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There exist two different approaches to self-organizing maps (SOMs). One ap-

proach, rooted in theoretical neuroscience, uses SOMs as computational models of

biological cortex. The other approach, taken in computer science and engineering,

views SOMs as tools suitable to perform, for example, data visualization and pattern

classification tasks. While the first approach emphasizes fidelity to neurobiological

data, the latter stresses computational efficiency and effectiveness.

In the research reported here, I developed and studied a class of SOMs that

incorporates the multiple, simultaneous winner nodes implicit in many biologically-

oriented SOMs, but determines the winners using the same efficient one-shot algo-

rithm employed by computationally-oriented, single-winner SOMs. This was achieved

by generalizing single-winner SOMs, using localized competitions. The resulting one-

shot multi-winner SOM was found to support the formation of multiple adjacent,

mirror-symmetric topographic maps. It constitutes the first computational model of



mirror-image map formation, and raises questions about the role of Hebbian-type

synaptic changes in the formation of mirror-symmetric maps that are often observed

in the sensory neocortex of many species, including humans. The model unexpectedly

predicted the occasional occurrence of adjacent, rotationally symmetric maps. It is

natural to speculate that such atypically oriented maps might contribute to abnormal

cortical information processing in some neurodevelopmental disorders.

Traditional SOMs lack applicability to problems where the inputs are not single

patterns, but temporal sequences of patterns. Several SOM extensions have been

proposed as a remedy, but there is no standard for processing temporal sequences

with SOMs. I focused on the task of learning unique spatial representations for

non-trivial sets of temporal sequences. The one-shot multi-winner SOM extended

by temporally-asymmetric Hebbian synapses proved effective when applied to this

task. The learned representations retained information about sequence similarity.

The feature maps that formed show that temporal sequence processing and map

formation are not mutually exclusive. Since the sequence processing one-shot multi-

winner SOM was trained with phonetic transcriptions of spoken words, the results

can be related to the internalization of spoken words during language acquisition. A

final redesign of the network and the subsequent multi-objective optimization of its

parameters using a genetic algorithm produced a more effective system.
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Chapter 1

Introduction

The self-organizing map (SOM) is an artificial neural network whose main charac-

teristic is the association of each node in its output layer with a physical position in

an output space which is typically a plane. The output nodes are usually regularly

spaced so that if one connects each output node with a straight line to its closest

neighbors, the nodes give rise to, for example, a square (grid-like) or hexagonal tes-

sellation in the plane (see Figure 1.1). In very general terms, the SOM learns, in an

unsupervised fashion, to systematically map inputs from an arbitrary and potentially

high-dimensional input space to patterns of activation over the output lattice, the

discrete “surface” laid out by the output nodes. The activation patterns of most

SOMs are very simple in a winner-takes-all sense: each pattern comprises exactly one

output node that is maximally active while all other output nodes are inactive. In

these cases, the output for a particular input is completely specified by the position

of the active output node in the lattice so that for higher-dimensional inputs, the

SOM’s mapping can be viewed as a dimensionality-reducing operation.
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Figure 1.1: An example of the SOM network architecture. The SOM’s 25 output

nodes are located at the points of intersection in a five by five regular grid in a plane.

The input layer consists of four nodes (marked with ‘+’ signs). In this example, each

input node sends connections to only a subset of all output nodes. Given a global

competition for activation among the 25 output nodes with only a single winner for

every input, the SOM performs a dimensionality-reducing operation by mapping each

4D input to a particular output node, that is, a 2D location in the plane.

1.1 Two Classes of SOMs

The specific properties of the mapping and the mechanism by which it is learned

vary widely depending on what purpose a particular SOM serves, but essentially, two

fundamentally different classes of SOMs currently exist. Both are popular research

subjects, but since the study of each is motivated differently, SOM research has

diverged and today forms two, for the most part disconnected, areas.

Originally, the SOM was conceived as a computational model of cortical informa-

tion processing where the emphasis is on fidelity to neurobiological data. The earliest

2



work on SOMs was a model of feature map formation in the visual cortex of cats by

von der Malsburg (1973), but this approach has been used since to model informa-

tion processing in other cortical areas (e.g., Bednar and Miikkulainen (2000); Cho and

Reggia (1994); Li (2002); Pearson et al. (1987); Reggia et al. (2001); Sutton et al.

(1994)). The goal with this type of SOMs is to test and improve theories on how

biological cortex represents and processes information. In this context, the SOM is

seen as an explicit expression of a theory’s assumptions, and by comparing the results

of training the SOM (the consequences of the theory) with data that are reported in

experimental studies of cerebral cortex, cognition, or behavior, the weaknesses and

strengths of the underlying theory can be identified. I will refer to the class of SOMs

that is the product of this line of biologically-oriented research as iterative multi-

winner SOMs. They are iterative because, typically, complex systems of nonlinear

differential equations that can only be solved via iterative simulations describe their

activation dynamics. The equations implement a competition for activation among

the output nodes of the network that typically results in activation patterns with more

than one winner, which explains the second qualifying attribute of the name for this

class of SOMs. The iterative nature of these SOMs is associated with a high com-

putational complexity that limits their scalability. Large-scale, perhaps multi-modular

computational models, albeit desirable, fast become very costly. The high complexity

of iterative multi-winner SOMs also works against the goal of computational model-

ing to provide as simple an explanation of the observed experimental observations as

possible.

The second, more recent and larger class of SOMs, which will be called one-

shot single-winner SOMs, is an offspring of the iterative multi-winner SOM due to

Kohonen (1982), and is much more widely used in computer science (Kohonen, 2001).
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Figure 1.2: Maps resulting from training a one-shot single-winner SOM with the

technical specifications of cars. Each car was represented as a vector of the form ~x =

(made in USA, made in Europe, made in Japan, miles per gallon, number of cylinders,

displacement, horsepower, weight, acceleration, year of make), the first three com-

ponents being indicator variables (either 0 or 1). The similarity of adjacent output

nodes in terms of their weight vectors is mapped in the top-left corner, revealing three

tight (dark) clusters of cars that correspond to the three regions of origin (US at the

top, Europe to the bottom-left, Japan to the bottom-right). The other maps show

the nodes shaded according to the values of one of their weight vector components,

making visible correlations between variables (= gradients in similar directions; e.g.,

displacement and horsepower) and independencies (= perpendicular gradients; e.g.,

origin and year of make).
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When looked at from a technical perspective, a key simplification, albeit reducing

neurobiological plausibility, renders the SOM a computationally efficient and practical

tool in application domains like data visualization (e.g., Alhoniemi et al. (1999);

Kaski et al. (1998a); Manduca (1996); Vesanto (1999)), feature detection (e.g.,

Morris et al. (1990); Munoz and Muruzabal (1998); Toivanen et al. (2003)), and

pattern classification (e.g., Andrade et al. (1997); Callan et al. (1999); Takacs and

Wechsler (1997)). This simplification is achieved by replacing the locally competitive

activation dynamics with a global, non-iterative selection of a single winning node,

which turns the iterative multi-winner SOM into a non-iterative SOM that I will refer

to as the one-shot single-winner SOM. The improvement, from a technical point of

view, is twofold. Computational efficiency is improved by orders of magnitude, and

the representation learned by a one-shot single-winner SOM resembles the result of a

principal curves analysis (Hastie and Stuetzle, 1989) or Sammon projection (Sammon,

1969) of the data cloud or manifold that the inputs to the network form in input space

(see Yin (2003) for a review of non-linear data projection methods, including the

SOM). Not only is this representation useful as a compact approximation of the input

distribution that retains the most characteristic features of the input manifold, but

it also, due to the representation’s typically two-dimensional, map-like form, provides

an intuitive visualization of dependencies between these features (see Figure 1.2).

From a neurobiological point of view, the representation is implausible, because it

encodes each input in a non-distributed and non-redundant manner, in stark contrast

to the high memory capacity and fault-tolerance of biological cortex. This is not a

concern in most studies of the one-shot single-winner SOM which focus on further

reducing its computational cost, testing its applicability to specific practical problems,

and formulating, in strict mathematical terms, the conditions that are necessary for
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training to converge on an optimal representation.

1.2 One-Shot Multi-Winner SOMs

The existence of these two classes of SOMs naturally raises the question of whether

the efficiency of one-shot single-winner SOMs can be easily combined with the dis-

tributed encoding that is inherent in iterative multi-winner SOMs to form a new class

of SOMs that exhibits interesting and potentially useful properties. Specifically, it is

of interest whether such a new class of SOMs supports map formation and, if so, what

the properties of these maps are and how they relate to the maps that are formed by

one-shot single-winner and iterative multi-winner SOMs.

Another issue is that, while each of the two main classes of SOMs described above

has certain advantages and disadvantages in the context of specific applications, both

classes of SOMs share a major limitation: they have been designed only to process

time-invariant inputs. Without modifications, they are not capable of processing the

relations between the elements of a temporal sequence of input patterns. Biological

individuals are constantly facing the task of analyzing temporal sequences of sensory

stimuli and adapting their behavior accordingly (e.g., tracking or avoiding an object

whose relative motion is perceived visually, auditorily and/or through tactile senses).

