
ABSTRACT

Title of dissertation: VARIABILITY-AWARE VLSI DESIGN
AUTOMATION FOR
NANOSCALE TECHNOLOGIES

Vishal Khandelwal, Ph.D., 2007

Dissertation directed by: Professor Ankur Srivastava
Department of Electrical and
Computer Engineering

As technology scaling enters the nanometer regime, design of large scale ICs

gets more challenging due to shrinking feature sizes and increasing design com-

plexity. Aggressive scaling causes significant degradation in reliability, increased

susceptibility to fabrication and environmental randomness and increased dynamic

and leakage power dissipation. In this work, we investigate these scaling issues in

large scale integrated systems.

This dissertation proposes to develop variability-aware design methodologies

by proposing design analysis, design-time optimization, post-silicon tunability and

runtime-adaptivity based optimization techniques for handling variability. We dis-

cuss our research in the area of variability-aware analysis, specifically focusing on the

problem of statistical timing analysis. The first technique presents the concept of

error budgeting that achieves significant runtime speedups during statistical timing

analysis. The second work presents a general framework for non-linear non-Gaussian

statistical timing analysis considering correlations.

Further, we present our work on design-time optimization schemes that are

applicable during physical synthesis. Firstly, we present a buffer insertion technique

that considers wire-length uncertainty and proposes algorithms to perform proba-

bilistic buffer insertion. Secondly, we present a stochastic optimization framework

based on Monte-Carlo technique considering fabrication variability. This optimiza-

tion framework can be applied to problems that can be modeled as linear programs

without without imposing any assumptions on the nature of the variability.

Subsequently, we present our work on post-silicon tunability based design op-

timization. This work presents a design management framework that can be used

to balance the effort spent on pre-silicon (through gate sizing) and post-silicon op-

timization (through tunable clock-tree buffers) while maximizing the yield gains.

Lastly, we present our work on variability-aware runtime optimization techniques.

We look at the problem of runtime supply voltage scaling for dynamic power op-

timization, and propose a framework to consider the impact of variability on the

reliability of such designs. We propose a probabilistic design synthesis technique

where reliability of the design is a primary optimization metric.

VARIABILITY-AWARE VLSI DESIGN AUTOMATION

FOR NANOSCALE TECHNOLOGIES

by

Vishal Khandelwal

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor Ankur Srivastava, Chair/Advisor
Professor Joseph JaJa
Professor Samir Khuller
Professor Shuvra S. Bhattacharyya
Professor Kazuo Nakajima
Professor Gang Qu

c© Copyright by

Vishal Khandelwal

2007

DEDICATION

This dissertation is dedicated to my parents for their love, support and encourage-

ment.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Prof. Ankur Srivastava

for his guidance and help through my PhD. His advice and support has been cru-

cial in the completion of this dissertation and other research projects that I have

successfully completed at University of Maryland.

I also want to thank Professor Joseph JaJa, Professor Samir Khuller, Profes-

sor Shuvra Bhattacharyya, Professor Kazuo Nakajima and Professor Gang Qu for

serving on the dissertation committee. Their advice and support in completing this

dissertation is greatly appreciated.

I would also like to thank my uncle and aunt Dr. Basant and Rita Khandelwal

for their constant support and encouragement in the years that I have been at

Maryland.

I owe my gratitude to a lot of colleagues and friends with whom I have had

very fruitful discussions about my research. Specifically, I want to thank my col-

league Azadeh Davoodi and Ashish Dobhal for their help in several research projects.

Lastly, I want to thank all my friends, specifically Amit Agrawal, Manish Shukla,

Rahul Ratan, Ravi Tandon, Anuj Rawat, Abhishek Kashyap, Amrit Bandyopadhyay

for various discussions and their unwavering support through my PhD.

iii

TABLE OF CONTENTS

List of Tables vii

List of Figures viii

1 Nanoscale VLSI Design Automation 1
1.1 Introduction . 1

1.1.1 Fabrication Variability: Sources and Issues 5
1.1.2 Environmental Variability: Sources and Issues 9
1.1.3 Estimation/Modeling Variability: Sources and Issues 9

1.2 New Design Methodology Paradigm 11
1.2.1 Predictable/Robust Designs 11
1.2.2 Parametric Yield Optimization 13

1.3 Current Approaches to Variability Driven Design 14
1.3.1 Deterministic Techniques . 14
1.3.2 Probabilistic Analysis/Optimization 17

1.4 Variability-Aware Design Methodology 18
1.4.1 The Basic Idea . 18
1.4.2 Key Advantages . 19
1.4.3 Key Challenges . 20

1.5 Techniques for Handling Randomness due to Variability 21
1.5.1 Reduce the Sources of Variations 22
1.5.2 Design-Time Optimization . 22
1.5.3 Post-Silicon Design Tunability 23
1.5.4 Runtime Adaptivity . 24

1.6 Organization . 24

2 Variability-Aware Timing Analysis 27
2.1 Statistical Timing Analysis . 28
2.2 Current Approaches in STA . 30

2.2.1 Modeling Arrival-Time and Gate Delays 32
2.2.2 Block-Based STA Versus Path-Based STA 33

2.3 Key Challenges in STA and Our Research Contributions 35
2.4 Efficient Statistical Timing Analysis Through Error Budgeting 39

2.4.1 Motivation and STA Framework 40
2.4.2 Error Budgeting . 45
2.4.3 Linear and Quadratic Approximation Schemes 55
2.4.4 Experimental Results . 60

2.5 A General Framework for Accurate Statistical Timing Analysis Con-
sidering Correlations . 65
2.5.1 Modeling Parameter Variations and Spatial Correlations . . . 67
2.5.2 Statistical Timing Analysis Framework 72
2.5.3 Reducing Complexity in Quadratic Regression 82
2.5.4 Experimental Results . 88

iv

3 Variability-Aware Design Optimization: Design Time Techniques 99
3.1 A Probabilistic Approach to Buffer Insertion 103

3.1.1 Motivation . 105
3.1.2 Probabilistic Buffer Insertion: Metrics 114
3.1.3 Probabilistic Buffer Insertion: Algorithms 116
3.1.4 Experimental Results . 129
3.1.5 Appendix . 137

3.2 Monte-Carlo Driven Stochastic Optimization Framework for Han-
dling Fabrication Variability . 148
3.2.1 Binning Yield Loss . 152
3.2.2 Motivational Example: Linear-Programming Based Optimiza-

tion . 154
3.2.3 Stochastic Programming . 158
3.2.4 SLP and Fabrication Variability 163
3.2.5 Statistical Approximations: Successive Sample Mean Opti-

mization . 166
3.2.6 The Cutting Plane Method 168
3.2.7 Stochastic Decomposition . 171
3.2.8 SLP Applied to VLSI CAD 176
3.2.9 Experimental Results and Comparisons 187

4 Variability-Aware Design Optimization: Post-Silicon Tunability 195
4.1 Variability-Driven Formulation for Simultaneous Gate Sizing and Post-

Silicon Tunability Allocation . 196
4.1.1 Introduction . 197
4.1.2 Background and Definitions 200
4.1.3 Simultaneous Gate Sizing and PST Buffer Range Determina-

tion for Minimizing BYL and TC 208
4.1.4 Shortest Path Delay Constraints 219
4.1.5 Solving the Two-Stage Stochastic Program 222
4.1.6 Experimental Results . 227

5 Variability-Aware Design Optimization: Runtime Techniques 234
5.1 Simultaneous Resource Binding and Dual-Vdd Allocation for Power

Optimization with Probabilistic Reliability Guarantee 235
5.1.1 Fabrication and Environmental Variability: Impact and Mod-

eling . 238
5.1.2 Reliability Guarantee : Definition and Understanding 240
5.1.3 Simultaneous Resource Binding and Dual-Vdd Allocation With

Reliability Guarantees . 246
5.1.4 Architectural Issues . 254
5.1.5 Determination of the Optimal V ddl 256
5.1.6 Rescheduling the DFG through local perturbation 258
5.1.7 Consideration of Leakage Power and Soft Errors 260
5.1.8 Experimental Results . 260

v

6 Conclusion and Future Work 266
6.1 Future Work . 268

6.1.1 Microscopic View: Single Integrated/Embedded System 269
6.1.2 Macroscopic View: Distributed Integrated and Embedded Sys-

tems . 271

Bibliography 273

vi

LIST OF TABLES

1.1 Technology Parameters . 7

1.2 Percentage Delay Variability Imposed by Within-Die Variations . . . 7

2.1 Runtime and Error Comparison . 60

2.2 Runtime Comparison wrt Monte Carlo (Global Parameters have a
Uniform Distribution) . 89

2.3 RMS Error Comparison wrt Monte Carlo CDFs (Global Parameters
have a Uniform Distribution) . 91

2.4 Runtime Comparison wrt Monte Carlo (Global Parameters have a
Gaussian Distribution) . 95

2.5 RMS Error Comparison wrt Monte Carlo CDFs (Global Parameters
have a Gaussian Distribution) . 97

3.1 Results from Experiments . 129

3.2 Runtime Comparison Between the Three Criteria 134

3.3 Result for 2 Terminal Nets . 135

3.4 Post Routing Delay Results: Deterministic vs Probabilistic 137

3.5 Result: Delay Constraint Violation and Average Leakage Current . . 186

3.6 Result: Runtime in cpu cycles . 192

4.1 Comparison of Binning Yield-Loss, Area and Total PST Buffer Range
in (psec) . 229

4.2 Comparison of Yield-Loss . 231

4.3 Comparison of Total Run-Time (min) and Number of Iterations . . . 232

4.4 Contribution of Monte-Carlo Based STA time to Iteration Time (sec) 233

5.1 Power and Reliability Results Obtained From [30] 261

5.2 Experimental Results: Power, Optimal V ddl and Reliability 261

vii

LIST OF FIGURES

1.1 Typical VLSI Design Flow . 2

1.2 Technology Parameter Variations . 8

1.3 Predictable/Robust Solution . 12

1.4 High Parametric Yield Solution . 13

1.5 Probabilistic Optimization Framework 19

2.1 Statistical timer: block diagram & sample slack distribution 28

2.2 Static versus Statistical Timing Analysis 30

2.3 Gate with x and y input pins and output o 31

2.4 Distributions and their Linear Approximations 41

2.5 Gate with x and y input pins and output o 42

2.6 Error Budgeting . 43

2.7 Error in SUM . 46

2.8 Error in MAX . 48

2.9 Error Bound in MAX . 50

2.10 Error Injection in a Gate . 53

2.11 Decomposing CDF and PDF into sum of ramps 56

2.12 SUM and MAX . 57

2.13 Grid Structure and Quadratic Decomposition 59

2.14 Runtime Results . 61

2.15 STA Results . 62

2.16 Error Budgeting Tradeoff . 63

2.17 Grid-Based Spatial Correlation Model 69

2.18 SUM and MAX Computation . 73

viii

2.19 STA technique at Gate G . 83

2.20 CDF Result for i10 at a primary output 93

2.21 CDF Result for i10 at a primary output 94

3.1 RC Tree Network . 110

3.2 Mean Value vs. Actual Delay Distribution 113

3.3 Worst Case Length Estimate . 114

3.4 Spread in Distribution . 115

3.5 Distribution of Potential Solutions at a node 118

3.6 Generate Solutions at a Node from its Fanout Nodes 124

3.7 Total m · n Solutions After Merging 125

3.8 Complete R-Partite Max Cost Clique 127

3.9 Comparison of Solutions for a Benchmark 129

3.10 Delay Distribution of Solutions Satisfying a Delay Constraint 130

3.11 Trade-off Between Number of Buffers and Probability of Error 130

3.12 Buffered Solution for a 2 Terminal Net with 20 Potential Locations . 133

3.13 Delay Distribution of Buffered Solutions for a 2 Terminal Net with
20 Potential Locations . 134

3.14 Transforming UNIPHASE-ONE-IN-3SAT to Directed-Cover 139

3.15 Transforming Directed-Cover to Directed Maximal Independent Set . 142

3.16 Transforming 3SAT to Complete R-Partite Max Cost Clique 145

3.17 Binning Yield Loss with a Linear Penalty Function 152

3.18 Sleep Transistor in MTCMOS Circuits 177

3.19 DAG representation . 179

3.20 Timing Result for C880 . 189

3.21 Timing Result for x4 . 189

ix

4.1 Binning Yield Loss with a Convex Penalty Function 201

4.2 Sequential Design with a PST Clock Tree [72] 207

4.3 Convergence of BYL to its lower bound with time for s344 230

4.4 BYL vs. Area Generated at Different Iterations of Kelley’s and
Sensitivity-Based Algorithms . 230

4.5 BYL vs. Time Generated at Different Iterations of Kelley’s and
Sensitivity-Based Algorithm . 233

5.1 Reliability in a Scheduled and Bound DFG 238

5.2 Example: Computing P ij
f . 242

5.3 Example: Computing Dij
crit . 245

5.4 Example: (a) DFG (b) Extended Operations (c) Comparability Graph
for DFG in a (d) Comparability Graph for DFG in b (e) Network Graph246

5.5 Architectural Considerations for Dual-Vdd Scheme 255

5.6 Power Versus V ddl Trade-Off For jdmerge2 264

x

Chapter 1

Nanoscale VLSI Design Automation

1.1 Introduction

The technological advances in the last decade have enabled the emergence of

the deep sub-micron (sub 250nm) and nanometer (sub 90nm) eras in VLSI Design.

High performance and low cost ICs are a direct result of this growth. In 1965,

Gordan Moore predicted that the number of transistors per IC would double every

two years. In the last three decades, we have more than kept up with the famous

Moore’s Law. Intel, one of the key players in the IC/Microprocessor design field

has scaled the number of transistors on an IC with each generation of its product

keeping in pace with Moore’s prediction. The Intel-286 series developed in 1982 had

about a 130,000 transistors, which scaled to about 7,000,000 transistors in 1997 for

the Intel Pentium II series, then scaled to about 300,000,000 transistors in 2003 for

the Intel Itanium 2 Processor and is projected to hit the 1 billion transistor mark

for its ongoing 64 bit microprocessor designs in the coming years.

This brings to light the increasing complexity in designing such ICs, that are

faster, smaller and more powerful that their previous generations. The existing

CAD tools need to adapt themselves to these new rising challenges posed in de-

sign automation. Design of high performance digital ICs has become an extremely

challenging task. Shrinking device dimensions, increasing manufacturing and envi-

1

Extraction

Verification
Timing
Optimization/
Logic

Technology
Library

Design
Physical

Layout

Routing

Placement

RC

TechFiles

Generator
Delay Module

Delays
Cell/Wire

Logic

User ConstraintsRTL Desciption

Synthesis

Netlist

Figure 1.1: Typical VLSI Design Flow

ronmental variations has made fast design closure and high yield difficult.

The traditional design automation (DA) flow is rapidly having to adapt itself

to these changes in Deep Sub-Micron (DSM) VLSI design. A typical VLSI design

flow can be stated as in figure 1.1. As shown in the figure, the design specifications

are defined using a hardware description language like VHDL or Verilog. This can

be a behavioral level or a block level description of the design. Each design is associ-

ated with a technology library containing pre-characterized standard-cells that will

be used for the design. The library contains standard information about cells like

the timing, area and power specifications. Logic synthesis performs optimization on

the high-level design specifications to generate a netlist for the design. Some of the

optimization steps involved here are logic minimization, scheduling, binding, struc-

turing, technology mapping, gate sizing, buffer insertion etc. [100]. We perform

2

timing verification at each step of optimization to ensure that the design meets the

required timing constraints. The optimized netlist then undergoes physical synthesis

that comprises of floor-planning, placement and routing (global and detailed) [81].

There are several detailed optimizations that are involved in each stage of the VLSI

design flow. Essentially, physical design takes a netlist and generates a lower-level

representation of it on silicon that is ready to be sent for fabrication. The technol-

ogy information ensures that the physical design is compatible with the fabrication

process. The location of the pins/pads, clock and power supply distribution etc. are

characterized according to the technology specifications.

The new challenges in DSM technology has changed this rather sequential

looking VLSI design flow into a more unified design flow. Logic and physical syn-

thesis are no longer two sequential steps. Logic synthesis required estimation of

design parameters that are available only after physical design. Hence, the design

flow needs to have an interaction between logic synthesis and physical design to

enable faster design closure. As seen in the figure, we can see that circuit param-

eters are extracted after physical synthesis and are then processed during the next

iteration of logic synthesis. The current design methodologies are making this itera-

tive flow more unified so as to achieve faster design closure. The quick turn-around

time demanded by this market does not allow the designer to keep iterating on his

design to meet specifications. In presence of fabrication and environmental variabil-

ity, efficient design closure becomes an even bigger challenge. There is a need for

more accurate models and estimation techniques to bridge the gap between logic

and physical synthesis. An even bigger challenge is to consider the fabrication and

3

environmental variations into the VLSI design flow to enable quicker design closure

and a higher fabrication yield.

The traditional optimization and analysis techniques often lead to sub-optimal

or invalid (violates design constraints) solutions in the presence of fabrication vari-

abilities. These variabilities make it extremely difficult to accurately estimate pa-

rameters even at lower levels of design flow. This fabrication and environmental

variabilities cause the performance of the chip to deviate from the specifications

leading to a dramatic reduction in the yield after fabrication. Also, it is not possi-

ble to consider these variations in the traditional design flow (which would perform

several iterations of the design flow to generate a valid solution) due to design time

constraints. The time to market window has shrunk significantly and these business

aspects are also creeping into the way ICs need to be designed.

As a result of shrinking dimensions, secondary effects are becoming signifi-

cant. For instance, until recently it was acceptable to perform timing analysis by

considering only gate delays and ignoring wire delays. But in the deep sub-micron

technology wire-delays are becoming more critical as compared to gate/device de-

lays. It has been predicted [113] that for deep sub-micron technologies, almost 80%

of the delay in critical paths will be the interconnect delays. The entire timing

optimization/analysis paradigm has shifted to consider interconnect delays in the

current technology.

In this work, we have tried to address the variability problem in DSM/Nanoscale

VLSI design automation. We will introduce the problem of variability and discuss

its sources. We will also discuss how design automation is adapting to these po-

4

tential problems by adopting a variability-aware design analysis and optimization

methodology. We will look at some techniques for design analysis and optimization

that explicitly consider the impact of variability on design performance.

We can categorize the sources of variability in DSM VLSI design [111] into

three broad categories:

1. Fabrication/Manufacturing Variability

2. Environmental Variability

3. Estimation/Modeling Variability

1.1.1 Fabrication Variability: Sources and Issues

The current DSM technologies have extremely high costs and therefore require

a rapid turn-around time to generate revenue to meet the financial constraints.

There is tremendous pressure on the designers to create more complex and more

powerful designs under small time-to-market windows. Performance and yield are

both limited by the existence of fabrication variability effects in DSM designs. Fab-

rication process induced parameter variations cause performance fluctuations and

have become important considerations in DSM ICs. Until now it was sufficient to

consider die-die variations which were handled typically using a worst-case design

methodology. In DSM there are significant within-die variations in terms of de-

vice and interconnect parameters [111]. Furthermore, these within-die variations

are dependent not only on the fabrication process but also on the implementation

5

(physical design) of the IC. Hence, these sources of variability are caused by both

the design-flow as well as the fabrication process.

The fabrication variability can be divided into two categories:

1. Die-Die variations: These are variations which are imposed on the design

by the fabrication process. Within the same die, there is no variability in

parameters. Such cases can be analyzed using the classic Monte-Carlo or

worst-case techniques. The fabrication process can characterize the variability

as a distribution for such an analysis. Though the increasing number of sources

contributing to die-die variations is making it increasingly hard to accurately

counter the impact of these variations on design analysis and performance.

2. Within-Die variations: These variations are both fabrication as well as design

dependent. Firstly, there can be a large number of parameters which are

varying making it harder to perform any form of analysis. The variations can

be both spatially correlated or independent (random variations). We do not

have accurate modeling as well as analysis techniques to handle these within-

die variations. There variations can be in device parameters (like Vth, W , Tox

etc.) or in interconnect parameters (like sheet resistance Rs, Lmax etc.)

Some trends in device and interconnect parameter trends have been given in

the SIA technology roadmap [113]. Typical parameter values for each generation

of technology node (between 250nm to 70nm) are given in table 3.5. In [111], the

corresponding delay variability imposed by these technology parameter (within-die)

variations are given in table 3.6. It is interesting to note that both device and

6

Parameter 1997 1999 2002 2005 2006

Leff (nm) 250 180 130 100 70

Tox (nm) 5 4.5 4 3.5 3

Vdd (V) 2.5 1.8 1.5 1.2 0.9

VT (V) 0.5 0.45 0.4 0.35 0.3

W (µ) 0.8 0.65 0.5 0.4 0.3

H (µ) 1.2 1.0 0.9 0.8 0.7

ρ (mΩ/2) 45 50 55 60 75

Table 1.1: Technology Parameters

Parameter 1997 1999 2002 2005 2006

Vdd 9.5 10.8 10.0 1.2 0.9

Device

Leff 32.4 28.3 25.5 24.6 23.8

Tox 1.3 2.5 3.2 3.9 4.9

VT 3.8 5.3 5.5 6.5 7.2

Interconnect

W 13.3 12.0 11.7 11.4 10.5

H 7.8 8.0 8.1 8.3 7.1

ρ 16.0 16.6 17.9 18.4 20.1

Table 1.2: Percentage Delay Variability Imposed by Within-Die Variations

7

0

10

20

30

40

50

60

70

96 98 00 02 04 06

Pe
rce

nt

Environment
Physical:Device

Physical:Wire

Figure 1.2: Technology Parameter Variations

interconnect variability are causing significant variations in delay.

The authors in [112] performed experiments on the above device parameters

to study the variations induced by fabrication variability on the design. In figure

1.2, they present the technology parameter variation trends across five generations

of technology node. We note that though the device variations (Tox, VT) somewhat

stabilize with newer technology nodes, the interconnect variations keep increasing.

This clearly highlights the importance of considering interconnect variations as well

as device variations in any form of VLSI design optimization. The current deter-

ministic models for estimating variability are not able to predict these variabilities

with reasonable accuracy. In [25], the authors point out that:

• Technology scaling is continuously reducing physical dimensions and the effect

of variabilities is such geometries is making the current estimating models very

inaccurate.

• It was assumed earlier that the variations in devices was strongly correlated

8

thereby reducing the number of sources of variability. However, DSM technolo-

gies show large number of sources of variabilities which are correlated as well

as independent. This increasing number of independent sources of variability

is making analysis very difficult.

1.1.2 Environmental Variability: Sources and Issues

There is variability in design due to various environmental uncertainties. These

include variations in power supply voltage Vdd, coupling noise, temperature varia-

tions, soft errors, electro-migration issues etc. These variations have been character-

ized as probability distributions and have been analyzed at the intra-die level using

worst-case or Monte-Carlo techniques. But as we enter the nanoscale regime, these

variations are starting to pose a bigger challenge and cannot be handled through the

traditional techniques. As the number of source of these variations increase, using

deterministic techniques to estimate such variations is becoming increasingly pes-

simistic leading to large overheads in performance while trying to counter of these

variations. There is a growing need to consider environmental variations probabilis-

tically/statistically during the design flow similar to fabrication variability.

1.1.3 Estimation/Modeling Variability: Sources and Issues

The estimation variability comes into design flow primarily due to design ab-

straction and the lack of accurate estimation techniques. Early in the design flow,

the specifications are only at a very high level of abstraction and therefore interac-

9

tion with lower-level (physical design) can only be estimated [112]. It is very hard

to make accurate predictions at such a high-level without knowing any information

for the physical design since there is a certain amount of design uncertainty that is

not concretely specified.

Additionally, we need to have accurate models that can be used to predict

design parameters with reasonable accuracy. Often such accurate models either do

not exist or are computationally expensive to be used in the design flow. Both

logic synthesis and physical design suffer from insufficient parameter estimations.

This has led to an increasing requirement for logic synthesis and physical design to

be more unified so that information can be efficiently exchanged between the two

steps. As shown in figure 1.1, the design parameters (like capacitance, parasitics

etc.) is extracted after physical design (layout) and fed back to the logic synthesis

stage to provide a more accurate estimation of wire delays and capacitances in the

next iterations of design cycle. But this can still lead to potentially many iterations

of the design cycle which is not acceptable due to tight design-time windows. In

[35] the authors have shown that in DSM micron designs, the current interconnect

delay models are not accurate when interconnect delay forms a large part of the

critical path delay (which is true for DSM designs). Furthermore, they show that

the iterative feedback in design flow to better estimate design parameters may not

sufficient to allow for incremental optimization capabilities. This form of estimation

variability can be countered by using better modeling techniques. There is a need to

shift from the traditional deterministic models and adopt a probabilistic modeling

framework for better estimation/prediction of device parameters.

10

These sources of variations have a big impact on design performance. Critical issues

like timing and power inaccurately estimated leading to very poor design solutions.

1.2 New Design Methodology Paradigm

In the presence of variability, we need to redefine our design objectives. Cor-

respondingly, we need to focus on different design methodology paradigms. We

want to create designs that are robust and predictable. Robustness adds an in-

herent immunity towards the existing variabilities in the systems as is a desirable

characteristic in any design. Additionally, we could also focus towards getting a

higher parametric yield from our design methodology. Let us now understand how

these two different paradigms come into the picture in DSM designs in presence of

variability.

1.2.1 Predictable/Robust Designs

Robustness is an extremely desirable property from any design because it

inherently implies stability towards variations. Predictability in design automation

has been defined as a quantified form of accuracy/certainty [14]. Each step of VLSI

design flow requires estimates to drive the optimization. If these estimates are more

accurate, we end up with a more predictable design after optimization. The idea is

to get an accurate estimate of the cost function being optimized, so that the final

design is more robust. The goal of a predictability-driven objective function is to

11

Timing PDF Timing Constraint

Timing

Sol X

Sol Y

Figure 1.3: Predictable/Robust Solution

choose the most accurate solution.

A predictable estimate of an objective function does not vary much in presence

of uncertainty and provides robustness in design. [18] defines a design to be robust

if its performance is not influenced by factors like coupling noise, temperature or

other variations. This essentially means that the design is more tolerant towards

perturbations while still performing within acceptable limits. The authors point

out that in order to achieve such a design methodology, the effects and interactions

of these factors with design performance need to be investigated. The modeling of

the optimization problem should identify and include these variations within the

design framework. However, a robust/predictable solution hence obtained may not

be the optimal solution and is also not guaranteed to meet the design constraints.

As shown in figure 1.3, let us suppose that we generate two solutions X and Y . We

can impose the variability on both these solutions and generate their timing PDFs.

As shown in the figure, we can see that solution X is more predictable/robust as

compared to solution Y because it has lesser uncertainty in value.

12

Sol Y

Sol X

Timing

Timing ConstraintTiming PDF

Figure 1.4: High Parametric Yield Solution

1.2.2 Parametric Yield Optimization

Yield from fabrication of ICs is a very important aspect of large scale pro-

duction. This directly determines the cost of production and hence, we need to

ensure that a high yield is achieved. Typically, the yield is calculated by binning

the ICs according to their design performance (operating frequency, total power

consumption etc.). ICs that do not meet the requirements are rejected. There can

be catastrophic defects that lead to ICs that do not work at all. Defects caused

due to dirt particles or photo defects are categorized under catastrophic (or non-

recoverable) defects. Parametric yield is basically caused by fabrication variations

and other disturbances in the environment. Essentially this results in sub-optimal

performance of the ICs in terms of timing and can also be referred to as timing

yield.

Improvement of timing yield in presence of process variations has caught a lot

of attention lately [106, 89, 51, 11]. The objective in parametric yield maximization

is to obtain a solution that is likely to meet the constraints with the highest prob-

13

ability after fabrication. As shown in figure 1.4, let us suppose that we generate

two solutions X and Y . We can impose the variability on both these solutions and

generate their timing PDFs. As shown in the figure, we can see that solution X

is a better solution from a parametric yield perspective as compared to solution Y

because it has a higher probability of meeting the timing constraints.

1.3 Current Approaches to Variability Driven Design

There are a few existing design paradigms that try to capture variability during

design automation. The goal is to obtain fast design closure satisfying all constraints

while ensuring that the IC meets the performance requirements after fabrication.

There are both deterministic and probabilistic approaches in this context.

1.3.1 Deterministic Techniques

These techniques perform optimization based on a fixed (deterministic) esti-

mate of the parameters. As soon as variability is introduced into the framework, it is

hard for such technique to accurately capture the nature of the variability. There are

worst-case approaches, sensitivity-based approaches and slack management based

deterministic approaches that try to capture variability in a deterministic perspec-

tive.

14

Worst-case Analysis/Monte-Carlo

This is the traditional form of analysis. However, in presence of fabrication

variations this approach tends to be very pessimistic. This is a corner-based ap-

proach that tries to identify the design corners in the solution space to ensure that

the performance of the design is acceptable within the extreme boundaries. In a vari-

ability perspective, firstly there are a lot more design corners making this approach

very inefficient. Additionally, there are design corners that exist with a virtually zero

probability for all practical purposed and this approach tries to optimize the design

around such points as well. As a result, the final design is very sub-optimal. Since

all variations are not perfectly correlated, the worst-case scenario does not imply a

worst-case occurrence of all parameters [78]. There are local independent random

variations that also need to be considered. It is very pessimistic to assume that the

worst-case occurs when absolutely every parameter is at its worst-case value.

Another possible approach is to generate upper and lower bounds on the so-

lution. It is generally a hard task to obtain tight bounds on the potential solu-

tion. In [2], the authors proposed statistical bounds in a timing analysis framework.

Intra-die variations have been analyzed deterministically using Monte-Carlo based

simulations with reasonable efficiency. Certain within-die interconnect variations

have also been modeled using worst-case deterministic approaches [120].

15

Sensitivity-Based Analysis

Sensitivity based optimization/analysis is generally performed to get a more

robust design. The idea is to try to get a design that is less sensitive to variations

in parameters. It is in general hard to identify the relevant sources of variability

at each step in the optimization, so as to optimize the objective function to be less

sensitive to these parameters. We note that the goal here is not to obtain an optimal

performance from the design, but to obtain a robust performance from the design.

In [110], the authors have shown that a stable/robust solution is not necessarily

close to being an optimal one. Although this technique is very well suited towards

a predictable/robust design methodology paradigm.

Constraint Relaxation Techniques / Slack Management

These techniques rely on inducing flexibility in the design constraints by re-

laxing some of them during the design flow. At higher-levels of design flow, this

flexibility allows the later optimization steps to handle variability and other issues

better. In [16], the authors introduce the concept of delay relaxation parameter as

a property to reach design closure. The paper talks about scheduling in high-level

synthesis. The timing constraints of functional resources are relaxed without violat-

ing the data-flow constraints. Future optimizations in logic and physical synthesis

tend to benefit from this extra flexibility and increased the chances of design closure

in presence of variability.

Slack in different paths of a circuit can be efficiently distributed to gain maxi-

16

mum benefits from optimization. In [24], the authors perform gate sizing to consider

delay uncertainty. In [124], the authors have tried to implement the slack manage-

ment paradigm in the probabilistic framework.

1.3.2 Probabilistic Analysis/Optimization

Probabilistic techniques have gained a lot of attention recently. Variability

in DSM technologies have let to the failure of existing deterministic optimization

paradigms that are not able to effectively capture the variations. A lot of work

has been done in the area of timing analysis under variability from a probabilistic

perspective [42, 105, 79, 2, 39, 10, 118, 27, 119, 1, 96, 43].

Probabilistic technique represent each parameter variation as a distribution

and tries to maximize the distribution of the objective function during optimiza-

tion. Accurate models representing parameter dependencies are required for such

an approach. In [9] and [68], the authors try to model wire-length variability as a

distribution in the post-placement pre-routing stage of VLSI design.

From a robustness perspective we try to find a solution that has minimum

variance in its distribution in presence of variability. From a parametric yield per-

spective, we try to find a solution that has the least chances of violating the design

constraints. Essentially, the designer is taking a probabilistic risk of not satisfying

the constraints (in presence of variability). Voltage scheduling through such a risk-

management paradigm for higher parametric yields has been proposed in [6]. In

[115], the authors present a technique to perform buffer insertion to maximize the

17

parametric yield under wire-length variability.

1.4 Variability-Aware Design Methodology

1.4.1 The Basic Idea

As mentioned in the previous sections, variability-aware approaches can be

both deterministic as well as probabilistic. There is an inherent limitation in the

deterministic approach to capture the variations effectively. Recently, there has been

a shift in focus towards probabilistic design methodologies that are better able to

capture fabrication variabilities. It is very hard to model the design parameters as

fixed quantities. The variability in their values makes it easier for us to capture their

nature by modeling them as random variables. This allows us to generate a distribu-

tion (PDF/CDF) for each parameter (modeled as a random variable). The objective

function can also be represented as a distribution. From a robustness/predictability

perspective, we are looking to minimize the variance in the final solution but from

a timing yield perspective, we are trying to maximize the chances of meeting the

design constraints.

A probabilistic optimization framework could be represented as shown in fig-

ure 1.5. The central block of the framework is a probabilistic optimizer that takes

in the design constraints (user constraints), the probabilistic optimization objective

and the probabilistic risk that the designer is willing to take of violating the design

constraints. Additionally, we require accurate models to capture the variability to

represent it as distributions and accurate ways to capture the correlation informa-

18

Maximum Risk

User Constraints

Probabilistic Optimizer

satisfying the constraints and cost
Solutions Giving a Tradeoff between

Probabilistic Modeling

Correlation Information

Probabilistic Objective

Figure 1.5: Probabilistic Optimization Framework

tion between these distributions. The final solutions from the optimizer are those

that satisfy the constraints within the user defined risk limits. The one which has

minimum cost (from a robustness or parametric yield perspective) is chosen as the

final solution.

1.4.2 Key Advantages

There are several advantages of using such a probabilistic optimization frame-

work in presence of variability.

• Handling fabrication variability in design flow: Since we can probabilistically

model all design parameters, we can capture the variability in the design effec-

tively. Each parameter variation can be estimated as a distribution and given

to the probabilistic optimizer. This statistical information is assumed to be

given to the optimizer.

19

• Faster design closure: Since we can consider variability issues concurrently

while performing design optimization, we are able to reach a design satisfying

all constraint faster. We do not need to iteratively try to refine the design to

cover all process-corners in the solutions space.

• Risk management: The probabilistic framework allows the designer to decide

the amount of risk he is willing to take in his design. A higher acceptable risk

typically results in solutions with lower costs as a trade-off. The quality of

solution versus the cost of the solution is presented an an interesting trade-off

to the designer.

1.4.3 Key Challenges

Though there are several advantages in using a probabilistic optimization

framework, there are several key challenges to developing such a methodology:

• Probabilistic modeling: It is important to be able to generate accurate proba-

bilistic models of all design parameters. This requires the processing of statis-

tical data on the parameter combined with its deterministic information. In

general this poses a tough challenge to the designers. Also, the cost of evalu-

ating/using such a model should not be very high (computational complexity)

in order for it to be a practical solution.

• Correlation Modeling: It has been shown that correlations are very significant

in parameter variations. From a timing perspective, most global variations

induced due to fabrication variability are spatially correlated. We need to

20

be able to accurately capture these correlations during optimization. Addi-

tionally, not all source of variations are correlated, so we must also have the

flexibility to capture independent correlations. Since all gates on a chip are

manufactured through the same process, there are global correlations between

them. Additionally, there can be variations in characteristic based on their

spatial locations, i.e. gates that are placed in close physical proximity are

more likely to see similar variations. It is hard to model these correlations

such that they can be computed accurately and efficiently.

• Run-time complexity: Probabilistic optimization technique is general require

a lot more computation than their deterministic counterparts. The reason for

this is obvious since they try to process more information in each step (ev-

erything is a distribution as compared to a fixed value in deterministic frame-

work). As compared to deterministic technique, probabilistic technique have

significantly higher run-time complexity. We need fast technique to compute

probabilistic data without sacrificing the accuracy of capturing correlations.

On the flip-side, it is perhaps better to run one iteration of a slow proba-

bilistic framework to get a good solution as compared to many runs of the

deterministic algorithm (which occurs when variabilities get higher).

1.5 Techniques for Handling Randomness due to Variability

Variability due to fabrication and environmental randomness poses severe per-

formance, yield and reliability issues in nanoscale designs. There are several philoso-

21

phies that can be applied to counter the impact of these randomness.

1.5.1 Reduce the Sources of Variations

One of the most promising ways to counter fabrication variability are to de-

velop newer fabrication techniques where we have more control over the actually

fabrication process. Such advances will allow us to reduce the manifestation of

variations thereby avoiding the problem of randomness due to variability. A key

requirement of this is to develop fabrication techniques that are firstly compatible

with the existing fabrication flow as well as have a low cost overhead. Without these

two qualities, it is extremely difficult for mainstream ASIC designs to adopt these

newer fabrication techniques that can reduce the sources of variations.

1.5.2 Design-Time Optimization

In this approach, one can try to explicitly model and consider the impact of

variability during the design flow. We appropriately modify our design analysis and

optimization techniques to ensure that we can use both deterministic and proba-

bilistic algorithms to consider the performance spread that occurs due to variations.

Such an approach allows us to gauge and limit the performance band of the design

to ensure that we get the desired yield and reliability without paying any extra

overhead in design cost and design time. Key issues for such an approach are:

1. Accurate and compact modeling of the variability data

2. Analysis techniques that can use the modeling information to predict the im-

22

pact of variability on design performance through variability-aware analysis.

In recent years, statistical timing analysis [42, 105, 79, 2, 39, 10, 118, 27,

119, 1, 96, 43] has emerged as one such effective analysis scheme that uses

variability-aware modeling for timing analysis considering the impact of fab-

rication variability.

3. Design optimization techniques that are driven by the variability-aware anal-

ysis to probabilistically/statistically optimize the design performance consid-

ering variability. A lot of work has been done considering state of the art

design optimization techniques like buffer insertion [115, 7, 69], gate sizing

[117, 8, 73, 67, 80, 32] and leakage optimization [97, 89, 77, 73, 83].

1.5.3 Post-Silicon Design Tunability

This approach presents a powerful solution to the fabrication and environmen-

tal variability problem. Using this design philosophy, we can build in tuning knobs

into the design which can be used to selectively alter design parameters once the

chip has been manufactured. After fabrication, through external or on-chip testing,

we can gauge the real manifestation of randomness due to fabrication variability and

then appropriately tune the chip to counter the impact of variability and improve

design yield and performance significantly. Tunability in designs can be provided

through adaptive body-biasing, supply voltage scaling and through post-silicon tun-

able clock-tree buffers [117, 72, 114, 82, 36].

23

1.5.4 Runtime Adaptivity

Runtime adaptivity based techniques are effective in being able to counter

the impact of runtime environmental variations. The design is such that it has the

capability of sense the occurance of variations and adapts the design performance to

counter the variation while still trying to meet the overall performance constraints

on the design. Self-correcting designs and architectural modifications can be made

by using techniques like reconfigurable logic and redundant path based designs to

counter the impact of variability during runtime. Furthermore, another interesting

possibility is to use larger blocks of asynchronous logic which is inherently immune

to variations.

1.6 Organization

This dissertation is organized as follows:

Chapter 2 discusses our research contributions to the area of variability-aware

analysis, specifically looking at the problem of statistical timing analysis. We present

the basic background behind statistical timing analysis, discuss the current litera-

ture and present our research contributions in the area. We specifically present

two works, one of which presents a framework for non-linear, non-Gaussian statis-

tical timing analysis considering correlations [119]. The second work presents an

interesting technique to control the trade-off between runtime and error induced

during statistical timing analysis. This technique allows us to get significant run-

24

time speedups compared to traditional statistical timing analysis using the concept

of error budgeting.

Chapter 3 discusses our research contributions to the area of variability-aware

design optimization. We first present the existing literature in this area and then

discuss two specific works in this area. Firstly, we talk about a probabilistic buffer

insertion technique [115]. This work was one of the first to consider buffer insertion

in presence of wirelength uncertainty and proposed technique to perform probabilis-

tic design optimization using buffer insertion. Secondly, we present our work on a

general optimization framework based on Monte-Carlo technique considering fabri-

cation variability. In this work, we look at stochastic programming based technique

in a linear programming framework. Such techniques can be applied to several VLSI-

CAD problems without making any assumptions of the nature of the distributions

of the variability data or the correlations between them.

Chapter 4 presents our work on design optimization through post-silicon tun-

ability. The work titled variability-driven simultaneous gate sizing and post-silicon

tunability allocation [117] presents a design management framework that can be

used to balance the effort spent on pre-silicon (through gate sizing) and post-silicon

optimization (through tunable clock-tree buffers) while maximing the yield gains.

Chapter 5 presents our work on runtime dynamic power optimization tech-

nique considering variability. We talk about probabilistic design synthesis and run-

time optimization as a means to get reliable and robust designs. This work titled

Simultaneous Resource Binding and Dual-Vdd Allocation for Power Optimization

with Probabilistic Reliability Guarantee, introduces the concept of probabilistic re-

25

liability guarantee as a metric of optimization considering the impact of fabrication

and environmental uncertainty at system-level design stage. We propose a frame-

work that presents a design technique for runtime optimization of dynamic power

through supply voltage scaling.

Chapter 6 concludes this dissertation and presents some interesting directions

for future work in variability-aware design methodology for nanoscale technologies.

Further, we present some directions to extend these ideas to distributed integrated

and embedded systems as well focusing on the key challenges of performance, relia-

bility and yield.

26

Chapter 2

Variability-Aware Timing Analysis

Static Timing Analysis is one of the most critical steps in VLSI design. It is

used both during optimization as well as verification. In high performance design, it

is absolutely imperative for the design to meet the required timing constraints. This

brings out the need for fast, accurate and incremental timing analysis methodologies.

In the past static timing techniques [84, 88] have provided a reliable and effi-

cient method for timing analysis during design sign-off or verification. These tech-

niques were enhanced to accommodate for the DSM effects like coupling noise, RC

and RLC interconnect modeling, simultaneous switching and other variations. The

die-die and within-die variations were also handled typically by performing case

analysis. As pointed out in [25], this paradigm is breaking down due to the increas-

ing DSM effects. It is very hard for conventional static timing analysis to account for

the variability accurately. These schemes are deterministic in nature and it is very

hard to capture the nature of the distributions of the variability using such tech-

niques. Performing a case-based or corner-based analysis required a large number of

static timing runs as the number of independent sources of variability are increas-

ing. Furthermore, at the design corner a worst-cast assumption is made which is

pessimistic, while it is very hard to analyze all possible design corners. Missing one

such critical design corner could lead to failure which are detected after the IC is

27

0−100 100−200−300

1.0

0.8

0.6

0.4

0.2

Sample Slack Distribution

P
a

ra
m

e
tr

ic
 Y

ie
ld

Slack(ps)

Arrival Times, etc
Critical Paths,
Slack Distribution,

Timer
Statistical

Circuit Netlist

on the Sources of Variability
Each Edge in the Timing Graph
Dependence of Delay/Slew of

 Variability
Statistics of the Sources of

 Models
Nominal Delay and Slew

Timing Assertions

Figure 2.1: Statistical timer: block diagram & sample slack distribution

manufactured.

This brings the need to develop Statistical Timing Analysis (STA) techniques,

that will allow the designer to aim for high-performance while giving a quantitative

risk-management against the effects of fabrication variability. Let us now understand

the basics about a typical statistical timing framework.

2.1 Statistical Timing Analysis

A conventional static timer takes the circuit as an input and builds a timing

graph from it. Delay models are used to provide the timing information (delay, slew

etc.) about each gate. The analysis computes the timing slack in the circuit from

which the highest frequency of operation can be determined. Additionally, it can

produce a list of failed timing tests, arrival times at gates, slack at gates, critical

paths or any other timing information that may be useful.

As shown in figure 2.1, we can see that a statistical timer takes in additional

information about the nature of the sources of variations. We can generated accurate

28

modeling of the fabrication variability to calculate the distribution of these variations

and the correlation information. The statistical timer has the capability to link these

sources of variability to their effect on timing values. The main output from the

timer is a probability distribution of the slack. As shown in figure 2.1, we can see

that the parametric yield of the circuit is almost 100 % at a slack of -300ps while it

sharply drops down as the slack increases. Additional information like arrival times

at each gate, slack at each gate, slew, critical paths etc. are also reported by the

timer which can be used for later optimization.

A statistical timer needs to be able to model the correlations that exist between

different parameter variabilities. In general most within-die variations are correlated

although there is some independent randomness that exists in the die. Correlations

can be path-based (reconvergent fanout) which essentially occur because two paths

can share a sub-path between them. Correlation also exist between gates that share

the same voltage islands (Vdd fluctuations). There is global correlation due to die-

die variations (fabrication variability) as well as spatial correlations for within-die

variations. Additional effects that thermal heating etc. also induce correlations

into the gate behavior. And lastly, there is also some uncorrelated independent

variations (doping concentration, Tox etc.) that exist on the chip as well. A good

statistical timer needs to be able to model these variations along with the correlation

information.

