
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University

of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN
series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

An Information Theoretic Approach for Design and Analysis
of Rooted-Tree Based Multicast Key Management
Schemes

by R. Poovendran and John S. Baras

CSHCN T.R. 99-18
(ISR T.R. 99-36)

An Information Theoretic Approach for Design and Analysis of

Rooted-Tree Based Multicast Key Management Schemes�

R. Poovendran, J. S. Baras

fradha, barasg@isr.umd.edu

Dept. of Electrical and Computer Engineering & Institute for Systems Research

University of Maryland, College Park, MD 20742, USA

Abstract

Recent literature presents several rooted tree based member deletion/revocation schemes [20, 21, 22,
24, 4, 5] trying to simultaneously minimize the key storage while providing e�cient member dele-
tion/revocation. Many of these approaches have di�erent solutions and provide di�erent values for
the number of keys to be stored and distributed. In this paper, we show that many of these papers can
be systematically studied using basic concepts from information theory. In particular, we show that the
entropy of member revocation event, plays a major role in de�ning the key allocation requirements. We
then relate the entropy of member revocation event to provide bounds on the key length. We also show
that the optimal Hu�man coding strategy used in [22, 24] leads to security weakness. A method for
generating Key management schemes with varying degrees of member collusion is also presented in this
paper.

Key Words: Multicast Security, Collusion, Member Deletion/Revocation, Key Length, Entropy.

1 Introduction

Many of the distributed applications like Internet newscast, stock quote updates, and distributed confer-

encing registration may bene�t from secure group communications. Providing an e�ective key management

scheme for these applications is complicated by the nature of a group that is netgraphically distributed

and exhibits varying degrees of trust, i.e. di�erent parts of the group may have di�erent security strengths

that can be assumed in key management.

A centralized Group Controller (GC) is assumed to be responsible for distributing all the required keys to

the group members. In general, two or more members can use their public keys to communicate. However, if

the number of messages and the number of members participating in the communication are very large, it is

convenient and e�cient to use shared keys. The key that is used for session encryption by the participating

members is called the Session Key (SK). If the SK needs to be updated over a period of time for a variety

�Parts of this work appears in CRYPTO'99 [16] and IEEE Information theory and Networking Workshop [17].

1

of reasons including key lifetime expiration, compromise of the key, and/or temporary failure of one of the

members, there has to be a mechanism to securely update the SK of all valid members. Although the use

of public keys is one approach to achieve this goal, a speci�c key called the Key Encrypting Key (KEK)

can also be used for this purpose. Instead of using a single KEK, each member is given a variable number

of KEKs for broadcast e�ciency while optimizing the storage requirements. The main focus of the current

research has been to �nd e�cient key distribution schemes without introducing vulnerabilities such as user

collusion.

In a group communication model, removal or addition of one or more members does not necessarily

terminate the session. Since there is more than one member involved in the communications, the group

size may vary during the session due to a variety of reasons. These changes in turn prompt the SK update

to prevent unauthorized access to group communications. The SK may have to be updated due to any of

the following reasons:

� Expiration of the lifetime of the session key.

� Join/Admission of a member.

� Deletion/Revocation of a member.

� Voluntary leave of a group member.

1.1 Non-Tree Based Key Distribution Approaches

The secure group communication requires KEKs to securely distribute the updated SK. If every member

has an individual public key, for a group consisting of N members, the SK update will involve O(N)

encryption by the GC. The linear increase of the required number of encryptions in group size is not

suitable for very large scale applications common in the Internet, due to the amount of computational

burden on the GC.

A simple way to reduce the number of encryption by the GC at the time of SK update is to provide a

common KEK to all the members of the group as suggested in [26]. If the SK is to be updated due to

its lifetime expiration, the GC can perform a single encryption and update all the group members. If the

SK is to be updated due to a new member admission, before admitting the new member, GC may choose

a new SK and the future KEK, encrypt both using the current KEK and update all the members. The

newly admitted member is given the new SK and the KEK separately. However, this approach fails to

support the secure communication if a single member is to be deleted/revoked. Since the whole group,

including the deleted/revoked one share a single KEK, a revoked member will have access to all future key

updates. Hence, this approach doesn't provide an e�cient recovery mechanism for the valid members in

the presence of a single member failure.

2

In [6, 20], an approach called complementary key assignment is discussed. In this approach, the set of keys

are partitioned into two groups with respect to each member. One of these sets is called the complement

set and contains keys that are not distributed to a particular member. If each member has a unique

complementary set, this set can be used for key updates in the event the corresponding member is revoked.

The GC associates a KEK and a member in a one-to-one manner. If there are N members in the group,

there will be N KEKs each representing a single member. The GC then distributes these N KEKs such that

a member is given all the KEKs except the one associated with him/her. Hence, the complementary set

contains a single KEK for each member. If the GC wants to delete/revoke a member, it needs to broadcast

only the member index to the rest of the group. Since all members except the revoked one has the associated

KEK of the revoked member, they can use that KEK for SK updates. This approach requires only one

encryption at the GC and allows the GC to update the SK under single member compromise. In fact

this approach seem to allow even multiple member deletion/revocation. Considering the complementary

sets of any two members reveals that all the KEKs of the group are covered by the KEKs held by any

two members. Hence, any two deleted/revoked members can collaborate and have access to all future

conversations. Thus, under user collusion, this key scheme does not scale beyond two members. Thus the

scheme doesn't have perfect forward secrecy under collusion of revoked members. This approach requires

KEK storage that scales as O(N).

The above mentioned schemes are two extremes of KEK distribution. Depending on the degree of user

collusion, a large variety of key management schemes with di�erent amounts of KEKs per member can be

generated.

Recently, a series of papers utilizing rooted-trees for key distribution have been proposed to minimize the

storage at the group controller and the members while providing a reduction in the amount of encryptions

required to update the session key [4, 5, 20, 21, 22, 24, 31]. Some e�cient schemes based on one-way

functions also have been used on the trees for member revocation. Many of these tree-based schemes seem

to present di�erent solutions to the problem with di�erent values for the required keys to be stored at the

GC and the user node.

The main contributions of this paper are the following:

� We show that it is possible to unify these approaches using a common analysis technique.

� We also show that the design of an optimal tree is closely related to the Hu�man trees and the

entropy of member revocation event.

� We then show that this entropy provides a bound on the providable key length if all the keys are of

same length.

� We perform security analysis using entropy and show that these schemes correspond to optimal

3

Hu�man coding and any scheme using Hu�man coding for key assignment has security vulnerabilities.

� We then show how to generate a key management scheme which will safeguard against a speci�c

amount of user collusion.

