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High data rate video is an integral part of high-quality multimedia for broad-
band networks. Owing to the high rate, compression of video information is
required for an efficient use of network bandwidth. A hierarchical DCT-based
video codec is examined that prioritizes and compresses high data rate video for
transmission over ATM networks.

The video codec utilizes intraframe coding by independently processing each
frame of the video sequence. The lossless compression part consists of run length
coding to exploit zero values in the high frequency DCT coefficients and variable
length coding (VLC) to further reduce the bit rate. Three compression schemes
are examined: adaptive Huffman, arithmetic coding, and Lempel-Ziv-Welch cod-
ing. For the model-based compression algorithms, we study several models to
characterize the input bit stream to the VLC: memoryless, and Markov with
either fixed orders or orders determined by an order estimator. For the three
VLCs in the codec, the best performance was obtained from a combination of

a memoryless Huffman codec and two first-order Huffman codecs. Many of the



models incorporating memory performed poorly due to the small size of the
input files.

Due to the VLC, the output rate of the system is variable; however, since
intraframe coding is utilized, rate variations are small. In order to fully utilize
available bandwidth, we examine the rate control problem of converting the
codec from a variable rate system to a fixed rate system. The rate control
problem is formulated as one of constrained minimization, and analyzed for

optimal solutions. Algorithms are presented for optimal rate control.
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Chapter 1

Introduction

1.1 B-ISDN and Digital Video

Digital video is an important service providing an impetus for the development of
a Broadband Integrated Services Digital Network (B-ISDN), the future network
that will accommodate voice, video, and data. Video is an integral part of the
concept of multimedia; video conferencing, video-on-demand, broadcast digital
video, and HDTV are speculated to have a substantial consumer market.

For high data rate (HDR) motion video [18], efficient transmission as well as
a maintenance of very high image quality is desirable. Thus, the video system
must utilize compression schemes for bandwidth efficiency and must be robust
to channel errors. Due to the real-time nature of video, the options of retrans-
mission and forward error control! (FEC) are infeasible. Lossy systems, in which
an exact reconstruction of the original data is impossible, are usually used to

provide the best compression.

1That is, error detection and correction are performed at the receiver.



The high rate transmission is via the Asynchronous Transfer Mode (ATM) [4]
over a fiber network. Assuming an optical fiber backbone, ATM networks allow
high transmission rates combined with low error probabilities. As discussed
below, inherent properties of ATM networks make it an attractive protocol for

HDR video transmission.

1.2 Interframe/Intraframe Coding

The expected transmission rate for HDR video is higher than 150 Mb/s. In con-
sideration of this high rate, the coder is kept simple and only intraframe coding
is considered. Intraframe coding treats each frame of the video sequence sepa-
rately and takes advantage of spatial correlation within the frame. In contrast,
interframe coding exploits temporal correlation between frames to achieve com-
pression. Interframe coding as compared with intraframe coding can provide
gains in compression ratios up to a factor of 3 [14]. However, in addition to
the higher coder complexity needed for interframe coding, uncorrectable errors
propagate between frames at the receiver. Although it might appear that this
propagation augments error effects, as compared with systems using intraframe
coding where error effects are isolated to a single frame, studies have shown the
reverse to be true. Errors in coders utilizing intraframe coding are more unde-
sirable because they appear as flashes in the received video sequence; errors in
interframe coders are smoother [25].

Thus, for low rate video, where current circuits can process the data with
tolerable delay, interframe coding is desirable. Not only does the compression

gain improve, the effects of transmission errors are (subjectively) less costly.



The Moving Pictures Expert Group (MPEG) standard, designed for current
VCR-like quality at 1.5 Mb/s, utilizes interframe coding by applying motion
compensation and interpolation between frames [14]. For HDR video, the high
processing delay incurred by applying such complex interframe techniques make
it infeasible for real-time video services. The system considered here is solely

intraframe in nature.

1.3 Hierarchical Coding

We prioritize the video data and transmit it in a hierarchical (or layered) fashion.
This method of transmission can be applied to solve various types of network
problems.

For instance, such a pyramidal scheme is useful for applications that have
receivers of varying qualities (e.g., in multicasting where a source transmits the
same information to a group of receivers). The lower quality receivers use only
the higher priority data whereas the higher quality receivers utilize all the prior-
ities. We can think of the lower priority information as being refinements used
by the higher quality receivers to enhance the quality of the received image.
The advantage of such a system is that the source need not transmit separate
information to each class of receivers.

This type of transmission is useful [23],[9] for low-rate image transmission:
For applications such as interactive image transmission or browsing in an image
database, the receiver can first construct low-resolution versions of the image. If
the transmission is not terminated, the encoder can proceed to refine the image

to a quality level set by the user.



Another application for hierarchical coding is in achieving graceful degrada-
tion in quality of service from the network in the event of transmission errors.
The separation into layers is now designed to combat channel errors by having
different error rates for different layers. We focus on this second framework and
apply hierarchical coding to diminish the effects of transmission errors. One
method of achieving lower error rates is to use FEC for the higher priority data.
For HDR video, the complexity and delay introduced by applying FEC makes it
infeasible. As discussed below, the ATM standard accommodates two priorities

and provides different error rates without the use of FEC.

1.4 ATM Networks

1.4.1 Introduction

The ATM protocol is a natural evolutionary step given the capabilities of fiber
optic networks. Fiber accommodates large capacities (in the gigabit per second
range) coupled with very small error rates (typically one erroneous bit for every
10'2 transmitted bits). See [4] for a lucid treatise on the features of ATM.

The goal of ATM is to integrate voice, video, and data traffic at very high
network speeds. ATM simplifies the internal network to exploit the advantages
of a fiber subnet by relegating redundant and unnecessary routines to the bound-
aries of the network. For example, error protection on the information payload
is handled end-to-end by the users (i.e., the payload is transparent to the ATM
network). A complete set of ATM standards has yet to be written by the ITU-T
(International Telecommunications Union-Telecommunications) standardization

bureau, formerly known as the CCITT (International Consultative Committee



for Telecommunications and Telegraphy); only certain elements are finalized.

In an ATM network, data bits are combined to form fixed-sized packets
(referred to as cells) of length 53 bytes: 5 bytes for a header field and 48 bytes for
the payload. The adoption of fixed-sized packets simplifies switching hardware
and thereby improves network speed. The choice for 53 bytes is small enough
to allow voice calls without intolerable delay; too large of a delay requires echo
cancellation circuitry [4].

The ATM standard applies error detection and error correction for the header
field only. Transmission errors resulting in an undelivered cell is referred to as a
cell loss. Cell loss occurs due to either network congestion or non-correctable bit
errors in the cell header. If congestion inside the network go unchecked, internal
buffers will overflow resulting in unregulated cell loss. Thus cells are dropped
within the network to relieve congestion.

ATM accommodates hierarchical transmission by allowing one bit for pri-
orities: The cell loss priority (CLP) bit in the cell header. Low-priority (LP)
cells are initially dropped within the network to avoid catastrophic loss of high-
priority (HP) cells. Note that the different error rates for the two priorities are
due to errors controlled by the network—namely, the dropping of cells due to
network congestion. The (physical) channel error rates are identical for both
priorities.

Assuming sufficient (end-to-end) error protection on the payload, the only
end-to-end transmission errors are cell losses and cell insertions. Cell insertions
occur if cells are incorrectly switched within the network and mistakenly deliv-

ered to the wrong address.



1.4.2 Effects of Cell Loss

One lost cell results in 48 bytes—or 384 bits—of lost information. For uncoded
video systems, such a loss will have a noticeable effect on the received picture
quality: Many consecutive horizontal pixels will be affected. For coded systems,
such as those utilizing variable length coding (VLC) schemes, the effect of cell
loss is even worse since the decoder loses synchronization with the encoder [24].
That is, the decoder is unable to “track” the steps taken by the encoder. Unless
suitably dealt with, a cell loss can result in the erasure of many horizontal lines
in the received image. Since the considered video codec employs only intraframe
coding, the received erroneous video sequence will have noticeable flashes.

The VLC algorithms considered here are adaptive in that the parameters
needed to code a source symbol depends on past symbols. These parameters,
for example, can be estimates of the source symbol probabilities. To mitigate
the effects of code synchronization loss, the VLC can be initialized periodically.
However, such an initialization reduces the effectiveness of the coder: Adaptive
VLC performance generally improves with increasing source samples. For ex-
ample, estimates of the source statistics converge (in a suitable sense) to their
true values as the number of source samples increases. Since the video system
considered in this thesis utilizes intraframe coding, we assume that the VLCs
are initialized at the beginning of every frame.

The HP-LP partition takes the human visual system into account to maintain
visual quality even with the loss of LP cells. Since ATM standards allow one bit
for priorities, a two-level hierarchical scheme is examined. Two levels of priorities
are sufficient to provide good protection against the effects of cell loss [24]. A

higher number of priorities provide greater control but at the cost of an increase



in complexity and delay.

The error rate for the HP cells should be very low to allow the main infor-
mation to be received correctly. In our analysis, we assume that the HP cells
are received without any cell loss and only the LP cells are subject to a non-zero

error rate.

1.5 Contributions of Thesis

Digital video is an important application in the future B-ISDN. Since ATM is
the mode of choice for B-ISDN, it is worthwhile to study the problems and issues
associated with transmitting high data rate video over ATM networks.

We consider the video codec proposed by Tzou in [24],[13] which increases
bandwidth efficiency due to significant compression gains, and is robust to ATM
cell loss due to hierarchical coding. Our main objective is to study compression
techniques to achieve the best compression performance. This type of experi-
mental approach is needed since it is difficult to characterize the input bit stream
to the VLCs due to the preprocessing. In addition, we study the problem of rate
control to convert the system from variable rate to fixed rate.