29

(a) (b)
Input Arrival Times

Gate Delay

Output Arrival Time

Input Arrival Times

Gate Delay

Output Arrival Time

Figure 2.2: Static versus Statistical Timing Analysis

2.2 Current Approaches in STA

Let us now try to understand the working of a statistical timing analysis

technique in more detail. Essentially, the idea is to try to capture the variability

in design parameters by modeling them as distributions (PDFs/CDFs) or even as

random variables (with a corresponding distribution). This essentially implies that

in the STA modeling framework, each arrival time as well as gate delay becomes

a distribution (represented as a PDF/CDF or a function of random variables). As

shown in figure 2.2(a), a typical static timing framework represents each arrival time

as well as gate delay by a deterministic value which can be easily propagated through

the circuit generating the required timing information. In STA, as shown in figure

2.2(b), each arrival time/gate delay is modeled as a distribution and we now need

to propagate the distribution through the circuit to generate the required timing

information. Additionally, as mentioned earlier, the variations in the parameters

are correlated globally as well as spatially. There can also be independent random

30

o
y

x

A
A y

xA
o

Figure 2.3: Gate with x and y input pins and output o

variations due to fabrication variability as well. The STA framework needs to be

able to model as well as propagate these correlations accurately.

Timing Analysis involves the computation of two main operations on the tim-

ing variables. As shown in figure 2.3, let us assume that we are given a gate g with

two input pins x and y and an output pin o. The arrival time Ao at the output pin

o can be calculated given the arrival times at the input pins (Ax, Ay) and the gate

delay (GD). Mathematically, this operation can be represented as given by equation

2.1:

Ao = MAX(SUM(Ax + GD), SUM(Ay + GD)) (2.1)

Hence, we first need to perform a SUM operation and then perform a MAX

operation on the timing variables to calculate the distribution of the arrival time

variables. While the SUM operation is computationally tractable, calculating the

exact arrival time after the MAX operation is very difficult. The main problem here

is that it is very hard to accurately compute the MAX of two timing PDFs/CDFs

or functions of random variables efficiently. This has been a primary bottleneck in

STA techniques and has prompted most researchers to model the distributions as

Gaussian and enforce a Gaussian assumption on the timing distribution after the

31

MAX computation in order to exploit the various mathematical results that exist

on Gaussian Random Variables. We will discuss this issue in greater detail later in

this chapter.

2.2.1 Modeling Arrival-Time and Gate Delays

There are two basic ways in which the timing variables can be modeled in

STA:

• In [10, 118], the authors have modeled the arrival times and gate delay distri-

butions as PDFs and CDFs. The key problem with both these approaches is

the assumption of independence in the timing variables (no correlation infor-

mation being captured), which is the central assumption in the computational

efficiency proposed by these schemes. In [2], the authors present a way to com-

pute bounds on the exact PDF of the timing values in the circuit considering

within-die parameter variations.

• Most of the recent work on STA [42, 105, 79, 27, 119, 1, 96, 43, 60] models ar-

rival time and gate delays as a function of random variables. Each parameter

that has variability is modeled as an independent random variable. The pa-

rameters that are globally or spatially correlated are shared between all gates

in the circuit while the independent randomness at each gate is modeled as a

separate independent random variable. Initially, this modeling was done such

that the gate delay/arrival times were modeled as a linear function of random

variables, but lately due to the increasing non-linear effects of variability on

32

timing, the recent works tries to extend this to a non-linear gate delay model

framework [119, 43]. The main reason for modeling timing variables as ran-

dom variables is to provide an efficient way of capturing correlations between

different gates (by using the same random variables for each gate to represent

global parameters). Also, there is a vast amount of mathematical framework

that exists in random variable theory. In particular Gaussian Random vari-

ables are well-studied and have results that are extremely useful in computing

the MAX operations. This is the primary reason why most of the existing

work in STA modeled timing information as Gaussian Random Variables.

2.2.2 Block-Based STA Versus Path-Based STA

STA can be performed in two primary ways on any circuit:

• Path-Based: The basic idea here is to generate a list of critical paths and

perform timing analysis only on these paths. The problem is this approach is

that there could be exponentially many paths that need to be analyzed. It is

very hard to decide how many critical paths should be timed. However, since

a path-based computation involves only the SUM operation on each path, it

is accurate in computing the distributions of the arrival times on each path.

At the primary outputs, we just need to perform one MAX operation on all

the critical path timing information to generate arrival time distribution at

the primary output node. So if there is a path p with gates a, b, ...k with gate

delays Da, Db, ...Dk, the arrival time at the end of the path (which would be

33

a primary output gate) would be Ap = Da + Db + + Dk. The final arrival

time at the primary output would be the MAX of all such paths (say x in

number) ending at that gate as be given as:

Arrival − T ime = MAX(A1, A2, ..., Ax) (2.2)

There is a lot of research that has been proposed on this framework [42, 105,

79, 2, 39]. This approach is able to capture the global and spatial correlations

efficiently and is also able to account for reconvergent fanout based correla-

tions. However, a major drawback is that this approach is not able to provide

the accurate timing distribution information at each gate (which can be used

for further analysis and optimization) and is good only for final timing sign-off

for the ICs.

• Block-Based: This technique does not consider path-based delay computation

as described above. Here, we explicitly compute the arrival time distribution

(as a PDF/CDF or a function of random variables) at each gate. The cir-

cuit is traversed topologically from the primary inputs to the primary outputs

to generate the timing information at each gate. This provides an approach

for incremental timing analysis and generated detailed timing information at

each gate for further analysis/optimization. At each gate we perform SUM

and MAX operations as given by equation 2.1. In [10, 118], the authors use

PDFs/CDFs to propagate the timing information. Other work in block-based

STAs have used parametric models to represent each arrival time and gate

34

delay as a function of random variables [27, 119, 1, 96, 43, 60]. Though the

block-based schemes are computationally efficient, they are prone to approx-

imations while computing the MAX operations on arrival time variables at

each gate. Furthermore, using a parametric representation of timing value

makes it easier to capture global/spatial correlation accurately but capturing

the independent randomness at each gate (and propagating it through the

circuit) is still a problem. The block-based approaches provide incremental

timing capabilities which are useful during optimization.

.

2.3 Key Challenges in STA and Our Research Contributions

There are several challenges that exist in developing an accurate and efficient

STA framework. There are two inherent problems in accurate STA, namely corre-

lation modeling and accurate computation of the MAX operation. While the para-

metric modeling has enabled global/spatial correlation to be captured accurately,

it is still hard to accurately propagate the independent randomness component of

variability. It is trivial to model this independent randomness into the gate delay

models by using a random variable at each gate to represent its random variation.

But propagating this information accurately during STA is hard because for a de-

sign with 100,000 gate, we will have 100,000 independent random variables. Current

STAs schemes [27] tries to make approximation on this by just maintaining one in-

dependent random variation term in each arrival time model, but this results in

35

loss of variation information. Hence, we need to develop a better way to model the

independent randomness such that it is computationally efficient as well as accurate.

The MAX operation still poses the biggest challenge in STA. It is very hard to

generate an accurate representation of the result of MAX operation on the arrival

time distributions (expressed as a function of random variables). Since the random

variables in general can have any distribution, the nature of the result of the MAX

operation can be any distribution. However, in order to make this MAX operation

feasible, researchers have chosen to model the arrival times as Gaussian random vari-

ables. There exists a lot of mathematical framework to facilitate this computation.

In [42, 27, 60, 96], the authors have resorted to modeling each random variable as a

Gaussian variation (which is not true in general) and have also considered a linear

gate delay model that represents each gate delay as a linear sum of these Gaussian

variations. This implies that the gate delays (and arrival times) too are Gaussian.

Using analytical results proposed by [22], they have proposed a scheme that is able

to approximate the result of the MAX operation back into the linear form. This

approximation of linearity as well as Gaussian nature adds errors into the timing

estimates generated from STA.

Firstly making an assumption that all parameter variations are Gaussian in

inaccurate (for example the variations in the Via resistance is know to be non-

Gaussian). Secondly, the gate delay and arrival time models can no longer be con-

sidered linear with increasing fabrication variations in DSM technologies (transistor

channel length Leff variations are known to be non-linear in their delay depen-

dence). More recently, there have been attempts to generalize the STA framework

36

to consider non-Gaussian non-linear parametric variations [43, 119], but there are

still lots of questions that need to be answered in the field of Statistical Timing

Analysis.

In the rest of the chapter, we will present our contributions to the area of

statistical timing analysis. We have tried to address some of the issues and chal-

lenges posed by variability in timing analysis. The first work presents a novel error

budgeting formulations that tries to reduce the runtime complexity of statistical

timing analysis. The second work presents an approach towards a general statistical

timing analysis framework that does not make assumptions about the nature of the

variabilities and the dependence of gate delays on these parameters.

In section 2.4, we propose a novel technique for optimizing the runtime in

statistical timing analysis. Given a global acceptable error budget at the primary

output which signifies the difference in the area of the accurate and approximate

timing CDFs, we propose a novel formulation of budgeting this global error across

all nodes in the circuit. This node error budget is used to simplify the computa-

tion of arrival time CDFs at each node using approximations. This simplification

reduces the runtime of statistical timing analysis. We investigated two ways of ex-

ploiting this node error budget, firstly through piecewise linear approximation ([10])

and secondly though hierarchical quadratic approximation. Experimental results on

ISCAS/MCNC benchmarks show that our approach is at most 3 times faster than

accurate statistical timing analysis and had a very small error. We also found

quadratic piecewise approximation to be more accurate than linear approximation

but at lesser gains in runtime.

37

In section 2.5, we present a general Statistical Timing Analysis (STA) frame-

work that captures spatial correlations between gate delays. Our technique does

not make any assumption about the distribution of the parameter variations, gate

delays and arrival times. We propose a Taylor-series expansion based quadratic rep-

resentation of gate delays and arrival times which are able to effectively capture the

non-linear dependencies that arise due to increasing parameter variations. In order

to reduce the computational complexity introduced due to quadratic modeling dur-

ing STA, we also propose an efficient linear-modeling driven quadratic STA scheme.

We ran two sets of experiments assuming the global parameters to have uniform

and Gaussian distributions respectively. On an average, the quadratic STA scheme

had 20.5x speedup in runtime as compared to Monte-Carlo simulations with an rms

error of 0.00135 units between the two timing CDFs. The linear-modeling driven

quadratic STA scheme had 51.5x speedup in runtime as compared to Monte-Carlo

simulations with an rms error of 0.0015 units between the two CDFs. Our proposed

technique is generic and can be applied to arbitrary variations in the underlying

parameters under any spatial correlation model.

38

2.4 Efficient Statistical Timing Analysis Through Error Budgeting

Growing importance of fabrication variability and estimation uncertainty has

lead to increased significance of statistical timing analysis. Several researchers have

investigated this issue in detail [3, 2, 1, 42, 59, 83, 96, 27, 10]. Statistical timing

analysis problem essentially takes a DAG G = (V,E) as input with each node delay

and arrival time represented as a distribution. It calculates the distribution of the

arrival time at the primary outputs (POs) of the DAG. One of the most important

issue in statistical timing analysis is the runtime. The latest work by Devgan et.

al [10] proposes an approach for fast statistical timing analysis in which after the

node arrival time CDF is evaluated, the CDF is approximated by a piecewise linear

approach. This simplification results in massive gains in runtime.

Our work builds upon this approach for statistical timing analysis. The key

problem in the approach presented in [10] is that whenever a signal is approximated

by piecewise linearization, this linearization is performed using an arbitrary and

predecided number of lines. Having too few lines could result in large amount of

error and too many lines could result in large execution runtime. Hence an adaptive

way of determining the degree of approximation for each signal is needed which can

effectively perform a tradeoff between gain/loss in runtime with increase/decrease

in error. In order to achieve this tradeoff we investigate the way error gets prop-

agated in statistical timing analysis. We propose a closed form expression for this

error propagation. Using this expression, we propose the philosophy of error budget-

ing. The error budgets at each node are used to approximate the node delay PDFs

39

and arrival time CDFs. We investigate two kinds of approximation strategies: lin-

ear (traditional) and hierarchical quadratic. This entire statistical timing analysis

framework is put together in the SIS framework. Experimental results show that

our budgeting approach comes very close to accurate statistical timing estimation

(without any approximation) but can be at most 3 times faster. Comparatively,

the traditional approach [10] had a large error in the output arrival time CDF.

We also found the quadratic approximation to be much more accurate than linear

approximation but with lesser gains in runtime.

2.4.1 Motivation and STA Framework

In this work, we propose a novel approach for speeding up statistical timing

analysis by effectively controlling the amount of error injected for gains in runtime.

Given the distribution of the arrival time at the primary inputs and the distribution

of the gate delays, the problem is to evaluate the distribution of arrival time at

the intermediate nodes as well as the output nodes in the circuit. Similar to static

timing analysis, statistical timing analysis traverses the circuit topologically from

the primary inputs to the primary outputs generating the arrival time distribution

at the out of each intermediate node.

The SUM and the MAX operation in the statistical timing framework need

to be computed on the distributions of arrival times and gate delays. In [10], the

authors propose to model the arrival times as cumulative density functions (CDFs)

and the gate delays as probability density functions (PDFs) as shown in figure 2.4(a).

40

t1 and t2 denote the range of the distributions in both the cases as shown in the

figure.

Timet2

1

t t1 2
Time

ProbProb

t1
Timet2

Arrival Time CDF Gate Delay PDF Arrival Time CDF Gate Delay PDF
(a) (b)

1
Time

1

t t1 2

Prob Prob

t

Figure 2.4: Distributions and their Linear Approximations

For computational efficiency of the SUM and MAX operations of statistical

timing, these CDFs and PDFs are approximated using techniques of piecewise lin-

ear and quadratic approximations. The details of these modelings are given later

in section 2.4.3. In figure 2.4(b), the CDF and PDF are shown under the piecewise

linear approximation scheme. We will now discuss the SUM and MAX operation

under these CDFs and PDFs. We assume that the arrival times and gate delays are

independent of each other. The issue of statistical dependence due to re-convergent

fanouts needs to be resolved [10], [1], [3]. In [10], the authors propose an efficient

heuristic technique based on common mode removal approach which we have im-

plemented in this work.

In [10], the authors show that the CDF of the arrival time Cx
o (t) at the output

due to input pin x is given by the convolution of the input arrival time CDF Cx(t)

with the PDF of the pin-to-pin gate delay P x
o (t) as given by equation 2.3. This

follows from the fact that the probability distribution of the sum of two independent

random variables is the convolution of their probability distributions.

41

o
y

x

A
A y

xA
o

Figure 2.5: Gate with x and y input pins and output o

Cx
o (t) =

∫ t

0

(Cx(t− τ) ∗ P x
o (τ)dτ) (2.3)

Similarly, the CDF Co(t) after the MAX operation on the arrival time CDFs

Cx
o (t) and Cy

o (t) at the output pin o (refer to figure 2.18) can be computed from

equation 2.5. The CDF of the maximum of two independent random variables is

the product of their CDFs.

Ao(t) = MAX(Ax
o(t), A

y
o(t)) (2.4)

Co(t) = Cx
o (t) ∗ Cy

o (t) (2.5)

Hence statistical timing operations SUM and MAX are now performed by

doing a convolutions followed by a multiplication. Hence the arrival time distribution

at the output of the gate, given the input arrival time distributions and the gate

delay distribution can be given by equation 2.6.

Co(t) = (Cx(t)⊗ P x
o (t)) ∗ (Cy(t)⊗ P y

o (t)) (2.6)

Now that we have the formulations for the MAX and SUM operation for

statistical timing using CDFs and PDFs, we can run statistical timing analysis

42

similar to conventional static timing. Equation 2.6 can used to evaluate the output

CDFs at each gate in the circuit. In order to speed up statistical timing evaluation,

the approach of [10] linearizes the arrival time CDF into a prespecified number of

lines. It also approximates the arbitrary node delay PDF into stepwise function. The

authors then formulated a closed form expression for evaluating equations 2.3 and 2.5

when the arrival time CDFs were represented using a piecewise linear approximation

and the node delay PDF was represented using a stepwise approximation. This

results in huge speed ups in runtime when compared with a traditional point-wise

convolution based approach. The overall runtime of timing analysis depends upon

the total number of lines used to represent the arrival time CDF and the total

number of steps used to represent the node delay PDF.

Accurate Approximate

Error

A B C E F

D

Figure 2.6: Error Budgeting

In this work we propose novel ways of controlling this tradeoff between the

overall error and runtime. Specifically, we have investigated two issues in this direc-

tion.

1. Given an error budget that the user specifies, identify the degree of approx-

43

imation needed for each individual node arrival time CDFs and node delay

PDFs

2. Investigating better approximation strategies like quadratic (instead of linear)

for improving error and same runtime

Figure 2.6 illustrates the basic philosophy behind our approach. Given, node

delay distributions in a DAG, the approach in [10] topologically computes the arrival

time CDFs at each node. Whenever a new CDF is computed it is simplified by

representing it as a piecewise linear approximation. This simplification adds an

error into the statistical timing estimation which is controllable by the number of

lines used to approximate the CDFs. Finally, the CDF at the output has some error

when compared with the accurate arrival time CDF. In this work, we define this

error as follows

ERROR =

∫ tmax

tmin

|Caccurate − Cestimate|dt (2.7)

Essentially, this is the total area in the entire range of interest where the ac-

tual signal is different from the approximate signal. Let us suppose that we are

provided a total error budget E that the user is willing to tolerate at the primary

output. Given this error budget, we would like to assign it to all nodes in such a

way that maximum gains in runtime occur. Traditionally, this global error budget

is essentially spread uniformly. This is not a very effective strategy of distributing

the global error since the DAG may have unbalanced paths. Consider the example

DAG shown in figure 2.6. Approximating all node CDFs with the same number of

44

points would not be the best idea since node D is not critical. Hence the global

arrival time CDF at node F has low sensitivity to the amount of error in the arrival

time CDF at node D. Hence runtime speed-ups could be achieved by adding more

error at D by approximating it in lesser number of lines. We call this concept Error

Budgeting, since through this approach we strive to control the amount of error in

the final output CDF for gains in runtime. We also investigate better approxima-

tion techniques like quadratic approximation for lesser error. The budgeting and

approximation schemes are integrated into one statistical timing system.

2.4.2 Error Budgeting

In this section we will delve into the details of our budgeting formulation that

distributes the global error budget at the PO to each node which can then be utilized

for speeding up statistical timing analysis. The error budget at the primary outputs

is defined in equation 2.7. In order to distribute this global error budget we need to

investigate the way error in arrival time CDFs and node delay PDFs interact when

subjected to SUM and MAX operations.

Error in SUM Operation

Figure 2.7 illustrates a situation in which the SUM operation is performed

on two signals, one of which is represented as a CDF and other as a PDF (just

like equation 2.3). The figure illustrates two representations for the input CDF and

PDFs, one of which is accurate and one of which is an approximation. In this section

45

Accurate
Accurate

Approximate

Approximate

t3 t4 t1+t3 t4+t2

Arrival Time CDF Gate Delay PDF Output Arrival Time CDF

Accurate

Approximate

t1 t2

SUM

Figure 2.7: Error in SUM

we will discuss the error in the output CDF after the SUM operation as a function

of the errors in the input CDF and PDF. The accurate output CDF is given by

Caccurate
out (t) =

∫ t

0

Caccurate
in (t− τ)P accurate

node (τ)dτ (2.8)

The approximate output CDF is given by

Caprrox
out (t) =

∫ t

0

Capprox
in (t− τ)P approx

node (τ)dτ (2.9)

Since the SUM operation is essentially a convolution operation, the range of

the output CDF is defined as follows. If the input CDF starts at t1 and ends at

t2 (after t2 the CDF=1) and the input PDF starts at t3 and ends at t4, then the

output CDF starts at t1+t3 and ends at t2+t4. Note that here the assumption is

that both accurate and approximate curves start and end at the same delay value.

As it would be clear in the next section, the way piecewise linear approximation or

quadratic approximation is performed, this range does not change. Hence t1,t2,t3,t4

are the same for original and approximate curve. The error in the output CDFs is

given by

46

Errout =

∫ tmax

tmin

|Caccurate
out − Capprox

out |dt (2.10)

The error term can be re-written as follows

Errout =

∫ tmax

tmin

|

∫ t

0

Capprox
in (t−τ)P approx

node (τ)dτ−

∫ t

0

Caccurate
in (t−τ)P accurate

node (τ)dτ |dt

(2.11)

The range of the integral tmin, tmax is simply t1+t3 and t2+t4 respectively.

Errout =

∫ tmax

tmin

|

∫ t

0

(Capprox
in (t− τ)P approx

node (τ)−Caccurate
in (t− τ)P accurate

node (τ))dτ |dt

(2.12)

Let us suppose that Capprox = Caccurate + δC and P approx = P accurate + δP .

Plugging this relation in equation 2.12 gives us the following result.

∫ tmax

tmin

|

∫ t

0

(Caccurate
in (t− τ)δP (τ)+P accurate(τ)δC(t− τ)+ δP (τ)δC(t− τ))dτ |dt

(2.13)

Ignoring the second order term δP (τ)δC(t−τ) and using the relation |a+b| ≤

|a|+ |b|, the above equation could be rewritten as

∫ tmax

tmin

(

∫ t

0

|Caccurate
in (t − τ)δP (τ)|dτ +

∫ t

0

|P accurate(τ)δC(t − τ)|dτ)dt (2.14)

47

MAX

t3 t4 max(t1,t3) max(t2,t4)

Accurate

Approx

Accurate
Approx

Accurate

Approx

Input 1 Arrival Time CDF Input 2 Arrival Time CDF Output Arrival Time CDF
t1 t2

Figure 2.8: Error in MAX

∫ tmax

tmin

(

∫ t

0

|Caccurate
in (t − τ)δP (τ)|dτ +

∫ t

0

|P accurate(τ)||δC(t − τ)|dτ)dt (2.15)

Let the error in the input CDF be E1 =
∫ t2

t1
|(Caccurate

node −Capprox
node)|dt and error

in input PDF = E2 =
∫ t4

t3
|(P accurate − P approx)|dt. Since 0 ≤ Caccurate

in (t) ≤ 1 and

E1 ≥ |δC(t− τ)| it can clearly be seen that equation 2.15 is always ≤ the following

Errout ≤

∫ tmax

tmin

(

∫ t

0

|δP (τ)|dτ + E1

∫ t

0

|P accurate(τ)|dτ)dt (2.16)

Errout ≤

∫ tmax

tmin

(E1 + E2)dt = (E1 + E2)(tmax − tmin) (2.17)

Equation 2.17 gives an upper bound on the output CDF error based in the

input errors. The range tmax, tmin is simply the range on which the output arrival

time signal is defined. Therefore the output error is a linear combination of input

errors.

Error in MAX Operation

Figure 2.8 illustrates a similar situation for the MAX operation. The input

CDFs have the range (t1,t2) and (t3,t4) both for the accurate and approximate

48

cases. The output CDF which is a multiplication of the input CDFs has the range

(tmin, tmax) = (max(t1,t3), max(t2,t4)). Once again the error in the output CDF is

given as follows

Errout =

∫ tmax

tmin

|(Capprox
out (t)− Caccurate

out (t)|dt (2.18)

Let Capprox
in1 , Capprox

in2 and Caccurate
in1 , Caccurate

in2 denote the accurate and approxi-

mate CDFs for the input signals. Let Capprox
in1 = Caccurate

in1 + δCin1 and Capprox
in2 =

Caccurate
in2 + δCin2. Using these relations and simplifying, we can write equation 2.18

as follows

Errout =

∫ tmax

tmin

|Caccurate
in1 δCin2 + Caccurate

in2 δCin1|dt (2.19)

Let E1 =
∫ t2

t1
|Capprox

in1 − Caccurate
in1 |dt and E2 defined similarly for the second

input. Using |a + b| ≤ |a|+ |b|, it can be shown that following must hold.

Errout ≤

∫ tmax

tmin

|Caccurate
in1 δCin2|dt +

∫ tmax

tmin

|Caccurate
in2 δCin1|dt (2.20)

Errout ≤ E1 + E2 (2.21)

Although equation 2.21 is an upper bound on the error, this bound is not good

enough since it does not capture the criticality of the inputs. As discussed in the

previous section, the error in a non-critical fanin would not affect the output error

too much. Unfortunately, equation 2.21 does not capture this philosophy. Hence we

refine this bound by making some approximations on the input CDFs.

Figure 2.9 illustrates three possible overlaps between the two input CDFs. In

49

t1 t2

t3 t4

t1 t2

t3 t4

t1 t2

t3 t4

accurate

approx

Figure 2.9: Error Bound in MAX

the first case, the CDFs have no overlap whatsoever. Here t1 ≤ t2 ≤ t3 ≤ t4. In

such a situation,Cout will be zero until tmin = max(t1,t3) = t3 and will become 1

at tmax = max(t2,t4). Essentially the second signal is always more critical than

the first one. Also, since, we have assumed the range of approximate and accurate

curves to be the same, the error is zero outside it. If we focus on equation 3.63, the

second term must be zero since over the range tmax, tmin = (t4,t3), the error in the

first signal is zero. Hence the entire output error is contributed by E2. Analytically,

this means that since signal-2 is critical, the error contributed by signal-1 does not

affect the output signal.

In the second case in figure 2.9, the two input signals overlap such that t1 ≤

t3 ≤ t2 ≤ t4. Here tmin, tmax = (max(t1,t3)=t3, max(t2,t4)=t4). In such a case, we

assume that the two CDFs are lines with the following slopes

S1 = 1/(t2− t1) (2.22)

S2 = 1/(t4− t3) (2.23)

This approximation is needed in order to evaluate a closed form expression for

50

the output error in terms of the input errors. Hence the input CDF Cin1(t) = S1(t

- t1) ∀ t t1 ≤ t ≤ t2 and input CDF Cin2(t) = S2(t - t3) ∀ t t3 ≤ t ≤ t4. Let us also

approximate the error between the accurate and approximate CDFs to be uniformly

distributed. This is illustrated in the following equations

δCin1(t) = E1/(t2− t1) t1 ≤ t ≤ t2 (2.24)

= 0 otherwise (2.25)

δCin2(t) = E2/(t4− t3) t3 ≤ t ≤ t4 (2.26)

= 0 otherwise (2.27)

Once again we would like to re-iterate the assumption that the range of ac-

curate and approximate CDFs are the same. This issue will be further explained

later. Equation 3.63 has two terms, each corresponding to the error contributed by

the respective inputs. For each term, the entire range of integration is split into two

parts: from tmin = t3 to t2 and from t2 to tmax. The first term in equation 3.63,

∫ tmax

tmin
|Caccurate

in1 δCin2|dt therefore gets split into two integrals. Using the simplifying

assumptions given by equations 2.22 and 2.26, this term can be written as follows

∫ tmax

tmin

|Caccurate
in1 δCin2|dt = K2E2 (2.28)

Here K2 = (S1/t4 − t3)((t22 − t32)/2 − t1(t2 − t3)) + (t4 − t2)/(t4 − t3).

Similarly the second term in equation 3.63 can be simplified as follows

51

∫ tmax

tmin

|Caccurate
in2 δCin1|dt = K1E1 (2.29)

Here K1 = (S2/(t2−t1))((t22−t32)/2−t3(t2−t3)). Therefore the total error

is given by K1E1 + K2E2.

Now let us consider the final case in figure 2.9. In this case one input signal

completely engulfs the other. In this case tmin, tmax is given by (max(t1,t3)= t3,

max(t2,t4) = t2). Under similar simplifying assumptions form equations 2.23 and

2.24, we can re-express equation 3.63 as K1E1 + K2E2 with

K1 = (S2/(t2− t1))((t42 − t32)/2− t3(t4− t3)) + (t2− t4)/(t2− t1)

K2 = (S1/t4− t3)((t42 − t32)/2− t1(t4− t3))

It can be seen that in all cases the error is bounded by K1E1+K2E2 where K1

and K2 can be calculated using the proposed expressions. This gives us a compact

and effective way of estimating the output error given the input errors and the

ranges in which the input CDFs exist. It should be noted that the upper bound

property may not hold anymore.

The assumptions made on the nature of the CDFs considering them to be linear

ramps as given by equations 2.22 and 2.23 can be relaxed for better accuracy. We

could also consider them to be Gaussian (or any other distribution) and evaluate

closed form expressions for K1 and K2 (under the assumption that the error is

uniformly distributed).

52

Output Arrival Time CDFError
Node Delay PDF

Error
Node Delay PDF

Error
E1

E2 SUM

SUM

E2out

E1out

EoutMAX

Figure 2.10: Error Injection in a Gate

Having delved into the details of how the error propagates in the SUM and

MAX function, now we will describe the way error budgeting is performed for each

node.

Error Budgeting for Runtime Optimization

Given a user defined error budget at the primary outputs of a DAG, we would

like to assign error budgets to individual nodes in the DAG such that overall error

budget constraint is satisfied and maximum gains in runtime could be achieved.

Given the input DAG, let us add a sink node and add directed edges from all POs

to this sink node. We also assume this sink node has zero delay.

Figure 2.10 illustrates the way error is injected into a gate. There are two

inputs with errors E1 and E2. First these input signals are SUMmed with the

corresponding input pin to output delay. At this point there is an error injected

that corresponds to the error corresponding to linear approximation or quadratic

approximation of the node delay PDFs as shown in figure 2.10. These CDFs are then

MAXed together to get the node output arrival time CDF. Another error is added

here which corresponds to the linear approximation or quadratic approximation

53

of the output CDF as shown in figure 2.10. Hence there are two kinds of errors

associated with a gate: first is the one that gets injected due to simplification of the

node delay PDFs and other due to simplification of the node output CDF. Hence

in the entire DAG, each node has two variables corresponding to node delay PDF

simplification (assuming all gates are 2 inputs) and one variable for node output

CDF simplification. Therefore there are 3n error variables, where n is the number

of nodes. Errors need to be assigned to these variables such that the overall sum

of the errors for all variables is maximized and the error budget at the sink node is

satisfied. Formally this can be written as follows.

Maximize
∑

∀nodes:i

(epdf
input−j:i + epdf

input−k:i + ecdf
i:out) (2.30)

esink:out ≤ ERR−BUDGET (2.31)

edummy
input−j:i = K1sum

ij ej:out + K2sum
ij epdf

input−j:i ∀inputs− j : i ∀i (2.32)

edummy
out:i = K1max

i edummy
input−j:i + K2max

i edummy
input−k:i ∀i (2.33)

eout:i = edummy
out:i + ecdf

out:i ∀i (2.34)

Equation 2.32 illustrates that when the input CDF is SUMmed with the node

PDF, then the output error is a linear combination of the input error and the error

injected by approximating the node delay PDF. The values of the linear constants

54

could be calculated as described in the previous subsections. Equation 2.33 illus-

trates that the output CDF error given the error injected by the MAX operation on

two input signals. This error is a linear combination of these two input errors. The

output CDF at node i is also approximated thereby introducing another error into

the formulation as shown in equation 2.34. There is a global error budget at the

sink node. The objective is to maximize the total error budget since this would be

directly proportional to the overall runtime improvements. There is still the issue

of assigning the constants in the above equations (essentially K1, K2 etc.). The last

subsection derived analytical formulae for these constants that were dependent on

the range of existence of each of the signals. These ranges can be easily derived for

all signals in the DAG as follows. First replace all node delays by their minimum

possible values and perform as static timing analysis (this gives the lower limit on

arrival time). Then replace all node delays by their maximum possible values and

perform static timing analysis (this gives the upper limit on arrival time). The range

of arrival times for all signals essentially gives the range which is needed by the an-

alytical formulae to compute the K1 and K2 terms. This completes the description

of the budgeting formulation.

2.4.3 Linear and Quadratic Approximation Schemes

Our error budgeting scheme discussed in section 2.4.2 allocates an error to

each approximation step. If we can ensure that the approximation error introduced

at each step is within the error budget, we can control the total error in the CDF

55

of the output arrival time.

Piecewise Linear Approximation

We can approximate the PDF of gate delay and the arrival time CDF into

piecewise linear PDF and CDF respectively [10]. We are given an error budget for

each approximation step from the error budgeting technique explained in section

2.4.2. The piecewise linearization could be iteratively refined until the overall error

is less than the budget. The piecewise linear CDF and PDF can then be decomposed

into a sum of ramps as shown in figure 2.11(a) and (b) respectively. Hence, if an

approximation step has a large error budget, we can approximate it with very few

lines are get considerable runtime savings.

t1 2 3

1

2

3

t t t t t

1

2 3

4

1 2 3 4 5

(a) CDF (b) PDF

tt

Figure 2.11: Decomposing CDF and PDF into sum of ramps

The SUM operation as defined before would now be applied to the piece-

wise linear CDF (with n ramps) and piece-wise linear PDF (with m ramps) and

result in mn convolutions. We can then add up these convolution results to get the

56

intermediate CDF after the SUM operation. However, we will retain them in this

decomposed form for the MAX operation. The convolution between two ramps with

slopes s1 and s2, starting at t1 and t2 can be calculated as shown in figure 2.12(a).

The convolution result Co has a closed form expression given by

Co = s1s2(1/6t3 − (t1/2 + t2/2)t2 + (1/2t1
2 + 1/2t2

2 + t1t2)t

− (1/6t1
3 + 1/6t2

3 + 1/2t1t2
2 + 1/2t2t1

2)) (2.35)

t + t3 4

C1

max(t + t 1 2 , t + t3 4)

C0C1

C0

(b) MAX(a) SUM

C0

t + t21

s s

tt

1

1 2

2

t + t21

Figure 2.12: SUM and MAX

Hence, after the SUM operation we have each intermediate CDF represented

as sum of mn cubic polynomials. The CDF of the arrival time at the output of

the gate is given by the MAX operation on the CDFs obtained after the SUM

operation on different input pins of the gate. The closed form expression for the

resulting CDF is just the product of the CDFs from the SUM operation. Unlike the

approach presented in [10], we do not linearize the CDFs after the sum operation

because this step would inject unnecessary error into the CDFs. We can compute

the MAX operation on the two CDFs C0 (say with m0n0 cubic polynomials after

57

SUM) and C1 (say with m1n1 cubic polynomials after SUM) as shown in figure

2.12(b) by taking the product of every pair of cubic polynomials that were obtained

for both the CDFs after the SUM operation as given by equation 2.35. The MAX

operation would therefore generate (m0n0m1n1) polynomials of degree six which can

be summed together to get the CDF of the arrival time at the output of the gate as

given by equation 2.36.

Cout(t) = Σi,jC
i
0(t)C

j
1(t) (2.36)

In order to propagate this to the next fanout gate, we again perform piecewise

linearization of the CDF. The number of lines that this CDF is decomposed into

depends on the error budget allocated to output linearization of this gate. We again

repeat the iterative decomposition until the error budget is met.

Hierarchical Quadratic Approximation

The approximation of the CDFs and PDFs can also be done using hierarchical

quadratic modeling [44, 45]. This has an advantage over linear approximation since

quadratic approximation has lesser error. In this work, we apply the philosophy of

hierarchical quadratic modeling in which the approximation is refined hierarchically

till the approximation error is within the allocated error budget. We construct a

minimal equidistant hierarchical grid structure as shown in figure 2.13(a) for each

hierarchy level i. In this work we limit the maximum number of hierarchical levels

to four. Each hierarchical level doubles the number of approximation quadratic

58

polynomials used from the previous level. Between these approximation points the

input signal is approximated as a quadratic such that the error in approximation is

minimum. If the overall error is more than the assigned budget then another level

approximating points is added.

Gate Delay PDFArrival Time CDF

2t Time
1t

Prob Prob

Time
21 tt

1

(a) Grid Structure (b) Decomposition

maxmin

Level 1

Level 4

Level 3

Level 2

Figure 2.13: Grid Structure and Quadratic Decomposition

Details about the quadratic approximation techniques on hierarchical basis can

be found in [44, 45]. Given a distribution as a CDF or a PDF, we can decompose

it into piecewise quadratic function analogous to the piecewise linear case as shown

in figure 2.13(b). The SUM operation would now be applied to piecewise quadratic

CDF (with say n quadratics) and piecewise quadratic PDF (with say m quadratics)

and result in mn polynomials of degree five. Similar to the linear case, we can derive

a closed form expression for this convolution the details of which are omitted for

brevity. We can compute the MAX operation on the two CDFs C0 (say with 0n0

CDFs after SUM) and C1 (say with m1n1 CDFs after SUM) by taking the product

of every pair of degree five polynomials that were obtained for both the CDFs after

59

Benchmark Accurate Fixed 3 line Error Linear Budgeting Error Quadratic Budgeting Error

C432 758 92 30.35 420 16.46 601 3.40

C499 1407 176 37.71 679 27.09 1056 9.45

C880 1160 151 13.87 487 8.75 863 1.11

C1908 1793 218 40.15 889 30.97 1249 2.31

C2670 2850 423 10.77 1283 4.36 1966 0.69

C3540 4071 500 11.02 1918 6.49 3146 1.171

C6288 11935 1930 13.47 5985 5.67 7473 2.71

C7552 9249 1467 5.65 3201 1.34 6562 0.48

Table 2.1: Runtime and Error Comparison

the SUM operation as given by equation 2.35. The MAX operation would therefore

generate (m0n0m1n1) polynomials of degree ten which can be summed together to

get the CDF of the arrival time at the output of the gate as given by equation

2.36. Although degree ten polynomials may sound too complicated, these are just

close form expressions and could be implemented very easily. The output CDF

needs to be approximated once again into a piecewise quadratic simplification. This

approximation could be done depending on the error budget allocation for this gate.

2.4.4 Experimental Results

The statistical timing analysis framework with the proposed error budgeting

paradigm was implemented in SIS [37]. A topological traversal over the circuit

is done in the first step to generate the error budgeting constraints using the LP

formulations discussed in section 2.4.2. We use CPLEX to solve the error budgeting

problem and get an error budget for each step of approximation in statistical timing

analysis. We have used the ISCAS/MCNC benchmarks in SIS for our experiments.

The arrival time distributions at the primary inputs were taken to be Gaussian (in

60

1 1.5 2 2.5 3 3.5 4
300

320

340

360

380

400

420
Runtime Comparison for Different Error Budgets for C432

Error Budget

R
un

tim
e

(in
 u

ni
ts

)

(a) Benchmark C432

1 1.5 2 2.5 3 3.5 4
900

950

1000

1050

1100

1150

1200

1250

1300
Runtime Comparison for Different Error Budgets for C2670

Error Budget

R
un

tim
e

(in
 u

ni
ts

)

(b) Benchmark C2670

Figure 2.14: Runtime Results

CDF form) and the gate delay distributions were taken to be Gaussian as well (in

PDF form). We have ignored the global Corellations in this work and reconvergent

fanouts were handled similar to [10]. Since our error budgeting approach uses an

adaptive scheme to approximate each distribution depending on its corresponding

allocated error budget, we limit the maximum number of segments used to make

piecewise linear approximation to 16 lines and the minimum segments to be 3 lines

([10] uses fixed 3 line scheme). Piecewise quadratic approximations have maximum

4 hierarchy levels (or 8 quadratic polynomials). We generate an accurate CDF for

the output arrival time for each benchmark to make comparisons in runtime, error

budget and the quality of solution between our adaptive approach and the 3 line

fixed linearization approach proposed in [10].

Table 2.1 shows the runtime and error comparison between fixed 3-line ap-

proximation and our adaptive error budgeting scheme (both linear and quadratic).

61

70 80 90 100 110 120 130
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Comparison between Solution Quality For The Same Error Budget C432

Arrival Time at the PO (in micro seconds)

P
ro

ba
bi

lit
y

Accurate

Fixed 3 Line

Linear Error Budgeting

Quadratic Error Budgeting

(a) Benchmark C432

35 40 45 50 55 60 65
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Tradeoff between Solution Quality for the same Error Budget C2670

Arrival Time at the PO (in micro seconds)

P
ro

ba
bi

lit
y

Fixed 3 Line
Linear Error Budgeting

Quadratic Error Budgeting

Accurate

(b) Benchmark C2670

Figure 2.15: STA Results

Columns 2, 3, 5 and 7 give the runtimes for the accurate, fixed 3-line, linear and

quadratic cases respectively. The comparisons for error are made with respect to the

accurate case using equation 2.7. Our adaptive linear approximation scheme using

error budgeting give solutions which are bounded by the fixed 3-line linearization

scheme from [10] and the accurate solution both in terms of runtime and quality

of solution. We also note that the runtime of quadratic approximation is lower

than that of the accurate distribution while the solution quality obtained from the

quadratic scheme is very close to the accurate one. This shows the efficiency of

quadratic approximation. However, when compared with linear approximation, it

has a higher runtime but better solution quality as well.

Figures 2.14(b) and 2.14(a) show the tradeoff between the error budget and

runtime. Hence, we can exploit this tradeoff to reduce the runtime of statistical

timing analysis.

62

70 80 90 100 110 120 130
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Tradeoff between Solution Quality and Error Budget for C432

Arrival Time at PO (in micro seconds)

P
ro

ba
bi

lit
y

Accurate

Fixed 3 Line

Increasing Error Budget

Quadratic Approximation

Linear Approximation

(a) Benchmark C432

35 40 45 50 55 60 65
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Tradeoff between Solution Quality and Error Budget for C2670

Arrival Time at the PO (in micro seconds)

P
ro

ba
bi

lit
y

Fixed 3 Line
Linear Approximation

Quadratic Approximation

Accurate

Increasing Error Budget

(b) Benchmark C2670

Figure 2.16: Error Budgeting Tradeoff

Figures 2.15(a) and 2.15(b) show the CDFs at the primary outputs for two

different benchmarks. The error budget assigned to both the linear approximation

scheme and the quadratic approximation scheme were the same. We can see from

the figures that linear approximation schemes using error budgeting gives better

solution quality as compared with fixed 3-line approximation. For the same error

budget, quadratic approximation scheme gives us better solution quality but at the

cost of a higher runtime when compared with linear approximation scheme. We can

clearly see that the solution quality of the quadratic approximation is very close to

the accurate distribution for both cases but the runtime are better by 20.7% for

C432 and 31.1% for C2670 respectively as shown in table 2.1. These observations

clearly bring out the effective of the quadratic scheme over the linear scheme in

terms of the solution quality. The proposed concept of error budgeting is effective

in saving runtime while preserving the solution quality.

63

The tradeoff between error budget and solution quality obtained in statistical

timing analysis is another key observation from the experiments. Now we try to

study the effect of changing the assigned error budget during statistical timing

analysis. Figures 2.14(b) and 2.14(a) show the effect of increasing the error budget

on runtime. From figures 2.16(a) and 2.16(b), we can see that as the error budget

increases, the solution quality from linear approximation decreases. Hence there is

a direct tradeoff between the error budget and the corresponding solution quality

and runtime.

64

2.5 A General Framework for Accurate Statistical Timing Analysis

Considering Correlations

Statistical Timing Analysis has become a widely researched area with increas-

ing impact of process variations on deep-submicron designs. The growing sources

of variations along with the delay correlations they introduce in the design make it

increasingly hard to perform fast and accurate timing analysis. Traditional design-

corner based static timing analysis has become inaccurate due to pessimistic timing

yield estimates. Monte-Carlo based statistical timing approaches become expensive

in the presence of such large number of sources of variability. The central idea

in STA is to capture the variability by modeling delays as distributions and per-

forming timing analysis statistically on these distributions while capturing possible

correlations that could exist between gate delays.

A lot of recent work in statistical timing analysis tries to consider the impact

of process variations in performance analysis. Some approaches propose bounds on

the statistical timing information [3, 2, 79] which can be computed efficiently for

quick statistical timing estimation. Other approaches explicitly compute the timing

statistically, making approximations at every step for curtailing the data explosion

and improving the runtime. The authors in [26] propose a first order approximate

delay model that takes into account both the correlated and independent random-

ness from different sources of variation. A similar strategy is presented in [42],

where the authors present an efficient PERT-like traversal based statistical timing

algorithm which considers the effects of the correlations of intra-die parameter vari-

65

ations by imposing an approximation similar to [26]. A moment based approach for

capturing correlations is presented in [60]. In this work, we present a novel STA

scheme that considers non-linear (quadratic) gate delay model and does not make

any assumption about the nature of the underlying parameter variations. Some

other recent works have tried to address the problem of non-linear, non-Gaussian

STA ([127, 30, 43]) as well and a preliminary version of this work has been proposed

in [119].

In this work we present a novel and general framework for accurate STA. The

current approaches represent gate delay as a function of the underlying parameters

which are usually taken to be independent principal components. In our approach

we model each gate delay and arrival time distribution as a quadratic polynomial

using Taylor-series expansion on the independent principal components. We do not

make any assumptions about the distribution of the principal components (and con-

sequently the gate delays and arrival times in the circuit). We impose a quadratic

polynomial based gate delay model in the scheme. Any arbitrary distribution will

work in our general framework. In this work we also present a strategy for comput-

ing the MAX of multiple arrival time signals which are also modeled as quadratic

polynomials in the principal components. Using regression, we approximate the

result of MAX back to a quadratic polynomial with minimum impact on error.