Similarly, the processing of temporal sequences is very important in modern technol-

ogy. For example, some mobile robots must autonomously maintain their balance

based on streams of feedback information delivered by sensors measuring accelera-

tions, pressures, torques, etc. (Katic and Vukobratovic, 2003; Kun and Miller, 1999),

while in some chemical plants, the flow of input materials requires continuous adjust-

ments in order to maintain optimal operation conditions based on sequential feedback

information (Bhat and McAvoy, 1990; Henson, 1998). These technical control prob-
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lems typically require immediate reactions in response to the development of feedback

signals over a period of time.

The brain, and in particular the cerebral cortex, constitutes a proof-of-existence

of a solution for problems that involve temporal sequence processing (e.g., language,

motor control, etc.). It is therefore an important next step to try to extend the SOM

method, which has been shown to be both a somewhat faithful model of cortex and a

useful technical tool, in a way that is once again patterned after cortex and provides

the computational power necessary to process temporal sequences. This has been

recognized by several past investigators who have proposed a variety of extensions

that aim to make the one-shot single-winner SOM in particular applicable to tem-

poral input sequences (e.g., Carpinteiro (1999); Chappell and Taylor (1993); Kangas

(1990); Varsta et al. (1997)). However, no single uniformly applicable mechanism for

processing temporal sequences with SOMs has been identified, partly due the many

different specific tasks that fall into the category of temporal sequence processing.

In this dissertation, I develop and study a SOM methodology that efficiently and

effectively combines elements of both the iterative multi-winner and the one-shot

single-winner SOMs to form a new class of SOMs that I will call one-shot multi-winner

SOMs. The one-shot multi-winner SOM is of low computational complexity and

features a robust and coding-efficient distributed representation of the result that is

computed for each input. With further extensions that are motivated by experimental

findings in support of temporally asymmetric Hebbian learning at biological synapses

(Bi and Poo, 2001, 1998; Markram et al., 1997; Zhang et al., 1998), the one-shot

multi-winner SOM becomes capable of processing temporal sequences.

To gain an understanding of this novel SOM methodology, its properties, potential

and limitations, one-shot multi-winner SOMs were developed and their properties

7



determined by pursuing the following specific aims:

1. Determine the properties of the one-shot multi-winner SOM, when input is

time-invariant, and relate the results to the existing iterative multi-winner and

one-shot single-winner SOM classes.

2. Determine conditions under which the one-shot multi-winner SOM forms mul-

tiple maps of the input space and examine the relationships of these maps to

one another.

3. Study the one-shot multi-winner SOM when its task is to transform variable-

length temporal input sequences into sequence-specific spatial representations.

In particular, assess the memory capacity of the system and the nature of the

learned representations.

4. Explore the performance limits of the temporal sequence processing one-shot

multi-winner SOM by applying automatic optimization techniques to the prob-

lem of determining values for the parameters of the system that lead to better

and ideally, near-optimal performance.

1.3 Summary of Results and Overview

In pursuing these aims, I obtained the following main results. The one-shot multi-

winner SOM that I developed indeed supports map formation. In particular, networks

with a sufficiently large output lattice formed multiple topographic maps of the input

space. Moreover, maps that were adjacent in the output lattice were overwhelmingly

mirror symmetric with respect to their shared boundary. This is consistent with

experimental observations about the formation of multiple mirror image topographic

maps in biological cortex, across different sensory modalities and species, including
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humans (Drager, 1975; Engelien et al., 2002; Formisano et al., 2003; Merzenich et al.,

1978; Newsome et al., 1986; Sur et al., 1982; Tiao and Blakemore, 1976). The one-

shot multi-winner SOM thus constitutes the first computational model that produces

multiple mirror image map formation similar to that seen in biological cortex. It

does so purely on the basis of competitive Hebbian learning. These model results are

intriguing as they relate to the ongoing debate about the extent to which biological

topographic maps are learned or genetically determined (Cohen-Cory, 2002; Grove

and Tomomi, 2003). The one-shot multi-winner SOM provides evidence suggesting

activity-dependent synaptic changes may be more important in the formation of mirror

image maps than is generally recognized. From the perspective of computer science,

the one-shot multi-winner SOM constitutes a redundant and therefore more robust

(less sensitive to damage and statistical noise) version of the already well-established

one-shot single-winner SOM method (Kohonen, 2001).

When extended to the processing and representation of temporal input sequences,

the one-shot multi-winner SOM proved capable of learning a unique spatially dis-

tributed representation for almost every distinct sequence in the relatively large train-

ing set of variable-length sequences. Since the training set comprised phonetic

transcriptions of English nouns where each phoneme was represented as a high-

dimensional phoneme feature vector, the network can be interpreted as a simplified

model of unsupervised learning of word pronunciation. In addition, the one-shot

multi-winner SOM maintained multiple map formation in terms of single phoneme

features, which shows that the unique spatially distributed representation of sequen-

tial inputs and multiple map formation are not mutually exclusive phenomena. The

results were consistent with what is known about biological cortex where similar in-

puts typically evoke similar distributed activation patterns (Haxby, 2001; Riesenhuber
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and Poggio, 2002), and where temporal processing also takes place in areas that are

occupied by topographic and/or feature maps (Ahissar and Arieli, 2001; Hoshi and

Tanji, 2000; Sahyoun et al., 2004; Schrater et al., 2000). Certain design changes

and the application of a multiobjective genetic optimization algorithm significantly

improved the original and manually-optimized temporal sequence processing in the

one-shot multi-winner SOM so that distinct sequences generally led to unique spatial

representations, a transformation that can be exploited by subsequent stages in a

larger temporal sequence processing system.

In short, the one-shot multi-winner SOM can explain a large number of phenomena

that are associated with information processing in biological cortex. This fidelity to

neurobiology combined with conceptual simplicity and computational efficiency should

make the one-shot multi-winner SOM an attractive computational modeling tool

that would allow for systematic studies of large scale multi-modular neural models,

which formerly were associated with prohibitively large computational costs. On

the other hand, the one-shot multi-winner SOM with its distributed representation

of computation results may prove useful in application contexts which, in addition

to computational efficiency, require a high degree of tolerance toward faults and/or

statistical noise.

In the following, Chapter 2 provides background information on the self-organizing

map, including the related phenomena that occur in biological cortex. It gives an

overview of previous related work on the self-organizing map, with a special emphasis

on self-organizing maps for sequence processing. Chapter 3 introduces the new class

of one-shot multi-winner SOMs and investigates their properties when inputs are

static in time, including the results about mirror-image map formation. Chapter 4

makes a transition to temporal sequence processing with the one-shot multi-winner
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SOM. It explains the extensions to the one-shot multi-winner SOM that make it fit for

temporal processing and studies its performance when applied to the task of learning

unique spatial representations for sequential inputs. Chapter 5 is dedicated to the

improvement of the temporal sequence processing by one-shot multi-winner SOMs

by means of design changes and the subsequent multiobjective optimization of the

network parameters using a genetic algorithm. Chapter 6 comprises a review and

discussion of the research results, and an outlook on possible directions for future

research on or using the one-shot multi-winner SOM.
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Chapter 2

Background

As noted in the previous chapter, research on SOMs has historically been divided into

two largely disconnected fields, each of which is concerned with its own research goals

and uses its own type of SOM. Notation and nomenclature have diverged over the

years. Both types of SOMs have in common that their architecture and dynamics are

based, albeit to differing degrees, on biological cortex and that their behavior relates to

cortical map formation. This chapter therefore starts out with an introduction to map

formation in biological cortex, followed by a technical discussion of the shared features

and differences of the two SOM classes. The last section reviews previous research

efforts that relate to temporal sequence processing extensions to neural networks in

general and SOMs in particular.

2.1 Maps in Biological Cortex

One of the most intriguing aspects of the SOM, whose architecture and low-level

dynamics have been inspired by biological cortex, is the emerging high-level behavior of

the system, specifically the formation of ordered maps of its inputs that can resemble

those seen in biological cortex (Bauer, 1995; Kohonen, 1989; Martinetz et al., 1989;

Obermayer et al., 1990, 1992a,b; Palakal et al., 1995; Ritter and Schulten, 1986),

12



suggesting that the SOM, despite being an extremely simplified model of cortex, can

capture some fundamental principles of cortical self-organization. In biological cortex,

map formation occurs in many primarily sensory areas, that is, cortical regions that are

dedicated to the processing of incoming sensory information. In the neurosciences,

a distinction is made between two types of cortical maps: topographic maps and

computational or feature maps.

A topographic map constitutes a roughly topographically-correct point-to-point

mapping of a two-dimensional sensory surface onto a continuous surface area of

cortex. The stimulation of a point on the sensory surface activates a corresponding

location on the cortical surface so that the relative distances between points on the

sensory surface are roughly preserved in the corresponding distances between activated

locations of cortex. Examples for this type of map are the somatotopic (Dykes and

Ruest, 1984; Killackey et al., 1995), retinotopic and tonotopic maps that are located

in primary somatosensory, visual and auditory cortex, respectively. These maps are

illustrated in Figures 2.1, 2.2 and 2.3.