The paper is organized in the following manner. Section 2 presents the review of basic concepts behind the

rooted-trees based key distribution. Section 3 presents some necessary preliminaries. Section 4 presents our

formulation based on the event of member revocation and the design of the optimal rooted tree. Section 5

presents the analysis bounding the key length and the entropy of member revocation event and proposes a

strategy under worst case key generation scenario. Section 6 shows that seemingly very attractive results

in [22, 24] are essentially the \symbolic" Hu�man coding on the full trees and then show that these two

methods will completely fail if two appropriate nodes collude or are compromised. A general criteria for

choosing the set of colluding members is also presented in section 6. In We conclude the paper by reviewing

the one-way function based key update schemes and potential problems with them.

2 Review of the Rooted Tree Based Key Generation Schemes

Hierarchical rooted-tree based keys have been used for di�erent applications. The �rst attempt at using a

rooted-tree based key distribution approach for e�cient member revocation was independently proposed

in [20] and [21]. Modi�cations to reduce the computational and storage requirements of these two methods

were later presented in [4, 5, 24, 22]. We will briey review the basic concepts behind the rooted-tree based

key distribution in this section.

2.1 Distribution of Keys on the Tree

As a concrete illustration, Figure 1 presents a KEK distribution based on a binary rooted tree for 16

members. In this approach, each leaf of the tree represents a unique member of the group; i.e. the leaves

are in a one-to-one correspondence with members. Each node of the tree represents a key. The set of keys

along the path from the root to a particular leaf node are assigned to the member represented by that leaf

node. For example, member M1 in Figure 1 is assigned KEKs fKO;K2:1;K1:1;K0:1g.

If there is no member deletion/revocation or compromise, the common KEK denoted by KO can be

used to update the SK for all the members. The tree based structure also induces a natural hierarchical

grouping among the members. By logically placing the members appropriately, the GC can choose the

appropriate keys and hence selectively update, if needed, the keys of the group. For example, in Figure 1,

members M5;M6;M7, and M8 exclusively share the key K2:2. The GC can use the key K2:2 to selectively

communicate with members M5;M6;M7, and M8. Hence, the local grouping of the members and the keys

4

K O

K

K K

KKK

K 0.1 K K K K K K K

2.1 2.2

1.1 1.2 1.3 1.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8

 M 1 M M M M M M M 2 3 4 5 6 7 8

Leaf Keys

Node Keys

Members

Root key

Figure 1: The Logical Key Tree of [4, 20, 21, 22, 24]

shared on the tree may be decided by the GC based on application speci�c needs. In order to be able to

selectively disseminate information to a subset of group members, the GC has to ensure that the common

key assigned to a subset is not assigned to any member not belonging to that subset. Using the notation

fmgK to denote the encryption of m with key K, and the notation A �! B : fmgK to denote the secure

exchange of message m from A to B, GC can selectively send a message m to members �ve through eight

by the following transmission:

GC �!M5;M6;M7;M8 : fmgK2:2

If, however the key K2:2 is invalidated for any reason, GC needs to update the key K2:2 before being able

to use a common key for members M5;M6;M7, and M8. It can do so by �rst generating a new version

of K2:2, and then performing two encryptions, one with K1:3 and the other with K1:4. The following two

messages are needed to update key K2:2 to the relevant members of the group.

GC �!M5;M6 : fK2:2gK1:3

GC �!M7;M8 : fK2:2gK1:4

2.2 Member Revocation in Rooted Trees

From now on, we will use the term keys to denote SK or KEKs unless there is a need for clari�cation.

Since the SK and the root KEK are common to all the members in the multicast group, they have to be

invalidated each time a member is revoked. Apart from these two keys, all the intermediate KEKs of the

revoked member need to be invalidated. In the event there is bulk member revocation, the GC has to

� Identify all the invalid keys,

� Find the minimal number of valid keys that need to be used to transmit the updated keys.

5

For an arbitrary tree that may not hold members in all the leaves these two problems need to be solved

by exhaustive search. The general principle behind the member revocation is discussed below.

MemberM1 in Figure 1 is indexed by the set of four keys fKO;K2:1;K1:1;K0:1g. RevokingM1 is equivalent

to invalidating these four keys, generating four new keys, and updating these keys of the appropriate valid

members. When M1 is revoked, the following key updates need to be performed: (a) all member need new

KO, (b) members M2 �M4 need to update fK2:1g, (c) members M3 �M4 need to update fK1:2g, and (d)

member M2 needs to update fK1:1g.

The following observations can be made towards the rooted tree based key distributions.

� Since each member is assigned (2 + logdN) = logdNd2 keys, deletion of a single member requires

(2 + logdN) keys to be invalidated.

� Since there are (1 + logdN) nodes between the root and a leaf and logdN nodes are shared with

other members, and for each common node one encryption is required, the GC needs to perform a

total of logdN encryptions.

� For a d� ary tree with depth h = logdN , the GC has to store 1 + 1 + d+ d2 + � � � + dh = d(N+1)�2
(d�1)

number of keys. Setting d = 2 leads to the binary tree for which the required amount of storage

works out to be 2(N+1)�2
2�1 = 2N . This result can be independently checked by noting that a binary

tree with N leaves has 2N �1 nodes. Hence the GC has to store the SK and (2N �1) KEKs, leading

to 2N keys that need to be stored.

In [22, 24], binary rooted tree based key distributions which require GC to store a total of 2 log2N distinct

keys were proposed. The generalized version of this result requires d logdN keys to be stored at the GC.

Each member needs to store only (2+ logdN) keys in this scheme. However, the number of keys that need

to be updated remain at logdN as in [20, 21]. Hence, at �rst glance, the results in [24] seem to reduce the

storage requirements at GC by

d(N + 1)� 2

d� 1
� d logdN =

d(N + 1� (d� 1) logdN)� 2

(d� 1)
(1)

number of keys without increasing the key storage requirements at the end user node.

In the next section we present our analytical formulation to study these models in a systematic manner.

3 Preliminary Observations

We �rst show the need to optimize the rooted-tree using a worst case example. Lets consider the binary

rooted-tree shown in Figure 2.

6

K

0K

K

K

K

K

KK

K

K

K
1

2

3

4

56

7

8

9

10

Figure 2: An Unbalanced Key Distribution

Since the SK and the root key are common to all the members, they will be invalidated each time a member

is revoked. In this tree, if all the member have equal probability of being revoked, the average number of

keys to be invalidated when a member is revoked is given by

3 + 4 + � � �+ (N + 1) + (N + 1)

N
=

N + 1 +N(N + 1)=2

N
(2)

=
(N + 1)(N + 2)

2N
:

Hence, the average number of keys to be invalidated grows as O(N) in this model. In balanced rooted

trees from [20, 21, 22, 24],the number of keys to be invalidated are of the order of O(logdN).