Since all timing variables are approximated as quadratic polynomials in the global

principal components, the correlations are inherently considered. The computation

complexity of STA increases as we move from a linear modeling scheme [26, 42] to

a quadratic modeling scheme. In order to address the runtime increase, we also

66

propose a novel linear-regression driven quadratic modeling STA scheme.

We ran experiments with two sets of underlying parameter distributions. In

the first set of experiments, we assumed that the global parameters had a uniform

distribution. The results have shown that the proposed linear regression driven

quadratic gate delay and arrival time modeling based STA scheme has on an average

an rms error of 0.0016 in the output CDF as compared to 0.0453 from linear gate

delay and arrival time modeling (which is done by most existing STA schemes) when

compared with accurate Monte Carlo CDFs. In the second set of experiments, we

assumed that the global parameters had a Gaussian distribution. The results have

shown that the proposed quadratic gate delay and arrival time modeling scheme

has on an average an rms error of 0.0014 in the output CDF as compared to 0.0319

from linear gate delay and arrival time modeling when compared with accurate

Monte Carlo CDFs. This clearly brings out the effectiveness of quadratic modeling

of gate delays and arrival times to better capture the variability in timing due to

parameter variations. The average runtime speedups for the linear-driven quadratic

scheme over Monte-Carlo was 51.5x, while that from linear scheme was 56.5x. We

also make experimental comparisons with the non-linear non-Gaussian STA scheme

proposed in [43].

2.5.1 Modeling Parameter Variations and Spatial Correlations

In this section we will discuss the methodology that we impose for modeling

the statistical correlations between the gate delay variables. We assume that the

67

gate delay is dependent on a number of location-dependent parameters which are

assumed to be mutually independent random variables. Let Pi, Qi and Ri denote

three such parameters (although our approach is very general and can be trivially

extended to having more sources of variations also). Therefore, the delay of a gate i

can be modeled as a function of these independent parameters as given by equation

3.60:

Di = F (Pi, Qi, Ri) (2.37)

We note here that F can be a non-linear function of the parameters. The un-

derlying variables Pi, Qi, Ri and the corresponding delay can have any distribution.

As has been indicated in several other statistical timing techniques, spatial correla-

tion would exist between delay variables of different gates due to spatial proximity.

Spatial Correlation Modeling

Let us suppose that we are given a placed netlist as shown in figure 2.17.

We impose a uniform grid on the placement to partition the gates into spatial

regions. Let us now consider the parameter P and assume that its variation can

be represented as a linear combination of four independent random components

namely P1, P2, P3 and P4 that are zero mean and finite variance. These four

random variables correspond to the four corners of the chip (as illustrated in figure

2.17). For any gate j, we model its corresponding parameter Pj as given by equation

2.38:

68

Gate j

Gate i

P1 P2

P3 P4

R1
R2

R1’ R2’

R3’
R4’

R3

R4

Figure 2.17: Grid-Based Spatial Correlation Model

Pj = a1P1 + a2P2 + a3P3 + a4P4 + a0 (2.38)

where a0 is the nominal value of parameter Pj. For any gate j in the netlist, we

can compute the grid-based radial distance for the gate from the corners of the

placement. This is represented by R1, R2, R3 and R4 for gate j as shown in the

figure. The coefficients a1, a2, a3 and a4 are dependent on these radial distances.

The underlying random variables P1, P2, P3, P4 can have any arbitrary dis-

tribution depending on the distribution of the parameter Pj. Therefore, we can see

that if two gates i and j are far apart, they will get different contributions from

each of the four components P1, P2, P3 and P4 and will have a weak correlation.

If they are placed close together, then their coefficients will be similar and strong

correlation will exist between them. In this way, we model spatial correlations for

each of the remaining parameters in the system (Y and Z in this case).

69

There are other schemes in current literature [1, 42, 26] that present different

spatial correlation models, but there is no strong validation of any existing model.

Our scheme has the flexibility to allow any compact and efficient spatial correlation

model that may be validated in future research to be used in this framework.

Gate Delay Modeling

In this work we propose a gate delay modeling scheme that represents each gate

delay (and arrival time) as a quadratic polynomial in the underlying parameters.

Unlike the existing schemes [42, 26], this allows us to consider non-Gaussian and

non-linear dependence of delay on the underlying parameters. A similar quadratic

modeling scheme has also been proposed in [127]. We have represented our gate

delay as a function of the independent parameters as given by equation 3.60. Each

of Pi, Qi and Ri can be represented as a linear combination of their underlying

random components as given by equation 2.38. Hence, we can represent our gate

delay as a function of these variables as:

Di = Gi(P1, P2, P3, P4, Q1, Q2, Q3, Q4, R1, R2, R3, R4) (2.39)

For simplification in representation, let us represent these variables as Y 1, Y 2,

Y 3, Y 4, Y 5, Y 6, Y 7, Y 8, Y 9, Y 10, Y 11 and Y 12 respectively. We can use Taylor-

series expansion about the mean values on this relation and obtain gate delay Di

as a sum of a series of multiple-order components as given by equation 2.40. The

nominal values for the gate delay happens when all Yi variables are zero (essentially

70

no variance). Therefore Di(nominal) = Gi(0).

Gi = G(0) +
12

∑

k=1

(Y k)G′(0) + 1/2!(
12

∑

k=1

(Y k))2G′′(0)..... (2.40)

The approach in [42] presents a similar strategy in which the delay for each

gate is simplified according to Taylor series. Their approach however arbitrarily

ignores the higher order polynomial terms and simply represents each gate delay as

a a linear combination of the random variables (the Yi terms in our case). Such a

simplification is shown below

Di = c1Y 1 + c2Y 2 + c3Y 3 + c4Y 4 + c5Y 5 + c6Y 6 + c7Y 7

+ c8Y 8 + c9Y 9 + c10Y 10 + c11Y 11 + c12Y 12 + Gi(0) (2.41)

Typical gate delay models have terms which illustrate a high degree of non

linear sensitivity. Such a linear approximation can inject a large amount of error

in gate delay modeling (and therefore the statistical timing estimate) itself. In this

work we choose not to ignore the higher order terms in the expanded Taylor series.

Therefore, we model the gate delays as a quadratic in the global variables Yi. Note

that this quadratic also has cross terms of the form YiYj etc. A general quadratic

representing the gate delay would have the following structure

Di = c1Y 1 + c2Y 2 + + c12Y 12 + c13Y 12 + + c24Y 122

+ 66 degree− 2 cross− terms + Gi(0) (2.42)

71

All delay variables in the circuit would share the same global variables Yi. This

would enable effective capturing of the correlations between them.

Additionally, it is known that there is also uncorrelated randomness at each

gate in the circuit [26]. We denote this uncorrelated randomness as another random

variable R. Every gate would have its own random variable R that is independent

of the other variables. In this work we assume that the uncorrelated randomness

variable R for each gate has a standard Gaussian distribution. Our gate delay model

is able to consider both correlated and uncorrelated components of variations as has

been illustrated in this section. Therefore, the complete gate delay model for a gate

i can be represented as

Di = c1Y 1 + c2Y 2 + + c12Y 12 + c13Y 12 + + c24Y 122

+ 66 degree− 2 cross− terms + Gi(0) + sRi (2.43)

where s is a constant coefficient denoting the sensitivity of the gate delay Di

to the uncorrelated randomness Ri for the gate.

2.5.2 Statistical Timing Analysis Framework

We will now describe our general STA framework. We use a block-based STA

approach that traverses the circuit topologically from the primary inputs to the

primary outputs. There are two basic operations that are performed at each gate

during this traversal. We first perform a SUM operation on the arrival time at a

fanin and the corresponding gate delay. This SUM operation is repeated for each

72

fanin of the gate. We then perform the MAX operation on the result of the already

computed SUM operations. This gives us the arrival time at the output of the gate.

As described in section 3.1.1, each gate delay is represented as a quadratic in the

independent/global parameters. Following a similar strategy we would like to ap-

proximate each arrival time signal as a quadratic too. The approach in [26] proposes

a similar strategy for representing all arrival time signals as linear combinations of

global variables. At the end of the topological traversal of the circuit, the STA data

has been generated. Let us now try to understand the two basic operations that are

performed repeatedly in STA. Figure 2.18 shows a typical gate in the circuit that

has K fanins and a quadratic gate delay representation D. The arrival time at fanin

i of the gate is denoted by Ai, which is also a quadratic representation similar to D.

We will use the notation quad(Y 1, .., Y 12) to represent a quadratic in the variables

Y 1, Y 2, ..., Y 12 in the rest of this work.

A 1

A
2

A K

1
2

K

O

D

A O

Figure 2.18: SUM and MAX Computation

73

D = quad(Y 1, Y 2,, Y 12) + s0R0 (2.44)

A1 = quad(Y 1, Y 2,, Y 12) + s1R1 (2.45)

...

AK = quad(Y 1, Y 2,, Y 12) + sKRK (2.46)

SUM Operation

Since arrival time and gate delay are both quadratic polynomials in the same

independent parameters, the result of the SUM operation is also a quadratic poly-

nomial. The coefficient of each term in the resulting quadratic polynomial is the

sum of the coefficients of the corresponding terms in Ai and D. However, we note

that there are uncorrelated randomness terms (denoted by R0 and R1) that also

need to be combined and represented back into the quadratic model as denoted by

equation 2.43. Since the two random variables R0 and R1 are standard-normal, we

choose to approximate them as another standard-normal random variable R. We

can compute the coefficient s such that the variance of R0 and R1 is preserved as

shown below. The entire SUM operation can therefore be represented as

74

A1o = A1 + D (2.47)

= quad(Y 1, ..., Y 12) + s0R0 + s1R1 (2.48)

= quad(Y 1, ..., Y 12) + sR (2.49)

where s2 = s2
0 + s2

1

Similarly, for each fanin i, we denote the result of the SUM operation by Aio:

A1o = A1 + D (2.50)

... ...

AKo = AK + D (2.51)

We note that this is an accurate computation in the underlying parameter vari-

ations and the only approximation that has been made in the uncorrelated random

component as shown above.

MAX Operation

We perform a MAX of K quadratics to get the arrival time signal Ao at the

output of the gate. We would like to represent Ao as a quadratic too. Since all

timing variables are represented as a quadratic in global variables, the correlations

are effectively captured.

75

Ao = MAX(A1o, A2o,, AKo) (2.52)

= quad(Y 1, Y 2,, Y 12) + soRo (2.53)

It is known that the MAX operation introduces the complexity in STA. It

is very hard to efficiently generate an accurate result of the MAX operation. We

propose a regression based strategy to compute the resulting quadratic Ao by per-

forming least square fitting. Assuming we know the degree of the quadratic that

we want Ao to be approximated in, least square fitting will try to find the best

quadratic that has the smallest error with the actual data of the MAX operation.

We are trying to approximate Ao with a quadratic as indicated in equation 2.54.

We need to evaluate all coefficients such that the resulting quadratic has smallest

error when compared with the actual MAX data. We note that equation 2.54 has

K terms for the uncorrelated randomness terms denoted by R. Since we are trying

to perform least square fitting on K arrival times, from each of them, we get one

uncorrelated randomness term R. However, as will be demonstrated later in the

section, we will recombine all these K terms to represent Ao back in the form as

shown above in equation 2.53.

Ao = c1Y 1 + c2Y 2 + + c12Y 12 + c13Y 12 + + c24Y 122

+ 66 degree 2 crossterms + c91 +

K
∑

i=1

siRi (2.54)

Now we will formalize the regression strategy that is used to compute these

76

coefficients. Let us assume that we are given a set of n sampling vectors for

the parameters (Y 1,, Y 12, R1, .., RK) and denote the ith sampling vector as

(Y 1i,, Y 12i, R1i, .., RKi) (these n samples will not be a very large set). We can

evaluate the exact value of the MAX result at these n sampling vectors. This could

be done by evaluating all the quadratics Aio and calculating their MAX. Let the ith

value be represented by zi. We can define a residual Res for least square fitting as

Res2 =

n
∑

i=1

[

zi − (c1Y 1i + + c12Y 12i + c13Y 12
i ++

c24Y 122
i + 66 degree 2 cross terms + c91 +

K
∑

j=1

sjRj)
]2

(2.55)

This residue essentially is the root mean square error between the actual data of

MAX zi and the one predicted by the quadratic. In order of minimize the residual,

we evaluate the partial derivative wrt. each coefficient in the quadratic and equate

the result to zero. This can be represented as :

77

∂(Res2)

∂c1
= −2

n
∑

i=1

[

zi − (c1Y 1i +)
]

Y 1 = 0 (2.56)

∂(Res2)

∂c2
= −2

n
∑

i=1

[

zi − (c1Y 1i +)
]

Y 2 = 0 (2.57)

.... =

∂(Res2)

∂c13
= −2

n
∑

i=1

[

zi − (c1Y 1i +)
]

Y 12 = 0 (2.58)

.... =

∂(Res2)

∂c91
= −2

n
∑

i=1

[

zi − (c1Y 1i +)
]

1 = 0 (2.59)

∂(Res2)

∂s1
= −2

n
∑

i=1

[

zi − (c1Y 1i +)
]

R1 = 0 (2.60)

.... =

∂(Res2)

∂sK

= −2

n
∑

i=1

[

zi − (c1Y 1i +)
]

RK = 0 (2.61)

We can re-organize these to get equations :

c1

n
∑

i=1

Y 1iY 1i + c2

n
∑

i=1

Y 2iY 1i + + c13

n
∑

i=1

Y 12
i Y 1i +

+ c91

n
∑

i=1

Y 1i + s1

n
∑

i=1

R1iY 1i + + sK

n
∑

i=1

RKiY 1i =

n
∑

i=1

ziY 1i (2.62)

c1

n
∑

i=1

Y 1iY 2i + c2

n
∑

i=1

Y 2iY 2i + + c13

n
∑

i=1

Y 12
i Y 2i +

+ c91

n
∑

i=1

Y 2i + s1

n
∑

i=1

R1iY 2i + + sK

n
∑

i=1

RKiY 2i =

n
∑

i=1

ziY 2i (2.63)

.......

c1

n
∑

i=1

Y 1iY 12
i + c2

n
∑

i=1

Y 2iY 12
i + + c13

n
∑

i=1

Y 12
i Y 12

i +

+ c91

n
∑

i=1

Y 12
i + s1

n
∑

i=1

R1iY 12
i + + sK

n
∑

i=1

RKiY 12
i =

n
∑

i=1

ziY 12
i (2.64)

78

.......

c1

n
∑

i=1

Y 1i + c2

n
∑

i=1

Y 2i + + c13

n
∑

i=1

Y 12
i +

+ c91n + s1

n
∑

i=1

R1i + + sK

n
∑

i=1

RKi =

n
∑

i=1

zi (2.65)

c1

n
∑

i=1

Y 1iR1i + c2

n
∑

i=1

Y 2iR1i + + c13

n
∑

i=1

Y 12
i R1i +

+ c91

n
∑

i=1

R1i + s1

n
∑

i=1

R1iR1i + + sK

n
∑

i=1

RKiR1i =

n
∑

i=1

ziR1i (2.66)

.......

c1

n
∑

i=1

Y 1iRKi + c2

n
∑

i=1

Y 2iRKi + + c13

n
∑

i=1

Y 12
i RKi +

+ c91

n
∑

i=1

RKi + s1

n
∑

i=1

R1iRKi + + sK

n
∑

i=1

RKiRKi =

n
∑

i=1

ziRKi (2.67)

We can combine these equations to give a more compact matrix representation as:





























































∑

n

i=1
Y 1iY 1i . . .

∑

n

i=1
Y 1i

∑

n

i=1
R1iY 1i . . .

∑

n

i=1
RKiY 1i

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

∑

n

i=1
Y 1iY 12

i
. . .

∑

n

i=1
Y 12

i

∑

n

i=1
R1iY 12

i
. . .

∑

n

i=1
RKiY 12

i

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

∑

n

i=1
Y 1i . . . n

∑

n

i=1
R1i . . .

∑

n

i=1
RKi

∑

n

i=1
Y 1iR1i . . .

∑

n

i=1
R1i

∑

n

i=1
R1iR1i . . .

∑

n

i=1
RKiR1i

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

∑

n

i=1
Y 1iRKi . . .

∑

n

i=1
RKi

∑

n

i=1
R1iRKi . . .

∑

n

i=1
RKiRKi





























































×





































c1

. . .

c91

s1

. . .

sK





































=





































∑

n

i=1
ziY 1i

. . .

∑

n

i=1
zi

∑

n

i=1
ziR1i

. . .

∑

n

i=1
ziRKi





































Essentially, we have represented the quadratic regression as the system Y C =

Z where we need to solve for the C matrix. Any well known technique for solving a

79

system of matrices can be used here. This approach essentially selects the coefficients

in such a way that the quadratic approximation of Ao has minimum error with the

real data set zi. This quadratic re-approximation is performed every time a MAX

operation is computed.

We have computed Ao as a quadratic in the underlying parameters (denoted by

Y i) and the uncorrelated randomness terms (denoted by Rj) as shown by equation

2.68. Since we know that the variables representing the uncorrelated randomness are

standard-normal, we can combine and re-approximate them as one standard-normal

variable as shown by equation 2.69. We can compute the coefficient so such that we

preserve the variance of the uncorrelated randomness terms in 2.68 by using s2
o =

∑K

j=1 s2
j . Therefore, as shown by equation 2.69, we can represent the result of the

MAX operation back into the out timing model as shown.

Ao = quad(Y 1, Y 2,, Y 12) +

K
∑

j=1

sjRj (2.68)

Ao = quad(Y 1, Y 2,, Y 12) + soRo where s2
o =

K
∑

j=1

s2
j (2.69)

The regression strategy used in MAX operation has a computational complex-

ity that depends on the size n of the sampling values. Increasing the number of

samples at each MAX operation increases the computational cost of this operation

but improves the accuracy of the quadratic fit.

We also point out here that the generality of our STA approach to handle all

kinds of parameter variation distributions, gate delay distributions and arrival time

80

distributions is made possible by not making any distribution based approximation

in the MAX operation. Quadratic regression can be applied to any arbitrary dis-

tribution of the parameter variables Y K and the accuracy controlled through the

number of sampling vectors used.

After the topological traversal of the circuit, the arrival time at the primary

output is represented as a quadratic in global variables. It can be seen that we have

presented a generic statistical timing methodology that is not constrained by any

assumptions on underlying distribution.

Strategy for Generating Samples for Regression

We would like to elaborate on the sampling strategy that has been used in our

proposed STA scheme. The MAX operation as discussed in subsection 2.5.2 performs

least square fitting based regression to compute the output arrival time Ao. In order

to implement the regression strategy, we need to compute a set of n sampling vectors

for the variables representing the parameters (Y 1,, Y 12, R1, .., RK).

Sampling can be done in two ways, the first one being distribution dependent

probabilistic sampling. If we are given the distribution of each of the random vari-

ables (Y 1,, Y 12, R1, .., RK), we can use the density functions to generate samples.

Regression performed through these samples would be a probabilistic fit which has

the potential to be very accurate as compared to a distribution independent sam-

pling scheme. A second way for sampling is to perform a distribution independent

sampling which we call algebraic sampling. Here, we do not make any assumption

81

about the distribution of the random variables (Y 1,, Y 12, R1, .., RK). We gener-

ate samples along the range of the variables without taking into consideration the

probability of the occurrence of that sample. Effectively, this is the same as perform-

ing a uniform distribution based sampling. As opposed to probabilistic sampling, in

this case we can end up trying to minimize the least square fitting error at points

that have a very low probability of occurrence.

We have chosen to perform algebraic sampling in this work and our exper-

imental results show that we are extremely accurate compared with Monte-Carlo

simulations. Apart from being independent of the distribution of the parameters,

we are also able to use fewer samples to capture the distribution making our scheme

more efficient.

2.5.3 Reducing Complexity in Quadratic Regression

We note that the computational complexity in quadratic STA comes primarily

from the MAX operation as described in section 2.5.2. Hence, this step becomes

the run-time determining step of the STA scheme. Ideally, we would like to main-

tain the accuracy obtained from using a quadratic models while keeping a runtime

that is comparable to an STA scheme with linear delay/arrival time models. The

advantage of using regression is the generality in the scheme to handle timing distri-

butions of any nature (not Gaussian only) and the mathematical accuracy inherent

in regression. In order to achieve the desired level of accuracy as well as runtime

behavior, we propose a scheme that uses linear-modeling based STA to drive the

82

quadratic STA.

Linear Regression Driven Quadratic STA

Quadratic modeling based STA is more accurate in generating the PDF/CDF

of arrival time distribution because of two primary reasons: firstly, because quadratic

gate delay modeling is better able to capture the nature of distribution due to the un-

derlying parameter variation and secondly, because quadratic arrival time modeling

is able to represent the PDF/CDF more accurately than linear modeling. However,

the mean and variance of the arrival time distributions are captured with reason-

able accuracy in the linear modeling based STA. We will now propose a quadratic

modeling based STA technique that is driven by linear modeling based STA (which

has lower runtime).

OUTG

X

Y

Ax

Ay

Delay = D

Aout

Figure 2.19: STA technique at Gate G

We traverse the circuit topologically and at each gate, we run linear STA

and then use linear STA results to drive quadratic STA. Linear STA corresponds to

performing linear regression assuming a linear model for arrival time and gate delay.

Thus, we generate and store both linearly and quadratically modeled timing values

at each gate. Let us suppose we are evaluating the arrival time at output of gate G

83

with two fanins (X and Y) as shown in figure 2.19. For each input X and Y , we are

given both linear and quadratic modeling values for the signal arrival times Ax and

Ay respectively. Let us denote the linear arrival times as Al
x and Al

y respectively

and the quadratic arrival times as Aq
x and Aq

y respectively. The linear and quadratic

models for gate delays are given as Dl and Dq respectively.

The linear arrival time Al
out at the output of gate G is given by:

Al
out = MAX(Al

x + Dl, Al
y + Dl) (2.70)

During linear STA we perform regression based MAX operation based on linear

gate delay and arrival time models as given by equation 2.70. In section 2.5.2,

we have discussed the details of the proposed regression based STA scheme. This

enables the time consuming regression in the MAX step (section 2.5.2) to be much

faster than the quadratic case. The linear regression output gives us the arrival time

(Al
out) at the output of gate G as a linear combination of parameters:

Al
out = c0 + c1Y 1 + c2Y 2 + + c12Y 12 + soRo (2.71)

where Y1, Y2,......., Y12 are the independent parameter variables as discussed

in section 3.1.1. We know the distribution of these random variables and hence can

calculate the mean and the variance of the arrival time Al
out as:

Mean(Al
out) = c0 + c1 ∗Mean(Y 1) + + c12 ∗Mean(Y 12) (2.72)

84

V ar(Al
out) = c2

1 ∗ V ar(Y 1) + c2
2 ∗ V ar(Y 2) + + c2

12 ∗ V ar(Y 12) + s2
o (2.73)

We will now assume that the mean and variance of the output arrival time

after linear regression is accurate. We will run quadratic STA by matching the

mean and variance (first two moments) of the quadratic arrival time with the linear

regression output. Let us now understand the scheme in more detail.

The quadratic arrival time at the output of gate G (say Aq
out) is given by:

Aq
out = MAX(Aq

x + Dq, Aq
y + Dq) (2.74)

where Aq
x and Aq

y are the signal arrival times at the input-pins X and Y

respectively and Dq is the quadratic gate delay. Now let us suppose that we know

the probability p such that arrival time (Aq
x +Dq) ≥ arrival time (Aq

y +Dq). We can

calculate the probability p = Prob(Aq
x + Dq ≥ Aq

y + Dq) during the linear STA

run at gate G.

We can run quadratic STA on gate G by utilizing this probability p to generate

an output quadratic Aq
out, which will then be scaled to match its first two moments

to the values evaluated from linear regression based STA as given by equations 2.72

and 2.73. Let the output arrival time quadratic Aq
out be generated as follows:

Aq
out = p ∗ (Aq

x + Dq) + (1− p) ∗ (Aq
y + Dq) (2.75)

where Aq
x and Aq

y are the quadratic arrival times of the signal at the fanin

pins X and Y (which have already been calculated previously). After this step, we

85

need to match the variance of Aq
out to the variance of Al

out from linear regression. A

quadratic Aq
out can be given by:

Aq
out = c0 + c1Y 1 + + c12Y 12 + c13Y 12 + + c24Y 122

+ 66 degree− 2 cross− terms + sxRx + syRy (2.76)

We can again combine the uncorrelated random terms (Rx and Ry) into one

term (Ro) by matching their variance as shown before

Aq
out = c0 + c1Y 1 + + c12Y 12 + c13Y 12 + + c24Y 122

+ 66 degree− 2 cross− terms + soRo (2.77)

Since we know the distribution of each underlying parameter variation (Y 1

to Y 12), we know their mean and variance values. We can evaluate the mean and

variance of Aq
out as follows:

Mean(Aq
out) = c0 + c1 ∗Mean(Y 1) + + c12 ∗Mean(Y 12)

+ c13 ∗Mean(Y 12) + other terms (2.78)

86

V ar(Aq
out) = c2

1 ∗ V ar(Y 1) + + c2
12 ∗ V ar(Y 12)

+ c2
13 ∗ V ar(Y 12) + + c2

24 ∗ V ar(Y 122)

+ c2
25 ∗ V ar(Y 1 ∗ Y 2) +cross terms + s2

o

+ 2c1c2 ∗ Cov(Y 1, Y 2) + 2c1c3 ∗ Cov(Y 1, Y 3)

+ all other covariance terms (2.79)

We will first match the variance of Aq
out (from equation 2.79) with that of Al

out

(from equation 2.73) by scaling Aq
out with a factor α such that:

α2 = V ar(Al
out)/V ar(Aq

out) (2.80)

Ap′

out = α ∗ Aq
out (2.81)

The mean of the new scaled quadratic will be:

Mean(Aq′

out) = α ∗Mean(Aq
out) (2.82)

Hence, to match the mean of the quadratic arrival time expression with that

obtained from linear regression (equation 2.72), we can add a constant factor β to

the constant term c0 of Aq′

out such that:

β = Mean(Al
out)−Mean(Aq′

out) (2.83)

c′0 = c0 + β (2.84)

87

Hence the final quadratic arrival time at the output of gate G can be given by

Aquad
out :

Aquad
out = α ∗ Aq

out + β (2.85)

This completes our linear regression driven quadratic STA technique. We have

avoided the complexity of solving a large quadratic regression problem at each gate

(during the MAX operation) by solving a smaller linear regression problem and then

performing moment matching (first two moments) as explained in this section. The

runtime complexity of this scheme will be of the order of the runtime for linear

regression.

2.5.4 Experimental Results

The proposed STA framework was implemented in SIS [37]. For the gate delay

model in equation 2.86, we assumed that threshold voltage (Vth) is the underlying

sources of variability. We used an academic placement tool (CAPO [5]) to get a valid

placement for each benchmark. This placement information was used to generate

the Vth variations at each gate as indicated in equation 2.38. This automatically

captures correlations due to spatial proximity. We imposed a 15% variability on Vth

with a mean value of 0.5V. All experiments were run on a Sunblade 150 machine

with 512mb RAM.

Di ∝
CLVdd

(Vdd − Vth)α
(2.86)

88

Benchmark Monte Carlo Linear STA Quadratic STA Linear-Driven Quadratic STA

Runtime Runtime Speedup Runtime Speedup Runtime Speedup

C432 1919 129 14.9 382 5.0 134 14.3

C499 6132 257 23.9 773 7.9 270 22.7

C880 5171 231 22.4 679 7.6 241 21.5

C1355 6030 251 24.0 777 7.8 270 22.3

C1908 8310 272 30.6 815 10.2 282 29.5

C3540 39805 714 55.7 2069 19.2 758 52.5

C5315 86575 985 87.9 2084 41.5 1088 79.6

C6288 223945 1715 130.6 4838 46.3 1898 117.9

i2 3052 147 20.8 428 7.1 148 20.6

i4 2286 88 26.0 258 8.9 94 24.3

i5 2975 92 32.3 271 10.9 96 30.9

i6 15933 255 62.5 763 20.9 271 58.8

i7 28977 355 81.6 1014 28.6 375 77.3

i8 36183 620 58.4 1804 20.1 659 54.9

i9 36183 357 47.2 1048 16.1 383 44.0

i10 223021 1378 161.8 3862 57.7 1554 143.5

Average 55X 20X 51X

Table 2.2: Runtime Comparison wrt Monte Carlo (Global Parameters have a Uni-

form Distribution)

89

The quadratic model for each gate delay was generated using best fit regression

with Monte Carlo data. The Monte Carlo data for the gate delay was calculated

using the delay model indicated in equation 2.86 with different parameter instances.

In order to compare the runtime and error of our STA results, we generated accurate

timing CDFs for each benchmark using equation 2.86 for gate delays through Monte

Carlo simulations.

We experimented with the following cases:

1. Using linear gate delay and arrival time models, we performed regression based

STA (as described in section 2.5.2). This approach is similar to the one pro-

posed by state of the art STA techniques like [26, 42].

2. Using quadratic gate delay and arrival time models, we performed regression

based STA (as described in section 2.5.2).

3. We performed quadratic STA using our proposed linear regression driven

quadratic STA scheme (as described in section 2.5.3). The aim here is to

show that we can maintain the accuracy obtained from quadratic models while

keeping the runtime comparable to linear regression based STA.

We performed two sets of experiments, assuming the underlying global param-

eters to have a uniform and Gaussian distribution respectively.

Uniform Distribution of Global Parameters

In this set of experiments, all global parameters were assumed to have a uni-

form distribution. We imposed a 15% variability on Vth with a mean value of 0.5V.

90

Benchmark Linear Quad Lin-Quad

(rms err) (rms err) (rms err)

C432 0.0474 0.0019 0.0049

C499 0.0496 0.0025 0.0031

C880 0.0489 0.0012 0.0012

C1355 0.0499 0.0013 0.00013

C1908 0.0479 0.0010 0.0011

C3540 0.0476 0.0009 0.0009

C5315 0.0434 0.0026 0.0029

C6288 0.0437 0.0011 0.0011

i2 0.051 0.0013 0.0014

i4 0.046 0.0013 0.0023

i5 0.00475 0.0009 0.0009

i6 0.0472 0.0008 0.0009

i7 0.0504 0.0011 0.0011

i8 0.0485 0.0009 0.0010

i9 0.0498 0.0010 0.001

i10 0.0485 0.0008 0.0009

Average 0.0453 0.0013 0.0016

Table 2.3: RMS Error Comparison wrt Monte Carlo CDFs (Global Parameters have

a Uniform Distribution)

91

Tables 2.2 and 2.3 present the experimental results. All runtime and error compar-

isons are made wrt. Monte Carlo simulations. In table 2.2, columns 2, 3, 5 and 7

present the runtime for Monte-Carlo, linear STA, quadratic STA and linear-driven

quadratic STA respectively. The corresponding speedups are given in columns 4,

6 and 8 respectively. It can be seen that on an average, we get 55x, 20x and 51x

speedup compared with Monte Carlo runtime for the three schemes respectively.

We note that the runtime complexity of the novel linear-driven quadratic regression

scheme is similar to that of linear regression driven STA with the benefit of allowing

us to use a more accurate quadratic modeling framework.

Table 2.3 presents the root mean square (rms) error in the output CDFs

from the three schemes as compared with the accurate CDFs from Monte-Carlo

simulations. On an average there is 0.0453, 0.0013 and 0.0016 units of rms error

in the CDFs obtained from linear STA, quadratic STA and linear-driven quadratic

STA respectively. It is evident that quadratic modeling gives us more accuracy by

capturing the variability better during STA. We also note that the error obtained

from linear-driven quadratic STA is also very similar to that of quadratic STA.

This points out the effectiveness of our proposed scheme in being able to capture

the accuracy provided by quadratic modeling of gate delays and arrival times while

being able to maintain a runtime complexity similar to that of linear STA.

Even though the rms error numbers are small in magnitude, they can make

a significant impact on the CDF. For example, the average rms error in linear

regression scheme is 0.045 units, so if we are looking at the 50 percentile point

on the accurate CDF, the predicted CDF potentially be showing a value of either

92

5800 6000 6200 6400 6600 6800 7000 7200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Arrival Time CDF for Benchmark i10

Primary Output Arrival Time in ps

C
um

m
ul

at
iv

e
P

ro
ba

bi
lit

y

Linear STA

Quadratic STA

Monte−Carlo

Linear−Driven
Quadratic STA

Figure 2.20: CDF Result for i10 at a primary output

0.455 or 0.545, which is a very significant difference from the actual value of 0.5.

The impact of this inaccuracy on decisions made on the design during optimization

phase using these CDFs could be very drastic. Figure 2.20 depicts the CDF at

the output of benchmark i10. The CDFs obtained from quadratic regression based

STA and linear-driven quadratic STA are almost co-inciding with that obtained

from Monte-Carlo and have a very small rms error. Hence, linear regression driven

quadratic STA provides high accuracy as compared with Monte Carlo even though

its runtime is comparable with that of linear regression.

Gaussian Distribution of Global Parameters

In order to evaluate the accuracy of our scheme on different distributions of

the underlying parameter variations, we also ran a set of experiments assuming the

parameters to have Gaussian distribution. We imposed a 15% variability on Vth with

93

4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Primary Output Arrival Time in ps

C
um

m
ul

at
iv

e
P

ro
ba

bi
lit

y

Arrival Time CDF at a primary output − Benchmark i10

Uniform Distribution
− Monte Carlo
− Quadratic Regression
− Linear Driven QuadraticGaussian Distribution

− Monte Carlo
− Quadratic Regression
− Linear Driven Quadratic

Figure 2.21: CDF Result for i10 at a primary output

a mean value of 0.5V, which implies that the 3σ interval was taken to be 0.15∗0.5V.

All other experimental conditions were kept the same as before.

In table 2.4, columns 2, 3, 5 and 7 present the runtime for Monte-Carlo, linear

STA, quadratic STA and linear-driven quadratic STA respectively. The correspond-

ing speedups are given in columns 4, 6 and 8 respectively. It can be seen that on an

average, we get 58x, 21x and 52x speedup compared with Monte Carlo runtime for

the three schemes respectively.

Table 2.5 presents the rms errors in the output CDFs from the three schemes

as compared with the accurate CDFs from Monte-Carlo simulations. On an average

there is 0.0319, 0.0011 and 0.0014 units of rms error in the CDFs obtained from

linear STA, quadratic STA and linear-driven quadratic STA respectively.

Figure 2.21 shows the comparison of the CDFs obtained at one of the primary

outputs for benchmark i10. It can clearly be seen that our proposed schemes (both

94

Bench Monte Carlo Lin STA Quad STA Lin-Driven Quad STA STA from [43]

mark Runtime Runtime Speedup Runtime Speedup Runtime Speedup Runtime Speedup

C432 2010 135 14.9 388 5.1 144 13.9 369 5.4

C499 6111 269 22.7 762 8.0 281 21.7 711 8.6

C880 5398 227 23.8 691 7.8 264 20.4 621 8.7

C1355 6211 248 25.0 773 8.0 328 18.9 688 9.0

C1908 8240 262 31.5 828 9.9 279 29.5 729 11.3

C3540 40136 710 56.5 2018 19.9 746 53.8 1925 20.8

C5315 86200 1002 86.0 2155 40.0 1117 77.2 2452 35.2

C6288 225018 1792 125.6 4892 45.9 1853 121.4 4207 53.5

i2 3078 153 20.1 426 7.2 1464 2.1 390 7.9

i4 2262 91 24.9 252 8.9 104 21.8 271 8.3

i5 3077 99 31.1 288 10.7 110 27.9 251 12.3

i6 16193 249 65.0 771 21.0 274 59.1 689 23.5

i7 29045 372 78.1 1068 27.2 391 74.3 898 32.3

i8 36330 631 57.6 1839 19.8 685 53.1 1643 22.1

i9 35941 369 97.4 1036 34.7 388 92.6 882 40.7

i10 223936 1401 159.8 3911 57.3 1573 142.4 3571 62.7

Average 58X 21X 52X 23X

Table 2.4: Runtime Comparison wrt Monte Carlo (Global Parameters have a Gaus-

sian Distribution)

quadratic regression based STA and linear regression drive quadratic STA) are very

accurate as compared with Monte-Carlo simulations. These results support our

claim that our scheme works well for all kinds of underlying distributions of global

parameters.

Comparison with Work in Current Literature

In recent literature, several researchers have proposed different schemes to ad-

dress the problem on non-linear non-Gaussian statistical timing analysis [127, 30,

43]. An initial version of our work has also been proposed in [119]. In [43], the au-

thors use a canonical timing model where they represent the arrival time as a sum of

95

linear Gaussian parameters and a function of non-linear/non-Gaussian parameters.

In order to compute the MAX operation they perform numerical integration on the

non-linear non-Gaussian terms of the canonical model.

We implemented the scheme as proposed in [43]. For our experiments, we

assumed that all the independent global parameters had a Gaussian distribution.

This was done in order to allow the scheme in [43] to model some parameters to

be linear-Gaussian and others to be non-linear or non-Gaussian. The STA scheme

proposed in our work does not make any such assumption. We use a canonical

quadratic timing model as explained earlier in this work, while the scheme in [43]

proposes to model the non-linear non-Gaussian parameter dependencies through a

non-linear function. In order to make a fair comparison between the two schemes,

we assume that this non-linear function is also a quadratic function in the non-

linear non-Gaussian parameters. This would ensure that we do not add any extra

computational complexity to the scheme proposed in [43]. For each parameter that

had a non-linear dependence, we used 7 samples for numerical integration during the

MAX operation. We also used the same number of samples in our regression based

scheme to keep a fair comparison in terms of computational complexity. Results

for runtime and rms error comparison are given in the last columns of tables 2.4

and 2.5 respectively. In general, we can see that the average runtime speedups

that we gets from [43] are comparable with that obtained from our pure quadratic

based regression scheme. This is expected because the both the schemes are using

numerical techniques and the same quadratic delay models. However, our linear

regression driven quadratic STA approach gives significant runtime improvements

96

Benchmark Linear Quad Lin-Quad [43]

(rms err) (rms err) (rms err) (rms err)

C432 0.0327 0.0007 0.0018 0.0027

C499 0.0346 0.0009 0.0009 0.0012

C880 0.0338 0.0009 0.0009 0.0035

C1355 0.0345 0.0008 0.0012 0.0013

C1908 0.0333 0.0008 0.0009 0.0012

C3540 0.0331 0.0009 0.0009 0.0011

C5315 0.0252 0.0063 0.0082 0.0091

C6288 0.0304 0.0007 0.0007 0.0073

i2 0.0351 0.0009 0.0009 0.0010

i4 0.0312 0.0010 0.0011 0.0017

i5 0.0279 0.0006 0.0007 0.0007

i6 0.0328 0.0008 0.0008 0.0009

i7 0.0349 0.0009 0.0009 0.0009

i8 0.0314 0.0008 0.0008 0.0010

i9 0.0344 0.0008 0.0009 0.0010

i10 0.0252 0.0006 0.0006 0.0007

Average 0.0319 0.0011 0.0014 0.0022

Table 2.5: RMS Error Comparison wrt Monte Carlo CDFs (Global Parameters have

a Gaussian Distribution)

97

over [43] as is evident from the results in table 2.4. The rms error obtained in the two

schemes are comparable as is evident from table 2.5. Hence, as the results indicate

we have a faster approach that has comparable error with the scheme presented in

[43].

As the technology nodes are scaling, the delay dependence on parameters

becomes more non-linear. Variability in parameters may not always be accurately

modeled as a Gaussian distribution. In the most general case, where we assume that

all parameters can have either a non-Gaussian distribution or a non-linear delay de-

pendence, the scheme in [43] would essentially boil down to numerical computations

similar to a Monte-Carlo based STA scheme. This brings out the generality in our

approach where no such assumptions have been made.

98

Chapter 3

Variability-Aware Design Optimization: Design Time

Techniques

Variability-Aware design synthesis and optimization has gained a lot of atten-

tion in recent years. As discussed in the earlier chapters, randomness due to fabrica-

tion and environmental uncertainty causes severe degradation of design performance,

yield and power. Traditional deterministic techniques for handling variability are

not able to efficiently adapt to managing the variability problem in nanoscale de-

signs. There is a shift of paradigms in trying to develop variability-aware design

synthesis and optimization schemes, where the idea is to explicitly consider the im-

pact of randomness during the design flow in order to maximize the likelihood of

the design in meeting its constraints.

There is a lot of work that has been done in the area of statistical/probabilistic

design optimization. Several researchers have worked on the problem of variability-

aware buffer insertion [115, 7, 69] where the classical physical synthesis optimization

step of interconnect optimization is re-evaluated in a probabilistic paradigm to con-

sider uncertainty in both wire-lengths as well as parasitics. Statistical gate sizing

[117, 8, 73, 67, 80, 32] has also been an active area of research in recent years and

several works have proposed techniques to perform gate sizing while considering

the impact of variability for yield improvements. With leakage power becoming a

99

significant challenge in nanoscale designs due to its exponential sensitivity to vari-

ability, a lot of research has also focused on statistical leakage power optimization

[97, 89, 77, 73, 83].

In this chapter, we present our research contributions in the area of design-time

optimization considering variability. We have looked at several different problems

that are applicable during physical synthesis and also develop general frameworks

that can be used to model several optimization problems in VLSI-CAD. We specif-

ically present two research problems in this chapter, namely:

1. A Probabilistic Approach to Buffer Insertion

This work presents a formal probabilistic approach for solving optimization

problems in design automation. Prediction accuracy is very low especially at

high levels of design flow. This can be attributed mainly to unawareness of low

level layout information and variability in fabrication process. Hence a tradi-

tional deterministic design automation approach where each cost function is

represented as a fixed value becomes obsolete. A new approach is gaining at-

tention [98, 25, 6, 14, 75, 10, 27, 2] in which the cost functions are represented

as probability distributions and the optimization criteria is probabilistic too.

This design optimization philosophy is demonstrated through the classic buffer

insertion problem [76]. Formally, we capture wirelength as probability distri-

butions (as compared to the traditional approach which considers wirelength

as fixed values) and present several strategies for optimizing the probabilis-

tic criteria. During the course of this work many problems are proved to be

100

NP-Complete. Comparisons are made with the Van-Ginneken “optimal under

fixed wire-length” algorithm. Results show that the Van-Ginneken approach

generated delay distributions at the root of the fanout wiring tree which had

large probability (0.91 in the worst case and 0.55 on average) of violating the

delay constraint. Our algorithms could achieve almost 100% probability of

satisfying the delay constraint with similar buffer penalty. Although this work

considers wirelength prediction inaccuracies, our probabilistic strategy could

be extended trivially to consider fabrication variability in wire parasitics.

2. Monte-Carlo Driven Stochastic Optimization Framework for Han-

dling Fabrication Variability

Increasing effects of fabrication variability have inspired a growing interest in

statistical techniques for design optimization. Most techniques that have been

proposed in existing literature make assumptions on the nature of the distribu-

tion (generally taken to be Gaussian) of the circuit parameters that are affected

by variability. This is done in order to exploit the existing analytical results

that can be used to solve the problem efficiently. But as the impact of fab-

rication variability increases, we need to develop efficient techniques that can

capture the true distribution of the parameters. One way to accomplish this

is to develop efficient Monte-Carlo driven stochastic optimization techniques.

In this work, we investigate the classic linear programming problem as ap-

plied to VLSI CAD from a stochastic perspective. To this end, we investigate

101

stochastic programming formulations and present techniques like Successive

Sample Mean Optimization SSMO and Stochastic Decomposition to solve the

same. Stochastic programming presents a very strong framework for solving

linear programs in which the parameters behave as random variables. In this

framework we consider Binning-Yield Loss as an optimization objective. The

proposed formulation can be solved to get provably optimal solution under a

convex binning-yield loss function. We modeled the MTCMOS sizing problem

[116] as a stochastic program and solved it using 1) traditional deterministic

linear programming ignoring variability, 2) SSMO and 3) Stochastic Decompo-

sition. Results showed that Stochastic Decomposition generates solutions that

always satisfied the timing constraints even in presence of variability. SSMO

was very slow and did not converge in many cases while the deterministic

techniques violated the timing constraints with a 48% probability.

We will now discuss each of these works in more detail.

102

3.1 A Probabilistic Approach to Buffer Insertion

Design automation of integrated systems is essentially optimization driven by

estimation. If the estimation of critical design objectives is inaccurate, the opti-

mality of optimization will be limited. Unfortunately, estimation is always marred

with inaccuracies which occur due to many factors. Unawareness of exact imple-

mentation information, unpredictable circuit behavior, fabrication variability are

important ones among them. Traditionally, optimization in design automation has

been deterministic since it assumes a fixed value to the pertinent cost function

(like area, delay, power). Lately, a new optimization approach is gaining attention

[98, 25, 6, 14, 75, 10, 27, 2] in which the cost functions are represented as proba-

bility distributions and the optimization criteria is probabilistic too. Such a design

methodology would be able to address the issue of prediction uncertainties and fab-

rication variability in a much more robust fashion when compared with traditional

deterministic approach. In this work, we present such an optimization methodol-

ogy for the buffer insertion problem [76]. We address unpredictabilities posed by

wirelength estimation and/or variation of interconnect properties due to fabrication

variability [98] and illustrate the superiority of our probabilistic approach over tradi-

tional deterministic Van-Ginneken algorithm [76]. Accurate wire-length prediction

is in itself an area of research and several interesting approaches have been proposed

[12, 33, 34, 50, 52]. Probabilistic models for estimation of net-length distribution

can be incorporated into our probabilistic buffer insertion algorithm to estimate the

distribution of the wire-lengths of each segment of the wiring tree. More recently,

103

[9, 68] have proposed wire length estimation models which are directly applicable

to this work on probabilistic buffer insertion.