The other class of cortical maps, computational or feature maps, are systemati-

cally ordered mappings of sensory stimuli onto the surface of cortex where the order

is with respect to a particular feature of the sensory stimuli other than their loca-

tion on the sensory surface. In the primary visual cortex, for example, there exist

ordered mappings according to ocular dominance and orientation sensitivity (Hubel

and Wiesel, 1962, 1968, 1979). In the former case, the map, when visualized via mi-

croelectrode readings or cortical staining, takes the form of alternating bands where

each band consists of cortical columns that are preferentially activated by inputs from

the same eye. Cortical columns in visual cortex also exhibit a preference with respect

to the orientation of line segments within visual stimuli. Each cortical column tends

13



Figure 2.1: The left drawing outlines one of the cortical hemispheres cut vertically and

from side to side (gray area) so that the curved (black) line of intersection with the

cortical surface corresponds to the midline of the somatosensory area which extends

like a band from medial to lateral across the cortical surface. This area hosts a roughly

topographic map of the (here human) body surface whose orientation is indicated by

the sketch of a human form following the outline of the hemisphere. The preservation

of the body’s topology is not perfect: mouth and face are represented laterally while

the remaining body is represented medially so that face and hand are adjacent in

cortex. The representations of the lips and hands occupy a disproportionately large

cortical area which is an example of the magnification effect: regions of sensory

surface with a relatively higher density of sensors and/or frequency of stimulation

tend to be represented in more detail over relatively more cortical surface area. This

is illustrated further by the human figure to the right, an area-proportional reverse

projection of the cortical somatotopic representation. After Penfield and Rasmussen

(1950). From Strobel (2000).
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Figure 2.2: Both illustrations show that cortex, specifically the primary visual area

which occupies the posterior lobes of both hemispheres (boxed-in area at the top of

the picture to the left), contains a roughly topographic representation of the retinal

surface and thus, the visual field. The picture to the left shows the visual field

partitioned into differently colored concentric rings (bottom-left). The order among

the colors is mostly preserved in the cortical representation (bottom-right; computed

from fMRI data), indicating a roughly topographic cortical map of the visual field. In

the picture to the right (from Tootell et al. (1982)), concentric circular and straight

lines partition the visual field (top). Along those lines, point-like visual stimuli were

applied. The ensuing activity at the responding cortical locations stained the cortical

tissue in a topographically correct manner (bottom), recreating, on the surface of

the visual cortex, the line pattern along which the visual field had been partitioned

(arrows indicate corresponding line segments).
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Figure 2.3: The left picture shows the spiral-shaped basilar membrane, the essentially

one-dimensional auditory sensory surface (from Stuhlman (1952)). It is covered with

mechanical sensors (hair cells) that are activated by sound waves. The location

of a sensor determines which pure tone frequency activates it the most. Sensors

at the center of the spiral preferably respond to the lowest perceptible frequencies,

while toward the tip of the outer spiral arm, sensors are activated the most by tones of

progressively higher frequency. This order is preserved in the frequency-sensitive bands

of the basilar membrane’s map representation in primary auditory cortex (Heschl’s

gyrus) which is shown to the right.

to be activated the most by a particular orientation stimulus, and columns that are

relatively close in cortex are typically sensitive to similar orientations which gives rise

to an overall very smooth and continuous mapping of orientation sensitivities onto

the surface of cortex.

From a theoretical point of view, the distinction between topographic maps and

feature or computational maps is largely artificial. The location of a stimulus on a
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sensory surface is essentially just another feature of the stimulus. From this perspec-

tive, a topographic map becomes a consequence of the basic principle that seems to

unify all cortical maps: nearby cortical locations represent stimuli that are similar with

respect to a particular feature which, in the case of topographic maps, is the location

feature. However, there are exceptions to this rule like, for example, the discontinuity

in cortical somatotopic maps where the representation of the face is adjacent to the

representation of the hand (see Figure 2.1, and Dykes and Ruest (1984)), or the

pinwheel patterns in orientation sensitivity maps where adjacent cortical columns can

be sensitive to very dissimilar, that is, perpendicular line orientations (Ohki et al.,

2000).

Two more observations are often made with respect to in particular topographic

cortical maps. First, the cortical area that the representation of a particular region

of a sensory surface occupies is not strictly proportional to the region’s surface area.

Relatively more often stimulated and/or more sensitive regions of a sensory surface

typically occupy a disproportionately large area of cortex (Azzopardi and Cowey, 1993;

Creutzfeldt, 1978; Dykes and Ruest, 1984; Sereno et al., 1995). This is called the

magnification effect which is very apparent in, for example, somatotopic maps where,

for example in primates, the lips and hands are area-wise overrepresented (see Figure

2.1 and Dykes and Ruest (1984)). The other observation is the existence of multiple

topographic maps of the same sensory surface, often in neighboring cortical areas and

oriented so that adjacent maps are mirror symmetric with respect to their common

boundary (e.g., Engelien et al. (2002); Formisano et al. (2003); Merzenich et al.

(1978); Sereno et al. (1995); Sur et al. (1982)).
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I

II

III

Figure 2.4: I Lateral view of the left cortical hemisphere with various cortical areas

delineated, in particular the somatosensory areas 3a, 3b, 1, and 2. From Allman

(1981). II Cortical somatotopic maps in the somatosensory region SI, composed of

the adjoining areas 3b and 1, of the squirrel monkey, based on multi-unit micro-

electrode readings. The arrow pairs indicate that each of the two areas is home

to a complete nearly topographic map representation of the body surface that is

roughly mirror symmetric to the map in the adjacent area, where the axis of reflection

corresponds to the border between areas 3b and 1. From Sur et al. (1982). III In

primary and secondary human visual cortex, several areas (VI, VII, VP, and V4v) are

home to topographic maps of the visual field. In addition, adjacent maps are again

mirror symmetric to each other with respect to visual field topography. From Sereno

et al. (1995).

18



2.2 Self-Organizing Maps

The common denominator of the two SOM types is that they are both neural network

methods for the unsupervised acquisition of a mapping from an often high-dimensional

input vector space into a space of patterns over a discrete, usually two-dimensional

surface which consists of the output nodes of the neural network arranged in a regular

lattice, e.g., the rectangular grid in Figure 1.1. Each node in the output lattice is not

necessarily fully connected to the nodes that make up the input layer. Each connection

an output node receives from the input layer carries a weight, so every output node

is associated with a weight vector located in the input space. These weight vectors

are often initialized randomly. During training, which is solely based on the repeated

input of vectors from a representative sample of the input space, the weight vectors

are adjusted slowly in response to each input according to an unsupervised learning

rule. Hebbian, e.g., in Miikkulainen (1991), or competitive, e.g., in Kohonen (1982),

learning methods are most common.

An intuition of the cumulative effect of training is easier to convey if one assumes

each output node to be fully connected to the input layer, i.e., all weight vectors are

located in the complete input space. Training essentially orders the initially random

weight vectors, and thus the output nodes, such that they form a two-dimensional map

which is characteristic of the distribution of vectors in the input space as represented

by the training samples. For map examples, see Figures 1.2 and 2.5.

The ordering that emerges in a SOM during learning is a combination of statistical

properties of the input distribution and local interactions between the output nodes.

While two output nodes only interact directly if the distance between them is relatively

small, overall the order tends to be ‘smooth’ across the entire lattice because any

two output nodes that are immediate neighbors tend to have similar weight vectors.
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Figure 2.5: The hexagonal lattice of output nodes used in von der Malsburg’s model of

a small patch of visual cortex (area V1). The network was trained with line segments

in the input space (“retina”) having nine different orientations. The first orientation is

a vertical line segment. The following eight orientations roughly correspond to eight

consecutive clockwise rotations of the line segment around its center by 40 degrees.

In the figure, each node is labeled with a line segment in the orientation that is the

median of an interval of consecutive orientations for which the activation level of the

node exceeds a threshold. The activation level of a node without a line segment does

not exceed the threshold for any of the nine different orientations. A node with two

line segments responds to two separate intervals of consecutive orientations above

threshold. From von der Malsburg (1973).
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Irregularities in the input distribution, in particular dense clusters, do however cause

this smoothness to be disturbed at times. In such a case one observes a subdivision

of the output lattice into internally relatively smooth areas that are sharply separated

along their mutual borders by an abrupt change in the value of weight vectors as

one crosses the border from one area into another. Each area is usually attributable

to a particular cluster of patterns in the input training data (e.g., the clustering of

cars according to origin in Figure 1.2). Within an area, the cluster is broken down

further, and since the size of an area is correlated with the density of the cluster,

denser clusters tend to be resolved in more detail and preferably along their most

variable dimensions.

What has been said so far applies to both classes of SOMs. There are however

significant differences between the two. These differences are summarized in Table

2.1, and discussed in detail in the next two sections.

