z) : v € neighbors(u)}
(My4) Invariant Cost(u, z) < Lowest AN u # z
= [3(v,z) € In : Distviay (v, z) = Cost(u,z)] A
[V(v, z) € In : Distviay,(v,z) = Cost(u,z) A & € Routeviay(v,z) = Distviay(v,z) = Cost(u, z)]
M5 follows from invariance rule. M4 follows from Bs and Bs by implication.

Other assertions that hold for A2 also hold for A3. Their proofs are identical except Mi; which now

follows from Msg, Msy, M1o, My3 and M4 by implication where My and My are as follows:
(Mayp) Invariant [Jv € neighbors(u) : [Vo € Routeviay (v, z) : v = min Best_hops,(x)]] = Dist,(z) # oo

(Ma21) Invariant Lowest >k A |DVia(k)] =0 A Distanceviay (v, z) = Cost(u,z) = k
Az € Routeviay (v, z) A Distviay, (w,) = Cost(u, x)

= Distanceviay (w,z) = Cost(u, z)

Mg follows from invariance rule. My; follows from Bs and Bs by implication. Hence M; and M, hold for

25

A3.

End of proof of Theorem 4

Theorem 5. Assuming synchronous execution, A3 satisfies N1 and N,.

Proof of Theorem 5

Proof of Theorem 5 is identical to proof of Theorem 3 with depth(u, z) being redefined. In A2, depth(u, z)
stood for minimum length of an optimal path from u to z. Many such paths can exist and any of them can
be chosen by u. In A3, only one of these optimal paths can be chosen by wu; i.e. the path p = {(wg, 21,..., 2,)
where g = u, , = z and z; is the minimum-id neighbor of the neighbors on the optimal paths to z;,
for i = 1,...,n. (Note that this may not be the shortest length optimal path.) We redefine depth(u, z) to
handle this:

depth(u, z). Length of the optimal path from u to z such that the next hop in this path is the minimum-id
neighbor providing an optimal path for all intermediate nodes in this path. Formally,
= |p| such that p € Availablepaths(u,z) A Path_cost(p) = Cost(u,z) A
Ve € p: front(tail(p)) = min{ front(tail(q)) : ¢ € Availablepaths(u,z) A
Path_cost(q) = Cost(u, x)}].

All assertions that hold for A2 also hold for A3. Their proofs are identical except Ny5 now follows from
Mg, M2 (as defined in the proof of Theorem 4), F; and Ds by implication. Hence Ny and N3 hold for A3.
End of proof of Theorem 5

6 Algorithm A4

Table 4 specifies the state variables and events of a node in A4. Each node u maintains the state variables
of A3, except that Routevia,(v,z) and Route,(z) are now auxiliary. Instead, node u maintains new state
variables Pfnodevia, (v, z) and Pfnode,(z). In Pfnodevia, (v, z), node u maintains an estimate of the prefinal
node via neighbor v (i.e. the last node before z on the path to z via v). Pfrodevia,(v,z) is equal to nil if
node u believes z cannot be reached via v. State variable Pfrode,(z) indicates the prefinal node via node
u’s next—hop.

The messages of A4 are like the message of A3, except that they now contain prefinal node information,
and the route information is auxiliary (i.e. not implemented).

The events of algorithm A4 are like those of algorithm A3, with the following twist: each node in

A4 uses its prefinal nodes to construct prefinal-routes, which take the place of the routes in A3. Node

26

u constructs its prefinal-route via neighbor v for destination z, referred to as Pfroutevia, (v, z), as follows:
Start with a sequence (z); add to the left of this sequence the prefinal node via v for the leftmost element
of the sequence, until either (1) node u is added, or (2) the prefinal node is nil, or (3) a loop is established.
We use Pfroute,(z) to refer to the prefinal-route for destination z via the next—hop. (Formal definitions of

functions Pfroutevia, (v, z) and Pfroute,(z) are in the table).

Theorem 6.
(a) A4 satisfies My and M,

(b) Assuming synchronous execution, A4 satisfies Ny and Nj.