The problem of buffer insertion deals with the placement of buffers at appro-

priate positions on the fanout wiring trees such that the delay at the driving gate

is minimal. In the last few years a lot of work has been done on optimization using

buffer insertion [48, 61, 123, 20, 28, 62, 19, 126]. Lukas van Ginneken [76] presented

an optimal buffer placement algorithm for RC-Trees under the Elmore Delay model

for wires. It was assumed that wirelength of individual segments in the wiring tree

are known a-priori through some estimation engine. Estimating wirelength espe-

cially in a traditional top down design flow is extremely hard and error prone. This

makes estimation of delay and capacitive loading of the individual wire segments

extremely difficult. Even if the wirelength estimates are accurate, the fabrication

variability/uncertainty makes accurate estimation of wire parasitics an intractable

problem. Hence, the traditional deterministic approach possesses serious disadvan-

tages. In this work, we extend Van-Ginneken’s approach to consider wirelength

estimation inaccuracy by modeling it as probability distributions. We propose a

new probabilistic criteria of selecting the final solution. The new criteria computes

and minimizes the probability of violating a given delay constraint. This work also

presents three algorithms for performing buffer insertion when wire-lengths are as-

sumed as distributions. These three approaches have different pruning criteria (from

very relaxed to very strict) and varying runtime complexities. Several sub-problems

were proved NP-Complete indicating that finding an optimal solution in polynomial

time under the probabilistic wire-length assumption is very hard.

104

Experiments were conducted on large benchmarks with state of the art tech-

nology parameters. Comparisons were made with the Van-Ginneken approach [76].

Results showed that the Van-Ginneken approach generated delay distributions at

the root of the wiring tree which had large probability (0.91 in the worst case and

0.55 on average) of violating the delay constraint. Our algorithms could achieve

100% probability of satisfying the delay constraint with similar buffer penalty. This

is a very strong result since our approach ensures that the delay constraint will

always be satisfied.

Although in our approach we address wire-length predication inaccuracies,

our algorithms can be trivially extended to the case where the estimation of wire

parasitics is also inaccurate due to fabrication variability.

3.1.1 Motivation

The Probabilistic Paradigm

Automation of integrated systems is marred with estimation inaccuracies which

occur due to a combination of many factors. Unawareness of exact layout informa-

tion like routing, placement, exact logic structure are prominent reasons. Lately

fabrication uncertainties have also begun to get considerable weight primarily due

to increasing complexity and scaling of the fabrication process. In the light of such

unpredictabilities, a traditional deterministic approach towards design automation

becomes incapable and obsolete. Basically, a deterministic approach assigns a fixed

value to the cost function (like area, delay, power) and does not consider the error

105

associated with the estimation of this cost function. Hence, very little could be said

about the optimality of the final design especially if the estimation was erroneous.

This calls for the development of a probabilistic approach towards design optimiza-

tion. Such an approach models the cost functions as probability distributions and

optimizes the design probabilistically, hence maximizing the likelihood of satisfy-

ing design constraints. Many researchers have suggested the importance of such an

approach [2, 25, 98, 14, 75, 6] since estimation inaccuracies (both due to fabrica-

tion variability and layout unawareness) are becoming major bottlenecks in design

closure. The main advantage of such an approach would be faster design closure,

better fabrication yield (since fabrication variability would have been accounted for

during designing) and improved robustness.

In this work we present such a probabilistic approach for the classic buffer

insertion problem. We revisit the traditional deterministic buffer insertion approach

proposed by Van-Ginneken and reformulate the problem probabilistically. In this

work we assume the source of unpredictability to be the inaccuracy in wirelength

estimation. Hence we model the wire lengths as probability distributions. We do

not assume any particular distribution for the wire-lengths and present a generic

approach that is valid for any form of distribution. Our approach can be trivially

extended to the case when the parameters of the wires (and not the length itself)

change due to fabrication variability.

106

Wire-Length Distribution Model

Our proposed probabilistic buffer insertion algorithm assumes that we have a

wire-length distribution prediction model for each net in the wiring tree. We note

here that we propose a generic approach for probabilistic buffer insertion that is

not dependent on the underlying distribution of the wire-lengths of each net. Wire-

Length prediction is an issue even if we are given a placed netlist. The work in [9]

illustrates the importance of accurate wire-length prediction and discusses various

issues associated with accurate wire-length prediction. In [9], the authors propose an

empirical and parameterizable model for estimating the probability distribution of

wire-length for each net in a placed netlist. This model is simple and fast to compute.

It takes a placed netlist and router parameters as input and provides the probability

distribution of wire-length for each net. Such a wire-length model is totally different

from the traditional wire-length estimation models that give a fixed wire-length

estimate for each net. This model is empirical in nature and has been validated

on state of the art commercial (Cadence QPlace and WRoute) and academic tools

(Parquet [94] and Labyrinth [85]). The model has two distinct subcomponents. The

first part estimates the wire-length that has the largest probability of occurrence for

a given net and the second part estimates the value of this largest probability. These

two are combined together to generate the overall probability distribution function

for each net. The model proposed in [9] can be given as:

107

P (x) =



















































0 x ≤ BB

(P
PL−BB

)(x− BB) BB < x < PL

P × e−l(x−PL) x ≥ PL

(3.1)

Here P (x) is the probability for the net having a length x, PL is the Peak

Location of the distribution, P is the value of the distribution at the peak location,

BB is the half-perimeter bounding box estimate and l is a parameter that captures

the rate of decay of the exponential region of the distribution. The probability dis-

tribution is modeled as an increasing ramp for lengths between bounding box to

the peak location and after that it follows an exponentially decaying trend. The

parameters in this model need to be determined to get the wire-length distribution,

the details of which are given in [9]. For brevity, we will not go into further details

about the model in this work. We note that this model can be applied to our pro-

posed probabilistic buffer insertion framework and has been used in the experiments

to generate a wire-length distribution for each net in the wiring tree.

Traditional Buffer Insertion

The Buffer Insertion Problem can be formally stated as:

Given the fanout wiring tree with parasitic resistances and capacitances, wire-

lengths, potential buffer locations, sink required times, sink capacitive loads and a

delay constraint at the driving gate, the problem is to place buffers into the tree such

108

that the required arrival time at the input of the driving gate is maximum. We also

consider the optimization of the number of buffers used to satisfy the delay constraint.

The buffer insertion problem formalized by [76] models the fanout wiring tree

as a set of distributed RC sections. The Elmore Delay model [122] is used to

compute the delay of such a wiring tree. Figure 3.19 illustrates a typical wiring

tree. Each of the individual wire segments is characterized by parasitic resistances

and capacitances (like R3 and C3). These depend on the length of the corresponding

wire. A subtree rooted at node k is represented by two numbers: the required arrival

time Tk and capacitive loading Lk.

Adding a wire of length l at the root of a subtree affects the Tk,Lk values as :

T ′
k = Tk − rlLk − (1/2)rcl2 (3.2)

L′
k = Lk + cl (3.3)

When a buffer is added at the root of the subtree :

T ′
k = Tk − Dbuf − RbufLk (3.4)

L′
k = Cbuf (3.5)

When two subtrees rooted at n and m are merged into one subtree :

T ′
k = min(Tn, Tm) (3.6)

L′
k = Ln + Lm (3.7)

These equations can be used to compute the required arrival time To at the

root of the wiring tree. For brevity we have omitted the detailed description of this

109

R1

C1

R2

R3

R4

C5

R5

C2

C3

C4

Figure 3.1: RC Tree Network

delay model. This is a very popular delay model for capturing wire-delays in modern

layout driven optimization systems. A lot of research has been done on the buffer

insertion problem [58, 128, 40, 15, 70] which is especially useful for large global nets

like clock trees. Most of these approaches use a dynamic programming based ap-

proach in which the wiring tree is traversed topologically from sinks to source while

storing an optimal solution set. Next we describe Van-Ginneken approach to buffer

insertion which solves the problem optimally for a fixed wiring topology and buffer

placement locations.

The Van-Ginneken Algorithm

Using the delay model described above, Van-Ginneken proposed his buffer

placement algorithm [76]. The input to his strategy was a wiring tree with esti-

mated parasitics and a set of possible buffer locations, fanout capacitive loadings

and required arrival times. The wire parasitics in turn are dependent on the wire-

110

lengths which are assumed to be prespecified. The problem is to decide buffers

locations at the prespecified positions such that the required time at the root is

maximized. The Van-Ginneken strategy is optimal under the Elmore Delay model.

His algorithm traverses the wiring tree topologically from primary outputs to pri-

mary inputs. At each possible buffer location, it evaluates the possibility of adding

a buffer and its effect on the required time and capacitive loading at that node.

This is followed by local pruning of the generated solutions. The pruning crite-

ria removes those solutions from the set of potential solutions which have another

solution with better values of both required time and capacitive loading. Lukas

Van-Ginneken[76] proved that this pruning criteria generates an optimal solution at

the root in polynomial time.

Shortcomings of Existing Approach

Existing approaches to Buffer Insertion (or any other problem in design au-

tomation) do not consider the uncertainties in estimating wire-lengths (or any other

pertinent cost function). Focusing the discussion on Buffer Insertion, the Van-

Ginneken approach assumes wire-lengths to be prespecified from some estimation

engine as fixed values. In reality, no estimation engine can give accurate wire-length

predictions. This is due to the unawareness of future optimizations and hence the

state of the final design. This is also due to the sensitivity between various cost

functions. For example, if congestion in a certain region is intolerable, then any

strategy of optimizing congestion could have adverse effects on wire-length. Using

111

a fixed value of wire-length therefore cannot capture the real variations involved.

In this work we relax the assumption of having fixed wire-length estimates

and propose a new buffer insertion strategy which probabilistically models lengths

and optimizes the underlying distribution. We are considering the post-placement,

pre-routing stage of design flow where the exact wire-lengths are unknown even

though the wiring topology is assumed to be known. Without the detailed routing

information, it is not possible to evaluate accurate estimates for length of each wire-

segment. But before we delve into the details of our algorithm, we quantitatively

illustrate the shortcomings in making a fixed wire-length estimate.

Let us assume that we know the distribution of length of the wire-segments.

The Van-Ginneken algorithm does not consider distributions, hence we consider the

two ways of providing fixed length values to the algorithm:

1. Average length of the distribution

2. Worst (longest) length in the distribution

We conducted experiments with these two wire-length estimates. The Van-

Ginneken algorithm was given these estimates and the buffered solution was gener-

ated. On this buffered tree, we imposed the real distribution of wire-lengths. Using

these distributions, the delay distribution at the root was computed.

Figure 3.2 illustrates the results when the average values from the wire length

distribution were given as wire-length estimates. The figure reports the variation in

delay at the root for the result generated by the Van-Ginneken algorithm. These

plots are shown for different wirelength statistical distributions (tailed Gaussian and

112

Tailed
Gaussian

Gaussian

Prob

Constraint

 113 115 Delay (nano sec)

Solution
DelayVan−Ginneken

Figure 3.2: Mean Value vs. Actual Delay Distribution

Gaussian). The bold arrow illustrates the delay estimated by the Van-Ginneken al-

gorithm. In reality the delay values at the root are distributions. It can be seen

that there is a large portion of these distributions whose delay is greater than that

estimated by the Van-Ginneken algorithm. Let us suppose we have a delay con-

straint illustrated by the dotted line. According to the Van-Ginneken solution this

constraint is satisfied, but in reality, there is a large portion of the delay distribu-

tion that violates this constraint. This clearly shows that the deterministic fixed

wirelength approach can result in failure of design closure.

We also assigned the worst case length values as estimates. Figure 3.3 presents

the data for Gaussian wire-length distributions. Such an estimation strategy could

be an overestimate and hence an overkill. It can be seen that for the same delay

constraint as in figure 3.2, the Van-Ginneken solution (shown in a bold arrow)

will not be able to satisfy the constraint. But in reality (by observing the delay

distribution of the Van-Ginneken buffered tree), we find that there is a large area

which lies within the constraint (the shaded area). Hence the Van-Ginneken result

113

Binormal

Prob

115 118

Delay
Constraint

Delay (nano sec)

Van−Ginneken
Solution

Figure 3.3: Worst Case Length Estimate

would be an overkill both in terms of number of buffers and delay.

What we observed so far was that using fixed values to estimate cost func-

tions does not accurately address the issue of unpredictabilities. In reality, these

cost functions should be modeled as distributions and the algorithms should be re-

formulated to consider these distributions. In this work we present such an approach

for the buffer insertion problem.

3.1.2 Probabilistic Buffer Insertion: Metrics

The previous section illustrated the importance of considering probability dis-

tributions of cost functions during optimization. Let us consider the following sit-

uation in this light. Given a wiring tree with possible buffer locations and a delay

constraint at the root, the problem is to place buffers such that the delay constraint

is satisfied. Consider two given solutions at the root, each corresponding to differ-

ent distributions (as illustrated in figure 3.4). The figure also illustrates the delay

constraint that needs to be satisfied. Here the distribution with larger spread has

114

Constraint

Mean

Delay

Mean
Prob

T

Figure 3.4: Spread in Distribution

lesser mean value for delay compared with the distribution with smaller spread. A

traditional approach would choose the distribution with smaller mean (see figure

3.4). Clearly this solution has a large area outside the delay constraint. Hence

it has a larger probability of failure. In this situation the second solution with a

smaller spread should be the choice. This observation can be formally outlined as

follows

Minimize
∑

d≥Dcons

p(d) (3.8)

Here

d : Delay p(d): Probability of delay d

Basically, we would like to choose a solution that minimizes the total probabil-

ity of the delay constraint Dcons not being satisfied. This is a probabilistic selection

criteria.

115

3.1.3 Probabilistic Buffer Insertion: Algorithms

In the next few sections we will describe algorithms to optimize the criteria

outlined above. The input to our algorithms is a wiring tree with parasitic resistances

and capacitances, distributions of wire-lengths (instead of fixed values), possible

buffer locations, sink required times, sink capacitive loads and a delay constraint

at the root. The root is assumed to be a Nand gate which drives the wiring tree.

The delay constraint needs to be satisfied at the input of this gate. We would like

to point out here that we have not assumed anything about the distribution of

wire-lengths in our formulations. We propose a generic probabilistic optimization

approach that will work for any given underlying distribution. We modify the Van-

Ginneken approach to consider probability distributions of wire-lengths, the details

are outlined below.

The Global Algorithm

The Global Algorithm approaches the problem similar to the Van-Ginneken

strategy. The RC-Tree network is traversed topologically from sinks towards source.

At the root of each subtree (internal node in the network), the set of possible so-

lutions are computed by merging the solutions of fanout-subtrees. Just like the

Van-Ginneken approach each solution comprises of two entities: T and L. T corre-

sponds to the required arrival time at the root and L corresponds to the capacitive

loading. The difference lies in the fact that since wire-lengths are considered as dis-

tributions, both T and L will be distributions too. We do not make any assumption

116

about the type of distribution of the wire-segments and present a generic approach

that is applicable to any distribution. Referring to figure 3.5(b), at any internal

node i we have the option of whether to place a buffer or not. In order to compute

the potential solutions at i, the solutions at its fanout nodes j and k are propagated

to i (by adding the delay distribution of the wires (x and y which connect them to i

respectively). This can be done using equations 3.2 and 3.3 (although all variables

are distributions now). Now we generate the possible solutions at node i by merging

these modified solutions from the fanout nodes using equations 3.6 and 3.7. If node

i has two fanouts with m and n solutions each, then there could be a total of mn

solutions at i. The possibility of buffer placement at node i, makes this solution

set to become 2mn. Each buffer is characterized by an input capacitance Cbuf , and

internal delay Dbuf and an output impedance Rbuf . Adding a buffer modifies the

solutions at node i according to equations 3.4 and 3.5. All these equations would

be applied on probability distributions of L and T instead of fixed values.

The total solutions at node i can become very large (non-polynomial in prob-

lem size). Hence this solution set needs to be pruned. Van-Ginneken has a very

effective pruning criteria in which both polynomiality and optimality were achieved

[76]. Since the L and T values are not fixed, the Van-Ginneken pruning criteria

cannot be used. We propose three probabilistic pruning strategies with varying

complexities in the next few sub-sections. After pruning, we are left with a reduced

set of solutions at node i. A dynamic programming implementation computes the

delay distribution of all potential solutions at the input of the gate driving the RC-

Tree. The solution which has the highest likelihood of meeting the delay constraint

117

is chosen as the final solution of the buffering problem(using equation 3.8).

T

L

A

B

(a)

Node i

m
solutions

n
solutions

x y

Node j Node k

(b)

Figure 3.5: Distribution of Potential Solutions at a node

Pruning Strategies

We now propose three different pruning strategies for the Global Algorithm:

1. Criteria 1

Let us assume that at a given sub-tree we have all the possible solutions

(including the possibility of adding a buffer at the root of sub-tree). Let us

make the following observation. A specific solution i at the root k of a subtree

is actually a distribution in required time T i
k and a distribution in capacitive

loading Li
k. Taking a worst case scenario, the possible points in this solution

space could take the minimum value of the required time distribution (T i
k)

and minimum value of capacitive loading Li
k or the maximum value of the

required time distribution and maximum value of capacitive loading. These

two scenarios define the boundary of our solution space for the distribution of

118

the potential solution. On a two dimensional plane with x-axis as T and y-axis

as L, this solution can be represented as a rectangle in the worst case. The

length of the rectangle is bounded by the smallest and largest required time

values in the corresponding distribution. Similarly, the width of the rectangle

is defined by the range of capacitive loading. For any point (x,y) inside the

rectangle (x being the required time axis, y being the loading axis), p(x)p(y)

denotes the probability of having x as the required time and y as the loading.

Note that the probability that a solution point lies outside this rectangle is

zero for the corresponding solution. Also note that if this was a deterministic

approach, each solution would be represented as a point instead of a rectangle,

which is exactly the case in the Van-Ginneken algorithm [76]. Figure 3.5(a)

illustrates this concept and shows the distribution of the possible solutions

at a node k. Consider two potential solutions A and B as marked in figure

3.5(a) for node k. It can be seen that B is better than A both in terms of the

required time and capacitive load distributions. The dotted lines show that

A does not even partially overlap with B along both T and L axis. Hence we

can conclude that solution A is guaranteed to be worse than B and can be

pruned out.

Formally the steps can be outlined as follows :

(a) Given a root k of a subtree with a set of possible solutions (T,L) repre-

sented as rectangles

(b) Prune out a rectangle which is definitely worse in capacitive loading and

119

required time than another solution

(c) The remaining set of solutions are considered co-optimal

Under this pruning strategy, the worst case number of solutions at the root

can be exponential in the total possible buffer locations. The strategy also

ensures that the optimal solution stays in the co-optimal set generated at the

root.

2. Criteria 2

Once again, we assume that we have all possible solutions at a subtree k.

In this approach, we have a stricter selection criteria which prunes out more

potential solutions. We determine the probabilistic relation between a pair of

potential solutions. Each pair (A,B) can have three possible relations: A can

probabilistically prune out B, B can probabilistically prune out A or (A,B)

could be co-optimal. These relations are elaborated as follows. First we would

like to outline that given two distributions X and Y , probability that X ≥ Y

is defined as
∑

y∈Y (p(y)
∑

x∈X,x≥y p(x)). Given the distribution for T and L

values for A and B, probabilities for the three possible relations is computed

as follows.

A prunes B : P (A⇒B) = PT (A≥B) · PL(A≤B) (3.9)

120

B prunes A : P (B⇒A) = PT (B≥A) · PL(B≤A) (3.10)

Co− exist : P (A∼B) = (1− P (A⇒B)− P (B⇒A)) (3.11)

Equation 3.9 computes the probability for A being better than B both w.r.t.

required time (PT (A≥B)) and loading capacitance (PL(A≤B)). These values

could be easily computed since we know the L and T distributions. Similarly

equation 3.10 gives the probability of B being better than A. Equation 3.11

gives the probability of co-existence. The dominant relation between A and B

is given by

max(P (A⇒B), P (B⇒A), P (A∼B)) (3.12)

Hence the relationship between two solutions A and B is decided by the one

with highest probability. Now let us instantiate a graph G= (V,E) with each

solution as node in G and edges defined as follows. If A prunes B according

to equation 3.12 then there is a directed edge from node A to node B. If two

nodes do not have any edges then they are co-existing solutions according to

equation 3.12. Also note that there can be at-most one edge between any two

nodes. We apply our pruning criteria on such a directed graph.

The main aim of pruning is to reduce the given set of solutions while main-

taining the quality. The cost of a node δi is defined by the total number of

nodes that can be pruned out by this solution. This essentially corresponds

to the out-degree of this node. We want to find a maximum set of nodes such

that:

121

(a) All nodes in the set are co-optimal/independent

(b) Each node not in this set has a directed edge from at-least one of the

nodes in this set (note the keyword from)

(c) The cost of the set
∑

i δi is maximum

This is a variation of the maximum independent set problem [41]. The varia-

tion is that each node not in the independent set must have an incoming edge

from at-least one node in the independent set. The logic behind this constraint

is that if a node (or a solution) is culled out, then there must be at-least one

solution in the independent set that prunes this solution out (according to the

probabilistic criteria described in the equations above). Moreover, we want

to maximize the total cost of all nodes, since the cost signifies the quality

of a node (larger the cost, more are the number of solutions it prunes out).

We name this problem as the DIRECTED MAXIMAL INDEPENDENT SET

problem.

Theorem: DIRECTED MAXIMAL INDEPENDENT SET problem is NP-

Complete.

Proof: Transformation from DIRECTED-COVER problem. Refer to subsec-

tion 3.1.5 for complete proof.

2

122

Heuristic for Criteria 2

Algorithm 1 Heuristic for Criteria 2

INPUT: Directed Graph G=(V,E);

Compute the cost of each node n = outdegree(n)

A: Set of all nodes

While(A != ∅)

Choose highest cost vertex i from set A and add i to set B

Remove all solutions from set A that have an edge with i

Return B

The heuristic used for this criteria is described in Algorithm 1. We sort all

nodes w.r.t their cost values and iteratively pick the node with highest cost.

The final solution generated by this algorithm will not satisfy the directed edge

constraint of the Directed Maximal Independent Set problem. In fact the prob-

lem remains NP-C even if the directed edge constraint is relaxed since it is

an instance of traditional Independent Set problem. Another point to note is

that this is a stricter pruning criteria (prunes out more potential solutions)

w.r.t. Criteria 1 but still does not guarantee a polynomial set of solutions

at the root. Next we describe an even stricter approach which is completely

polynomial.

3.

123

n m
solutions

n
solutions

Root k

T1 T2

x

y

z

(a) (b)

m

T

L

Figure 3.6: Generate Solutions at a Node from its Fanout Nodes

Criteria 3

This approach is focused on ensuring that the total number of solutions gen-

erated at the root of the wiring tree are polynomial in the possible buffer

positions. Let us consider an internal node k with two subtrees (as shown in

figure 3.6(b)). The two subtrees have m and n solutions respectively. In the

worst case there will be m · n solutions at the root k after merging (assuming

there is no buffer at the root). Merging two solutions from the left and the

right subtrees essentially amounts to applying equations 3.6 and 3.7 to the

distributions of the corresponding solutions. Let us suppose we are trying to

merge solutions x and y in figure 3.6(a). The generated solution has a delay

distribution starting from T1 (see figure 3.7(a)). Also whenever x is merged

with any solution whose starting T value is greater than T1, the generated

solution will start from T1. Since there can be at most m+n distinct starting

times in figure 3.6, the generated m · n solutions at root k will be clustered in

at most m + n starting times. This is illustrated in figure 3.7(a).

124

x

After merging x,y

T

L

Cbuf

(a) (b)T1 T2 T

L

Figure 3.7: Total m · n Solutions After Merging

Now comes our pruning criteria. For each distinct starting time value (shown

in figure 3.7(a)), we pick exactly one solution and prune the rest. Hence we

have at most m + n solutions at root k. The exact strategy of picking these

solutions will be discussed in the subsequent paragraphs. Before that, let us

consider the situation where we can add a buffer at root k. Hence for each of

the m · n solutions, we have the choice of adding a buffer. Therefore the total

number of solutions become 2 ·mn. Note that for the buffered solutions the

capacitance is no longer a distribution.This is illustrated in figure 3.7(b) where

the capacitance is a fixed value. According to this pruning criteria, we pick

exactly one of these m · n buffered solutions at root k. The selection criteria

used is as follows. We compute the probability that a buffered solution is bet-

ter than another using equation 3.9. For each solution, we get the cumulative

probability values. Finally we choose the solution that has the largest value.

This solution is probabilistically better than all the other buffered solutions.

Hence the total number of solutions that we store at a subtree is O(m+n+1)

(m+n for solution with no buffers and one with the buffer). This is a poly-

125

nomial quantity. Even the Van-Ginneken algorithm [76] was storing at most

m + n + 1 solutions at a subtree. This results in a polynomial number of so-

lutions at the root of the wiring tree. The proof of polynomiality is the same

as the proof given in [76].

Theorem: Criteria 3 is polynomial in the problem size

Proof: Proof given in [76].

2

Now we go into the details of how m+n solutions are chosen from m·n possible

solutions (for the case where there are no buffers). As mentioned before there

will be m+n distinct starting T values (figure 3.7(a)). We choose exactly one

solution from each distinct starting T value. This problem is modeled using

COMPLETE R-PARTITE MAX COST CLIQUE problem [95]. The transfor-

mation is as follows. We instantiate a complete R-PARTITE graph G=(V,E)

with the following properties. For each set of solutions that have the same

starting T value, we instantiate a graph partition with a node for each solu-

tion. These nodes do not have edges between them. There are undirected

edges between all other pair of nodes from different partitions. This gener-

ates a complete R-PARTITE graph with m + n as R. The generated graph

is shown in figure 3.8. Each edge has a cost which signifies the probability

that the corresponding solutions are co-optimal. This can be computed using

126

Complete R Partite Graph

Figure 3.8: Complete R-Partite Max Cost Clique

equation 3.11. The problem is to find a clique in this graph with maximum

cost. Note that the largest clique in this graph can be trivially generated by

picking a node from each levels. The challenge is to generate the clique with

maximum cost. Picking one node from each partition would ensure one so-

lution for each starting T value is chosen. Hence the total number of chosen

solutions are R = m + n. Larger the cost of the clique, higher the probability

of co-optimality of all solutions. Hence a larger solution space could be repre-

sented by the same number of solutions.

Theorem: COMPLETE R-PARTITE MAX COST CLIQUE is NP-Complete

Proof: Transformation from 3SAT [41]. Refer to subsection 3.1.5 for com-

plete proof.

2

Heuristic for Criteria 3

127

Algorithm 2 Heuristic for Criteria 3

INPUT: set of mn solution partitioned in m + n distinct sets

Get the probability of co-existence between each solution pair i and j

Sort the m + n sets depending on their starting T values

Loop(over all m + n set)

For(each solution x in set i)

For(each solution y in set i− 1)

Calculate the cost of the clique formed by adding x to the best clique at y

Choose the clique with maximum cost and store it. This is the cost of the best clique

at x now

At the last set, among all x in this set, pick the clique with largest cost

We propose a heuristic (refer Algorithm 2) for the above problem formulation.

We are given m+n sets of solutions sorted in increasing order of T. We traverse

these sorted set one by one and at each set we generate the possible cliques

for each potential node in this current set by merging it with each of the

best cliques generated at the previous set. From these potential solutions, the

clique that gives the maximum cost is stored. When the next set is traversed,

the possible solutions at the next set will use this best clique information. The

is done iteratively till the last set is encountered. At this stage the clique with

best cost is selected.

This completes the description of the three pruning criteria. Each of them has its

own distinct property. Criteria 1 ensures that the best solution will never be pruned

out, but is not polynomial. Criteria 2 has a methodology which enables more

128

Bench Van-Gin Tcons Van-Gin # Bufs Crit 1 # Bufs Crit 2 # Bufs Crit 3 # Bufs

Sinks Sol (nano sec) (nano sec) Pe Pe Pe Pe

54 121.2 122 0.198 14 0 13 0 15 0 13

96 102.4 103 0.563 19 0 19 0 19 0 20

216 585.9 586 0.467 23 - - 0 23 0 20

360 117.7 118 0.917 70 - - 0 73 0 72

468 582.6 583 0.531 45 - - 0.025 41 0.213 32

590 390.8 391 0.618 77 - - 0 80 0 79

720 722.3 723 0.596 61 - - 0 63 0 59

890 845.5 846 0.573 60 - - 0 59 0 57

1080 1598.3 1599 0.414 78 - - 0 84 0 69

1260 5812.2 5813 0.639 95 - - 0 93 0 94

Avg 0.552 - 0.003 0.021

Table 3.1: Results from Experiments

Solution

540 560 580 600

Delay (nano sec)

Prob

0.1

0.2

0.3

0.4

0.5
Delay ConstraintCriteria 3

Criteria 2
Van−Ginneken

Figure 3.9: Comparison of Solutions for a Benchmark

pruning and hence is faster than Criteria 1 but is still not provably polynomial.

Criteria 3 is strictly polynomial and has a very firm selection mechanism.

3.1.4 Experimental Results

The objective through experimental results was to illustrate the superiority of

our approach over fixed wire-length assumption and also compare the quality of the

three pruning criteria. For experimental purposes, we used large wiring trees with

large number of sinks. Some of these trees were balanced and some were unbalanced

129

Delay (nano sec)

0.2

0.3

0.4

0.5

Delay Constraint0.6
Prob

740 820

0.1

780700

Figure 3.10: Delay Distribution of Solutions Satisfying a Delay Constraint

73 74 7541 69

Fanout 590

39 40

Number of Buffers

0.29

0.48

0.15

0.66
Pe

0.56

Fanout 468

Figure 3.11: Trade-off Between Number of Buffers and Probability of Error

130

(close to lt-trees). The required arrival times at the sinks of the benchmarks were

also chosen randomly. Values for r and c (wire parasitics) were chosen for 0.18

micron technology. Wire-lengths were taken as Gaussian distributions with mean

varying between 100 to 1000 λ and variance lying within 10% of the mean. The

Van-Ginneken algorithm was used to generate a valid buffer placement with largest

required time at source. The delay constraint for the tree was set at a value slightly

greater than the single delay value given by the Van-Ginneken Algorithm. This

ensures that the Van-Ginneken estimate always satisfies the constraint.

The heuristics were implemented in SIS [37]. The wire-length distributions

were taken to be discrete for simplicity of implementation. Hence, the equations

mentioned in section 3.1.1 were applied to discrete distributions to get the corre-

sponding distributions for delay and capacitive loading which were also discrete.

We again point out that this implementation is generic and can work with any

distribution of wire-lengths.

Table 3.1 illustrates the performance of our criteria as compared with fixed

wire-length estimate buffer insertion [76]. The average wire-length of the distribution

was provided as wire length estimate input to the Van-Ginneken algorithm. We

chose a solution from the Van-Ginneken algorithm that satisfied the delay constraint

and then generated the delay distribution for the solution. The second column of

table 3.1 provides the output of the Van-Ginneken algorithm. It can clearly be

seen from the results that fixed value estimates result in delay constraint violation

with very high probabilities (Pe). Given a delay constraint Pe is computed using

Pe =
∑

d≥Dcons
p(d)

131

On the other hand probabilistic buffer insertion results in the delay constraint

being satisfied with a very high probability. Even though the total number of buffers

between our approach and the Van-Ginneken approach remain more or less the

same, it was observed that the buffer locations are different. Another observation

that we made was that Criteria 1, which has a very relaxed pruning strategy was

not practical for larger benchmarks since it did not give results in a reasonable run

time. Results also show that Criteria 2 solutions have the least probability (Pe)

of not satisfying the delay constraint without any major buffer penalty. We also

observed that for most cases, the actual delay distribution found using our criteria

were much better than those from the Van-Ginneken fixed value algorithm. This is

illustrated in figure 3.9. Clearly, the best solution of the Van-Ginneken approach

is worse than that generated by Criteria 2. There is an important inference here:

optimization using fixed average wire-length estimates does not generate

a distribution with the smallest average delay. This is a critical observation

since optimization using average wire-length values does not optimize average delay

at the root.

Figure 3.10 shows a typical delay distribution solution at the root using the

probabilistic approach. It is evident that there are several possible solutions for

a given delay constraint (shown by the arrow in figure 3.10) that have differing

probabilities of satisfying the constraint. We observed from the experiments that

a trade-off exists between probabilistically satisfying a delay constraint and the

number of buffers used by that solution. Figure 3.11 shows such a trade-off for two

benchmarks. This gives the designer the flexibility of taking a Probabilistic−Risk

132

(b) Criteria−3 Solution

(a) Van−Ginneken Solution

Figure 3.12: Buffered Solution for a 2 Terminal Net with 20 Potential Locations

of not satisfying the delay constraint while choosing a solution with fewer buffers.

Table 3.2 shows that the run time comparison between the three Criteria pro-

posed in section 3.1.3. All values have been normalized w.r.t. the run time values for

Criteria 2. Criteria 1 is not polynomial in complexity and hence has a very large run

time for reasonably large benchmarks. It has a much weaker pruning criteria, but

the quality of final solution could be very high since it retains all possible solutions

which can potentially be better. But the runtime for Criteria 1 was unreasonably

large making it impractical when compared with Criteria 2 and 3. As can be seen

from table 3.2, run time for Criteria 2 is similar to that of Criteria 3 even though it

is not polynomial in the worst case. This illustrates that Criteria 2 has a very good

performance both in terms of run time and quality of the final solution. Run-time

is a drawback in statistical approaches as compared with deterministic approaches

since there is more computation that needs to be performed. We have implemented

a generic probabilistic algorithm which does not assume anything about the un-

derlying distributions. However, we can make intelligent assumptions about the

distributions and use approximations to speed-up the probabilistic algorithm. Such

an approach has been shown to work efficiently in case of Statistical Timing in

[10, 27, 2] and is a direction of future work for probabilistic buffer insertion.

133

Bench Criteria 1 Criteria 2 Criteria 3

Sinks

54 2.39 1 1.02

96 3.75 1 1.03

216 - 1 0.90

360 - 1 1.57

468 - 1 1.05

590 - 1 0.97

720 - 1 0.92

890 - 1 0.95

1080 - 1 0.91

1260 - 1 1.12

Table 3.2: Runtime Comparison Between the Three Criteria

77 78 79 80 81
0

0.1

0.2

0.3

0.4

0.5

Delay (nsec)

P
ro

b

Probabilistic Solution

Van−Ginneken Solution

Figure 3.13: Delay Distribution of Buffered Solutions for a 2 Terminal Net with 20

Potential Locations

134

Bench #Buf. V-Gin. V-Gin. Delay Crit-3 Crit-3 Delay

mark Pos. #Buf Range(ns) #Buf Range(ns)

Net 1 20 10 [78.5, 80.9] 10 [77.9, 79.7]

Net 2 40 19 [143.2, 145.2] 20 [142.0, 143.2]

Net 3 60 28 [213.3, 215.8] 31 [211.2, 213.1]

Table 3.3: Result for 2 Terminal Nets

We have conducted another set of experiments that demonstrate the differ-

ence between our probabilistic scheme and deterministic Van-Ginneken algorithm.

We assume that we have long 2 terminal nets with potential buffer locations. The

wire-segment between each pair of potential locations is estimated to be Gaussian

distributions. We generate a best-delay buffered solution for the net using the Van-

Ginneken Algorithm with mean value estimates for each wire-segment and calculate

its actual delay distribution using the wire-length distribution. We also apply prob-

abilistic buffer insertion using Criteria 3 and generate a best-delay buffered solution.

This experiment has been conducted for three 2 terminal nets with with different

lengths having 20 (Net 1), 40 (Net 2) and 60 (Net 3) potential buffer locations

respectively. Figure 3.12 shows the results for the buffered net with 20 potential

locations. We can see that there is a difference in the final buffered solution and

the delay distributions of the two solutions are given in figure 3.13. The probabilis-

tic approach is able to consider the variability in wire-lengths during optimization

and makes better choices about potential buffer locations. The results are shown in

table 3.3. We can see that the probabilistic buffer insertion results in better delay

distributions at almost no buffer penalty.

135

In order to validate our probabilistic buffer insertion algorithms, we did some

experiments on actual nets after placement and compared the delay of the buffered

net using post-routing wire-length values. These results show the effectiveness of

our proposed algorithms on realistic circuits. We took multi-terminal nets and

generated a valid placement for the net using an academic placement tool (Parquet

[94]). We generated bounding box estimates for each wire-length segment in the net

and used this as the deterministic fixed value estimate. The probabilistic method

assumes a net-length distribution based on the proposed model in [9]. We then

used an academic routing tool (Labyrinth [85]) to route this net and generated the

actual post routing wire-length values for each segment of the net. The delay for the

buffered net solutions from the deterministic as well as probabilistic algorithm was

computed using these post routing wire-length values for each segment of the net.

Table 3.4 illustrates results of the probabilistic buffer insertion for some benchmarks.

We compare the actual delay after routing from the traditional deterministic buffer

insertion approach to the proposed probabilistic algorithm. It can be seen that

actual post-routing delays in the probabilistic case is smaller than the deterministic

approach, hence the probabilistic method has higher chance of design closure. We

note that the benchmarks on which the data is reported the real post-routing wire-

lengths on the critical path was around twice larger than bounding box, which is why

the probabilistic approach was better since it used a distribution as the wire-length

estimate and captured this wire-length estimation uncertainty. The bounding box

of the other hand is a poor estimate and leads to solutions using the deterministic

algorithm which have higher delays than that given by probabilistic buffer insertion.

136

Bench # Sinks Det. Delay Prob. Delay

mark in Net (ns) (ns)

Net 1 94 59.9 25.4

Net 2 104 25.2 14.4

Net 3 137 61.7 37.8

Net 4 205 92.3 53.3

Table 3.4: Post Routing Delay Results: Deterministic vs Probabilistic

In general from our experiments we found that bounding box was a pretty bad

estimate for 60-70% of the nets, which means that in such situations probabilistic

buffer insertion would perform really well.

These results clearly illustrate the effectiveness of probabilistic buffer insertion

over the traditional deterministic Van-Ginneken approach under uncertainties in

optimization parameters.

3.1.5 Appendix

Directed Maximal Independent Set

We will use the transformation from the Directed-Cover problem to the Di-

rected Maximal Independent Set problem to prove the NP-Completeness of Directed

Maximal Independent Set problem. In this proof, we are considering the case of Di-

rected Maximal Independent set for which each node weight is 1. This assumption

only means that a Directed Maximal Independent Set solution also implies a solu-

tion with maximum node cost. We point out here that this assumption does not

137

weaken the proof of NP-Completeness that follows. We first need to prove that the

Directed-Cover problem is NP-Complete.

Directed Cover

Decision Problem : Given a directed graph G=(V E) and a number K, Is

there a vertex cover V
′

of size K or less such that all edges are covered and there is

at least one directed edge from a vertex in V − V
′

to each of the vertices in V
′

.

Note that decision problem does not encompass the cost aspect of our formulation.

If this problem is NP-C then the generalized problem which considers cost is also

NP-Complete.

Theorem: Directed-Cover is NP-Complete

Proof: We observe that this problem is in NP since given a directed cover so-

lution we can easily verify its feasibility. Next we transform the general instance

of UNIPHASE-ONE-IN-3SAT [41] problem to an instance of the Directed-Cover

Problem. The UNIPHASE-ONE-IN-3SAT problem is defined as follows:

Set U of variables, collection C of clauses over U such that each clause has

exactly 3 variables. Moreover none of the clauses contain a negated literal (uniphase

aspect of the problem). Is there a truth assignment to the variables such that all

clauses are satisfied and exactly one literal of each clause evaluates to TRUE.

UNIPHASE-ONE-IN-3SAT is NP-Complete[41]

138

(X1 + X2 + X3)(X2 + X5 + X6).............

C1 C2

X1 X1’ X2 X2’ X3 X3’ X4 X4’

a

b

c

Clause Assembly

Variable Assembly

TRANSFORMATION

Figure 3.14: Transforming UNIPHASE-ONE-IN-3SAT to Directed-Cover

Figure 3.14 illustrates the transformation. Given a set of C clauses and U

variables, we define two nodes for each variable, each corresponding to its positive

and negative phase. We assign a directed edge from the positive phase node to

the negative phase node. This is called the variable assembly. For each clause we

assign three nodes, one corresponding to each literal. The directed edges between

these nodes can be arbitrarily assigned. Each node on this triangle corresponds to

a specific variable. Now we add a directed edge from this node to the corresponding

variable node. Since all variables occur in positive phase in clauses, these edges get

connected to the positive phase node. Edges aX1, bX2, cX3 represent such edges.

Now for each negative phase node (X1
′

, X2
′

), we add directed edges from these

nodes to those nodes in the clause assembly which do not correspond to this variable.

The hashed directed lines X1
′

b, X1
′

c represent such edges. This transformation is

repeated for all the clauses. Hence we will have 3C+2U nodes in the final graph.

139

Note that this is a polynomial time transformation. Let us assign K=U+2C. Hence

we need to find at most U+2C vertices which cover all the edges and for all covered

nodes, there is at-least one incoming edge for a node not covered. Note that in

this transformation we must pick exactly one variable node and exactly two clause

nodes.

We prove that UNIPHASE-ONE-IN-3SAT problem can be solved iff we can

solve this instance of Directed-Cover.

If Part: Given a solution for UNIPHASE-ONE-IN-3SAT, we transform it to a so-

lution of Directed-Cover. For all variables that are assigned a truth value of TRUE,

pick the corresponding node in variable assembly that signifies TRUE. If the variable

is assigned FALSE pick the other node. We know that for each clause, exactly one

variable has true. Hence in the clause triangle we pick two nodes whose correspond-

ing literals evaluate to false (note that each node in the clause triangle corresponds

to one of the clause literals). This always generates a vertex set of size K that

covers all the edges. This also ensures that each of the selected vertex has at least

one incoming edge from a vertex not selected. Hence, this is a valid solution for

Directed-Cover.

Only If Part: Given a solution for the Directed Cover Problem, we will generate a

valid variable truth assignment. We show that for each clause triangle, exactly one

positive variable node is chosen. Let us suppose that this does not happen. In that

case the solution has either all variable nodes with negative phase (for a specific

140

clause), or the clause triangle has more than one variable nodes with positive phase.

In the former case, clearly all edges will not be covered since edges like aX1 will be

left out. If more than one positive phase variable node of a clause is chosen then

there will be edges connected to the negative phase nodes that will not be covered.

Hence a valid Directed-Cover solution must pick exactly one positive phase variable

node for each clause. This would satisfy the UNIPHASE-ONE-IN-3SAT.

Thus we have shown that the Directed-Cover problem is also NP-Hard. Hence,

Directed-Cover is NP-Complete

Directed Maximal Independent Set

Decision Problem : Given a directed graph G=(V E) and a number P, Is

there an independent set of vertices V
′

of size at least P such that every vertex in

V − V
′

has at least one directed edge coming in from some vertex in V
′

.

Theorem: Directed Maximal Independent Set is NP-Complete

Proof: Given a solution to the Directed Maximal Independent Set, it can easily

be verified in polynomial time. Hence, Directed Maximal Independent Set is in

NP. Next we prove that Directed Maximal Independent Set problem is also NP-

Hard (and hence NP-Complete) We transform a general instance of the Directed-

Cover problem (proved NP-Complete earlier) to an instance of the Directed Maximal

141

Independent Set problem. The Directed Cover problem can be defined as follows:

Given a directed graph G=(V E) and a number K, Is there a vertex cover V
′

of size K or less such that all edges are covered and there is at least one directed

edge from a vertex in V − V
′

to each of the vertices in V
′

.

Directed-Cover is NP-Complete (proof given earlier in this section).

The transformation from Directed-Cover to Directed Maximal Independent Set

is simple. Given an instance of the Directed-Cover problem with a graph G=(V,E)

and a number K such that the size of the Directed-Cover is atmost K, we take

the same graph G=(V,E) as an instance of the Directed Maximal Independent Set

Problem and define P to be (|V | −K). This is a polynomial time transformation.

Set BSet A

G(V,E)

Figure 3.15: Transforming Directed-Cover to Directed Maximal Independent Set

We prove that Directed-Cover problem can be solved iff we can solve this in-

stance of Directed Maximal Independent Set problem.

