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Extraintestinal pathogenic strains of Escherichia coli cause a wide range of diseases 

including colibacillosis in chickens and urinary tract infections in humans.  Persistent 

infections in E. coli and other gram-negative species are associated with population-

dependent physiological processes such as cell-cell signaling and biofilm formation.  

Such social behaviors require careful coordination and modulation of gene expression 

in response to environmental cues.  Adaptive response of bacteria in new 

environment is predominantly achieved through a signaling cascade called two-

component regulatory systems.  The function of the BarA/UvrY two-component 

regulatory system and its downstream factors in controlling virulence associated 

processes, specifically regulation of AI-2 based signaling and biofilm formation was 

investigated.    

 

  



In E. coli, a type of cell-cell signaling termed Quorum Sensing involves release, 

detection, and response to small molecule called autoinducer (AI-2), synthesis of 

which is dependent on luxS gene products via methyl cycle.  The BarA-UvrY and Csr 

system displayed dual regulation on luxS expression at the level of transcription and 

post-transcription.  The uptake of AI-2 by the Lsr transporter is also modulated by the 

signaling cascade suggested a balance between AI-2 synthesis and uptake in the cell.   

 

The role of transcriptional regulator uvrY in biofilm formation in Uropathogenic 

Escherichia coli was also studied.  Mutation of uvrY reduced expression of fimA and 

papA, major fimbrial subunit of Type 1 and Pap pilus respectively.  Acidic 

exopolysaccharide accumulation and the ability to swarm are also being impaired.  

Finally, uvrY mutants demonstrated poor colonization in kidneys and bladders in an 

ascending model of UTI.  Overall, the effect of uvrY on biofilm formation seems to 

be multi-factorial and might play a critical role in adaptation and colonization of 

UPEC.    

 

The fine tuning of processes associated with cell-cell communication and biofilm 

formation at the level of transcription and post-transcription by the BarA/UvrY/CsrA 

signaling cascade indicated that this system might be crucial for quick adaptation, 

social behavior, colonization and virulence attributes in Escherichia coli.  
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Chapter I: Background and Literature Review  

The ability to adapt under varying environmental conditions and colonize is an 

important determinant for perpetuation of bacterial species.  Adaptation of bacteria 

requires detection of the signal from the surroundings and appropriate responses that 

render fitness in a new setting.  The integration of diverse signals to appropriate 

response requires a flow of information from extracellular milieu to the interior of the 

cell.   In bacteria, two-component systems are the major signaling devices for 

detecting environmental cues and transducing it into the interior of the cell usually via 

a cascade of phosphorelay.   The responses of this signaling cascade enable bacterial 

adaptation, persistence and virulence of the bacterium by alteration of gene 

expression [1-4].   

 

Two-component systems respond by alteration of gene expression in diverse 

physiological processes including osmolarity, metabolism, nutrient acquisition, stress 

response, pH and expression of virulence factors [5-8].   These signaling systems are 

required for establishment and maintenance of the infection by a bacterial pathogen. 

The ability to cooperate and communicate in a community structure in the form of 

biofilm enables microbes to perform important cellular functions such as that of 

adaptation and persistence inside host.   Interactions among community members are 

crucial for temporal and coordinated response and are often mediated by a process of 

population-dependent cell-cell communication known as quorum sensing.  The 

association between Quorum Sensing and Biofilm formation, both in turn regulates 
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virulence, has been demonstrated in a number of bacterial species including 

Streptococcus, Vibrio, Pseudomonas and Escherichia coli [9-11].  Here regulation of 

social behavior, particularly quorum sensing and biofilm, are explored in E. coli using 

a model two-component regulatory system.  

 

Escherichia coli as commensal and model pathogen 

Escherichia coli belong to a major facultative anaerobe commonly found in the 

intestinal tracts of homeothermic animals including man.  E. coli colonizes the 

gastrointestinal tract within few hours after birth.  In 1885, Theodor Escherich 

isolated the microbe from fecal flora of normal infants and later on documented them 

as important commensals in intestinal tract and pathogen in human intestinal and 

urinary tracts. E. coli displays a wide range of strain variation depending on the 

presence of certain antigens, typically O somatic lipopolysacchides, K capsular and H 

flagellar antigens [12].  Furthermore, array of adhesins having varying receptor 

specificity add to this strain diversity [13].  Extensive strain variation makes E. coli 

an ideal model for studying microbial adaptation and host-pathogen interaction [14, 

15].  E. coli K-12, a prototypic attenuated strain have been commonly used in the 

laboratory practices [16]. However, this strain lacks virulence factors such as fully 

functional O-antigen and ability to colonize mammalian intestine[17].  

 

E. coli strains are broadly classified in three groups: commensal strains, intestinal 

pathogenic (also referred as enteric or diarrheagenic) and extraintestinal pathogenic 

strains. The commensals are normal residents of the GI tract in birds, mammals and 
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humans.  Typically, E. coli colonizes the gastrointestinal tract of human neonates 

within few hours after birth.  Commensal E. coli usually persist in mucous layer of 

the mammalian colon where they colonize and thrive making it one of the most 

abundant facultative anaerobe in the microflora. Commensals are usually beneficial to 

hosts but they can cause infections in compromised or immunologically challenged 

patients.  In contrast, intestinal and extraintestinal pathogenic species have additional 

virulence factors such as plasmids, bacteriophages and pathogenicity islands[18-20].  

Commonly used name for this group include enterotoxigenic E. coli (ETEC), 

enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), Shiga toxin-

producing E. coli or enterohemorrhagic E.coli (STEC or EHEC), enteroaggregative E. 

coli (EAEC), and diffusely adherent E. coli (DAEC).   The intestinal pathogenic 

groups are limited in their ability to cause infection only in the intestinal tract.  Each 

pathotypes within intestinal pathogenic strains have unique set of virulence traits 

resulting in a characteristic syndrome [21, 22].  Strains within each group show 

distinct phylogenetic relationship and diversity within each group are thought to be 

result of horizontal gene transfer.  Intestinal pathogenic E. coli are the leading cause 

of severe and infant diarrhea in developing countries and remain a major public 

health problem across the globe resulting two million deaths every year [23, 24].   

 

Extraintestinal Pathogenic Escherichia coli (ExPEC) 

Lately,  a third group termed as Extraintestinal pathogenic E. coli (ExPEC) has been 

formed based on the presence of specific virulence factors and ability to cause 

infection outside the intestine including the urinary tract, central nervous system, 
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circulatory and respiratory system [25-27].  Strains which cause extraintestinal 

disease usually do not cause diarrheagenic disease and vice versa. However, ExPECs 

are capable of asymptomatically colonizing the intestinal tract in one-fifth of normal 

human population.   ExPECs are distinct both phylogentically and epidemiologically 

when compared to intestinal and pathogenic strains [28].   

 

ExPECs are increasingly a growing concern as evidenced by being causative agents 

of a plethora of diseases including urinary tract infections (UTI), neonatal meningitis, 

intra-abdominal infections, intra-vascular site infection, pneumonia, septicemia, 

osteomyelitis and other extraintestinal infections resulting huge economic impact on 

public health and society [29].  ExPECs are the most common gram-negative 

pathogens that cause extraintestinal infections under clinical settings.  

 

Increasing resistance to antimicrobial agents makes ExPEC associated infections 

complicated and difficult to treat [30].   Typically ExPEC characteristic virulence 

factors aid in invasion and colonization leading to infection in extra intestinal sites.  

Currently, ExPECs are found resistant to many of host’s defenses including resistance 

to bactericidal activity by neutrophils, cationic antimicrobial peptides and 

complement [31-34].   

 

Virulence factors associated with ExPECs 

ExPECs are phylogenetically, epidemiologically, genetically and clinically distinct 

from commensals and intestinal pathogenic strains [13, 28, 35-37].  The genomes of 
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ExPECs are larger and much varied than commensals probably due to acquirement of 

genes through horizontal transfer by mobile genetic elements such as transposons, 

phages, plasmids and pathogenicity islands (PAI) from diverse related or non related 

species [38, 39].  The acquired gene pool facilitates better adaptation and infection in 

extraintestinal sites as compared to commensals.    

 

Important ExPEC specific virulence factors include adhesins such as Type 1 fimbriae 

or P fimbriae, factors that evade defense mechanisms such as capsules, 

lipopolysaccharides, toxins including hemolysins, and factors to acquire nutrient 

availability such as siderophores [40].   ExPECs were defined as isolates of E. coli 

having at least two virulence markers from a list of papA, papC, sfa/foc, afa/dr, 

kpsMTII and iutA.  Other ExPEC associated virulence markers include papGIII, fimH, 

hly, K1, ireA etc.   Among the ExPECs, uropathogenic E. coli (UPEC) and avian 

pathogenic E. coli (APEC) cause significant morbidity and or mortality in humans 

and poultry respectively.   

 

Uropathogenic Escherichia coli (UPEC) 

UPEC is the leading cause of urinary tract infections in the United States. Every year 

in the United States alone, UPEC associated UTI results in 6-8 billion cases of 

uncomplicated cystitis with a healthcare cost of $1 billion, 250,000 cases of 

uncomplicated pyelonephritis with a direct cost of $175 million, and 250,000 to 

525,000 cases of catheter associated UTI healthcare cost of which is $170-350 
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million dollar [30].  UPEC is one of the well characterized pathogen in UTI and often 

used as a model species for studying host-pathogen interaction [14].   

 

In contrast to commensal strains, UPEC possess large regions of DNA termed 

“Pathogenicity islands” (PAI) consisting of clustered genes encoding virulence 

associated factors [41-44].  The virulence attributes of UPEC include adhesins, 

toxins, lipopolysaccharides, capsule, proteases and iron acquisition systems [45-48].  

Adhesins are the key components mediating attachment with biotic and abiotic 

surfaces often marked with biofilm formation [49].  Biofilms formed on abiotic 

surfaces by UPEC such as that on the surfaces of medical implants and urinary 

catheters result in chronic recurrent infections presumably due to increasing antibiotic 

resistance.  Within hosts, adhesins initiate biofilm formation which plays an 

important role in protection from hosts innate immune responses and persistence of 

UPEC [50-52].   Several adhesins including outer membrane proteins, curli, and pili 

or fimbriae are important for mediating attachment [53, 54].  Among the pili, Type 1 

and Pap Pilus are critically important for pathogenesis of UPEC in the UTI [55-58].   

Other fimbriae such as F1C, M, S and Dr/Afa also contribute to colonization [47, 59-

61].  The pilus shows diversity in terms of structure and tissue specificity.  Type 1 

pilus is short and stubby whereas the Pap pilus is long and flexible [62].  Type 1 pilus 

is essential for mediating cystitis and shows tropism for mannose specific receptors 

on the bladder epithelium, Pap pilus, on the other hand, have predisposition towards 

digalactoside receptors on the kidney epithelium [55, 56, 63, 64].  Type 1 pilus have 

been demonstrated to be continually expressed in strains that cause cystitis whereas 
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pap pilus is more predominantly expressed in pyelonephritic strains [65].  Flagellar 

motility may further promote ascension in the urinary tract [66, 67].  

Avian Pathogenic Escherichia coli (APEC) 

Avian Pathogenic Escherichia coli (APEC) is found in the intestinal microflora of 

healthy birds and usually affects chickens, turkeys, ducks and other avian species 

[68].  APEC is responsible for infections in extraintestinal sites, particularly to 

respiratory tract and systemic infections.  APEC is the leading cause of avian 

colibacillosis, a disease characterized by air sacculitis, pericarditis, peritonitis, 

salpingitis, polyserositis, septicemia, synovitis, osteomyelitis and yolk sac infection 

[69, 70].  Fecal contamination on egg surface often leads to yolk sac infection 

resulting death of embryo or within few weeks after hatching of eggs.   

 

On the other hand, in the US, cellulitis caused by APEC is the second leading cause 

of condemnation of broiler chickens and results in an estimated loss of $40 million 

every year.  Diseases caused by APEC are often a secondary outcome of 

environmental and host predisposing conditions.  Previous infections with viruses 

such as Newcastle Disease virus (NDV) or infectious bronchitis virus (IBV) and few 

other agents affecting respiratory tract increases the chance of occurrence of APEC 

infections, presumably due to loss of cilia in the epithelial layer.  Commonly APEC 

isolates belong to O1, O2 and O78 serogroups.  Like UPEC, APEC also posses 

certain pathogenicity islands encoding virulence genes such as pap and ireA [71, 72].  

However unlike UPEC, APEC harbors one or more plasmids associated with 

virulence genes such as iron acquisition, toxin production and antimicrobial 
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resistance [73, 74].   Such plasmids have been demonstrated to be lethal in embryos 

and have the ability to cause urinary tract infection in mice [75].   Other important 

virulence determinants of APEC include Type 1 fimbriae, curli, K1 capsule, hydrogen 

peroxide resistance, LPS, temperature sensitive hemmaglutinin and serum survival 

[76-80].   

 

Biofilms and colonization 

Historically, microorganisms have been categorized as planktonic or sessile cells. 

While planktonic cells are considered important for rapid propagation and moving 

into new territories, the sessile cells in contrast, are thought to be important for 

perseverance.  It is believed that in nature bacteria often remain associated in the form 

of a sessile community known as biofilms enabling a unicellular existence in a 

multicellular community.  Biofilms may be defined as surface-attached 

microorganisms enclosed in a matrix [81-83]. The self synthesized microbial matrix 

termed as extracellular polymeric substances (EPS) contains polysaccharides, 

proteins and nucleic acids [84].  In nature, EPS is highly hydrated allowing free flow 

of nutrients and metabolites mimicking primitive circulatory system. EPS serves as a 

guard against environmental changes, antibiotics and chemical agents and plays a 

crucial role for formation and maintenance of biofilm architecture [85].  The 

composition of extracellular matrix is varied among species. Both non-pathogenic 

and pathogenic species are capable of forming biofilms [86, 87]. 
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Biofilms have a significant impact on human or animal health, environmental and 

industrial settings. Biofilms contribute up to 80% of chronic inflammatory diseases 

including urinary tract infections (UTI), cystic fibrosis, otitis media, colitis, 

conjunctivitis, endocarditis, peridontitis, and prostatitis [86, 88]. Presence of biofilms 

in indwelling medical devices (such as urinary catheters) and other devices in 

healthcare settings have often resulted in increase in nosocomial infections [89-92]. 

Biofilm associated microorganisms have been considered responsible for many yet, 

undiagnosed infections in humans.  Biofilms are highly resistant to antibiotics and 

immune responses which make them difficult for treatment [91, 93, 94].  Secreted 

catalase helps in preventing ingress of hydrogen peroxide, while the matrix prevents 

antibodies to enter inside biofilms. Even phagocytes have been demonstrated to be 

unsuccessful in removal of biofilms. Additionally, periodical shedding of individual 

bacteria from the biofilm into the surrounding tissues cause certain infections to recur 

[95].  Advantages of persistence in biofilms include protection from environmental 

stresses (such as chemicals, UV, antibiotics), prevention from dehydration, horizontal 

gene transfer, exchange of nutrients and ease of communication within the 

community [96].   

 

Biofilms could form on diverse environments including inorganic surfaces such as 

soil, minerals, and metals as well as on organic surfaces such as tissues.  In nature, 

mixed species of biofilms can be frequently observed, but single species of biofilms 

are also seen in medical and device associated infections.  Molecular genetics studies 

of single species biofilms have aided in understanding that biofilm formation is a 
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multi-step process, requires cellular communication and expression of genes in 

biofilm associated bacteria is quite different as compared to planktonic cells.  Studies 

have demonstrated that biofilms are typically formed in high shear environment in 

both natural and artificial systems.   

 

The multi-stages of biofilm formation include initiation by attachment to a substrate, 

maturation into a microcolony, maintenance of biofilm architecture and dissolution. 

The process of initiation seems to be triggered by environmental signals such as 

nutrient availability [97].  Bacterial adhesion is facilitated by several adhesins and 

proteinaceous appendages that facilitate attachment by binding to cell surface 

receptors [51, 98].  This step is a crucial step for both native and pathogenic species 

for colonization.  Typically repulsion between bacterial and tissue cell surface 

prevents attachment and hence, hairy appendages, termed fimbriae or pili are usually 

located at the distal end of the bacterial surface to facilitate adhesion. The term “Pili” 

and “Fimbria” refers to non-flagellar bacterial filaments, have been often used 

interchangeably even though they have different connotation.  “Pili” is often used for 

transmission of genetic material during conjugation whereas “Fimbria” is more 

commonly used for appendages of attachment.  Pili are proteinaceous appendages 

having a thickness of 2-7nm in width and extending from 0.2 to 20μm outward from 

the bacterial surface.  The formation of pili involves helical assembly of multiple 

subunits of pilin protein which constitute the thick long proximal shaft.  The thin 

distal part encodes a tip adhesin protein promoting attachment to various surfaces 

while conferring binding specificity and tissue tropism in pathogens.  The longer 
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shaft is presumed to distance the adhesin from the bacterial surface to facilitate the 

adhesion [99, 100].   

 

 Among the pili, Type 1 pilus is commonly present in almost all species and isolates 

of Enterobacteriaceae including the Uropathogenic E. coli (UPEC) and considered as 

a virulence factor in ascending model of UTI [101]. The biogenesis of the Type 1 

pilus takes place by a conserved chaperone usher pathway which is involved in 

assembly of thirty other adhesive organelles in gram negative species including the P-

type fimbriae.   In this pathway, the assembly of the fimbriae relies on a periplasmic 

chaperone, and an outer membrane usher. The chaperone helps stabilizing and folding 

of fimbrial subunits and a lack of it leads to aggregation of the subunits and 

subsequent degradation by the protease. The usher facilitates the assimilation of 

fimbrial subunits into the growing pilus shaft [102, 103].   

 

In E. coli, Type 1 pilus and flagellar motility is necessary for biofilm maturation [49, 

104].  Type 1 pilus is encoded by fim (fimA-fimH) gene cluster consisting of eleven 

genes including fimA, encoding the major pilus subunit, fimC encoding periplasmic 

chaperone, fimD encoding outer membrane usher and fimH encoding the tip adhesin.  

In E. coli variants of FimH have been detected which prefers a particular sugar 

moiety on cell surface over others for adhesion; for e.g., Fim H variants in 

commensal isolates of E. coli preferentially binds  to mono-mannose residues 

whereas pathogenic species including uropathogenic ones attach with higher affinity 

to trimannose moiety, as typically found in the urinary tract [105].  Such interaction 
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mediates internalization in bladder cells, leading to persistence and chronic urinary 

tract infections.  Type 1 pilus facilitates attachment and subsequent colonization by 

binding to mannose containing receptors on the eukaryotic cell surface [61].  Both 

Type 1 and P pilus has been used successfully as a vaccine candidate [101, 106, 107].   

 

Cell-cell communication 

Another aspect of cooperative behavior in bacteria is demonstrated very well in a 

recently investigated physiological process dubbed as “Quorum Sensing”[108].  

Quorum Sensing (QS) refers to the ability of bacteria to coordinate activities in a 

population-dependent manner by utilization of small molecules termed autoinducers 

[109-112].  The accumulation of autoinducers in the external environment increases 

with cell density and on achieving a critical threshold concentration, signaling 

transduction cascade activation leads to alteration in gene expression.  Such induced 

or repression of genes could include virulence, antibiotic production, motility, 

metabolism, chemotaxis, and biofilm formation [113-117].  Coordination of bacterial 

gene expression is thought to be crucial for a protection of bacterial community from 

immune responses as well as successful colonization in the new or harsh environment 

inside host.    