Proof of Theorem 6

Because the variables of A4 (both auxiliary and non-auxiliary) are a superset of the non-auxiliary variables
of A3 and their domains are the same, there is a natural (projection) mapping from the states of A4 to the
states of A3. For any state s of A4, let s’ denote the corresponding state of A3. It is obvious that event e
of A4 is enabled in any state s iff the corresponding event e of A3 is enabled in s'. We next show that event
e of A4 updates the variables of A3 in the same way as the corresponding event e of A3; more precisely,
if event e of A4 has a transition (s,t), then the corresponding event e of A3 has a transition (s,#'). For
this, 1t 1s sufficient to establish that the prefinal-routes of A4 simulate accurately the routes of A3. This is

specified by the following assertion:
(Ry) Invariant ([Routeviau(v, z) = Pfroutevia,(v,z)] V [Routeviay(v,z) = {) A Pfroutevia,(v,z) = (z)]) A
([Routey(2) = Pfroute,(z)] V [Routey(z) = () A Pfroute,(z) = ()]) A
((z,d,pfn,p) = Channely, [j] = [p = PfMroute,,(j,2)] V [p= () A PfMroute,,(j, z) = (z)])
where C'hannely,[j] denotes the j-th message in C'hannely, (Channely,[0] is the front) and PfMroute,,(j, z)

1s defined as follows:

PfMroute,, (j, z). Sequence of nodes. (sg, ..., s,) where

(a) sp = 2,

if for all k < j, Channely, [k] does
not contain (s;41,d,pfn,p)

if for largest k < j, Channely,[k]
contains (s;41,d,pfn,p)

Pfnodevia, (u, siy1)
(b) forall i € [0.n—1] :s; =

pfn
(c)forallie[l.n—1]:s; & {siy1,...,5n}, and

(d) so =u V Pfnode,(so) = nil V sg € {s1,...,5n}.

R, states that the prefinal-routes and the routes (which are auxiliary) agree. R; follows from invariance

27

rule.

Given Ry, if event e of A4 has transition (s,?), then the corresponding event e of A3 has transition
(s',1'). We have already established that e of A4 is enabled whenever e of A3 is enabled. We also have that
the initial condition of A4 imply the initial condition of A3. Thus, A4 is a strongly well-formed refinement
of A3; that is, A4 satisfies any safety or progress properties of A3. This and Theorem 4 imply Theorem 5.
End of proof of Theorem 6

7 Concluding Remarks

The algorithms analyzed in this paper are representative of various internetworking distance—vector routing
protocols. Distance—vector routing algorithms are difficult to understand. Most of their analyses in the
literature is operational. In the course of our work, we discovered that they are often incomplete or inaccurate;
for example, reference [17] considers only one or two link failures rather than an arbitrary succession of
topology changes, to prove the properties of their algorithm; the routing table update procedure in [3] is
inaccurate; the example in [3] to illustrate O(N) convergence is wrong, etc. A stepwise assertional design,
such as the one presented here, is effective at making it easier to understand these algorithms.

In our opinion, the major drawback of our stepwise design is that we could not obtain a refinement result
for algorithm A2 and A3 similar to the result for algorithm A4. Instead, we had to check that the proof
that A1 eventually achieves optimal paths also holds for A2 and A3, and that the proof that A2 achieves
optimal paths in N + H steps also holds for A3.

References

[1] C. Alaettinoglu and A. U. Shankar. Stepwise assertional design of distance—vector routing algorithms. In JFIP
Protocol Specification Testing and Verification ’92, Orlando, Florida, June 1992.

[2] K. M. Chandy and J. Misra. Parallel Program Design, chapter 2,3 and 8. Addison-Wesley, 1988.

[3] C. Cheng, R. Riley, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves. A loop-free Bellman-Ford routing protocol
without bouncing effect. In ACM SIGCOMM ’89, pages 224-237, September 1989.

[4] E. Dijkstra and C. Scholten. Termination detection for diffusing computations. Information Processing Letters,
11(1):1-4, 1980.

[5] L. Ford and D. Fulkerson. Flows in Networks, pages 297-333. Prentice-Hall, Inc., 1962.

[6] J.J. Garcia-Luna-Aceves. A unified approach to loop free routing using distance vectors or link states. In ACM
SIGCOMM °89, pages 212-223, September 1989.

. Hedrick. Routing information protocol. Request for Comment - , Network Information Center, June
7] C. Hedrick. Routing inf 1 l. R for C RFC-1058, N k Inf ion C J
1988.

[8] C. L. Hedrick. An introduction to igrp. Technical report, The State University of New Jersey, Center for
Computer and Information Services, Laboratory for Computer Science Research, Rutgers, New Jersey, August
1991. Available by anonymous ftp from ftp.cisco.com.

28

[9]
[10]

[11]

[12]
[13]
[14]
[15]

[16]

P. A. Humblet. Another adaptive distributed shortest path algorithm. /EFFE Transactions on Communications,
39(6):995-1003, June 1991.

J. M. Jaffe and F.H. Moss. A responsive distributed routing algorithm for computer networks. /EEFE Transactions
on Communications, COM-30(7):1758-1762, July 1982.