If Part: Given a solution to the Directed-Cover problem, we will transform it to

a solution of Directed Maximal Independent Set problem. A valid solution to the

142

Directed-Cover problem implies that we are given a Set A of V ′ vertices as shown in

figure 3.15 such that there are n (n ≤ K) vertices in this set and they form a vertex

cover. Additionally, there is atleast one incoming edge to each of these n vertices

from some vertex in the remaining set of V −V ′ vertices represented by Set B in the

figure 3.15. We note here that since Set A forms a vertex cover, there are no edges

between any two vertices from the Set B. By our transformation the target number

P of the Directed Maximal Independent Set problem is given as P = (|V | − K).

Now since there are no edges between the vertices in Set B, they are independent by

definition and are P ′ = |V | − n in number. Also, a valid solution of Directed-Cover

implies that there is atleast one outgoing edge from some node in Set B to every

node in Set A. We note here that since n ≤ K, −n > −K which implies that

|V | − n > |V | −K or P ′ > |V | −K. Hence, we prove that P ′ > P . Therefore set

B forms a valid solution of the Directed Maximal Independent Set problem with

P ′ = (|V | − n) vertices in the set.

Only If Part: Given a solution to the Directed Maximal Independent Set problem,

we will transform it to a solution of the Directed Cover problem. We are given P ′

(P ′ > P) independent vertices (Set B) such that there is a directed edge from one

of these vertices to every vertex in the set |V | − P ′ (Set A). Since Set B is an

independent set, there are no edges between any two vertices from this set. This

means that all the edges of the graph G=(V,E) are either between two vertices

in Set A or between one vertex in Set A and one in Set B. This implies that

Set A is a valid vertex cover of size n = (|V | − P ′). Additionally, every vertex

in Set A has an incoming edge from some vertex in Set B. Now since P ′ > P ,

143

n = (|V | − P ′) < (|V | − P). Also, we know that P = |V | −K. Combining, we can

see that n < K. Therefore, Set A is a valid solution for the Directed-Cover problem.

Thus, we have shown that Directed Maximal Independent Set problem is also

NP-Hard. Hence, Directed Maximal Independent Set is NP-Complete

Complete R-Partite Max Cost Clique

Decision Problem : Given a complete R-Partite graph G=(V,E) with weights

on edges w(e) ∈ [0, 1] and a target weight number B, is there a clique of size R with

total edge weight greater than equal to B in G(V,E).

Theorem: Complete R-Partite Max Cost Clique is NP-Complete

Proof: Given a solution to the Max Cost Clique problem, its validity can easily be

verified in polynomial time. Hence, Max Cost Clique is in NP. Next we prove that

Max Cost Clique problem is also NP-Hard (and hence NP-complete). We transform

a general instance of the 3SAT[41] problem to an instance of the Complete R-Partite

Max Cost Clique problem. The 3SAT problem can be defined as follow:

Set U of variables, collection C of clauses over U such that each clause has

exactly 3 literals. Is there a truth assignment to the variables such that all the clauses

are satisfied.

3SAT is NP-Complete[41]

144

(X1 + X2 + X3)(X1’ + X4 + X5)........................

X1

X2

X3

X1’

X4

X5

0
1

1

Transformation

C1 C2

Partition 1 Partition 2 Partition 3

Figure 3.16: Transforming 3SAT to Complete R-Partite Max Cost Clique

The transformation from 3SAT to Complete R-Partite Max Cost Clique is

illustrated in figure 3.16. Given an instance of the 3SAT problem on m clauses in

the collection C and U variables, we will construct an m partite (R = m) graph

G=(V,E) as follows. For each clause in the 3SAT problem, we create a partition

in graph G with exactly three vertices each corresponding to one literal in that

clause. We put an edge between every pair of vertices from different partitions. We

assign an edge weight 0 to an edge if the literals corresponding to those vertices are

negations of each other, otherwise we assign an edge weight of 1. For example, if

the variables are X1,X2, etc. and u,v are vertices from different partitions, w(u,v)

= 0 for (u = X1 and v = X̄1), (u = X2 and v = X̄2), etc. and w(u,v) = 1 otherwise

(refer to figure 3.16). There are no edges between vertices from the same partition.

Note that this graph G is a complete m partite graph and the size of the maximum

clique is m. Let us assume the target weight number B = m(m-1)/2. Note that this

is a polynomial time transformation.

We prove that 3SAT problem can be solved iff we can solve this instance of

145

Complete R-Partite Max Cost Clique problem.

If Part: Given a solution to the 3SAT problem, we will transform it to a solution

of Complete R-Partite Max Cost Clique problem. A satisfying truth assignment to

the 3SAT problem implies that there is atleast one true literal in each clause. We

pick one vertex from each of the m partitions that corresponds to a true literal in

the corresponding clause from the 3SAT solution. Hence, we can construct a clique

of size m, whose edges have weight = 1. Summing up the edge weights we get a

clique of total cost equal to m(m-1)/2. Therefore, this is a valid solution for the

Complete R-Partite Max Cost Clique problem.

Only If Part: Given a solution to the Complete R-Partite Max Cost Clique prob-

lem, we will generate a valid satisfying truth assignment to the 3SAT problem.

Given a clique of size m with total edge weights equal to m(m-1)/2, we know that

each of the edge weights in the clique must be 1. By assigning the value true to the

literals corresponding to the vertices of this clique, we can generate a valid truth as-

signment for each clause since there is exactly one true literal in each clause. There

can be no contradictions since for any variable X, both X and X̄ cannot be in the

clique because the edge (X,X̄) has weight 0 and we have selected edges with weights

1 only. Therefore, this is a valid solution for the 3SAT problem.

Thus, we have shown that Complete R-Partite Max Cost Clique problem is also

NP-Hard. Hence, Complete R-Partite Max Cost Clique is NP-Complete

146

147

3.2 Monte-Carlo Driven Stochastic Optimization Framework for Han-

dling Fabrication Variability

Increasing impact of fabrication variability in deep sub-micron technology has

become a potent problem in VLSI Design optimization. Variability causes circuit

parameters to behave as random variables making traditional deterministic tech-

niques for design optimization sub-optimal. This has inspired a growing interest

in investigating statistical techniques for design optimization. Circuit performance

(timing, power etc.) has a non-linear dependency on global parameters that are af-

fected by fabrication variability. This makes the problem of handling the variability

effects even more difficult.

Several recent works have focused on modeling global circuit parameters (tox,

Leff etc.) as random variables and then introduced techniques to perform analysis

and optimization. In order to make the problem computationally efficient, a lot of

work assumed that these parameters either have a Gaussian distribution or have

a linear dependence on circuit performance or both. While these approximations

can be justified to some extent when the magnitude of these parameter variations

is small. But with each technology node, the variations are becoming more domi-

nant. Hence we need to develop techniques that do not make such assumptions and

have the flexibility to deal with non-linear relationship of circuit parameters with

performance under any arbitrary distribution of parameters.

A lot of recent work in fabrication variability aware analysis and optimization

has been focused along these directions. Statistical timing analysis (STA) is one such

148

area that has gained a lot of attention within the research community. The initial

works on STA made assumptions that circuit timing was a linear function of Gaus-

sian distributed parameters [26, 42, 10, 118, 60, 39, 79]. More recently, several STA

techniques have been proposed that extended this paradigms to consider non-linear

and non-Gaussian parameter dependence on timing [127, 30, 43, 119]. Furthermore,

a lot of research has been focused on developing statistical optimization techniques

for yield improvements [8, 4, 77, 80, 67, 32, 73]. Some of these are based on worst-

case assumptions [67], some are sensitivity-driven approaches [4, 32, 73, 80], while

others are mathematical approaches [77]. These approaches either do not explic-

itly converge to the optimal solution, or make assumptions about the nature of

the distributions to converge to the optimal solution [67]. The sensitivity based

approaches are heuristic in nature and do not converge to the optimal solution.

The work presented in [8] presents a stochastic programming based framework for

variability-driven gate sizing is an interesting example of stochastic optimization

based frameworks.

In the most general case, it is very hard to develop analytical formulations

that are able to consider the true non-linear nature of parameter dependence on

performance as well an arbitrary distribution of the parameters. As a result ei-

ther approximations need to be built into the techniques that tend to make results

erroneous, or some kind of numerical techniques need to be considered [43, 119].

The only real way to capture variability in analysis and optimization is through

Monte-Carlo based techniques. But as is well known, this approach tends to be ex-

tremely inefficient making it difficult to be incorporated into classical optimization

149

frameworks. Hence, there is a very strong motivation to develop Monte-Carlo based

statistical frameworks for analysis and optimization that are efficient and would pro-

vide accurate results. In this work we propose to develop one such framework. We

will look at the classic linear programming framework and show how we can model

a deterministic linear programming formulation to be variability-aware and propose

a Stochastic Programming based framework to solve the problem. The stochastic

programming framework intrinsically uses Monte-Carlo based simulations in an in-

telligent way to make the overall scheme efficient and accurate. Such an approach

is important as it provides a mathematical framework for variability driven opti-

mization with convergence to the optimal solution without making any assumption

about the nature of variability.

In this work, we investigate the classic linear programming formulation as ap-

plied to an important VLSI CAD problem of MTCMOS sizing [116] from a stochastic

perspective. We will show how this deterministic linear programming formulation

that is incapable of handling the fabrication variability in circuit parameters (like

threshold voltage Vt, transistor length Leff etc.) can be extended as a stochastic

programming formulation. We present a formal methodology that enables model-

ing and optimizing linear programming formulations in which the parameters are

random variables. These parameters essentially correspond to unpredictable circuit

parameters due to fabrication variability. This methodology, formally known as

stochastic programming [66, 21, 121, 93, 57, 55], provides a very strong framework

for modeling and optimization of linear programming based VLSI-CAD problems

under variability. We will investigate/review the theory of stochastic programming

150

and present some techniques for optimization of the same. Specifically, we present

the theory of two stage stochastic programs with recourse and review two techniques

for optimizing them: Successive Sample Mean Optimization SSMO and Stochastic

Decomposition.

In this work, we will define our optimization objective as Binning Yield Loss

(BYL). In high performance designs, process variations result in a spread in the

achievable frequency, thereby causing some chips to fail from meeting the nominal

target frequency. In [98], the authors have mentioned that as much as 30% fre-

quency variation can be observed in high-performance designs. Chips can be binned

according to their operating frequency. Those that fail to meet the target frequency

can either be sold at a loss or be discarded. In [13], the authors present a hardware

design to perform speed binning in microprocessor design. Each speed bin has a

corresponding penalty cost that is proportional to its slowdown from the target fre-

quency. Thus, there exists a binning-yield loss with each design depending on the

spread in its operating frequency due to process variations. In this work, we use

BYL as an optimization objective in our formulation.

The MTCMOS sizing problem for BYL optimization can be formally defined

as:

Given a gate-level circuit with fine-grained sleep transistors placed at the gates,

the arrival time at each primary input and a required time constraint at each of the

primary outputs, optimally size the sleep transistors such that the nominal leakage

and BYL is minimized.

151

Delay t

Pdf

Tcons

p(t)

Fpenalty

Figure 3.17: Binning Yield Loss with a Linear Penalty Function

Experimental results on the MCNC benchmarks indicate that the determin-

istic linear programming formulation (that does not consider variability) generates

solutions for MTCMOS sizing that violate the timing constraints with a 48% prob-

ability. The stochastic decomposition method on the other hand generates solutions

that satisfy the timing constraints with a 100% probability (No BYL). The SSMO

technique is very slow (reasons analyzed later) and did not converge to a solution

for most benchmarks. The experimental results clearly point out the superiority of

performing stochastic programming for optimizing VLSI CAD problems in presence

of variability as compared with deterministic linear programming. This work intro-

duces the formal optimization framework behind the modeling and optimization of

VLSI CAD problems in the stochastic programming perspective.

3.2.1 Binning Yield Loss

In high performance designs, process variations result in a spread in the achiev-

able frequency, thereby causing some chips to fail from meeting the nominal target

frequency. In [98], the authors have mentioned that as much as 30% frequency vari-

ation can be observed in high-performance designs. Chips can be binned according

152

to their operating frequency. Those that fail to meet the target frequency can either

be sold at a loss or be discarded. In [13], the authors present a hardware design

to perform speed binning in microprocessor design. The penalty that the chips in

a speed bin have to incur is proportional to the slowdown from the target timing

constraint (T cons). Let us suppose that the timing delay of the chip is t. We define

a BYL penalty function Fpenalty(t) as follows:

Fpenalty(t) =















t− T cons; t ≥ T cons

0; otherwise

(3.13)

Let us suppose the probability density function (pdf) of circuit delay is p(t)

as shown in figure 4.1. For this scenario, we can define the BYL for the design as:

BY L =
∫ ∞

−∞
Fpenalty(t)p(t)dt =

∫ ∞

T cons(t− T cons)p(t)dt (3.14)

In the optimization framework proposed in this work, we will use the above

definition for BYL.

Often the optimization objective in variability-driven problem formulations is

taken to be the traditional Timing Yield Loss (YL), which is the probability that a

design violates the timing constraints.

Y L =

∫ ∞

T cons

p(t)dt (3.15)

It is easy to note that even though YL and BYL do not represent the same ob-

jective, but there is correlation between the two. As we shall report in our results,

even though we optimize for BYL, the YL numbers obtained from our proposed

stochastic programming framework are significantly better as compared to the de-

153

terministic sizing formulations. It is also interesting to note that if there is a solution

for which BYL is 0, then this also implies that the YL will be 0 for that design.

3.2.2 Motivational Example: Linear-Programming Based Optimiza-

tion

In this section, we will consider a general VLSI-CAD optimization formula-

tion that has timing constraints on the design while trying to minimize a certain

cost function. From the previous section, we understand that BYL is directly pro-

portional to the timing violation in the design and we will try to demonstrate this

through the following formulation.

Let us suppose that we are given a gate-level circuit where the delay of each

gate i is denoted by di. If we assume a linear gate-delay model, we can define di as:

di(xi) = pi + qi ∗ xi ∀gate i (3.16)

where pi and qi are constants for each gate and xi is the control variable (say

transistor size for example). At this point we can note that if we have a non-linear

gate delay model (say convex), we can linearize it using piecewise approximations.

The resulting linear-gate delay model can be made sufficiently accurate by control-

ling the number of piecewise linearizations used.

We can now try to understand a general linear-programming based optimiza-

tion formulation that using the above linear gate delay model. Let us suppose that

we have to assign the control variables (~x) values such that the timing constraints

154

at the primary output of the circuit are satisfied and an objective cost is minimized.

The arrival time at the output of each gate i can be denoted by a variable Di. At

each primary output (PO), we impose a timing constraint T cons. The objective of

minimization in general can be a linear function of the control variable ~x. We can

write this formulation mathematically as:

Minimize (
∑

i ci ∗ xi)

Subject to :















































di(xi)−Di + Dj ≤ 0 ∀j ∈ Fanin(gate− i)

di(xi) = pi + qi ∗ xi ∀gate i

Di <= T cons ∀gate i ∈ PO

xmin
i ≤ xi ≤ xmax

i

(3.17)

where ci are constants and (xmin
i , xmax

i) denoted the valid range for each control

variable xi.

Effect of Fabrication Variability

Fabrication variability causes several circuit parameters that are assumed to be

constants in the previous formulation to have random behavior. Circuit parameters

like chip threshold voltage Vt, effective channel length Leff etc. have been shown to

have such randomness due to fabrication variability [98]. Other circuit parameters

like chip temperature, supply voltage etc. also have randomness due to environ-

mental uncertainties. Randomness in circuit parameters will cause the constants

(pi, qi) in equation 3.16 to become uncertain, which means that the effective gate

delay di is now not only a function of the control variable xi but also the underlying

randomness field ~Ω. These random variables will show correlated behavior since

155

they are inspired by variability in basic circuit parameters. This correlation can be

easily considered in the optimization process by appropriately sampling the random

field. This motivates us to formulate optimization problems like the previous ones

from a stochastic perspective.

The linear gate delay di can now be represented as:

di(xi, ~Ω) = pi(~Ω) + qi(~Ω) ∗ xi ∀gate i (3.18)

Hence the linear-programming based formulation presented earlier in this sec-

tion can now be written as:

Minimize (
∑

i ci(~Ω) ∗ xi)

Subject to :















































di(xi, ~Ω)−Di + Dj ≤ 0 ∀j ∈ Fanin(gate− i)

di(xi, ~Ω) = pi(~Ω) + qi(~Ω) ∗ xi ∀gate i

Di <= T cons ∀gate i ∈ PO

xmin
i ≤ xi ≤ xmax

i

(3.19)

where ~Ω the the randomness field that denotes the randomness in circuit pa-

rameters due to fabrication variability. This randomness causes the timing con-

straints (T cons) at the POs to be violated for certain values ~ω of ~Ω. Hence, now there

will be a likelihood that a given solution for the design has a probability of violating

the timing constraints and thus will incur a BYL. In this light, we can redefine the

problem objective to minimize the BYL for the design along with the traditional

objective function. This can be done by modeling the above linear-programming

formulation as a two-stage stochastic programming formulation [93].

The first-stage formulation can be written as:

156

Minimize (
∑

i ci ∗ xi + BY L(~x))

Subject to :















































di(xi)−Di + Dj ≤ 0 ∀j ∈ Fanin(gate− i)

di(xi) = pi + qi ∗ xi ∀gate i

Di <= T cons ∀gate i ∈ PO

xmin
i ≤ xi ≤ xmax

i

(3.20)

which is similar to the formulation presented in 3.17 except that we now ad-

ditionally minimize the BYL for the design. Formulation 3.20 represents nominal

constraints evaluated at the nominal values for all parameters.

From the first stage formulation, we get a solution ~x. But in presence of

fabrication variability, the delay di of each gate w.r.t. xi also becomes a function of

the random field ~Ω. In this scenario, it is possible that the arrival time Di at the

primary outputs may violate the timing constraint T cons. Hence, by the definition

of BYL, there will be a penalty imposed on the design depending on the amount

of timing violation. Let us define a random variable P that denotes the penalty of

violating the timing constraint (T cons) as:

P (~x, ~Ω) =















(Di(~x, ~Ω)− T cons); Di ≥ T cons i ∈ PO

0; otherwise

(3.21)

In equation (4.2), BYL was defined as the expected value of the timing-

violation penalty. For a given (~x) and a sample ω of the random field Ω, let p(~x, ~ω)

be the value of the random variable P . By definition, p(~x, ~ω) denotes the timing-

violation penalty for a given (~x) at that variability sample ω. Hence, BYL would be

the average timing-violation penalty over all such samples ω which is the expected

value of the random variable P for a given (~x). Therefore:

157

BY L(~x) = E[P (~x, ~Ω)] (3.22)

We can evaluate the timing-violation penalty p(~x, ~ω) given a fixed ~x and a

variability sample ~ω through another linear formulation that can be written as:

p(~x, ~ω) = Minimize
∑

i∈PO T viol
i

Subject to:















































di(xi, ω)−Di + Dj ≤ 0 ∀j ∈ Fanin(gate− i)

di(xi, ω) = pi(ω) + qi(ω) ∗ xi ∀gate i

Di <= T cons + T viol
i ∀gate i ∈ PO

T viol
i >= 0 ∀gate i ∈ PO

(3.23)

where T viol
i denoted the extent of timing violation at primary output gate i.

For a given value of ~x, the optimal objective to this formulation gives us p(~x, ~ω)

which is the desired quantity to compute BYL(~x).

The two formulations defined by inequalities (3.20) and (3.23) form a classic

Two-Stage Stochastic Programming formulation [93], where the former is called the

first-stage problem and the latter second-stage problem.

3.2.3 Stochastic Programming

In the previous section, we presented a motivational example detailing how a

timing constrained linear-programming optimization formulation could be modeled

as a two-stage stochastic program. We also introduced the idea of BYL as an

158

optimization objective. In this section, we will generalize this theory and show that

it holds for any linear-programming based formulation.

Linear Programming

Linear programming is a very widely used optimization methodology in VLSI

design automation. It can be specified as a general linear objective function under

a set of linear constraints as follows:

Minimize c⊤x (3.24)

subject to Ax ≤ b (3.25)

Several design automation problems have been modeled as linear programs.

The polynomial solvability of this formulation makes it a very attractive optimiza-

tion paradigm.

Optimization Under Uncertainty

Increasing importance of manufacturing variabilities in deep sub-micron tech-

nology have made traditional deterministic optimization techniques inaccurate. Vari-

ability in problem parameters have made optimization a very difficult task. In a

linear programming context, there are three sources of variability: constraint ma-

trix A, vector b and cost vector c, making them non-deterministic random variables.

Therefore, the solution to equation 3.24 may be suboptimal due to non-determinism

in the cost vector c, or may violate the constraints due to non determinism in A

159

and b.

Stochastic Programming [66, 21, 121, 93, 57, 55] is a framework that provides

a formal methodology for modeling linear programming problems that involve op-

timization under uncertainty. Stochastic programming is applicable when the vari-

ability in vector c, matrix A and vector b can be estimated or modeled as probability

distributions.

Variability in Cost Vector c

The uncertainty in cost vector (objective function in equation 3.24) may cause

the solution to be sub-optimal. Under such a scenario typically we would like to

optimize (minimize) the expected value. The objective function would become

Minimize E(c⊤x) which is the same as Minimize E(c⊤)x. Assuming that the

non-determinism in problem parameters can be represented as probability distribu-

tions, simply replacing c by the E(c) (expected value of c) will ensure the optimality

of the expected cost even in the presence of uncertainty. Therefore in subsequent

discussions we will assume that variability in c has been addressed by replacing it

by E(c). In the next few sections we will discuss the impact of uncertainty due to

variability in A and b.

Stochastic Programming with Recourse

Variability in the parameters A and b may cause the violation of several prob-

lem constraints after the decision variables x have been fixed. When the real values

160

of problem parameters becomes known (exact values for matrices A and b), we might

find that some of the constraints that are violated, need to be fixed. This is called

recourse. Every recourse action is associated with a cost and is typically modeled

as the following linear program:

h(x, ω) = Minimize g(ω)⊤y (3.26)

subject to W (ω)y + T (ω)x ≤ r(ω) (3.27)

y ≥ 0 (3.28)

Essentially T (ω) is the real manifestation of the constraint matrix A and r(ω)

is the manifestation of b, after the uncertainty has been resolved. Here the parameter

“ω” implies the sources of randomness that cause T (ω) and r(ω) to be different from

A and b. The term W (ω)y corresponds to the recourse action with “y” denoting the

recourse variables and W representing the recourse matrix. Note that if T (ω)x ≤

r(ω) then the original constraints are satisfied anyway and there is no need for

recourse (y = 0). Having a recourse causes an additional cost given by the recourse

cost vector g(ω). This linear programming formulation tries to find the “optimal”

recourse such that the recourse cost is minimized. Note that the general theory

of stochastic programming assumes that the recourse matrix W and the recourse

cost vector “g” are also dependent on randomness. But, in this work we choose to

focus on the fixed recourse formulation of stochastic programs where W and g are

independent of any randomness. Note that the extent/cost of recourse depends on

the value of x (see formulation in equation 3.24) chosen. That is why the cost of the

recourse h(x, w) depends on 1) the nature of the randomness ω and 2) the value for

161

x. For a given value of x, E(h(x, ω)) represents the expected recourse cost for the

entire random space of existence of the A and b vectors.

Under the presence of uncertainty, the following formulation considers both

the cost of the current solution and the expected recourse cost:

Minimize c⊤x + E[h(x, ω)] (3.29)

subject to Ax ≤ b (3.30)

Note that variability in the cost vector c can be modeled by simply replacing c

by the expected cost vector. Variability in A and b can cause violation of constraints

which causes a recourse cost. The objective function tries choose x so as to minimize

both the decision cost cx and the expected recourse cost E[h(x, ω)]. The recourse

cost is given by the linear programming formulation in equation 3.26. This is a

classic two stage stochastic linear programming (SLP) formulation with recourse

[57, 55, 66]. The first stage stochastic linear program is given by equation 3.29 and

second stage is given by 3.26.

In the first stage, a choice of the decision variable x is made and it does does

not consider any variability in parameters. E[h(x, ω)] is the expected value of the

recourse function and ω is a random variable defined on the probability space. The

idea is to make a first stage decision on x, after which a random event or variability

occurs (ω) changing the outcome of the first stage decision. A recourse action must

be taken in the second stage problem to correct any negative impact of the first

stage decision after some variability is introduced into the system. In this work we

will be interested in only those SLP formulation which have complete recourse, i.e.

162

for any choice of x that is feasible in the first stage problem (equation 3.29), there

exists a feasible recourse for possible manifestations of the randomness ω.

3.2.4 SLP and Fabrication Variability

Growing impact of manufacturing variability has inspired a re-investigation

of traditional optimization strategies used in VLSI Design automation. Linear pro-

gramming is a very popular optimization strategy in VLSI CAD problems. Ad-

dressing linear programming from a variability perspective naturally inspires us

to investigate the stochastic linear programming techniques that address the lin-

ear programming problem under uncertainty. Manufacturing variability can cause

unpredictability in circuit parameters (matrix A and vector b). Therefore while

optimizing/choosing the decision vector we would like to consider this uncertainty

such that the overall decision cost and expected recourse cost is minimized. The

concept of recourse from a fabrication variability perspective is a bit obscure. The

true manifestation of A and b becomes clear only after fabrication. If a certain

design constraint is violated at this stage, the chip is wasted.

It is interesting to note that we can make a direct correlation between BYL

as presented in section 3.2.1 and recourse. If a chip does not meet its target timing

constraint, we can perform operating frequency based binning and sell the chips at

a loss that is proportional to how much slower a chip is from its target frequency.

This in essence is a recourse that has an associated cost with it. Thus, we can use

BYL as the recourse cost in our optimization formulation. In the rest of this work,

163

we will use BYL to represent the notion of recourse cost.

Let us now try to understand the relationship between recourse cost and BYL

in more detail. As defined in subsection 3.2.3, recourse cost h(x, ω) represents

the cost that must be incurred due to violation of constraints when the decision

variables have been assigned to value x and the variability sample is ω. In the

problem formulation, the objective function given in equation 3.29 considers the

expected recourse cost E[h(x, ω)] as a minimization criteria. In the perspective

of timing yield, this expected recourse cost would link with the extent of timing

constraint violation that happens due to fabrication variability in parameters. This

links closely with the definition of BYL as described in section 3.2.1. Equation 4.2

defines BYL as the expected loss that has to be incurred due to timing violation.

In the previous subsection, if variables y represent the timing constraint vi-

olation given a solution x in presence of a variability sample ω, we can define the

recourse cost vector g(ω) to be the BYL penalty function Fpenalty(y + T cons) (where

y represents timing violation). In this scenario, the recourse cost h(x, ω) can be

computed from the BY L(x, ω) as:

h(x, ω) = BY L(x, ω) (3.31)

In order to compute the expected recourse cost E[h(x, ω)], we need to average

BY L(x, ω) over all samples ω ∈ Ω. Hence:

E[h(x, ω)] = BY L(x) (3.32)

164

Hence, we can use BYL to represent the recourse cost in the proposed stochas-

tic programming framework. We note that the discussion of BYL has been presented

in the perspective of timing violation. But the notion of BYL can be extended to

consider multi-dimensional objectives like timing and leakage BYL. Leakage BYL

would represent the loss that has to be incurred when the leakage power constraints

of the design are violation. Similar to recourse cost, we can also have a general

multi-dimensional BYL.

Theorem: The recourse cost E[h(x, ω)] is convex in the decision variables x.

Proof: Given a solution x, all the constraints are linear and BY L(x, ω) has been

defined to be a convex function (linear in this work) of the decision variables as

well (for a given value of variability sample ω). The total BYL is averaged over

all samples ω ∈ Ω which would be a positive sum of convex functions (BY L(x, ω))

which is convex as well. Since recourse cost is the same as BY L(x), we claim that

the recourse cost E[h(x, ω)] is convex.

Several approaches have been proposed to solve the two stage stochastic pro-

gramming problem. These approaches include successive sample mean optimization

(SSMO) based strategies [74, 92] and decomposition based techniques [91, 65, 90].

Another unique approach called stochastic decomposition was also proposed which

tries to merge both SSMO and decomposition [57, 55].

165

3.2.5 Statistical Approximations: Successive Sample Mean Optimiza-

tion

The objective function of the first stage SLP formulation contains the expected

value of the recourse function (E[h(x, ω)]). We can approximate SLP problems

with a large number of outcomes by using a sample mean approximation of this

function. This technique is similar to Monte Carlo based simulation. The only

difference lies in the fact that an optimization problem is solved after each new

sample. Essentially we sample the sources of randomness ω iteratively, solving the

optimization problem till some stopping criteria is satisfied. For instance, in the kth

iteration, we have nk is the samples from ω. Therefore we have nk possible values

of A and b (T1, T2, T3....Tk, r1, r2.....rk). At this step we solve the following linear

programming problem:

166

Minimize c⊤x +
1

nk

k
∑

j=1

Hj (3.33)

Ax ≤ b (3.34)

Wy1 + T1x ≤ r1 (3.35)

Wy2 + T2x ≤ r2 (3.36)

.. (3.37)

Wyk + Tkx ≤ rk (3.38)

H1 = g⊤y1 (3.39)

H2 = g⊤y2 (3.40)

.. (3.41)

Hk = g⊤yk (3.42)

This problem is solved iteratively (in each iteration we get one new sample) till

the optimal solution from iteration k and k+1 are within a user specified range of

confidence. It has been shown in [56] that if nk →∞ as k →∞, then the sequence

{xk} converges to an optimal solution with probability one. Several SSMO based

approximation schemes have been proposed in the literature [92, 74]. Note that as

we increase the number of iterations, the total number of samples increase and the

size of the formulation shown above increases. Therefore, if the convergence rate is

slow, then this technique can become highly cumbersome.

167

3.2.6 The Cutting Plane Method

Kelley in [53] presented the cutting plane algorithm for convex optimization

problems. It was also shown in [91] that

E[h(x, ω)] =

∫

h(x, ω)P (dω) (3.43)

is a convex function. Therefore, the optimal solution to the two stage stochastic

linear problem with recourse can be represented as:

f(x) = c⊤x + H(x) (3.44)

X = {x|Ax ≤ b} (3.45)

where H(x) = E[h(x, ω)] (3.46)

Note that we are only interested in finding x such that only the first stage

constraints get satisfied. This is because of the previously assumed complete recourse

property in which a first stage feasible solution is second stage feasible too. Therefore

the optimal solution to the above formulation is definitely optimal solution for the

SLP problem. Since H(x) is convex [91], we can use Kelley’s cutting plane algorithm

for solving the above problem optimally.

Kelley’ algorithm provides a technique for us to iteratively generate piecewise

linear lower bounding approximations on the expected recourse function (H(x))

which is a convex function of x. The kth approximation can be denoted by vk(x)

and objective function in the kth iteration becomes fk(x) = c⊤x + vk(x). The tech-

nique assumes that X is bounded. As indicated above X is the feasible region of

168

the linear program. Kelley’ algorithm as given in [57] is described below. Due to

space limitations several details and proofs have been omitted.

Kelley’s Cutting Plane Algorithm:

Step 0 Initialize:

Let ǫ > 0 and x1 ∈ X be given (one feasible solution obtained by solving

the first stage problem without any recourse cost). Let k ← 0 and define

v0(x) = −∞, u0 =∞, lo = −∞.

Step 1 Define/Update the piecewise linear approximation:

1. k ← k+1

2. Evaluate αk, βk such that H(x) ≥ αk + βkx. (Details described later)

3. Add the following to the existing set of constraints vk(x) ≥ vk−1(x), vk(x) ≥

αk + (βk)⊤x. Here vk−1 is the lower bounding plane from the previous

iteration

4. The new minimization objective is fk(x) = c⊤x + vk(x).

5. Let uk = Min{uk−1, f(xk−1)}

Step 2 Solve the LP master problem:

Let xk ∈ argmin{fk(x)|x ∈ X}.

Step 3 Stopping Rule:

lk = fk(x
k). If uk − lk ≤ ǫ then stop, otherwise repeat from Step 1.

169

Essentially in each iteration we generate a new and refined linear lower bound

on the convex function H(x) denoted by αk + (βk)⊤x. We add this as a new lower

bound constraint to the first stage problem and solve it optimally. Once again this

cut generation step is repeated till the convergence criteria of Step 3 is satisfied.

The way these linear lower bounds are generated is briefly described as follows.

According to the approach presented by Kelley [53] these linear lower bounds to

H(x) can be generated by looking at the Dual of the second stage SLP problem (for

brevity we omit the details and the associated theorems). This dual formulation is

enumerated below:

h(x, ω) = Maximize [r(ω)− T (ω)x]⊤π (3.47)

subject to W⊤π ≤ g (3.48)

It can be seen that the objective function is of the form α + βx. In the k-th

iteration, x is fixed to xk which is the first stage solution. The dual feasible solution

of a primal minimization problem is always a lower bound to the primal optimal

solution. This intuition could be used to generate a linear lower bound for H(x).

Without going into further details (for brevity), we define the linear lower bounds

in the k-th iteration as follows:

αk =

∫

Ω

r(ω)⊤πk(ω)P (∂ω) = E[r(ω)⊤πk(ω)] (3.49)

βk =

∫

Ω

−T (ω)⊤πk(ω)P (∂ω) = E[−T (ω)⊤πk(ω)] (3.50)

Here πk corresponds to the solution to the Dual second stage problem in the

170

k-th iteration with x = xk. We need to understand the computation complexity

involved in solving the hyperplane coefficients as given by equation 3.49 and 3.50.

This computation inherently involves solving the linear program given by equations

3.47-3.48 for every possible realization of the random variable ω at every iteration

k. In most cases, the number of such realization is pretty high and this would cor-

respond to the number of times the linear program would need to be solved for each

iteration of Kelley’s Method. Therefore, for all practical problems with reasonably

large size, this approach becomes rather impractical. Nonetheless, Kelley’s algo-

rithm does provide an elegant way in which stochastic programming problems can

be solved optimally.

3.2.7 Stochastic Decomposition

As indicated in the previous section, the key problem in Kelley’s methodol-

ogy is the solution to equations 3.49 and 3.50. In general, the analytical solution to

these equations is very hard. Therefore, statistical techniques have been proposed to

address this issue. Stochastic Decomposition (SD) is a category of algorithms that

try to incorporate statistical approximations in decomposition algorithms. Kelley’s

algorithm is a classic example of decomposition algorithms and has been investi-

gated from a statistical perspective in [57]. Essentially the method proposed in

[57] presents a statistical technique for estimating the lower bounding hyperplanes

for the expected recourse cost H(x). In this section we will briefly outline the al-

gorithm/methodology presented by [57]. For brevity, we will omit the associated

171

theorems and proofs.

Once again, just like SSMO based techniques, we iteratively optimize the ob-

jective function. In each iteration we generate one new sample from the randomness

field ω. Based on the existing set of samples obtained, a lower bounding hyperplane

for the expected recourse cost is generated. This optimization is performed itera-

tively until a pre-specified stopping criteria is satisfied. Without delving into the

details we will outline the algorithm. The detailed derivations and proofs can be

found in [57]. The basic structure of this algorithm (enumerated below) is similar

to Kelley’s algorithm.

Basic Stochastic Decomposition Method

Step 0 Initialize:

Let x1 ∈ X (a feasible solution to the first stage problem) be given and k ← 0

Step 1 Define/Update the piecewise linear approximation:

1. k ← k + 1

2. Generate a sample from the random space ω

3. Evaluate a new approximating lower bound hyperplane αk
k, +βk

kx. (De-

tails described later)

4. Update the previous lower bounding approximation to incorporate the

new sample in this iteration. (Details described later)

5. Add new constraints vk ≥ αk
k + βk

kx, and vk ≥ αk
t + βk

t x where αk
t + βk

t x

172

are the lower bounding hyperplanes from the previous iteration that have

been updated/refined to consider the new information provided by the

new sample in the current iteration.

6. Set fk(x) = c⊤x + vk

Step 2 Solve the LP master problem with fk as the objective function:

Let xk+1 ∈ argmin{fk(x)|x ∈ X}.

Step 3 Repeat from Step 1 if stopping criteria of Kelley’s Algo is not satisfied

Essentially the algorithm first solves the first stage problem assuming the re-

course cost is non existent. Then it generates one sample from the random field

ω. Based on this new sample it generates a lower bounding hyperplane approxi-

mation of the cost. One such lower bounding approximation is generated in each

iteration k and is represented as αk
k, +βk

kx. Also, since in each iteration a new sam-

ple is generated, more information about the expected recourse function becomes

available. Therefore, the lower bounding approximations generated in the previous

iteration need to be updated too. These updated lower bounding approximations

are denoted as αk
t + βk

t x. Here the subscript “t” indicates the iteration t ≤ k where

the corresponding approximation was generated. The superscript k corresponds to

the current iteration where it has been updated. After generation the new lower

bounding hyperplane and updating the existing ones, the following new constraints

and objective function are added in the first stage problem:

173

Minimize c⊤x + vk (3.51)

Ax ≤ b (3.52)

vk ≥ αk
t + βk

t x ∀t = 1, .., k (3.53)

Generating a New Lower Bounding Hyperplane

As indicated earlier, in each new iteration a new sample from the randomness

field ω is generated. Let us suppose in iteration k, the linear programming problem

in equation 3.51 gives xk as the optimal solution. We recall from section 3.2.6 that

generating the lower bounding hyperplane in the kth iteration in Kelley’s Method

using equations 3.49 and 3.50 requires the computation of a complicated integral

for which there was no known analytical expression. If we replace this integral with

sample means using a sample {ω1, ..., ωk} (essentially the samples generated so far),

we can get an approximate lower bound. This is performed using the approach

presented by [55] which we briefly outline below without delving into details for

brevity.

According to the approach in [55], each iteration k solves the second stage

problem in equation 3.26 with x = xk and ω = ωk. According to the theory in

[55], instead of solving the second stage problem directly, the corresponding Dual

problem is solved (equation 3.47). For each of the previous iterations t=1..k, we

store all the optimal Dual multipliers πt. Let Πk denote the set of all optimal Dual

multipliers from iteration 1..k. Without developing the theory in [55] any further we

174

give the expressions for computing the lower bounding approximate hyperplanes.

In the current iteration k, let πk
t be defined as follows:

πk
t ∈ argmax{[r(ωt)− T (ωt)xk]⊤π|π ∈ Πk} (3.54)

where ωt is the sample from the iteration t and πk
t corresponds to that multiplier

from the set Πk which corresponds to the maximum value for [r(ωt)− T (ωt)xk]⊤π.

The lower bounding hyperplane coefficients (αk
k, β

k
k)in the kth iteration are given

by:

αk
k =

1

k

k
∑

t=1

[r(ωt)]⊤πk
t (3.55)

βk
k =

1

k

k
∑

t=1

[−T (ωt)]⊤πk
t (3.56)

Updating Previously Generated Hyperplane Bounds

In each iteration we define a new lower bounding hyperplane. However, as the

iterations progress the sample mean also changes as the sample size keeps increasing.

In order to ensure that the previously generated hyperplanes still form a valid lower

bound, we need to keep updating their coefficients.

If we are currently in the kth iteration, we would have generated k− 1 hyper-

plane coefficients given by {(αk−1
t , βk−1

t)}k−1
t=1 . According to [57], in the kth iteration,

we can update the coefficients as follows:

175

αk
t ←

k − 1

k
αk−1

t (3.57)

βk
t ←

k − 1

k
βk−1

t (3.58)

t = 1,, k − 1 (3.59)

The stopping Criteria

Kelley’s algorithm described in the previous section has a stopping criteria

which essentially looks at the improvement in the quality of solution from one it-

eration to the other. If the improvement is less than a user specified limit then we

stop. Other stopping criteria which are faster but more complex could also be used

here [57].

3.2.8 SLP Applied to VLSI CAD

Let us now try to understand how we can apply the stochastic programming

framework to an optimization problem in CAD. Traditional deterministic optimiza-

tion is not applicable once we consider the effects of variability in parameters. We

will consider the problem of sizing MTCMOS transistors for leakage reduction under

a delay constraint [116]. The authors have presented a linear programming based

approach for optimally sizing sleep transistors under a delay constraint.

176

Sizing of MTCMOS Sleep Transistors: First Stage Formulation

As presented in [116], a fine-grained MTCMOS sleep transistor scheme places

a high threshold sleep transistor at every gate (low threshold) in the circuit. In

the standby mode, the leakage current flowing through the low threshold gate sees

a high threshold sleep transistor on its way to the ground and hence is reduced

considerably.

(a)

Gnd

Vx

Sleep

Module
Low Vt logic

high Vt sleep
transistor

Gnd

Vx

Module
Low Vt logic

R

(b)

Vdd Vdd

Figure 3.18: Sleep Transistor in MTCMOS Circuits

As shown in figure 3.18(a), low Vt logic modules or gates are connected to the

ground rail through high Vt sleep transistors which behave similar to a linear resistor

in active mode as shown in figure 3.18(b). The high threshold sleep transistor is

controlled using the Sleep signal and limits the leakage current to a low value in the

standby mode.

The load dependent delay di of a gate i in the absence of a sleep transistor can be

expressed as:

di ∝
CLVdd

(Vdd − VtL)α
(3.60)

where CL is the load capacitance at the gate output, VtL is the low voltage threshold

177

= 400 mV, Vdd = 1.8 V and α is the velocity saturation index (≈ 1.3 in 0.18-µm

CMOS technology). In the presence of a sleep transistor, the propagation delay of

a gate can be expressed as:

di =
KCLVdd

(Vdd − Vx − VtL)α
(3.61)

where Vx is the potential of the virtual ground rail as shown in figure 3.18 and K

is the proportionality constant. Let us suppose IsleepON
is the current flowing in the

gate during active mode of operation. During this mode, the sleep transistor is in

the linear region of operation. Using the basic device equations for a transistor in

linear region, the drain to source current in the sleep transistor (which is the same

as IsleepON
) is given by:

IsleepON
= µnCox(W/L)sleep((Vdd − VtH)Vx −

V 2
x

2
) (3.62)

≃ µnCox(W/L)sleep(Vdd − VtH)Vx (3.63)

The sub-threshold leakage current Ileak in the sleep mode will be determined

by the sleep transistor and is expressed as:

Ileak = µnCox(W/L)sleepe
1.8V 2

T e
Vgs−Vth

nVT (1− e
−Vds
VT) (3.64)

where µn is the N -mobility , Cox is the oxide capacitance, VtH is the high threshold

voltage (= 500 mV), VT is the thermal voltage = 26mV and n is the sub-threshold

swing parameter.

We can combine equations 3.61 and 3.63 to get a relationship between gate

delay (di) and sleep transistor width (W) (assume the length L to be a constant for

178

all sleep transistors):

di =
C1

C2 ∗W − C3

(3.65)

where C1, C2 and C3 are constants.

Let us now try to understand the MTCMOS sleep transistor sizing problem:

Given a circuit with fine-grained sleep transistors placed at the gates, the arrival

time at each primary input and a required time constraint at each of the primary

outputs, optimally size the sleep transistors for minimal leakage.

U V

Dv

dv

Du

du

OUT

OUTIN

IN

IN

Figure 3.19: DAG representation

This problem can be formulated as a linear program [116]. The circuit can be

represented as a DAG, G(V, E) as shown in figure 3.19. Each node in the DAG

represents a gate in the circuit. We can add a dummy IN node before each of the

primary inputs which are shown as the black nodes marked IN in figure 3.19. We

can add a similar dummy node OUT after each of the primary outputs which are

shown as the black nodes marked OUT in figure 3.19. For each node u, we associate

a variable du which represents the delay of that node. We also associate another

variable Du with each node which represents the arrival time at the output of node

179

u. Now we consider two nodes u and v as shown in figure 3.19. Their corresponding

variables have also been shown in the figure. The timing constraints on G(V,E) can

be modeled as:

dv −Dv + Du ≤ 0 ∀ e(u, v) ∈ E (3.66)

Di = T arrival
i ∀ vertex i ∈ IN (3.67)

Di ≤ T con
i ∀ vertex i ∈ OUT (3.68)

di = 0 ∀ vertex i ∈ IN (3.69)

di = 0 ∀ vertex i ∈ OUT (3.70)

It has been shown in [116] that gate delay (di) has a convex relationship with

sleep transistor width (W). Therefore equation 3.65 (which defines this relationship)

can be simplified through piecewise linearization. Let us have p piecewise lineariza-

tions of the delay/width relationship (equation 3.65). The delay of a node u has the

following relationship with these p lines:

du ≥ m1
uWu + c1

u (3.71)

du ≥ m2
uWu + c2

u (3.72)

... (3.73)

du ≥ mp
uWu + cp

u ∀ vertex u (3.74)

Here mu, cu are the linearization parameters and Wu is the width of the sleep

transistor connected with gate u. Adding these constraints to equations 3.66-3.70

helps assign MTCMOS transistor widths such that the timing constraint of the DAG

180

is satisfied. Each sleep transistor width has a valid range of existence and must also

be added to the constraints:

W min
u ≤Wu ≤W max

u ∀ vertex u (3.75)

The leakage current of each gate u can be expressed as a function of its sleep

transistor size using equation 3.64:

Iu
leak = K ∗Wu ∀ vertex u (3.76)

where K is a constant. These additional variables are also added to the con-

straints. Now we would like to assign the widths to each sleep transistor such that

the timing constraints are satisfied and the overall leakage is minimized. The ob-

jective function can be stated as follow:

min(
∑

u∈V

Iu
leak) (3.77)

This completes the linear programming formulation for the problem of MTC-

MOS sleep transistor sizing for minimum leakage current under a delay constraint.