 

The phenomenon of Quorum sensing was originally identified in Vibrio fisheri [118, 

119].  The initial observation was the ability of the bacteria to produce light only at 

high-cell density led to the characterization of autoinducer, N-acyl homoserine 

lactone.  The symbiotic association between V. fisheri and fishes and squids has 
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gained considerable interest in which the bacteria thrive in nutrient-rich light organs 

of marine animals and produce light in a population-dependent manner.  The animals, 

in turn, use the light as a predatory device avoiding being preyed or catch a prey.  The 

phenomenon of bioluminescence has been observed only in symbiotic state of the 

bacteria even though the bacteria are able to exist between free living and in 

symbiotic association with the host.  In the free-living state, the autoinducer diffuse 

into the environment and the signal gets lost in the surroundings, whereas in a 

confined environment of the light organ of the squid the signal accumulates and flows 

back into the cell.  Light production in V. fisheri takes place in a population 

dependent manner through regulation of luxCDABE operon which encodes luciferase 

enzyme complex.  Two regulatory proteins are involved in this circuit.  LuxI protein, 

the autoinducer synthase synthesize the autoinducer molecule, acylated homoserine 

lactone (HSL), accumulation of which in extracellular environment increases directly 

with cell density.  Upon entering inside the cell, the autoinducer gets bound and 

activates LuxR, a response regulator. The activated response regulator, LuxR in turn 

binds to “lux” box a sequence to the upstream of the QS regulatory genes, recruits 

RNA polymerase and activates luciferase operon inducing bioluminescence [120, 

121].   Additionally, mutations in lux genes in Vibrio fischeri reduce the ability to 

colonize and persist in the hosts [122].  A transcriptional regulator, GacA  is also  

required for symbiotic association between the bacteria and the host [5].  

 

In contrast, Vibrio harveyi utilizes two signaling molecules, termed as AI-1, and AI-2 

synthesized by LuxN and LuxQ respectively.  The signaling system utilizes three 
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sensor kinases which autophosphorylates at low cell densities and phosphate is 

sequentially relayed to LuxO, a transcriptional regulator via LuxU, a 

Phosphotransferase protein.  Phosphorylated LuxO, in turn, activates transcription of 

small RNAs (sRNA) which in association with Hfq destabilize the transcript 

encoding the LuxRVH, a transcriptional regulator. This results in repression of 

luciferase operon and no light production. At high cell densities, kinase change to 

phosphates and the flow of phosphates reverses, resulting in dephosphorylation of 

LuxO and collapse of small RNA synthesis and enhanced transcription of LuxR,  

which in turn  increases light production [123].   

 

Quorum sensing plays a key role in both the early and later stages of biofilm 

development.  Autoinducer such as acylated homoserine lactones (AHL), which 

senses bacterial cell density, frequently plays a role in microcolony formation 

whereas cross-species bacterial communication signal Autoinducer 2 (AI-2) 

influences thickness and biomass. This mode of communication is particularly  

important as biofilms in nature are often present in a group of mixed species. Thus, 

agents targeting such steps in community signaling could be an important step in 

controlling biofilm related infections [93, 124-126].  

Interestingly, the social behavior of quorum sensing and biofilm formation seems to 

be interdependent [9, 127].  While QS may be a key contributor of biofilm formation, 

high cell densities during biofilm development may be crucial in achieving “quorum”.   

Inhibition of Quorum Sensing offers a novel strategy for controlling biofilm related 

infections because of reduced risk of developing antibiotic resistance [128].  These 

two-processes may be mutually dependent or temporal, depends on the environment 
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and are crucial for efficient adaptation of the bacteria.  Environmental adaptation in 

bacteria, on the other hand, relies on a signaling cascade called the “Two-component 

system” 

 

Two-component system 

Bacteria live in an environment where conditions change frequently.  Such conditions 

include a wide range of environmental cues such as change in pH, oxygen deficiency, 

temperature fluctuations, nutrient limitation, chemical signals.  Survival of microbes 

in any environment relies on adaptive responses that enhance persistence during 

unfavorable conditions.  Adaptive behaviors such as the ability to carefully utilize 

energy sources like carbon and nitrogen, a capacity to establish communication 

among members and resist toxic effects of the metabolic processes are critical for 

persistence of microbes.  Adaptive responses necessitate monitoring and detection of 

environmental signals, transduction of that information within the cell and elucidation 

of appropriate responses usually by alteration of gene expression.  The response could 

take place at the level of transcription or translation initiation.  

 

Adaptation of bacteria to new environment in bacteria is largely mediated by a 

sophisticated signaling system termed as the “Two-Component System” (TCS).  Two 

component systems are wide spread signal transduction devices that enable bacteria 

to detect, respond and adapt to environmental stimuli mostly through changes in gene 

expression [1].  More than four thousand TCSs have been detected in 145 completed 

prokaryotic genomes.  Such systems were also detected in lower eukaryotes, yeasts, 
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fungi, yeasts, protozoa and in plants but not in C. elegans, Drosophila, mouse and 

human. The number of TCSs in bacteria seems to be directly correlated with 

increasing genome size and range of adaptation needed to persist in varying 

environments.   

 

A prototypic two-component system consists of a membrane-located sensor histidine 

kinase (HK) and a cognate response regulator (RR).   Upon reception of the 

environmental signal/s, the sensor kinase transduces the information to the response 

regulator via a cascade of phospho-transfer reactions.  The activated regulator then 

elucidates appropriate responses to make the organism acclimatize in the new 

environment usually involving gene regulation expression at the level of 

transcription. Direct interactions of response regulators with proteins were also 

reported [2, 129].   

 

Initial studies have demonstrated that two proteins EnvZ, a membrane protein and 

OmpR, a cytoplasmic regulator control outer membrane protein genes ompF and 

ompC in response to osmolarity changes in the environment.   This study 

demonstrated that information must be transmitted inside the cell via a membrane 

protein which must be able to sense environmental cues [130-132].  It was found that 

there are conserved amino acid sequences of OmpR and EnvZ in a set of E. coli 

proteins that responds to environmental cues which are then divided into two groups, 

one group having a conserved sequence of 240 amino acids while the other group 

shares 120 amino acid residues in common [133].  Furthermore, one group 
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demonstrated unique ability to undergo autophosphorylaylation at a conserved 

histidine residue and referred as “transmitters”, whereas the later group can receive a 

phosphate group at a conserved aspartate residue from the former group and called 

“receivers” [134-137].  Appropriately, the transmitter and receiver group of proteins 

are subsequently referred as “sensor histidine kinase (HK)” and “response regulators 

(RR)” and together they constitute “two-component regulatory system” which are 

environmental detection devices facilitating adaptation in a new environment by 

altering modulate gene expression [1, 138].  Interestingly, few systems employ an 

additional histidine domain called “phosphotransfer domain (Hpt)” which serves as 

an intermediate during transfer of phosphoryl from or to aspartate residue in RR.  

Since then, several such systems have been detected in numerous bacterial species, 

indicating the importance of such regulatory systems [139-143].  

 

Bacterial pathogens produce virulence factors such as adherence factors, capsules, 

enzymes, and toxins in order to overcome the host’s defense and cause successful 

colonization.  Virulence factors are expressed temporally through various stages of 

infection and carefully controlled.  Many pathogenic bacteria require motility for a 

successful colonization either in initial phase and/or for maintenance of infection.  

Successful colonization of a pathogen also needs coordination among members of 

community to express virulence in a population-dependent manner utilizing Quorum 

Sensing.   The importance of TCS in regulation of virulence has become apparent 

over the years as several TCS are implicated in physiological processes associated 

with virulence including motility, adhesion, colonization, toxin expression, cell-cell 
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communication and bacterial adaptation inside host [5, 8, 144-146].  These processes 

are carefully synchronized for initiation, persistence and adaptation of bacteria inside 

the host.  However, on a cautious note, the phenotypes associated with attenuation of 

virulence could be due to interference with metabolic requirements of the cell.   Some 

examples are listed in Table 1.  One such two-component system, the BarA-UvrY 

TCS in Escherichia coli regulates diverse physiological processes including oxidative 

stress, sigmaS expression, biofilm formation, carbon metabolism and virulence.  

 
 
Figure 1.  Schematic of two-component regulatory systems. The arrows indicate the 
direction of phosphorelay. The classical sensor transfers the phosphate group from the 
histidine residue to the aspartate residue of the response regulator. The unorthodox 
sensor kinases have additional receiver and histidinephosphotransfer domain.  The 
phosphorelay cascade in this case follows His→Asp→ His →Asp  
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Table 1.  Virulence phenotypes associated with two-component regulatory system in 
diverse bacterial species.  
 
 
 
Organism                            TCS                    Phenotypes                       
 
 

Salmonella enterica            PhoP-PhoQ         LPS modification [147]                                                           

 BarA-SirA TTSS, Invasion [148, 149] 

Bordatella Pertusis             BvgA-BvgS Toxin [150]  

Vibrio cholerae       ArcA-ArcB VF toxT [151] 

       VarS-VarA         VF hapR [152] 
 
Vibrio fischeri           GacS-GacA    Bioluminescence [5] 

Shigella flexneri       OmpR-EnvZ       Invasion [153] 

Pseudomonas aeruginosa   GacS-GacA AHL, biofilm [154]    

       RocA1-RocS1    Fimbriae, Biofilm [155] 
 
Neisseria gonorrhea PilA-PilB Pili synthesis [156] 
 
Helicobacter pylori             FlgR-FlgS           Flagella  [157]  
 
Staphlylococcus aureus      AgrA-AgrC Regulatory RNA III [158] 
 
Erwinia cartovora              ExpS-ExpA Enzymes [159] 

Serratia marcescens      PigW-PigQ Prodiogsin [160] 

Legionella pneumophilles   LetS-LetA Cytotoxicity [161] 

Escherichia coli                  BarA-UvrY Biofilm formation [162] 
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Chapter II: The BarA/UvrY TCS - A model two-component 
system  
 
 
Adaptation of E. coli to new milieu requires several two-component systems which 

plays a crucial role for survival in a dynamically fluctuating environment.  

Sequencing of the entire Escherichia  coli genome have aided in determining 29 

Histidine Kinase and 32 Response Regulator genes [163].  The BarA-UvrY TCS in 

Escherichia coli is pleiotropic and have been linked with several physiological 

processes including biofilm formation, oxidative stress, sigmaS expression, and 

efficient adaptation in carbon utilization [162, 164, 165].  The barA and uvrY gene is 

located at 62 and 42 minutes of the Escherichia coli chromosome, unlike many two-

component pair which are located next to one another.  The BarA-UvrY two-

component system and its orthologues are highly conserved in γ-division of 

proteobacteria.  Orthologues of this system in Pseudomonas (GacS-GacA), 

Salmonella (BarA-SirA), Erwinia (ExpA-ExpS) and Vibrio (VarS-VarA) have been 

shown to be strongly associated with virulence of the respective bacteria (Table 1).  

 

BarA - The Sensor Kinase  

The barA (bacterial adaptive response) gene (also called airS) encodes a 102kD 

membrane associated protein having both the sensor kinase and the response 

regulatory domains. Out of 29HK detected so far, only 5 sensor kinases are hybrid 

sensor kinases including BarA, ArcB, EvgS, RcsC and TorS.  BarA is a member of 

“tripartite” or “hybrid” kinases in E. coli with characteristic three domains:  a regular 

transmitter domain with a conserved histidine residue (H1), a central receiver domain 
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with a conserved aspartate residue (D1) and C terminal Phosphotransfer domain 

(HPt).  The Phosphorelay in this TCS is presumed to act in His-Asp-His-Asp fashion 

from the Sensor kinase to the Response Regulator.  Such multistep phosphorelay 

might offer reversible flow of phosphoryl group providing tighter control or 

incorporate various signals at an intermediary step or facilitate cross talk between two 

or more signaling cascades.  

 

BarA has been initially identified to phenotypically suppress the effect of a deletion 

mutation of envZ gene, which has been shown to regulate expression of outer 

membrane proteins with OmpR [166].  GacS of Psedomonas syringae pv. syringae, 

orthlogue of BarA, contributes to lesion formation in plants [167, 168] while  BvgS in 

Bordatella spp. regulates siderophore production [169].  Environmental signals to 

which BarA responds remain unclear, however the system seems to be activated upon 

reaching an optimal pH [170].  In Salmonella, intestinal short chain fatty acids have 

an effect on the virulence of BarA/SirA TCS [171].  Attachment of P-pilus to human 

red blood cells induces transcription of barA in UPEC which in turn upregulates the 

expression of iron acquisition system [172].  

 

BarA plays a role in bacterial adaptive response, particularly in regulation of 

oxidative stress response by enhancing catalase production through transcriptional 

activation of the rpoS gene [173, 174].  RpoS, the alternative sigma factor of E. coli, 

is also involved in regulating gene expression in response to pH changes and changes 

in osmolarity [175].  BarA may have a significant influence on these processes, as it 
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is one of the transcriptional regulators of rpoS.  It is yet to be seen whether this 

process is interdependent or not.   A domain analysis was performed to further 

understand the potential role of the kinase.  

 

Domain Analysis of BarA 

A domain analysis of BarA was performed using Simple Modular Architecture 

Research Tool (SMART) 

 
Figure 2.  Domain Organization of BarA.  

 

 918 residues

 

HAMP 180-249 

                           HisKA 292-357   

                                               HATPase_c 404-519 

                                                                            Response_reg 668-789 

                                                                                                           Hpt 828-912 

 

SMART analysis of BarA shows 5 domains: 

1. HAMP – This domain is known as the HAMP domain for histidine kinases, 

adenlyl cyclases, methyl binding proteins and phosphatases. Commonly found in 

bacterial sensor and chemotaxis proteins as well as in eukaryotic Histidine 

kinases.  The bacterial proteins are usually integral membrane proteins and part of 

a two-component signal transduction pathway.  
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2. HisKA –. The Histidine kinase A (phosphoacceptor) N-terminal domain is a 

dimerisation and phosphoacceptor domain of histidine kinases. It has been found 

in bacterial sensor protein/Histidine kinases. 

 

3. HTPase C – This family includes several ATP binding proteins – Histidine 

kinase, DNA gyrase B, topoisomerases, heat shock protein HSP90, phytochrome-

like ATPases and DNA mismatch repair proteins. 

 

4. REC – CheY homologous receiver domain regulates the clockwise rotation of E. 

coli flagellar motors. This domain contains a phosphoacceptor site that is 

phosphorylated by histidine kinase homologues. 

 

5. HPT – The Histidine Phosphotransferase domain contains active Histidine 

residues that mediate phosphotransfer reactions. This domain is detected only in 

eubacteria. 

 

UvrY - The Response Regulator 

UvrY, a 218 amino acid protein belongs to FixJ protein family was identified as the 

cognate response regulator of BarA in E. coli [176].  It has an N-terminal 

phosphoacceptor domain with a conserved aspartic acid residue at position 54 

followed by a LuxR type helix-turn-helix DNA binding domain in the C-terminal 

region. The name uvrY derives its name due to close proximity on a biscistronic 
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mRNA with uvrC, which is involved in DNA repair, but uvrY seems to have little or 

no role in UV-induced DNA damage repair [177].   

 

Mutation in uvrY leads to a hydrogen peroxide sensitive phenotype due to reduced 

expression of catalase in E. coli.   UvrY also have a role in biofilm formation.  

Interestingly, UvrY is critcal for switching between glycolysis and gluconeogenesis 

pathway for efficient adaptation which is presumably important for infection.  In 

Salmonella, SirA regulates virulence and directly binds to genes for hilA, hilC and 

csrB promoters [178, 179]. Mutation of gacA, in Pseudomonas and varA in Vibrio 

demonstrated reduced levels of autoiducers, defective in social behavior and 

virulence attributes in animal models [152, 180-183].  Salmonella ortholog sirA have 

been demonstrated to be activated by cya/crp regulation [184].  In Pseudomonas and 

Erwinia species uvrY othrologue, gacA controls quorum sensing, secondary 

metabolism and phytopathogenesis.  Increased expression of sdiA, which encodes a 

LuxR protein and involved in cell division, led to a significant increase in uvrY 

transcription.   In Photorhabdus luminescens, UvrY have been shown to regulate 

several virulence associated traits including quorum sensing, motility, 

bioluminescence and oxidative stress [165].  UvrY and its orthologues in control the 

expression of small RNA that is predicted to be present in γ-proteobacteria [180, 

185].   
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Domain Analysis of UvrY 

Figure 3.   Domain organization of UvrY. 

 

 [218 residues]

   Response_reg 2-123 

            GerE 147-204 

 SMART analysis indicated two important domains of the Response Regulator UvrY: 

 

1. REC – CheY homologous receiver domain regulates the clockwise rotation of E. 

coli flagellar motors. This domain contains a phosphoacceptor site that is 

phosphorylated by Histidine kinase homologues. 

 

2. HTH LuxR – The lux regulon which activates the bioluminescence operon. They 

are a class of regulators which when bound to autoinducer “(AHL) gets activated. 

The Helix turn helix DNA binding domain of these proteins is located in the C- 

terminal section of the sequence. The many bacterial transcription regulation 

proteins which bind DNA through a 'helix-turn-helix' motif can be classified into 

subfamilies on the basis of sequence similarities. One of these subfamilies which 

includes proteins with sizes ranging from 74 (gerE) to 901 amino acids (malT), 

can be further subdivided into two classes on the basis of the mechanism by 

which they are activated. The first is a class of regulators which belong to a two-

component sensory transduction system where the protein is activated by its 
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phosphorylation, generally on an aspartate residue, by a transmembrane kinase. 

The members belong to this class include bvgA, comA, dctR; degU, evgA, fimZ, 

fixJ, gacA, glpR, narL, narP, nodW, rcsB and uhpA. The second is a class of 

regulators which is activated when bound to autoinducer molecules such as N-(3-

oxohexanoyl)-L-homoserine lactone (OHHL). Members belong to this class are 

carR, echR, esaR, expR, lasR, luxR, phzR, rhlR, traR and yenR. The 'helix-turn-

helix' DNA-binding motif of these proteins is located in the C-terminal section of 

the sequence. 

 
Integration of the BarA/UvrY/Csr System 

Recently there are increasing numbers of studies demonstrating importance of post-

transcriptional regulation by small noncoding RNA in adaptation and virulence [186]. 

Apart from transcription control, translation initiation is important for efficient 

adaptation and expression of virulence of  bacteria [187].   

 

Presently, two classes of small RNA are known to influence the rate of translation 

initiation by different mechanisms [188].  The first class of small RNA’s act by base 

pairing at the 5’end of the transcript, which could either stimulate or interfere with 

ribosome loading of various target mRNA.  Hfq, the RNA chaperone facilitates the 

base-pairing in gram-negative bacterial species [189].  
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On the other hand, another group of small RNA displays high affinity for a RNA-

binding protein, which control translational initiation and message stability of the 

transcripts.  The RNA binding protein is designated as CsrA or RsmA in various 

gram-negative bacterial species.  The acronym Csr stands for carbon storage regulator 

in E. coli, Salmonella and Vibrio species and Rsm for regulator of secondary 

metabolism in Pseudomonas and Erwinia species.    

 

Part of the downstream effect of the BarA-UvrY TCS in E. coli is mediated via 

Carbon Storage Regulatory system (Csr).  In this circuit, UvrY enhances transcription 

of two noncoding RNA’s called CsrB and CsrC.  These small RNAs in turn bind and 

titrates the activity of global RNA binding protein, CsrA [190, 191].  In an auto-

regulatory loop, CsrA also regulates this TCS and controls its own expression (Figure 

4) [192].  The control of CsrA could be both positive and negative for various target 

transcripts. CsrA could interfere with translation of target mRNA by binding at or 

near shine-dalgarno sequences thus occluding ribosome loading while accelerating 

message decay.  On the other hand, CsrA could also stabilize and increase translation 

of target mRNA.  CsrB and CsrC RNA’s contain several imperfect sequences that 

serve as multiple binding sites (upto 22 in CsrB) for CsrA protein. An important 

feature of these putative binding sites for CsrA is presence of a conserved GGA 

sequence in the stem loop regions of various target RNA’s.  Few direct regulatory 

interaction of CsrA have been recognized,  glg operon which encodes genes in 

glycogen biosynthesis, pgaA transcripts that encodes a polysaccharide adhesin 
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involved in biofilm formation,  cstA that encodes a peptide transporter and hfq, that 

assists base pairing of transcripts [193-196].    