The key assignment problem in [4, 5, 20, 21, 24, 22] has been related to the number of members alone.

The number of keys per member was assigned based on the observation that for N members logdN keys

are enough for a rooted tree.

We, however, will show that the problem of key assignment can be related to the physical process of member

revocation and can be intimately related to a suitably de�ned Shannon entropy of the member revocation

event. We further show some interesting properties using this approach, including security analysis. In

order to do derive our formulation, we �rst de�ne the terminology and show that the well-known pre�x

coding (and hence the Kraft inequality) plays a critical role in recovery under single member revocation.

3.1 Member Indexing

Let Xn�1Xn�2 � � �X1X0 be the binary index sequence to representing N users. Following the conventional

network terminology, we call this indexing the User Index (UID). In order for the GC to be able to revoke

each member and invalidate the keys, the GC has to store a member index and the corresponding set of

7

keys assigned to that member. Hence, UID for a member has to be in one-to-one correspondence with the

set of keys assigned to that member. This requirement implies that each member should be indexed using

the set of keys assigned to that member. We now de�ne the Key Index (KID) in the following manner:

De�nition: Key Index (KID) of a member i is de�ned as the string generated by the concatenation of the

keys assigned to the member i, taken in any order. If the number of keys assigned to member i is denoted

by Li, then there are Li possible di�erent sequences that can be generated using these Li keys. All these

KIDs are equivalent. Hence, the KID of a member is a equivalence class with the number of Li! elements

in it, where Li is the number of keys assigned to member i.

M1 in Figure 1 has four KEKs and is represented by the stringKOK2:1K1:1K0:1. Since there are 24 di�erent

ways to concatenate these keys, there are 23 additional strings generated by rearranging and concatenating

the keys assigned to M1. This equivalence class is the feature that separates the conventional pre�x codes

from what we need in this paper. Use of UID alone as in [20, 21, 22, 24] doesn't provide insights into

the problems due to user collusion. The discussions on user collusion are revisited in a later section under

security analysis.

3.2 Reachability and Kraft Inequality

At the time of member revocation,the GC has to be able to uniquely identify the set of keys assigned to

the revoked member and invalidate the keys. After revoking a member, securely reaching the rest of the

group requires that the valid member has one or more keys that are not in the set of keys assigned to the

revoked member. We will call the ability of the GC to reach the valid members under user revocation as

reachability condition. Unlike in other works that emphasize UID, we note that the KID plays a major

role since it is the keys that need to be invalidated and generated.

One important necessary condition for the rooted tree based key assignment is that the KID of any member

should not be a pre�x of the KID of any other member. On the rooted-tree, this leads to the well known

Kraft inequality given below.

Theorem 1: Kraft Inequality for KIDs

For a d � ary rooted key tree with N members and KIDs satisfying pre�x condition, if we denote the

number of keys held by that member for member i by li, the sequence fl1; l2; � � � lNg satis�es the Kraft

inequality given by
NX

i=1

d�li � 1: (3)

Conversely, given a set of numbers fl1; l2; � � � lNg satisfying this inequality, there is a rooted tree that can

be constructed such that each member has a unique KID with no-pre�xing.

8

Proof: Well known and available in [9, 10].

3.3 Limitations of Pre�x Coding in Key Distribution

We now demonstrate the limitation of the pre�x coding in security. Although there are many examples,

the following is used to show the interplay between user collusion and the desire to prevent it. Let the set

of keys fK1;K2;K3;K4g be used to form the KIDs fK2K3K4g; fK1K3K4g; fK1K2K4g, and fK1K2K3g.

These are assigned to members A;B;C, and D respectively. It can be veri�ed that no KID is a pre�x of

another. Also the KID length is three and satis�es the Kraft inequality since (2�3:4) = 0:5 < 1). Since no

KID is a pre�x of another, if a single member is revoked, there is at least one key for each of the remaining

member that is not in the set of the compromised member. Hence, a single user deletion/revocation does

not invalidate all KEKs of other members.

However, if two or more members are to be simultaneously revoked, the above mentioned key scheme

completely fails since there will be no a single KEK that is not invalidated.

Hence, the selection of KIDs satisfying pre�x condition does not guarantee any safe guarding

against failure of the key management scheme or user collusion

On the other hand, the KIDs satisfying the pre�x condition do help to solve another important

problem, namely the optimal key allocation per member. We present the needed formulation in

the next section. This optimal assignment is very closely tied to the underlying physical process of member

revocation as shown in the next section.

4 Probabilistic Modeling of Member Revocation

Since the key updates are performed in response to member revocation, statistics of member revocation

event, is appropriate for system design and performance characterization. Hence, the statistics of member

revocation should be linked to the assignment of KIDs of a member. It may be noted that we are not

making any claim about the speci�c selection of any key at this stage. We denote pi as the probability of

revocation of member i.

4.1 Relating the Probability of Member Revocation to the Keys on the Rooted Tree

The physical process of member revocation is related to the rooted trees via the leaf nodes using the

following observations.

9

� Since each member in the rooted tree is assigned to a unique leaf, the probability of revocation of a

member is equivalent to the probability of revocation of the corresponding leaf node.

� Since all the nodes of the rooted tree are assigned a unique key, the probability of revocation of the

leaf node is also the probability of revocation of the key represented by the leaf node. Hence, we note

that the probability pi of revoking member i is equivalent to having the probability pi of revoking

the key at the leaf i.

� Since every member has a unique KID and the KIDs are formed by concatenating the keys assigned

to a member, when the member is deleted/revoked the KID is also revoked/invalidated. Hence,

the event of member revocation is equivalent to the event of revocation/invalidation of the KID of

member.

The following assumptions are implicit in the models presented in [20, 24, 22] and are useful in the derivation

of the optimal number of keys to be assigned to each member.

� Assumption 1: Revocation of members is an independent event.

� Assumption 2: The number of members N is a �xed quantity.

We recognize that the second assumption is somewhat restrictive and can at best satisfy only one temporal

\snap shot" of the real world requirement. Implicit in this assumption is the property that the tree structure

is �xed over the entire session. In deriving the optimal number of keys to be assigned per member, however

we will continue to assume that N represents the number of members in the group (One way to remove

this constraint is to set N as the maximal allowed members though there are additional technical details

about the KIDs with in�nite length is needed. We will ignore this issue in this paper since it is not critical

in the analysis).