The three main contributions of this thesis are

1. Run length coder. We optimize the run length coder for the specific type
of input data. That is, we exploit the characteristics of the processed data

that is relayed to the run length coder.

2. Lossless compression. We analyze three widely-used lossless compression
schemes. For the model-based algorithms, we consider modeling the source

by certain classes of stationary and ergodic sources. We examine the



memoryless model and Markov models that incorporates memory. For
the Markovian assumption, we consider the order (i.e., the “memory”) to

be either fixed or determined by an order estimator.

3. Rate control. The rate control scheme presented in [24] is ad hoc in that it is
designed based on a set of training images. We provide a general framework
for modeling and analyzing adaptive rate control policies (adaptive in the
sense of being robust to the video source). We formulate the rate control

problem and present algorithms for optimal strategies.

The thesis is organized as follows. In Chapter 2 the video codec—without
the rate control mechanism—is presented in detail. Chapter 3 examines the
problem of lossless compression. We first discuss some of the main features
of the three considered compression algorithms; then we consider the source
modeling problem. Chapter 4 is devoted to the rate control problem. The video
codec emits a variable rate bit stream owing to the use of variable length coding.
This rate variability results in a constant quality of service at the receiver. We
first present justifications to convert the codec to a fixed bit rate system and
then address the problem of rate control. We formulate the rate control problem
as a constrained minimization problem and investigate properties of optimal
solutions. Simulation results for compression gains are presented in Chapter
5. The system presented in Chapter 2 was implemented in the ¢ programming
language on a Unix platform; Sun Sparcstations were used for the execution.
Chapter 6 concludes with a summary and identification of areas requiring further

research.



Chapter 2

Description of System

The video codec is based on the discrete cosine transform (DCT) and utilizes run
length coding and variable length coding to achieve very high compression gains.
The human visual system (HVS) is employed in the codec to further improve
performance.

System performance for the codec is measured via simulation studies on
grayscale image files? with luminance (or Y) components represented by 8 bits
per pixel (bpp). For color images, the chrominance information is given by two
additional components, the U and V components, also sampled at 8 bpp. The
structure of the codec for the UV components is identical to that of the Y com-
ponent; the only changes are in the system parameters [13]. The codec is also
tested on video sequences and viewed in the MPEG format to judge performance
on real-time motion video. We begin by describing the encoder (see Fig. 2.1) in

detail.

2The test images were provided by COMSAT Laboratories, Clarksburg, MD.
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Figure 2.1: Block diagram for encoder.

2.1 Discrete Cosine Transform

The image data is transformed into the frequency domain by the discrete cosine
transform [1]. The DCT is well established for image and video processing
systems (e.g., two standards for still image compression and low-rate motion
video compression are DCT-based). More recently, there has been interest in
the wavelet transform [2]. The popularity of the DCT is due to two reasons:
(1) The DCT basis set provides good decorrelation for image data; and (2) its
computational complexity is low (e.g., the DCT can be implemented using a fast
Fourier transform).

The relation between a data sequence X(i),7 = 0,1,..., N — 1, and the cor-
responding DCT sequence Z(m),m =0,1,..., N — 1 is given by

FE X (@), m=0,

Z(m) = ,
2 v N X (@) cos (M) ,m=1,2.,N-1

2N
In our system, a two-dimensional DCT is applied on 8x4 pixel blocks (i.e., 8

columns by 4 rows). A small block size is chosen to maintain low computa-
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tional complexity and low system delay. For each 8x4 pixel block, we first take
an 8-point DCT along the four rows, then apply a 4-point DCT on the trans-
formed coefficients along the eight columns. Although the aim of the DCT is
to decorrelate the image data, the small block size (rather than the original size
of the image) rarely results in a data stream that is independent. In addition
to correlation between the same (i, j) component among adjacent blocks, cor-
relation might exist within a block (e.g., runs of zeros in the higher frequency

components).

2.2 Human Visual Weights and Scan Pattern

The human visual system is more sensitive to low-frequency DCT coefficients.
The DCT blocks are appropriately scaled by a weighting matrix to reflect the
HVS [17]. This process reduces precision (after quantization) on the less DCT
coefficients in accordance with the HVS. Due to the delay requirements for the
HDR video, the weights are limited to 1, %, or i so that multiplication can
be performed quickly by shifting the binary values. A weighting matrix for
the luminance component is provided in [24] (see Table 2.1); the weights were
determined based on a set of test images.

For each block, the 2-D to 1-D scan results in a 1-D array of size 32 that
prioritizes the coefficients according to the HVS model. Table 2.2 shows the

scanning pattern for each DCT block; this pattern corresponded to decreasing

signal energy for a set of test images [24].
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Table 2.2: Scanning pattern for 8x4 DCT coefficients.

05 1.0 1.0 1.0 05 05 05 025
1.0 1.0 1.0 05 05 0.5 025 025
1.0 1.0 05 05 05 025 025 025
10 05 05 05 025 0.25 025 0.25

Table 2.1: HVS weight matrix.

1 3 6 7 11 15 19 23

9 8 9 14 18 22 26 29

4 10 13 17 21 25 28 31

5 12 16 20 24 27 30 32

2.3 DPCM Codec

The DC component of a DCT block is of crucial importance in the HVS model
and is thus treated separately from the AC components. Errors affecting the

DC terms produce a “blocking” effect in the received image that makes the 8 x4

block boundaries more pronounced.

To represent the DC components efficiently, the DC terms are passed through
a Differentially Pulse Coded Modulator (DPCM) and finely quantized. A DPCM
outputs the difference between a sample and a predicted value for that sam-
ple. Since these prediction errors tend to be clustered around zero, a suitable

quantizer (one whose quantization levels are clustered around zero) provides an

efficient binary representation.

12




Here, due to the correlation between DC terms in adjacent blocks, the pre-
dicted value of a sample is the reconstructed value of the previous sample (see
Fig. 2.2). The reconstructed value—rather than the actual sample—is used to
avoid propagation of errors in the DPCM decoder.

DPCM Encoder DPCM Decoder

Q : Quantizer
R : Reconstructor

Figure 2.2: Schematic for DPCM.

2.4 Quantization

The resulting prediction errors from the DPCM are quantized by an 8-bit Lloyd-
Max [8] modified quantizer based on a Gaussian distribution. It has been shown
that the Gaussian distribution is a good model for the DC components of DCT
coefficients [21]. Since any linear combinations of Gaussian distributed variables
preserves the Gaussian behavior, this is a good choice for the prediction errors.
The “modification” from the optimal quantizer is performed because the re-
ceived video suffers noticeable errors for large distortions (see Fig. 2.3 [24]). The
modification is to place additional quantization values for higher input values.
The AC coefficients are quantized by a 7-bit Lloyd-Max modified quantizer

based on a Laplacian distribution. It is also shown in {21] that the Laplacian

13



Optimal Lloyd-Max Quantizer

"

41 L O SN B

Figure 2.3: Modification to optimal quantizer design.

distribution is a good model for the AC terms of DCT coefficients.

The quantized AC terms are separated into priorities by grouping consecutive
elements from the scanned 1-D array. For a two priority case, Fig. 2.4 shows
how the 32 quantized terms (AC and DC components) are separated into K,
HP elements and (32 — K,,) LP elements, where 1 < K, < 31. In the following,

we will denote the priority threshold as K.

<~ HP . LP—+
Figure 2.4: Prioritization for 8 x4 DCT block.

Note that the choice of intraframe coding allows the prioritization to be based
simply on a threshold. For systems utilizing interframe coding, the priority
assignment is more complicated. Since interframe coding reduces the spatial
correlation in each frame, the high amplitude DCT coefficients are distributed

among the entire DCT block. That is, the coefficients no longer satisfy the

14



property that higher frequency components are mostly zero-valued.

2.5 Run Length Coding

In run length coding, the key idea is to group runs of zeros into “meta” symbols.
For symbol streams with large runs of zeros, run length coding provides very
high compression gains. For a large class of images, the AC components of
the DCT coefficients are mostly zeros. This is due to the correlation among
components in each 8x4 pixel block and the decorrelating capabilities of the
DCT. This property is less pronounced for images such as medical scans and
satellite pictures.

We apply run length coding on the quantized values of the HP and LP com-
ponents of the AC coefficients. If the priority threshold is chosen accordingly,
almost all the LP components will be zero. The run length coder (RLC) algo-
rithm used for our system is similar to that of the Joint Photographic Experts
Group (JPEG) still image compression standard [20] [27]. Fig. 2.5 shows the

format used for the run length coder.

RUN LENGTH SIZE AMPLITUDE

Ly e 3 e 0T —

X

Figure 2.5: Run length coder format.

L designates the (fixed) size of each run length word and SIZE is the size of
AMPLITUDE in bits. Since the AC coefficients are 7-bit symbols, we fix SIZE to
be 3 bits. As mentioned above, the LP component of the AC terms tend to have

more zero-valued symbols than the HP component, thus the value of Ly that

15



provides the best RLC performance should be different for the two priorities.
The parameter Ly is optimized over a group of test images and the optimum

value is used for the system simulation.

2.6 Variable Length Coding

Variable length coding is utilized to losslessly compress the data before trans-
mission. Three lossless techniques are examined: arithmetic coding, Huffman
coding, and Lempel-Ziv-Welch (LZW) coding3. All three schemes are adaptive
in that past data samples determine parameters needed to code each symbol.
The compression algorithms are tested assuming a stationary ergodic source [10]
that is either memoryless (current symbol independent of all previous symbols),
or Markov with varying orders of memory (current symbol dependent on a finite
number of past symbols).