 

CsrA was initially identified as global regulator of glycogen biosynthesis, where a 

transposon mutagenesis in csrA increased accumulation of glycogen as compared to 

the parent strain [197].  Since then, CsrA homologues are detected in more than 

hundred species including proteobacteria, even some species having more than one 

CsrA homologue.  Structural studies indicated that CsrA acts as a dimer consisting of 

five β strands and one α helix per monomer.  The binding of CsrA with CsrB and 

CsrC is coopertaive.  CsrA plays a major role in central carbon metabolism, motility 

and biofilm formation in E.coli [192, 198, 199].  The BarA-UvrY TCS balances the 

carbon flux and switches between metabolic pathways by the use of the Csr system in 

E. coli [164].   
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Figure 4.    Schematic representation of the BarA/UvrY/Csr System.   
BarA, the hybrid sensor kinase undergoes autophosphorylation upon reception of signal 
in an ATP-dependent manner and phosphate is subsequently relayed to a conserved 
aspartate residue in the response regulator, UvrY presumably via His→Asp→His→Asp 
phosphorelay cascade.  UvrY also upregulate the expression of small non coding 
RNAs, CsrB and CsrC which in turn, titrates the activity of the global regulatory 
protein, CsrA by binding to it.  CsrA also regulates BarA/UvrY TCS in an 
autoregulatory feedback loop.  Part of the effect of the BarA/UvrY TCS is direct 
whereas part of it is indirect via Csr system.  
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Significance, rationale and approach of the study 

The major objective of this work is to further understand the role of the BarA-UvrY 

signaling cascade in adaptation and virulence. Adaptation of bacteria in a new 

environment requires careful coordination among members of a community.  Such 

synchronized behaviors in microorganisms are carefully controlled in response to 

multiple environmental cues. Two aspect of such social behavior are studied here: 

 

a) Population dependent gene regulation termed Quorum Sensing  

b) Complex community structure interaction through the formation of Biofilms 

Objective 1:    To determine the role of the BarA-UvrY two-component system in 

regulation of quorum sensing in E. coli  

Bacteria employ cell-cell communication to assess environmental cues and adapt 

accordingly to different niches for attachment and colonization.  Population 

dependent adaptation or quorum sensing in gram-negative bacterial species employs 

three kinds of signaling molecules.  These small signaling molecules are acyl 

homoserine lactone (AHL) called autoinducer-1 (AI-1) and a furanone called 

autoinducer-2 (AI-2) and AI-3.  The production of AI-2 is dependent on the luxS gene 

encoding the AI-2 synthase. Importantly A1-2 is synthesized as a by product of 

activated methyl cycle. In. E. coli S-adenosyl Methionine (SAM), a methyl donor to 

DNA, RNA and proteins donates methyl group to various substrates generating S-

adenosyl homocysteine (SAH). SAH is broken down to homocysteine by two gene 

products, pfs and luxS. Pfs, a nucleosidase, breaks down SAH into S-ribosyl 

homocysteine (SRH) which further undergoes breakdown by the enzyme LuxS, 
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generating homocysteine which goes back to the cycle. One of the by product of this 

last reaction catalyzed by LuxS is a compound called DPD (4, 5-

dihydroxypentanedione) which spontaneously undergoes cyclization and forms AI-2 

(Figure 5).  Both SAH and SRH are toxic to the cell and thus both Pfs and LuxS play 

a role in detoxification.  E. coli is not known to produce AI-1 as it does not have the 

AI-1 synthase. It has been suggested that AI-2 may represent a universal signal 

molecule, used for intra- as well as interspecies communication.  

Figure 5.  A1-2 is formed as a by product of activated methyl cycle. LuxS converts 
S-ribosyl homocysteine to homocysteine generating AI-2 as a by product. In 
eukaryotes, an enzyme termed SAH hydrolase converts S-adenosyl homocysteine to 
homocysteine bypassing the pathway.  
 

 
 
 
 
 

Methionine

S-Adenosyl Methionine

Homocysteine

S-Ribosyl HomocysteineS-Adenosyl Homocysteine

DPD

AI-2

SAH
hydrolase

Pfs

LuxS

 31 
 



 

The role of BarA-UvrY and its downstream regulators in luxS based quorum sensing 

was demonstrtated by using a single copy chromosomal luxS::lacZ transcriptional 

fusion.  The corresponding AI-2 levels were measured using a modified Vibrio 

harveyi reporter.  The involvement of CsrA was shown by transcript stability assay 

following addition of rifampicin, computational prediction of putative binding sites of 

luxS transcripts and direct regulatory interaction of CsrA with luxS transcripts.  

Furthermore, the regulation of lsr transport was assessed by reporter activity and real 

time RT-PCR.  The involvelemt of hfq and crp-cAMP was also assessed. This work is 

detailed in Chapter 3.  

 

Objective 2:  To identify candidate genes involved in biofilm formation by the BarA-

UvrY two-component system in Uropathogenic Escherichia coli.  

Uropathogenic Escherichia coli (UPEC) are the leading cause of Urinary tract 

infections in US resulting loss of productivity and financial burden on society.  UPEC 

is also the leading cause of nosocomial infections due to formation of biofilms on the 

abiotic catheter surfaces.  The virulence of UPEC depends on several surface 

structures which facilitates adhesion and biofilm formation eventually leading to 

persistent infections in the urinary tract.   Two adhesins, Type 1 pilus and Pap Pilus 

are crucial for efficient colonization in the urinary bladder and kidneys respectively.  

Other factors, such as extracellular polymeric substances and flagellar motility play 

an important role in biofilm formation and virulence.  Part of the downstream effect 

of the Bar/UvrY TCS in biofilm formation is regulated by the Csr System.  
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The role of the BarA-UvrY TCS in UPEC biofilm formation was initially tested on 

abiotic surfaces (Polystyrene and PVC surface).  Both Type 1 and Pap pilus 

expression was monitored in uvrY and csrA mutant to identify potential downstream 

regulation.  Transcript stability assy after addition of rifampicin was performed to 

ascertain potential role of CsrA.  Type 1 pilus undergoes phase variation and switches 

between ON (fimbriated) and OFF (afimbriated) phase.  The role of uvrY in Type 1 

phase inversion was determined by an inverse PCR method.  Potential role in acidic 

exopolysachharide accumulation was measured by Ruthenium Red staining.  The 

ability to swarm in soft agar was further tested.  Finally, mutants were tested for an 

ability to colonize in the bladder, kidneys and urinary tract in an ascending model of 

UTI in mice.  This work is summarized in Chapter 4. 

 

Objective 3:  To identify novel candidates affected by the BarA-UvrY genes in 

Uropathogenic Escherichia coli that can be employed for detection of toxicity.   

UPEC genome has unique 1600 Open Reading Frames whch are not found in 

commensals.  Adaptive stress responses in Escherichia coli are largely mediated by 

several two-component systems.   Bacterial biosensors have utilized stress response 

for detection of toxicity.  The BarA-UvrY TCS is pleiotropic and regulates diverse 

physiological processes including stress response through, stationery phase sigma 

factor, rpoS .   Transcription profiling of the TCS was performed to identify potential 

other genes that might be utilized as toxicity sensors.   The potential of this two-

component system as bacterial biosensor is reviewed in Chapter 5.  
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Finally, work from Chapter 4 has contributed to a study where we showed mutation 

of the BarA-UvrY TCS in Avian Pathogenic Escherichia coli displayed reduced 

virulence in chicken embryo model and poor attachement in chicken fibroblasts and 

macrophage.   Mutation in BarA/UvrY TCS also demonstrated a reduction in 

mannose resistant haemmagluttination (Table 3). Downregulation of both Type 1 and 

Pap pilus, reduced exopolysaccharide production, and increased susceptibility to 

oxidative stress have been attributed for attenuation in virulence (Table 4) [200].  
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Chapter III:  Regulation of AI-2 based signaling by the 
BarA/UvrY/Csr system in Escherichia coli  
 

Abstract 

In Escherichia coli the BarA/UvrY/Csr system works in concert affecting 

physiological processes including carbon metabolism, biofilm formation and motility.  

Here, we report that the signaling pathway regulates luxS dependent AI-2 signaling 

system by evaluating a single copy transcriptional luxS::lacZ reporter expression, 

transcript levels and direct regulatory interactions.  The BarA/UvrY and Csr system 

displayed opposite regulation on luxS, the enzyme involved in synthesis of AI-2, 

indicated a potential dual regulation at the level of transcription and post-

transcription.  The uptake of AI-2 by the lsr (luxS regulated) transporter is also 

modulated by the signaling cascade suggested a possible dynamics of AI-2 synthesis 

and uptake in the cell.   

 

Introduction 

Alteration of gene expression in bacteria is critical for survival and persistence in a 

changing environment.  Perception of signal and appropriate response is 

indispensable for the fitness of bacterial species.  Two-component regulatory systems 

in bacteria are signaling cascades critical for adaptation in a new milieu and regulate 

gene expression usually at the level of transcription [1, 2].  A two-component system 

consists of a membrane-bound sensor histidine kinase and a cytoplasmic reposne 

regulator which interacts one another by a phosphorelay cascade.  Several 
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orthologues of this TCS were detected in other γ proteobacteria such as the BarA-

SirA of Salmonella, VarS-VarA of Vibrio, GacS-GacA of Pseudomonas, ExpS-ExpA 

of Erwinia species, all of which were involved in virulence of the respective bacteria 

[148, 149, 183] .  Part of the downstream effect of such TCS is often mediated via a 

global regulatory RNA binding protein known as Csr (Carbon storage regulator in 

Escherichia, Salmonella and Vibrio species) or Rsm (Repressor of secondary 

metabolites in Pseudomonas and Erwina species).  The response regulator 

UvrY/GacA controls expression of few non-coding RNA which in turn, binds to 

CsrA/Rsm regulator and titrates its activity.   

The BarA/UvrY/Csr signaling cascade in Escherichia coli is involved in adaptive 

response of diverse physiological process including carbon metabolism, motility, 

biofilm formation and virulence.  The BarA-UvrY TCS is involved in switching 

between metabolic pathways and balances carbon flow via CsrA activity in E. coli 

[164].  The downstream effect of this TCS is mediated via Csr (Carbon Storage 

Regulator) system whereby uvrY positively regulate expression of two non-coding 

RNA, CsrB and CsrC which in turn sequesters CsrA, the global regulatory protein, by 

binding to it.   The consensus sequence for CsrA binding seems to be conserved GGA 

motif usually present in the stem loop or hairpin or linear region of the transcripts.   

Adaptation signals called autoinducers are involved in gene expression in a 

population-dependent manner.  In E. coli, the synthesis of Autoinducer 2 (AI-2) is 

obtained as a by product of of luxS gene products via methyl-cycle.  Interestingly, a 
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conserved LuxR-type domain commonly associated with Quorum Sensing is present 

in UvrY.   

In this study, we showed that the mutation of the BarA-UvrY TCS reduced 

expression of a merodiploid reporter strain luxS-lacZ whereas loss of csrA, displayed 

a concurrent increase in expression of the reporter in a growth phase dependent 

manner.  AI-2 levels were correspondingly synchronized with reporter activity 

specifically from mid-log to entry of stationery phase.  The uptake of AI-2 takes place 

by an ATP-dependent transporter lsr (luxS regulated), expression of which is 

modulated by this signaling cascade in an opposite manner as compared to AI-2 

levels and reporter activity, suggesting a balance of carbon flow at the entry of 

stationery phase.   Direct regulatory interactions of CsrA with luxS transcripts 

furthermore confirmed the post transcriptional control of CsrA.  Loss of hfq also 

reduced the exprerssion of reporter activity suggest association of small RNA in this 

regulation.  These findings suggest a complex interplay of BarA/UvrY/Csr signaling 

pathway in a crucial pathway for adaptation by population dependent gene expression 

in E. coli.  

Materials and Methods 

Strains, plasmids and phages  

The bacterial strains, plasmids, and bacteriophages used in this study are                 

listed in Table 6 and 7.  
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Chemicals and Reagents 

Most of the chemicals were bought from Fisher Scientific (Pittsburg, PA) and Difco 

(Sparks, MD). Antibiotics were bought from Sigma (St. Louis, MO), restriction 

enzymes, ligases, from NewEngland Biolabs (Beverly, MA), Taq Polymerase, Hifi 

Taq, and Pfu Polymerase, nucleotides for PCR from Invitrogen ( Carlsbad, CA), Tgo 

Polymerase and CyberGreen RT-PCR kit from Roche Applied Sciences 

(Indianapolis, IN), plasmid DNA, PCR purification, gel extraction, RNA purification 

kits from Qiagen (Valancia, CA), DNAse, RNAse, and RNAse-free water from 

Ambion (Austin, TX). Oligonucleotide primers were purchased from Invitrogen. 

Radioactive nucleotides were purchased from Amersham Pharmacia Biotech 

(Piscataway, NJ ). 

 

Media and growth condition 

All media was prepared as described in Miller [201]. Luria Bertani medium was used 

for routine cultures (10 gl-1 tryptone, 5 gl-1 yeast extract, 10 gl-1 NaCl, pH 7.0) and 

Tryptone Broth (10gl-1 tryptone, 5gl-1 NaCl, pH 7.0) was used for growing strains 

harboring λ fusions.  Selection of phage λ lysates and platings were done in R 

medium (10 gl-1 tryptone, 1 gl-1 yeast extract,  5 gl-1 NaCl, 2x10-3 M CaCl2 and 0.1% 

glucose).  M9 minimal media ( Na2HPO4 6 gl-1 , K2HPO4 was used for glucose 

induction assays supplemented with 0.1% casamino acids as a C-source for cultures 

that were grown in the absence of glucose. M63  medium was used to select for rel+ 

transductants when transducing barA mutation from MC4100 into MG1655Δlac 

strain [162]. V. harveyi strains were grown in AB medium  (17.5 gl-1 NaCl, 12.3 gl-1 

MgSO4 , 2 gl-1 casaminoacids, pH 7.5) supplemented with 1x10-2 potassium 
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phosphate (pH 7.0), 1x 10-3 M L-arginine, 1% glycerol [202]. Plates were 

supplemented with 50μg ml-1 of 5-bromo-4-chloro-3-indolyl-β-D- galactopyranoside 

(X-gal) for visualization of β-galactosidase activity.  The following antibiotics were 

added as required at the given concentration: ampicillin 100 μg ml-1, 

chloramphenicaol 20 μg ml-1, kamamycin 50 μg ml-1, streptomycin 50 μg ml-1, and 

tetracycline 10 μg ml-1. Overnight cultures, starting from a single colony, were grown 

in test tubes with 5 ml of medium shaken on a rotary drum at required temperature. 

For proper growth, all experimental cultures were grown in baffled flasks with 1/5 

volume of media at 150 r.p.m in shaking water bath set at appropriate temperature 

(37oC or 30oC). Growth was monitored using a Shimadzu UV-1601 

spectrophotometer at 600 nm (OD600). For gene expression experiments, overnight 

cultures were diluted 1:100 and serially subcultured two times to an OD600 of 0.3, 

before inoculation into pre-warmed fresh media to an initial OD600 0.05.  

 

Recombinant DNA techniques 

Standard molecular techniques were used for transformation, elctroporation, 

restriction enzyme digestion, gel electrophoresis, PCR amplification, Northern and 

Southern Blot analysis.  All amplifications for cloning were done using Tgo 

Polymerase (Roche, Indianapolis, IN) and other amplifications were done using Taq 

or Pfx Polymerase (Invitrogen, Carlsbad, CA) from chromosomal DNA prepared 

from MG1655 strain using Wizard Kit (Promega, Madison, WI). All clones were 

confirmed by sequencing.  
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The barA gene was cloned by amplifying the 3.2-kb barA locus from MG1655 with 

OSM 5’CCCGAATTCATA GCATACGCCAAAATGAGGACAG3’ and OSM  

5’CCCGATATCATA ACTCGACAAGACATCCATTA 3’ with a 5’EcoR1-

3’EcoRV restriction site. The resultant product was cloned into pCR2.1 using DNA 

Topoisomerase meditated ligation using the TOPO-TA cloning system (Invitrogen). 

A 3.2-kb EcoR1-EcoRV fragment was subcloned within the EcoR1-EcoRV sites of 

pBR322. The barA ORF is in the direction of the tet gene of the vector. The uvrY 

gene was amplified with additional 178-bp 5’ sequence just before the divergent yecF 

promoter using primers OSM64 5’-

CCCGAATTCATAATTTCATCGTAGGGCTTACTGTGA -3’ and OSM74 5’-

CCCCTGCAGATGCACGCCTGGCTGGTTAC - 3’. The amplified product was 

cloned using TOPO-TA cloning method into vector pCR2.1 (Invitrogen). Few clones 

were sequenced to confirm intact amplification. A 700-bp BamH1-EcoRV fragment 

was cloned within the BamH1-EcoRV site of pBR322, with the open reading frame 

of the uvrY gene oriented in the same direction as the tet gene in the vector. The luxS 

gene (denoted as ygaG, b2687) was similarly amplified using OSM34 5’- 

GTGAAGCTTGTTTACTGACTAGAT - 3’ and OSM35 5’- 

GTGTCTAGAAAAACACGCCTGACAG - 3’ and cloned into pCR2.1, pluxS14. A 

700 bp EcoR1 fragment was clone into pBR322 where the luxS ORF is in the same 

direction as the tet gene. 
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Genetic techniques 

P1vir transductions were performed as described by Miller [201].  For transduction of 

the barA::kan and barA::lacZ from MC4100 into MG1655, special precaution was 

taken not to select for relA mutation, which is only 1.4 kb from the barA locus as 

selecting transductants that could grow on M63 supplemented medium [192]. 

 

Construction of chromosomal insertional mutants 

The uvrY and the luxS genes in MG1655 were disrupted using Datsenko & Wanner 

method. The uvrY gene was knocked with a chloramphenicaol cassette from plasmid 

pKD3, using linear amplified DNA with 36 bp flanking region of uvrY gene using the 

primers OSM-43 5’-

TGGTGCCGCCAGGGATACGACGCATTCTGGAAGTTGCATATGAATATCCT

CCTTAGT -3’ and OSM-44 5’-

CATTTGTTGAGCGATGTCAGAAGCAATGTAACGCTGACCGTGTAGGCTGG

AGCTGCTTC -3’. The luxS gene was similarly knockout with a kanamycin cassette 

with 36-bp flanking region with primers OSM-49 5’-

TGCGCTTCTGCGTGCCGAACAAAGAAGTGATGCCAGTTGCATATGAATAT

CCTCCTTAGT -3’, OSM-50 5’-

CACGCTGCTCATCTGGCTGTACCAATCAGACTCATATACTGTGTAGGCTGG

AGCTGCTTCG -3’.  The mutations were transduced into fresh background and 

characterized for known phenotypes associated with both uvrY and luxS mutations. 
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Construction of chromosomal luxS::lacZ transcriptional fusion.   

A 469 bp fragment encompassing 290-bp upstream regulatory sequences region and 

59 codons of luxS gene was PCR amplified with Tgo Polymerase from MG1655 

chromosomal DNA using primers OSM-53- 5’-

CCCGTCGACATAGCATTTGCAGAAGCCTACCGTA-3’(SalI, 139 bp within 

3’end of the gsh gene) and OSM54-

5’CCCGGGCCCATACAAACAGGTGCTCCAGGGTATG3’(SmaI, 179 bp within 

the luxS gene).  The amplified fragment was cloned within the SalI-SmaI site of 

promoterless lacZ transcriptional fusion vector pSP417, a modified pRS415 vector 

with extended multiple cloning sites. The clones were sequenced to check the 

integrity of the amplified fragment and the fusion junction. The plasmid-borne fusion 

was transferred to λRS45.  The resulting recombinant phage, λPluxS-lacZ (λSM001) 

was used to transfer the fusion into MG1655Δlac, creating a merodiploid luxS+ luxS-

lacZ fusion (SM105). Single-copy fusions were isolated and verified by a Ter assay 

followed by measurement of β-galctosidase activity.  