We note that the above formulation can easily be re-arranged to be in the general

linear program form as shown in equations 3.24-3.25. In this formulation, the deci-

sion variables x include Wu the width of MTCMOS sleep transistor, Du the arrival

time at the output, du the gate delay and Iu
leak the leakage current for each gate u

in the benchmark. The constraints and objective can be re-arranged to be in the

form Ax ≤ b. From a SLP perspective, the above formulation (equations 3.66-3.77)

forms the first stage SLP formulation (with the addition of a recourse function cost

E[h(x, ω)]) as given by equations 3.29-3.30.

181

MTCMOS Sizing Problem Under Variability: Second Stage Formula-

tion

Fabrication variability causes several circuit parameters that are assumed to be

constants in the previous formulation to have random behavior. Circuit parameters

like chip threshold voltage, effective channel length Leff etc. have been shown to

have such randomness due to fabrication variability [98]. Other circuit parameters

like chip temperature, supply voltage etc. also have randomness due to environ-

mental uncertainties. This motivates us to formulate optimization problems like

the previous ones from a stochastic perspective. Randomness in circuit parameters

will cause the constants C1, C2, C3 in equation 3.65 to become uncertain. There-

fore the parameters of the approximating linearization mi
u, c

i
u in equations 3.71-3.74

become random numbers too. Moreover, the constant K in leakage Iu
leak vs sleep

transistor width Wu relation in equation 3.76 will also become a random variable.

These random variables will show correlated behavior since they are inspired by

variability in basic circuit parameters. This correlation can be easily considered in

the optimization process by appropriately sampling the random field.

As mentioned earlier, the first stage problem assigns values to decision vari-

ables which corresponds to Wu the width MTCMOS sleep transistor, Du arrival

time at the output, du the gate delay and Iu
leak the leakage current for each gate u in

the benchmark. Due to fabrication and environmental uncertainty the constraints

represented by equations 3.71-3.74 may get violated for the assigned values of du

and Wu. Therefore each delay variable du has a recourse Yu given by

182

Yu ≥ m(ω)1
uWu + c(ω)1u − du (3.78)

Yu ≥ m(ω)2
uWu + c(ω)2u − du (3.79)

... (3.80)

Yu ≥ m(ω)p

uWu + c(ω)p

u − du (3.81)

Yu ≥ 0 (3.82)

These constraints essentially add an extra offset to the gate delay value du that

has been fixed by the first stage problem. These offsets ensure that in presence of

random manifestations of the circuit parameters which affect the parameters of the

piecewise linearizations, the delay du vs Wu relationship is not violated. Essentially

each gate gets a new delay value (du + Yu) such that the corresponding constraints

get satisfied. Now, since the gate delay changes (recourse on gate delay occurs),

it has to affect the arrival time values also. Since the arrival time variables Du

have also been fixed by the first stage problem, we add recourse variable Zu. The

relationship between Zu and Yu is as follows:

(Yv + dv)− (Zv + Dv) + (Zu + Du) ≤ 0 ∀ e(u, v) ∈ E (3.83)

Zu ≥ 0 ∀u ∈ V (3.84)

Since the delay of each gate becomes Yu + du, we modify the arrival times for

each gate such that equations 3.66-3.70 are still satisfied. This essentially implies

that we make the arrival time for a gate Zu + Du through the recourse variable Zu.

The variables Yu and Zu form our recourse vector y as given in equation 3.27.

183

From a timing perspective, we loose yield if the circuit timing violates the required

timing constraints at the primary outputs. Note that each node arrival time with

recourse becomes Du+Zu. If Zu > 0, then the arrival time of the corresponding gate

is higher than that predicted by the first stage problem. Therefore, if the recourse

variable Zu for any of the primary outputs is positive then a valid recourse is needed

for the DAG to satisfy the timing constraints at the primary outputs. This implies

that the first stage solution violates the timing constraints. In terms of BYL, this

would imply that this chip would incur a penalty cost which is proportional to the

degree of slowdown from the target timing constraint. Therefore, we add a penalty-

cost (which is the BYL) for assigning a positive value for any Zu associated with

the primary outputs. The objective for the second stage problem becomes:

h(x, ω) = Min(g(ω)⊤y) = Min(
∑

u∈PO

Cost1Zu) (3.85)

This cost function essentially implies that if the randomness ω is such that the

primary output timing constraint gets violated then we get a positive recourse cost

(recourse is the same as BYL). Note that the value
∑

u∈PO Cost1Zu is proportional

to Zu (similar to BYL as described in section 3.2.1). Hence, if a solution has a larger

degree of violation of the timing constraint then it will have a higher recourse cost.

This completes the description of the second stage problem.

This SLP formulation tries to assign values to the decision variables x such

that a minimum degree of timing violation occurs due to fabrication variability. This

formulation can be solved using the techniques presented in the previous sections.

184

Extension to multi-dimensional leakage and delay yield

The formulation that we have proposed in the previous section is general and

can be extended to consider multi-dimensional yield objectives. We can also con-

sider leakage current based yield in the optimization objective. Similar to delay

based BYL, we can also define BYL for leakage violation and consider it during

optimization as follows.

Due to randomness in circuit parameters, the parameter K in equation 3.76

will also become uncertain. Therefore, for the Iu
leak assigned by the first stage prob-

lem, constraint 3.76 might get violated. The nature of recourse for the leakage

current variables is different from that of the delay variables. This is because leak-

age is an additive quantity and the violation of equation 3.76 is not catastrophic

from a yield point of view. We are only interested in modeling situations when

the total chip leakage becomes more than that predicted by the first stage problem.

Therefore, we add a recourse variable Q that corresponds to the total increase in

leakage current compared to that predicted by the first stage problem. Therefore,

we add the following constraint:

Q =
∑

u∈V

(K(ω) ∗Wu − Iu
leak) (3.86)

Q ≥ 0 (3.87)

The variables Yu, Zu and Q form our recourse vector y as given in equation

3.27. In this case, if the total leakage due to variability is less than that predicted by

the first stage problem then Q is zero. If Q is positive then the leakage predicted by

185

Benchmark Deterministic LP Stochastic Decomposition SSMO

% Delay Violation Avg. Leakage % Delay Violation Avg. Leakage % Delay Violation Avg. Leakage

C432 49.3 1420.0 0 6283.1 DNC DNC

C499 47.3 3784.1 0 9465.2 DNC DNC

C880 46.0 2540.3 0 8649.3 DNC DNC

C1355 48.0 3731.0 0 8757.8 DNC DNC

i1 44.0 436.9 0 1109.1 0 774.9

i2 58.7 1536.8 0 5039.5 DNC DNC

i3 50.7 1700.6 0 6119.2 DNC DNC

i5 45.3 1503.3 0 5668.8 DNC DNC

x1 43.3 1903.9 0 8036.5 DNC DNC

x4 47.3 2460.6 0 10487.1 DNC DNC

Average 48.0 0 DNC = Did Not Converge

Table 3.5: Result: Delay Constraint Violation and Average Leakage Current

the first stage problem underestimates the real leakage after fabrication. Therefore,

we also assign a penalty-cost for having a positive value for Q (if there is a power

constraint on the design, then this would be the BYL due to power constraint

violation). The objective function for the second stage problem becomes:

h(x, ω) = Min(g(ω)⊤y) = Min(
∑

u∈PO

Cost1Zu + Cost2Q) (3.88)

This cost function essentially implies that if the randomness ω is such that the

primary output timing constraint gets violated or the leakage current increases then

it gives a positive recourse cost (recourse is the same as BYL). This SLP formulation

tries to assign values to the decision variables x such that a minimum degree of

timing violation occurs due to fabrication variability and there is a minimum increase

in leakage current.

186

3.2.9 Experimental Results and Comparisons

We implemented the MTCMOS sizing formulation for leakage optimization

as described in section 3.2.8 using stochastic linear programming in SIS [37]. We

assumed that there is variability in threshold voltage due to manufacturing uncer-

tainty. The threshold voltage variations can be spatially correlated and also have

an independent randomness component [26]. In order to capture the spatial correla-

tions in our experimental framework, we generated a standard-cell placement of the

benchmarks using CAPO. For each gate i, we calculated its physical distance from

the corners of the chip (say ri
1, ri

2, ri
3 and ri

4). We assumed that threshold variability

in the chip was dependent on four independent random variations alpha1, alpha2,

alpha3 and alpha4 located at the four corners of the chip.

For the low threshold voltage (VtL) variations, the random variables were taken

to be uniformly distributed with zero mean between a range of (-0.06,0.06)V. For

the high threshold voltage (VtH) variations, the random variables were taken to

be uniformly distributed with zero mean between a range of (-0.075,0.075)V. The

scheme proposed in this work is independent of the nature of the distributions, hence

we have assumed the random variables to be uniformly distributed for illustration

purposes. Additionally, the threshold voltages also have an independent randomness

term denoted by δR. Hence, the low and high threshold voltages at gate can be

written as:

VtL = VtL0 + f(ri
1)alpha1 + f(ri

2)alpha2 + f(ri
3)alpha3 + f(ri

4)alpha4 + δR (3.89)

187

VtH = VtH0 + f ′(ri
1)alpha1 + f ′(ri

2)alpha2 + f ′(ri
3)alpha3 + f ′(ri

4)alpha4 + δR

(3.90)

where VtL0 is the mean value of the low threshold voltage (400mV) and VtH0 is

the mean for high threshold (500mV) for high threshold). f and f ′ are functions

that can be chosen depending on the variability data available for used technology

node. For each gate, the total variations as shown in equations 3.89 and 3.90 were

scaled to be uniformly distributed in a 15% range around the corresponding mean

values. The independent randomness (δR) comprised a maximum 1% variation

around the means. Since the threshold voltage variation at each gate is modeled

in terms of the same four independent random variations (alpha1 − alpha4), the

spatial correlations are inherently captured. From equations 3.89 and 3.90, we

can see that two gates that are placed in close physical proximity will see very

similar threshold voltage variations and those places further apart will not see similar

threshold voltage variations. This is just one possible correlation modeling scheme

that we have used and the stochastic programming framework is general enough to

use any other modeling scheme. The delay constraint was set to be 8% higher

than the minimum delay for each benchmark. All linear programming formulations

were solved using CPLEX. We experimented with stochastic decomposition as well

as the SSMO technique and made comparisons with the traditional deterministic

linear programming approach. Experiments were done on various benchmarks from

the MCNC benchmark suite.

188

1300 1400 1500 1600 1700 1800 1900 2000 2100 2200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Timing CDF for Benchmark C880

Primary Output Arrival Time in ps

C
um

m
ul

at
iv

e
P

ro
ba

bi
lit

y
Monte Carlo

Polynomial

Adaptive Polynomial

Linear

Figure 3.20: Timing Result for C880

3400 3500 3600 3700 3800 3900 4000 4100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Timing

C
um

m
ul

at
iv

e
P

ro
ba

bi
lit

y

Benchmark x4

Timing
Constraint

Timing CDF for
Stochastic Decomposition

Timing CDF for
Deterministic LP

Figure 3.21: Timing Result for x4

Table 3.5 presents the experimental results. We have made a comparison

between deterministic linear programming, stochastic decomposition and the SSMO

approach as described in the earlier sections. Deterministic linear programming

based MTCMOS sizing uses the formulation described in section 3.2.8. It utilizes

the available delay slack at each gate to decrease the sleep transistor widths during

sizing (thereby increasing the gate delays and reducing leakage current) as long

189

as the delay constraints are satisfied. Since it tries to leverage maximum delay

slack, it performs aggressive sizing (many gates become timing critical). In presence

of threshold variability, a solution from such a deterministic approach may easily

violate the timing constraints on the critical paths. Hence, such a deterministic

approach is vulnerable to variability. We generated a MTCMOS sizing solution

from the deterministic approach, the stochastic decomposition approach and the

SSMO approach. We performed Monte-Carlo runs (by taking different samples

of threshold voltage variability) to generate a timing CDF at each of the primary

output gates and the expected (average) value of leakage currents. Given the timing

constraint, we evaluated the probability of violating the delay constraints for each

benchmark.

Columns 2 and 3 in table 3.5 present the results obtained from deterministic

MTCMOS sizing. We can see that on an average there was a 48% violation in

delay constraint due to the threshold variability (Y L = 0.48). On the other hand,

columns 4 and 5 present the results obtained from the stochastic decomposition

approach. Firstly, we note that there is no delay constraint violation in any of the

benchmarks which implies that BY L = 0(and Y L = 0) for all the benchmarks.

We would like to point out that the optimization objective in our formulation was

BY L and not Y L. Our results indicate that there is a strong correlation between

the two and improving BY L does improve even the traditional Y L to a large ex-

tent. This shows the effectiveness of the SD approach in dealing with threshold

variability. However, the average leakage currents obtained in the SD approach are

much higher than those from the deterministic approach. This happens because the

190

SD approach performs less aggressive sizing (to account for the timing uncertainty

due to threshold variations) and hence keeps the average width of sleep transis-

tors higher than that obtained from deterministic approach. This implies that the

leakage current obtained from the SD approach will be higher than that from the

deterministic approach. So, at the cost of increased average leakage current, we

are able to generate a MTCMOS sizing solution that is immune to variability in

the threshold voltage in terms of violating the timing constraints. It is important

to note that MTCMOS sleep transistor insertion reduces the leakage by orders of

magnitude and hence a linearly scaled difference in leakage between the stochas-

tic and deterministic formulation when compared to the initial leakage value is not

significant.

Figures 3.20 and 3.21 presents the timing CDFs obtained for two benchmarks

for the deterministic approach as well as the SD approach. We can see from the

figures that the deterministic approach has a large probability of violating the timing

constraints.

We also ran experiments with the SSMO technique described in section 3.2.5.

As shown in columns 6 and 7 in table 3.5, only one small benchmark i1 converged to

a solution. The rest of the benchmarks did not converge within a reasonable runtime

(8 hours). As the sample size increases, the SSMO formulation becomes very large

in size and hence takes a very long time to converge to a solution. These results

clearly bring out the efficiency obtained from the stochastic decomposition approach

in terms of runtime as compared to SSMO based stochastic linear programming

techniques.

191

Benchmark Runtime for Stochastic Decomposition

(in cpu cycles)

C432 126881

C499 253730

C880 211785

C1355 1342305

i1 6685

i2 43490

i3 14535

i5 251825

x1 183815

x4 428435

Table 3.6: Result: Runtime in cpu cycles

192

Stochastic technique based Monte-Carlo optimization has a higher runtime

when compared to deterministic optimization. Depending upon the nature of the

variability and the required accuracy, SD runs multiple iterations of the deterministic

formulation (first stage SLP) and hence takes more runtime as compared to one run

of the deterministic formulation. But the quality of solution that is obtained from

stochastic techniques is high and much more robust to fabrication variability. This

has been demonstrated by the experiments results in terms of Yield-Loss values. The

runtime for SSMO is much higher than that of SD because of the continuous increase

in problem size with each iteration rendering it impractical for large problems. Table

3.6 shows the runtime in cpu cycles for stochastic decomposition. It is expected that

the runtime would increase as design size increases. Also, depending on the modeling

strategy used and the number of samples that are used during optimization, the

runtime complexity would change. For our experiments, we used 200 sampling

vectors in computing the recourse using the second stage formulation.

In this work we have applied the concept of stochastic linear programming

to optimization problems in CAD. In the deep sub-micron technology, increasing

manufacturing variabilities have made deterministic optimization less effective. Our

work presents a framework under which optimization under variability can be per-

formed within the linear programming paradigm. There are several problems in

CAD that have been solved using linear programming and it will be interesting to

extend this stochastic decomposition concept to those problems. The major bottle-

neck is stochastic programming is in estimating the coefficients of the lower bound-

ing hyperplanes as given by equations 3.49 and 3.50. Estimating these coefficients

193

efficiently and accurately is an interesting direction for future work.

194

Chapter 4

Variability-Aware Design Optimization: Post-Silicon

Tunability

The technique of Post-Silicon tunability has tremendous potential to counter

the uncertainty introduced in design performance due to fabrication variability.

Post-silicon tunability entails building tuning knobs into the design that can be

tweaked after the chip has been manufactured to selectively change the performance

of certain parts of the chip in order to counter the impact of variability and improve

timing yields. This would allow the manufacturer to tune each chip individually to

try and meet the required performance constraints. Recently, post-silicon tunable

(PST) clock-tree synthesis [72, 114, 82, 36] has been proposed as one such approach

that can be applied to high performance designs to correct timing violations. Such

post-fabrication yield improvement techniques can be very powerful to counter vari-

ability since each chip can be tuned independently. In [114], the authors present

how the PST technique has been applied to Intel’s Dual Core Itanium processor

to improve timing yields. It can be noted that having PST in the design incurs a

cost overhead both in terms of hardware (area) and power. Techniques like adap-

tive body-biasing and supply voltage scaling can also be used to provide tuning

knobs in the design that can be used to change the performance of the design after

fabrication.

195

In this work [117], we have proposed a design management philosophy to

balance the effort between pre-silicon and post-silicon tunability in order to get

maximum yield gains at minimal design overhead.

4.1 Variability-Driven Formulation for Simultaneous Gate Sizing and

Post-Silicon Tunability Allocation

Process variations cause design performance to become unpredictable in deep

sub-micron technologies. Several statistical techniques (timing analysis, gate-sizing,

buffer insertion) have been proposed to counter these variations during the opti-

mization phase of the design flow to get better timing yields. Another interesting

approach to improve timing yield is post-silicon tunable (PST) clock-tree. However,

gate sizing and PST clock tree management have not been integrated together into

a single framework for better optimization. In this work, we propose such an inte-

grated framework that performs simultaneous statistical gate-sizing in presence of

PST clock-tree buffers for minimizing binning-yield loss (BYL) and tunability costs

by determining the ranges of tuning to be provided at each buffer. The simultaneous

gate-sizing and PST buffer range determination problem is proved to be a convex

stochastic programming formulation under longest path delay constraints and hence

solved optimally. We further extend the formulation into a heuristic to additionally

consider shortest path delay constraints. We make experimental comparisons using

nominal gate sizing followed by PST buffer management using [72] as a base-case.

We take the solution obtained from this approach and perform 1) Sensitivity-based

196

statistical gate-sizing while retaining the PST clock tree 2) Simultaneous gate sizing

and PST buffer range determination as proposed in this work. On an average, the

BYL obtained from our approach is 98% lower than the base-case ([72]) and 95%

lower than the sensitivity-based algorithm. On an average the base-case approach

([72] gave 22% timing yield loss (YL), the sensitivity approach gave 19% YL, where

as our proposed algorithm gave only 3% YL. The total PST tuning buffer range

that is allocated through the proposed algorithm is comparable to that obtained

from [72]. The proposed algorithm had a 2.2x runtime speedup compared to the

sensitivity-based algorithm.

4.1.1 Introduction

Process variations are posing a major challenge to IC designers in the nanome-

ter regime. They cause a significant spread in the performance distribution of

designs, making traditional design and analysis techniques to become inaccurate.

There has been a distinct shift in VLSI design paradigm to try and develop vari-

ability aware methodologies.

In high performance designs, process variations result in a spread in the achiev-

able frequency, thereby causing some chips to fail from meeting the nominal target

frequency. In [98], the authors have mentioned that as much as 30% frequency vari-

ation can be observed in high-performance designs. Chips can be binned according

to their operating frequency. Those that fail to meet the target frequency can either

be sold at a loss or be discarded. In [13], the authors present a hardware design to

197

perform speed binning in microprocessor design. Each speed bin has a correspond-

ing penalty cost that is proportional to its slowdown from the target frequency.

Thus, there exists a binning-yield loss with each design depending on the spread in

its operating frequency due to process variations. In this work, we use binning yield

loss (BYL) as an optimization objective in our formulation.

A lot of recent work has focused on statistical techniques for considering

process variability during analysis and optimization. One such direction of re-

search has been timing analysis in presence of variability. Statistical Timing Anal-

ysis has emerged as a powerful tool to predict the timing distribution of designs

[42, 127, 119, 43]. Other recent approaches have tried to utilize this available sta-

tistical information about the design to perform statistical optimizations like gate

sizing [77, 97, 4, 32, 67, 80]. Essentially, these are analysis and optimization tech-

niques that can be used to counter variability at design time.

Post-silicon tunability is another technique to improve timing yield in circuits.

This would allow the manufacturer to tune each chip individually to try and meet

the required performance constraints. Recently, post-silicon tunable (PST) clock-

tree synthesis [72, 114, 82, 36] has been proposed as one such approach that can

be applied to high performance designs to correct timing violations. Such post-

fabrication yield improvement techniques can be very powerful to counter variability

since each chip can be tuned independently. It can be noted that having PST in

the design incurs a cost overhead both in terms of hardware (area) and power. This

can be interpreted as the cost of tunability in the design.

There is no existing work that tries to integrate both post-silicon and pre-

198

silicon optimization paradigms into one flow. While performing design time op-

timization (say gate sizing) one can leverage the information about the available

post-silicon tunability and vice-versa. The work in [72] determines the locations of

the PST buffers and also their ranges. In this work, we do not decide the location

of the PST buffers. The PST clock tree structure as determined by [72] is taken

as an input to our algorithm. We retain the PST buffer locations and clock tree

structure but perform simultaneous gate sizing and PST buffer range determination

for improved BYL. Hence, the proposed approach in this work can be used along-

with [72] for more robust design solutions. Additionally, our formulation optimally

solves the simultaneous gate sizing and PST buffer range determination problem

under longest path delay constraints. Our technique can handle any distribution of

variations with any arbitrary correlation model.

The problem that we address in this work can be formally stated as:

Given a sequential design with a synthesized PST clock-tree (with

known tunable buffer locations), we perform simultaneous gate sizing of

the combinational logic gates and tuning range determination of each

PST buffer, such that the Binning Yield Loss and Tunability Cost is

minimized.

We formulate this problem as a two-step stochastic program [93]. We will

first develop a formulation considering only longest path constraints. We will prove

that it is a convex formulation and hence can be solved optimally. We extend this

formulation further into a heuristic considering shortest path constraints (which are

199

inherently non-convex). We use the Kelley’s Cutting Plane Method [93] to solve the

formulations.

We make experimental comparisons using nominal gate sizing followed by PST

buffer management using [72] as a base-case. We take the solution obtained from

this approach and perform 1) Sensitivity-based statistical gate-sizing (similar to

[32, 4]) while retaining the PST buffer locations and ranges as determined in the

base-case [72] in an effort to re-optimize the design. 2) Simultaneous gate sizing

and PST buffer range determination as proposed in this work. On an average, the

BYL obtained from our approach is 98% lower than the base-case ([72]) and 95%

lower than the sensitivity-based algorithm. On an average the base-case approach

([72] gave 22% timing yield loss (YL), the sensitivity approach gave 19% YL, where

as our proposed algorithm gave only 3% YL. The total PST tuning buffer range

that is allocated through the proposed algorithm is comparable to that obtained

from [72]. The proposed algorithm had a 2.2x runtime speedup compared to the

sensitivity-based algorithm.

4.1.2 Background and Definitions

In this subsection, we will discuss the relevant background information that is

needed to understand this work.

200

Delay t

Pdf

Tcons

p(t)

Fpenalty

Figure 4.1: Binning Yield Loss with a Convex Penalty Function

Binning-Yield Loss

In high performance designs, process variations result in a spread in the achiev-

able frequency, thereby causing some chips to fail from meeting the nominal target

frequency. In [98], the authors have mentioned that as much as 30% frequency vari-

ation can be observed in high-performance designs. Chips can be binned according

to their operating frequency. Those that fail to meet the target frequency can either

be sold at a loss or be discarded. In [13], the authors present a hardware design

to perform speed binning in microprocessor design. The penalty that the chips in

a speed bin have to incur is proportional to the slowdown from the target timing

constraint (Tcons). Let us suppose that the timing delay of the chip is t. We define

a BYL penalty function Fpenalty(t) as follows:

Fpenalty(t) =















q(t− Tcons); t ≥ Tcons

0; otherwise

(4.1)

where q(t − Tcons) is assumed to be a convex function. Let us suppose the

probability density function (pdf) of circuit delay is p(t) as shown in figure 4.1.

Hence for longest path constraints, we can define the BYL for the design as:

201

BY L =
∫ ∞

−∞
Fpenalty(t)p(t)dt =

∫ ∞

Tcons
q(t− Tcons)p(t)dt (4.2)

BYL for shortest path constraints can also be defined similarly. In the op-

timization framework proposed in this work, we will use the above definition for

BYL.

Traditional Gate Sizing

The traditional gate sizing problem tries to minimize the cumulative sum of

gate sizes while assigning a size to each gate in the circuit such that the timing

constraint Tcons at the primary outputs are met. Let xi denote the size of gate

i. The delay of the gate di is a function of its size and the sizes of all its fanout

gates and hence is denoted as di(~x). In general, we perform sizing by varying the

channel widths of each transistor in the gate (hence gate size xi is proportional to

the channel width), while the channel lengths are kept constant. If we denote the

arrival time at gate i as ti. The traditional gate sizing problem can be written as:

Minimize
∑

∀gate i ci × xi

Subject to :































tj + di(~x) ≤ ti ∀j ∈ fanin(i); ∀gate i

ti ≤ Tcons ∀i ∈ PO

xi
min ≤ xi ≤ xi

max ∀gate i

(4.3)

where ci is a positive weighting constant for each gate. In this simple formula-

tion, we propose to optimize the total area of the gates which is the most common

optimization objective [67, 80]. Additionally, one gate can perform gate sizing to

minimize the power [77, 97] or yield-loss [4, 32].

202

Convex Gate Delay Modeling

As shown in [54, 107], the elmore delay of a gate can be modeled as a posyno-

mial function of the transistor sizes ~x. We can model each transistor as an equivalent

resistor and capacitor whose magnitudes are proportional to the channel width w

of each transistor. Elmore delay of gate i can be written as a posynomial functions

of these resistors and capacitors of gate i and the capacitors of its fanout gates.

As shown in [107], gate delay can be written as a function of its size xi (since it

is proportional to the channel width w). Hence, the posynomial gate delay can be

expression as:

di(~x) = a0i + a1i

∑

∀j xj

xi
j ∈ fanout(i) (4.4)

where a0i and a1i are positive constants that depend on circuit parameters such

as threshold voltage, effective channel length, supply voltage and oxide thickness.

This posynomial gate delay representation can be changed into a convex form but

making a change of variables xi = eyi. Each arrival time variable ti in the gate sizing

formulation can be represented as ti = ezi. Hence, the gate sizing formulation can

be presented as:

Minimize
∑

∀gate i ci × eyi

Subject to :































tj(zj) + di(~y) ≤ ti(zi) ∀j ∈ fanin(i)

ti(zi) ≤ Tcons ∀i ∈ PO

xi
min ≤ eyi ≤ xi

max ∀gate i

(4.5)

203

All variables have an exponential representation which makes the above gate

sizing formulation convex in ~y [99].

Post-Silicon Tunable Clock Tree

Several recent work [72, 114, 82, 36] have proposed that PST clock tree can

improve the timing yield for designs in presence of process variations. The central

idea is to insert post-silicon tunable buffers into the clock tree that can be used to

introduce extra slack into the critical paths in order to correct the timing violations

by adjusting the clock skews. In [72], the authors have proposed an approach for

PST clock-tree synthesis that tries to minimize the total number of candidate PST

clock buffer locations and also reduce the hardware cost of each PST buffer by

computing its required tuning range. It is important to note here that inserting

redundant PST buffers into the clock tree may results in significant overhead in

chip area. Moreover, since the clock buffer also have some capacitance, they also

increase the power consumption of the clock tree.

There is no existing technique that tries to optimize the design for delay while

determining the PST buffer ranges. In this work, we perform simultaneous gate

sizing and PST range determination for better design optimization. Such an op-

timization framework allows gate sizing to leverage the presence of PST buffers in

the design to potentially prevent aggressive oversizing of the design. Additionally,

the optimization of delay paths results in more effective tunable range allocation

without increasing the tunability cost (silicon area and power). The PST clock tree

204

with its buffer locations as obtained from [72] is used as an input to our algorithm.

Let us try to understand how a PST clock tree can help improve timing yield.

Given a sequential design, we can represent it as a graph G = (V, E), where V is

a set of flip-flops (FFs) and E is a set of edges representing timing arcs between

the FFs. An edge eij would represent a combinational logic path between flop i

and j. Let us suppose that Ti and Tj are the clock arrival times at flops i and j

respectively (they may not be the same due to clock skew). In this work, we look to

satisfy the longest path constraint in sequential design for BYL optimization. Let

the maximum delay between all combinational logic paths between FFs i and j be

Dij . Let the setup time for flip-flop (FF) j be T j
set and Tclk be the nominal clock

period. In order to meet the longest path timing constraint, the circuit needs to

satisfy the following inequality:

Ti + Dij ≤ Tclk + Tj − T j
set (4.6)

Now, as shown in figure 4.2 let us suppose that we have a PST clock tree with

tunable buffers B1 − B7 as shown. Each of these tunable buffers k has a tuning

delay TBuf
k that can be in the range of 0 to Rmax

k which has been decided during

the design stage (pre-fabrication):

0 ≤ TBuf
k ≤ Rmax

k (4.7)

Now, as is evident from figure 4.2, each FF i can have its clock arrival time

Ti adjusted by tuning appropriate buffers that lie on the path between the clock

205

tree source and itself. For example, FF 1 can be affected by PST buffers B1, B2

and B4. Hence, if a path starting at FF 1 violates the timing constraint (equation

(4.6)) post-fabrication due to process variability, we can adjust the tuning of the

corresponding buffers to try to bring the path back into feasibility region. Each FF

i is affected by a subset Ci of PST tunable buffers and hence this technique can be

used to redistribute timing slack between critical and non-critical paths such that

maximum timing violations can be mitigated. Also, it is easy to note that since

many FFs share the same PST buffer, this tuning needs to be done carefully to

ensure that no other path violates its timing constraint. In essence, we can re-write

equation (4.6) considering PST tunability as:

(Ti +
∑

k∈Ci

TBuf
k) + Dij ≤ Tclk + (Tj +

∑

k∈Cj

TBuf
k)− T j

set (4.8)

Let us consider an example from figure 4.2 to better understand this technique.

Let us suppose that there is a combinational logic path (path − 1) between FFs 1

and 5 that violates the longest path timing constraint (equation (4.6)). We can tune

the clock buffers B3 and B6 to assign more clock skew to this path. Assuming there

is sufficient range available at each of these buffers, to bring the path back into the

feasibility region, we would have:

(T1 + TBuf
2 + TBuf

4) + D15 ≤ T + (T5 + TBuf
3 + TBuf

6)− T j
set (4.9)

where the exact tuning delay of each buffer (TBuf
i) needs to be adjusted to

satisfy the above constraint. However, one needs to understand that adding this

206

FF FF FF FF FF FF FF

B2

B5 B6

5 7 864321

FF

Path−1

B1

B3

B4 B7

Figure 4.2: Sequential Design with a PST Clock Tree [72]

tunability might make the slack on some other path to become critical. So we

need to ensure that all paths satisfy the timing constraints while using these tuning

buffers to fix path timing violations. Also, it can be noted here that by adding any

tuning to buffer B1 would not help fix this timing violation, since both FFs are

equally effected by tuning B1. This example illustrates the mechanism by which

PST buffers can be used to redistribute path slack between critical and non-critical

paths to ensure a higher timing yield.

In [114, 71], the authors have proposed a design for PST buffers using passive

loads and inverters. The final tuning can be done by connecting the required number

of passive banks through a programmable pass bit at each bank. This design provides

tuning proportional to its RC delay which in turn corresponds to its bank size

and silicon area. There is a hardware and power overhead that is associated with

implementing a PST clock tree. The hardware cost is reflective of the silicon area

overhead which is proportional to both the number of tunable buffers and their

207

respective tuning ranges (which decides the passive load bank and inverters that

are used). There is also a cost associated with the actual tuning delay used at each

buffer (indicative of the clock tree power overhead). Thus it is important to compute

the tuning range at each buffer such that the maximum timing yield improvements

can be achieved without having wasted passive load banks at the PST buffers. We

define tunability cost (TC) as a metric of the overhead of having these passive load

banks and inverters in the PST tree. As explained, this overhead is in terms of both

silicon area and power and is proportional to the range of the tuning buffers. In this

work, TC is also an optimization objective.

TC =
∑

k∈PST−buffers

Rmax
k (4.10)

where Rmax
k is the tuning range allocated to PST buffer k.

4.1.3 Simultaneous Gate Sizing and PST Buffer Range Determina-

tion for Minimizing BYL and TC

In this work, we address the following problem:

Given a sequential design with a synthesized PST clock-tree (with known

tunable buffer locations), we perform simultaneous gate sizing of the

combinational logic gates and tuning range determination of each PST

buffer, such that a combined objective function of the binning yield loss

and tunability cost is minimized.

In this section, we first develop the formulation considering only longest path

208

constraints and prove it to be optimally solvable. Later, we will extend the formu-

lation to consider shortest path constraints as well.

Motivation

The existing work in literature does not consider performing simultaneous

gate sizing and PST buffer range determination in an integrated framework. The

work proposed in [72] assumes that the longest delay path (with delay Dij) between

every pair of FFs (i, j) is given. These paths are prone to path delay variations

and hence can cause timing violations. They present algorithms that use statistical

timing analysis (STA) on these combinational paths to determine the location of

PST buffers and their appropriate tuning ranges. They do not try to optimize the

combinational paths themselves for better timing yield. In this work, we present an

optimization framework that not only determines the PST buffer ranges (given the

PST clock tree with tuning buffers placed), but also tries to size the combinational

gates such that BYL and TC is minimized.

Moreover, we prove that the simultaneous gate sizing and PST buffer range

determination problem under longest path delay constraints is convex and can be

solved optimally. We extend that formulation to a heuristic considering shortest

path constraints as well. This is the first work to propose such a unified framework.

We make experimental comparisons using nominal gate sizing followed by PST buffer

management using [72] as a base-case. We take the solution obtained from this

approach and perform 1) Sensitivity-based statistical gate-sizing while retaining the

209

PST clock tree 2) Simultaneous gate sizing and PST buffer range determination as

proposed in this work.

Let us first try to understand the intuition behind the potential benefits that

can be derived from our scheme as opposed to performing a variability-aware gate

sizing followed by PST clock-tree synthesis. In a variability-aware gate sizing frame-

work, the objective is to minimize the likelihood of timing violation at each primary

output. In order to meet the timing constraints as much as possible, the optimiza-

tion engine might be forced to aggressively size the most critical paths, such that

the area and power overhead incurred can be potentially very high. At this stage,

the optimization engine does not leverage the information that PST buffers could

have been used to meet the timing constraints along these paths and the cost of ag-

gressive sizing could be saved. Also, the gate-sizing algorithm would try to reduce

the sensitivity to process variations on each path (in order to maximize the chances

of meeting the constraints). However, depending on the PST clock-tree structure, it

might be cheaper (in terms of silicon area and total power) to maintain some paths

to be more sensitive than others (and let PST buffers satisfy the timing constraints

there). On the PST clock tree synthesis side of things, simultaneous gate sizing

and PST buffer range determination allows for more accurate computation of the

required buffer ranges. As mentioned before, each passive load bank amounts to an

area and power overhead. We propose an integrated algorithm in this work is best

able to leverage the trade-off between overall area and power while attempting to

minimize the BYL and TC.

210

Effect of Variability on Gate Sizing

Process variations cause significant spread in circuit parameters like Leff , tox

and Vth. These in turn make the gate delays unpredictable. Typically, the circuit

parameters that are affected by variations can be treated as random variables, mak-

ing gate delay a function of these random variables. Let us denote the random

vector denoting all the variable circuit parameters be ~Ω where each parameter can

have its own density function and these can be correlated in arbitrary ways. Thus,

the coefficients in the gate delay model presented in equation (4.4) would now be-

come a function of the underlying random field. In this light, the delay of gate i in

the convex gate sizing formulation (as presented in equation (4.5)) also becomes a

random variable and can be denoted as:

di(~y, ~Ω) = a0i(~Ω) + a1i(~Ω)
∑

∀j e
yj

eyi
j ∈ fanout(i) (4.11)

In presence of process variability, we can therefore redefine the objective of

gate sizing to be BYL minimization. Let us suppose that ~ω represents the nominal

values of each of the varying parameters. We attempt to perform gate sizing at

these nominal parameter values such that the BYL is minimized. This problem can

be formulated as:

Minimize BY L(~y)

Subject to :































tj(zj) + di(~y) ≤ ti(zi) ∀j ∈ fanin(i)

ti(zi) ≤ Tcons ∀i ∈ PO

xi
min ≤ eyi ≤ xi

max ∀gate i

(4.12)

211

We try to meet the timing constraint Tcons at these nominal parameter values.

Additionally, in order to control the total sizing area, we could add a constraint

∑

ci × eyi ≤ Areamax to the formulation above. The gate sizing formulation used

in this work is similar to that proposed in [8].

PST Clock Tree Structure and Assumptions

In this work, we assume that we are given a synthesized PST clock tree as well

as the location of the tunable clock buffers. We do not make any assumption about

the structure of the clock tree (it can be balanced or unbalanced), clock skews or

the location of the tunable buffers. We use the PST clock tree alongwith the buffer

locations obtained from [72] as an input to our algorithm.

Problem Formulation

The simultaneous gate sizing and PST buffer range determination problem can

be formulated as a Two-Stage Stochastic Program [93]. The sequential design can be

viewed as a set of FFs and logic gates. Each pair of FFs can share a combinational

logic path between them. Each such path needs to meet the timing constraint in

order to make the design feasible.

For every pair of FFs i, j that are connected through combinational logic, we

define a variable Dij that represents the delay of the longest path between them. We

can compute Dij using the inequalities similar to that in the gate sizing formulation

on the combinational logic between these two FFs:

212

tp(zp) + dq(~y) ≤ tq(zq) ∀p ∈ fanin(q)

tq(zq) ≤ Dij q is fanin of FF : j

xq
min ≤ eyq ≤ xq

max ∀gate q

(4.13)

For each pair of FFs i,j, we can write the constraints mentioned above through

inequalities (4.13) and compute the longest path delay Dij .

1. Variables of Interest

There are three sets of variables in the problem formulation. The first set are

the gate-size variables represented by ~y, where the size of gate i is given by eyi .

The second set of variables represented by ~r, where the tuning buffer ranges

for each PST buffer i is given by eri. The third set of variables are represented

by ~zi, where the arrival time at each gate i is given by ezi.

2. Objective of Interest

A general objective function can be to minimize a combination of BYL, TC

(which is representative of the area and power overhead incurred in PST clock

tree) and also the total gate-size (similar to traditional gate-sizing problem).

Since the tuning range at each PST buffer is proportional to the area and

power overhead, TC can be represented by the sum of the total range of all

PST tuning buffers. Hence, a general objective function of interest could be

written as:

Minimize (BY L(~y,~r)) + TC(~r) +
∑

i

Gate− Sizes) (4.14)

213

Minimize (BY L(~y,~r)) +
∑

k

αke
rk +

∑

i

βie
yi) (4.15)

BYL is a function of both (~y,~r) as explained later. This objective function

allows to explore the trade-off between BYL, TC and the total gate-size area

by appropriately scaling the constants ~α and ~β.

Two-Stage Stochastic Program

The first stage of the problem formulation can be written in general form as:

Minimize (BY L(~y,~r) +
∑

k αke
rk +

∑

i βie
yi)

Subject to:































































































Ti + Dij ≤ Tclk + Tj − T j
set ∀FFs(i, j)

tp(zp) + dq(~y) ≤ tq(zq) ∀p ∈ fanin(q)

tq(zq) ≤ Dij q is fanin of FF : j















∀FFs(i, j)

xq
min ≤ eyq ≤ xq

max ∀gate q

∑

k eyk ≤ Xmax ∀gate k

0 ≤ erm ≤ Rmax
m ∀m ∈ PST Buffer

∑

m erm ≤ Rangemax ∀m ∈ PST Buffer

(4.16)

Let us try to understand the constraints in the above formulation. The first

constraint in inequalities of (4.16) represents the longest-path constraint (equation

(4.6)) between each pair of FFs that share a path between them. Here, Ti, Tj , Tclk

and T j
set are known constants that correspond to clock arrival times. The longest

214

path delay Dij can be determined from the next three inequalities that represent the

gate sizing formulation for the logic paths between FFs i and j. We note that a gate

can show on multiple paths, hence there would be several such sizing constraints on

each gate. But since the first stage problem considers all these constraints together,

there is no discrepancy that can come in. The total sum of gate sizes for the design

can be bounded to be less than a constant Xmax using inequality 5 above. Each PST

buffer m can be bound to have a maximum allowed tuning range Rmax
m . In order

to limit the total tunability cost, we can also have a bound on the total cumulative

tuning range given by Rangemax. These are represented by the last two inequalities.

This is the most general form of the first stage problem.

In presence of process variability, the delay between each pair of FFs i-j that

have a combinational logic path between them, becomes a random variable that can

be represented as Dij(~y,~r, ~Ω) that depends on the gate-sizes ~y, the tuning buffer

range ~r and the random field due to process variations ~Ω (that may have some

correlation between its components). Let us define a random variable P that denotes

the penalty of violating the timing constraint (Tclk) as:

P (~y,~r, ~Ω) =















q(Dij(~y,~r, ~Ω)− Tcons); Dij ≥ Tcons

0; otherwise

(4.17)

where q(.) is the convex penalty function that was defined in equation (4.1).

In equation (4.2), BYL was defined as the expected value of the timing-

violation penalty. For a given (~y,~r) and a sample ω of the random field Ω, let

p(~y,~r, ~ω) be the value of the random variable P . By definition, p(~y,~r, ~ω) denotes

215

the timing-violation penalty for a given (~y,~r) at that variability sample ω. Hence,

BYL would be the average timing-violation penalty over all such samples ω which

is the expected value of the random variable P for a given (~y,~r). Therefore:

BY L(~y,~r) = E[P (~y,~r, ~Ω)] (4.18)

We can evaluate the timing-violation penalty p(~y,~r, ~ω) given a fixed ~y, ~r and

a variability sample ~ω through another convex formulation that can be written as:

p(~y,~r, ~ω) = Minimize
∑

FF (i,j) q(T
viols
ij)

Subject to:















































































(Ti +
∑

k∈Ci
TBuf

k) + Dij(~y,~r, ~ω) ≤ Tclk+

(Tj +
∑

k∈Cj
TBuf

k)− T j
set + T viols

ij ∀FFs(i, j)

tp + dq(~y, ~ω) ≤ tq ∀p ∈ fanin(q)

tq ≤ Dij(~y,~r, ~ω) q is fanin of FF : j















∀FFs(i, j)

T viols
ij ≥ 0 ∀FFs(i, j)

0 ≤ TBuf
k ≤ erk ∀k ∈ PST Buffer

(4.19)

Let us try to understand this formulation. Given a value of ~y, ~r and a vari-

ability sample ~ω implies that the delay of each gate i (di(~y, ~ω)) is known. Also, since

~r is given, the range of each tuning buffer k is will be erk . As mentioned before in

subsection 4.1.2, Ti and Tj are the clock arrival times at FFs i and j respectively

and are known values. For each FF i, we know the set of tuning buffers Ci that can

affect the clock arrival time at this FF. In the above formulation, the problem vari-

ables are TBuf
k which is the actual tuning at PST buffer k that is used to reduce the

216

timing violation. The longest path delay Dij for each pair of FFs (i, j) is a variable

and the arrival time ti at each gate i is a variable. Additionally, we define a variable

T viol
ij for each pair of FFs (i, j) that represents the timing violation along the longest

path between those FFs. The timing-violation penalty at each FF pair (i, j) can

be computed as q(T viols
ij). The objective of this problem is to minimize the sum of

timing-violation penalty across all pairs of FFs (i, j) by appropriately assigning de-

lay tuning to each PST buffer within the range given by the variables ~r. Essentially,

this formulation tries to determine the best combination of tuning set (~TBuf) that

should be applied at the PST buffers such that the total timing-violation penalty

for the design is minimized.

For a given value of ~y, ~r, the optimal objective to this formulation gives us

p(~y,~r, ~ω) which is the desired quantity to compute BYL(~y,~r).

The two formulations defined by inequalities (4.16) and (4.19) form a classic

Two-Stage Stochastic Programming formulation [93], where the former is called the

first-stage problem and the latter second-stage problem. We would like to point out

that even though the proposed formulation considers clock arrival times (Ti, Tj) to

be constant, our formulation can be extended to consider uncertainty in clock tree

as well. In that case, the second stage formulation would consider the clock arrival

times (Ti(~ω), Tj(~ω)) to be dependent on the randomness (Ω).

217

The problem formulation is convex in (~y,~r)

Theorem: The proposed two-stage stochastic programming formulation is convex.