2.3 Iterative Multi-Winner SOMs (Malsburg Maps)

Christoph von der Malsburg was probably the first to simulate the basic properties of

SOMs in his neural model of the self-organized formation of maps in the visual cortex

of cats and monkeys (von der Malsburg, 1973; von der Malsburg and Willshaw, 1976),

which is composed of orientation-sensitive cortical columns (Hubel and Wiesel, 1962,

1963, 1968, 1979). He conceived the model SOM as a neurobiologically grounded

computational model of cortex. The model reproduced the characteristic (mostly

smooth and continuous) two-dimensional order with respect to orientation sensitivity

that had been observed among the cortical columns of visual cortex. Thus, the

model supports the theory that this phenomenon arises from unsupervised Hebbian-

type learning.
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Table 2.1: Typical Features of the Two Types of Self-Organizing Maps

SOM type → Iterative Multi-Winner One-Shot Single-Winner

seminal work von der Malsburg, 1973 Kohonen, 1982

primary

applications

neuroscience: usually model-

ing neocortex

computer science: data vi-

sualization, feature detection,

pattern classification etc.

input-to-output

connectivity

divergent, but localized full

intra-lattice

connectivity

lateral (excite immediate

neighbors, inhibit more

distant ones)

none (implicit neighborhoods)

activation

dynamics

multiple winners: non-linear

differential equations

single global winner: node

most activated by the input

learning rule Hebbian/competitive Hebbian/competitive

computational cost high low

memory capacity high low

examples Bednar and Miikkulainen

(2000); Cho and Reggia

(1994); Li (2002); Pearson

et al. (1987); Reggia et al.

(2001); Sutton et al. (1994);

von der Malsburg (1973)

Callan et al. (1999); Kaski

et al. (1998a); Kohonen

(1982); Kokkonen and

Torkkola (1990); Principe

et al. (1998)
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In addition to the two-dimensional structure of cortex, von der Malsburg’s model

incorporates another feature of cortex: lateral connections of limited range between

cortical columns. These connections are set up as to facilitate localized competitions

for activation among the nodes of a circumscribed neighborhood. When an input

vector is presented to the network, the initial level of activation of an output node is

roughly proportional to the similarity between its weight vector and the input vector.

Some nodes are more activated by the input than others. The initial activation level of

a node evolves over time according to a non-linear differential equation which takes

into account the activation levels of connected nodes as well as the strength and

nature (excitatory versus inhibitory) of these connections. This activation dynamics

amplifies the activation levels of nodes that initially are very active relative to other

nodes in their neighborhood and suppresses the activation of initially less active nodes.

Overall this causes the initially diffuse distribution of activation across the lattice

to evolve into a pattern composed of focused peaks of activation (‘Mexican-hat’

patterns of activation) that are sometimes centered at initially locally maximally active

output nodes. This behavior of the model is consistent with electrophysiological

measurements of the activation pattern over an area of cortex in response to external

stimulation (Donoghue et al., 1992; Georgopoulos et al., 1988).

Learning in von der Malsburg’s model is based on the final focused activation

pattern. The weight vector of an output node is made more similar to the input

vector to a degree that is proportional to the node’s activation level. Based on these

basic principles a map like that in Figure 2.5 emerges which resembles orientation-

sensitivity maps observed in visual cortex when measuring the sensitivity of cortical

columns to light bars of different orientations (Hubel and Wiesel, 1962, 1963, 1968,

1979).
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Figure 2.6: The tuning of output nodes in the proprioceptive cortex model of Chen

and Reggia (1996). A elements tuned to the lengthening of the upper arm extensor,

B elements tuned to the lengthening of the upper arm flexor, C elements tuned to

tension in the upper arm extensor, D elements tuned to tension in the upper arm

flexor.
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Many other iterative multi-winner SOM-based neural models have been built since

then. For example, Chen and Reggia (1996) studied a model composed of two SOMs

interacting via the environment, which in this case is the simulated position of an arm.

The first SOM modeled the primary motor cortex and sent muscle contraction signals

to the arm causing it to change its position. The simulated arm translated its position

into sensory information about the amount of tension in the arm muscles. These sen-

sations were sent back to the second SOM which modeled the proprioceptive sensory

cortex. Figure 2.6 shows some of the maps that emerged in the proprioceptive sensory

SOM which eventually, i.e., after unsupervised training, reflected the correlations and

anti-correlations between components of the sensory input that were consequences of

the physical constraints built into the simulated arm. For example, the co-occurrence

of a lengthened upper arm extensor and a tense upper arm flexor (the extensor’s

antagonist) was a consequence of the simulated arm positions, and after training,

this was truthfully reflected in the almost exact alignment of maps (A) and (D). In

contrast to that, maps (A) and (B) were complementary which was consistent with

the fact that upper arm extensor and flexor could not be lengthened at the same

time.

What most iterative multi-winner SOMs, including those described above, have in

common is a computationally expensive implementation of the competitive activation

dynamics by means of iteratively simulating a system of non-linear differential equa-

tions (Bednar and Miikkulainen, 2000; Cho and Reggia, 1994; Grajski and Merzenich,

1990; Li, 2002; Sirosh and Miikkulainen, 1992; Reggia et al., 2001; Sutton et al.,

1994). This hinders efforts to investigate large scale neural models composed of

several interacting SOMs. Therefore the issue arises as to whether it is possible to

create computationally less costly, but nevertheless powerful neural models where the
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simulation of differential equations is replaced by an instantaneous approximation of

the simulation’s outcome.

A different, still-debated issue is the role of short-distance lateral connections in

cortex. A common assumption is that they are responsible for the competitive activa-

tion dynamics of cortex. Based on this assumption, the weights of these connections

in von der Malsburg’s and many other neural models are prescribed such that they

cause a competitive dynamics. This view has gained support from studies which

evolve or learn the lateral connection weights necessary to evoke this behavior (Sirosh

and Miikkulainen, 1992; Ayers and Reggia, 2001). However, it has been shown that a

competitive distribution of activation (Reggia, 1989) from the input layer is capable

of producing the same effect in SOMs without lateral connections (Cho and Reggia,

1994; Sutton et al., 1994; Reggia et al., 1992). This prompts the question of what

other role short-distance lateral connections in cortex might play. One hypothesis is

that they enable cortex to process information with a temporal dimension by stor-

ing spatially and temporally local correlations between activation patterns that are

distributed across cortex.

2.4 One-Shot Single-Winner SOMs (Kohonen Maps)

That the SOM can be formulated as an effective practical information processing tool

in computer science was first suggested by Teuvo Kohonen (Kohonen, 1981, 1982).

For the purpose of processing and visualizing digitized speech signals he constructed

a significantly more efficient and better performing version of von der Malsburg’s

iterative multi-winner SOM.

In a SOM of the Kohonen-type (one-shot, single-winner) the competitive dynam-

ics is cut short by simply declaring a single, initially maximally active output node the
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winner of the global competition for activation. This not only decreases the com-

putational cost of training by potentially orders of magnitude, but it also tends to

eliminate redundancy in the final map representation of the input vector distribution.

This redundancy is inherent in iterative multi-winner SOMs. For example, in Figure

2.5 there exist multiple nodes which respond most to vertical line segments and are

far apart from one another. From a technical perspective this is undesirable. For

data processing applications the virtue of the one-shot single-winner SOM lies in its

ability to learn efficiently and in an unsupervised fashion to reduce the dimensionality

of the usually high-dimensional input vectors so that the topology of the distribution

of vectors in the input space is roughly preserved.

The meaning of the phrase ‘topology-preserving’ in connection with the SOM

has not yet been unambiguously characterized in mathematical terms (Bauer and

Pawelzik, 1992; Göppert and Rosenstiel, 1993; Kiviluoto, 1996; Ritter and Schulten,

1988; Villmann, 1999; Villmann et al., 1997). There are, however, many intuitive

examples like that in Figure 2.7 which show that the one-shot single-winner SOM

performs a form of distortion-minimizing projection (akin to, e.g., the projection

of Sammon (1969)) of a typically high-dimensional input vector distribution onto

the discrete, usually two-dimensional surface that is the SOM’s output lattice. The

example also demonstrates that the topology-preserving property of the one-shot

single-winner SOM is volatile with respect to changes in the training parameters.

That in general it is a hard problem for a two-dimensional one-shot single-winner

SOM to preserve the topology of some input vector distributions, even if the input

space is only three-dimensional, is illustrated in Figure 2.8. Despite these difficulties

the one-shot single-winner SOM has become a popular data processing tool with

applications in domains as diverse as computer vision (Deschenes and Noonan, 1995;
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Manduca, 1996; Morris et al., 1990; Takacs and Wechsler, 1997; Toivanen et al.,

2003), robotics (Cervera and del Pobil, 1999; Faldella et al., 1997; Heikkonen and

Koikkalainen, 1997), signal/speech processing (Callan et al., 1999; Kangas, 1991;

Kohonen et al., 1984), economics (Deboeck and Kohonen, 1998; Kaski et al., 1998a),

and bioinformatics (Andrade et al., 1997; Ferrán and Ferrara, 1991; Hanke and Reich,

1996; Schuchhardt, 1996). Overall, the bibliography on, for the most part, the one-

shot single-winner SOM consists of more than 5300 entries representing 30 years of

research (Kaski et al., 1998b; Oja et al., 2003).