S.S. Lam and A. U. Shankar. A relational notation for state transition systems. IFEE Transactions on Software
Engineering, SE-16(7):755-775, July 1990. An abriviated version appeared in Protocol Specification, Testing,
and Verification VIII, 1988.

K. Lougheed and Y. Rekhter. Border gateway protocol (bgp). Request for Comment RFC-1105, Network
Information Center, June 1989.

7. Manna and A. Pnueli. Adequate Proof Principles for Invariance and Liveness Properties of Concurrent
Programs. Science of Computer Programming, 4:257-288, 1984.

J. M. McQuillan, G. Falk, and I. Richer. A review of the development and performance of the Arpanet routing
algorithm. IEEF Transactions on Communications, COM-26:1802-1811, Dec 1978.

P. M. Merlin and A. Segall. A failsafe distributed routing protocol. [FEE Transactions on Communications,
COM-27(9):1280-1287, September 1979.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs i. Acta Informatica, 6:319-340,
1976.

B. Rajagopalan and M. Faiman. A new responsive distributed shortest-path routing algorithm. In ACM SIG-
COMM °89, pages 237-246, September 1989.

Y. Rekhter. Inter-domain routing protocol (idrp). Available from the author., 1992. T.J. Watson Research
Center, IBM Corp.

A. Segall. Advances in verifiable fail-safe routing procedures. IEEF Transactions on Communications, COM-
29(4):491-497, April 1981.

A.U. Shankar. An Introduction to Assertional Reasoning for Concurrent Systems. ACM Computing Surveys,
September 1993. to appear.

K. G. Shin and M. Chen. Performance analysis of distributed routing strategies free or ping-pong-type looping.
IFEEE Transactions on Computers, 1987.

29

Table 1: Algorithm A1.

State variables and initial conditions of node u:
Linkcost,(v) : It U {co}. Initially co. Cost of the link (u,v).
Distvia, (v, z) : I'T U {oo}. Initially co. Distance to destination z via neighbor v.
Nhopu(z) : neighbors(u) U {nil}. Initially nil. Next-hop for destination z.
Disty(2) : IT U {0, 00}. Initially co for u # 2, and 0 for w = z. Distance to destination z via next-hop.

Events of node u:
Receive, (v, d_vector)

action: Update&Send. (v,{(z,d + Linkcost,(v)) : (z,d) € d_vector}) {d can be oo}
LinkCostChange, (v, newcost) {newcost # oo}

enabled: Linkcostu(v) < o0

action: ¢ := newcost — Linkcost,(v); Linkcost,(v) := newcost;

Update&Send., (v, {(z, Distvia,(v, z) + ¢) : V2 € NODES})

LinkFailure,(v)
enabled: Linkcostu(v) < o0
action: Channely, = (); Linkcost,(v) := oo;

Update&Send, (v, {(z,00) : Vz € NODES})

LinkRecovery, (v, newcost) {newcost # oo}
enabled: Linkcost,(v) = oo
action: Linkcost,(v) := newcost;

Update&Send., (v, {(v, newcost)});
Send(u, {(z, Disty(z)) : V2 € NODES}) to v

Update& Send., (v, d_vector)
local variable affectedsinks initially {};
for all (z,d) € d_vector do
Distviay(v, z) :=d; {Note that d can be oo}
if [Nhopu(z) #v A Distviay (v, z) < Disty(z)]
V [Nhopu(z) = v A Distviay(v, z) # Disty(z)] then
if Best_hopsu(z) # {} then
for some k € Best_hops,(z) do
Nhopu(z) :=k; Disty(z) := Distviay(k, z)

else
Nhopu(z) := nil; Disty(z) := o0
endif;
affectedsinks := affectedsinksU {z}
endif

for all w such that (u,w) € UPLINKS do
Send(u, {(z, Distu(z)) : Vz € affectedsinks}) to w;

where Best_hops,(z) is a function that returns the following subset of neighbors(u):

{v: Distviay(v,z) # 0o A Distviay (v, z) = min{Distvia,(w, z) : w € neighbors(u)} }

30

Table 2: Algorithm A2.

State variables and initial conditions of node u:
Linkcost,(v), Nhopu(z), Disty(z), Distvia, (v, z). Asin Al.
Routevia, (v,). sequence of nodes. Initially (). Path from u to z via v.
Costsequia, (v, z). sequence of It U {co}. Auxiliary. Initially (). Sequence of link costs on Routevia, (v, z).
Route,(z). sequence of nodes. Initially () for u # z, (u) for v = z. Path from u to z.