Proof: In order to show that the two stage stochastic programming is convex, we

need to show that the objective and constraints of both the stages are convex in

the decisions variables (~y,~r). Let us first look at the first stage formulation from

equations 4.16. The first three constraints as shown below represent the timing

constraints on the design.

Ti + Dij ≤ Tclk + Tj − T j
set ∀FFs(i, j)

tp(zp) + dq(~y) ≤ tq(zq) ∀p ∈ fanin(q)

tq(zq) ≤ Dij q is fanin of FF : j















∀FFs(i, j)
(4.20)

The gate delay variable (dq(~y)) is defined to be convex in the decision variables

~y, thereby making these constraints convex. The remaining constraints are also

convex in decision variables (~y,~r). The objective function has three sets of terms,

the first one BYL(~y,~r) is the expected value of a random variable P (~y,~r, ~Ω) that

depends only on variables (~y,~r, ~ω). The second term is
∑

k αke
rk which is convex and

the third term is
∑

i βie
yi which is convex as well (constants ~α and ~β are positive).

If we can show that BY L(~y,~r) is convex in (~y,~r), the first stage problem will be a

convex formulation.

We have defined BY L(~y,~r) = E[P (~y,~r, ~Ω)]. Hence, BYL can be interpreted

to be a weighted sum of timing-violation penalty p(~y,~r, ~ω) at each sample ω of the

random field Ω, where the weights are positive. Hence, if we can prove that each

218

of p(~y,~r, ~ω) is convex in (~y,~r), then BYL would also be convex since it is a sum

of positively weighted convex functions which is convex by definition. From the

second-stage formulation as given by inequalities in (4.19), p(~y,~r, ~ω) is equal to the

objective
∑

FF (i,j) q(T
viols
ij). Each of q(T viols

ij) is positive and convex in T viols
ij , hence

it is sufficient to show that T viols
ij is a convex function of (~y,~r). From the constraints

in the second stage formulation, we can see that the dependence of T viols
ij on the

decision variables is remains convex as gate-delay di(~y, ~ω) and tuning buffer ranges

erk are convex in (~y,~r). Hence, T viols
ij is convex in (~y,~r). This implies that BY L(~y,~r)

is convex and hence the proposed two-stage stochastic programming formulation is

convex.

We would like to point out that the proposed two-stage stochastic program-

ming formulation and its proof convexity does not make any assumption about

the distributions of the randomness (Ω) and the correlations between its different

components.

4.1.4 Shortest Path Delay Constraints

The formulation discussed in the earlier sections presents a provably optimal

technique considering only longest path (setup time) constraints. However, for a pair

of FFs i and j, we also need to satisfy the shortest path (hold time) constraints.

Given the shortest path delay Dshort
ij between the two FFs, we can write the shortest

path delay constraint as:

219

Ti + Dshort
ij ≥ Tj + T j

hold ∀FFs(i, j) (4.21)

where T j
hold is a constant denoting the hold-time for FF j, Ti and Tj are clock arrival

times. As can be seen, this is a non-convex constraint considering the convex gate

delay models given by equation 4.11. Hence, considering shortest path constraints

in the formulation proposed in the earlier section would break the convex nature of

the problem. We will now present an efficient heuristic to consider the shortest path

constraints in our formulation while preserving its convexity.

Let us suppose that we are given p paths which are candidates for shortest path

delay violation (can be determined from static timing analysis). The cumulative

delay of the gates on each of these paths would give us the delay of the path. We

will make a linear approximation on the gate delay model for these gates wrt the

gate sizing variable. Given a gate m (with size eym) and its fanout gate n (with size

eyn), we can approximate its gate delay as a linear function of the sizing variables

(y). This model is constructed such that it is a lower bound to the convex gate delay

model given by equation 4.4. Therefore, the shortest path delay is under-predicted

by our linear gate delay model approximation and any valid solution will always

satisfy the shortest path delay constraint. Let us suppose that the path delay of the

pth shortest path is denoted by D
shortp
ij , we can compute the linear gate delay and

the shortest path delay as:

D
shortp
ij =

∑

m

dlin
m ∀gates m on path p (4.22)

220

dlin
m = a0m + a1mym +

∑

∀fanout−n

bnyn (4.23)

where a0, a1 and bn are constants. Under these assumptions, it can be seen that the

shortest path constraint as given by equation 4.21 is now convex and can be added

to our proposed formulation without breaking the convex nature of the problem.

Let us now understand, how we can extend the two-stage stochastic program-

ming formulation to also consider shortest path delay constraints. Given the p paths

which are candidates for shortest path delay violation, the first stage formulation as

given by equations 4.16 can be modified to additionally consider the constraint:

Ti + D
shortp
ij ≥ Tj + T j

hold ∀paths p ∀FFs(i, j) (4.24)

where D
shortp
ij is defined using equations 4.22 and 4.23.

The BYL will now consists of both longest path delay violation and shortest

path delay violation. The second stage problem given by equations 4.19 can be

modified to consider the BYL due to shortest path delay violation. The timing

violation penalty can now be computed as:

p(~y,~r, ~ω) = Minimize
∑

FF (i,j)

q(T viols
ij , T violh

ij) (4.25)

where T viols
ij represents the timing violation in the longest path constraints and T violh

ij

represents the timing violation in the shortest path constraints. The second stage

formulation can consider additional constraints for shortest path delay violation as

given by:

221

(Ti+
∑

k∈Ci

TBuf
k)+D

shortp
ij (~y,~r, ~ω)+T violh

ij ≥ (Tj+
∑

k∈Cj

TBuf
k)+T j

hold ∀paths p ∀FFs(i, j)

T violh
ij ≥ 0 ∀FFs(i, j)

(4.26)

where TBuf
k is the tunable delay introduced due to PST buffer k. This constraint

gives us the timing violation in the shortest path constraint T violh
ij for path p.

This completes the extension of the two-stage stochastic programming for-

mulation to consider the shortest path constraints in addition to the longest path

constraints. Although, we preserve the convex nature of the formulation, the error

introduced due to the lower bounding linear approximation on the gate delay models

for shortest path constraints makes this a heuristic technique.

4.1.5 Solving the Two-Stage Stochastic Program

In this work, we have used Kelley’s Cutting Plane Method [99] to solve the

two-stage stochastic programming formulation. We would like to point out that this

is just one technique that can be applied to solve this convex formulation. Any other

convex optimization scheme can be used as well. We will now briefly describe how

we can use this technique to solve the convex formulation discussed in the previous

section.

222

Algorithm 3 Kelley’s Cutting Plane Algorithm

Step 1: Initialize

Let ǫ > 0, k ← 0 and define l0(~x) = −∞, u0(~x) =∞.

Step 2: Compute a feasible solution, ~xk , satisfying the constraints.

Step 3: Set k ← k + 1

Step 4: Define the Lower Bound at ~xk

Evaluate αk and ~βk such that lk ≥ αk+ < ~βk, ~x >:

αk = BY L(~xk)− ~βk~xk
~βk = ∂BY L(~x)

∂~x
|~xk−1

Step 5: Update the Optimization Set

Add the following to the existing set of constraints:

lk ≥ lk−1 lk ≥ αk+ < ~βk, ~x >

Update the objective function to Minimize lk.

Step 6: Solve the Optimization to get ~xk and Update the Bounds

Let upper bound uk = Min{uk−1, BY L(~xk)} and lower bound lk.

Step 7: Stopping Rule

Stop if uk − lk ≤ ǫ, otherwise go to Step 2.

223

Kelley’s Cutting Plane Algorithm

Kelley’s Algorithm is an iterative approach that solves the first-stage formu-

lation and then uses the solution (~y,~r) obtained to generate a lower bound to the

BYL(~y,~r) from the second-stage formulation. In the next iteration, this lower bound

is used to guide the first-stage problem to a new solution to get a better BYL(~y,~r)

estimate. Hence, in each iteration we add a linear lower bound to BYL(~y,~r) and

subsequently converges to the optimal value.

The overall algorithm for the Cutting Plane Method can be summarized in

Algorithm-1. Let us suppose that the variables in the problem are defined as ~x which

in our case is a vector constituting the gate-size variables ~y and the PST buffer range

variables ~r. At each iteration k, the lower bound found from the previous iteration

is used to find a new solution ~xk. The lower bound is actually the sub-gradient

of the objective (BYL) at the previous solution ~xk−1. We find the lower bounding

co-efficients (αk, ~βk) such that BYL(~xk−1) = αk + ~βk ~xk−1. This sub-gradient forms

a lower bound to the objective BYL function. We use this new lower bound value

lk as shown in the algorithm to represent the current value of the BYL function. In

the next iteration, we get a new solution ~xk. At each iteration, we also get an upper

bound to the BYL function that is BYL(~xk). In each iteration, the upper and lower

bound come closer and final converge to the optimal solution. Since this is a convex

formulation, this technique gives us the optimal solution [99].

224

Computing the lower bound to BYL

This step is the most critical step in Kelley’s algorithm, since the lower bound

generated is used to drive the algorithm towards the optimal solution. Given a

solution ~xk−1, (note that ~x represents both the sizing variables ~y and PST buffer

range variables ~r from our formulation) we need to compute the sub-gradient to

the BYL(~x) function at this solution point ~xk−1. The lower bound is expressed

as αk + < ~βk, ~x >. Let us understand how we can compute ~βk. We use the

method of finite differences in our work to compute the sub-gradient. Any other

sub-gradient estimation technique can be used as well. Each component βi is defined

as ∂BY L(~x)
∂ ~xi

|~xk−1
and represent the sensitivity of the BYL function to the variable xi

at the current solution xk−1. This can be computed by incrementing the variable xi

by a small quantity ∆xi and then computing the change in BYL per unit change in

xi. Mathematically, this can be represented as:

βi =
BY L({x1; ...xi + ∆xi; ...; xn})− BY L({x1; ...xi; ...; xn})

∆xi

|~xk−1
(4.27)

Once ~β have been computed, it is fairly easy to compute α through the relation

BYL(~xk−1) = αk + ~βk ~xk−1.

Let us try to understand how we can compute BYL(~x), since this is a very

important step in generating the lower bound. At a given solution of the first stage

problem, i.e. (~y,~r), computing the BYL(~y,~r) amounts to estimating the expected

value of the timing-violation penalty P (~y,~r, ~Ω). In the scenario when there are

no PST clock buffers in the design, the problem of computing the timing-violation

225

penalty would amount to computing the timing pdf that can be done using STA

technique ([42, 127, 119, 43]). But in our case, we also have PST clock buffers,

where the amount of tuning required at each buffer for best timing yield would vary

depending on each variability sample ω. To our best knowledge, there are no current

STA techniques that can handle timing analysis in presence of PST clock buffers.

Consequently, in this work we resort to using a Monte-Carlo based STA

technique were for each sample ω of the random field, we formulate the second-

stage problem as proposed using inequalities (4.19) and compute the actual timing-

violation penalty p(~y,~r, ~ω). This is repeated for every variability sample ω such that

the expected value of timing-violation penalty which equals BYL(~y,~r) is eventually

computed. We note here that since we need to generate each βi once at a time,

this STA process is repeated for every variable ~y and ~r. It is easy to note that this

step becomes a major bottleneck in the performance of our algorithm and makes

the entire computation slow.

However, the proposed algorithm is free to use any efficient STA technique that

can predict timing pdf in presence of PST clock buffers. In the future, when such

a STA technique has been developed, it can be plugged into the proposed algorithm.

In our results section, we will show that almost all the computational time for our

algorithm goes into this Monte-Carlo based STA computation.

226

4.1.6 Experimental Results

The overall formulation considering shortest and longest path constraints was

implemented in SIS [37]. We performed experiments on the ISCAS benchmark suite.

We generated a valid placement for each benchmark using CAPO. The correlation

information between gates was generated using the model proposed in [42]. We

assumed that process variability caused threshold voltage to have a Gaussian distri-

bution with a mean value of 0.2V and a standard deviation of 15% from the mean.

We used 90nm technology parameters (from [125]) to compute the coefficients of the

convex gate delay expression (as a function of its size) as given by equation (4.4).

The PST clock tree structure used in our experiments is obtained using the algo-

rithm proposed in [72]. Each PST buffer was allowed to have a maximum tuning

delay of 5 psec.

In order to solve the first-stage convex formulation, we integrated MOSEK [49]

with SIS. The formulation proposed in section 4.1.5 was also implemented in SIS.

As mentioned in that section, we implemented a Monte-Carlo based STA scheme to

compute the BYL during each iteration of the cutting plane algorithm. In figure 4.3,

we can see that the upper bound (objective) representing the BYL at the current

solution improves in each iteration and quickly converges to the lower bound.

There is no scheme in the literature that does simultaneous gate sizing and

PST buffer management. We have run three set of experiments to evaluate our

algorithm:

1. A nominal gate sizing scheme followed by PST buffer management as proposed

227

in [72]: We first run gate sizing assuming nominal process parameter values.

On this solution, we perform PST buffer management (location and tuning

range determination of each PST buffer) using the algorithm proposed in [72].

2. Taking the solution from experiment 1 ([72]), we retain the PST clock buffer

structure (location and ranges) but try to re-optimize the design using a

sensitivity-based statistical gate-sizing approach similar in spirit to that pro-

posed in [32, 4]: This approach is an iterative scheme where at each step, we

evaluate the BYL improvements that can be achieved per unit size increase for

each gate. The most sensitive gate is chosen as the next gate to be upsized.

3. Taking the solution from experiment 1 ([72]), we retain only the locations of

the PST clock buffers and run our simultaneous gate sizing and PST buffer

range determination algorithm: The PST clock tree obtained in experiment 1

is taken as an input, though we reallocate the range of each of the PST buffers

while performing gate sizing as proposed in this work.

The aim of these experiments is to show that our proposed algorithm can

provide significant improvements over the design obtained from [72]. Furthermore,

comparison with experiment 2 shows that the simultaneous gate sizing and PST

buffer range determination algorithm proposed in this work is significantly more

effective than performing a statistical resizing of the design.

In order to compute the BYL for each experiment, we impose the process

parameter variations (Ω) on the final design solution through monte-carlo simulation

and compute the minimal timing violation considering tunability for each sample

228

bench Tcons [72] [72] + Sensitivity [72] + Convex Stochastic

name (psec) BY L Area Buf.Range BY L Area Buf.Range BY L Area Buf.Range

s27 450 4165 402 9 3293 403 9 4 418 16

s298 700 30854 4135 4 28477 4187 4 414 4146 5

s344 1000 38850 3822 3 14289 4006 3 377 3838 3

s382 700 54916 5073 6 95364 5273 6 116 5162 7

s400 850 71823 5370 3 61400 5441 3 1638 5418 8

s499 1350 232523 6614 15 260749 6706 15 8766 6714 17

s526 900 58750 8091 8 2210 8152 8 568 8133 10

s635 2500 253551 7730 3 111368 7853 3 1308 7784 1

Table 4.1: Comparison of Binning Yield-Loss, Area and Total PST Buffer Range in

(psec)

(ω). The average BYL over all ω was taken as the BYL for the design.

Table 4.1 compares the three approaches in terms of the BYL, the total area

after gate sizing and the tuning buffer range. We can see that our proposed convex-

stochastic approach resulted in significantly lower BYL compared to the other two

cases. Since the nominal gate sizing is not variability-aware, experiment 1 resulted

in the highest BYL. On an average, the BYL obtained from our approach is 98%

lower than the solution from experiment 1 ([72]) and 95% lower than experiment 2,

the sensitivity-based algorithm.

The final gate-size area obtained for our approach is on an average 1.25%

lower than that obtained from experiment 1 (nominal gate sizing followed by [72])

and 0.62% higher than experiment 2, the sensitivity approach. Hence, the convex-

stochastic algorithm gives better BYL for similar total gate-size area. From figure

4.4, we can see that our approach gives much lower BYL for the same total gate-size

area as compared to the sensitivity-based algorithm.

The total PST tuning buffer range that is allocated through the proposed

229

 0

 50000

 100000

 150000

 200000

 100 200 300 400 500 600 700 800 900

B
in

ni
ng

-Y
ie

ld
 L

os
s

Time(sec)

BYL
Lower Bound

Figure 4.3: Convergence of BYL to its lower bound with time for s344

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 3750 3800 3850 3900 3950 4000 4050

B
in

ni
ng

-Y
ie

ld
 L

os
s

Area

Proposed Algorithm
Sensitivity

Figure 4.4: BYL vs. Area Generated at Different Iterations of Kelley’s and

Sensitivity-Based Algorithms

230

bench Tcons [72] [72] + Sensitivity [72] + Convex Stochastic

s27 450 0.23 0.18 0.03

s298 700 0.16 0.11 0.02

s344 1000 0.24 0.15 0.03

s382 700 0.16 0.11 0.02

s400 850 0.26 0.18 0.05

s499 1350 0.24 0.26 0.03

s526 900 0.26 0.09 0.02

s635 2500 0.17 0.12 0.05

Average 0.22 0.19 0.03

Table 4.2: Comparison of Yield-Loss

algorithm is comparable to that obtained from [72]. Hence, our algorithm is able

to identify PST buffer ranges that result in BYL reduction without putting any

additional overhead in terms of PST buffer cost while performing simultaneous gate

sizing.

Table 4.2 reports the traditional timing YL that were obtained for the solutions

from all three approaches. It can be seen that on an average the nominal-sizing

followed by [72] gave 22% yield-loss, while the sensitivity approach gave 19% yield-

loss whereas our proposed algorithm gave only 3% yield-loss. These results show

that even though we do not directly optimize for timing yield loss (we optimize

BYL), we get better and more robust design solutions.

From figure 4.5, it is evident that the convex stochastic algorithm has a much

faster rate of convergence than the sensitivity-based algorithm. The runtimes for

231

bench Tcons Sensitivity Convex Stochastic Speedup

#itera. time #itera. time

s27 450 14 0.5 10 0.9 0.6

s298 700 16 13.7 9 11.6 1.2

s344 1000 24 24.3 7 14.6 1.7

s382 700 40 53.9 19 41.3 1.3

s400 850 18 28.3 13 19.5 1.5

s499 1350 35 87.1 19 72.2 1.2

s526 900 15 52.0 14 40.1 1.3

s635 2500 109 378.0 7 43.3 8.7

Average 2.2x

Table 4.3: Comparison of Total Run-Time (min) and Number of Iterations

each benchmark are reported in table 4.3 alongwith the number of iterations. It can

be observed that our approach converges to a better solution in fewer iterations and

on an average is 2.2x faster than the sensitivity-based algorithm.

As pointed out earlier in this work, the maximum runtime in our approach is

taken in computing the BYL using Monte-Carlo based STA. This is due to the fact

that none of the current STA techniques are able to perform timing analysis consid-

ering tunability. Our proposed algorithm is independent of the STA algorithm used

and can be used in combination with an efficient PST aware STA scheme developed

in future. From table 4.4 it can be seen that almost 93% of the computational

runtime goes into the STA process.

232

bench Avg. Iter. Time Avg. STA time / Iter %

s27 5 4 80.0

s298 77 74 96.1

s344 125 117 93.6

s382 130 127 97.7

s400 90 85 94.4

s499 228 225 98.7

s526 172 165 95.9

s635 371 351 94.6

Average 93.8

Table 4.4: Contribution of Monte-Carlo Based STA time to Iteration Time (sec)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 200 400 600 800 1000 1200 1400 1600

B
in

ni
ng

-Y
ie

ld
 L

os
s

Time(sec)

Proposed Algorithm
Sensitivity

Figure 4.5: BYL vs. Time Generated at Different Iterations of Kelley’s and

Sensitivity-Based Algorithm

233

Chapter 5

Variability-Aware Design Optimization: Runtime

Techniques

In this chapter, we will look at a design optimization technique that is a

runtime dynamic power optimization scheme. Such schemes allow a designer to

ensure that the design can adapt at runtime to reduce power overheads in the design.

Runtime management of dynamic power through supply voltage scaling is one such

technique that has been proposed in literature by several researchers [117, 30]. This

technique utilizes the concept of having multiple supply voltages available on chip,

and certain modules can be made to operate at lower or higher supply voltages

without paying a penalty on the overall latency of the system. There is an overhead

of adding extra hardware cost to provide the design with such a functionality, but for

high-performance lower power designs these techniques provide a useful methodology

for runtime optimization of performance.

In this work, we look at the impact of fabrication and environmental variability

on such a runtime power optimization technique of dual-supply voltage allocation.

234

5.1 Simultaneous Resource Binding and Dual-Vdd Allocation for

Power Optimization with Probabilistic Reliability Guarantee

In the nanometer regime, fabrication and environmental variations pose a po-

tent problem to IC designers. The uncertainty introduced due to these variations

cause a spread in design performance, rendering traditional design techniques inac-

curate. A lot of recent research has been focused on statistical modeling of vari-

ations to consider this performance uncertainty during analysis and optimization

[111, 112, 43, 119]. The reliability and robustness of designs is compromised due

to these variations. Most of these research efforts have been focused on physical

synthesis and very little work exists in high-level synthesis that tries to adapt to

these uncertainties.

Low power resource binding is a very extensively researched problem [30, 29,

63, 64]. More recently [87, 86] have looked at the resource binding problem from a

peak temperature control perspective. The authors in [104, 103, 102] have looked at

the problem of power minimization during datapath scheduling and synthesis. The

work in [108, 109] addresses the problem of reliability due to soft errors during high-

level synthesis. In [47, 46], the authors addressed the problem of delay variability

(from a worst-case bound perspective) during the resource binding problem. It

this work, we focus on the problem of simultaneous resource binding and dual-Vdd

allocation from a reliability perspective in presence of fabrication and environmental

variability.

In presence of fabrication and environmental variability, the delay of func-

235

tional modules and the latency of clocks become non-deterministic random quan-

tities. These uncertainties can potentially cause violation of the implicit deadlines

imposed on a DFG that has been scheduled and bound (on resources) causing incor-

rect and unreliable operation. Traditionally, these issues could be handled using a

worst-case analysis. It is known that the probability distributions of variability can

be correlated in arbitrary ways, causing a worst-case approach to yield extremely

pessimistic solutions [43, 119]. A probabilistic approach that captures these corre-

lations is therefore imperative.

We address the following problem in this work:

Given a scheduled data flow graph (DFG) with resource and latency constraints

and two supply voltage values V ddh and V ddl, the problem is to assign supply voltage

values to each operation and perform resource binding of operations such that power

is optimized while maintaining a reliability guarantee on the design. This work

presents a novel probabilistic framework to model variability into the problem in

order to provide a reliability guarantee (which is defined as an acceptable probability

of failure) on the solution. To our best knowledge, this is the first work that attempts

to incorporate fabrication and environmental variability explicitly during high-level

synthesis in a probabilistic framework to provide reliability guarantees on the design.

Our proposed formulation can be extended to consider leakage power optimization

and soft error based reliability issues as well.

The main contributions of this work are:

236

1. We propose probabilistic modeling of fabrication and environmental variability

in scheduled DFGs.

2. We propose the concept of Reliability Guarantee as a quantitative metric and

present a polynomial time optimal algorithm to compute the same. Reliability

guarantee implies a specified acceptable probability of failure. We note here

that our technique can handle any distribution of variability which can be

correlated in arbitrary ways.

3. We present a polynomial time optimal algorithm to solve the simultaneous

resource binding and dual-Vdd allocation problem under reliability guarantee.

4. We present a polynomial time optimal algorithm to determine the optimal

value of V ddl for the above problem.

5. We present an efficient rescheduling heuristic that performs local perturbations

on the input schedule to provide additional power savings while maintaining

the reliability guarantee.

We performed experiments to show that existing techniques that ignore vari-

ability [30] provide solutions that are extremely prone to failure. Design solutions

obtained from our approach are reliable under variability. The power obtained

through our scheme is on an average 3% higher than that obtained from [30]. Thus,

the modeling framework and algorithm proposed in this work are able to provide

designs that robust under variability without any significant overhead in power.

237

1

2

4

3

C1

C2

C5

C3

C4
Data Edges

Binding Edges

1

2

4

3

C1

C2

C5

C3

C4

Binding 2

Binding1

Figure 5.1: Reliability in a Scheduled and Bound DFG

5.1.1 Fabrication and Environmental Variability: Impact and Mod-

eling

Consider the DFG in figure 5.1 which has been scheduled in 4 clock steps

and bound on two resources. Implicitly, there are several deadlines imposed on

the operations in this DFG. Operation 1 must finish its computation before clock

edge C2 because it is bound on a functional module that needs to start processing

operation 2 immediately afterwards. Operation 3 must finish processing before clock

edge C4 because its data is needed by operation 4. As indicated on the figure these

deadlines are indicated by the data and binding edges. Given a scheduled DFG that

has been bound on functional resources, these implicit deadlines can be inferred.

For example, operation 1 has two deadline constraints:

D1 ≤ C2− C1 (5.1)

D1 ≤ C3− C1 (5.2)

In presence of fabrication and environmental variability, the delay of functional

238

modules and the latency of clocks become non-deterministic random quantities.

Environmental variability like thermal hotspots, noisy cross-coupling, supply voltage

fluctuation etc. can cause the delay of operations and the skew between clock

edges to become random. Fabrication variability makes design time estimation of

the delay/power characteristics of operations and functional modules a very hard

problem. Lately, a significant amount of research has been focused towards modeling

and understanding the impact of fabrication and environmental uncertainty [111,

112, 43, 119].

These uncertainties can potentially cause violation of the implicit deadlines im-

posed on a DFG that has been scheduled and bound (on resources) causing incorrect

and unreliable operation. Typically, existing techniques ignore these uncertainties.

Operation delays and clock edges are assumed to be fixed and deterministic. In

presence of fabrication and environmental uncertainty, let us suppose that the delay

Di of an operation i has an associated randomness δDi. Let us also suppose that

each clock edge Ci (as indicated in figure 5.1) also has an associated random skew

δCi. This randomness can occur due to environmental fluctuations and/or fabrica-

tion variability. Each of these random variables also have an associated probability

density function (PDF). The nature of these PDFs and their associated correlations

depend on the kind of fabrication and environmental randomness the system needs

to tolerate.

In this paper, we assume that there exists a modeling engine that gener-

ates these PDFs and also the associated correlations by analyzing the fabrica-

tion/environmental randomness. Extensive work is being done to model environ-

239

mental and fabrication variability [111, 112, 43, 119] and such a modeling engine

is feasible. For example, PDFs for module delay can be generated using the recent

statistical timing techniques [43, 119] and similar analysis can also be applied to

model clock skews. The optimality properties of our algorithm for simultaneous

resource binding and dual supply voltage allocation with reliability guarantee for

power optimization are independent of the nature of the PDFs (and correlations).

5.1.2 Reliability Guarantee : Definition and Understanding

What is Reliability Guarantee

Let Eij be an edge (data or binding) between operations i and j, with Cm

being the clock at which operation i begins and Cn being the clock edge at which

operation j begins. The deadline imposed by this edge is as follows:

Di + δDi ≤ Cn − Cm + δCn − δCm (5.3)

Here Di is the delay of operation i and δDi, δCn, δCm are the random vari-

ables associated with operation delay and clock skews respectively. Under these

timing constraints, the environmental and fabrication randomness can impose a fi-

nite probability of failure of this edge Eij . The probability of failure can be defined

as:

P ij
f = Prob(Di + δDi > Cn − Cm + δCn − δCm) (5.4)

This probability depends on Di, Cn, Cm and the nature of random variables

240

δDi, δCn, δCm (which could have arbitrary PDFs and correlations). Let us suppose

that we are given an acceptable probability of failure denoted by α. An edge Eij is

considered to have reliability guarantee if:

P ij
f ≤ α (5.5)

Lemma 1: Given an edge Eij (data or binding edge), the associated probability of

failure P ij
f is monotonically non-decreasing with operation delay Di.

Proof: We have defined the proability of failure of an edge Eij as

P ij
f = Prob(Di + δDi > Cn − Cm + δCn − δCm) (5.6)

where Di, Cn, Cm are known determistic values and δDi, δCn, δCm are random vari-

ables with some probability density functions. Let us now rewrite the definition

as:

P ij
f = Prob(δDi − δCn + δCm > Cn − Cm −Di) (5.7)

Let δR denote a new random variable defined as:

δR = δDi − δCn + δCm (5.8)

Also, let us define C = Cn − Cm. We can rewrite the probability of failure at

a given gate delay Di as:

P ij
f (Di) = Prob(δR > C −Di) (5.9)

241

pdf

C − D2C − D1

A2

A1

Figure 5.2: Example: Computing P ij
f

where δR has some known pdf.

Without loss of generality, let us suppose that we have two gate delay values

D1 and D2, where D1 > D2. In order to show that the probability of failure P ij
f

is a monotonically non-decreasing with operation delay Di, we need to show that

P ij
f (D1) ≥ P ij

f (D2).

P ij
f (D1) = Prob(δR > C −D1) (5.10)

P ij
f (D2) = Prob(δR > C −D2) (5.11)

Since the pdf of the random variable δR is always positive, and D1 is greater

than D2, by definition (from equations 5.10 and 5.11) P ij
f (D1) ≥ P ij

f (D2) will always

hold true. This is graphically shown in figure 5.2, where it can be seen that area A1

is always greater than or equal to area A2.

Hence, we have proved that the probability of failure is a monotonically non-

decreasing function of operation delay Di.

Lemma 1 implies that for a given edge Eij , there exists a value of operation

242

delay Di at which the probability of failure is α. Any increase in operation delay

beyond this value makes the probability of failure greater than α and any reduction

of delay below this value maintains the probability of failure to be atmost α. This

value of delay called as critical delay, is denoted by Dij
crit. It is noteworthy that the

critical delay for operation i depends on the edge Eij .

The concept of critical delay of an operation is important since this

is the highest value of operation delay that ensures reliability guaran-

tee of edge Eij. Typically higher operation delay means lower operation

power. Any further reduction in operation delay will increase operation

power without any benefit in reliability guarantee. We note here that

a worst-case approximation of the randomness would yield a pessimistic

(lower) estimate of critical delay since the PDFs can be correlated in ar-

bitrary ways and result in higher operation power. Hence, a probabilistic

definition of critical delay is a truely optimal way to capture reliability.

Computation of Critical Delay

Given an deadline edge Eij, critical delay Dij
crit can be computed by solving

the following mathematical formulation:

Dij
crit = Maximize Di

Subject to :































Di ≤ Cn − Cm

P ij
f ≤ α

Dmin
i ≤ Di ≤ Dmax

i

(5.12)

243

This is a non-linear non-convex optimization problem due to the nature of the

probability constraints and the PDFs of the random variables. We will now present

a polynomial time optimal algorithm to solve this formulation. Let us suppose that

we are given a positive ǫ close to zero. We want to compute the critical delay of an

operation Dij
crit to be within an ǫ bound.

From Lemma 1, we know that the probability of failure P ij
f is a monotoni-

cally non-decreasing function of operation delay Di. Figure 5.3 denotes this result

graphically. We can use a binary search based algorithm to compute the critical

delay Dij
crit for operation i corresponding to the deadline edge Eij . We start by

setting the bounds of the binary search to be at the limits of the entire operation

delay range LowerBound = Di
min, UpperBound = Di

max. In each iteration, we

compute the probability of failure P ij
f at the mid-point of the current delay range

(LowerBound + UpperBound)/2. Depending on the magnitude of P ij
f , we update

either the upper or the lower bound of the binary search range appropriately. We

iterate the binary search until we reach within an ǫ interval range on the operation

delay. This ensures that the final computed value of D
ijcompute

crit is within an ǫ bound

of the optimal value Dij
crit as denoted by equation 5.13.

∣

∣

∣
D

ijcompute

crit −Dij
crit

∣

∣

∣
≤ ǫ (5.13)

It is important to note here that for a given value of operation delay Di, we

need to be able to compute the probability of failure P ij
f of the deadline edge. This

above mentioned binary search algorithm assumes that we have such a prediction

244

Dij
crit

α

P ij
j

Dmax
i

Di

Dmin
i

Figure 5.3: Example: Computing Dij
crit

engine available to us. In this work we use a monte-carlo based engine to compute

the probability of failure for a given value of operation delay Di. Consider equation

5.4, in order to compute the probability of failure, we need to generate probabilistic

samples of the random variables. Let us suppose we have a sample from the space

of randomness of the random variables δDi, δCn, δCm denoted by ∆D′
i, ∆C ′

n, ∆C ′
m.

This sample should be generated from the correlated density functions associated

with these random variables. Now using a monte-carlo based strategy, we can com-

pute the probability of failure of the deadline edge assuming the corresponding oper-

ation delay to be Di under the given correlated variability distributions representing

the randomness space.

Using the above mentioned technique, we can compute the critical operation

delay value Dij
crit corresponding to every deadline edge Eij . It can be noted that

the binary search based algorithm presented in this section takes polynomial time

to compute the critical operation delay for each deadline edge within an ǫ bound of

the optimal value.

245

 and at Vddh between C1 and C2

6

31 2

5

4

7

2

4

5

1 3

6

7

Operations 1, 5, 7 are bound on Module 1
Operations 2, 6 are bound on Module 2
Operations 3, 4 are bound on Module 3

(e)(d)(c)(b)(a)

Module 3 works at Vddl between C2 and C4

C1

C2

C3

C4

C5

C6

Module 1 works at Vddl between C1 and C5
 and at Vddh between C5 and C6
Module 2 works at Vddl between C1 and C3
 and at Vddh between C4 and C5

1 32

4

6

7

5

1 32

4

6

7

5

4

s

t

1’ 2’

5’

4’5

1 32

6

7

Figure 5.4: Example: (a) DFG (b) Extended Operations (c) Comparability Graph

for DFG in a (d) Comparability Graph for DFG in b (e) Network Graph

5.1.3 Simultaneous Resource Binding and Dual-Vdd Allocation With

Reliability Guarantees

Problem Definition and Understanding

The input to the problem is a scheduled DFG with resource, and clock latency

constraints. We are also given high (V ddh) and low (V ddl) supply voltage values

that can be assigned to a particular operation.

Our objective is to bind operations on modules and assign supply voltage

to each operation such that 1) There is no violation of data, resource and timing

constraints 2) Maximum number of operations are assigned V ddl and among all

solutions that have this maximal assignment, the resource binding with minimal

switching activity is chosen 3) All associated data and binding edges Eij have a re-

liability guarantee (P ij
f ≤ α). Essentially, we try to minimize the power dissipation

while maintaining a reliability guarantee on all data and binding edges.

Let us consider a scheduled and bound DFG shown as an example in figure

246

5.4(b). In this example, module 1 has operations {1, 5, 7} bound on it. Between

clock edges C1 and C3, this module works at V ddl since operation 1 is assigned V ddl.

It can be seen that we assume that the power supply of functional modules can be

changed dynamically (between two pre-decided voltage levels V ddh and V ddl). The

overhead to provide this functionality and maintain correct interaction between

modules working at different supply voltage is assumed to be minimal [30]. The

primary focus of this paper is to develop the concept of reliability guarantees and a

methodology for achieving the same.

Comparability Graphs

For each operation type in the scheduled DFG, the simultaneous resource

binding and dual-Vdd allocation problem can be solved independently as long as

we ensure that all data dependency constraints (from a reliability perspective) are

satisfied. Optimally solving the problem separately for different operation types will

give the global optimal solution [30], [63], [64].

For a particular operation type we initialize a comparability graphs Gc(Vc, Ec).

The comparability graphs of different operation types do not interact and can be

solved independently. In the rest of the discussion we assume that we are looking

at the comparability graph of only one operation type. For the moment, let us

suppose that all operations in the DFG are assigned to V ddh (fastest operation

delay). Between two operations i and j (i scheduled before j), that have non-

overlapping execution times, there is a directed edge eij . This edge eij denotes

247

that i and j are comparable operations and can be bound on the same functional

resource [30]. Every such edge eij has a weight wij associated with it. This weight

corresponds to the switching activity between these two operations when bound on

the same functional resource with operation j executing after operation i. Therefore,

comparability graph edges indicate potential binding edges. For the scheduled DFG

shown in figure 5.4(a), let us assume that all operations are of the same type. The

comparability graph of the DFG is illustrated in figure 5.4(c) when all operations

are assigned V ddh.

Let us now try to understand how we can model the dual-Vdd problem into

the comparability graph as well. When an operation i works at V ddl, its delay Di

increases. We define an operation i to be extendible if its operation at V ddl does

not 1) Violate any data dependency constraints 2) Violate the schedule latency

constraints. The concept of extending an operation is shown in figure 5.4(b) for

the scheduled DFG in figure 5.4(a). It can be seen that operations {1, 2, 4, 5} are

extendible operations as shown in figure 5.4(b), since no data or timing constraints

are violated.

Typically, extending operation delays using supply voltage assignment helps

in reducing the dynamic power dissipation. Therefore, maximization of V ddl as-

signments to operations while maintaining timing, resource and data dependency

constraints is desirable. We can see that even though it may be possible to extend

a large number of operations, the resource constraint puts a limit to the number of

operations that may finally get extended. For the DFG in figure 5.4(a), one possi-

ble set of extendible operations are shown in 5.4(b). The comparability graphs for

248

the DFGs in figures 5.4(a) and (b) are given by figures 5.4(c) and (d) respectively.

As expected the comparability graph also depends upon the operations which have

been assigned V ddl. For example, operation 1 and 4 which were comparable earlier

are no longer comparable when operation 1 is assigned V ddl.

Incorporating Reliability Guarantees

Assignment of a particular supply voltage to an operation implies the assign-

ment of a delay value Di. As indicated earlier each edge in comparability graph

represents a potential binding edge. Each potential binding and data edge (given

by the schedule) has an associated critical delay Dij
crit. If the given assignment of

operation supply voltage is such that the operation delay Di is less than Dij
crit for the

edge, the corresponding data or binding edge is guaranteed to be reliable (Lemma

1). On the other hand if Di is greater than Dij
crit, then the corresponding edge

violates reliability guarantee. For a given Di, if an associated data edge becomes

unreliable, then operation i cannot be assigned delay Di. On the other hand if a

potential binding edge becomes unreliable, then it must be removed from the asso-

ciated comparability graph. The operation might still work at delay Di but may

be bound differently. Hence, given a supply voltage assignment and its correspond-

ing operation delay, we can easily infer if the supply voltage is valid from a data

edge reliability perspective. Also, from the associated comparability graph we can

remove all those potential binding edges that do not have a reliability guarantee

for the specific delay assignment. Let us call the residual comparability graph as a

249

reliable comparability graph since all existing potential binding edges are reliable.

This way of judging the reliability of an operation supply voltage assignment

is based on the theory of reliability guarantee developed in this work. If Lemma 1

does not hold then this simplistic way of incorporating reliability would not have

been possible. Also, the crux of this methodology is based on fast computation of

critical delay for each data and potential binding edge using our optimal polynomial

time algorithm (section 5.1.2).

Simultaneous Supply Voltage and Resource Binding with Reliability

Guarantee

In the existing literature, several works have proposed the use of network

flows to reduce power during resource binding [30, 63, 64, 29]. The network flow

formulation for solving the dual-Vdd assignment problem during resource binding

was proposed in [30]. In this work, we will present a network flow based formulation

to solve the same problem under the concept of reliability guarantee in presence of

fabrication and environmental variability.

We construct a network Ng = (s, t, V n, En, C, K) as follows: Let us assume

that all operations are assigned V ddh. We also assume that all data and binding

edges have a reliability guarantee at this supply voltage value. Let Gc(Vc, Ec) be the

corresponding comparability graph where every operation i has a vertex vi in Vc.

Note that all potential binding edges in this graph will have a reliability guarantee.

We introduce two vertices source s and sink t. Every vertex in Vc has an incoming

250

edge from the source vertex s and an outgoing edge to the sink t. For a given

value of V ddl, an operation i is extendible if 1) No data edges become unreliable

2) Timing/latency constraints are not violated. For each extendible operation i, a

new vertex v′
i is initialized. We add an edge connecting vi to v′

i and another edge

connecting v′
i to the sink t. This new vertex v′

i which corresponds to operation i

being assigned V ddl, will also be comparable with other vertices in Vc.

Consider a potential comparability (or binding) edge between vertices (v′
i, vj)

(vj scheduled after the completion of v′
i). If this edge has a reliability guarantee at

the given value of V ddl (and therefore operation delay Di), we add this edge in the

graph. For each edge in Ng, there is a cost defined by C and capacity defined by K

(as explained later).

As an example, let us consider the DFG given in figure 5.4(a). At V ddh

each of operations {1, 2, 3} are comparable with operations {4, 5, 6, 7}, operation 4

is comparable with operations {5, 6, 7}, operation 5 is comparable with operations

{6, 7} and operation 6 is comparable with operation {7}. This is represented as a

comparability graph in figure 5.4(c). Further, we see that operations {1, 2, 4, 5} are

extendible (assuming that at V ddl the corresponding data edges have a reliability

guarantee). Hence, the network graph Ng of this design would look like figure

5.4(e). All the edges that exist in the original graph in figure 5.4(c) would also

exist in Ng but have not been drawn for clarity. The extendible operations get

new vertices namely {1′, 2′, 4′, 5′} and their corresponding comparability edges have

been shown in figure 5.4(e). Note that these edges will exist only if they have a

reliability guarantee. There will also exist edges from s to {1, 2, 3, 4, 5, 6, 7} and

251

from {1, 1′, 2, 2′, 3, 4, 4′, 5, 5′, 6, 7} to t.

There are four kind of vertices in Ng, namely (s, t, vi, v
′
i) and six types of edges,

namely those between vertex pairs: (s, vi), (vi, vj), (vi, v
′
i), (v′

i, vj), (vi, t), (v′
i, t).

The cost and capacity of edges of Network Ng can be set as follows:

C(s, vi) = 0| ∀vi ∈ Ng

C(vi, t) = 0| ∀vi ∈ Ng

C(v′
i, t) = 0| ∀v′

i ∈ Ng

C(vi, vj) = sij)| ∀edges : (vi, vj) ∈ Ng

C(v′
i, vj) = sij)| ∀edges : (v′

i, vj) ∈ Ng

C(vi, v
′
i) = −T | ∀vi ∈ Ng

Capacity = K(e) = 1| ∀edges : e ∈ Ng

(5.14)

Here C denotes the cost assigned to an edge, K denotes edge capacity, sij

denotes the switching activity. The cost C(vi, v
′
i) is set to −T , where T is greater

than the total switching activity of all the potential binding edges in Ng. This

completes the description of the network. For reasons described later, we impose a

node capacity of one unit and a node cost of -2T for each node of type vi.

It can be seen that the network Ng captures all possible configurations of

comparability graph that can be obtained by extending all possible combination of

operations.

Another point to note is that the generated Ng has only those po-

tential binding edges that have reliability guarantee. Also, only those

extendible nodes v′
i exist whose extension (or assignment to V ddl) main-

252

tains the reliability guarantee of the data edges. Therefore, choosing a

resource binding and supply voltage assignment solution from Ng ensures

that we always have reliability guarantee.

The simultaneous resource binding and dual-Vdd allocation problem with re-

liability guarantee can be solved by sending M units of minimum cost flow on Ng

from s to t. Here M is the number of available resources for the given operation type.

Lemma 2: A unit flow f in the network Ng corresponds to a resource binding

solution where every edge (vi, vj) (or (v′
i, vj))on the path of the flow implies that

operations i and j are bound on the same functional resource. Also, an edge (vi, v
′
i)

indicates that operation i is assigned to V ddl during its execution.

Proof: Details are given in [31].

The network Ng has cost C(vi, v
′
i) set to −T , where T is greater than the total

switching activity in all the potential binding edges in Ng. This ensures that for

a pair of comparable operations {i, j}, C(vi, vj) > C(vi, v
′
i) + C(v′

i, vj). Hence, the

flow solution always extends an operation (if still reliable). Hence, the final flow

solution has maximum number of operations assigned to V ddl. Since each vertex vi

has a capacity of 1, it is present on at most on flow path (and therefore bound on

only one resource). Also the cost of a node vi is -2T. Therefore the final flow solu-

tions must include all operations, guaranteeing a valid binding and supply voltage

assignment for all operations. The mincost objective ensures that among all valid

resource binding solutions with maximum number of V ddl assignments we pick the

253

one with minimum total switching activity. Note that, by construction of Ng, the

resulting binding solution will always have reliability guarantee.

Theorem 1: The min-cost flow f , with |f | = M (M being the resource constraint)

on Ng gives the largest number of extended operations in the design with the mini-

mum total switching activity on M functional units while maintaining the reliability

guarantee.

Proof: Details are given in [31]. It should be noted that by constructing any bind-

ing solution on Ng maintains the reliability guarantee.

As has been discussed in [30], the optimality results hold true when we ignore

inter-frame considerations regarding the switching activity during cyclic execution of

the DFG. The problem in that case formulates as a multi-commodity flow problem.

The focus of this work is to introduce the concept of reliability guarantee as a means

of handling fabrication and environmental variability into the resource binding and

dual-Vdd allocation problem. Similar to [30], we ignore inter-frame considerations

in this work.