As mentioned above, the output symbols from the DCT are rarely indepen-
dent; further, the RLC does not completely decorrelate the information. Markov
models or those with more sustained memories may better capture the (resid-
ual) correlation. However, we restrict ourselves to simple memoryless models and
Markov models for reasons of analytical tractability and low system complexity.

The VLC is examined in detail in Chapter 3.

3Computer code for the adaptive Huffman algorithm was generously provided by Sanjeev
Khudanpur of the University of Maryland at College Park; the memoryless version of the
arithmetic coding algorithm is from [29]; and the Unix command compress was used for the

LZW algorithm.
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2.7 ATM Cell Loss Simulation

Subsequent to the lossless compression, the HP bit stream (representing DC
terms and HP AC terms) are assembled into HP ATM cells, and the LP bit
stream are assembled into LP ATM cells. Both types of cells are sent to the
ATM network.

ATM cell loss is simulated by dropping LP cells according to a fixed proba-
bility of cell loss. For each LP cell, a pseudo-random number is generated and
the cell is dropped if the number falls within a specified interval. We assume the
decoder is cognizant of lost cells. This can be achieved by attaching a sequence
number with every LP cell. The HP cells are guaranteed to arrive at the receiver
without suffering any cell loss.

The decoder for the system is schematically the reverse of the encoder (see
Fig. 2.6). The destination receives the HP and LP bit streams and extracts the

video data in real-time.
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Y : Reconstructed Luminance Component

Figure 2.6: Block diagram for decoder.
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Chapter 3

Lossless Compression

In this chapter, we focus on the efficient representation of digital data. The
coding schemes are “lossless” since an exact reproduction of the original infor-
mation can be extracted from the compressed version. We examine properties
of compression schemes, discuss the three algorithms that are considered in this

thesis, and study the source* modeling problem.

3.1 Introduction

For a given sequence of source symbols, the VLC removes the redundancy in
such a way that the coding process is reversible. The theoretical lower limit on
the average codeword length per source symbol is known as the entropy of the
source [3]. If a coder provides an average codeword length per source symbol
that is less than the entropy, an exact reproduction of the original sequence is

‘impossible.

4Throughout this chapter, we use the term “source” to mean the source generating the bit

stream that is conveyed to the VLC; this is not to be confused with the actual video source.
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One way to reduce the redundancy is to represent more probable symbols
with a fewer number of bits and less probable symbols with a greater number of
bits. Such schemes are model-based since a source model is needed to estimate
the symbol probabilities (e.g., a memoryless model). Of the three considered
compression algorithms, two are model-based—namely, the Huffman coder and
the arithmetic coder.

For all compression schemes, a knowledge of the source is required for an
efficient code. There are two ways to address this problem when the source
statistics are unknown: a two-pass method or adaptive coding. In a two-pass
system, the file to be coded is initially scanned to gather the needed source
characteristics (e.g., statistics of the source symbols). Usually, these parameters
are then fixed during the compression of the file. Disadvantages of this method
are increased delay and the overhead needed to transmit the characteristics.

In the adaptive scheme, the source characteristics are gathered in real-time
or “near” real-time. In addition to a lower system delay as compared with the
two-pass method, the coder can adapt to nonstationarity behavior in the source.
The tradeoff to the improved performance is that any transmission error results
in a loss of synchronization and thus a loss of the rest of the symbols in the file
being decoded. That is, the decoder is unable to track the steps of the encoder

due to the loss of synchronization.

3.2 Implemented Algorithms

We briefly discuss the main characteristics of the three compression algorithms

that are tested on the system. These algorithms are widely used in many systems
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that utilize lossless compression. Two of the key characteristics when considering
a compression algorithm are the complexity of implementation—and thereby the

speed of the algorithm—and the compression performance.

3.2.1 Huffman Coding

See (7] for a description of the adaptive Huffman algorithm. The algorithm works
by maintaining a tree representation of the source such that more frequent sym-
bols are represented by fewer branches. Each branch is assigned a label—a zero
or a one for the binary Huffman algorithm. Each source symbol is represented
by a unique codeword—a concatenation of branch labels—that is used in place
of the symbol to achieve compression.

The Huffman algorithm is perhaps the most well known compression scheme.
Its popularity is due to simple implementation and its “optimality.” If the symbol
probabilities are integral multiples of %, the Huffman algorithm is optimal in the
sense that no other lossless compression scheme results in a smaller average
codeword length per source symbol [3]. If the source probabilities does not
satisfy this property, the Huffman algorithm, encoding symbol-by-symbol, can
exceed the entropy by up to one bit per symbol [29]. If groups of K symbols are
encoded simultaneously, the suboptimality is by —}? bits.

One disadvantage of the Huffman coder is that, for symbol-by-symbol coding,
it assigns at least one bit to each source symbol regardless of how high the symbol
probability is. Another disadvantage is the speed as compared with other lossless
schemes. The Unix compression program compact, an adaptive Huffman coder,

was replaced by a faster and more efficient lossless algorithm.
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3.2.2 Arithmetic Coding

An introductory tutorial for binary arithmetic coding is presented in [12]. The
scheme used in this algorithm is to divide the unit interval [0,1) into regions such
that each region corresponds to a source symbol. The codeword for a symbol
consists of enough bits to specify a value in that symbol’s region. The length of
a region is related to the probability of the corresponding symbol. The larger
the probability of a symbol, the larger the corresponding region, and the smaller
the needed number of bits to represent that region.

Arithmetic coding, like Huffman coding, is model-based since it requires
source probabilities. Unlike the Huffman coder, the arithmetic coder can rep-
resent a source symbol by fractional bits. That is, arithmetic coding does not
require an integral number of bits to represent a symbol. This property results

in a more efficient code [29].

3.2.3 Lempel-Ziv-Welch Coding

The Lempel-Ziv-Welch (LZW) algorithm [28] is a refinement of the algorithm
proposed in [31]. This algorithm uses a dictionary whose entries are source
symbols that have occurred previously. Compression is attained by using the
index to an entry as the representation for that entry. Note that this scheme
does not require any source symbol probabilities.

For stationary ergodic sources, the average codeword length per source sym-
bol of the Lempel-Ziv algorithm converges to the entropy as the number of data
samples goes to infinity [3]. Although this is an asymptotic result, the LZW
algorithm affords a simple implementation and provides good performance for

finite-sized files—especially text files. LZW coding is widely used for many text
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compression systems (e.g., the Unix compress program and the PC compression
program arc).

The LZW algorithm is popular because of its fast processing speed and good
compression performance [3]. One disadvantage is that there is no flexibility to
use different source models to improve performance since this algorithm is not

model-based.

3.3 Source Models

Of the three compression algorithms considered, the Huffman and the arithmetic
coders are model-based and require a source model. The source is usually non-
stationary and non-ergodic. However, assumptions of stationarity and ergodicity
can sometimes be made over a local time interval if the source doesn’t “change”
too quickly. The two classes of source models that we consider, memoryless and
Markov, are further simplifications to yield statistics in a tractable manner.
For the memoryless assumption, the relative frequency® of each source symbol
is used as an estimate for the symbol probability. If the source is stationary
and ergodic, the relative frequencies converge to the true probabilities (of the
memoryless model) in the limit as the number of data samples goes to infinity.
For the Markovian assumption, a knowledge of the order (or the “memory”)
is needed. However, one method is to compress the file with a predetermined
fixed order. The value of this fixed order can be arrived at, for example, by

experiments on a set of test images. This approach might not give the best

5The number of times a symbol occurs in a sequence of source samples normalized by the

total number of samples in the sequence.
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performance since the order of the model may change with changing video data.
The second approach is to estimate the order of the Markov source based on
source samples and use that order for the model. This adaptive method can be
applied if the estimation does not introduce too much delay. The problem of
order estimation is addressed in [15] and [16]. We highlight the main results for

Markov sources.

3.3.1 Probability Estimation Problem

We begin by setting the framework for the problem of estimating the probabilities
of the source [15]. The source samples are assumed to be drawn from the alphabet
X = {1,...,7}, 7 > 2. The unknown order of the source, k*, is assumed to be
fixed in {1,...,ko}, where kg > 1 is assumed known. Let ©* denote the set of
all r*=1 x r stochastic matrices that generate a stationary and ergodic Markov
process. Let X* be the set of all infinite sequences of symbols drawn from
X. For every § € ©F, 1 < k < kg, let Py denote the stationary and ergodic
distribution on A,

The main problem is to estimate the probability mass function (pmf) of the
source based on the source samples 2} = (z1,%s,..., ) and convey it to the
VLC. Given the “true” order, k*, the “true” pmf of the source, P*, lies within
a family of pmfs indexed by k* (see Fig. 3.1). Note that there is a problem
of ambiguity since measures equivalent to P* are contained in all families with
indices k > k*. That is, the problem of overestimating the order is possible.
Although the measures are identical, a higher order increases complexity. This
difficulty is circumvented by deleting all such identical measures from higher-

order families.
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Figure 3.1: Families of probability functions for Markov model.
There are two ways to proceed to estimate the requisite probabilities:

1. First estimate the order; then estimate the pmf within the family indexed

by this order.

2. Compute order and pmf in one step via the method of mixtures (to be

discussed below).