Figure 2.7 (next page): Each of the plots displays both the SOM and the input vectors

used for its training in the three-dimensional input space. The training vectors point

to locations on the surface of the unit sphere which are marked by a ‘+’. These points

are arranged in a slightly skewed grid. Each output node of the SOM is plotted at the

position on the unit sphere that corresponds to its weight vector. Two output nodes

are connected by a line if they are immediate neighbors in the 2D output lattice. The

topmost plot shows the SOM prior to training when each node’s weight vector points

to a random location on the unit sphere. The SOM was trained twice independently

for two only slightly different parameter settings. The plots in the center show the

SOM after 100 epochs, the plots at the bottom after 500 epochs of training. The

SOM to the left eventually almost perfectly captures the topology of the input vector

distribution, whereas the SOM on the right becomes intertwined early (develops a

“fold”), and further training does not correct this defect.
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Figure 2.7: Caption on previous page
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Figure 2.8: The two-dimensional lattice of a trained one-shot single-winner SOM

as it is located in the three-dimensional input space according to the values of the

three-dimensional weight vectors. The network was trained with vectors uniformly

distributed across the complex input manifold, that is, the surface of the cactus.

For the SOM’s 2D output lattice, it is impossible to approximately cover the cactus’

surface and create a topology-preserving projection of it onto the 2D lattice: there

are output nodes that are adjacent in the lattice (connected by a line) but are far

apart with respect to the cactus’ surface. Taken from Kohonen (1989).

2.5 SOMs for Sequence Processing

Work aimed at extending the applicability of neural networks to temporal sequences

has resulted in a wide range of proposals on how to achieve this. Within the domain

of supervised learning, a simple but effective approach is the incorporation of context

information in a standard feedforward multi-layer perceptron: at each time step, the

original input vector and a context vector, which is roughly composed of the activation
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levels of hidden and/or output units at the previous time step, are concatenated and

together form the actual input to the network (Jordan, 1986; Elman, 1990). The

network is trained via an unmodified standard error-backpropagation learning rule.

In contrast to that, it is this rule which needs to be generalized in order to process

temporal sequences with arbitrary recurrent error-backpropagation networks. This was

done first for networks with a regular activation dynamics (Pineda, 1987), and the

result was later generalized to networks with a competitive activation dynamics (Cho

and Reggia, 1993). The derivations in principle used techniques (steepest descent)

similar to those employed in the crafting of the standard error-backpropagation rule

(Rumelhart et al., 1986), but taking into account arbitrary recursive connections made

this a challenging task.

The temporal dimension of time-varying inputs can be captured independently

of the training method as well. The ‘leaky-integrator’ model of a neuron (Cohen

and Grossberg, 1983; Hopfield, 1984), which, via a membrane time constant, takes

into account that a neuron is a capacitor, has been used in neural networks to give

them temporal processing power (Chappell and Taylor (1993); Euliano and Principe

(1999); Lambrinos et al. (1995); Mozer (1989); for an in-depth review of temporal

neuron models see Gerstner (1995)). A similar approach is to use a separate ‘short

term memory’ (STM) to enrich the original time-varying input with information about

its temporal history. Each of the three most popular STMs (Mozer, 1993), i.e., the

tapped delay line, the exponential trace memory and the gamma memory, is equivalent

to the addition of nodes and/or constantly weighted connections to the input layer

of a neural network.

Like many other neural network architectures, past SOM models have usually

been designed to process a single time-invariant input vector at a time, but not a
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sequence of time-varying vectors. This shortcoming has been addressed by only a

small fraction of the SOM literature. The use of STMs and leaky-integrator neurons

as the SOM’s output nodes is widespread (Carpinteiro, 1999; Chappell and Taylor,

1993; Euliano and Principe, 1999; Koskela et al., 1998; Lambrinos et al., 1995).

The approach of Carpinteiro (1999) is also an example of a network composed of two

layered SOMs where the top SOM receives the activation pattern of the bottom SOM

as input. The technique of stacking SOMs (often associated with the introduction

of a time delay) to process temporal sequences has been used by other authors as

well (Kangas, 1990; Morasso, 1991). In addition to using leaky-integrator neurons,

the one-shot single-winner SOM in Euliano and Principe (1999) is made sensitive to

the temporal dimension of the input via wavefronts of activation which spread and

attenuate over time. In essence, the activation of an output node at a particular

time step increases the chances of its immediate neighbors to win the competition for

learning at subsequent time steps. This has the effect that the output nodes become

ordered not just according to the similarity between the input vectors but also with

respect to the temporal order in which they are presented to the SOM.

A different approach is taken in Kohonen (1991) where two sets of input weights

exist: pattern weights and context weights. The input to the network consists of a

pattern (a small sliding window) and the context (a larger sliding window) in which

it appears within the input sequence. The context of a pattern pre-activates a subset

of output nodes, among which the final winner node is determined by the pattern

part of the input. An idea related to this “hypermap” for the spatial representation

of temporal sequences, is presented in Kangas (1992). Given a one-shot single-

winner SOM, the vector preceding the current input vector in a temporal sequence

pre-activates a circumscribed neighborhood of output nodes. Only output nodes
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within that region participate in the following competition. The winner then becomes

the center of the next pre-activated neighborhood of nodes. The location of the

winner node hence always depends on the current and all previous vectors of the

input sequence, i.e., the location encodes both certain features of the current vector

and the history of past vectors from the input sequence. The trajectory (on the 2D

map) of winner nodes that unfolds for a sequence is its spatial representation. Having

multiple winner nodes on the same 2D map is identified as a possible topic for future

research. All the aforementioned efforts have been successful in training an essentially

unmodified one-shot single-winner SOM to visualize and categorize/cluster (but not

recall) temporal sequences by representing each sequence via a single output node.

The problem of time series prediction has been addressed in Principe et al. (1998)

via a one-shot single-winner SOM where each output node corresponds to a local

linear model of the time series. The node/model best matching a fixed number of

successive values from the series is then used to predict the next value of the series.

One of the rare examples of a SOM (iterative, essentially single-winner and with

full lateral intra-map connectivity) for memorization and recall of temporal sequences

composed of two-dimensional vectors is reported in Kopecz (1995). Storage and recall

are greatly limited in that the same vector may not occur multiple times within the

same sequence and that two different sequences may not share the same vector. These

restrictions together with the full lateral connectivity limit the network’s usability for

many applications of interest and make it an implausible model for the representation

of sequences in biological cortex.

None of the above research efforts has been undertaken with the explicit goal of

training a SOM to find a unique, spatially distributed representation for each sequence

in a large and unrestricted set of variable-length temporal sequences. Most efforts
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have focused on extending the existing one-shot single-winner SOM methodology

to temporal sequences which implies that each sequence is represented in a non-

distributed fashion by a single output node. Because of this inefficient coding scheme,

the one-shot single-winner SOM is a poor choice to try to achieve the above goal. By

allowing multiple winners to exist (one-shot multi-winner SOM) the representations

become distributed which promises to increase representation capacity, i.e., it should

become easier to uniquely represent large sets of inputs. This idea, investigated

later in this dissertation, has not been pursued before. Another novel aspect of the

one-shot multi-winner SOM is the use of local, i.e., short-range, lateral intra-lattice

connections which learn to guide the flow of activation over time such that the spatial

representation for a temporal sequence is likely to be unique. Spreading wavefronts

of activation (Euliano and Principe, 1999) and pre-activated neighborhoods (Kangas,

1992; Kohonen, 1991) can have a similar effect, but these mechanisms are static

(they do not undergo training), and hence are indifferent to characteristic temporal

properties of the training data.
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Chapter 3

One-Shot Multi-Winner Self-Organizing Maps

This chapter introduces the one-shot multi-winner SOM, forms hypotheses on how

the computational properties of this new class of SOM relate to map formation in

biological cortex, and discusses the results of the experiments that were conducted to

test these specific hypotheses and shed light on the computational properties of the

one-shot multi-winner SOM in general. The first section provides a detailed descrip-

tion of the one-shot multi-winner SOM’s architecture and dynamics. This is followed

by a review of the literature on map formation in biological cortex which spawns the

central hypotheses about how the one-shot multi-winner SOM might relate to the

experimentally observed biological phenomena. Prior to the subsequent presentation

of the computational simulation results that were obtained with the one-shot multi-

winner SOM, a brief section on quantitative measures of map formation provides some

necessary additional technical background. The final section of this chapter argues

that the simulation results suggest that the one-shot multi-winner SOM’s behavior

make it an interesting computational model of cortical topographic map formation,

especially of the mirror-image relationships that occur between biological neocortical

maps. Alternative views and certain assumptions and consequences of the model are

also discussed.
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(lattice)

cortex

sensory
surface

afferents (weights W)

(input layer)

Figure 3.1: Architecture of the model cortical region used in this chapter. An input

pattern ~x encoding the stimulation of a point on the sensory surface is modulated

by afferent synaptic strengths W to produce an activation pattern ~y over a lattice of

output nodes representing the neocortical surface. During Hebbian learning of W , a

map of the input patterns and hence, assuming a suitable encoding is used, of the

underlying sensory surface forms in the cortical region.