The assumption that the member revocation event is indepent allows simple computation of the probabil-

ities of revocation of all the intermediate node keys on the tree. Let the kth child node of an intermediate

node i have the probability of revocation pik. If the individual member revocations are statistically inde-

pendent, the following equation presents the probability of revocation pi of the intermediate node i of a

d� ary rooted tree.

pi =

dX

k=1

pik (4)

Hence, starting from the revocation probabilities of the leaf nodes, one can compute the probabilities of

revocation of all the intermediate nodes. Using the recursive nature of the rooted tree structure, every

probability of revocation of any key corresponding to an internal node can be expressed in terms of the

probabilities of the member revocation.

10

4.2 De�ning the Shannon Entropy of Member Revocation Event

In physical processes that involve probabilistic modeling, one can often de�ne the uncertainty of the

occurance of an event using a suitably de�ned entropy of the process. We will use Shannon entropy [9] to

express the amount of uncertainty as to which member will be revoked. We �rst state the de�nition of the

Shannon entropy in the context of member revocation event.

De�nition: We de�ne the d� ary entropy Hd of the member revocation event by

Hd = �

NX

i=1

pi logd pi (5)

where pi is the probability of revocation of member i. As mentioned earlier, the entropy expresses the

uncertainty as to which member will be revoked in d� ary digits.

A word of caution is in place since the Shannon entropy is often used to describe the rates in the source

coding literature. We use it in the context of its physical interpretation which is the amount of uncertanity

about the occurance of an event.

Since the member revocation event and the leaf node key revocation event are probabilistically identical,

entropy of the member revocation event is same as the entropy of the leaf key revocation event. This

important observation is summarized as a theorem below.

Theorem 2. Leaf Key Revocation Entropy is the entropy or uncertainty as to which of the leaf key will

be revoked. Since the leaf key revocation probability is in one-to-one correspondence with the member

revocation probabilities, Leaf Key Revocation entropy is identical to the entropy of the member revocation

event.

Hereafter we will use the term entropy of member revocation event instead of leaf key revocation entropy

since they are equivalent.

Another very useful observation is that since the member revocation event is also probabilistically equivalent

to the KID revocation event, the entropy of member revocation event is identical to the entropy of the

KID revocation event.

A main outcome of these observations is that the entropy of the KID revocation event is identical, and can

be completely characterized once the entropy of the leaf key revocation event (which is equivalent to the

member revocation event) is known.

With the probabilistic model, below we show that we can

� derive the optimal number of keys per member.

� analyze the collusion properties of some schemes.

11

� derive a bound on the length of the keys.

� determine if a given rooted key scheme can sustain its key generation rates

4.3 Assigning Optimal Number of Keys per Member

Since the SK and the root key are common to all the members, these two keys don't contribute to the

optimal key assignment strategies. In formulating the optimal number of keys per members, the GC should

try to minimize the storage requirements without making any explicit assumptions about the nature of the

keys to be chosen. If such a formulation is possible, then that optimal key assignment strategy may be used

to relate the storage requirements to system parameters such as the probabilities of member revocation.

From the view point of GC, one strategy is to minimize the average number of keys per member with the

additional conditions that the KIDs of the members should satify the Kraft inequality1.

Optimization of the average number of keys per members with the length of the KIDs satisfying Kraft

inequality is identical to the optimal codeword length selection in the pre�x coding in the context of

information theory. This problem is well studied and the optimal strategy is known to yield the Shannon

entropy as the average codeword length [9]. Interpreted in the context of KID assignment, the average

number of keys per member is equal to the entropy of the member revocation event. We summarize the

result as Theorem 3 without repeating the proofs [9].

Theorem 3. For a key assignment satisfying Kraft inequality, optimal average number of keys, excluding

the root key and the SK, held by a member is given by the d� ary entropy Hd = �

P
N

i=1
pi logd pi of the

member revocation event. For a member i with probability of revocation pi, satisfying the optimization

criteria, the optimal number of keys li, excluding the root key and the TEK, is given by

li
� = � logd pi: (6)

Since the SK and the root key are common to all the members, optimal average number of keys per member

is given by Hd+2, and the number of keys assigned to member i with revocation probability pi, including

the SK and the root key is given by

l�i + 2 = � logd pi + 2 = logd
d2

pi
: (7)

The following properties that are very useful in identi�cation of the minimal number of keys that can be

used after member revocation are summarized in the form of the lemma below. They are also satis�ed by

the optimal number of keys held by a member.

1Although the pre�x strategy provides protection against only a single member failure, it is the only one that to our

knowledge is mathematically viable to analysis.

12

Lemma 2.

1. A member with higher probability of revocation should be given fewer keys compared to a member

with lower probability of being revoked. If pi > pj, then li(= � logd pi) > lj(= � logd pj).

2. There must be at least two members with the largest number of keys.

3. Since the number of keys assigned per member needs to be integer, true average number of keys per

member is more than the optimal value, and is not more than d additional keys.

In order to derive the last part of the lemma, we need the following de�nition from information theory [9].

De�nition: The relative entropy or the Kullback Leibler distance between two probability mass functions

p(x) and q(x) is de�ned as

D(pjjq) =
X

x

p(x) log
p(x)

q(x)
: (8)

Sketch of the Proofs:

1. The logarithm being a monotone function, if pi > pj , then logd pi > logd pj . Hence � logd pi <

� logd pj , leading to li(= � logd pi) < lj(= � logd pj).

2. If there are no two members with the largest number of keys, then we can reduce the largest number of

keys held by at least one and still ensure that all members have unique set of keys assigned. However

this reduction will violate the proof of optimality of the individual codeword lengths. Hence, at least

two members should be assigned largest number of keys.

3. In the earlier derivation we showed that the entropy is the point of optimality, and is indeed a global

minimum of the average number of keys held by a member. Since the number of keys need to be

integer, the average number of extra keys is given by

i=NX

i=1

pili �Hd =

i=NX

i=1

pili +

i=NX

i=1

pi logd pi (9)

=
i=NX

i=1

pi logd
pi

d�li
(10)

=

i=NX

i=1

pi logd(
pi
d�li

Pj=N
j=1 d

�lj

) + logd(
1

Pj=N
j=1 d�lj

) (11)

= D(pjjq) + logd(
1

Pj=N
j=1 d�lj

) (12)

where qi =
d�li

Pj=N
j=1 d

�lj
.

13

We don't repeat the well known result that the information divergence is non negative [9].

In summary, the optimal key allocation strategy requires that the member with revocation probability pi

be assigned (2� logd pi) number of keys. In the case of binary rooted trees, the optimal number of keys

for a member with probability of revocation pi needs to be assigned (2� log pi) keys.