The maximum likelihood (ML) estimator® can be applied for the first method.
One of the shortcomings of such an approach is that it is computationally inten-
sive. For each order, all pmfs in the corresponding family must be computed.
The maximum of all these functions is then chosen as the ML estimate for the
pmf. The delay introduced from such computations is too high for real-time
applications. Another disadvantage is that this estimator is inconsistent since it

overestimates the true order [22].

5The ML estimate here maximizes the conditional probability of the samples given the

order.
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The second method avoids high computational complexity by using one dis-
tribution as a representative for each family. The computation of this distribution
can be performed recursively (as discussed below) to reduce the complexity even
further. The mixture distributions are first used to estimate the order; then
the mixture distribution that corresponds to the estimated order is used as an

estimate for the pmf” (see [15] for further details).

3.3.2 Method of Mixtures

For each family of distributions, we miz over all the distributions in that family
to obtain one representative distribution. To perform this mixing, we assign
prior probabilities to all the pmfs. For k =1, ..., ko, let v be a prior distribution
on ©*—i.e., v(p1, ..., p,) is the prior distribution that Py = (py,...,p,), 8 € OF,
is the true pmf.

For source samples z} € X™ and k = 1,..., ky, the mixture distribution is

then defined by
Qu(z?) = /e  Py(a7)e(0)d6 (3.1)

where Py(z7) is the marginal probability of 27 under Py. Any prior distribution
suffices for our purposes as long as it assigns a positive mass to every measure
[15]. We select the Dirichlet distribution [16] which is defined by

a1 (o
pl ...pTT‘

PP s =1, 3.2
Clary -y r)’ “ ' r (32)

Vk(pl’ "'ap'r) =

"In the computer implementation, the mixture distribution is used only to estimate the

order. Relative frequencies in the appropriate contexts were used for the actual pmf.
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where

Clogsnay) = eat D) Tlar +1) (3.3)

F(Z—:l o; + 1”)

and T is the gamma function®. For our use, we set a; = —%, i1=1,..,r.

Given the samples z7, let v; € X denote the value of z; and ¢; € X k the
(k'™ order) contert of z; in 27, ¢ = 1,...,n. Let m(c,v) denote the number
of occurrences of the symbol v € X with context ¢ € X* in 7. Also, let
m(c) = 3 mk(c,z) denote the number of occurrences of the context ¢ € X* in

zEX

n
:L'l.

The mixture distribution can then be simplified [16] to
Qk(2?) = Q(z1) [] Qu(wilai™) (3.4)
=2

where

M) | (3.5)

me(ci) + 5

and the initial distribution Q(z;) assigns the same probability to all symbols.

Qi(xslai™) = (

Note that Qx(z™) can be recursively computed using Qx(z7 ') and the realization
1 g 1

for z,. The values of 7;(c,v) and n,(c) can also be recursively updated.

8The gamma function is defines as

INe) = / z%e""dz,
0

I'(n) = (n-1)!, n positive integer.
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3.3.3 Order Estimator

Given the source samples z7 and mixture distribution Qx(z%),1 < k < ko, the

order estimate [16] is

~

n n n rf=1(r —1)+5
k(z}) = 12}%}120 {k : log, Qi (z}) — logy Q—1(27) > ( 5 ) log, n}

with Qo(z}) = 1 Vo € X" This estimator is consistent (i.e., lim k() =
k* Py—a.s.) and thus avoids the problem of overestimating the order.

See Fig. 3.2 for a schematic of incorporating this order estimator into the
VLC process. For the VLC, Q; = Q(z»|z}™") can be used to code the symbol
Zn. Such coding can be shown to be optimal in that the average codeword
length per source symbol converges to the entropy at the “optimal” rate with
n. Note that the system in Fig. 3.2 can be implemented in real-time due to the

low-complexity associated with computing k and Q;.-

Compute R ! } Estimate
O (X, |X) ’T : Order
| i
QX" Delay -

Compute Mixture Distribution; k = 1,..., k,

Switch

QX |X™)

Xpz Xnu Xn vLC Yo Y'Yy

Input Data Compressed Data

Figure 3.2: Variable length coding with order estimation.
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Chapter 4

Rate Control

We have thus far not considered the implications of the real-time nature of
motion video on the design of our system. The video codec, as described above,
emits a variable rate bit stream owing to the use of variable length coding. One
of the attractive features of ATM is the gain (in bandwidth efficiency) that can
be achieved by statistically multiplexing variable rate sources [4].

We, however, convert the video codec to a fixed bit rate (FBR) system for
two primary reasons. First, the advantage of statistical multiplexing is dimin-
ished since rate variations are small. Due to the temporal redundancy among
consecutive frames, the codec is not bursty since only intraframe coding is uti-
lized. That is, the bit rate averaged over an entire frame is correlated from
frame to frame. A system that is based on interframe coding results in higher
rate variations than a system using solely intraframe coding. The second reason
to convert the variable rate bit stream to one of constant rate is that a FBR
system is simpler for the network. In addition, a FBR system is cost effective in

that the allotted bandwidth is more fully utilized.
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Accordingly this “traffic shaping” is accomplished by a buffer with a con-
stant output rate that absorbs rate fluctuations. The control on the rate is
accomplished by varying the quantizer resolution in response to feedback buffer
state information (e.g., buffer occupancy for the previous time interval). The
rate control problem thus becomes one of buffer management, since the goal is
to maintain the highest possible image quality while avoiding buffer overflow.
Note that buffer underflow need not be addressed since a higher picture quality
corresponds to a higher bit rate. A desirable feature of the buffer control strat-
egy is that it be adaptive with respect to the source. That is, we wish to avoid
strategies that do not change with changing sources.

The rate control strategy presented in Tzou [24] is static and ad hoc in that it
is designed based on a set of training images. Though the strategy works well for
a large class of test images, it is worthwhile to investigate adaptive rate control
systems. Unlike the other components of the video codec that are also based
on training sets (e.g., the run length codec), an adaptive rate control system
is amenable to analysis. We first examine some of the approaches to the rate
control problem in the literature. We then formulate the rate control problem as
one of constrained minimization and investigate some properties of the optimal

solutions.

4.1 Previous Approaches

The framework for our rate control mechanism is set in [6], which presents rate-
distortion performance for memoryless sources. The decision rule (or buffer

management scheme) in [6] is what we refer to as first-order since only one past
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buffer state (i.e., buffer occupancy) is used in the algorithm for each quantizer
choice. The performance of a rate control scheme can do no worse by relying on
more past buffer states. For most cases, we expect some improvement; however,
the growth in computational complexity can be prohibitive. Below, in addition
to first-order decision rules, we also examine second-order rules that utilize the
past two buffer states for each time instant.

In [11] a finite number of past buffer states are used for the decision rule.
The past states are, however, summed and the result is used as input to the
decision function. In our analysis, for second-order decision rules, the decision
function explicitly depends on two past buffer states.

A first-order buffer control scheme that is transparent to the source is com-
pared in [30] with two others that utilize source characteristics. One of the
algorithms that exploits source information is similar to that presented in [24].
These schemes are static since a training set is used to select the parameters of
the system.

The rate control problem is examined in [19] in a deterministic setting. The
system analyzed does not incorporate variable length coding. The corresponding
optimization problem becomes one of integer programming and the optimal solu-
tion can be found by dynamic programming via the Viterbi algorithm [19]. Since
the Viterbi algorithm can introduce large delays, the system studied is applica-
ble only to non-real-time services (e.g., storing a video sequence to a database
or CD-ROM).

Our analysis is closest to [19] but differs in that variable length coding is uti-
lized and thus the rate control problem involves randomness. Due to this aspect,

a constraint is placed on the probability of buffer overflow; in [19] the buffer is
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guaranteed to never overflow. Further, large processing delays are avoided by

efficient search algorithms for optimal solutions.

4.2 Problem Formulation

We begin with an informal description of the rate control problem. Our objective
is to characterize some of the salient qualitative features of the problem of rate

control. A mathematical model is subsequently presented.

4.2.1 Rate Control Problem

For a given threshold 0 < € < 1 and M > 0, the M-step problem is

(Py) minimize CgM) = E[sum of distortion for times 1,2, ..., M ]
M

subject to Pr{buffer overflow at timen} <e¢ n=1,..,. M
as a function of all rate control decision rules. A suitable choice for M would
be a frame boundary. That is, the solution to (Ps) minimizes the cost function
over each frame. If the decision rule is allowed to change at each time instant,
and the distortion measure is additive, (Pys) reduces to a dynamic programming
problem®. For such cases, we can examine the problem at each time instant.
The 1-step subproblem is

minimize C{" = E[distortion for time n]

(P1)
subject to Pr{buffer overflow at time n } < e.

9A dynamic programming problem can be reduced to subproblems that have the same

features as the main problem.
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Note that the solution to the 1-step problem when applied to the entire time
window M is a greedy approach in that we use the finest quantizer possible
for each time interval. In the case of the M-step problem, it might hold that
suffering distortion at some time instants will provide the smallest distortion
when summed over M. That is, concatenated local optimal solutions for (P,)
need not lead to a global solution for (Pps).

The problem of interest is (Pys): We seek a solution to the rate control prob-
lem for a window of size M. However, the 1-step problem (P,) is first examined
because it is simpler to analyze and it provides insights into the structure of

optimal solutions for the M-step problem.

4.2.2 Mathematical Model

See Fig. 4.1 for a block diagram of the rate control scheme. It consists of a bank
of K quantizer-VLC pairs of varying resolutions [6]. The outputs of the VLCs
are connected to a finite-length buffer of size B. A fixed number of bits from
the buffer are forwarded to the network for each time cycle. The choice of which
quantizer to use is determined by a decision function v, which can be thought of
as a switch. The decision function acts on feedback information from the buffer
in the form of buffer occupancies.