3.1 The Basic Model Architecture and Dynamics

The basic architecture of the multi-winner SOM, illustrated in Figure 3.1, is identical

to that of a standard SOM. The output nodes are arranged in a regular, rectangular

lattice of R rows by C columns. The distance between two output nodes i and i′ at

positions (r, c) and (r′, c′) in the lattice is measured using the box-distance metric,

that is, dlattice(i, i
′) = max(|r− r′|, |c− c′|). Each output node i receives an afferent

connection from each of the P nodes in the input layer. Every afferent connection

carries a non-negative, real-valued weight, wij on the connection from the jth input

to the ith output node, and ~wi ∈ R+P represents the afferent weight vector to the

ith output node. The level of activation of an input or output node ranges between

0 (inactive) and 1 (fully active). The activation levels of all P input nodes make up
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the input pattern, a vector ~x ∈ [0, 1]P of unit length. Similarly, the activation levels

of all output nodes form the output pattern, a vector ~y ∈ [0, 1]RC .

In general, an input pattern ~x encodes the stimulation of a point on a sensory

surface, a two-dimensional surface that is densely packed with sensors. To avoid biases

due to unequal length input vectors, the planar sensory surface inputs were normalized

in length by their projection onto the surface of the unit sphere. Specifically, given

a point p = [px, py] on the unit square, its image on the unit sphere is point q =[
qx = px

a
, qy = py

a
, qz = b

a

]
where a = (p2

x + p2
y + b2)1/2 and b =

√
2 − (p2

x + p2
y)

1/2.

The images on the unit sphere of the 441 points at the intersections in a regular grid

of 21 rows by 21 columns covering the unit square (as visualized in Figure 3.2A) were

used for training, randomly ordered.

Given an input pattern ~x, the output pattern is determined by the same compu-

tationally efficient process employed by the standard SOM (Kohonen, 2001), except

that it is generalized in a natural and biologically plausible way that causes the si-

multaneous existence of multiple winners. First, the net input h to each output node

i is computed as hi = ~wT
i ~x where T indicates the transpose of the column vector

~wi. I approximate the computationally-expensive, iterative competitive activation dy-

namics (Mexican Hat pattern) that is often implemented via the numerical solution

of differential equations and iteratively transforms ~h into ~y (Cho and Reggia, 1994;

Pearson et al., 1987; Reggia et al., 1992; Sutton et al., 1994; von der Malsburg,

1973) by a one-shot selection of winners in one step. However, unlike in the standard

SOM, multiple winners can occur where each output node i which receives a net

input greater than that to each of the N neighboring output nodes closest to i (ties

resolved arbitrarily) is taken to be a winner. N for all output nodes, including those

near or on the edges of the SOM’s lattice, is taken to be the number of other output
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nodes within a fixed radius of competition rcomp from the output node at location

(dR/2e, dC/2e) in the center of the lattice. Note how having the same N for output

nodes along the lattice’s edges is different from letting each output node compete

with all other output nodes within a fixed radius from its position, which would intro-

duce a bias favoring output nodes located near the lattice boundary. Since parameter

rcomp is usually chosen to be small relative to the size of the lattice, typically multiple

winner output nodes occur throughout the lattice in response to each input pattern.

Each winner is made the central ‘peak’ of an ‘island’ of activation. The distribution of

activation on a single island is such that the winner at the center of the island (output

node i) is maximally active (yi = 1), and the activation level of each output node j

that competed with i decreases exponentially with increasing distance between j and

i. Specifically, if the set V of winners is:

V = {i | ∀j 6= i : j competes with i ⇒ hj(t) < hi(t)} (3.1)

then the activation of output node j is:

yj = γd(i,j) with i ∈ V , and ∀k ∈ V , d(k, j) ≥ d(i, j) (3.2)

where γ ∈ [0, 1] determines the shape of each island of activation (lower γ means

faster drop off from the peak). Two or more islands of activation may partially

overlap. In that case, the activation level of an output node j in the region of overlap

is determined by the island whose peak is closest to j. Unless stated otherwise, the

parameter values used in the experiments reported here are C = 11 and rcomp = 7

(γ is described below).

Before training, each weight is independently initialized with a random value from

the interval [0, 1], and each weight vector is then normalized to unit length. During

training, the SOM learns by adjusting the weights on the incoming connections in
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response to each input of a vector from the training set, presented in a random order

that is different for each epoch. The number of training epochs used will depend

on the specific training data, and will be taken to be 2000 in the following, unless

explicitly noted otherwise.

For each output node i the learning rule is:

~wi = ~wi + µyi~x (3.3)

~wi = ~wi/||~wi||2 (3.4)

Eq. 3.3 implements typical Hebbian learning where µ ∈ (0, 1] is the learning rate.

Normalization in Eq. 3.4 restricts ~wi to move across the surface of the unit hyper-

sphere, generally in the direction of the current input ~x, and may result in a net

decrease of a connection’s efficacy due to competition with the other connections

terminating at output node i.

Typical during the training of a standard single-winner SOM, the values of certain

parameters in the above learning rule depend on how far training has progressed

(Kohonen, 2001). For example, training is often divided into two phases: a rough

ordering phase corresponding to large values for γ and µ, and a convergent phase

corresponding to small values for γ and µ. Analogously for the one-shot multi-winner

SOM, parameters γ and µ monotonically decrease in a non-linear fashion from some

initial value to a smaller final value. For example, in the simulations described in

the rest of this chapter, γ(t) = γfin + (γinit − γfin)/(1 + e(t−γinfl)/γσ) where t is the

fraction of completed training epochs, γinit = 0.9 (γfin = 0.0) determines γ’s initial

(final) value, γinfl = 0.33 is the point of inflection, and γσ = 0.1 determines the rate

of decline. A similar function is used for µ where µinit = 0.5, µfin = 0.0, γinfl = 0.5,

and µσ = 0.1.

As an example, consider a one-shot multi-winner SOM as described above. Given
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a radius of competition rcomp of 7, a one-shot multi-winner SOM of 15 by 15 or

fewer output nodes (15 = 2rcomp + 1) is equivalent to a standard one-shot single-

winner SOM. This is because each output node competes with all other output nodes

for activation and learning under these conditions, and hence there is always only a

single winner for a particular input (Kohonen, 2001). Given the input patterns shown

in Figure 3.2A (they constitute a representative sample of a square planar sensory

surface), Figure 3.2B shows a typical example of the initial disorganized state of an

11 by 11 SOM’s representation of this sensory surface prior to training that is due to

the random initialization of the SOM’s afferent weights. Figure 3.2C shows, for the

same SOM, the ordered map representation that was formed by training the network

with the patterns from Figure 3.2A. As expected, when 11 by 11 (and 11 by 15)

one-shot multi-winner SOMs were trained, each self-organized into a single topology-

preserving map of the sensory surface that covered the entire lattice (Figure 3.2C),

just as would be expected with Kohonen-style SOMs.

The one-shot multi-winner SOM was implemented in Matlab and C. C was chosen

for the computationally very costly core training algorithm, while Matlab was used for

the simulation framework which included the management, analysis and visualization

of the training and simulation data. Each simulation typically involved a large batch of

training runs where each run corresponded to a single operating system process. The

processes were distributed across the eight CPUs of a networked pool of seven Sun

Microsystems workstations (Ultra II/V and Blade 1000/1500/2000 models) running

the Solaris operating system. A Perl script handled the automatic distribution and

bookkeeping of the processes. On the fastest of these machines (Sun Blade with

900MHz UltraSparc processor and 1GB RAM), the training of a single one-shot multi-

winner SOM with an output lattice of 30 by 20 nodes over 2000 epochs using the
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441 3D input patterns described above took more than an hour of CPU time. I now

turn to what occurs with larger one-shot multi-winner SOMs, after first considering

the occurence of multiple adjacent topographic maps in biological cortex.

3.2 Multiple Mirror-Image Cortical Maps and a Hypothesis

Experimental studies have repeatedly established the existence of multiple neighbor-

ing cortical maps where the layout or topology of adjacent maps is mirror symmetric.

Familiar examples of adjacent mirror image cortical maps include multiple represen-

tations of the body surface in primary somatosensory cortex of monkeys as illustrated

in Figure 2.4II (Merzenich et al., 1978; Sur et al., 1982) and several mirror image

tonotopic maps in primary auditory cortex (Heschl’s gyrus) in humans (Engelien et al.,

2002; Formisano et al., 2003). If one considers not only primary but also secondary

sensory cortex (which also receives thalamocortical projections), numerous other mir-

ror image maps have been found in somatosensory (Beck et al., 1996; Krubitzer and

Calford, 1992; Krubitzer et al., 1995; Nelson et al., 1980), visual (Drager (1975);

Newsome et al. (1986); Sereno et al. (1995); Tiao and Blakemore (1976); see also

Figure 2.4III), and auditory (Imig et al., 1986; Pantev et al., 1995; Rauschecker et al.,

1995; Talavage et al., 2000) cortex in a variety of species. In addition, mirror im-

age movement representations have been found in the motor cortex of the macaque

monkey (Gentilucci et al., 1989). While there are many different hypotheses about

why multiple and sometimes apparently redundant maps occur so often (separation

of spatial/temporal processing, parallel processing of different sensory attributes, evo-

lutionary factors, minimization of connection distances, etc.) (Kaas, 1988; Cowey,

1981; Jones, 1990), there has been little speculation as to why such maps often

exhibit reflection symmetry, and the mechanisms by which multiple, mirror image
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maps arise during evolution and neurodevelopment remain unclear. Past computa-

tional models of self-organizing neocortical topographic maps (Kohonen, 2001; Ritter

et al., 1992; Sutton et al., 1994; Pearson et al., 1987; Sirosh and Miikkulainen, 1994)

have generally been limited to single maps and thus do not shed substantial light on

this issue.