The results indicate that there are at least two members with the largest KID also indicates that the

tree is packed. i.e., if a member is revoked, all the complementary keys of that member are needed to

securely reach the rest of the members. If there are bulk member removals, the set of keys that are in the

complementary set of the revoked members can be used to securely update the valid members. Depending

on the nature of the speci�c key choices it is possible to develop a fast algorithm for key updates.

4.4 Maximum Entropy and the Key Assignment

The results reported in [20, 21, 4, 24, 22] present a rooted tree with all members having the same number

of keys. Since the optimal number of keys for a member i with probability or revocation pi is (2 �

logd pi),this assignment is equivalent to treating (2 � logd pi = constant) for all values of i. Hence, the

results in [20, 21, 24, 22, 4] assume that the probability of revocation is uniform for the entire group. Since

the uniform distribution maximizes the entropy and entropy is the average number of keys per member

under a optimal strategy, the schemes in [20, 21, 4] assign maximal set of keys per member. We summarize

these results by the following theorem.

Theorem 4. Average number of keys per member is upper bounded by (2 � logdN) and this value is

reached when all the members have equal probabilities of being deleted/revoked.

Proof We showed that the average number of keys per member is (2+Hd) where Hd = �
P

i=N

i=1
pi logd pi.

The Shannon entropy Hd is maximized [9] when the probabilities of the event is uniform. Hence, the

entropy of member revocation event is maximized when all the members have equal probability of being

revoked/deleted.

Since the schemes in [4, 20, 21, 22, 24] implicitly assume uniform member revocation prob-

abilities, these schemes correspond to the worst case or the maximum entropy solution for

key assignments for individual members. These schemes assign (2+ logdN) keys per member, where

N is the group size.

We note here that the use of maximal number of keys per member does not imply that the key distribution

scheme is free of any possible member collusion or even secure. We elaborate on this point later.

14

4.5 Relationship to the Oneway Function Based Key Selection Schemes on the Tree

In [6], Fiat and Naor presented a set of broadcast key distribution schemes with pre-speci�ed degree of

collusion. One of their scheme used one-way functions for generating the keys on the rooted tree for the

group members. New results on using pseudorandom, and one-way functions were reported recently in [5, 4]

in the context of rooted tree based multicast key management schemes. These schemes use either oneway

or pseudorandom functions to generate the keys. They don't address the issue of �nding the optimal

number of key assignment. Recent work reported in [23] parameterized the minimal number of messages

as a function of the number of keys. The bounds derived in [23] can be tightened using the optimal key

lengths we derived in this paper.

Since there can't be any more entropy than that provided by the member revocation event and we have

incorporated that in our optimization problem and minimized the average number of keys needed to be

stored, for a very large multicast group, our formulation based on entropy will yield the lowest average

cost of key generation. Only way to further reduce the communication overhead in key generation is to

introduce relationships (for example using pseudorandom functions) among the keys generated as in [4].

Hence, among all rooted-tree based key schemes, our formulation will yiled the lowest average number of

keys per member. From information theoretic view point, it is a very well known result that the optimal

code lengths of the pre�x codes is obtained by minimizing the average codeword length and the optimal

average codeword length is given by the entropy.

4.6 Upper Bounds on the Integer Values of keys

The optimal number of keys for a member with probability of revocation pi in a d � ary rooted tree key

management scheme was shown to be

2� logd pi: (13)

Since this quantity corresponds to the number of physical keys, it has to be an integer value. The following

theorem summarizes the bound on the optimal number of keys to be held by a member. If we denote the

integer value of the average number of keys, excluding the SK and the root key, held by members by l̂�,

the bounds on the optimal number of keys per member are given by the following inequalities:

Theorem 5. The optimal average number of keys held by a member satis�es

Hd + 2 � l̂� + 2 < Hd + 3: (14)

Proof: Using the notation d� logd pie to represent the smallest integer greater than or equal to � logd pi,

we have the integer value of l�
i
as

l�i = d� logd pie: (15)

15

For this choice of l�
i
, it can be shown [9], that) Hd � l̂� < Hd + 1 . Hence, Hd + 2 � l̂� + 2 < Hd + 3 .

Since the average number of keys per member is (l̂�+2), we note that the optimal number of average keys

per member is at most 3 d� ary digits more than, and is at least 2 d� ary digits more than the entropy

of the member revocation event.

4.7 E�ect of Using Incorrect Entropy on Key Length

In Figure 2 we presented the e�ect of an unbalanced rooted tree on the number of keys to be assigned

and to be invalidated. We note that this quantity can be completely characterized using basic results from

information theory as well.

Lets us assume that the true revocation probability of member i is pi and the used probability of revocation

for member i is qi. Hence, the optimal number of keys to be assigned to that member is given by

l�i = d� logd qie (16)

Using an incorrect distribution introduces redundancy in the number of keys that are assigned to the

members. This redundancy is given by the following theorem.

Theorem 6. The average number of keys per member under the true distribution p with the number of

key selection based on li = � logd qi satis�es the following bounds

Hd(p) +D(pjjq) � L < Hd(q) +D(pjjq) + 1; (17)

where L =
P

i=N

i=1
pili.

Proof: Standard and can be found in [9].

Hence, on average the number of redundant keys assigned to a member due to the use of an incorrect

distribution is given by the inequalities D(pjjq) � fL�Hd(p)g < D(pjjq) + 1 .

Apart from being closely related to the optimal key assignments, the entropy of member revocation event

is also related to the sustainable key length of the secure multicast group, as shown next.

5 Impact of Revocation on the Key Length

In the current public literature of key generation, the key length is shown to be a function of the amount

of computational power an adversary has or the duration of the use of the key. Assuming the quality of

the distributed keys being good, a recent study report presents the choice of key length as a function of

the computational power of the adversary alone.

16

We now show that the admissible key lengths in rooted-tree based key distributions can be bounded by

the system parameters like the entropy of the member revocation event and the group size.

5.1 Bounds on Average Key Length

We showed that the member revocation event is probabilistically equivalent to the KID revocation event.

We also showed that the entropy of the member revocation event is identical to the entropy of the KID

revocation event. In this section, we will present the relationship between the entropy of member revocation

event and the sustainable key length of the rooted tree based key distribution schemes.

When there is a member revocation, the average number of keys to be invalidated is given by (2 +Hd). If

each key is L d� ary digits long, then in order to update these keys, the total number of digits that need

to be generated by the GC after member revocation is L(2 +Hd) digits. Since Hd � logdN with equality

attained i� all the members have equal revocation probabilities, the hardware need to be able to generate

on average of L(2 + logdN) digits within the next unit of time of update to let the session continue. The

following theorem summarizes this result.