We use the above system for purposes of analysis but Fig. 4.2 shows a practi-
cal realization that uses only one quantizer-VLC pair [6]. The highest resolution
quantizer from the set of quantizers in Fig. 4.1 is chosen for this system. Scaling
the input data controls the bit rate to the buffer: The highest scale parameter
corresponds to the lowest resolution.

To proceed with the analysis of the rate control system in Fig. 4.1, we make
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Figure 4.1: Schematic for rate control.

the following two assumptions:

(1) Memoryless source. For n = 1,2, ..., the input process { X,,} is assumed to
be an R-valued iid random process with known probability density function (pdf)
fx(-). We synchronize the system such that the time between two successive
input samples corresponds to a fixed value. The iid assumption is unrealistic,
but it is made here, as in [6], for purposes of tractable analysis.

(2) Fized quantizers and VLCs. The optimal quantizers are designed with
respect to a given distortion measure d(-,-) and the source pdf fx(-). (For
example, the squared Euclidean distance, d(z,y) = (y — z)?, is traditionally
used for tractable analysis.) The quantizers are assumed to be N-level entropy-
constrained quantizers (i.e., the quantizer has as its output NV bits for each input
symbol); see [5] for further details. This choice simplifies the VLC design and
also accommodates the simplified system of Fig. 4.2. In practice, the source pdf

is unknown and the quantizers are designed as discussed in Chapter 2.
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Figure 4.2: Practical rate control system.

The it quantizer is given by a set of thresholds T = {T(i) T(i)} and a
set of quantization levels Q¥ = {q(’) : ,qN } Then for z € R, the action of the

th quantizer is specified by
Zq“)f T <z <TY)

where I(-) is the indicator function defined as

gef | 1, expression = true

I(expression) =
0, else.

The average distortion for the it quantizer is then given by

D; =

\

_ Uz, Qi(2)) fx(z) do

oo N
- / > dla, i), < < 1) fixlo) d
J
N T(l)
— g/

Assume the quantizers are ordered such that D; < Dy < --- < Dk (i.e., the

finest quantizer is @, and the coarsest is Q).
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The structure of the variable length coders (e.g., Huffman coders) are de-
signed from the quantizer parameters and the source pdf. We represent the
length of codewords (in bits) exiting VLC; by the random variable Z;, where
Z; € 2, = {lgi), ...,lg\i,z}—i.e., a finite set of integers. If an input z to VLC;
results in a codeword Z, we say VLC;(z) = Z. The pmf describing Z; is denoted
P(l), | € Z;.. Note that P;(-) is completely specified by the i** quantizer-VLC

pair and source pdf fx(-). Indeed, for any integer ,

P(l) = Pr{Z =1}

= ) Pr{Qi(X) = ¢’}
{5 : IVLCi(g{)| =1}
T

_ ) / 2 fx(@) de,

) T
G IVLC(g) =13 7

where |z| % length of z in bits.

The feedback process, {B,}, is B-valued, where B = {0,1, ..., B}. The value
of B, denotes the buffer occupancy at the end of the nt* time cycle. We assume
that in the event of buffer overflow, the extra bits are truncated. An alternative
is to convey a special symbol whenever the buffer overflows. In that case, bit
stuffing needs to be incorporated in to the system to avoid false declarations of
buffer overflow. We assume truncation of overflow bits to simplify the analysis.

A general decision map depends on L > 1 past values of the buffer occupancy
and has the form ¢ : BY — {1,...,K}. We say such a decision function is
Lt*h_ordered. Denote 1), as the index of the quantizer-VLC pair used during
the nt* time interval (i.e., ¥, = ¥n(Bn_1,---, Bn_r)). Because of its relative

simplicity, we initially analyze the first-order decision function of the form 1 :

B—{1,..,K}.
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Denoting r as the (fixed) output rate of the buffer, we can trace the buffer
occupancy over time (see Fig. 4.3). At the end of each time cycle, the buffer oc-
cupancy is sampled and is conveyed in the feedback loop to the decision function.

The dynamic equation governing the size of the buffer is given by
B, =min {(B,_1 — 7+ Zy,)", B}, (4.1)

where (z)* def max{0, z} and By = 0. Since, in general ¥, = ¢, (By_1, ..., Bn_1),
{B,} forms an L*'-order discrete-time finite-state time inhomogeneous Markov
chain with state-space BY. The time inhomogeneity is due to the fact that the

decision rule can change with time.

Buffer Occupancy

=
S - - R
w4

v

om | a ew]

Time Cycles

\

Figure 4.3: Timing pattern for buffer occupancy.

The complexity of the rate control mechanism can be lowered by reducing
the state space of the buffer. For example, rather than considering the entire
set of possible points B = {0, 1,..., B}, we can consider B’ = {0,n, 2n, ..., kn},
where 1 < n < B is the resolution reduction parameter and k¥ = [2]. In such
a case, the complexity is reduced at the cost of a decrease in the efficiency of

buffer usage.
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4.3 Cost Function Simplification

In this section, we present simplified forms of the cost functions for both the
1- and M-step problems. We begin by analyzing the costs for K = 2 and then
extend the results to an arbitrary K.

For K = 2, the cost function of (P;) can be simplified as

CP|._, = E[DU(n=1)+ Dol(vhs = 2)]
= E[Di(1 — I(¢n = 2)) + Dol (¢ = 2)]
= E[Dy 4+ (D; — D1)I(¢hn = 2)]

= D;+(Dy — Dy) Pr{yp, = 2}
By assumption, Dy < Dy, thus for K = 2

min Cg") <= min Jg"),

(4.2)
3§ = Pr{y, = 2}.
The cost function of (Pys) for K = 2 can similarly be simplified as
M
n=1
M
= D)+ (Dy—Dy) ) Pr{yn =2}
n=1
Thus for K = 2
min CgM) <= min J(lM),
(4.3)

M
IM = 3" Pr{y, = 2}.

n=1
Note for both problems, the optimal solution maximizes the usage of the finer

quantizer subject to satisfying the buffer overflow constraint.

For an arbitrary K, the cost function of (Pys) can be simplified as

M K
c™ = E|Y 3. Dil(y, =k)

n=1k=1
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k=1 n=1
K M.
= Z Dy, Z Pr{y, = k})
k=1 n=1
K
= S D™ (4.4)
k=1
where
(M) _ o
oy’ = Pr{y, = k}. (4.5)
n=1

And for (P;), the cost function for K > 2 can be reduced as
K
c) = E {Z Dil (o = k)]
k=1

K
= Y Dy (4.6)
k=1

where
") — Pr{y, = k}. (4.7)

We first present results for first-order decision rules followed by results for
higher order rules. For both sections, we start by considering the 1-step problem,
then the M-step problem. Also, the rate control scheme for K = 2 is used

throughout to draw insights into the structure of optimum rules.

4.4 First-Order Decision Rules

4.4.1 Results for 1-Step Problem

We first present a useful property of first-order decision rules for the 1-step
problem. This result is used to simplify the optimization problem. Algorithms

are then presented to find an optimal solution.
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Lemma 1: For first-order decision rules, the solution to (P;) is a threshold test.
Proof: Consider K = 2. Let L}, L} be decision regions corresponding to an

optimal rule ¥*(-), where

LinLy=0,
LiUL; =B,
1, be L

P*(b) = ,ben
2, be L

It suffices to show that for b=10,1,...,B—1

b+1lell = be Ll

Suppose b+1 € L} for some b = 0,1, ..., B—1. If using the finer quantizer @,
satisfies the buffer overflow constraint when buffer occupancy is b + 1, then the
constraint is certainly satisfied by using @, if buffer occupancy is b. Furthermore,
since the cost is decreased by increasing the number of uses of Q; (see (4.2)), it
follows that the rule must have b € Lj.

Thus if v* = max{b: b € L}}, the optimal rule can be written as a threshold

test:
1, b<y
Y*(b) = , beB.
2, b>~*
For K > 2, an optimal rule partitions B by Lj, ..., L). Using similar reasoning
as above, it follows that for k=1,.., K and b=0,...,B -1
k
b+1leLy = be [J L
Jj=1

If we denote v; = max{b: b € L}},k = 1,.., K — 1, the optimal rule can be
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written as

¥r0) =4 . - , beB.

L K, 7;{—1 <b S B
From Lemma 1 and (4.2), (P;) reduces to

i < t.
(P1) ve{t??%—l}Pr{v < Bn1 < B} st Pr{OF, |7} <&,

where Pr{OF,, | v} denotes the probability of buffer overflow at time n given
the threshold v. Since Pr{y < B,_; < B} is a non-increasing function of v, a

solution to (P;) for K =2 is

7= 1 PHOR ) <) 19

The buffer overflow constraint can be simplified as

Pr{OFn |7} = Z Pr{OFn | Bn—l = b, 7} Pr{Bn—l =b | 7}

beB

= Y " (n) Pr{By-1 = b7}
beB

= S t(n) Pr{B,_, = b} (4.9)
beB

where the last equation holds since B, _; does not depend on the v being com-
puted for the current time n.

The “transition probabilities” for b — OF, b € B, are

tl(;” (n) = Pr{OFn | Bn_1= ba 7}

= PI‘{Zw(b) > B — b‘_*‘TIBn—l = b) 7}
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= 1= [Pr{Zi < B—b+r}(b<~)

+Pr{Z, < B—-b+r}(b> )]
= 1Y RIS P@I0> ] (010

where the second equation follows from the expression for B, in (4.1). Since
£ (n) is independent of 7 (i.e., t." (n) = ), we can precompute these values.
To reduce computational complexity, we exploit the redundancy in (4.10) to

arrive at the following relation:
£ =Y AP p=1,2,.., B, (4.11)
where

A = Pi(B-b+r+1)I(b<y+1)

+Py(B-b+r+1)I(b>v+1),b=1,2,..,B. (4.12)

Combining (4.10)-(4.12), we arrive at the following algorithm to precompute
M be B, Vy €{0,..,B—1}.