5.1.4 Architectural Issues

In the proposed technique, each functional module has to have the ability to

operate at both V ddh and V ddl. As shown in figure 5.5, we adopt the architectural

scheme similar to that proposed in [30, 38] where each functional module’s oper-

254

Module
Functional

VddlVddh

LC

LC

Figure 5.5: Architectural Considerations for Dual-Vdd Scheme

ating voltage can be changed dynamically at run time. Hence, a large number of

operations can now operate at V ddl, leading to significant power reduction. Since

this opens the possibility of having a V ddl signal trying to drive a V ddh module,

we need to add the overhead of using level converters (LC) and appropriate MUXs

at the inputs of the functional modules. This extra logic adds a delay penalty to

the functional module delay as well as a small power overhead. It has been shown

in previous works that the overhead of dual-Vdd power rails and level converters is

acceptable compared to the amount of power savings that can be achieved [30, 38].

In order to capture the extra delay overhead due to the level converters and

MUXs, the critical operation delay Dij
crit can be modified to include the effect of this

extra delay penalty (Doverhead). So the effective critical operation delay would be

D
ijeff

crit = Dij
crit −Doverhead (5.15)

Therefore, the proposed technique is able to consider the overheads while main-

taining reliability guarantee in the design.

255

5.1.5 Determination of the Optimal V ddl

The minimal power solution for the simultaneous resource binding and dual-

Vdd allocation problem is dependent on V ddl. If the value of V ddl is very low, very

few operations may get extended due to data edge reliability and resource constraint

violations. Hence, the solution will have fairly high power. On the other hand, if the

value of V ddl is high, a large number of operations are likely to get extended but the

individual gains in power would be small. Therefore, it is important to determine the

optimal value of V ddl for the simultaneous resource binding and dual-Vdd allocation

problem.

Let us assume that we are given a fixed V ddh = V DD and we are allowed to

choose V ddl between [V DD/2, V DD]. Our objective is to determine the optimal

V ddl such that the power obtained from the simultaneous resource binding and

dual-Vdd allocation solution is minimized. We will now present a polynomial time

optimal solution to determine this V ddl.

Let us suppose we are given a data or a potential binding edge. As we increase

the value of V ddl from VDD/2 to VDD, there is a point at which the edge becomes

completely reliable and stays reliable. Also consider operations 5 and 6 in figure

5.4(b). It is possible that for V ddl very close to VDD, operations 5 and 6 become

comparable (even though 5 is delayed). Any increase in V ddl will ensure that these

operations remain comparable. Given a DFG with n nodes, there can be at most

O(n2) edges (binding and data) in it. Let us suppose we now increase V ddl from

VDD/2 to VDD. The following lemmas hold true:

256

Lemma 3: Network Ng can change its edge set E at most O(n2) times as V ddl is

increased from VDD/2 to VDD.

Proof: It can be noted that as V ddl is moved to a particular value, any edge (data

or binding) that becomes valid under reliability guarantee in Ng, will always remain

valid as V ddl is increased further. Since there are at most O(n2) edges, a change in

the edge set of Ng can happen at most O(n2) times.

Lemma 4: There are O(n2) candidate values for optimal V ddl.

Proof: Given an interval of V ddl, [V DDi, V DDj] with V DDi < V DDj where Ng

does not change, we can use the formulation described earlier to optimally solve

the resource binding and dual-Vdd allocation problem. In this range, the best

value of V ddl is obviously V DDi (since Ng does not change). Because of Lemma 3

there are O(n2) points between [V DD/2, V DD] at which Ng changes. Hence, there

will be O(n2) consecutive intervals [V DDi, V DDj] with V DDi < V DDj between

[V DD/2, V DD] where Ng is fixed. Therefore, there will be O(n2) candidate values

for optimal V ddl (one for each interval).

257

Algorithm 4 Algorithm for Determining Optimal V ddl

Step-1: Increase V ddl from VDD/2 to VDD

Step-2: Every time Ng changes, solve the Mincost Flow formulation.

(According to Lemma 3 we will have only O(n2) such events)

Step-3: The lowest power solution among these O(n2) candidates gives us the optimal V ddl.

We can determine the optimal V ddl in polynomial time as given by algorithm

1 above.

5.1.6 Rescheduling the DFG through local perturbation

The input schedule of the DFG to this problem is critical in deciding the

power of the design. Proposing a variability-aware scheduling algorithm is beyond

the scope of this work. However, we do investigate the possibility of performing

small local perturbation based rescheduling on the input schedule. We propose to

analyze the solution obtained from our algorithm (under the input schedule) to get

insights about which operations to reschedule.

Algorithm 5 Heuristic for Local Perturbation of Schedule

INPUT: Scheduled DFG, Binding Solution, V ddl

Compute slack for all data edges

Create an ordering of target operations based on slack

For each target operation i {

258

Try to move operation i one clock step up

Or try to move sink operation j one clock step down

}

Given the current flow solution, we know the operations that were extended,

we know the resource bindings of all operations and we know the value of V ddl. For

each data edge Eij in the design, we compute the slack at the edge using equation

5.16.

Slackij = Dij
crit −Di(V ddl) (5.16)

We sort the date edges based on their slack in increasing order. The corre-

sponding operations (i for edge Eij) become our target operations in the same order.

For a given target operation i (corresponding to edge Eij, we can either move it one

clock step up or try to to move the corresponding sink operation j one clock step

down in the schedule. In order to move any operation (up/down) it is important

to verify that: 1) No data edge gets violated (or becomes tighter in slack than the

current data edge) 2) Resource is available for the moved operation in the new clock

step.

We iterate over all target operations and try to reschedule them. The overall

scheme is shown in algorithm 2.

259

5.1.7 Consideration of Leakage Power and Soft Errors

Several recent works in high-level synthesis [108, 109] have focused on relia-

bility issues due to soft errors. If we know the value of supply voltage below which

a transistor becomes prone to soft errors, we can capture the corresponding maxi-

mum allowed module delay through our concept of critical delay Dij
crit. Hence, our

reliability guarantee based formulation can be extended to consider soft errors as

well.

With technology scaling, leakage power has become a critical optimization

objective. Techniques like body-biasing [17] allow the effective threshold voltage of

a module to be changed at runtime, thereby allowing its leakage change as well.

Using the trade-off between module leakage and delay, we can optimize the total

power (leakage + dynamic) of the design using a dual-Vdd, dual-Vth scenario. Each

operation could work at either V ddh/V ddl and V thh/V thl, giving us four possible

configurations. Our reliability guarantee based formulation can be extended to

consider this scenario as well.

5.1.8 Experimental Results

We experimented with the Mediabench suite [23]. The DFGs were extracted

using SUIF/Machine-SUIF and scheduled using [101] for maximum delay slack

spreading. Edge switching activity and power/delay information was generated

using random input vector simulations followed by VSS simulator and Synopsys

DC respectively. We assumed V ddh to be 1.8V and V ddl to exist in the range

260

Benchmark Power Opt. V ddl #D-Edge #B-Edge

(nw) (V) Failure Failure

fft1 161.2 0.9 26 25

fft2 58.3 0.9 12 6

jctrans1 26.7 0.9 4 6

jctrans2 20.3 0.9 0 6

jdmerge1 46.2 0.9 4 14

jdmerge2 90.7 0.9 8 31

jdmerge3 58.3 0.9 5 15

jdmerge4 60.7 0.9 10 13

motion2 69.7 0.9 13 15

motion3 64.8 0.9 13 12

noise est2 98.0 0.9 3 4

Table 5.1: Power and Reliability Results Obtained From [30]

Benchmark Power Power After Improv. Opt. V ddl #D/B-Edge Power [30] % Increase

(nw) Rescheduling (nw) % (V) Failure (nw) compared to [30]

fft1 192.6 181.3 5.8 0.995 0 161.2 12.5

fft2 71.2 71.2 0.0 0.995 0 58.3 22.1

jctrans1 29.8 23.0 29.0 0.995 0 26.7 -13.9

jctrans2 21.9 15.1 21.2 0.995 0 20.3 -25.6

jdmerge1 52.1 52.1 0.0 0.995 0 46.2 12.7

jdmerge2 100.1 75.3 24.8 0.995 0 90.7 -16.9

jdmerge3 64.8 51.3 20.8 0.995 0 58.3 -12.0

jdmerge4 72.1 72.1 0.0 0.995 0 60.7 18.7

motion2 82.9 80.7 2.7 0.995 0 69.7 15.7

motion3 78.4 76.2 2.8 0.995 0 64.8 17.5

noise est2 103.2 100.9 2.2 0.995 0 98.0 2.9

Table 5.2: Experimental Results: Power, Optimal V ddl and Reliability

261

[0.9V, 1.8V]. Clock skew variability was assumed to have a Gaussian distribution

with 0 mean and a 3σ interval of 0.05 ∗ Clock − Period. Module delay variabil-

ity was assumed to have Gaussian distribution with 0 mean and a 3σ interval of

0.1∗Clock−Period. All random variables were assumed to be uncorrelated, though

our reliability guarantee computation can handle any distribution of variability un-

der any arbitrary correlation model. We implemented the proposed algorithm in

C and used MOSEK [49] to solve the convex formulation to get the probability

guarantees for each edge in the DFG. All experiments were run on a SunBlade 150

machine with 512mb of RAM. Dynamic Power of each module was computed us-

ing Powerdyn = 0.5sCV dd2f , where s is the switching activity, C the capacitive

loading and f is the operating frequency. Delay of a module was scaled using the

alpha model (Delay = KCV dd/(V dd−V th)α), where K is a constant and V th the

threshold voltage. For our experiments, we chose the value of α to be 0.01, which

implies that any deadline edge had a reliability guarantee if

P ij
f ≤ 0.01 (5.17)

We ran two sets of experiments:

1. We performed simultaneous resource binding and dual-Vdd allocation using

the scheme proposed in [30]. We extended this approach to consider the pro-

posed optimal V ddl selection paradigm. Using Monte-Carlo simulations, we

did a reliability analysis on all data and binding edges on the solution thus

obtained.

262

2. We performed simultaneous resource binding and dual-Vdd allocation using

the reliability guarantee driven scheme proposed in section 5.1.3. We con-

sidered the optimal V ddl selection paradigm. Further, we did our heuristic

rescheduling followed by another run of our algorithm to get the final solu-

tion. We did a reliability analysis on the solution thus obtained.

Table 5.1 shows the results from the first experiment [30]. Column 2 reports

the total power obtained from the simultaneous resource binding and dual-Vdd

allocation solution and column 3 reports the corresponding optimal V ddl. It is

interesting to note that the best solution was obtained at V ddl = V DD/2 = 0.9V for

all benchmarks. We ran Monte-Carlo simulations using the variability distribution

mentioned above to compute the probability of failure at each data and binding edge.

The total number of edges with a probability of failure greater than α (= 0.01) have

been reported in columns 4 (data edges) and 5 (binding edges). As can be seen,

a large number of edges are prone to failure and modeling of variability during

optimization is critical in getting robust and reliable designs.

Table 5.2 shows the results from the proposed algorithm simultaneous resource

binding and dual-Vdd allocation with reliability guarantee. Column 2 reports the

total power of the solution obtained from the algorithm using the given input sched-

ule. Using this solution as a guide, we performed rescheduling as described in section

5.1.6 and ran our algorithm again. The final power obtained after rescheduling is

reported in column 3. As can be seen from column 4, on an average we get 9.9% ad-

ditional power savings through rescheduling. The optimal value of V ddl was found

263

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
60

80

100

120

140

160

180

200

220

Vddl (in V)

jdmerge2

P
ow

er
 (

nw
)

Existing technique

Our technique (no rescheduling)

Our technique with rescheduling

Figure 5.6: Power Versus V ddl Trade-Off For jdmerge2

to be 0.995V for all benchmarks as shown in column 5, which means that our algo-

rithm tends to decrease the delay of each extended operation (thereby increasing its

power) in order to ensure reliability guarantee. We ran a reliability analysis on all

the data and binding edges in the solution and found them to meet the desired reli-

ability guarantee as indicated in column 6. This result validates our claim that our

algorithm provide robust solutions that have a reliability guarantee even in presence

of fabrication and environmental variations.

Column 7 shows the power obtained from [30]. Intuitively, we would expect

that the power obtained from our algorithm should be higher as we increase the

value of V ddl to ensure reliability guarantee on all edges. Column 8 shows that on

an average the power obtained in our solution is about 3% higher than that from

[30]. The more interesting observation is that for some of the designs, our solution

gives better power and this can be attributed to the effectiveness of our rescheduling

heuristic.

264

We can see the trade-off between the power versus the selected value of V ddl of

the solution obtained for benchmark jdmerge2 in figure 5.6. Traditional techniques

that ignore variability [30], give the minimum power solution at the lowest value

of V ddl. On the other hand, our proposed technique tends to give the best power

solution at a higher value of V ddl. This occurs because at low values of V ddl, a lot

of data and binding edges tend to become unreliable and hence the power obtained

through our approach (which guarantees reliability) is high at lower value of V ddl.

It can also be seen that the rescheduling heuristic followed by our technique is able

to significantly lower power at lower values of V ddl while maintaining the reliability

guarantee.

These results support our claim that it is important to model variability during

optimization in order to get robust and reliable designs. The algorithm proposed in

this work gives solutions which have a reliability guarantee with minimal increase

in total power (3%).

The input schedule of the DFG to this problem is critical in deciding the

power of the design. We experimented with a large number of schedules to get an

idea about the nature of a desirable schedule. As can be expected, our conclusion

was that schedules with maximum delay slack spreading (similar to [101]) were in

general the best candidates. However, the delay slack spreading could be made more

precise by considering the existence of variability during scheduling for maximum

power improvements.

265

Chapter 6

Conclusion and Future Work

In this dissertation, we have tried to address the variability challenge facing

nanoscale VLSI design automation. We have addressed all design analysis as well

as design optimization aspects of the problem. In chapter 1, we have discussed the

existing paradigms that are being used to handle variability due to both fabrication

and environmental randomness. We motivate the need for a variability-aware design

methodology and present some key advantages and challenges of the same.

In the subsequent chapters of this dissertation, we outline our research con-

tributions in four broad areas namely, design analysis, design time optimization,

post-silicon design tunability and runtime optimization. In chapter 2, we outline

the main concept behind statistical timing analysis and why it has become an im-

portant design analysis tool for improving yield. We presented the existing work in

the area of statistical timing analysis and have discussed our research contributions

in detail. We propose a novel error budgeting concept in this dissertation that can

be generalized to work with any statistical timing analysis scheme allowing the de-

signer to control the trade-off between error induced and runtime, thereby providing

significant runtime speedups in statistical timing analysis. Furthermore, we present

our general framework for statistical timing analysis considering correlations. This

is one of the first works that can handle non-linear delay models and non-Gaussian

266

variability distributions as well.

In chapter 3, we present two research contributions that propose statisti-

cal/probabilistic design optimization philosophies. The first work present a novel

probabilistic buffer insertion framework considering wirelength uncertainty. This

work presents probabilistic algorithms to optimize the design considering distribu-

tions for each wire segment instead of fixed deterministic estimates (as done in tra-

ditional buffer insertion). Several probabilistic pruning criteria have been proposed

in this work to limit the potential buffer insertion solutions in the design, each with

their own benefits and drawbacks. The second work presents a general stochastic

linear programming based framework that builds on Monte-Carlo scheme to handle

any problem in VLSI-CAD that can be modeled using linear programming. This

framework allows us to use any variability distribution, under any underlying cor-

relation model. We apply this framework to the problem of sleep transistor sizing

for leakage optimization considering fabrication variability.

In chapter 4, we present our work on variability-driven simultaneous gate sizing

and post-silicon tunability allocation. This work brings out an interesting philoso-

phy of post-silicon tunability that can be a powerful means to counter fabrication

variability after it has been manifested during fabrication. Design tunability in itself

incurs a penalty cost, hence in this work we look to balance the overhead between

design time optimization and post-silicon tunability to get maximum yield gains

without a severe overhead penalty. We prove that the problem is convex under the

longest path constraints and can be solved optimally in polynomial time.

In chapter 5, we present our work on variability-aware runtime optimization

267

techniques for dynamic power optimization using supply voltage scaling. This work

presents a new scheme for modeling fabrication and environmental uncertainty dur-

ing system-level design while considering runtime power optimization through dual-

Vdd functionality. We propose the concept of probabilistic reliability guarantee as

an optimization metric. We propose a methodology to model uncertainty in em-

bedded dataflow graphs which can then be optimized probabilistically for ensuring

reliability in the design. We specifically look at the problem of simultaneous resource

binding and dual-Vdd allocation problem and apply this technique to the problem

under a reliability perspective.

6.1 Future Work

Several important directions of future work exist in variability-driven design

methodologies. In today’s world, variability has opened up three key issues that

need to be addressed:

1. Performance (reliability)

2. Yield

3. Power

In this dissertation, we have talked about the microscopic view of the design

of a single integrated or embedded system. We have developed analysis and opti-

mization techniques that handle variability for such an isolated system. We have

looked at the problems of optimizing the design for performance, yield as well as

268

power.

There is increasing emphasis on distributed integrated and embedded systems,

which could be both off-chip (distributed network of embedded sensors), or on-chip

(multi-core designs). These distributed systems are prone to not only fabrication

and environmental variations, but also other routing/topology based uncertainty. It

is important to extend our paradigms to consider the macroscopic view of distributed

integrated and embedded systems as well.

6.1.1 Microscopic View: Single Integrated/Embedded System

In this dissertation, we have developed several analysis and optimization tech-

niques that are targeted towards the nanoscale issues arising due to aggressive tech-

nology scaling. In future, we intend to build a complete design automation frame-

work that includes integrated modeling of fabrication and environmental uncertainty

in design parameters for analysis and optimization. It is necessary to develop frame-

work that allow for integrated management of reliability, performance and power in

designs.

The development of accurate and compact models to represent the fabrication

and environmental randomness in design parameters is crucial for effective analysis

and optimization. Such models that can be integrated into design analysis and

optimization. This requires an in-depth understanding of the causes of randomness

in the nanoscale fabrication process. Furthermore, it is also important to understand

the degree of randomness and correlation patterns that exist between various sources

269

of variability. Techniques like statistical timing analysis are crucial in predicting

the probabilistic performance spread of the design, thereby driving optimization

algorithms to improve design yields. In the future, one needs to develop fast and

accurate techniques for statistical analysis of timing, power and noise in nanoscale

systems.

Given the statistical analysis information, we need to optimize the design

to maximize the probability of meeting the constraints. There are several design

methodologies that can be used to integrate statistical analysis information in design

optimization.

1. Developing design-time optimization schemes that consider fabrication and

environmental randomness. Design yields can be improved by developing ac-

curate and fast algorithms for both probabilistic and deterministic optimiza-

tion. Chapter 3 in this dissertation presents some work that has been done

along these lines.

2. Develop algorithms for allocation of post fabrication tuning of designs that

provide a technique to correct the chip after it has been fabricated. In par-

ticular, clock skew and body-bias based tuning techniques provide promising

directions for future work. This paradigm of design tunability is a very promis-

ing solution to the problem of variability. We need to develop techniques that

can efficiently integrate this philosophy into mainstream design flows without

having a significant overhead in design, fabrication and testing costs.

3. Develop techniques for self-correcting circuits that enable the chip to adjust its

270

parameters (say threshold voltage through body-biasing) at runtime once the

performance shift of the chip due to variability has been computed, thereby

improving design yield. Furthermore, we need to investigate exotic circuit

techniques that are inherently more tolerant towards fabrication and environ-

mental randomness. Increasing use of asynchronous logic and well as recon-

figurable logic (redundant paths etc.) are important steps in this direction.

It is important to develop design management techniques that provide an in-

tegrated framework to simultaneously consider these different optimization philoso-

phies for maximum yield improvements.

6.1.2 Macroscopic View: Distributed Integrated and Embedded Sys-

tems

Power and delay have been the central optimization objectives in design of

integrated and embedded systems. In presence of manufacturing and environmen-

tal variations, the randomness caused in power and delay accompanied with other

phenomena like temperature hotspots, soft errors have posed severe reliability issues

in nanoscale embedded and SoC designs. In order to get robust design solutions,

these issues need to be addressed at higher levels of design abstraction where a lot

of flexibility in design is available. It has been a challenge to model these low-level

issues at higher levels of design flow. In this dissertation, we have proposed a frame-

work for modeling and optimization of such reliability issues in embedded and SoC

designs which optimizing the design for dynamic power.

271

Reliability, yield and power management issues need to be considered not just

at the scale of an isolated embedded system, but for a network of distributed inte-

grated and embedded systems. These systems can be off-chip network of systems or

an on-chip system (such as a multi-core design). Depending on the routing topol-

ogy, communication protocols and power management techniques, each of these

systems are presented with their own unique challenges. In such situations not only

data communication, but also data computation becomes unreliable. Ensuring reli-

able performance from a network of distributed embedded components potentially

working in an unreliable environment is an important problem that needs further

investigation. Applications like a distributed system to monitor the carbon monox-

ide or sulfur levels in a hazardous industrial plant or monitor radioactivity levels in

a nuclear power generation plant using a network of embedded sensors are typical

examples of unreliable environments where temperature variations can be large be-

tween different embedded sensor nodes. On the other hand, even at the scale of an

individual embedded or SoC system, different units on the same chip may interact

(e.g. a RF receiver may cause power grid noise resulting in the slowdown of the

analog to digital converter) causing various design issues. Extending the techniques

developed to ensure reliable performance, yield and power from isolated integrated

systems need to be broadened to become applicable to the design of distributed

systems.

272

BIBLIOGRAPHY

[1] A. Agarwal, D. Blaauw and V. Zolotov. ”Statistical Timing Analysis for Intra-
Die Process Variations with Spatial Correlations”. In Procs of ICCAD, 2003.

[2] A. Agarwal et al. ”Computation and Refinement of Statistical Bounds on
Circuit Delay”. In Procs of DAC, 2003.

[3] A. Agarwal, V. Zolotov and D. Blaauw. ”Statistical Timing Analysis Using
Bounds and Selective Enumeration”. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol.22, Sept. 2003.

[4] A. Agrawal, K. Chopra, D. Blaauw, and V. Zolotov. ”Circuit Optimization
Using Statistical Static Timing Analysis”. In DAC, pages 338–342, 2005.

[5] A. Caldwell et al. ”Can Recursive Bisection Alone Produce Routable Place-
ments?”. In Proc. of DAC, 2000.

[6] A. Davoodi and A. Srivastava. ”Voltage scheduling under unpredictabilities: A
risk-management paradigm”. In Proc. of the IEEE International Symposium
on Low Power Electronics and Design, pages 25–27, August 2003.

[7] A. Davoodi and A. Srivastava. ”Variability-Driven Buffer Insertion Consider-
ing Correlations”. In Procs of ICCD, 2005.

[8] A. Davoodi and A. Srivastava. ”Variability-Driven Gate Sizing for Binning
Yield Optimization”. In Procs of DAC, 2006.

[9] A. Davoodi, V. Khandelwal and A. Srivastava. ”Empirical models for net-
length probability distribution and applications”. In Proc. of the IEEE Trans-
actions on Very Large Scale Integration Systems, October 2004.

[10] A. Devgan and C. Kashyap. ”Block-based Static Timing Analysis with Un-
certainty”. In Procs of ICCAD, 2003.

[11] A. Gattiker, S. Nassif, R. Dinakar and C. Long. ”Timing yield estimation
from static timing analysis”. In Proc. of IEEE International Symposiom on
Quality Electronic Design, pages 26–28, March 2001.

[12] A. Kahng, X. Xu. ”Accurate pseudo-constructive wirelength and congestion
estimation”. In Proc. of the International Workshop on System-level Inter-
connect Prediction, pages 61–68, 2003.

[13] A. Raychowdhury, S. Ghosh, and K. Roy. ”A Novel On-chip Delay Measure-
ment Hardware for Efficient Speed-Binning”. In IOLTS, July 2005.

[14] A. Srivastava and M. Sarrafzadeh. ”Predictability: Definition analysis and
optimization”. In IEEE Transactions on Computer-Aided Design of ICs and
Systems, pages 118–121, 2002.

273

[15] A. Srivastava and Majid Sarrafzadeh. ”Exact Algorithm for Modifying Buffer
Trees Using Buffer Duplication in a Delay Optimization Perspective”. In
International Workshop on Logic Synthesis, 2001.

[16] A. Srivastava S. O. Memik B. Choi and M. Sarrafzadeh. ”Achieving de-
sign closure through delay relaxation parameter”. In IEEE Transactions on
Computer-Aided Design of ICs and Systems, pages 54–57, 2003.

[17] Ali Keshavarzi et al. ”Forward body Bias for Microprocessors in 130nm Tech-
nology Generation and Beyond”. In VLSI Circuits Symp., pages 312–315,
2002.

[18] C. Ababei and K. Bazargan. ”Placement method targeting predictability ro-
bustness and performance”. In IEEE Transactions on Computer-Aided Design
of ICs and Systems, pages 81–85, 2003.

[19] C. Alpert, A. Devgan and S.T. Quay. ”Buffer Insertion for Noise and Delay
Optimization”. In Procs of Design Automation Conference, 1998.

[20] C. Alpert, A. Devgan and S.T. Quay. ”Buffer Insertion with Accurate Gate
and Interconnect Delay Computation”. In Procs of Design Automation Con-
ference, 1999.

[21] C. Bouza. ”Stochastic Programming: the state of the art”. In Revista Inves-
tigacion Operacional, page 14(2), 1993.

[22] C. E. Clark. ”The Greates of a Finite Set of Random Variables”. In Operations
Research, pages 145–162, 1961.

[23] C. Lee, M. Potkonjak and W.H. Mangione-Smith. ”MediaBench: A tool for
evaluating and synthesizing multimedia and communications systems”. In
International Symposium on Microarchitecture, 1997.

[24] C. P. Chen, C. N. Chu and D. F. Wong. ”Fast and exact simultaneous gate
and wire sizing by Lagrangian relaxation”. In Proc. of IEEE Transactions on
Computer-Aided Design of ICs and Systems, July 1999.

[25] C. Visweswariah. ”Death, taxes and failing chips”. In Proc. of Design Au-
tomation Conference, pages 343–347, 2003.

[26] C. Visweswariah et al. ”First-Order Incremental Block-Based Statistical Tim-
ing Analysis”. In Procs of DAC, 2004.

[27] C. Visweswariah et al. ”First-Order Parameterized Block-Based Statistical
Timing Analysis”. In Procs of TAU, 2004.

[28] C.C.N. Chu and D.F. Wong. ”A New Approach to Simultaneous Buffer Inser-
tion and Wire Sizing”. In IEEE/ACM Intl. Conference on Computer Aided
Design, 1997.

274

[29] D. Chen and J. Cong. ”Register Binding and Port Assignment for Multiplexer
Optimization”. In Procs of ASP-DAC, 2004.

[30] D. Chen, J. Cong and J. Xu. ”Optimal Module and Voltage Assignment for
Low-Power”. In Procs of ASP-DAC, 2005.

[31] D. Chen, J. Cong and J. Xu. ”Optimal Simultaneous Module and Multivoltage
Assignment for Low-Power”. In ACM Transactions on Design Automation of
Electronic Systems, pages 362–386, Vol. 11, No. 2 2006.

[32] D. Sinha, N. V. Shenoy, and H. Zhou. ”Statistical Gate Sizing for Timing
Yield Optimization”. In ICCAD, Nov. 2005.

[33] D. Stroobandt. ”A priori system-level interconnect prediction: Rent’s rule
and wire length distribution models”. In Proc. of the International Workshop
on System-level Interconnect Prediction, pages 3–21, 2001.

[34] D. Stroobandt. ”Multi-terminal nets do change conventional wire length dis-
tribution models”. In Proc. of the International Workshop on System-level
Interconnect Prediction, pages 41–48, 2001.

[35] D. Sylvester and Kurt Keutzer. ”Getting to the bottom of deep submicron”.
In IEEE Transactions on Computer-Aided Design of ICs and Systems, pages
203–211, 1998.

[36] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi . ”A post-silicon clock
timing adjustment using genetic algorithms ”. In Digest of technical papers of
the 2003 symposium on VLSI circuits, 2003.

[37] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H.
Savoj, P.R. Stephan, R.K. Brayton, A.L. Sangiovanni-Vincentelli. SIS: A Sys-
tem for Sequential Circuit Synthesis. Memorandum No. UCB/ERL M92/41,
Department of EECS. UC Berkeley, May 1992.

[38] F. Li et. al. ”FPGA Power Reduction Using Configurable Dual-Vdd”. In
Procs. of DAC, June 2004.

[39] F. Najm et al. ”Statistical Timing Analysis Based on a Timing Yield Model”.
In Procs of DAC, 2004.

[40] G. Tellez and Majid Sarrafzadeh. ”Clock Period Constrained Minimal Buffer
Insertion in Clock Trees”. In Proceedings of the International Conference on
Computer-Aided Design, 1994.

[41] M.R. Garey and D.S. Johnson. Computers and Intractability, A guide to the
theory of NP Completeness. W.H. Freeman and Company, New York, 1979.

[42] H. Chang and S. Sapatnekar. ”Statistical Timing Analysis Considering Spatial
Correlations Using a Single Pert-Like Traversal”. In Procs of ICCAD, 2003.

275

[43] H. Chang, V. Zolotov, C. Visweswariah and S. Narayan. ”Parameterized
Block-Based Statistical Timing Analysis With non-Gaussian and non-Linear
Parameters”. In Procs of DAC, 2005.

[44] H. J. Bungartz. ”Higher Order Finite Elements on Sparse Grids”. In Technical
Report SFB-Bericht Nr. 342/01/95 A, Institut fur Informatik, TU Munich
1995.

[45] H. J. Bungartz and T. Dornseifer. ”Sparse Grids: Recent Developments for El-
liptic Partial Differential Equations”. In Technical Report TUM-19702, SFB-
Bericht Nr. 342/02/97 A, Institut fur Informatik, TU Munich 1997.

[46] H. Tomiyama et. al. ”Module Selection Using Manufacturing Information”.
In Procs of ASPDAC, 1998.

[47] H. Tomiyama et. al. ”Statistical Performance-Driven Module Binding in High-
Level Synthesis”. In Procs of ISSS, 1998.

[48] Hai Zhou, D.F. Wong, I-Min Liu and Adnan Aziz. ”Simultaneous Routing
and Buffer Insertion with Restrictions of Buffer Locations”. In IEEE Trans.
on CAD on Integrated Circuits and Systems, Jul. 2000.

[49] http://www.mosek.com. .

[50] J. A. Davis, V. K. De and J. D. Meindl. ”A stochastic wire-length distribution
for gigascale integration (GSI): Part II: applications to clock frequency, power
dissipation, and chip size estimation,”. In Proc. of IEEE Transaction on
Electron Devices, pages 590–597, March 1998.

[51] J. A. G. Jess, K. Kalafala, S. R. Naidu, R. H. J. M. Otten and C. Visweswariah.
”Statistical timing for parametric yield prediction of digital integrated cir-
cuits”. In Proc. of Design Automation Conference, pages 932–937, 2003.

[52] J. Dambre, P. Verplaetse, D. Stroobandt and J. van Campenhout. ”Getting
more out of Donath’s hierarchical model for interconnect prediction”. In Proc.
of the international workshop on System-level interconnect prediction, pages
9–16, 2002.

[53] J. E. Kelley. ”The Cutting Plane Method for Convex Programs”. In Journal
of SIAM, pages 703–712, 8(1960).

[54] J. Fishburn and A. Dunlop. ”TILOS: A Posynomial Programming Approach
to Transistor Sizing”. In ICCAD, pages 326–328, 1985.

[55] J. Higle and S. Sen. ”Stochastic Decomposition: An Algorithm for Two-Stage
Linear Programs with Recourse”. In Mathematics of Operations Research,
Vol. 16, No. 3, August 1991.

276

[56] J. Higle and S. Sen. ”Stochastic Decomposition: A Statistical Method for
Large Scale Stochastic Linear Programming”. In Kluwer Academic, 1996.

[57] J. Higle and S. Sen. ”Statistical Approximations for Stochastic Linear Pro-
gramming Problems”. In Annals of Operations Research, pages 173–192,
85(1999).

[58] J. Hu, Sachin Sapatnekar. ”Simultaneous Buffer Insertion and Non-Hanan
Optimization for VLSI Interconnect under a Higher Order AWE Model”. In
Proceedings of the ACM International Symposium on Physical Design, 1999.

[59] J. Jess et al. ”Statistical Timing for Parametric Yield Prediction of Digital
Integrated Circuits”. In Procs of DAC, 2003.

[60] J. Le, X. Li and L. Pileggi. ”STAC: Statistical Timing Analysis with Corre-
lation”. In Procs of DAC, 2004.

[61] J. Lillis, C.K. Cheng and T.T. Lin. ”Optimal and Efficient Buffer Insertion
and Wire Sizing”. In Proc. Custom Integrated Circuits Conf., 1995.

[62] J. Lillis, C.K. Cheng and T.T.Y. Lin. ”Optimal Wire Sizing and Buffer Inser-
tion for Low Power and a Generalized Delay Model”. In IEEE J. Solid-State
Circuits, 1996.

[63] J. M. Chang and M. Pedram. ”Register Allocation and Binding for Low
Power”. In Procs of DAC, 1995.

[64] J. M. Chang and M. Pedram. ”Module Assignment for Low Power”. In Procs
of Euro-DAC, 1996.

[65] J. R. Birge. ”Decomposition and Partitioning Methods for Multistage Linear
Programs”. In Operations Research, pages 989–1007, 33(1985).

[66] J. R. Birge and F. Louveaux. ”Introduction to Stochastic Programming”. In
Springer-Verlag, 1997.

[67] J. Singh, V. Nookala, Z. Luo, and S. Sapatnekar. ”Robust Gate Sizing by
Geometric Programming”. In DAC, pages 315–320, July 2005.

[68] J. Wong, A. Davoodi, V. Khandelwal and A. Srivastava. ”Wire-length predic-
tion using statistical techniques”. In Proc. of the International Conference on
Computer-Aided Design of ICs and Systems, November 2004.

[69] J. Xiong and L. He. ”Fast Buffer Insertion Considering Process Variations”.
In Proc. of ISPD, 2006.

[70] J.D. Cho and Majid Sarrafzadeh. ”A Buffer Redistribution Algorithm for
High-Speed Clock Routing”. In Proceedings of 1993 IEEE Design Automation
Conference, 1993.

277

[71] Jeng-Liang Tsai, DongHyun Baik, Charlie Chung-Ping Chen, and Kewal K.
Saluja. ”A yield improvement methodology using pre- and post-silicon statis-
tical clock scheduling”. In Procs. of ICCAD, 2004.

[72] Jeng-Liang Tsai, Lizheng Zhang and Charlie Chung-Ping Chen. ”Statistical
Timing Analysis Driven Post-Silicon-Tunable Clock-Tree Synthesis”. In Procs.
of ICCAD, 2005.

[73] K. Chopra, S. Shah, A, Srivastava, David Blaauw, and D. Sylvester. ”Pa-
rameteric Yield Maximization using Gate Sizing based on Efficient Statistical
Power and Delay Gradient Computation”. In ICCAD, Nov. 2004.

[74] K. Healy. ”Optimizing Stochastic Systems: A Retrospective/deterministic
Approach”. In Ph.D. Dissertation, Cornell University, Ithaca, NY, 1992.

[75] A. Srivastava E. Kursun and M. Sarrafzadeh. ”Predictability Driven Binding:
Methodologies and Tradeoffs”. In Journal of Circuits, Systems and Comput-
ers, Special Issue on Low Power IC Designs, 2002.

[76] L.P.P.P. van Ginneken. ”Buffer placement in distributed RC-tree networks for
minimal Elmore delay”. In Proc. of International Symposium on Circuits and
Systems, pages 865–868, December 1990.

[77] M. Mani, A. Devgan, and M. Orshansky. ”An Efficient Algorithm for Statis-
tical Minimization of Total Power under Timing Yield Constraints”. In DAC,
pages 309–314, July 2005.

[78] M. Orshansky and K. Keutzer. ”A general probabilistic framework for worst
case timing analysis”. In Proc. of Design Automation Conference, pages 556–
561, June 2002.

[79] M. Orshansky et al. ”Fast Statistical Timing Analysis Handling Arbitrary
Delay Correlations”. In Procs of DAC, 2004.

[80] M. R. Guthaus, N. Venkateswaran, C. Visweswariah, and V. Zolotov. ”Gate
Sizing Using Incremental Parameterized Statistical Timing Analysis”. In IC-
CAD, Nov. 2005.

[81] N. Sherwani. ”Algorithms for VLSI physical design automation”. In Kluwer,
1995.

[82] Patrick Mahoney, Eric Fetzer, Bruce Doyle, and Sam Naffziger. ”Clock distri-
bution on a dual-core multi-threaded Itanium-family processor ”. In Digest of
technical papers of the 2005 international solid-state circuits conference, 2005.

[83] R. Ahmadi and F. Najm. ”Timing Analysis in Presence of Power Supply and
Ground Voltage Variations”. In Procs of ICCAD, 2003.

278

[84] R. B. Hitchcock, G. L. Smith and D. D. Cheng. ”Timing Analysis of Computer
Hardware”. In IBM Journal of Research and Development, pages 100–105,
1982.

[85] R. Kastner, E. Bozorgzadeh and M.Sarrafzadeh. ”Predictable routing”. In
Proc. of IEEE International Conference on Computer-Aided Design of ICs
and Systems, Nov. 2000.

[86] R. Mukherjee et. al. ”Peak Temperature Control and Leakage Reduction
During Binding in High Level Synthesis”. In Procs of ISLPED, 2005.

[87] R. Mukherjee et. al. ”Temperature Aware Resource Allocation and Binding
in High-Level Synthesis”. In Procs of DAC, 2005.

[88] R. P. Abato, A. D. Drumm, D. J. Hathaway and L. P. P. P. Van Ginneken.
”Incremental Timing Analysis”. In US Patent 5,508,937, April 1993.

[89] R. Rao, A. Devgan, D. Blaauw and D. Sylvester. ”Parametric yield estimation
consdering leakage variability”. In Proc. of Design Automation Conference,
pages 442–447, 2004.

[90] R. T. Rochafellar and R. Wets. ”Scenarios and Policy Agggregation in Opti-
mization Under Uncertainty”. In Mathematics of Operations Research, pages
119–147, 16(1991).

[91] R. V. Slyke and R. Wets. ”L-shaped Linear Programs With Application to
Optimal Control and Stochastic Programming”. In SIAM Journal on App.
Math., pages 638–663, 17(1969).

[92] R. Y. Rubinstein and A. Shapiro. ”Discrete Event Systems: Sensivity Analysis
and Stochastic Optimization by the Score Function Method”. In Wiley, NY,
1993.

[93] Roger Wets. ”Stochastic Programs With Fixed Recourse: The Equivalent
Deterministic Program”. In SIAM Review, pages 309–339, 16(1974).

[94] S. Adya and I. Markov. ”Fixed-outline floorplanning through better local
search”. In Proc. of IEEE International Conference on Computer-Aided De-
sign of ICs and Systems, pages 321–334, 2001.

[95] S. Arora. ”The Approximability of NP-Hard Problems”. In ACM STOC,
1998.

[96] S. Bhardwaj et al. ”TAU: Timing Analysis Under Uncertainty”. In Procs of
ICCAD, 2003.

[97] S. Bhardwaj, S. B.. K. Vrdhula. ”Leakage Minimization of Nano-scale Circuits
in the Presence of Systematic and Random Variations”. In ICCAD, Nov. 2005.

279

[98] S. Borkar et al. ”Parameter Variations and Impact on Circuits and Microar-
chitecture”. In Proc. Design Automation Conference, June 2003.

[99] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge 2004.

[100] S. Devadas, A. Ghosh and K. Keuter. ”Logic synthesis”. In McGraw-Hill,
1994.

[101] S. Ogrenci Memik, A. Srivastava, E. Kursun and M. Sarrafzadeh. ”Algorithmic
Aspects of Uncertainty Driven Scheduling”. In Procs of ISCAS, 2002.

[102] S. P. Mohanty et. al. ”Energy Efficient Datapath Scheduling Using Multiple
Voltages and Dynamic Clocking”. In ACM Transactions on Design Automa-
tion of Electronic Systems, pages 330–353, April 2005.

[103] S. P. Mohanty et. al. ”Simultaneous Peak and Average Power Minimization
During Datapath Scheduling”. In IEEE Transactions on Circuits and Systems
Part I, pages 1157–1165, June 2005.

[104] S. P. Mohanty et. al. ”ILP Models for Simultaneous Energy and Transient
Power Minimization During Behavioral Synthesis”. In ACM Transactions on
Design Automation of Electronic Systems, pages 186–212, Jan 2006.

[105] S. Raj et al. ”A Methodology to Improve Timing Yield in the Presence of
Process Variations”. In Procs of DAC, 2004.

[106] S. Raj, S. B. K. Vrudhula and J. Wang. ”A methodology to improve timing
yield in the presence of process variations”. In Proc. of Design Automation
Conference, pages 448–453, June 2004.

[107] S. Sapatnekar, V. B. Rao, P.M. Vaidya, and S. M. Kang. ”An Exact Solution
to the Transistor Sizing Problem for CMOS Circuits Using Convex Optimiza-
tion”. In IEEE Transactions on CAD, pages 1621–1634, Nov. 1993.

[108] S. Tosun et. al. ”An ILP Formulation for Reliability-Oriented High-Level
Synthesis”. In Proc. of ISQED, 2005.

[109] S. Tosun et. al. ”Reliability-Centric High-Level Synthesis”. In Proc. of DATE,
2005.

[110] S. Wallace. ”Decision making under uncertainty: Is sensitivity analysis of any
use?”. In Operations Research, pages 20–25, January 2000.

[111] Sani R. Nassif. ”Design for variability in DSM technologies”. In Proc. First
International Symposium on Quality of Electronic Design, p.451, March 20-
22, 2000, pages 451–454, March 2000.

[112] Sani R. Nassif. ”Modeling and forecasting of manufacturing variations”. In
Proc. Asia South Pacific design automation, pages 145–150, 2001.

280

[113] Semiconductor Industry Association. ”National Technology Roadmap for
Semiconductor”. 1997.

[114] Simon Tam, Stefan Rusu, Utpal Nagarji Desai, Robert Kim, Ji Zhang, and Ian
Young. ”Clock generation and distribution for the first IA-64 microprocessor”.
In IEEE Journal of Solid-State Circuits, pages 35(11):1545–1552, Nov 2000.

[115] V. Khandelwal, A. Davoodi, A. Nanvati and A. Srivastava. ”A probabilistic
approach to buffer insertion”. In Proc. of the International Conference on
Computer-Aided Design of ICs and Systems, November 2003.

[116] V. Khandelwal and A. Srivastava. ”Leakage Control Through Fine-Grained
Placement and Sizing of Sleep Transistors”. In Proc. of ICCAD, pages 533–
536, 2004.

[117] V. Khandelwal and A. Srivastava. ”Variability Driven Formulation for Si-
multaneous Gate Sizing and Post-Silicon Tunability Allocation”. In Procs of
ISPD, April 2007.

[118] V. Khandelwal et al. ”Efficient Statistical Timing Analysis through Error
Budgeting”. In Procs of ICCAD, 2004.

[119] V. Khandelwal et al. ”A General Framework for Accurate Statistical Timing
Analysis Considering Correlations”. In Procs of DAC, 2005.

[120] V. Mehrotra, S. L. Sam, D. Boning, et al. ”A methodology for modeling the
effects of systematic within-die interconnect and device variation on circuit
performance”. In Proc. of Design Automation Conference, pages 172–175,
2000.

[121] W. K. K. Haneveld and M. H. Vander Vlerk. ”Stochastic Integer Program-
ming: general models and algorithms”. In Annals of Operations Research,
pages 39–57, 85 1990.

[122] W.C. Elmore. ”The transient analysis of damped linear networks with par-
ticular regard to wideband amplifiers”. In Journal of Applied Physics, vol.
19(1), 1948.

[123] Weiping Shi and Zhuo Li. ”An O(nlogn) Time Algorithm for Optimal Buffer
Insertion”. In Procs of Design Automation Conference, Jun. 2003.

[124] X. Bai, C. Visweswariah, p. N. Strenski and D. J. Hathaway. ”Uncertainty-
aware circuit optimization”. In Proc. of Design Automation Conference, pages
58–63, 2002.

[125] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. ”New paradigm of
predictive MOSFET and interconnect modeling for early circuit design”. In
Proc. of CICC, pages 201–204, 2000.

281

[126] Y. Gao and D.F. Wong. ”A Graph Based Algorithm for Optimal Buffer In-
sertion under Accurate Delay Models”. In Procs of DATE, 2001.

[127] Y. Zhan, A. J. Strojwas, X. Li, L. T. Pileggi, D. Newmark, and M. Sharma.
”Correlation-aware statistical timing analysis with nongaussian delay distri-
butions”. In Procs of DAC, 2005.

[128] Yanbin Jiang, Sachin Sapatnekar et al. ”Combined Transistor Sizing with
Buffer Insertion for Timing Optimization”. In Proceedings of the IEEE Custom
Integrated Circuits Conference, 1998.

282