Theorem 7. For a d � ary rooted tree key distribution scheme in which each key is of length L digits,

if the hardware digit generation rate is given by B, then the key length L is bounded by the following

inequalities: B
2�logd pmin

� L � B
2�logd pmax

.

Proof: As shown earlier, number of keys to be regenerated in revoking member i with probability of

revocation pi is (2� logd pi) . Hence, the hardware should be able to generate L(2 � logd pi) digits of

suitable quality2 in unit of time to let the session continue without interruptions. Hence, the hardware

digit generation rate B must satisfy B � L(2� logd pi).

pmin �
1

N
� pmax (18)

logd pmin � logd
1

N
� logd pmax

(2� logd pmin) � (2 + logdN) � (2� logd pmax)

B

2� logd pmin
�

B

2 + logdN
�

B

2� logd pmax

Hence the key length that can be generated by the hardware is bounded by B
2�logd pmax

� L � B
2�logd pmin

.

Since it is of interest to make sure that the system sustains the secure communication mode, the system

should satisfy the worst case key generation scenario. Hence the hardware digit generation rate B needs

to satisfy B � L(2� logd pmax) .

2Based on the application speci�c use of the key.

17

If all the members have equal probabilities of being revoked, pmin = pmax =
1

N
. Hence, the needed hardware

bit generation rate is given by B � L(2+logdN). Most of the current solutions [20, 21, 24, 22, 4, 5] assume

this case.

Often key length is chosen as a function of external parameters such as the available computational power

of the communicating parties as well as the attacker and risk vs. time trade o�. In light of the key length

bounds presented using the optimal number of key assignments for rooted-trees, any key length chosen based

on other external considerations for rooted-trees should also satisfy these bounds.

In the next section, we show how to make use of the entropy of member revocation event to characterize

and interpret the vulnerabilities of some recently reported schemes.

6 Security Analysis of Some Recent Results Using Member Revocation

Entropy

Noting that we used member revocation probabilities and derived optimal rooted tree based key assignments

which are also known as Hu�man trees, one may be tempted to conclude that it may be appropriate to

use deterministic optimal coding techniques like Hu�man coding to develop a one-to-one map between the

members and the keys assigned to them. Since the optimal number of keys led to rooted trees often called

Hu�man trees, choosing the codes based on Hu�man coding appears attractive from the point of using

minimal number of individual keys to construct codewords. We now show this is not the case. In doing so,

we use two recent schemes [22, 24] which use optimal Hu�man coding for key assignment. We �rst revisit

the issue of user collusion and then present and analyze these two schemes.

6.1 User Collusion Problem Revisited

We noted that the KID of one member should not be a subset of the KID of any other member. This

condition ensures that the revocation of one member does not expose all the keys of a valid member.

However, this is not the only case under which member revocation will expose the keys of valid member(s).

It is possible that one or two members are simultaneously revoked or compromised. If the set of keys held

by the revoked members can cover the set of keys held by one or more valid members, the corresponding

keys of the valid members should be treated as exposed.

For example, let members i, j, and k have the set of keys Si = fK1;K2;K3g, Sj = fK1;K2;K3;K4;K5;K6g,

Sk = fK2;K4;K5;K6;K7g respectively. In this case, the group controller can use K2 to reach all the mem-

bers when no member needs to be revoked. If the member i were to be revoked, the keys fK2;K4;K5;K6g

will be exposed. The group controller can still securely contact members j, and k using keys not in the

set Si. If the member j were to be revoked, the keys of member i will be exposed to member j, but the

18

group controller can still securely communicate with member k. If the members i and j were to be revoked

simultaneously, although the sets Si, and Sk can't individually cover the set Sj, if the revoked users were

to collude they can cover the set Sj. Moreover, the group controller can never securely communicate with

member j without having either the member i or k also receiving the message. In this example, the Si 2 Sj

and hence, KIDs satisfy fK1;K2;K3g 2 fK1;K2;K3;K4;K5;K6g Although Sj 2 Si[Sk, we can't directly

use the KIDs to express this regardless of how we order the individual keys in the KID string. Hence, the

KIDs can be used to express only a limited type of security problem.

We now show that assigning keys such that the KIDs formed by keys satisfying Kraft inequality is not

su�cient to prevent additional security problems by the following example.(We assume that i, j, and k

are three members of a larger group). To do so, we modify the set of keys assigned to member j, to

Sj = fK1;K2;K4;K5;K6g. It can be checked by inspection that none of the sets Si, Sj and Sk are subsets

of the other. Since (2�3 + 2�5 + 2�4) < 1, by the converse of the Kraft inequality, we can also construct a

binary tree for distributing the keys. This tree does ensure that each member has unique KID and if any

one of the members is compromised, the group controller can still securely communicate with the other

two members. However, if the members i and k are to collaborate, between them they can cover the keys

of the members j. Not only can they cover the keys of member j, they can still ensure the integrity of their

communication with the group controller if they don't expose the keys K3 and K7. Hence, we note that

the Kraft KID satisfying pre�x coding doesn't imply that the key assignment scheme is free of security

vulnerabilities.

6.2 Description of the Schemes in [22, 24]

The authors in [22] noted that given the binary index of a member, each bit in the index takes two values,

namely 0 or 1. To follow the example given in [22], when N = 8, log2 8 = 3 bits are needed to uniquely

index all 8 members. The authors then proceeded to claim that since each bit takes two values, it can be

symbolically mapped to a distinct pairs of keys. The table below reproduces the mapping between the ID

bit # and the key mapping for the case in [22] for N = 8:

ID Bit #0 K00 K01

ID Bit #1 K10 K11

ID Bit #2 K20 K21

where, the key pair (Ki;0;Ki;1) symbolically represents the two possible values of the ith bit of the member

index. Although this table does provides a one-to-one mapping between the set of keys and the member

index using only eight keys, the problem with this approach becomes clear if we map the table to the

rooted tree structure. Figure 3 shows the mapping of the keys on the tree. (For the sake of clarity, not all

the keys corresponding to the leaves are shown in Figure 3). Adjacent leaves have K20;K21 as the keys

19

and this pair is repeated across the level. In fact, at any depth only two speci�c keys have been used and

duplicated across the depth.

In approaches such as [22, 24] that use UID to optimal Hu�man coding, a special case of member revocation

brings these key management scheme to halt. This happens if the membersM0 andM7 need to be revoked.