Algorithm 1: Pre-computation of t,(f’).

Step 1: Set v+ B —1.

Step 2: Compute t,(,"), b€ B from (4.10).

Step 3: Set v < v — 1. Compute A,(,v), b=1,2,...B
from (4.12). Sett\, « "V _AD) b =12 .. B,
and compute £ from (4.10).

Step 4: If v =0, stop; otherwise go to Step 3.
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The search algorithm to find the solution to (P;) is as follows
Algorithm 2: Computation of optimal threshold for (Py).
Step 1: Compute t,(,ﬂ via Alg. 1, beB, y€{0,...,B —1}.
Step 2: Set v+ B —1.
Step 3: Compute Pr{OF, |~} from (4.9).
Step 4: If Pr{OF, | v} < ¢, stop with v* < 7.
Step 5: Ify = 0, stop and print error message ‘ ‘no solution
exists.’’

Step 6: Set v+ v — 1 and go to Step 3.

The main computational complexity in this algorithm is due to the B + 1 addi-
tions and B + 1 multiplications involved in Step 3 yielding an overall complexity
of order O(B)'°. Although the worst case search involves B — 1 computations of
Step 3, the complexity of Algorithm 2 can be kept close to linear by a suitable
choice of the initial value. For example, if we apply the 1-step algorithm M
times, we expect the optimal thresholds to be correlated. Rather than starting
each run with the initial value v = B — 1, an improvement in complexity can be
achieved by using the optimal threshold from the previous time interval as the
initial value for each run.

Other than the precomputed values of t§7), b € B, the only additional in-
formation needed for computing the optimal solution to the 1-step problem is
Pr{B,_1 = b},b € B. This information is easily maintained as an array of size
B + 1 and updated each time instant by observing the buffer occupancy.

The application of the 1-step solution for consecutive time instants is depicted

in Fig. 4.4. This approach, as mentioned above, leads to a greedy solution. There

10That is, the complexity is bounded above by aB, for some constant c.
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is no guarantee that this solution is optimal for a window of M time instants.
We address the problem of optimizing the first-order rate control mechanism

over M time instants in the next section.

l input

Sample Update
Rate Control
Compute 1" Sys&tacmon ° Buffer Pr{B,.,= b},
from Alg. 2 State be {01..,B}
!
l output

Figure 4.4: Block diagram for consecutive application of 1-step solution.

4.4.2 Results for M-Step Problem

The M-step problem (Pjs) can be solved by forward dynamic programming using
the Viterbi algorithm [26]. This method is also applied in [19], wherein the prob-
lem is simpler owing to its deterministic formulation; consequently, the problem
treated in [19] reduces to one of integer programming.

The cost of using the Viterbi algorithm is the introduction of delay. This
method is thus suitable for applications such as encoding video onto a medium
(e.g., magnetic tape, CD-ROM) for future FBR transmission.

Since we assume a knowledge of the source pdf fx(-), an alternative method
to solve the M-step problem is to use Monte Carlo simulation. The rate control
system can be simulated for M time instants to solve for the sequence of optimal
thresholds. Then with a certain degree of confidence (i.e., depending on how

accurately fx(-) describes the source), the optimal solution can be utilized.
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Although this method avoids the problem of processing delay, in practice
a good knowledge of the source is difficult to attain. The method described
below-—where the buffer statistics are updated at each time instant—is more
reliable in limiting the probability of buffer overflow to a tolerable level.

Before presenting the solution via the Viterbi algorithm, we present the
framework of the method. The solution is found by tracing viable paths through
a trellis (see Fig. 4.5). The states of the trellis are all the possible thresholds
{0,1, ..., B—1}. A path is said to terminate if using that path violates the buffer
overflow constraint of the problem.

state
A

B-1 -+ . . e - invalid path

optimal path

L) ; \
\
: \ non-optimal
N\ " valid path
\ e
0 + .
rlz n Ji— 1

» time instant

Figure 4.5: Diagram of trellis used in the Viterbi solution.

Let the cost associated with using path p be ¢(p) and let the probability of
buffer overflow using path p be A(p). At each time instant, all surviving paths
from the previous instant are extended by adding branches. A branch (i, j) at

time instant n is defined as the transition of thresholds vy, =t = v, =j for
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i,j € B. Adding branch (3, ;) to path p at time instant n results in the path p'.
This new path is a valid path if and only if A(p') < €; if path p is invalid, it is
terminated.
The solution to the M-step problem can be computed by the following algo-
rithm.
Algorithm 3: Computation of optimal solution for (Par).
Step 1: Set n «+ 1, initialize Pr{By, = b}, b € B, and
initialize the set of valid paths for n = 0 to the
singleton p = {| 2]}, where c(p) = A(p) = 0.
Step 2: For all valid paths p, extend p to p' by concatenat-
ing branch (3,7), 1,5 € B. If \(p') <€, listp’ as a
valid path.
Step 3: If n < M, setn < n+1 and go to Step 2.
Step 4: From all valid paths, select that path corresponding
to the smallest cost (z e., p* = arg prglaidrild{c(p)}). In

the event of a tie, select one at random.

4.5 Second-Order Decision Rules

By increasing the number of past buffer states in the decision process, we ex-
pect some type of improvement. For example, by considering two past values
of the buffer state, the trend of the buffer occupancy can be better understood.
We study general second-order decision rules that are a function of two vari-
ables. The questions that arises are: (1) what type of gains can be achieved by

increasing the order of the decision rules; and (2) at what cost?
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4.5.1 Results for 1-Step Problem

Since second-order decision rules utilize two past buffer states, the decision re-

gions are two-dimensional. For the case of K = 2, the decision regions are

R1 - BxB
R, = B x B\ R;.
The decision function is then
]., (a, b) c R1
Y(a,b) =
2, (a, b) € Ry

for all (a,b) € B x B.

Similar to the analysis for first-order rules, we wish to minimize (cf. (4.2))

Jo(R2) = Pr{vn =2|Rs}

= PI‘{(Bn_l, Bn_g) € R2|R2}
To apply the results from the first-order analysis, we condition on B,,_,

Jn(Rz) = Z PI‘{(Bn_l, b) € R2|Bn_2 = b, Rg} PI‘{Bn_2 = b|R2}
beB

= Z PI‘{(Bn_l, b) c RziBn_Q = b, R2} PI‘{Bn_Q = b} (413)
beB

where the last equation holds since the pmf of B,,_, does not depend on the
current computation of Ry. The minimization of (4.13) is subject to the following
constraint on the probability of buffer overflow
PI‘{OFn|R2} = Z PI‘{OFnIBn_g = b, RQ} PI‘{Bn_Q = b} <€ (414)
beB

where we again use the fact that B,_, does not depend on R,.
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Theorem 1: The optimal solution, R*, has the following property: For a fized
b € B, the decision region along B,_o = b, denoted R*(b), is completely described
by

7*(b) = I(rlleag({a :a € Ri(b)}, (4.15)
where R (b)) = {a:a € B, (a,b) € R}},i=1,2.
That is, R*(b) is a threshold test:

¥(a,b) =

for all (a,b) € B x B.
Proof: Fix B,_; = b,b € B. By Lemma 1, R}(b) and R;(b) are contiguous
intervals. Thus a threshold is sufficient to describe R*(b), the optimal region
corresponding to B,_5 = b. O

The second-order problem is thus solved by finding a set of optimal thresh-
olds, R* = {7*(b) : b € B}, that minimize the cost function (cf. (4.13))

In(Re) = Z Pr{7(b) < Bp_1 < B| By = b} Pr{B,,_» = b} (4.16)
beB

while satisfying the buffer overflow constraint in (4.14).

The expression for the probability of buffer overflow can be simplified as
follows:

Pr{OF,| R} = Z Pr{OF,| B,—2 = b,7(b)} Pr{B,_, = b}

beB

= z Z PI'{OFn| Bn—l =a, Bn-—2 = b, T(b)} X

beB acB
Pr{B,_1 = a| Bp—2 = b,7(b)} Pr{B,_» = b}

= 3 3 Pr{OF,|By1 =a,B, 2 =b,7(b)} x

beB acB
Pr{B,-1 = a|Bn_2 = b} Pr{B,_» = b} (4.17)
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where the last equation uses the fact that B, _; does not depend on R,. The
“transition probability” for (a,b) — OF, (a,b) € B x B, can be simplified as in
the analysis for first-order rules (cf. (4.10)):

t) € Pr{OF,|Ba_1 = a, Bp_s = b,7(b)}

B—a+r

= 1- Y [Pi(i)I(a<7()+Pa(i)I(a>7()].  (418)

i=0
Note that tE;(:))) depends on b only through the threshold 7(b). Thus we have
the relation
(b T
and t"®) can be precomputed via Algorithm 1. Combining (4.17)-(4.19), we

can write the probability of buffer overflow for second-order rules as

Pr{OF,| Ry} = 3 Pr{Bno =0} >t Pr{B,_; = a| Bp_p = b}.  (4.20)
beB aEB

A naive approach to solving for the optimal solution involves a search over a
space of size BB. Thus the total computational complexity is Q(B?)!. To reduce

complexity, we attempt to find relationships among the optimal thresholds.