Costsequ(z). sequence of It U {co}. Auxiliary. Initially () for u # z, {0) for u = 2.
Sequence of link costs on Route,(z).

Events of node u:
Receive, (v, d_vector)
action: local variable d_vector2 : initially {};
d_vector2 := {(z,d 4+ Linkcost,(v), (v)Qp, (Linkcost,(v))Qcs) : (z,d,p, cs,rd) € d_vector A d # oo}
U{(z,00,(),(}) : (#,d,p, cs,7d) € d_vector N d = oo};
Update& Send., (v, d_vector2)

LinkCostChange, (v, newcost) {newcost # oo}
enabled: Linkcostu(v) < o0
action: local variable d_vector : initially {}; c;

¢ := newcost — Linkcost,(v); Linkcost,(v) := newcost;
d_vector := {(z, Distviay(v,z) + ¢, Routeviay(v,z), (newcost)Qtail(Costsequia,(v,z))) :Vz € NOD
Update& Send., (v, d_vector)

LinkFailure,(v)
enabled: Linkcostu(v) < o0
action: Channely, = (); Linkcost,(v) := oo;

Update&Send, (v, {(z,00,(),{)) : Yz € NODES});

LinkRecovery, (v, newcost) {newcost # oo}
enabled: Linkcost,(v) = oo
action: Linkcost,(v) := newcost;

Update&Send, (v, {(v, newcost, (u, v), (Linkcost,(v),0))});
Send(u,{(z, Disty(z), Route,(z), Costsequ(z), Disty(2)) : V2 € NODES A v & Route,(z)}
U{(z,00,(), (), Distu(z)) : V2 € NODES A v € Routey(z)}) to v

Update& Send., (v, d_vector)
local variable affectedsinks: initially {};
for all (z,d,p,cs) € d_vector do {Note that d can be oo}
Distviay(v, z) := d; Routeviay(v, z) := p; Costsequiay(v,z) := cs;
if (Nhopu(z) # v A Distvia(z,v) < Disty(z))
V (Nhopu(z) =v A (Distviay(v,z) # Disty(z) V Routeviay(v, z) # Route,(z))) then
if Best_hopsu(z) # {} then
for some k € Best_hops,(z) do
Nhopy(z) :=k; Disty(z) := Distviay(k, z);
Route,(z) := Routeviay(k, z); Costsequ(z) := Costsequia(k, z)

else
Nhopu(z) := nil; Disty(z) := o00; Routey(z):=(); Costsequ(z) := ()
endif;
affectedsinks := affectedsinksU {z}
endif

for all w such that (u,w) € UPLINKS do
local variable d_vector : initially {};
dvector :={(z,00,(), (), Distu(z)) : w € Route.(z) A z € affectedsinks}
U{(z, Distu(z), Route,(z), Costsequ(z), Distu(z)) : w € Routey(z) N z € affectedsinks};

Send(u, d_vector) to w;

where Best_hops,(z) is as defined in A1 (Table 1).

(5}

31

Table 3: Algorithm A3.

State variables and initial conditions of node u:

Linkcost,(v), Nhopu(z), Disty(z), Distviay (v, z), Route,(z), Routevia, (v, z), Costsequ(z), Costsequiay (v, z).
Asin A2.

Events of node u:
Recerve,, LinkCostChange,,, Link Failure, , Link Recovery,. Asin A2.

Update& Send., (v, d_vector)
local variable affectedsinks: initially {};
for all (z,d,p,cs) € d_vector do {Note that d can be oo}
Distviay(v, z) := d; Routeviay(v, z) := p; Costsequiay(v,z) := cs;
if (Nhopu(z) # v A Distviay(v, z) < Disty(z))
V (Nhopu(z) =v A (Distviay(v,z) # Disty(z) V Routeviay(v, z) # Route,(z))) then
affectedsinks := affectedsinksU {z}
endif
for all z € NODES—affectedsinks do
if [z : ¢ € Routey(z) N z € affectedsinkd then
affectedsinks := affectedsinksU {z}
endif
for all z € affectedsinks do
if Min_best_hopu(z)# {} then
for some k € Min_best_hops.(z) do
Nhopu(z) := k; Distu(z) := Distviay(k, z);
Route,(z) := Routeviay(k, z); Costsequ(z) := Costsequiay(k, z)
else
Nhopu(z) := nil; Disty(z) := 00; Routey(z) :=(); Costsequ(z) := ()
endif
for all w such that (u,w) € UPLINKS do
local variable d_vector : initially {};
dvector :={(z,00,(), (), Distu(z)) : w € Route.(z) A z € affectedsinks}
U{(z, Distu(z), Route,(z), Costsequ(z), Distu(z)) : w € Routey(z) N z € affectedsinks};

Send(u, d_vector) to w;

where the function Min_best_hopu(z) is now defined as follows:
{v: [V& € Routevia, (v, z) : v = min Best_hops,(z)]}
where the function Best_hops,(z) is as defined in A1.