 

Autoinducer Bioassay 

The detection of AI-2 in cell-free supernatant was performed using a Vibrio harveyi 

reporter system.   Vibrio harveyi BB120 was the wild type for this assay. The reporter 

strain BB170, a luxN mutant of BB120 was sensitive to AI-2 but not to AI-1. V. 

harveyi was cultured in autoinducer bioassay (AB) medium.  The positive controls 

were either BB152 (AI-1-, AI-2+) or BB120 (AI-1+ AI-2+) and the negative control 

was Escherichia coli DH5α, a luxS mutant which was unable to synthesize AI-2. 
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Relevant strains were grown in 5ml AB media overnight for 16 hrs in duplicates at 

30oC.  The cells were pelleted by centrifugation at 10,000g for 2 min.  The cell-free 

culture supernatant so obtained was then passed through a 0.22 mm filter (Millex-

GS).  The overnight reporter was diluted 2500 times in AB media typically, 10μl 

reporter in 25ml AB media, to cancel out the background luminescence due to the 

reporter itself.  The assay was performed in white 96 well microwell plate (Nunc, 

Denmark).  The ratio of cell-free supernatant to that of diluted reporter was 1:9 and 

typically 20μl of cell-free supernatant was used with 180μl of diluted reporter.  

Higher volume/well ratio was used to reduce fluctuations in luminescence and light 

scattering.  The plates were incubated at 30oC with mild shaking.  Bioluminescence 

was monitored every 30 or 60 minutes in either mediators PhL luminescence 

microplate reader or by a VICTOR3™V Multilabel Counter (PerkinElmer).  Each 

cell-free culture supernatant was assayed at least three times and the mean values 

were reported.   

 

Saturation Assay 

For this assay, an increasing volume of cell free supernatant was used to achieve light 

saturation.  Cell-free supernatant starting from 5, 10, 25, 50, 60 and 70 μl was added 

to a fixed volume (50μl) of diluted reporter (1:2500).  The ratio of diluted reporter to 

CFS would vary throughout the saturation curve. The  various ratio of reporter to CFS 

 would be  50:5  or  10:1, 50:10  or 5:1, 50:25  or 2:1, 50:50  or 1:1  (Saturation 

occurs at 1:1) , 50:60  or 1:1.2 and 50:70  or 1:1.4. The Kd for saturation curve was 

defined as “one-half the volume of cell free supernatant to reach light saturation”.  
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For the AI-2 kinetics assay, we used a ratio of diluted reporter (180μl) to cell free 

supernatant (20μl) as 18:2 or 9:1.  Hence the ratio that would be closest between the 

two assays would be the first one of saturation to that of the kinetics assay 

respectively. i.e. 10:1 to 9:1.  Thus for comparing the first dilution the reported value 

of AI-2 in kinetics assay should be multiplied by 10/9 to compare with the saturation 

curve, given the ratio of reporter to CFS works linear at all volumes.

 

RNA stability assay 

Total RNA was isolated at an OD600 at which CsrA activity is optimally expressed. 

Rifampicin (Sigma Aldrich) was then added to the culture medium at a final 

concentration of 500 μg/ml to inhibit transcription initiation.  Rifampicin prevents 

initiation of new transcripts by binding to the β subunit of RNA polymerase.  

Samples were then removed at 2.5, 5, 7.5 and10 minutes after addition of rifampicin. 

Amount of remaining luxS mRNA was calculated from the intensities of the bands by 

normalizing with intensities of icd, housekeeping gene.  The cells were harvested at 

14,000 rpm in a microcentrifuge and frozen in solid CO2-ethanol, with no more than 2 

min allowed to elapse between sampling and freezing.  

 

β−galactosidase activity 

Strains were grown overnight in TB media with appropriate antibiotics.  The 

overnight cultures were subcultured 1:100 in fresh TB media with antibiotics and 

were allowed to grow at 37oC water bath until an O.D600 of 0.4-0.6 is reached.  The 

subculture is then diluted in fresh TB media so that starting O.D600 of 0.05 is 
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achieved. 100μl of the cultures were aliquoted periodically, vortexed and stored in 

900μl of Z buffer at 4oC.  200μl of ONPG was added to the aliquots to initiate the 

reaction, mixed and starting time was noted.  Once a sufficient yellow color develops, 

the reaction was stopped by adding 0.5ml of a 1M sodium carbonate solution and 

finishing time recorded.  The solution is then centrifuged at 11,000 rpm for 2min and 

O.D420 was measured.  The β-galacatosidase activity was reported as follows: 

 

Units of β-galactosidase =      1000      X          O.D420 
                                             Time X Volume X O.D600 
 
 
Gel Shift Assay 

Interaction between luxS transcripts with CsrA protein was demonstrated by gel 

retardation assay.  Briefly, templates were prepared by PCR amplification of the 

leader region of luxS using primers OSM317 and OSM318 such that the transcripts 

contain a minimal T7 promoter sequence upstream to the transcription start site. The 

PCR amplified products were gel purified and quantitated by A260/A280 and visualized 

on 0.7% agarose gel in TE buffer.  50ng of template was used for in vitro 

transcription in a total volume of 20μl.  In vitro transcription was performed in 

accordance with MAXIscript (Ambion, CA) protocol.  The transcripts so generated 

were gel purified and dephosphorylated prior to end labeling with [γ- 32P] ATP using 

T4-polynucleotide kinase.   The labeled transcript was then heated at 80oC and slowly 

allowed to cool at room temperature to permit formation of secondary structures.   

Binding reaction condition employed 30 pm labeled RNA with increasing 

concentration of CsrAHis-Tagged Purified protein at 0, 10,20,40,50,160 and 320 nM.  
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The binding buffer for this reaction includes 10mM Tris-HCl (pH 7.5), 10mM MgCl2, 

100mM KCl, 32.5ng yeast RNA, 10mM DTT, 10% glycerol, 4 U of RNase inhibitor 

in a 10μl volume.  Cold RNA was also included in the reaction mix. The reaction mix 

was allowed to incubate at 37oC for half an hour.   The samples were fractionated in 

6% native polyacrylamide gels. Gels were dried and radioactive bands were 

visualized using a phosphorimager.   

 
Results 

Growth rate impaired on barA, uvrY and luxS mutants 

The barA and uvrY genes were disrupted in E. coli MG1655 using λRed recombinase 

system. The barA::kan insertion mutants probably did not have polar effect on the 

relA gene by their ability to growth in M9 suplemented medium. However, the colony 

morphology of both the mutants were smaller than the wild-type strain when grown 

in TB agar plates or minimal media, but not so much on LB agar plates. The growth 

rate defect was more in the uvrY mutant (G = 34.5 min) than the barA mutants (G = 

29.5 min). The defect was observed in the exponential phase and amplified when 

grown in minimal medium or nutrient poor medium (TB) (barA= 40.2 min and uvrY 

= 53.1 min compared to 35.2 min of the wild-type strain) as compared to DH5α (luxS- 

relA-) (G = 35.1 min and 40.2 min), a known slow growing strain as a reference 

control (Figure 6).  The growth rate defect of csrA was minimal.  Thus this defect 

could be due to nutritional utilization deficiency or could be due to accumulation of 

toxic metabolites or both. 
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Accumulation of exogenous AI-2 on mutation of barA, uvrY and csrA genes  

The synthesis of AI-2 is dependent on LuxS enzyme catalyzed reaction from S-

ribosyl homocysteine to homocysteine in methyl cycle (Figure 5).  Each cycle 

generates one AI-2 molecule and thus AI-2 activity could be a potential indicator of 

cellular metabolism.  Several cues indicated potential involvement of the 

BarA/UvrY/Csr system in luxS based AI-2 signaling.  Firstly, UvrY also have a LuxR 

type domain commonly associated with binding of autoinducers (Figure 3) 

Secondly, several studies have also indicated that expression of small RNAs CsrB 

and CsrC increases with cell population density [192, 203].  Thirdly, E. coli is not 

known to have LuxI type homologue which synthesizes autoinducer-1.  Finally cell-

cell communication plays an important role in virulence and efficient adaptation 

inside host.  These have led us to assess whether BarA-UvrY TCS had an effect on 

AI-2 signaling in E. coli.  Vibrio harveyi reporter BB170 was used to detect AI-2 

activity from cell-free culture supernatant.  This reporter has a mutation in luxN, and 

impaired in AI-1 detection but a fully functional luxQ which specifically detects AI-2 

activity.   

 

Our results indicated accumulation of AI-2 in cell-free culture supernatants grown in 

LB is growth phase dependent as reported previously [204].  Mutation in the barA, 

uvrY, or both genes reduced exogenous AI-2 accumulation in E. coli MG1655 (Figure 

7). Compared to isogenic luxS::kan mutant strain, the wild type strain produced 300- 

fold higher AI-2 at late exponential phase. The accumulation of AI-2 in the barA or 

uvrY mutant background was several fold (~3 fold) lower than wild type strain in 

mid-exponential phase and in early stationary phase.  The defect could be 
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complemented in the mutant with ectopic expression of barA or uvrY from a plasmid. 

Although the relative amount of AI-2 accumulation in the complemented stain was 

similar to the wild-type, the accumulation of AI-2 in supernatants was slightly 

delayed.  The effect was more severe in an uvrY mutant with lower AI-2 

accumulation in mid-exponential phase and in early stationary phase.  In the 

complemented strain, the extracellular AI-2 accumulation was similar to the mutant 

mid-exponential phase indicating that over-expression of UvrY may be initially 

limiting AI-2 accumulation. However, the complemented strain exhibited higher level 

of AI-2 accumulation than AI-2 wild type strain during late exponential-phase.  

 

Effects of BarA/UvrY/Csr signalling cascade on luxS::lacZ transcriptional fusion 

Since a disruption of the luxS gene caused a gowth-defect, we constructed a 

merdiploid strain with a single-copy luxS::lacZ transcriptional fusion with 290-bp 

upstream sequence from the luxS ATG codon.  A single copy fusion integrated within 

the λ att site of the E. coli chromosome was selected to study luxS expression under 

various experimental conditions in LB and TB medium. 

 

The luxS::lacZ transcriptional fusion exhibited a growth-phase dependent expression 

similar to the extracellular AI-2 accumulation. The expression of the luxS::lacZ 

fusion in a barA mutant was found to be 2-fold lower in mid-exponential phase and 

about in early-stationary phase as compared to the wild type strain. The level of 

expression could be complemented to a large extent but not similar to the wild type, 

with a plasmid-borne copy of the barA gene. The basal level of expression of the 
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fusion was higher in an uvrY mutant and it was only 2.5-fold lower than wild type in 

mid-exponential and stationary-phase.  These results suggest that the BarA-UvrY 

two-component system, in part, regulates growth phase dependent luxS expression, 

more so in the exponential phase than in the stationary phase.  The moderately higher 

level of basal transcription of the fusion in absence of UvrY indicates that there may 

be additional factors involved in the regulation of luxS expression in stationary phase. 

 

Regulatory interaction of CsrA with luxS transcripts 

On the other hand, mutation in the downstream global regulator, csrA showed 

approximately 4-fold upregulation of AI-2 activity and 6-fold upregulation of 

luxS::lacZ chromosomal reporter activity which could be restored to wild-type level 

upon complementation (Figures 7 and 8).  The repression of CsrA takes place at the 

entry into the stationery phase, and is coincident at which the BarA/UvrY TCS shows 

induction of luxS expression. The repression of AI-2 by CsrA is growth phase 

dependent and entry into the stationery phase displayed a sharp decrease of AI-2 in 

extracellular milieu.  This suggested a probable post-transcriptional regulation of luxS 

by the Csr system.    

 
The regulatory role of CsrA on luxS transcript is further explored by assaying luxS 

transcript stability assay.  A csrA mutant displays an increase in transcript stability as 

compared to isogenic wild type.  Mutation in csrA increases luxS mRNA half-life as 

by more than three minutes (Figure 9A).  Secondary structure prediction of luxS 

leader by RNA fold, generated two stem loop region, one of which have a GGA 

sequence in a hairpin and also occlude the Shine-Dalgarno sequence (Figure 9B).  
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CsrA is known to bind leader of various transcripts having multiple binding sites for 

CsrA (such as glgC, pgaA) and thereby inhibit translation efficiency by occluding the 

Shine-Dalgarno sequence. CsrA is also known to bind hfq, which have a single 

binding site.  Furthermore the direct interaction between CsrA protein and luxS leader 

is also displayed by gel shift assay.  A shift was observed between 80 to 160nM of 

CsrA protein (Figure 9C).   

 

Effect of mutation of barA, uvrY and csrA on Lsr transporter 

In E. coli the rapid disppareance of AI-2 from the extracellular milieu was due to an 

ATP-binding cassette, Lsr transporter which is induced upon entry into stationery 

phase.  Glucose is known to repress lsr and as the level of nutrients decreases, lsr is 

induced resulting in a concomitant decrease in AI-2 level from the extracellular 

supernatant.  The role of BarA/UvrY/Csr signaling cascades in the uptake of AI-2 by 

an, Lsr was investigated.   As expected, the lsr activity was minmal until the mid log 

phase and as stationery phase is approached the operon is induced.   The barA and 

uvrY mutants showed a slightly higher level of lsr activity as compared to the parent 

strain.  The csrA mutant in contrast, showed a 4-fold reduction in lsr activity as 

compared to the wild type strain, typically at the entry into stationery phase.  Real 

time RT-PCR also demonstrated a sharp increase in expression in lsrK, lsrA, and lsrR 

upon complementation or over expression of CsrA (Table 2).  Hfq, a RNA chaperone, 

facilitates the base pairing between transcripts and regulates message stability.  A loss 

of hfq also reduced the luxS expression which could be plasmid-complemented, 

suggesting possible involvement of Quorum regulatory RNAs (Figure 10).   
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Effects of the mutation of uvrY on swarming motility 

Bacterial motility is a complex phenomenon regulated by flagellum regulated by a 

hierarchical cascade starting with the flhDC master operon that encodes tetrameric 

DNA binding regulatory proteins. Since in vitro studies indicate UvrY does not 

directly bind to flhDC promoter, the effect may be either, in part, through the post-

transcriptional activation of the flhDC genes via the BarA→UvrY→CsrB/C→CsrA 

system, or it could be in part via a Csr-independent mechanism.  

 

Swarming, a population dependent flagellar motility is characterized by rapid and 

coordinated group migration over solid surfaces.  The ability to swarming is 

considered a virulence factor and associated with biofilms in several species like 

Proteus mirabilis and Salmonella typhimurium.  Swarming requires cell-cell 

communication for migration over a wet solid surface as a group. A loss of uvrY also 

demonstrated reduced swarming motility in semi-solid agar media in presence of 

glucose.  The defect could be restored upon complementation (Figure 11).  However, 

E. coli K-12 does not show good swarming partly because of a lack of fully 

functional O-antigen.  A luxS mutant also displayed a reduction in swarming ability 

(not shown).  

 

Discussion 

The BarA/UvrY TCS has been shown to regulate central carbon metabolism via 

regulating the CsrB/C/A system in E. coli.  BarA-UvrY system also acts as a 
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metabolic switch between glycolytic and gluconeogenic pathways.  BarA-UvrY 

orthologues are conserved in the γ-subdivision of proteobacteria, and plays a role in 

regulating secondary metabolism in E. coli, Pseduomonous fluorescens, Azotobacter 

vinelandii, and Vibrio fischeri.  This study shows that in E. coli,  AI-2 sysnthesis and 

uptake is controlled by the BarA/UvrY/CsrA signaling cascade at transcriptional and 

post-transcriptional level for efficient utilization of carbon flow into the cell.  The 

BarA/UvrY/Csr system regulates luxS expression and AI-2 activity. 

 

Autoinducer 2 (AI-2) is generated as a by product of activated methyl cycle.  The 

methyl-cycle is an important metabolic detoxification-recycling loop for s-

adenosylmethionine (SAM).  The cycle detoxifies s-adenosylhomocysteine (SAH), 

formed post-methyl donation from SAM, by breaking it down by PfS to generate S-

ribosylhomocysteine. LuxS then recycles homocysteine back into the cycle for 

generation of SAM, in the process generating 4,5-dihydroxy-2,3-pentanedione 

(DPD), a precursor of AI-2.  It is assumed that AI-2 crosses the outer-membrane and 

accumulates to a threshold concentration before they trigger a cellular QS response 

via one or more receptors, including the QseB-C system.  The role of BarA-UvrY in 

QS has not been tested. The exact nature of signal detected by the BarA-UvrY TCS is 

presently unknown, even though it seems to be pH dependent. However, recent 

findings in Pseudomonas, and Vibrio fisheri indicated that it is highly possible that 

this two-component system may be one of the regulating factors for luxS-mediated 

QS in E. coli.  Both the autoinducers, AHL and AI-2, positively regulate 

luminescence in marine Vibrio spp. (V. fischeri and V. harveyi), closely related γ-

 52 
 



 

proteobacteria similar to E. coli. A gacA (uvrY) deletion mutant of V. fischeri exhibit 

no detectable luminescence in liquid culture. Addition of known inducers of 

luminescence, specific AHL (AI-1), marginally complemented the defect.   The 

defect was neither due to reduced synthesis of AHL indicating that the defect in 

luminescence in the gacA (uvrY) mutant was affected by AHL-independent 

mechanism.  However, unlike V. fischeri, E. coli does not have a known functional 

AHL synthesis pathway which UvrY orthologues are known to regulate.  Secondly, 

we also detect impairment in the ability of an uvrY mutant to swarm in semisolid 

agar.   Swarming motility is dependent on coordination among members of a group of 

bacterial species and is dependent on QS.  Thirdly, UvrY also have a characteristics 

LuxR type domain commonly present in proteins involved in Quorum Sensing.   

Thus, we hypothesized that, UvrY (GacA) and BarA may be regulating AI-2 

synthesis.    

 

The AI-2 synthesis was maximum in early stationary-phase and declined thereafter as 

reported earlier even though the luxS expression remained constant at a basal level.  

In the barA::kan mutant, there was a ~ 10-fold reduction of AI-2 in mid-exponential 

phase and ~ 6-fold reduction in early stationary phase. The AI-2 accumulation could 

be restored by carrying the barA gene in trans.  Similar result was obtained in an 

uvrY::cm mutant strain, with ~8-fold and 3-fold reduction of AI-2 in mid-exponential 

and early early stationary phase respectively.  The background levels of AI-2 was 

slightly higher than the in the barA mutant.  The level of AI-2 was upregulated atleast 

4-fold at the entry into stationery phase which suggested a possible post-
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transcriptional regulation.  CsrA affects stability of various target transcripts and here 

we showed that mutation of csrA indeed increased transcript stability of luxS mRNA.  

Furthermore, computational prediction of luxS leader indicated a stem loop occluding 

the RBS site and contains a conserved GGA bindite site in the loop of the hairpin.  

Gel shift analysis furthermore demonstrated that the effect of CsrA is direct.   The 

involvement of small RNA in this regulation is also another possibility as an hfq 

mutant displayed reduced expression of luxS.   

 

This study shows in E. coli, the BarA/UvrY/CsrA signaling cascade regulates luxS 

expression and consequently AI-2 accumulation in extracellular environment in a 

growth phase dependent manner.  The BarA-UvrY TCS regulate carbon metabolism 

and switches between gluneogenic pathways for efficient adaptation through the 

activity of CsrA.   Here we demonstrate a similar effect by the BarA/UvrY TCS in 

regulation of luxS expression and AI-2 accumulation.  The regulation of luxS by the 

signaling cascade suggests a balance between synthesis and uptake of AI-2 (Figure 

12A).  AI-2 is a 5-carbon moiety furanone, which we propose to be efficiently 

utilized by the Csr system at the onset of stationery phase.  In this model, at low cell 

density CsrB and CsrC is not optimally expressed and increasing free CsrA leads to 

tight repression of luxS.  The expression of small RNA CsrB and CsrC is under 

positive control of UvrY.  However with increasing cell population density, there is 

an increase in transcription of small noncoding RNA CsrB and CsrC, which titrates 

free CsrA in the cell.   This in turn relieves the repression of luxS and consequently 

AI-2 accumumulation is increased at exponential phase when cells grow rapidly and 
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peaks at the entry of stationery phase.  Once cells reach into the stationery phase, Lsr 

transporter is induced which internalizes the AI-2 from extracellular environment. 

CsrA also stimulates Lsr transporter activity starting from entry into stationery phase.  