Given the basic one-shot multi-winner SOM described above, I hypothesized that

multiple adjacent mirror-symmetric maps would arise from Hebbian synaptic changes

whenever the distribution radius of afferents to the output (or cortical layer) suf-

ficiently exceeds that of horizontal intracortical connections (Brown et al., 2001).

Further, I expected that these maps would turn out to be mirror images of one an-

other due to the basic properties of Hebbian learning. These hypotheses were inspired

by the adjacent mirror-image maps in biological cortex. There, a stimulated area does

not show an activation pattern involving a single-winner situation where only one cor-

tical column and its immediate neighbors are active while all others are inactive, at

least if the area considered is sufficiently large. Typically each initially highly active

location retains or further increases its activity while inhibiting the activity of the less

active regions that surround it, producing a more distributed, multi-focal pattern of

activation (Donoghue et al., 1992; Georgopoulos et al., 1988; Pei et al., 1994). Car-

ried over to the SOM, this corresponds to each output node competing only locally,

that is, only with output nodes that are close enough (do not exceed some maximum

distance) in the lattice. As a consequence, there will be multiple winners, distributed

across the lattice, widely separated from one another, and learning concurrently from

the same input, a behavior that is implicit in the “Mexican Hat” patterns of activity

occurring in some more biologically realistic, but also more complex and computation-

ally expensive models of cortex (Cho and Reggia, 1994; Pearson et al., 1987; Sutton
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et al., 1994; von der Malsburg, 1973).

My hypotheses can thus be viewed as stating that the otherwise unaltered stan-

dard SOM learning method, when generalized to multiple winners, is sufficient to

produce adjacent mirror image maps that are qualitatively similar to those observed

in experimental studies. More specifically, I postulated that Hebbian learning com-

bined with range-limited competition for activation and learning alone can explain

the existence of mirror image maps in cortex. The precise circumstances under which

this occurs are of special interest, and may provide testable predictions as to some of

the conditions that prevail in biological cortex.

3.3 Quantitative Measures of Map Formation with Multiple Maps

To test the plausibility of the hypotheses given in the previous section, I examined a

series of simulations using the one-shot multi-winner SOM formulation that had suffi-

ciently large output/cortical lattices to permit multiple maps to form during learning.

Before discussing the results of these simulations, it is important to clarify how map

formation can be measured quantitatively when multiple maps are present.

Measures of the “goodness” of map formation such as the topographic product

(Bauer and Pawelzik, 1992) or the topographic function (Villmann et al., 1997) have

of course previously been devised to quantify the ‘goodness’ of a map in terms of

how well the topology of the sensory surface (or, in general, the input space) is

preserved on the SOM’s lattice. In a standard SOM, a single output node i wins the

global competition for activation for all input vectors ~x which satisfy that ∀j 6= i :

~wT
i ~x ≥ ~wT

j ~x (ties are resolved arbitrarily). This region of the input space is called

the receptive field of output node i. The set of all receptive fields corresponds to the

Voronoi tessellation of the input space where each weight vector is at the center of
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one of the Voronoi cells. This Voronoi tessellation gives rise to a natural definition

of of what it means for two output nodes to be adjacent in the input space: the

corresponding two receptive fields or Voronoi cells have to be adjacent to each other

(i.e., they share part of their boundaries). Intuitively, the classic definition of topology

preservation demands that each pair of two in the lattice adjacent output nodes have

to be adjacent in the input space and vice versa. Existing measures of topology

preservation essentially count, weigh and sum the violations of this definition that

occur in a particular map to express in a single number how close the map is to being

perfectly topology preserving.

Figure 3.3 (next page): A. A multi-winner SOM where the lattice is a 1D string of

seven output nodes. The dashed lines indicate adjacency between output nodes with

respect to the lattice. B. The rectangular 2D sensory surface or input space. The

representative input vectors have been labeled ‘I’, ‘II’, ‘III’ or ‘IV’ so that the input

space is subdivided into four square sectors. C. The multi-winner SOM shown in the

input space. The output nodes have been placed according to the positions of their

weight vectors. The output nodes define a Voronoi tessellation of the input space

where each output node is at the center of a Voronoi cell. The boundaries between

the cells are shown as solid lines. D. The multi-winner SOM where each output

node carries the label of the input vector that is closest to the output node’s weight

vector (like in Figures 3.2A and B, 3.4 and 3.5). The SOM has folded in the input

space, resulting in two maps that are mirror images of each other where output node

4 corresponds to the ‘axis’ of reflection and is shared by both maps. E., F. These
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Figure 3.3: Caption starts on previous page

Voronoi diagrams show that each map by itself perfectly preserves the topology of the

input space, i.e., output nodes that are adjacent in the network lattice are adjacent

in the input space and vice versa. However, the diagram for all output nodes shown

in C. contains violations of the input topology: output nodes 1 (5) and 2 (6) are

adjacent in the lattice, but not in the input space; output nodes 1 (2, 3) and 7 (6,

5) are adjacent in the input space, but not in the lattice.
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Unfortunately, the conditions contained in the above definition are too rigorous to

be sensible with respect to the multi-winner SOM and hence, so are existing measures

of topology preservation. Figure 3.3 illustrates how both directions of the definition

can be violated by a multi-winner SOM, even though it has formed two individually

perfectly topology preserving maps of the input space. However, Figure 3.3C suggests

that if a multi-winner SOM has formed multiple individually topology preserving maps

of the input space then two output nodes that are adjacent in the lattice are still

relatively close in the input space, even if they are not immediately adjacent there.

For these reasons, I devised a measure M ≥ 0 to quantify whether and to what degree

a particular multi-winner SOM has self-organized into multiple individually topology

preserving maps of the input space. M is the mean of the smallest 2% of entries in

the collection of all pairwise dot-products between the weight vectors of in the lattice

adjacent output nodes, that is, if ~c = (c1, c2, . . . , cK) is a vector with its components

in ascending order that comprises all dot-products of the form ~wT
i ~wj where output

node i is adjacent to output node j, then M = 1/d.02Ke
∑d.02Ke

k=1 ck. The dot-

product between the weight vectors of two output nodes is inversely proportional to

the distance between the nodes’ receptive field centers, that is, the two locations

on the sensory surface to which the weight vectors point. Thus, M is inversely

proportional to the average distance with respect to receptive field centers between

in the lattice adjacent output nodes, but limited to those parts of the lattice where

these distances are greatest (i.e., larger values of M indicate better map formation).

Note that M is only sensible if the input space has a roughly uniform density, and

it does not take into account the weight-vector-induced Voronoi tessellation of the

input space so that it is not a direct measure of topology preservation.

In addition to the quantitative and objective measure M , map formation can be
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assessed subjectively by visual inspection. Thus, solely for the purpose of visualizing

map formation, the center of the location of each input pattern is associated with a

label which is either the character ‘@’ of a particular size or the blank character. When

these labels are shown on the sensory surface at their associated positions as seen

in Figure 3.2A, they form an inward clockwise spiral with the size of the ‘@’ labels

decreasing toward the center of the spiral. This distinctive superimposed pattern

allows one to reliably judge, via visual inspection of the SOM’s lattice, whether or

not a roughly topology-preserving map of the sensory surface has formed, and if so,

its orientation. In the following, the modeled cortical surface is shown as a 2D array of

square cells, one cell for each output node. For each output node i, the corresponding

cell carries the label of the input pattern ~xj to which the node is most sensitive, that

is, j = argmaxk(~wT
i ~xk). Each topology-preserving or well-formed map of the sensory

surface thus shows up on the lattice as a projected image of the spiral pattern.

The image may be rotated or slightly distorted, and/or may show a reversal of the

spiral’s direction from clockwise to counterclockwise, since these transformations do

not violate the topology of the sensory surface.

3.4 Appearance and Relationships of Multiple Maps

This section presents the results of the simulations that were conducted with the

the one-shot multi-winner SOM. The presentation includes four sets of results: the

observed numbers of topographic maps that networks of different sizes formed and the

symmetry relationships between those maps, the quantitative differences in terms of

map formation between the observed types of symmetry, the impact of a non-uniform

distribution of input patterns across the input surface on the relative orientation of

multiple maps, and, finally, the robustness of simulation results to changes in the
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parameters of the one-shot multi-winner SOM.