32

Table 4: Algorithm A4.

State variables and initial conditions of node u:
Linkcost,(v), Nhopu(z), Disty(z), Distvia, (v, z). Asin A3.
Route,(z), Routevia, (v, 7). Auxiliary. Asin A3.
Pfnodevia, (v, z) : neighbors(z) U {nil}. Initially nil. Prefinal node on the path from u to z via v.
Pfnode,(z) : neighbors(z) U {nil}. Initially nil. Prefinal node on the path from u to z.

Functions:

Pfroute,(z) : sequence of nodes. (sg,...,s,) where
Spn = z,
for all i € [0..n — 1] : s; = Pfnode,(sit+1),
forall i € [1.n— 1] : s; & {si41,...,5n}, and
so =u V Pfnode,(s0) =nil V so € {s1,...,sn}.
Pfroutevia, (v, z) : Defined like Pfroute,(z) except Pfnode,(z) is replaced by Pfnodevia, (v,).
Events of node u:
Receive, (v, d_vector)
action: local variable d_vector2 : initially {};
d_vector2 :={(z,00,nil,{)) : (z,d,pfn,p) € dvector A d =0}
U{(z,d + Linkcost,(v),u, (u)@p) : (z,d,pfn,p) € dvector A z=v A d# o0}

U{(z,d + Linkcost,(v),pfn, (u)@p) : (z,d,pfn,p) € d_vector N z# v A d+# oo};
Update& Send., (v, d_vector2)

LinkCostChange, (v, newcost) {newcost # oo}
enabled: Linkcostu(v) < o0
action: local variable d_vector : initially {}; c;

¢ := newcost — Linkcost,(v); Linkcost,(v) := newcost;

d_vector := {(z, Distviay (v, z) + ¢, Pfnodevia, (v, z), Routevia, (v, z)) : Vz € NODES};
Update& Send., (v, d_vector)

LinkFailure,(v)
enabled: Linkcostu(v) < o0
action: Channel,(v) := (); Linkcost,(v) := newcost;

Update&Send, (v, {(z,00,nil,{)) : V2 € NODES})

LinkRecovery, (v, newcost) {newcost # oo}
enabled: Linkcost,(v) = oo
action: Linkcost,(v) := newcost;

Update&Send., (v, {(v, newcost, u, {u,v))})
Send(u,{(z,00,nil,{)) : v € Pfroute,(z) N z € affectedsinks}
U{(z, Distu(z), Pfnode,(z), Route,(z)) : v € Pfroute,(z) A z € affectedsinks}) to v

33

Table 4 (cont.): Algorithm A4.

Update& Send., (v, d_vector)
local variable affectedsinks: initially {};
for all (z,d,pfn,p) € d_vector do {Note that d can be oo}
Distviay(v, z) :=d; Pfnodevia, (v, z) := pfn; Routeviay(v,z):=p;
if (Nhopu(z) # v A Distviay(v, z) < Disty(z))
V (Nhopu(z) =v A (Distviay(v,z) # Disty(z) V Pfroute,(z) # Pfroutevia,(v, z))) then
affectedsinks := affectedsinksU {z}
endif
for all z € NODES—affectedsinks do
if [3k : k € Pfroute,(z) A k € affectedsinks] then
affectedsinks := affectedsinksU {z}
endif
for all z € affectedsinks do
if Min_best_hopu(z)# {} then
for some k € Min_best_hops.(z) do
Nhopu(z) := k; Distu(z) := Distviay(k, z);
Pfnode,(z) := Pfnodevia,(k, z); Route,(z) := Routevia(k, z);
else
Nhopu(z) := nil; Disty(z) := oo; Pfnode,(z) := nil; Route,(z) := {);
endif
for all w such that (u,w) € UPLINKS do
local variable d_vector : initially {};
dvector :={(z,00,nil,{)) : w € Pfroute,(z) N z € affectedsinks}
U{(z, Distu(z), Pfnode,(z), Route,(z)) : w & Pfroute, (z) N z € affectedsinks};

Send(u, d_vector) to w;

where the function Min_best_hopu(z) is now defined as follows:
{v: [V& € Pfroutevia,(v, z) : v = min Best_hops,(z)]}
where the function Best_hops,(z) is as defined in A1.

34