Proposal: Forb=0,1,..., B — 1, the optimal thresholds satisfy
() <7 +1). (4.21)

This relation is heuristically satisfying in that if B,,_, decreases, the correspond-
ing optimal threshold should not increase. That is, as the trend increases toward
a larger buffer occupancy, the optimal threshold should decrease resulting in a
less frequent use of the finer quantizer. The reduction in the total number of

search regions is at least of one order.

U That is, B® is a lower bound to the total complexity. For example, if each search for a

given decision region involves O(B) computations, the overall complexity would be O(BB+1).
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4.5.2 Results for M-Step Problem

The analysis for second-order decision rules for the M-step problem is similar to
that of first-order rules. A greedy approach can be taken by simply applying
the 1-step solution for consecutive times instant. For a global minimum over
the window [1, M|, the Viterbi algorithm can be applied as discussed above.
However, the number of states in the trellis now increases to B2 due to the
consideration of two past buffer states. A less complex search algorithm based
on Lagrange multipliers is presented in [19] with a slight decrease in performance

from the optimal solution.

4.6 Higher-Order Decision Rules

For the simpler 1-step problem, by considering one additional buffer state, the
complexity of computing the optimal solution in a naive way increases from
O(B?) to Q(B?). Although these complexities can be decreased by exploiting
characteristics of optimal regions, the difference between them remains very
large. Since the input to the rate control system is assumed to be preprocessed
to reduce some intersymbol correlation, considering a very high number of past
buffer states is not expected to provide significant performance improvements.
Indeed the computational costs associated with increasing the order above 2 will

most likely outweigh the performance gains.

A Heuristic Extension

One motivation for extending the decision function dependency was that the

trends in buffer occupancy could be better captured. We now present a solution
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Figure 4.6: Heuristic decision rule for the 1-step problem.

to the 1-step problem with an arbitrary-order decision rule that is based on
heuristics. This solution uses hysteresis to provide stability for the rate control
system. In practice, we wish to avoid frequent changes of quantizer choice.
This simple scheme utilizes a memory parameter, £, to track the correct
hysteresis path. See Fig. 4.6 for a diagram of this decision rule. It is interesting
to note that this rule has an arbitrary order. For B, ; = b, b € B, the decision

rule is

) 1,if(0<b<T)) or (I <b<T,and &=1)
P(b) =

2, else.
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The heuristic rule is given by the following algorithm:

Algorithm 4: Heuristic decision rule.

Step 1: Setn+ 1 and £ « 1.
Step 2: If0 < B, <TIj, set &n +—1and £ + 1.
Step 3: If T, < B,_; < Ty, set g, « £.
Step 4: IfI'y < B,_1 < B, set ¢, < 2 and £ « 2.
Step 5: Set n < n+1 and go to Step 2.
The thresholds I'; and T'; can be found by solving for v* from Algorithm 2
and setting I'; = v* — 6, and I'; = y* + d,. The choice of the parameters 6,

and &, depend on the desired level of stability and the corresponding tolerable

degradation from the optimal performance.
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Chapter 5

Simulation Results

Since the system is intraframe-based, experiments with still images—rather than
a sequence of frames—is sufficient to judge performance. The video codec is

tested on four 720x576 grayscale image files:

1. country: a picture of a hilly European village. The image is characterized

by many edges in the foreground.

2. zelda: a shot of a woman above the shoulders. This image has a very

smooth background and some details in the hair.

3. girl: an image of a small girl surrounded by her toys. This picture has

many sharp edges and sudden contrast changes.

4. boats: a picture of boats tied on a dock. This image is also characterized

by sharp edges and many details on the boat in the foreground.

These images are from a set that were used in testing the JPEG standard.
We begin by displaying system robustness to cell loss. Then we examine the

compression aspect of the codec: First we consider the run length codec and
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optimize it based on test images. Then results for the variable length coding

methods and various source models are presented.

5.1 Robustness to Cell Loss

We first display the effectiveness of the codec to combat cell loss. Since these
experiments are subjective, we select the loss of LP cells to correspond to a
region where the effects are most noticeable. For comparative reasons, the region
affected by cell loss is fixed for each test image (the middle portion of each image).
Further, the number of cells dropped is exaggerated to show the distortion effects.
In practice, the affected region will consist of a small number of horizontal lines.

Figs. 5.1 and 5.2 show the effects of cell loss on the test image country.Y. The
loss of LP cells results in a “blocking” effect. In addition to the original image,
corrupted images for various priority thresholds are listed. Note that the effects
of cell loss are indistinguishable for a priority threshold of K, = 15 (i.e., the
LP component is approximately 50% of the total bit stream). Higher thresholds
were not tested for this reason. The same experiments on zelda.Y are shown in

Figs. 5.3 and 5.4.
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(a) Original image.

(b) K, = 15.

Figure 5.1: Cell loss effects on country.Y.
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Figure 5.2: Cell loss effects on country.Y (cont.).



(a) Original image.

(b) K, = 15.

Figure 5.3: Cell loss effects on zelda.Y.
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Figure 5.4: Cell loss effects on zelda.Y (cont.).



5.2 Compression Performance

5.2.1 Run Length Codec Optimization

We test the RLC performance as a function of Lg, the run length size, and K,
the priority threshold. Since varying K, results in different-sized files, a fair
comparison is to consider the RLC performance as a function of Ly for a fixed
K,. We expect the LP bit stream to contain many zero-valued symbols and the
HP bit stream to have more non-zero-valued symbols. Thus the optimal Ly for

each priority class should be different.

High-Priority Bit Stream

See Figs. 5.5 and 5.6 for performance results on the HP part of country.Y and
zelda.Y. For all values of K, considered, the smallest Ly performed the best.
This is intuitively satisfying since the HP file will not contain many zero-valued
symbols. However, a RLC still provides a compression gain higher than 2:1.
Note that the compression behavior for both test images are similar.

See Fig. 5.7 for further tests for finer values of Lg on the HP component of
country.Y. Though there are some fluctuations, a value of 4 was chosen as Lg

for the HP bit stream for all K.

Low-Priority Bit Stream

Figs. 5.8 and 5.9 show compression performance on the LP component of coun-
try.Y and zelda.Y. Note the very high gains achieved by run length coding.
Although the sub-optimal values of Ly are in disagreement for the two test im-

ages, the optimal values are almost identical. Thus for both priority classes, the
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RLC performance is similar for different image types.

For the LP case, the optimal Lg is a function of K. For low thresholds, the
lowest run length considered (Lgr = 4) is optimal; and for higher thresholds, the
middle values of run lengths considered (Lr = 8) outperformed the other run
lengths. A higher threshold corresponds to an LP file with many runs of zeros,
and thus a higher L is expected. See Fig. 5.10 for tests of the RLC to refine
the optimal value of L. We select five as the value of Lg for K, < 5 and six
for K, > 5.

To examine the overall compressed performance, we plot the absolute sum
of the HP and LP compressed components of country.Y in Fig. 5.11. The best
values of Ly were chosen from those tested in Figs. 5.5 and 5.8. Note that the
total RLC performances are comparable for varying values of K,, and that slight
improvement is noticed for higher values. The tradeoff to high values of K, is
that of a smaller LP component. Although this results in higher-quality images
in the event of LP cell loss, bandwidth efficiency is decreased. That is, a higher
K, results in more HP cells causing an increase in the allocation of “guaranteed”

bandwidth.
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Figure 5.5: RLC performance vs. K, for HP component of country.Y.
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Figure 5.6: RLC performance vs. K, for HP component of zelda.Y.
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Figure 5.7: RLC performance vs. K, for HP component of country.Y (fine).
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Figure 5.8: RLC performance vs. K, for LP component of country.Y.
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Figure 5.9: RLC performance vs. K, for LP component of zelda.Y.
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Figure 5.10: RLC performance vs. K, for LP component of country.Y (fine).
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Figure 5.11: RLC performance vs. K, for HP and LP components of country.Y.
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5.2.2 Variable Length Coder Performance

For notation simplicity, Table 5.1 lists abbreviations used for the compression
analysis for all source model/compression algorithm combinations. All the al-
gorithms are based on input symbols of length 8 bits. For algorithms based on
contexts of length less than 8 bits, the most significant bits of the past symbol(s)

were utilized.

Abbr. Algorithm Model
LZW | Lempel-Ziv-Welch n/a
HO Huffman Memoryless model
H4 Huffman 4 bits of prev. symbol as context
H8 Huffman Prev. symbol as context
A0 Arithmetic coding Memoryless model

A2-k | Arithmetic coding | 2-bit context with order 1 < k£ <6

A4-k | Arithmetic coding | 4-bit context with order 1 <k <3

A8-1 | Arithmetic coding Prev. symbol as context

A2-OE | Arithmetic coding Markov with order estimator
(2-bit context with order 0 < k < 6)

A4-OE | Arithmetic coding Markov with order estimator
(4-bit context with order 0 < k < 3)

Table 5.1: Abbreviations for compression analysis.

The limit on the maximum order for the arithmetic coding algorithm is for prac-
tical reasons. Memory requirements for the software implementation precluded

consideration of higher values for the order.
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Source Model/Compression Algorithm Comparison

We first analyze the effects of different models on VL.C compression performance.
In particular, the arithmetic coding algorithm is examined for different (fixed)
orders and the order estimation method. A frequency refresh scheme was used
for all cases. The use of this scheme generally resulted in better compression
performance. The goal of this refresh scheme was to weigh the more recent data
as more important. The memoryless system actually worked better without the
frequency refresh; but for fairness in the comparisons, we state the results of
the memoryless model with frequency refresh. The results for the HP and LP
components of country.Y'? are presented in Figs. 5.12-5.15.