CsrD an endonuclease which facilitates RNAse E mediated decay of CsrB and CsrC 

small RNA.  Once these small RNAs are decayed, the level of free CsrA once again 

increases in the cell, presumably deep into the stationery phase. Thus once the cells 

enter into the stationery phase, CsrA represses luxS, and thereby reducing the 

synthesis of AI-2 while simultaneously induces Lsr transport system and thereby 

increases uptake of AI-2 into the cell.  Thus, in a csrA mutant higher level of AI-2 is 

detected in extracellular environment which falls exponentially deep into the 

stationery phase due to induction of Lsr transporter.  This could mean that AI-2 could 

be used as a nutrient once the cell enters in the stationery phase while balancing the 

flow of carbon by the global regulatory protein, CsrA.  Alternatively, AI-2 induced 

genes have to be controlled in a population dependent manner and may not 

necessarily remain induced deep into the stationery phase. In nutshell, the BarA-

UvrY TCS alongwith Csr system regulates luxS expression both at transcriptional and 

post-transcriptional level.   This suggests a complex interplay of the BarA/UvrY/Csr 

in regulation of luxS expression, AI-2 synthesis and uptake in E. coli (Figure 12B).   

 

Metabolic adaptation is achieved via a network of different signals at different stages 

of growth and adaptation modulating gene expression.  These signals might be 

interacting with one or more sensor kinases that direct gene transcription for 

adaptation in a given niche efficiently. Although further experiments are needed to 
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understand exact basis and nature of BarA/UvrY and CsrA in the methyl cycle-

regulation, one central outcome of these studies indicate that BarA/UvrY TCS 

regulates E. coli metabolism, communication activities, and nutrient acquisition, an 

underlying basis of bacterium-host signaling recognition and pathogenesis. 
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Figures and Tables 

Figure 6.  Growth curve of the barA, uvrY, csrA and luxS mutants.  The mutants 
displayed growth defect which could be restored upon trans complementation. 
Mutation in luxS displayed a marked reduction in growth rate. The growth defect was 
more pronounced in TB or minimal media.   
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Figure 7.  Exogenous accumulation of AI-2 in barA, uvrY, csrA and luxS mutants. 
The barA or uvrY mutants displayed a reduced accumulation of AI-2 whereas the 
csrA mutant displayed a conincidental increase in AI-2 activity at the entry of 
stationery phase.  Furthermore, Kd of uvrY and csrA mutant was also reported and 
defined as one half-the volume of cell free supernatant to reach light saturation.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

0

100

200

300

400

0 4 8 12 16 20 24

● Wt
□ ΔbarA
■ ΔbarA/p-barA

0

100

200

300

400

0 4 8 12 16 20 24

Time (hrs)

A
I-

2 
ac

tiv
ity

 in
 c

ul
tu

re
 fl

ui
ds

● Wt
□ ΔuvrY
■ ΔuvrY/p-uvrY

Time (hrs)

0

100

200

300

400

0 4 8 12 16 20 2

● Wt
□ ΔluxS
■ ΔluxS/p-luxS

Time (hrs)Time (hrs)
 
 
 
 
 
 
 
 
 
 
 
 

4

0

300

600

900

1200

0 4 8 12 16 20 24

● Wt
□ ΔcsrA
■ ΔcsrA/p-csrA

A
I-

2 
ac

tiv
ity

 in
 c

ul
tu

re
 fl

ui
ds

0 30 60 90 120 150 180

0

1500

3000

4500

■ BB152
● Wt
▲ ΔcsrA
▼ ΔuvrY

R
el

at
iv

e 
L

ig
ht

 U
ni

ts

Kd 3.6

Kd 9.9

Kd 18

Kd 24.1

 58 
 

Volume of CFS (μl)



 

Figure 8.  Effect of mutation of the barA, uvrY or csrA genes on the activity of single 
copy luxS::lacZ transcriptional fusion.  Mutation in barA or uvrY demonstrated 
reduced activity of luxS::lacZ reporter activity, whereas csrA mutant displayed an 
increased reporter activity, both of which could be restored to wild type level upon 
complementation.   
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Figure 9.  Regulatory interaction of CsrA with luxS transcript.  

A.  Transcript stability of luxS mRNA. Rifampicin was added to block transcription 
and luxS message stability was assayed for 10 minutes.  Mutation in csrA showed 
relatively stable message (4.75 minutes) as compared to the wild type (1.25 minutes).  
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B.  Predicted structure of luxS mRNA leader. The most stable predicted structure 
indicated two hairpins, one of which occludes the ribosome binding site with a GGA 
binding site in the loop of the hairpin.  
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C.  Gel Mobility shift analysis of CsrA-luxS leader interaction.  5’- end labeled luxS 
leader transcript was incubated with CsrA at concentration as shown below each lane. 
Positions of free and bound RNA are shown. 
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Table 2.   Effect of mutation of the BarA/UvrY/CsrA signaling system on Lsr 
transporter activity.  Mutation in csrA showed approximately four-fold repression of 
lsr promoter activity and reduced expression of lsrR and lsrA.   
 

  

 

 

 

 

 

 

 

Relative mRNA level                          β - galactosidase
(Miller units)

lsrk lsrR lsrA plsr::lacZ

wt 100 100 100 40.8 + 3.5

barA::kan 98.0 + 2.0      95.0 + 1.5     96.0 + 1.0 55.1 + 3.0

uvrY::cm 83.0 + 1.5      34.0 + 1.5     90.0 + 1.0 58.6 + 3.5

csrA::kan 83.0 + 1.5      45.0 + 1.5     44.0 + 1.5 10.3 + 1.5

Relevant Genotype
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Figure 10.  Effect of mutation of hfq on luxS::lacZ reporter activity.  Mutation in hfq 
reduced reporter activity at the entry of stationery phase and subsides once deep into 
stationery phase.  The effect could be restored on complementation.  
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Figure 11.  Impairment of swarming motility upon loss of uvrY on semisolid agar.  
The diameter of the swarming colony was represented by the underlined bar.  
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Figure 12.   Proposed regulatory circuit of AI-2 synthesis and uptake in E. coli.  

A.  Regulation of AI-2 activity by balance of carbon flow. At low cell density the 
CsrB and CsrC is not optimally expressed leading to a tight repression by CsrA on 
luxS.  However expression of CsrB and CsrC increases with population density and 
consequent titration of free CsrA leads to derepression of luxS and more accumulation 
of AI-2 in the extracellular environment.  CsrA also induces the Lsr transporter 
involved in AI-2 uptake and thereby balances the flow of carbon at the entry into 
stationery phase.  
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B.   QS circuit in Escherichia coli.  The BarA/UvrY TCS regulates luxS expression 
positively at transcriptional level whereas CsrA negatively regulates luxS post-
transcriotionally.   A possible role of quorum sensing regulatory RNA exists in the 
circuit.  The sensing stimulus of the BarA/UvrY TCS is unknown at the moment.  
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Chapter IV:  Biofilm formation in Uropathogenic Escherichia 
coli is influenced by the transcriptional regulator, uvrY in a type 
1 pilus dependent manner 
 
Abstract 

Biofilm formation is an important virulent determinant in Urinary Tract Infections.  

Uropathogenic E. coli are the principal causative agent in community and hospital 

acquired UTI.  Several factors contribute to biofilm formation among which Type 1 

pili, Pap pili, production of exopolysaccharides, flagellar associated motility are 

critical in E. coli.  We studied the role of transcriptional regulator uvrY in biofilm 

formation in Uropathogenic Escherichia coli.  Absence of uvrY cause reduced 

expression of fimA and papA, fimbrial major subunit of Type 1 Pilus and Pap pilus 

respectively. Using PCR Inversion Assay we demonstrate that uvrY  regulates phase 

variation of Type 1 pilus.  Furthermore, acidic exopolysaccharide accumulation and 

the ability to swarm are also being impaired by deficiency of the regulator.  Finally, 

uvrY mutants demonstrate a lack of colonization in kidneys and bladders in an 

ascending model of UTI.  Overall, the effect of uvrY on biofilm formation seems to 

be multi-factorial and might play a critical role in adaptation and colonization of 

UPEC.  
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Introduction 

The ability of bacteria to adapt and colonize is critical for survival and persistence of 

bacteria in a dynamically changing environment. Bacterial adaptation to new 

environment relies on a signaling cascade called two-component regulatory systems 

(TCS).   A two-component system consists of a sensory protein kinase (HPK) and a 

cognate response regulator (RR).  The sensor kinase is involved with detection of 

environmental cues which is transduced to the response regulator.   The response 

regulator, in turn, responds by appropriate modulation of gene expression.   

Around thirty TCS have been recognized in Escherichia coli out of which the BarA-

UvrY two-component regulatory system have been shown to be strongly linked with 

virulence.   In this system, BarA is the sensor kinase and UvrY is the cognate 

response regulator.  Several orthologues of this TCS are present in diverse species of 

γ−division of proteobacteria including BarA-SirA of Salmonella, GacS-GacA of 

Pseudomonas, VarS-VarA of Vibrio and ExpS-ExpA of Erwinia,  all of which have 

been demonstrated to be strongly involved with virulence.   

 

Biofilms contribute up to 80% of chronic inflammatory diseases including urinary 

tract infections (UTI), cystic fibrosis, otitis media, colitis, conjunctivitis, dental 

plaque, endocarditis, peridontitis, and prostatitis [88].  Presence of biofilms in 

indwelling medical devices (such as urinary catheters) and other devices in healthcare 

settings often results increase incidence of nosocomial infections.  Uropathogenic E 

coli (UPEC) are commonly associated with community and hospital acquired Urinary 

Tract Infections (UTI).  A critical determinant of successful colonization of UPEC is 
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the ability to form biofilms.  In E. coli several adhesins such as Type 1, 

exopolysaccharide accumulation and flagellar associated motility is critical for 

biofilm formation.  In this study, we decided to investigate the contribution of the 

response regulator uvrY in Uropathogenic Escherichia coli by evaluating pilus 

expression, exopolysaccharide accumulation and flagellar motility that are critical for 

biofilm development. 

 

Materials and Methods 

 
Bacterial Strains, Plasmids, Primers 

All bacterial strains, plasmids, primers are listed in Tables 6 and 7.  

 

Cloning of functional uvrY gene   

Relevant genes were disrupted in UPEC CFT073 using λ Red recombinase system. 

The uvrY gene was amplified with 178 bp 5’ sequence just before the divergent yecF 

promoter using primers OSM 64 5’ 

CCCGAATTCATAATTTCATCGTAGGGCTTACTGTGA 3’ and OSM 65 5’ 

CCCCTGCAGATGCACGCCTGGCTGGGTTAC 3’.  The amplified product was 

cloned using TOPO-TA cloning method into vector pCR2.1 (Invitrogen). Few clones 

were sequenced to confirm intact amplification. A 700-bp BamH1-EcoRV fragment 

was cloned within the BamH1-EcoRV site of pBR322, with the open reading frame 

of the uvrY gene oriented in the same direction as the tet gene in the vector. 

 67 
 



 

Cloning of uvrY gene for over expression and purification of the UvrY protein 

The uvrY gene was cloned at BamH1-Pst1 site of the multiple cloning sites in pQE30 

(N- terminal 6x His) vector.  The clones were sequenced and checked for the 

presence of His-tag sites and subsequently transformed in pREP4 for expression 

studies and protein purification. The 6His-Tag UvrY have been purified on a small 

scale. 

 

Biofilm Assays (Growth Conditions) 

Overnight cultures of Escherichia coli in LB broth with appropriate antibiotics were 

subcultured (1:100) in 50 ml LB broth with necessary antibiotic and grown at 37oC 

for 1 hour. The cultures were then transferred to Petri-plates (Falcon, 150X15m) 

containing 8-12 sterile borosilicate cover slips and in microtiter plates.  The plates 

were incubated at room temperature.  Media was periodically removed every 24 

hours, washed with 20 ml of 1X Phosphate buffer saline (PBS) (pH 7.4) and fresh LB 

media with antibiotics were added.  

 

Crystal Violet Staining  

Coverslips were taken out of the Petri-plate and washed thoroughly by dipping in 1X 

PBS (pH 7.4) buffer. They were taken in fresh Petri-plate (96X16mm) and dry-fixed 

for 1 hour at 60°C. 10 ml of 0.1% CV (SIGMA Chemicals, MO, USA) in 

isopropanol: ethyl alcohol: PBS (pH 7.4) (1:1:18) were added to the coverslips in the 

Petri-plates and were allowed to stand at room temperature for 15 minutes. Excess 

crystal violet was  then removed by washing cover slips at least  twice with 10 ml of 

1X PBS (pH 7.4) or till the washings were clear. The coverslips were allowed to dry, 
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broken with a glass cutter and taken in 1.5ml microfuge tubes. 1 ml of 33% acetic 

acid was added to each tube to dissolve the crystal violet dye and the O.D. was 

measured at 570 nm with required dilution.  The same assay was also done in glass 

and PVC microtiter plates. 

 

Ruthenium Red Staining   

The bacteria were grown under the same conditions as previously described in 

150X15mm Petri-plates with sterile cover slips at the bottom of the Petri-plates. Two 

cover slip per plate was removed carefully, washed by dipping in 1X PBS (pH 7.4) 

buffer in a beaker, fixed at 60°C for 1 hour and placed in a well of a 6 well tissue 

culture plate. 1 ml of stain I (0.15% ruthenium red-0.5% glutaraldehyde dissolved in 

0.1M cacodylate buffer) was added to each of the wells and allowed to stand at room 

temperature for 1 hour. The stain I was removed and 1 ml of stain II (0.05% 

ruthenium red-0.5% glutaraldehyde dissolved in 0.1M cacodylate buffer) was added 

and allowed to stand at room temperature for 2 hours. Stain II was removed, washed 

five times with 1 ml of 0.1M cacodylate buffer and observed under light microscope 

at either 40X or 100X magnifications. 

 

Assays for fim switch orientation  

The assays for orientation of fim switch was done as earlier described .  In brief, after 

isolation of chromosomal DNA, equal amount of genomic DNA was used as a 

template to determine the “ON” phase and “OFF” phase respectively by using two 

sets of primers.  The amplified fragments were then run in 2% agarose gels and 
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visualized by ethidium staining.  The “ON” and “OFF” population were represented 

by lower band and upper band respectively.  The primers were listed in Table 6.  

 

Hemagglutination Assay  

Relevant strains were grown in LB with appropriate antibiotic as necessary 

(ampicillin 100, kanamycin 50, and chloramphenicol 20) without shaking for three 

passages (48 hrs each).  The assay was carried in a 96 well round bottom plates 

(Costar, Corning, NY) in triplicates.  Briefly, 50μl of PBS were added with and 

without 50mM Mannose in separate lanes of the plate and serial dilution of each 

culture is attained by addition of 100 μl of each cultures, carefully mixing, and then 

transferring 100 μl of the mix into the next well.  The dilution is performed in a 

similar manner till the second last lane. 100μl of mix from the last lane were removed 

from the last lane to achieve appropriate dilution ratio.  Finally, 50μl of human 

erythrocytes (1%) were added to each lane from higher to lower concentration of cells 

to permit more time to visualize a clear agglutination.   The resultant final volume of 

each lane then becomes 100 μl.  The assays were tested on type O+ human, sheep and 

gunieapig blood (Lampire Biological Laboratories, Pipersville, PA). The maximum 

dilution of cells that gives a visible agglutination is reported as the titer.  The plates 

were incubated on ice and appropriate titers were visualized on a mirror and 

photographed.  
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RNA stability assay  

Total RNA was isolated at an OD600 at which CsrA is maximally expressed. 

Rifampicin (Sigma Aldrich) was then added to the culture medium at a final 

concentration of 500 μg/ml to inhibit transcription initiation. Rifampicin prevents 

initiation of new transcripts by binding to the β subunit of RNA polymerase. Samples 

were then removed at 2.5, 5, 7.5 and 10minutes after addition of rifampicin. Amount 

of remaining luxS mRNA was calculated from the intensities of the bands by 

normalizing with intensities of icd. The cells were harvested at 14,000 rpm in a 

microcentrifuge and frozen in solid CO2-ethanol, with no more than 2 min allowed to 

elapse between sampling and freezing. The level of fimA mRNAs declined relatively 

quickly in a csrA mutant strain as compared to a wild type.   

 

Swarming Assay   

Strains were grown under static conditions in LB broth with relevant antibiotics for 

three passages of 48 hours each.   The media for swarming were LB with 0.6% Agar 

(wt/vol) with 0.5% (wt/vol) glucose.  Each experiment was conducted in triplicates.  

Equal number of cells as adjusted by optical density and by colony forming units was 

used for inoculation into the middle of the soft agar plates.  Strains were incubated 

overnight in 37oC.  The diameter of the spread of colonies was measured and 

photographs were taken with an Olympus C765 Ultra Zoom camera.  
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Confocal Scanning Laser Microscopy (CSLM)    

Coverslips were taken out, washed by dipping in 1X PBS (pH-7.4). They were taken 

in 35 X 10mm tissue culture dish and gently covered with SYTO 9, a fluorescent 

nucleic acid stain that is a part of LIVE/DEAD® BacLightTM Bacteral Viability Kits 

(Molecular probes Inc, Eugene, OR), after diluting the dye four times with water. 

They were incubated in dark at room temperature for 15 minutes. The coverslips were 

washed thrice with 1ml of 1X PBS (pH-7.4), and mounted on slides. The biofilms 

were viewed using a 40X dry objective using a confocal scanning laser microscope 

(CSLM) which is a Zeiss inverted microscope, and a dual laser-scanning confocal 

imaging system equipped with a 100mW argon laser and a 5mW krypton argon laser. 

The thickness of the biofilms was measured from the orthogonal sections of the 

images formed by Z-stack scanning. 

 

cDNA synthesis, quantitative PCR, and quantitative RT-PCR   

Quantitative polymerase chain reaction (qPCR) and quantitative real-time polymerase 

chain reaction (qRT-PCR) were performed as per the manufacturers’ 

recommendations.  Total RNA was isolated using 4ml of liquid culture is stopped 

with 0.9ml stop solution. (Phenol::EtOH - 1::19).  Total RNA was isolated in 

accordance with RNeasy mini protocol (Qiagen, CA) in a final 50μl volume in water.  

Lyzozyme was used in a final concentration of 1mg/ml.  The integrity of RNA as well 

as possible DNA contamination was checked in 1.5% formaldehyde gels and 

spectrophotometrically determined.  Total RNA was subjected to a rigorous DNase 

treatment to remove any possible DNA contamination (Turbo DNA free, Ambion).   

A second visual inspection in 1.5% formaldehyde gels ensures RNA is free from any 
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possible trace contamination DNA and OD260/280 ratio were determined for 

subsequent cDNA preparation.  For qPCR, the first-strand cDNA was synthesized 

from 5μg of total RNA using Moloney Murine Leukemia Virus reverse transcriptase, 

Superscript II RnaseH- (Invitrogen, Carlsbad, CA) and 50 ng of random hexamers 

(Invitrogen, Carlsbad, CA) as primers according to manufacturer’s instructions.  The 

quality of cDNA synthesis was determined by electrophoresis in 1.2 % agarose gels 

and quantitation using a Nanodrop ND-1000 spectrophotometer (Nanodrop 

Technologies, Wilmington, DE).  Relevant Internal gene-specific primer pairs were 

designed with a control 16S rrnA gene-specific primers in a 25 μl total reaction 

volume with Taq polymerase in a series of tubes, using a Biometra T-Gradient PCR 

instrument (Biometra, Horsham, PA) for 30 cycles.  At various cycle intervals, a 

gene-specific and a control reaction tube was removed.  Five μl of the reaction 

products were resolved separately in a 1.2% agarose gel, visualized by ethidium 

bromide staining, and the double-stranded DNA (ds-DNA) product intensities 

quantitated using a BioRad Gel Documentation system (BioRad, Hercules, CA).  The 

linear range of amplification for the rrnA gene was from 5-15 cycles in all 

backgrounds, while that of the luxS and the pfs genes were from 12-22 cycles in the 

wild-type strain, and appeared much later cycles for the mutants.  The amplification 

product produced only a distinct 300 bp ds-DNA band.  A qRT-PCR reaction was 

performed on the above set of samples under identical reaction conditions in a Light 

Cycler (Roche, Indianapolis, IN) with SYBER Green-1 PCR Master Mix.  The 

fluorescence signal from SYBER Green intercalation was monitored to quantify 

double-stranded DNA product formed after each PCR cycle. 
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Mouse Challenges 

CBA/J mice were anaesthetized in a chamber by isofluorane (a halogenated volatile 

anaesthetic which induces and maintains general anaesthesia by depression of the 

central nervous system and resultant loss of consciousness).  The innoculum volume 

was carefully adjusted so that there is no forceful inoculation into the kidneys.  