The corresponding keys to be revoked are shown in Figure 4. These two members have only the session

key in common. However, if these two members need to be simultaneously revoked, the group controller

is left with no key to securely communicate with the rest of the valid members. This reduces the rooted

tree to the GKMP [26]. The compromise recovery for this case requires that the entire group re-key itself

by contacting one member at a time.

K10

K 00 K 00 K 00 K 00K 01 K 01 K 01 K 01

���
���
���
���

���
���
���
���

Represents the valid keys

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
���������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

K

K

K

SK

M M M M M M MM0 1 2 3 4 5 6 7

10K K11 11

 20 21

Figure 3: The Key Distribution in [24, 22]

The key assignments in [22, 24] and their variations also allow the members to collaborate and break the

system. We now discuss the user collusion on the rooted tree in [22, 24].

6.3 Impact of Member Collusion on Rooted Trees

We showed that if more than one member were to be revoked, the whole key scheme may be compromised.

There are three di�erent ways to interpret the collusion problems with approaches in [22, 24] based on

rooted trees. We present them in the order of generality:

20

6.3.1 Interpretation based on Minimal number of Key Requirements

A simple way to interpret the shortcomings of results in [22, 24] is to note that 2 log2N < N;8N > 4 .

In order to prevent member collusion from being able to break the rest of the system, there must be

at least N keys so that each member has a unique key and can be contacted at the time of member

revocation. (Since 2 log2N < N (N > 4) is the number of distinct keys used by the variation of rooted

tree presented in [22, 24], and can be completely or partially compromised depending on the colluding

members.) However, when N = 4, 2 log2N = 4. The scheme in [22, 24] breaks down if members M0 and

M7 were to be simultaneously compromised. This is illustrated in Figure 4.

K10

K 00 K 00 K 00 K 00K 01 K 01 K 01 K 01

Represents the revoked keys
��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
���������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

K

K

K

SK

M M M M M M MM0 1 2 3 4 5 6 7

10K K11 11

 20 21

Figure 4: Revocation of Members M0, M7 in [22, 24].

6.3.2 Interpretation Based on Complementary variables

The second interpretation is based on the notion of sets and includes a larger de�nition of collusion discussed

under the category of complementary variables in [6, 20]. The approach in [22, 24] is a special case of the

complementary variable approach. If the secure group membership is a set such that every member is

denoted by a unique key and that key is given to all other members but the member itself, at the time the

member is to be revoked, all other members can use the key denoting the revoked member as the new key.

For a set of N members, all the members will have (N � 1) keys that correspond to other members and no

member will have the key denoting itself. Clearly, if two members collude, between them they will have

21

all the future keys of the group. Hence, this kind of key assignment does not scale beyond 2 members.

6.3.3 Interpretation based on Hu�man Coding

We showed that the average number of keys per member is given by entropy. We also showed that if the

distribution is uniform, the average number of keys per member attains its maximum value. When the

member revocation probabilities are equal, the number of keys assigned to a member is the same as the

average number of keys per member. We also showed that this strategy is used in [20, 21, 24, 22].

The schemes in [22, 24] mapped the UIDs to KIDs directly. Since the number of bits needed for N members

is log2N , the schemes in [22, 24] used a unique pair of keys to symbolically map each of the bit positions of

the the member index. Hence, a total of 2 log2N keys are used to uniquely represent each member index.

This selection of keys can create a set of N unique indices and the codewords generated by concatenating

log2N keys satisfy the Kraft inequality. Hence, this mapping of a unique pair of keys to each bit location

corresponds to performing a Hu�man coding with 2H2(U) distinct keys, where H2(U) = log2N . However,

the problem with Hu�man coding is that it is uniquely decodable! Hence, a key assignment based on the

direct mapping of bit locations to keys will lead to serious security exposure. In fact, an attacker can break

the whole system by breaking the members whose indices are all ones and all zeros. These two members

represent all possible bit patterns and hence have all the 2 log2 N keys among themselves.

If we use the notation (kj ; k̂j) to denote the unique key pair representing the two possible binary values

taken by the jth bit, we note that the collusion or compromise of two members holding keys kj and k̂j

respectively will compromise the integrity of the key pair (kj ; k̂j). The following lemmas summarize our

observations:

Lemma 3. If the binary rooted key tree uses Optimal Hu�man Coding for assigning members a set of

keys based on 2 log2 N (N > 4) (here N is dyadic) distinct keys as in [22, 24], the whole system can be

broken if any two members whose \codewords" (and hence indices) are one's complement of each other

collude or are compromised. Hence, the integrity systems in [22, 24] do not scale beyond 4 members in the

presence of colluding members.

In a d� ary tree, each digit takes d values and the sum of these values is given by d(d�1)
2 . Hence, if a set

of k (k � d) members whose ith bit values when summed lead to d(d�1)
2 collude, they will be able to fully

compromise the ith bit location. This result is summarized by:

Lemma 4. For a d � ary tree with N members, the key corresponding to bit location b will be

compromised by a subset of k (k � d) members whose symbolic value of the bit location b denoted by the

set fb1; b2; � � � ; bkg satisfy b1 + b2 � � � bk � 0 mod d(d�1)
2 .

22

6.4 On Generating a Large Class of Key Management Schemes with Varying Degree

of Collusion

From our analysis of the tree based schemes, we note that many di�erent key management schemes with

di�erent levels of protection against the user collusion can be made. On one extreme, the keys representing

the rooted tree have no relationship, leading to a very high degree of integrity but also higher storage

requirements. On the other extreme, all members share the same keys as in GKMP [26] leading to the

system failure in the event of a single member failure. The schemes in [22, 24] fail with the collusion of two

members or can fail at di�erent bit levels depending on the index of the colluding members. Depending on

how many digit locations are represented as k � ary digits. The Figure 5 shows the comparison between

various schemes.

1 2 k N

GKMP

Degenerate Multicast -N unicast

 mapped to key index
A binary Tree with all the bits of user index

Schemes with varying
Degree of collusion

A k-ary Tree with one digit of user index
mapped to key index

Minimal Number of Members Needed to Fail to
Compromise the Integrity of the Entire System

Figure 5: E�ect of User failure of di�erent schemes

7 Conclusions and Future Work

This paper showed that several important properties of the recently proposed [20, 21, 22, 24] rooted tree

based secure multicast key management schemes can be systematically studied using basic information

theoretic concepts. By using the member revocation event as the basis of our formulation, we showed

that the optimal number of average keys per member is related to the entropy of the member revocation

event. We then proved that the currently available known rooted-tree based strategies [20, 21, 22, 24]

yield the maximum entropy among all the rooted-tree based strategies and hence opt for the maximal

average number of keys per member regardless of the values of the revocation probabilities. Using the

optimal source coding strategy, we identi�ed the collusion problem in [22, 24] resulting from performing

23

the Hu�man coding with d logdN symbols. We also showed which subset of members need to collude or

be compromised to break schemes such as the ones in [22, 24], regardless of the size of N . We showed that

for a group with uniform revocation probabilities and using a binary tree, it is enough for two members

with complementary keys to collude to break the scheme. We then showed that using the entropy of the

member revocation event, we can set a bound for the minimal average worst case hardware key generation

requirements. We also showed that our approach can be used to reduce the number of keys to be generated

using oneway or pseudorandom functions. Future work will address developing fast algorithms for member

index grouping and utilization factor analysis.