For all the files presented, no other model outperformed the memoryless
model. The order estimation scheme provided the same compression as the
memoryless model for some of the test files. For these cases, the order estimator
stayed at order k = 0 for the duration of the test file.

Note a general trend in these figures: Compression is lowest for £ = 0 then
there is a sharp increase for a higher value of k£ (for the 4-bit context, the worst
performance is for k = 1; for the 2-bit context system, the worst is at £ = 2) then
a steady decrease for higher values of k. One explanation for the discrepancy
in compression behavior for £ = 1 is that the 4-bit system requires more data
to build a good representation of the source. That is, the 2-bit system works
better since the corresponding total number of contexts is smaller than for the
4-bit system.

A curious phenomenon is that the 4-bit system outperforms the 2-bit system

for k > 1. The number of contexts grows exponentially in k¥ and one would

12The results for the other test images were similar.
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expect that, for the reason given above, the 2-bit system work better than the 4-
bit system. However, considering a higher number of most significant bits seems
to provide a better representation for the true probabilities.

The ineffectiveness of incorporating the order estimator into the compression
algorithm can be primarily attributed to the small size of the test files. The
order estimator optimality (i.e., convergence to the true order) is an asymptotic
result. The RLC prior to the VLC provided significant compression and thus

reduced the effectiveness of the order estimator.
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Figure 5.12: VLC perf. for varying models: HP comp. of country.Y.
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Figure 5.13: VLC perf. for varying models: HP comp. of country.Y (cont.).
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Figure 5.14: VLC perf. for varying models: LP comp. of country.Y.
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Figure 5.15: VLC perf. for varying models: LP comp. of country.Y (cont.).
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Above, we analyzed the effect of different source models for a fixed compres-
sion algorithm, namely arithmetic coding. Now we study the performance of the
three compression algorithms for a given source model. For the LZW algorithm,
which uses parsing and maintenance of a dictionary, there is no source model;
however, we state its compression performance for comparative purposes. For
the Huffman and arithmetic coding algorithms, results for both the 4-bit context
model and the full 8-bit context model are presented. See Figs. 5.16-5.19 for
compression results for the HP and LP components of country.Y*3.

The first observation of these results is the improvement in compression for
models with memory when using the Huffman algorithm. There is a steady
improvement for both HP and LP files as memory is utilized. In contrast, arith-
metic coding performs best for a memoryless model and poorly when incorpo-
rating memory. One reason for the decrease in performance for models with
memory is that more data is required to build a good estimate of the source
statistics. The arithmetic coding algorithm used frequency counts to represent
the source statistics; the tree representation of the Huffman algorithm must have
provided faster convergence to an accurate estimate of the source statistics.

As a final remark before presenting the best overall compression performance,
note that the general behavior of the VLC does not drastically change by varying
priority thresholds or test images. This is good news since it says that the system
is robust to different source characteristics and the results are not limited to the
test images. The key system component that reduce the video characteristics in

the data is the run length codec.

13 Again, the results for the other test images were very similar.
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Figure 5.17: VLC perf. for varying algorithms: HP comp. of country.Y (cont.).
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Figure 5.18: VLC perf. for varying algorithms: LP comp. of country.Y.
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Best Compression

Next we state the best compression performance over all algorithms and source
models that were tested. Tables 5.2-5.5 lists compression results of AC compo-
nents for priority thresholds K, = 5,10,15, and 20, respectively. The results for
the DC components are given in Table 5.6.

As the tables show, the Huffman coder with an 8-bit previous symbol context
generally outperformed all other compression schemes. The only exception was
that the LZW algorithm worked better for small files; however, the relative gains
were not significant. Additional compression can be attained by designing the
VLC in accordance with the RLC structure. Rather than working on 8-bit input
symbols, the VLC can incorporate the parameters of the RLC: the run length
size, the 3 bits representing the size of the amplitude, and the amplitude. The
fact that a Markov model is optimal says that the output bit streams of the
RLCs have some correlation.

For the DC files, the Huffman coder with a memoryless model worked best.
This result makes sense since the DC files are small: VLCs with memory models
require more data to suitably represent the source.

Next we analyze average bit rates associated with compression results from
Tables 5.2-5.6. Assuming the transmission consists of grayscale images of size
720x576 at 45 frames/sec, the uncoded bit rate is 149.30 Mb/s (for color video,
where two additional components at 8 bits per sample are transmitted, the raw
data rate becomes 447.90 Mb/s). Table 5.7 gives an idea of the types of gains
that can be attained (for K, = 15). Note that, on average, a rate reduction ratio

of 7:1 appears reasonable.
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Original After Best
Priority | Size (kB) | File | RLC (kB) | VLC (kB) | Algorithm

boat 11.099 9.346 LZW

High 45.360 country 17.008 14.213 H8
girl 15.410 13.050 HS8
zelda 15.158 12.651 HS8
boat 27.558 20.223 HS8

Low 306.180 | country 47.575 34.125 HS8
girl 49.889 37.090 HS8
zelda 41.422 30.841 H8

Table 5.2: Compression results of AC components with K, = 5.

Original After Best
Priority | Size (kB) | File | RLC (kB) | VLC (kB) | Algorithm
boat 23.029 18.704 HS8
High 102.060 | country 35.309 26.713 HS8
girl 36.942 28.436 HS8
zelda 32.968 25.254 HS8
boat 12.778 9.822 LZW
Low 249.480 | country 27.088 20.411 H8
girl 25.789 20.097 H8
zelda 21.059 16.981 H8

Table 5.3: Compression results of AC components with K, = 10.
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Original After Best
Priority | Size (kB) | File | RLC (kB) | VLC (kB) | Algorithm

boat 29.046 22.818 H8

High 158.760 | country 46.133 34.219 H8
girl 48.550 36.654 H8
zelda 41.648 31.673 HS8
boat 8.101 6.097 LZW

Low 192.780 | country 16.078 13.065 HS8
girl 12.983 10.873 LZW
zelda 12.047 10.281 H8

Table 5.4: Compression results of AC components with K, = 15.

Original After Best
Priority | Size (kB) | File | RLC (kB) | VLC (kB) | Algorithm
boat 34.392 25.745 HS8
High 215.460 | country 54.559 39.808 H8
girl 56.571 42.723 H8
zelda 49.283 36.990 H8
boat 4.625 2.912 LZW
Low 136.080 | country 7.994 6.386 LZW
girl 6.072 4.447 LZW
zelda 6.115 4.738 LZW

Table 5.5: Compression results of AC components with K, = 20.

78




Original Size (kB) | File | Best VLC (kB) | Algorithm
boat 11.829 H4
12.960 country 11.210 HO
girl 11.234 HO
zelda 11.890 HO

Table 5.6: Compression results of DC components.

Best Rate! Rate
File | Compression (kb) | (Mb/s) | Reduction Ratiolt
boat 325.952 14.668 10.18 : 1
country 467.952 21.058 709:1
girl 470.088 21.154 7.06: 1
zelda 430.752 19.384 770 : 1

t At 45 frames per second.
tt As compared with the uncoded rate of 149.3 Mb/s.

Table 5.7: Average rate reduction.
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Chapter 6

Conclusions

Digital video is an important application in the future B-ISDN. We focused on
transmitting high data rate video over an ATM network. The question of what
compression technique gives best performance was examined by comparing three
compression algorithms and various source models.

Our results show that an average ratio of 7:1 is possible for the compression
performance. This gain is coupled with graceful degradation in the event of cell
loss. The inherent priority feature of ATM networks allowed hierarchical coding
to combat the effects of cell loss without FEC.

We optimized the run length codec and presented optimal parameters for
each type of input stream. For the model-based compression schemes, several
source models were examined. It was found that, for the AC component of the bit
stream, a Huffman coder with a first-order Markov model with an 8-bit context
outperformed all other combinations of models and compression algorithms. For
the DC component, a memoryless Huffman combination performed the best.

Incorporating the order estimator into the compression scheme was not ben-
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eficial for the test files. The reason for this was primarily due to the small size
of the test files. (It is ironic that, for the AC files, the high compression gains
from the RLC caused the order estimator to perform poorly.) However, order
estimation is useful since VLCs utilizing a Markov model of arbitrary order can
better adapt to the given video source. The arithmetic coder performed worse
than the other algorithms due to the limitation of fixed-length arithmetic opera-
tions. The VLC results were similar regardless of the priority threshold and test
images. The codec is thus robust to changing video sources.

For the problem of rate control, we provided a framework for adaptive schemes
by formulating the problem as one of constrained minimization and studying the
properties of optimal solutions. Algorithms were presented to solve for these op-
timal solutions. A key feature of our analysis is the consideration of more than
one previous buffer state for the decision process. Although an optimal solu-
tion with the Viterbi algorithm introduces large delays, we expect that some
gains can be attained by increasing the order of the decision rule. A heuristic
arbitrary-order rule was introduced based on hysteresis. This practical scheme
provides stability by avoiding frequent changes in quantizer choice. For adap-
tive rate control systems, we expect some form of steady-state behavior. Such
long-term results can be used to fix a decision rule to avoid the problem of delay
introduced by the Viterbi search algorithm.

The rate control system contains many problems for future research. Further
simplifications in computing optimal solutions is needed (e.g., to compute the
solution to the M-step problem in real-time). Also, simulation analysis of the rate
control mechanism is needed to see how performance is affected by increasing the

order of the decision rules. All the analysis for this area involves much software
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work. Finally, the incorporation of the rate control system into the video codec

is needed to judge the performance of the entire system.
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