Transurethral inoculation (Harvard pump) involved administration of catheter all the 

way to the lumen of the urinary bladder.  Bacterial strains were grown on 2 large agar 

slants and resuspended in total of 5ml PBS ~ 2x109 CFU/ml. One- half bladder and 

kidney used for histological purposes and one half for spiral plating.  After 3 days the 

mouse were sacrificed, and harvested for the presence of bacteria in kidney and 

bladder.   The mice were handheld and pressed in their neck and abdomen region for 

collection of urine. The urine so collected was weighed, and dissolved in appropriate 

volume of PBS. 

 

Results 

 
Effect of uvrY on biofilm production in UPEC   

A lack of uvrY shows marked decrease in biofilm production in UPEC CFT073 on 

glass and PVC surfaces (Figure 13).  Part of the downstream effect of the regulator 

uvrY in biofilm formation is mediated by the global regulator, CsrA which represses 

PGA, a basic adhesin. However, complementation of CsrA does restore the uvrY 

mutant phenotype indicated that the effect of uvrY in mediating attachment to abiotic 
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surfaces could be due to additional regulation that might be affected independently of 

CsrA.  

 

Effect of uvrY on expression of Type 1 and Pap pilus  

Type 1 pilus is absolutely critical for biofilm formation in Escherichia coli. 

Importantly, Type 1 pili have been implicated in the colonization of the bladder in 

UTI.  On the other hand, Pap pili (Pyelonephritis associated pilus) commonly 

associated with UPEC are important for colonization in the kidneys.   To determine 

whether uvrY have an effect on expression of these adhesins, we tested the expression 

of fimA and papA, the major fimbrial subunit of Type 1 and P pilus respectively by 

semi-quantitative and Real Time RT-PCR.   We have observed both fimA and papA 

being down regulated in the process (Figure 14).  This corresponds to an ability to 

colonize the bladder and kidneys respectively.  

 

Effect of uvrY on fim switch orientation of Type 1 pilus 

Expressions of fimbrial genes are carefully coordinated as it utilizes a lot of cellular 

resources.  An important attribute of Type 1 fimbrial expression is its ability to switch 

between “ON” and “OFF” phase characterized by fimbriated and afimbriated phase 

respectively.  While the ON phase mediate attachment to host cells by interaction 

with surface receptors, the OFF phase shows cell-surface receptors, the afimbriated 

OFF phase may be equally advantageous and might aid invasion through the viscous 

mucus layer that envelop the intestinal epithelium or evasion from phagocytosis by 

macrophages.  The switch between OFF and ON is mediated by a 314-bp invertible 

element flanked by 9bp long inverted repeats located immediately upstream to fimA, 
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encoding the major fimbrial subunit.   The invertible element contains the fimA 

promoter element and the orientation of the promoter switches ON or OFF the 

transcription of the Type 1 fimbriae.   Two recombinase termed fimB and fimE, apart 

from other regulators are involved in the regulation of the genetic switch.  The FimB 

can switch from between ON and OFF in either direction, FimE preferentially 

switches from ON to OFF position.   However, environmental signals and DNA 

topology also plays a role in this orientation of the switch.  Mutation in uvrY switches 

OFF the fimbrial population and restores the ON population upon complementation.  

Furthermore, both the recombinase fimB and fimE have reduced expression on loss of 

uvrY.  This could be due to a change in DNA topology upon interaction with the 

upstream regulatory region.  However the downstream effect by CsrA also switches 

OFF the circuit, but unlike uvrY doesn’t restore the ON population and instead the 

OFF population is even further improved.  The fimA message seems to be unstable in 

absence of CsrA, suggesting post-transcriptional regulatory mechanisms affecting 

type 1 pilus (Figure 15).   

 

Effect of uvrY on exopolysaccharide accumulation    

The effect on exopolysaacharide accumulation is further demonstrated by Ruthenium 

Red dye staining.  Ruthenium Red Stain stains the acidic exopolysaccharides.  A lack 

of uvrY shows reduced accumulation of exopolysaccharides which could be 

complemented (Figure 16).   Exopolysaccharide promote adhesion to solid surfaces, 

cell-cell adherence, and stabilization of biofilms structure in E. coli [49, 85, 194, 

205].  Ruthenium red stain, a stain specific for polysaccharides and often used in EPS 

detection, was used to stain biofilms formed on glass slides [206].   It is known that 
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BarA-UvrY TCS regulates the expression of CsrA protein, a major player in 

regulating biofilms formation and EPS production [194]. However, the role of LuxS 

in the process is not clear; although it appeared that something in the culture free 

supernatant regulated by LuxS was contributing to the adhesion and biofilms 

formation. Ectopic expression of uvrY led to ruthenium red stainable nuclei in the 

biofilms, indicating that EPS, among other factors, contributed to enhanced biofilms 

formation.  However, over expression of luxS did not exhibit similar intense 

ruthenium red-stainable nuclei, although there was considerable EPS production as 

seen under a microscope.  Interestingly, the average depths of the films were over 40 

µm in either case (not shown).   

 

Regulation of genes involved in attachment 

Attachment and biofilms formation in a fim background indicated factors other than 

type 1 fimbriae as initiating biofilms. Apart from EPS, type 1 fimbriae and antigen 43 

have been implicated in initial attachment and biofilms formation [207-210].  Neither 

did ectopic expression of luxS did not exhibit EPS producing nucleated bacterial 

clusters.  Since global gene expression in E. coli biofilms is known [208], the 

expression of  flu encoding (Ag 43) assisting biofilms formation, was determined in 

various background.  Using quantitative RT-PCR on total RNA isolated from various 

cultures, the level of flu mRNA was down regulated in both barA and uvrY mutants.  

The level was 26% less than wild type in the barA mutant and 34% less (more than 2 

fold lower than wild type) in the uvrY mutant (data not reported). 
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Confocal Image Analysis   

Mutation in uvrY reduces thickness of biofilms significantly. The thickness of the 

biofilms in the wild type and uvrY complemented strains were approximately 60 µm 

in depth whereas that in an uvrY mutant cells are almost as in a monolayer as average 

E. coli length is 2-3 µm (Figure 17).  As a control, uvrY also restores biofilm 

formation in a fim strain suggesting that fim independent pathways also controlled 

by uvrY. Loss of uvrY was also marked with poor microcolony formation and reduced 

thickness.   Scanning electron micrographs of mutants indicated that a deletion of 

either barA or uvrY led to a decreased visible cell surface appendages and 

extracellular coatings traditionally seen on a E. coli saturated culture or taken from 

solid surfaces (not shown).  The surface architecture of the mutant bacteria indicated 

that the adhesion defect may be due to a defect in the pili and surface adhesins.   

 

Effect of uvrY on swarming motility 

One commonly surface associated behavior controlled in a population dependent 

manner is Swarming Motility, a process of flagellar dependent locomotion.    In E. 

coli K-12, flagellum is critical for initial attachment and overcoming repulsion 

between similarly charged bacterial and inert surfaces [211]. In E. coli K-12, the 

transcription of flagella genes and exopolysaccharides are oppositely regulated.  It is 

thought that flagella plays a role in motility and when bacteria become associate with 

a surface, flagella genes are shut off while exopolysaccharide synthesis were up 

regulated.  Mutation of uvrY impairs the ability to swarm on a semi-solid agar plates 

in presence of glucose (Figure 18). The swarming ability is restored upon 

complementation.   Semi-quantitative RT-PCR and Real time PCR displayed reduced 
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expression of both flhD and flhC, the expression of both could be increased upon 

complementation.  

 

Mutation of uvrY exhibits poor colonization in ascending model of UTI 

The ability of uvrY mutants were also tested in an ascending mouse model of UTI. 

Lack of uvrY displayed a reduced ability to colonize either in kidneys or bladder 

(Figure 19). The ability to persist in urine is also significantly impaired.   

 

Discussion 

Biofilm formation requires a modulation of gene expression facilitating initiation, 

attachment and subsequent maturation.  In E. coli, biofilm development is governed 

by several factors including Type 1 pilus and flagellar motility.  The initial process of 

attachment is mediated by several adhesins of which Type 1 and Pap Pili play a 

critical role in colonization in Urinary bladder and Kidneys respectively.  We tested 

the involvement of a model two-component regulatory system, the BarA-UvrY TCS 

in Uropathogenic E. coli in an ascending model of Urinary Tract Infections.  The 

ability to cause urinary tract infections by UPEC relies on its ability to form 

intrabacterial biofilms in the bladder, in the form of pods in a polysaccharide based 

matrix.  Such intrabacterial communities (IBC) have been demonstrated to express 

type 1 pilus, Ag43 and polysaccharides.  We have seen uvrY mutants do not persist 

very well in bladder or kidneys as compared to the corresponding wild type.   

Hence a mutation in uvrY might affect persistence in bladder/kidney in several 

possible ways:  Down regulation of pilus, both type 1 and pap pilus would affect 
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adhesion in bladder and kidney respectively and the ability to form biofilms in these 

organs.  Specifically, bladder mucosal cells express Tamm Horsefall protein, which 

interacts with Type 1 pilus and other adhesins of UPEC for internalization.  A 

mutation in uvrY predisposes the fim switch to OFF phase further indicate that 

afimbriated bacteria are not able to colonize the bladder as well as the fimbriated wild 

type.  

Initial stages of biofilms for successful colonization in the bladder could thus be 

prevented.  Secondly, a mutation in uvrY in UPEC would result in hypersensitivity to 

hydrogen peroxide.  Even biofilms that are formed by an uvrY mutant might be 

subsequently cleared due to the oxidative burst by the PMN and subsequent 

phagocytosis. Wild type biofilms (IBC) in contrast would be difficult to penetrate due 

to polysaccharide based matrix and protective uroplakin.  Thirdly, Quorum Sensing 

might be inhibited which would block cooperation, coordination and appropriate gene 

expression among members of the biofilm community (unpublished results).  This 

would result in alteration of biofilm phenotype, if not a weaker biofilm. Interestingly, 

biofilms formed by QS mutant display a greater sensitivity to hydrogen peroxide in 

Pseudomonas spp.  Finally, flagellar motility might also play a key role in ascending 

model of UTI, even though flagellar motility may not be absolutely critical for 

virulence. In fact, studies have shown down regulation of flagella in UPEC during 

infection, most likely to avoid triggering of TLR-5 type mediated innate immune 

responses resulting in IL-8 production.  However, transient expression of flagellar 

motility is thought to be important for initial colonization of UPEC in urinary tract. 

Co-challenge experiments with wild type UPEC and flagellar mutants have 
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demonstrated that flagellar motility is important for colonization against a strain 

which lacks such traits and thereby contribute to fitness of UPEC.  Thus, mutation in 

uvrY might affect stages in colonization/intracellular biofilm formation 

(IBC)/fitness/persistence of UPEC in the urinary tract.  

On the other hand, Hospital acquired UTI are widespread due to the ability of bacteria 

to adhere and form biofilms on the abiotic surface of  indwelling medical devices 

such as catheters, renal dialysis shunts and prosthetic valves. A significant proportion 

of UTI (more than 90%) under clinical settings is catheter related and designated as 

“Catheter-Associated Urinary Tract Infection” (CAUTI).  CAUTI have been reported 

to increase mortality and correlated with increased mortality in immunocompromised, 

debilitated and diabetic patients. With that in mind, in vitro test for biofilm formation 

with UPEC strains on abiotic surfaces such as glass and PVC were performed.  
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Figures and Tables 

 
Figure 13.  Effect of mutation of uvrY in biofilm formation on abiotic surfaces.  
Figures A and B represent biofilm formation as detected by crystal violet staining 
after 24 hours in glass and PVC microtiter plates respectively.  Figure C shows 
biofilm biomass production over a period of 48hours.   
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Figure 14. Mutation in uvrY reduced expression of fimA and papA, major fimbrial 
subunit of type 1 and pap pilus respectively.   Semi-quantitative RT-PCR exhibiting 
reduced expression of fimA and papA upon loss of uvrY.  The expression could be 
restored upon complementation.   

 
 

fimA

papA

rrnA

Wt ΔuvrY
ΔuvrY
/p-uvrY

fimA

papA

rrnA

Wt ΔuvrY
ΔuvrY
/p-uvrY 

 

 

 

 

 
 
 

 83 
 



 

Figure 15.  Mutation of uvrY affects fimbrial switch orientation and expression. 

A. Inverse PCR to determine orientation of the “fim switch”. Two independent 
genomic DNA isolates from each strain is used for amplification reaction for 
determining switch orientation.  
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B. RT-PCR of the recombinase fimB, fimE and ipuA demonstrating that while the 
expressions of fimB and fimE recombinases were downregulated ipuA doesn’t have 
much change in expression on mutation of uvrY.   
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C.  CsrA stabilizes fimA transcript.  Mutation in csrA decreases fimA mRNA half life 
by 5 minutes.  Rifampicin was added when CsrA was optimally expressed.  
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Figure 16.  Mutation of uvrY reduces acidic exopolysaccharide accumulation. The 
arrow head indicate the accrual of acidic exopolysaccharide.  
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Figure 17.  Confocal images exhibit reduced biofilm thickness in uvrY mutant.  
Mutation of uvrY leads to a significant reduction in biofilm thickness which could be 
restored upon complementation.  The experiment is done in triplicates for each strain.  
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Figure 18.   Effect of mutation of uvrY on swarming motility. 

A. Impairment of swarming motility upon loss of uvrY in CFT073.  Swarming 
attributes were restored on complementation.  
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B.  Semi-quantitative and real time RT-PCR demonstrating reduction in flhD 
expression upon mutation of uvrY in CFT073.  flhC also displayed a similar change in 
gene expression (not shown) 
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Figure 19.   Mutation of uvrY reduces colonization in an ascending model of UTI. 
Mutation in uvrY displays poor colonization in an ascending model of Urinary Tract 
Infection.  The open symbol represents the wild type whereas the filled symbols 
indicate the uvrY mutant.   
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Table 3.  Mutation in the BarA/UvrY TCS in APEC strain χ7122 leads to lower pilus 
expression, exopolysaccharide production, and increased susceptibility to oxidative 
stress.  For real-time RT-PCR, Threshold cycle (CT) values were determined for 
various amplification products. The ΔCT values between samples were normalized to 
those for the rrnA product, ΔCT = (CT of mutant _ CT of rrnA) _ (CT of wild type _ CT 
of rrnA) and fold difference in the initial concentration of each transcript is 
determined as 2-ΔΔCT. The values are the means with standard deviations of the mean 
for two independent experiments in triplicates. The wild type was assigned a value of 
1.0. The downward arrow indicates down regulation compared to the wild type.   

The hydrogen peroxide sensitivity was measured by putting a sterile filter paper disc 
soaked with 1% hydrogen peroxide on top of freshly overlaid bacteria (5 log10 CFU 
bacteria) in soft agar. The results are mean diameters of inhibition after 18 h of 
incubation at 37°C with standard deviations of the means. 
For EPS determination, bacteria were grown on LB agar overnight at 37°C, harvested 
by scraping, and resuspended in 2.5 ml of PBS. The cell number was determined 
from the turbidity at 600 nm.  EPS was separated from the bacteria by vortexing each 
sample for 10 min, followed by ultracentrifugation of the bacterial suspension at 
160,000 g for 60 min at 4°C. The supernatant was removed and dialyzed in double-
distilled water for 3 h in a membrane with a 6-kDa cutoff. Uronic acids are common 
constituents of bacterial EPS.  Uronic acid produced by various bacterial strains was 
determined by a colorimetric method, using pure uronic acid as a standard, and 
expressed as units per milligram of protein 
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ΔuvrY

fimA papA
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Table 4.   Mutation in barA and uvrY exhibits a reduction in mannose resistant  
hemagglutination to chicken erythrocytes. The values are mean log2 of inverse 
dilution at which hemagglutination (HA) was observed with chicken blood. The 
standard deviation was <0.05 in all cases.  The bacterial cultures were grown with 
two passages of 48 h each in static LB broth with appropriate antibiotics at 37oC to 
maximize type 1 fimbria expression.  The assay was done on ice in duplicate in 96-
well microtiter plates. Each bacterial culture was diluted twofold, before blood was 
added to study agglutination. The experiment was repeated twice with essentially 
similar results. The highest reciprocal of the dilution at which 50% of the erythrocytes 
sedimented to the bottom of the plate is taken as the HA titer. 
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Chapter V:  Escherichia coli stress response as a tool for 
detection of toxicity 

 

Introduction 

The advent of microarray has opened new avenues for toxicologists to collect and 

interpret data [212-215].  It usually involves a comparison of global gene expression 

between normal and drug treated cells under in vitro conditions. The incorporation of 

genomics, bioinformatics and large-scale sequencing information have resulted in the 

construction of gene chips, which enable speedy screening of new targets for 

important cellular processes including toxicity.  The emerging branch of 

toxicogenomics integrates application of functional genomics technologies and offers 

several advantages to that of conventional toxicology in terms of cost and time 

effectiveness, sensitivity and enhanced correlation between experimental models and 

human. Potential applications of this discipline are mechanistic insight of metabolic 

or biological pathways leading to toxicity, specially metabolic processes  (at the level 

of transcription) affected by chemical, environmental or xenobiotic treatments, 

screening of probable drug candidates, facilitating the prediction of toxicity of 

unknown compounds, and improving interspecies and in vitro-in vivo extrapolations 

[216, 217].  

 

The evolution of toxicogenomics has matured over the years with several series of 

developments in toxicological sciences. Previously, animal toxicity was assessed by 

traditional methods such as tissue pathology, system-level toxicity and overall 
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mortality. However, animal bioassay was often lengthy, labor-intensive, expensive 

and limited in information [218-220].  Screening of more than fifty-thousand known 

chemicals for toxicity would be unfeasible using conventional methods; hence, newer 

alternative strategies are needed.  

 

In recent times, the focus has shifted towards understanding toxicity at the molecular 

level.  In the last thirty years, evaluation of toxicity underwent a remarkable 

transformation from assessing a single molecule change to the effect on entire 

genome.  Genomic information plays a key role in understanding of the molecular 

attributes of toxicity, for example, the genetic background of an individual could 

influence metabolism, absorption, excretion or susceptibility of a metabolite or a 

chemical entity.  The integration of genomics into the field of toxicological research 

will significantly advance our knowledge of molecular toxicity and key regulatory 

pathways that affect such processes (Fig. 1). Potential usefulness of genomics could 

be immensely important and often involves approaches that utilize candidate targets 

which are affected by environmental stimulants. Conversely, meticulous approach 

must be followed while analyzing genomic data and experimentation for validation 

must be integrated within such studies [221, 222].  

 

Escherichia coli, a type bacterial type species of the family Enterobacteriaceae, is 

naturally distributed in the intestinal microbial flora of homeothermic animals 

including birds and humans [223]. Strains of E. coli are broadly categorized in three 

groups: commensals, intestinal pathogenic and extraintestinal pathogenic. The 

recently-added third group, termed as extraintestinal pathogenic E. coli (ExPEC), has 
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been formed based on the presence of specific virulence factors and the ability to 

cause organ infection outside the intestine [18, 26, 27]. Typically, ExPEC 

characteristic virulence factors aid in invasion and colonization of the microbe which 

lead to infection in extraintestinal sites. Some ExPEC-specific virulence factors 

include adhesins (e.g., Type 1 fimbriae or P fimbriae), factors that evade defense 

mechanisms (e.g., capsules, lipopolysaccharides), toxins (e.g., hemolysins), and 

factors to acquire nutrient availability (e.g., siderophores) [28].  