Acknowledgements

We would like to thank Sanjeev Khudanpur, Himanshu Khurana, and Diane Lee for their comments on

the papers. We thank Benny Pinkas for pointers to the paper by Canetti, Malkin, and Nissim. We also

thank A. Ephremides and J. Massey for providing early references on the rooted-tree based analysis of

algorithms by Massey.

References

[1] R. Canetti, and B. Pinkas, \A taxonomy of multicast security issues", Internet draft, April, 1999.

[2] Y. Desmedt, Y. Frankel, and M. Yung, \Multi-receiver/Multi-sender network security: e�cient au-

thenticated multicast feedback", IEEE Infocom'92, pp. 2045-2054.

[3] M. steiner, G. Tsudik, and M. Waidner, \Di�e-Hellman key distribution extended to group commu-

nication", 3rd ACM Conf. on Computer and Communications Security", 1996.

[4] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas, \Multicast Security: A Taxonomy

and E�cient Reconstructions",to appear In Proceedings of IEEE Infocom'99.

[5] D. A. McGrew and A. Sherman, \Key Establishment in Large Dynamic Groups Using One-Way

Function Trees", Manuscript, 1998.

[6] A. Fiat and M. Naor, \Broadcast Encryption", Advances in Cryptology- Crypto'92, Lecture Notes in

Computer Science. vol. 773, pp. 481-491, Springer-Verlag, Berlin Germany, 1993.

[7] A. Menezes, P. van Oorschot, and A. Vanstone, \Handbook of Applied Cryptography", CRC Press,

Boca Raton, 1997.

24

[8] M. Naor and O. Reingold, \From Unpredictability to Indistinguishability: A Simple Construction

of Pseudo-Random Functions from MACs", Advances in Cryptology- Crypto'98, Lecture Notes in

Computer Science. vol. 1462, pp. 267-282, Springer-Verlag, Berlin Germany, 1998.

[9] T. Cover, J. Thomas, Elements of Information Theory, John Wiley & Sons, Inc, NY, 1991.

[10] R. Gallager, Information theory and reliable communication, Wiley, NY, 1968.

[11] J. L. Massey, \An Information-Theoretic Approach to Algorithms", Impact of Processing Techniques

in Communications, In NATO Advanced Study Institutes Series E91, pp. 3-20, 1985.

[12] J. L. Massey, \Some Applications of Source Coding to Cryptography", In European Trans. on Tele-

com., Vol. 5, pp. 421-429, July-August 1994.

[13] H. N. Jendal, Y. J. B. Khun, and J. L. Massey, \An Information-Theoretic Approach to Homomorphic

Substitution", In Advances in Cryptology-Eurocrypt'89, LNCS-434, pp. 382-394, 1990.

[14] D. R. Stinson, and T. V. Trung, \Some New Results on Key Distribution Patterns and Broadcast

Encryption", Manuscript, November 11, 1997.

[15] U. M. Maurer, \Secret Key Agreement by Public Discussion from Common Information", In IEEE

Trans. IT, Vol 39, No. 3, 1993, pp 733- 742.

[16] R. Poovendran, and J. S. Baras, \An Information Theoretic Approach for Design and Analysis of

Rooted-Tree Based Multicast Key Management Schemes", in CRYPTO'99, August 1999, Santa Bar-

bara, USA.

[17] R. Poovendran, and J. S. Baras, \An Information Theoretic Approach to Multicast Key Management",

in Proceedings of IEEE Information theory and Networking Workshop, Metsovo, Greece, June, 1999.

[18] M. Luby, Pseudo-Random Functions and Applications, Princeton University Press, 1996.

[19] M. Brumester and Y. Desmedt, \A Secure and E�cient Conference Key Distribution System",

Advances in Cryptology- Eurocrypt'94, Lecture Notes in Computer Science. vol. 950, pp. 275-286,

Springer-Verlag, Berlin Germany, 1994.

[20] D. M. Wallner, E. C. Harder, and R. C. Agee, \Key Management for Multicast: Issues and Architec-

tures", Internet Draft, September 1998.

[21] C. K. Wong, M. Gouda, S. S. Lam,\Secure Group Communications Using Key Graphs", In Proceedings

of ACM SIGCOMM'98, September 2-4, Vancouver, Canada.

25

[22] G. Caronni, M. Waldvogel, D. Sun, and B. Plattner, \E�cient Security for Large and Dynamic

Groups", In Proc. of the Seventh Workshop on Enabling Technologies, IEEE Computer Society Press,

1998.

[23] R. Canetti, T. Malkin, and K. Nissim, \E�cient Communication-Storage Tradeo�s for Multicast

Encryption", In Eurocrypt 99, pp. 456 - 470.

[24] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, D. Saha, \Key Management for Secure Internet Multi-

cast Using Boolean Function Minimization Techniques", To apper in Proceedings of IEEE Infocom'99.

[25] S. Mittra, \Iolus: A framework for Scalable Secure Multicasting", In Proceedings of ACM SIG-

GCOM'97, pages 277{288, September 1997.

[26] H. Harney and C. Muckenhirn, \GKMP Architecture", Request for Comments(RFC) 2093, July 1997.

[27] R. Canetti, P-C. Cheng, D. Pendarakis, J. R. Rao, P. Rohatgi, D. Saha, \An Architecture for Secure

Internet Multicast", Internet Draft, Novenber 1998.

[28] T. Hardjono, B. Cain, and N. Doraswamy, \A Framework for Group Key Management for Multicast

Security", Internet draft, July 1998.

[29] B. Quinn, \IP Multicast Applications: Challenges and Solutions", Internet draft, November 1998.

[30] H. Harney and C. Muckenhirn. \GKMP Speci�cation". Internet RFC 2094, July 1997.

[31] A. Ballardie. \Scalable Multicast Key Distribution". Internet RFC 1949, May 1996.

26