 

ExPECs are a growing concern, as evidenced by being causative agents of a plethora 

of diseases, including urinary tract infections (UTI), neonatal meningitis, pneumonia, 

septicemia, osteomyelitis and other extraintestinal infections [224-226]. Among the 

ExPEC, uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC) cause 

significant morbidity and/or mortality in humans and poultry respectively.  UPEC is 

the leading cause of urinary tract infections in the United States.  Every year in the 

United States, UPEC associated-UTI results in 6-8 billion cases of uncomplicated 

cystitis with a healthcare cost of $1 billion, 250,000 cases of uncomplicated 

pyelonephritis with a direct cost of  $175 million, and 250,000 to 525,000 cases of 

catheter-associated UTI healthcare, the cost of which is $170-350 million dollars 

[30]. APEC, on the other hand, is the leading cause of avian colibacillosis 

characterized by air sacculitis, pericarditis, peritonitis, salpingitis, polyserositis, 

septicemia, synovitis, osteomyelitis and yolk sac infection [227, 228].  In the US, 

cellulitis caused by APEC is the second leading cause of condemnation of broiler 

chickens and resulted an estimated loss of $40 million/year [229].  The underlying 
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mechanisms of pathogenesis and toxicity of Escherichia coli have become more 

apparent with the application of genomics, bioinformatics and molecular biology.   

 

Unlike commensals, many pathogenic bacteria were demonstrated to switch between 

free-living and host-associated states.  Apart from extraintestinal sites, EXPECs have 

been reported to asymptotically colonize in intestinal sites like commensals [226, 

230].  In contrast, the intestinal pathogenic strains are not capable of asymptomatic 

colonization in the intestine.  The environments in which EXPECs thrive vary and 

must endure different stress conditions within the host.  Often, the pathogenic bacteria 

have developed a complex signaling system that turns on specific sets of genes in a 

given environment and switch off those that are not required in that milieu. Multiple 

physiochemical cues, such as pH, osmolarity, temperature, and oxygen concentration 

might affect such change in gene expression.  Interestingly, the gene expression 

pattern might be altered due to the presence of different environmental stimuli 

including those of various toxic chemicals. Regulatory mechanisms which affect such 

changes are complex and take place at the levels of transcription and translation.  The 

overall effect of such changes in genome might be envisioned by the incorporation of 

genomics into this emerging field of toxicology.  

 

Stress Response 

The effect of various stress responses on E. coli has been studied in greater details 

[231-237]. Molecular oxygen, for example, plays a crucial role in cellular 

metabolism; however the effects of reactive oxygen species (ROS), such as 
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superoxide radical, hydrogen peroxide and hydroxyl radical can be deleterious and 

may even cause apoptosis of the aerobic cells. Various strategies, including 

enzymatic and non enzymatic defenses have been employed to prevent such damages 

[238]. Enzymatic defense systems, such as superoxide dismutase, catalase and 

peroxidase, scavenge superoxide radicals and hydrogen peroxide and convert them 

into less reactive species. Non-enzymatic antioxidants include Vitamin C and E, 

glutathione and β-carotene. Usually a balance exists between ROS and antioxidants 

under normal conditions of the cell. A disruption in this critical balance could lead to 

oxidative stress either due to excess accumulation of ROS or depletion of antioxidants 

[239]. These, in turn, either damage cell components or trigger specific cell signaling 

pathways leading to modulation of various cellular processes, improving the health of 

the cell or leading to cell death [240].  

 

Release of ROS changes the oxidation reduction potential within the cell, leading to 

oxidative stress. The generated ROS molecules can carry out nucleophilic attacks on 

any electron-deficient group including biomolecules such as DNA, protein and lipids 

leading to the formation of adduct, covalent binding of ROS to macromolecule and 

disruption of cellular functions. The basic mechanisms to remove ROS involve 

chemical reactions that generate a non-reactive compound by altering gene expression 

to activate gene products that are designated to deal with toxic insults and turn off 

those that are not required.  Cellular oxidative stresses are controlled either by direct 

or indirect alteration of gene expression. Chemicals or ROS may activate intracellular 

receptors that directly regulate transcription of target genes. Alternatively, ROS may 
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interact with other molecules within the cell, which carries on the signal and elicits 

coordinated responses to cellular toxicity.  

                           

Bacteria have developed adaptive responses while shifting from anaerobic to aerobic 

growth conditions to counteract reactive oxygen species [241]. Usually, these 

responses are mediated in a coordinated manner by groups of genes termed regulons, 

each group under a common regulator. One key system is based on the oxyR system 

which acts in response to hydrogen peroxide and induces at least eight genes to 

counteract oxidative stress, including ahpFC encoding alkyl hydroperoxidase, 

glutathione reducatase encoded by gor, katG encoding catalase hydroperoxidase and 

dps, a DNA binding protective protein.  OxyR protein is thought to act by binding 

and stimulating transcription from various promoters upon receiving signals. Many of 

the OxyR regulon genes are also regulated by the stationery phase starvation response 

system programmed by rpoS, a sigma 38 protein. The stationery phase alternative 

sigma factor rpoS controls the expression of several genes involved in cell survival 

and is essential for expression of various stress resistances [175, 242, 243]. Under 

laboratory conditions, rpoS mutants are sensitive to oxidative and osmotic stress as 

well as temperature and acid shift. On the other hand, the SoxRS system induces 

many genes to combat the superoxide-generating agents and nitric oxide. The SoxRS 

response is initiated in two stages. Upon activation, the soxR sensor molecule induces 

soxS which, in turn, activates the transcription of soxRS regulon. The stationery phase 

alternative sigma factor σS is present in many bacterial species belonging to γ 

subdivision of proteobacteria. The regulation of sigmaS is complex and regulated at 
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the level of transcription, post transcription and protein stability [244]. In E. coli 

rpoS transcription is regulated by cAMP-CRP complex as well as by several two-

component signaling systems, including the BarA/UvrY system whose role is 

illustrated [173, 245-247]. 

 

Genomics are increasingly more useful in exploring pathways and mechanisms 

underlying oxidative stress response. DNA microarrays have been used to 

characterize genes involved in oxidative stress responses. Interestingly, the patterns of 

gene expression altered in mammary cells in the presence of hydrogen peroxide, 

menedions, and t-butyl hydroperoxide were found to be quite similar regardless of the 

ROS source [248].  Another study showed that the effect of DMNQ, 2, 3-dimethoxy-

1,4-naphthoquinone, a ROS-generating chemical,  in HepG2 cells was comparable to 

that of heavy metal toxicity [249]. Such studies have substantiated the notion that 

different stimuli can lead to generation of ROS and oxidative stress (Fig. 2.). Hence, 

production of ROS and oxidative stress might be considered as a general stress 

response. 

 

Two-component as signal transducers 

Wide range of toxic insults often alters gene expression profiles in microbes specific 

to the nature of chemicals tested.  Adaptation to toxic compounds by bacterial species 

often enables that species to better cope in that environment.   This response, 

appropriately called adaptive response, refers to the ability of bacteria to withstand 

harmful-damaging effects of the given stress provided if it is previously exposed to 
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the similar stress environment at a lower dose. Several types of agents induce an 

adaptive response, including alkylating agents, heat stress, oxidative stress and 

radiation among others.  Adaptive response usually involves modulation of a plethora 

of genes in a coordinated manner.  In bacteria, adaptation to a new environment 

largely relies on a signal transduction system called the two-component system.  

There is no common pathway for adaptation; however there exists quite a few 

common themes.  In E. coli adaptation to a new environment often involves use of 

several two-component systems that plays a crucial role for survival in an ever-

changing environment. Two-component systems (TCS), comprises of a membrane-

bound sensor histidine kinase (HPK) and a cognate response regulator (RR).  The 

sensor kinase undergoes autophosphorylation at a conserved histidine residue upon 

reception of an appropriate environmental signal, and subsequently, this phosphate 

group is transferred to a conserved aspartate residue on the cognate response 

regulator. Upon phosphorylation, the response regulatory protein undergoes structural 

modification and acts as a gene transcription factor and often regulates gene 

expression or cellular responses, enabling the organism better adapt in new 

environment [1, 2, 250].  Approximately 60 such TCS are present in E. coli and have 

been shown to be involved in adaptation, including intracellular metabolism, biofilm 

formation, global stress response and virulence. One such system is the BarA-UvrY 

TCS involved in various physiological functions including oxidative stress, sigmaS 

expression, biofilm formation and carbon metabolism.  
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The BarA (Bacterial Adaptive Response Gene A) sensor kinase was first identified 

for its ability to suppress a deletion envZ mutant by controlling expression of outer 

membrane proteins [166, 251]. BarA is a member of tripartite sensor kinase having 

three domains: an N-terminal transmitter domain with a conserved histidine residue 

(H1), a central receiver domain with a conserved aspartate residue (D1) and a C-

terminal transmitter domain with a conserved histidine residue H2, also called Hpt 

domain. Triggering of this system seems to be mediated in an ATP- dependent 

manner via His-Asp-His-Asp phosphorelay cascade. UvrY is a member of the FixJ 

family and has been recently shown to be a cognate regulator of the sensor kinase, 

BarA [176]. It has an N terminal phosphoacceptor domain with a conserved aspartic 

acid residue at position 54, followed by a LuxR type helix-turn-helix DNA binding 

domain in the C-terminal region. It also has a close linkage with uvrC, a bicistronic 

mRNA, even though uvrY has no known role in DNA repair system.  Apparently this 

system seems to be induced in response to a pH change. 

 

The BarA/UvrY system plays a crucial role in carbon metabolism and biofilm 

formation.  This TCS has also been implicated in hydrogen peroxide resistance. Both 

the barA and uvrY mutants were hypersensitive to hydrogen peroxide.  It has been 

reported that the expression of the sensor kinase, barA, could be induced in the 

presence of weak acids, possibly indicating the significance of this TCS in survival of 

acid onslaught in stomach and inside macrophages. Additionally, this TCS could be 

induced in the presence of food preservatives such as benzoate or bile salts, implying 

the importance of this TCS in adaptation to various stress responses and persistence.   
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Bacterial Biosensors as a tool for detection of toxicity 

Presence of environmental stimulants or toxic chemicals often elicits variety of stress 

responses in bacteria. Compounds demonstrating similar toxicities would ideally 

induce a specific pattern in gene expression. It is hypothesized that compounds that 

exhibit similar changes in gene expression might have similar mechanisms of action 

or act in similar biological processes or pathways.  Thus, toxicity-induced alteration 

of gene expression might be used as a signature for classification and characterization 

of unknown chemicals. Genomic insults due to toxin-induced stimulation induce 

several stress responses, with alteration in gene expression that are often associated 

with diverse biological pathways. Once within the host, pathogenic bacteria often 

deal with diverse stress responses such as pH, nutrient deprivation, high osmolarity 

and oxidative stress.  Inflammatory cells or phagocytes possess enzymes that are 

capable of generating ROS in response to invasion of pathogens. However, excess 

production of ROS also might affect the phagocytes and the surrounding tissue. 

Chronic renal scarring in pyelonephritis has been directly correlated with phagocytic 

oxidative damage.  Hence, virulence genes involved in colonization or survival inside 

the host often have common genes that are affected by stress responses.  Such genes 

have often been used as a sensor for detection and quantization of toxic chemicals in 

the environment. These sensors have the potential to be a warning system for toxicity 

detection and thereby reduce harmful effect on the environment.   

 

Whole-cell bacterial biosensors detect gene products of reporter genes that are either 

naturally present or artificially introduced into the relevant bacterial strain.  
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Commonly used reporter genes include lacZ encoding β-galactosidase (E. coli), lux 

encoding bacterial luciferase, luc encoding firefly luciferase and gfp encoding green 

fluorescent protein.  In the case of general biosensors, the reporter gene is placed 

downstream to a constitutively expressed promoter, and a decrease in intensity of 

signal indicates a decrease in metabolic activity.  On the other hand, semi-specific 

biosensors involve placing a reporter gene downstream to a stress-responsive 

promoter and an increase in reporter activity indicates an increase in stress (e.g., SOS 

or heat shock response). Furthermore, specific biosensors incorporate a reporter gene 

being placed downstream to a regulated promoter or regulatory protein, either 

activator or repressor. Even though general biosensors are most popular due to their 

simplicity, they are non-specific and could lead to false-positives. In contrast, stress 

responsive biosensors offer several advantages over that of general biosensors. As 

different stimulants often lead to common stress response, such sensors can be good 

indicators of toxicity and stress inducing conditions such as DNA and protein 

damage, oxidative stress and membrane damage. Their simplicity, selectivity and 

sensitivity have made them extremely useful and popular.  Specificity of such sensors 

might be increased by incorporating several different types of semi-specific 

biosensors to determine type and variety of toxicity. The stress promoter-reporter 

could be present in separate strains, or two reporters could be incorporated in the 

same strain. Identification of such stress-related genes for such sensors involves 

scanning through the transcription profile of the genome. Numerous stress gene 

promoter including sulA, katG, recA and uvrA, have been fused with a reporter to 

construct biosensors for detection of compounds that cause DNA damage [252, 253]. 
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Panels of stress-responsive biosensors are also on the rise. Oxidative stress sensitive 

cell array chip have been employed for identification of putative targets in the entire 

genome [254].  Sensitivity of such sensors could be significantly improved by fine-

tuning the promoter and modification of host strains. Challenges for improvement of 

such sensors would encompass identification of strong promoters that are sensitive to 

a given stimuli, knowledge of gene regulatory network, designing of instruments that 

are easy to use and inexpensive, refinement of older reporters and creation of new 

reporter genes [255-258].  

 
 
Global gene expression profiling of the BarA/UvrY TCS 

To further identify downstream targets and pathways that are affected by the 

BarA/UvrY two-component system, we have begin to study the effect of mutation of 

either barA or uvrY and compare it with a wild-type or a mutant expressing the UvrY 

protein from a low copy plasmid-borne vector p-uvrY in UPEC CFT073.  At first, the 

raw digitalized intensity of Affymetrix single-color slides was internally normalized 

using Microarray Suite version 5 (MAS 5.0, Affymetrix). The universally ‘absent’ 

genes from the normalized data were then eliminated. The noise generated due to 

chip-chip non-biological variance was minimized through interchip-LOWESS 

normalization between the wild-type and individually treated samples using 

GeneSpring v6 (Agilent, Inc., CA). The resultant genomic regulation was determined 

as the ratio of the individual gene intensity of treated samples to that of the control 

samples. The normalized genes of the treated ensemble showing at least 1.15 fold 

difference (up or down regulation) from that of wild-type were accepted for the 
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remaining analysis. Approximately 1400 genes from the selected genome showed a 

similar regulatory trend between uvrY and barA strain, of which around 570 genes 

were from CFT segment and about 200 genes were from intergenic region. Similar 

analysis identified roughly 900 genes, including ~270 and ~100 entries from CFT and 

intergenic segment respectively that are expressed oppositely between uvrY and p-

uvrY strains. Apparently, about 170 regulated genes according to the aforesaid null 

hypothesis showed similar regulation between barA and uvrY strain while 

simultaneously exhibited reverse regulation between uvrY and p-uvrY strain. This last 

genome contained ~50 CFT genes and ~20 intergenic entries.   Unsupervised 

heretical clustering was performed for each of the three genomes independently using 

a standard correlation algorithm. To conclude, the biological, molecular and cellular 

functions of each gene, part of the abovementioned three genomes, were mined using 

NetAffix GeneOntology (GO) analysis tool (Affymetrix, Inc., CA), and the genome 

was segmented according to their primary functions.   

 

Several groups of genes have been annotated based on their function.  Genes involved 

in metabolism, biosynthesis, cell adhesion, transcription and translation, catalysis, 

membrane and many genes of unknown functions were significantly affected by the 

mutation. Representative genes that are affected at least two-fold by the mutation 

were reported (Table 1). This TCS, by virtue of its role in virulence, stress response, 

carbon regulation, and other key regulatory pathways in E. coli, could be a potential 

target for toxicity detection studies in the future.  
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Conclusion 

Toxicogenomics now evolves into a multi-disciplinary field by integrating several 

branches of biology including toxicology, genetics, molecular biology, 

bioinformatics, functional genomics, transcript profiling, proteomics, metabolomics 

and pharmacogenomics. With ongoing whole genome sequencing efforts, the 

potential for identifying candidates for toxicity testing or pathways has been 

significantly accelerated using available high throughput and inexpensive molecular 

genetic tools.  An important strategy towards identification of novel toxic chemicals 

involves employing potential targets that are susceptible to various stresses in the 

presence of deleterious compounds. Genomics enable pinpointing such potential 

candidates by scanning through an entire genome in a high throughput fashion. 

Identification, validation and categorical classification of such targets will enhance 

future toxicity detection studies.  
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Figures and Tables 

 
 Figure 20.  Principle of evaluation of toxicity in toxicogenomics. 
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Table 5.  Microarray analysis of BarA/UvrY TCS in Uropathogenic Escherichia coli. 
 
 Gene Category or  Fold Description 
Name or ID Function Induction 
 
rfaJ  Biosynthesis 2.2 Lipopolysaacharide 1, 2-glycosyltransferase 
serB    2.1 Phosphoserine phosphotase 
hemA    2.2 Glutamyl tRNA reducatse 
hisB    2.5 Histidine biosynthesis bifunctional protein  
aroC    2.4 Chorismate synthase 
 
dsdA  Metabolism  2.3 D-serine dehydratase 
bglA    2.5 6-phospho-beta-glucosidase 
ldcC    2.6 Lysine decarboxylase 
c5039    2.4 Putative lactate dehydrogenase 
ucpA    2.2 Oxidoreductase 
 
kpsT  Transport  2.4 ATP binding transporter 
kpsM    2.1 ATP binding  
sitC    2.5 ABC transporters  
iroN    2.4 Siderophore receptor  
papC    2.5 Fimbrial usher protein 
malK    2.2 Maltose transporter 
 
focG  Adhesion  2.5 F1C minor fimbrial subunit protein  
c4209    2.3 Putative minor fimbrial subunit precursor 
c4214      2.7 Putative major fimbrial subunit precursor 
csgA    2.1 Major curli subunit precursor 
papH    2.5 Fimbrial protein 
 
papI  Transcription 2.2 Fimbrial protein transcriptional regulators 
flhC    2.6 Flagellar transcriptional activator 
ymfL    2.4 Hypothetical protein 
c2411    2.1 DNA-binding protein H-NS 
pcnB    2.2 Poly (A) Polymerase  
yhiH    2.3 Hypothetical ABC transporter 
 
fimB  Binding  2.7 Type 1 fimbriae regulatory protein  
zntA    2.4 Lead, Cadmium, Zinc transporting ATPase 
dppD    3.1 Dipeptide  transport ATP binding protein 
rseB    2.4 Sigma E factor regulatory protein 
c0934    2.7 Hypothetical Protein 
 
dsdA  Catalysis  2.3 D-serine dehydrates  
nrdD    2.1 Anerobic ribonucleoside triphosphate reductase 
trpB    2.5 Trytophan synthase beta chain  
agp    2.4 Glucose 1-phosphatase precursor 
ydjQ    2.7 Hypothetical protein 
 
mtr  Membrane  2.4 Tryptophan specific transport protein 
ompC    3.1 Outer membrane protein C precursor 
ompA    2.4 Outer membrane protein A precursor 
pitB     2.3 Probable low affinity inorganic phosphate transfer 
 
yjaN   Unknown  2.6 Hypothetical Protein 
yfgJ    2.4 Hypothetical Protein 
ycjX    2.7 Hypothetical Protein
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Chapter VI:  Conclusions and Future Directions 

The BarA/UvrY/Csr system and its homologues are present in many γ-division of 

proteobacteria.   The BarA/UvrY/Csr system regulates diverse physiological 

processes in adaptation of Escherichia coli.  This work demonstrates two population-

dependent physiological processes affected by this signaling cascade, namely a 

process of cell-cell communication termed quorum sensing which employs small 

molecules called autoinducers and the cooperative ability of bacterial species to form 

biofilms.  The study here demonstrates the role of BarA-UvrY TCS in regulation of 

adhesion mediated biofilm formation and cell-cell communication formation in 

Escherichia coli.  The fine control of processes affecting Quorum sensing, Biofilm 

formation and Stress responses all of which require careful coordination and 

environmental adaptation serves as an important strategy for survival of bacteria in a 

varying milieu.  The regulation of such processes at the level of transcription and post 

transcription by the signaling cascade suggest tighter control and coordination needed 

for efficient bacterial adaptation in a changing environment.  

Quorum sensing regulates diverse physiological processes like biofilm formation, 

antibiotic production, and virulence in many gram negative bacterial species.  

Quorum sensing involves population dependent control of gene expression by the 

utilization of autoinducers.   In E. coli, the autoinducer AI-2 is synthesized as a by 

product of methyl-cycle.  The specific reaction involves LuxS, which breaks down S-

ribosyl homocysteine to homocysteine, while generating the DPD. DPD undergoes 

spontaneous cyclization to form AI-2.   LuxS is present in diverse bacterial species 
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and is thought to be involved in inter-species quorum sensing.    Mutation in barA or 

uvrY displayed reduced expression of luxS and AI-2 levels while mutation in csrA 

displayed an opposite effect, both at the entry into stationery phase. Transcript 

stability, computational prediction of luxS leader region, and direct regulatory 

interactions suggest that CsrA play a major role in regulation of luxS.   CsrA most 

likely bind to the predicted GGA- conserved stem loop region of luxS leader and 

inhibits translation initiation.  The known AI-2 uptake system, Lsr transporter, also 

displayed an interesting observation in E. coli.  While a loss of barA or uvrY genes 

displayed an increase in expression of Lsr transporter, loss of csrA on the other hand 

displayed an opposite effect.  This suggests a potential balance of carbon flow, as AI-

2 is a 5-carbon moiety, at the entry of sationery phase indicating that CsrA while 

repressing luxS expression it’s reducing the synthesis of AI-2, while utilizing the 

furanone (AI-2) by upregulating the lsr transporter.  Thus saving on energy utilization 

for synthesis of carbon at the onset of stationery phase seems to be the basis for 

regulation of luxS by the BarA/UvrY/Csr system. The involvement of small RNA in 

this regulation is also likely.  Interestingly, CsrA alongwith three small RNA also 

regulate Quorum sensing in Vibrio cholerae.  

Earlier studies have shown that mutation in barA or uvrY in Avian Pathogenic E. coli 

reduced expression of virulence in chicken embryo model and also demonstrate poor 

attachment in chicken fibroblasts and macrophages.  Downregulation of Type1 and 

Pap pilus and reduced exopolysaccharide accumulation was attributed for poor 

colonization and reduced virulence. In Uropathogenic Escherichia coli, the ability to 

form biofilms in invitro on abiotic surface such as catheters contributes greatly 
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towards persistent UTI.  In vivo, UPEC colonize bladder and kidneys by Type 1 and 

Pap pilus respectively.  The ability to form intrabacterial biofilm like pods also adds 

to the ability of the UPEC to persist in harsh conditions of the host.   The 

BarA/UvrY/Csr pathway also displayed a dual control at the level of transcription and 

post-transcription for biofilm formation in UPEC.  Both type 1 and pap pilus 

displayed reduced expression upon mutation of uvrY.  Both the recombinase fimB and 

fimE expression which controls the fim promoter switch was also downregulated.  

Additionally uvrY also displayed an ability to turn fim switch ON, but not csrA.   

This suggests that even though the BarA/UvrY TCS have a known downstream effect 

via CsrA, there also seems to be direct regulatory role in biofilm formation via 

regulation of pilus in UPEC.   Mutation of uvrY also displayed reduced 

exopolysaccharide accumulation and showed a swarm defective phenotype, both of 

which contribute to biofilm development.  Finally, uvrY mutants also demonstrated 

poor colonization in bladder, kidneys and urine in an ascending model UTI.  These 

suggest that uvrY might play a crucial role in adaptation, colonization and virulence in 

UPEC.    

 

Two-component regulatory systems have been utilized as a novel therapeutic strategy 

particularly those systems involved with virulence.  ExPECs cause significant 

economic loss in poultry and humans.  A vaccine towards ExPEC could help in 

reducing that financial burden.  This work demonstrates that phosphorelay signaling 

cascade through the BarA/UvrY two-component system is critical for adhesion, 

colonization and population dependent behavior namely quorum sensing.   These 
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social behaviors in microbes, particularly for processes affecting adaptation, may be 

targeted for potential novel therapeutic strategies and this becomes relevant in recent 

years when antibiotic resistance is increasingly prevalent.  Targeting such pathways, 

could offer a fresh approach for therapeutic strategy. 
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Table 6.  List of bacterial strains and plasmids used in the study. 
 
     
Bacterial  
Strains                          Relevant Genotype           Reference or source 

 
Bacterial Strains 
 
MG1655dlac    Wt K-12 λ- rph-1 Δlac          D. J. Jin   
 
SM1005    MG1655Δlac  luxS::lacZ                   Lab Stock 
  
SM1006    MG1655Δlac  luxS::lacZ barA::kan               Lab Stock 
 
SM1007    MG1655Δlac luxS::lacZ uvrY::cam               Lab Stock 
  
SM1009    MG1655Δlac  luxS::lacZ barA::kan uvrY::cam        Lab Stock 
 
SM1010                        MG1655Δlac luxS::lacZ rpoS::Tn10              Lab Stock 
 
SM1011                        MG1655Δlac  luxS::lacZ barA::kan/p-barA  This study 
 
SM1012                        MG1655Δlac  luxS::lacZ uvrY::cam/p-uvrY  This study 
 
SM1014                        MG1655Δlac  luxS::lacZ rpoS::Tn10/p-rpoS This study 
 
SM1020     MG1655Δlac  luxS::lacZ cya::kan   This study 
 
SM1021    MG1655Δlac  luxS::lacZ uvrY::cam cya::kan This study 
 
SM1030    MG1655Δlac  luxS::lacZ csrA::kan   This study 
 
SM1031                        MG1655Δlac luxS::lacZ csrA::kan/p-csrA  This study 
 
SM1032    MG1655Δlac  luxS::lacZ csrB::cam   This study 
 
SM1050    MG1655Δlac  luxS::lacZ hfq::cam   This study 
 
SM1051    MG1655Δlac luxS::lacZ hfq::cam/p-hfq  This study 
 
SM1052    DH5α/p-hfq      This study 
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Bacterial  
Strains                           Relevant Genotype           Reference or source 

 
 
SM1053    TRMG1655 csrA::kan/p-hfq    This study 
 
SM1060     MG1655Δlac luxS::lacZ/p-sraD   This study 
 
SM1061     DH5α/ p-sraD                This study 
 
AM1001     MG166Δlac barA::kan         Lab Collection 
 
AM1002     MG166Δlac uvrY::cam         Lab Collection 
 
AM1003     MG166Δlac barA::kan uvrY::cam        Lab Collection 
 
AM1004     MG1655Δlac barA::kan/p-barA    This study 
 
AM1005     MG1655Δlac uvrY::cam/p-uvrY    This study 
 
AM1006     MG166Δlac luxS::cam         Lab Collection 
 
AM1007     MG166Δlac luxS::cam/p-luxS               This study  
 
AM1008     MG166Δlac luxS::cam/p-uvrY    This study 
 
AM1009     MG166Δlac uvrY::cam/p-luxS    This study 
 
RGB1655                       MG1655 csrB::cam                             T. Romeo
  
TR1-5 MG1655    MG1655 csrA::kan                             T. Romeo 
 
BB120      Wild type Vibrio harveyi  (AI-1+; AI-2+)         B.L. Bassler 
 
BB170      BB120 luxN::Tn5 (sensor-1- sensor-2+)          B.L. Bassler 
 
BB152      BB120 luxL::Tn5 (AI-1-; AI-2+)           B.L. Bassler 
 
JJ055      Nonpiliated K-12                       J. R. Johnson 
  
JJ014      Nonpiliated K-12/ p-fimA-H operon; Cmr          J. R. Johnson 
  
JJ015      Nonpiliated K-12/ p-papGIII; Apr          J. R. Johnson 
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Bacterial  
Strains                        Relevant Genotype           Reference or source 

 
AAEC189                   K-12 Δfim Δlac                                          William R. Schwan 
 
χ7122     APEC O78:K80: H9 gyrA::Nal                         R. Curtiss (III)  r

SM3000  χ7122   barA::kan                Lab Stock 

SM3001  χ7122   uvrY::cam     Lab Stock 
 
SM3002  χ7122   barA::kan/p-barA               This study  

SM3004             χ7122   uvrY::cam/p-uvrY               This study 
 
SM3005  χ7122   luxS::cam                                                        Lab Stock 
 
SM3006  χ7122   luxS::cam/p-luxS       Lab Stock 
 
CFT073  Wt Uropathogenic E. coli            H. L. Mobley
  
SM3007  CFT073 luxS::cam                                                       Lab Stock 
 
SM3008  CFT073   luxS::cam/p-luxS       Lab Stock 
 
SM3009  CFT073 barA::cam                                                      Lab Stock 
 
SM3010  CFT073 uvrY::cam                   Lab Stock 
 
SM3011  CFT073 csrA::cam                            Lab Stock 
 
SM3012  CFT073 barA::cam/p-barA                                         Lab Stock 
 
SM3013  CFT073 uvrY::cam/ p-uvrY                Lab Stock 
 
SM3014  CFT073 csrA::cam/p-csrA                Lab Stock 
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Bacterial  
Plasmids      Relevant Genotype                      Reference or source 

pBR322        Cloning Vector                   Invitrogen 
 
pAN001        pBR322 containing barA gene; Apr                     Lab collection  

pAM001       pBR322 containing uvrY gene; Apr               This Study 
 
pCA114        csrA under ParaBAD control on pBAD18; Apr                       Craig Altier
  
pLuxS           PCR2.1 containing luxS gene;  Apr                    Lab Collection 
 
pFZY1          galK'-lacZYA transcriptional fusion vector; Apr                  W. E. Bentley 
 
pLW11         pFZY1 derivative, containing            W. E. Bentley 
          lsrACDBFG promoter region; Apr

      
 pPP2-6        pPR274 with MCS                 William R. Schwan
  
pBB2-1         fimA-lacZYA on pPR274             William R. Schwan
  
 pWS124-17 fimA-lacZYA locked on on pPP2-6            William R. Schwan
 
pJLE4-3        fimE-lacZYA on pPP2-6              William R. Schwan
 
 pJB5A         fimB-lacZYA on pPP2-6                          William R. Schwan
 
P1-vir          Transducing Phage            Lab collection  
bacteriophage 
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Table 7.  List of primers used in this study  
 
 
Primer  Sequence (5’-3’)                                     Gene/target sequence     
Designation   
 
 

OSM79    TGATCCTGCACTTTCAGCAC                                    luxS 
OSM80  CAATCACCGTGTTCGATCTG 
 
OSM250  AGCGTTCTGTAAGCCTGTGAAGGT                         rrnA 
OSM251  TAACGTTGGACAGGAACCCTTGGT 
 
OSM252  GGCACATTCTGGCAGCAAGTTGTA         lsrK 
OSM253  TTTCTTCGGCACAGAAAGCATCGC 
 
OSM254  TGCGCCCTTACTCATAACCTTCGT         lsrA 
OSM255  CAATACTTGCGGCGAAGCTTCCAA 
 
OSM256  AACCACAACAGATGCTGGCGATTG         lsrR 
OSM257  TTAAGCTGCCCGATTCCCGTCATA  
 
OSM258  ACTGTACATGGTACACGCACTGGAT         flu 
OSM259  TTCAGGGTGACATTCGTGGCTGTA 
  
OSM260  ACCGTTCAGTTAGGACAGGTTCGT        fimA 
OSM261  TCTGCAGAGCCAGAACGTTGGTAT 
 
OSM271  GGAATCGGTGTAGATGTAACCCC           icd  
OSM272  CGTCCTGACCATAAACCTGTGTGG 
 
OSM275  ATGCCGCAGGTATCCCGATG        manA 
OSM276  GCGCGGGATTTTTCTTCACC 
 
OSM277  AGCCCGTTCAATGCTGCCAG        manX 
OSM278  GTTGGAGCCGCTTTTGGTGC 
 
OSM279  TCGCACTGGCAATCCCTCTG       manY 
OSM280  CATCAGGTAGCCAGCACGCA 
 
OSM281  AGTTCGTCAGGGTCTGGCGA       galU 
OSM282  CAACGCCATATGCGGTCACA 
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Primer  Sequence (5’-3’)                                     Gene/target sequence     
Designation   
 
 
 
OSM283  TTGTGGGGCGCAGAAAATGT        rcsD 
OSM284  CGACCGTTGCCAGATGTCCT 
 
OSM285 AACCTGCCGAAACTGGATGC        rcsB 
OSM286 AGCTTTCGGCAGATCGGTCG 
 
OSM287 GCTCGTCACGGTCGCAACAA        lrhA 
OSM288 ACATCCAGCGCTAATTTCGG 
 
OSM289 AACGGCAGAGGGCGATTTGT      wcam 
OSM290 AGCGTGGCTAACGGTCAGGT 
 
OSM291 CCATGATGCAGGCGGTTTGT       fimE 
OSM292 GCACGTTCCTGGGTCCACAT 
 
OSM293  CCGGTGGCGCTTTATTTGAC       fimH 
OSM294  AGAAACATCGCAGCCGCCAG 
 
OSM295  CAGTAATGCTGCTCGTTTTGCCG        fim promoter 
OSM296  GACAGAGCCGACAGAACAACG 
 
OSM297  CGACAGCAGAGCTGGTCGCTC       fim switch orientation 
OSM298        GTAAATTATTTCTCTTGTAAAT 
                                    TAATTTCACATCACCTCCGC 
OSM299  GCGGAGGTGATGTGAAATTAA 
                                    TTTACAATAGAAATAATTTAC 
 
OSM309  ACTCTGCGGACCACTTGGGA               papA 
OSM310  CCAACTATTCCTCAGGGGCA 
 
OSM311  AACTCAACGGCACTGGCTGC                              papH 
OSM312  CTCAGAATTGTGCGAAACGG 
 
OSM313  CAGCAACTCAGCACCAGGAC   glmU 
OSM314  CTTACTCACGGGCGCGATGT 
 
OSM315  GATGAAACCGCAGAAGGCTT   kpsE 
OSM316  GCGATGCGATGTGACATCTC 
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Primer  Sequence (5’-3’)                                     Gene/target sequence     
Designation   
 
 
OSM317  TAATACGACTCACTATAGGGGA                         T7-luxS 
                                    GAGGCTGGAAAAACAC 
OSM318  CGCTTCCATCCGGGTATGATCG         
 
OSM345  TATTCCGAGCCATCAGGGTG              hlyC  
OSM346  TTCGTGCTTTGTCCTGCTGA 
 
OSM347  CAAGGGCGCTGGTGAACAAC   hlyB 
OSM348  AACAGGAACTCGCTGAACCC 
 
OSM349  CTTACTCACGGGCGCGATGT   glmU 
OSM350  CAGCAACTCAGCACCAGGAC 
 
OSM351  AGTTCGTCAGGGTCTGGCGA   galU 
OSM352  CAACGCCATATGCGGTCACA 
 
OSM353  GTACGGCGATGGCATTACCT   rcsB  
OSM354  ACCGTAACCACCAGCACTGA 
 
OSM355  ACGACCGTTGCCAGATGTCC   rcsD  
OSM356  TTGTGGGGCGCAGAAAATGT  
 
OSM357  CCATGATGCAGGCGGTTTGT   fimE 
OSM358  CCACGGCTTCACGCTCATCA 
 
OSM359  GCCAAAGCAAAACCACACGA   fimB 
OSM360  AACGCACCCGCTATTGAACA 
 
OSM361  TGCACGTTTTCCAGCCTCAC    ipbA 
OSM362  TGATGGCTTTCATTCACGGT 
 
OSM363  TTTCATGGTCTGCGTGTTAGTG   ipuA  
OSM364  TTACCCGCAGCAGAAACTATGT 
 
OSM365  CCCCTGCAAAAAGAAACTGT   ipuB 
OSM366  TAGCTAAAGCATACCCACAACC 
 
 
 
 

 117 
 



 

Abbreviations 
 

APEC     Avian Pathogenic Escherichia coli 

AHL       N-acyl homoserine lactone 

AIP     Autoinducing Peptide 

AI-2        Autoinducer 2 

BarA      Bacterial Adaptive Response gene A 

Csr   Carbon Storage Regulator  

ExPEC    Extraintestinal Pathogenic Escherichia coli 

HPK        Histidine Protein Kinase 

HTH      Helix-turn-helix 

PBS       Phosphate Buffered Saline  

RT-PCR  Reverse Transcriptase Polymerase Chain Reaction 

RR           Response Regulator 

TCS         Two-component regulatory system 

UPEC      Uropathogenic Escherichia coli 

UTR      Untranslated Region 

Uvr          UV-resistance 
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	Quorum sensing regulates diverse physiological processes like biofilm formation, antibiotic production, and virulence in many gram negative bacterial species.  Quorum sensing involves population dependent control of gene expression by the utilization of autoinducers.   In E. coli, the autoinducer AI-2 is synthesized as a by product of methyl-cycle.  The specific reaction involves LuxS, which breaks down S-ribosyl homocysteine to homocysteine, while generating the DPD. DPD undergoes spontaneous cyclization to form AI-2.   LuxS is present in diverse bacterial species and is thought to be involved in inter-species quorum sensing.    Mutation in barA or uvrY displayed reduced expression of luxS and AI-2 levels while mutation in csrA displayed an opposite effect, both at the entry into stationery phase. Transcript stability, computational prediction of luxS leader region, and direct regulatory interactions suggest that CsrA play a major role in regulation of luxS.   CsrA most likely bind to the predicted GGA- conserved stem loop region of luxS leader and inhibits translation initiation.  The known AI-2 uptake system, Lsr transporter, also displayed an interesting observation in E. coli.  While a loss of barA or uvrY genes displayed an increase in expression of Lsr transporter, loss of csrA on the other hand displayed an opposite effect.  This suggests a potential balance of carbon flow, as AI-2 is a 5-carbon moiety, at the entry of sationery phase indicating that CsrA while repressing luxS expression it’s reducing the synthesis of AI-2, while utilizing the furanone (AI-2) by upregulating the lsr transporter.  Thus saving on energy utilization for synthesis of carbon at the onset of stationery phase seems to be the basis for regulation of luxS by the BarA/UvrY/Csr system. The involvement of small RNA in this regulation is also likely.  Interestingly, CsrA alongwith three small RNA also regulate Quorum sensing in Vibrio cholerae. 
	Earlier studies have shown that mutation in barA or uvrY in Avian Pathogenic E. coli reduced expression of virulence in chicken embryo model and also demonstrate poor attachment in chicken fibroblasts and macrophages.  Downregulation of Type1 and Pap pilus and reduced exopolysaccharide accumulation was attributed for poor colonization and reduced virulence. In Uropathogenic Escherichia coli, the ability to form biofilms in invitro on abiotic surface such as catheters contributes greatly towards persistent UTI.  In vivo, UPEC colonize bladder and kidneys by Type 1 and Pap pilus respectively.  The ability to form intrabacterial biofilm like pods also adds to the ability of the UPEC to persist in harsh conditions of the host.   The BarA/UvrY/Csr pathway also displayed a dual control at the level of transcription and post-transcription for biofilm formation in UPEC.  Both type 1 and pap pilus displayed reduced expression upon mutation of uvrY.  Both the recombinase fimB and fimE expression which controls the fim promoter switch was also downregulated.  Additionally uvrY also displayed an ability to turn fim switch ON, but not csrA.  
	Two-component regulatory systems have been utilized as a novel therapeutic strategy particularly those systems involved with virulence.  ExPECs cause significant economic loss in poultry and humans.  A vaccine towards ExPEC could help in reducing that financial burden.  This work demonstrates that phosphorelay signaling cascade through the BarA/UvrY two-component system is critical for adhesion, colonization and population dependent behavior namely quorum sensing.   These social behaviors in microbes, particularly for processes affecting adaptation, may be targeted for potential novel therapeutic strategies and this becomes relevant in recent years when antibiotic resistance is increasingly prevalent.  Targeting such pathways, could offer a fresh approach for therapeutic strategy.
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