3.4.1 Number and Symmetry Relations

Fourteen separate experiments were conducted, each corresponding to a specific SOM

lattice size (R = 11, 15, 20, . . . , 75; C = 11), and for each size lattice 20 independent

runs were executed. Each run consists of training the network, recording the number

of resulting individual maps, and, in the case of multiple maps, documenting any

symmetries between immediately adjacent maps. The runs of each single experiment

were independent from one another: in each, the network was initialized with different

random weights and a different random order was used for the presentation of the

input patterns during training.

As can be seen from the left half of Table 3.1, for a sufficiently small R ≤

20, the one-shot multi-winner SOM was essentially equivalent to a standard single-

winner SOM, and consequently, only a single map of the sensory surface formed,

covering the entire lattice of output nodes (as in Figure 3.2C). With R ≥ 25, multiple

well formed maps appeared, such as those illustrated in Figure 3.4. In general, the

number of maps formed increased proportional to R: approximately one additional

map was formed for each additional 15 rows. This suggests that in general, the

number of additional rows required to accommodate an additional map roughly equals

the ‘diameter’ of competition, that is, the number of rows 2rcomp + 1 (for R ≥

2rcomp + 1) of other output nodes with which each output node has to compete for

activation and learning (e.g., 15 for rcomp = 7). All the maps in any one instance

where multiple maps occurred were generally of the same size. Two adjacent maps

were usually immediately adjacent, that is, there were no lattice parts in between

them that were not part of the two adjacent maps, regardless of R.

49



Table 3.1: Averages over 20 Runs of Numbers and Symmetries of Maps

Number of Maps Pairwise Symmetries∗

R mean min. max. m g r

11 1.00 1 1 - - -

15 1.00 1 1 - - -

20 1.00 1 1 - - -

25 2.00 2 2 1.00 .00 .00

30 2.00 2 2 .90 .10 .00

35 2.12 2 3 .63 .37 .00

40 2.95 2 3 .92 .03 .05

45 3.00 3 3 .78 .10 .13

50 3.40 3 4 .73 .19 .08

55 3.83 3 4 .81 .15 .04

60 4.00 4 4 .93 .02 .05

65 4.50 2+ 6 .77 .20 .03

70 5.07 2+ 7 .82 .05 .14

75 5.18 3+ 6 .77 .12 .11

∗m = mirror reflection, g = glide reflection, r = 180o rotation, + = unorganized areas also

present
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Three types of map-to-map symmetries were observed. In the overwhelming

majority (82%) of cases, the two adjacent maps were mirror images of each other

(e.g., Figure 3.4A). The second type of symmetry observed, found in 11% of the cases,

was again essentially a mirror reflection, but now the axis of reflection was tilted so

that the boundary between the two maps was no longer of minimal length (Figure

3.4B). In addition, the maps were translated in opposite directions along their common

tilted boundary so that the resultant transformation is better characterized as a glide

reflection. Thus, in 93% of the cases, adjacent maps exhibited mirror symmetry

or distorted mirror symmetry reminiscent of that seen in biological neocortex. In

the remaining 7% of map pairs1, each individual map was characterized as a rotation

relative to the other of 180 degrees around a symmetry point at the center in between

the two maps (Figure 3.4C). The rightmost three columns of Table 3.1 show the

fractions of mirror (m), glide (g) and rotation (r) symmetries between adjacent

maps for different lattice sizes R, averaged over 20 independent runs, respectively.

For a complete account of the training results for each individual run (non-averaged

results), see Table A.1 in Appendix A.

Map visualizations like those in Figure 3.4 also revealed that the three symmetry

types exhibited distinct patterns of similarity among the output nodes along an inter-

map boundary. Output nodes along the boundaries between mirror symmetric maps

typically were similar to their neighbors in the lattice, that is, their afferent weight

vectors and thus, their receptive field centers were close to one another. In the

example shown in Figure 3.4A, this becomes manifest in the form of lightly shaded

cells along the inter-map boundary. Dissimilar output nodes (darkly shaded cells)

1The phrase ‘map pair’ always refers to two maps that are adjacent on the modeled cortical

surface, i.e., the lattice of output nodes.
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as part of the inter-map boundary were characteristic for both glide reflection and

rotationally symmetric maps. However, while output nodes like that were present

all along the boundary between glide reflection symmetric maps (Figure 3.4B), their

presence was limited to the outer reaches of the inter-map boundary in the rotationally

symmetric case (Figure 3.4C).

Figure 3.4 (next page): Representative instances where the cortical lattice formed

multiple maps (top) and their corresponding schematic representation (bottom) for

each of the three observed types of symmetry between adjacent maps of the sensory

surface. The spatial organization of the maps is indicated by how a single spiral

painted on the sensory surface (see Figure 3.2A) is replicated and oriented on the

map. A. a mirror symmetric, B. a glide reflection symmetric (‘distortedly’ mirror

symmetric), and C. a rotationally symmetric map pair. In the schematic represen-

tations at the bottom, the thin lines in A and B and the point in C indicate the

symmetry axis and the center of rotation, respectively.
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Figure 3.4: Caption on previous page
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Figure 3.5: A single cortical lattice on which six maps of the sensory surface appeared

where every two adjacent maps are always mirror images of each other. For illustrative

purposes, the lattice has been split in the middle, with the top half shown on the left

and the bottom half shown on the right. A schematic representation is given on the

right.

There was some tendency for the largest fractions of mirror symmetric maps (>

80%) to occur when R was a multiple of 15 or slightly smaller than that (R =

25, 30, 40, 55, 60, 70 in Table 3.1). So, for the formation of n mirror symmetric map

pairs, an R equal to or slightly less than n times the ‘diameter’ of competition seems

to be optimal. Under these optimal conditions, the height of a single map was roughly
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15. However, I found several cortical lattices on which exclusively mirror symmetric

map pairs formed and the number of maps exceeded the expected value because they

were smaller. The single cortical region in Figure 3.5 provides an example of this

where six somewhat compressed maps formed on the 75 by 11 lattice.

In a small minority of cases, the network did not completely self-organize, and

parts of the lattice remained disorganized after learning. For example, the entry 2+

for R = 65 in Table 3.1 indicates that in one of the 20 simulations with networks of

this size, only two representations of the sensory surface were found, with the rest of

the lattice being disorganized (all other 19 simulations in this case exhibited at least

4 maps and no disorganized regions).

3.4.2 Measuring Map Formation and Types of Symmetries

For the 220 simulations with cortical regions sufficiently large for multiple maps to

appear (R ≥ 25), the mean initial value of M prior to any learning was 0.31 (SD

0.02, minimum 0.23, maximum 0.38). Following learning, this increased to 0.97 (SD

0.02, min. 0.87, max. 0.98). Each cortical lattice that was in principle large enough

for multiple well-formed maps to appear (all 220 runs in Table 3.1 for which R ≥ 25)

was assigned to one of three categories. A lattice’s category depends first on whether

it shows any disorganized regions. If so, the lattice belongs to the ‘?’ category (20

runs, or 9%), even if well-formed maps were also present. The remaining lattices

are divided into those in category ‘m’ that formed exclusively mirror symmetric map

pairs (138, 62%) and those in category ‘g|r’ (62, 29%) that showed at least one glide

reflection or rotationally symmetric map pair.

Figure 3.6 shows, for each lattice category, the distribution of the M values. The

mean M value was 0.980 (SD 0.002) for category m simulations and a significantly
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Figure 3.6: A histogram of the M values for each of the three symmetry categories.

The values have been grouped into 16 consecutive intervals of width 0.01. To be

comparable across the differently sized categories, each histogram shows, for each

interval, the relative within-category frequency with which M fell within the limits

of the interval. The histograms suggest that the means µ and standard deviations

σ of the actual distributions of M values are ordered so that µm > µg|r > µ? and

σm < σg|r < σ?.
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different 0.965 (SD 0.018) for category g|r simulations (p < 10−3 on t-test). On

average, the M values were significantly greater for category ‘m’ than for category

‘g|r’, and the spread of the values was smaller for category ‘m’ than for category ‘g|r’.

Further, the average M values were significantly greater for category ‘g|r’ than for

category ‘?’, with the spread being smaller for ‘g|r’ than for ‘?’2. Since M primarily

measures the organization along map boundaries when multiple maps are present,

these results indicate that the same synaptic modifications responsible for individual

map formation also tend to maximally preserve similarity of adjacent cortical element

receptive fields along map boundaries by producing adjacent maps that are mirror

symmetric. In contrast, other symmetry relationships (glide, rotational) are “local

maxima” of M in which the map formation process becomes trapped during learning.

Since category ‘g|r’ lattices also exhibited mirror-symmetric map pairs, the differences

observed between categories ‘m’ and ‘g|r’ most likely would have been even more

pronounced if each pair of adjacent individual maps had been manually categorized

individually and if M had been measured separately for each pair (this was impractical

to do).

3.4.3 Non-Uniform Density of Sensory Stimuli

In all of the above experiments, each representative point of the sensory surface was

stimulated exactly once during a single epoch of training. This uniform distribution

of input stimuli did nothing to bias which of the edges of mirror image maps became

adjacent. Notwithstanding a reflection of the entire cortical lattice with respect to its

2Assuming that the average of M was the same for all three categories, the Jonckheere trend

test gave a probability of � .0001 for the observed M values to be a product of chance, providing

support for the alternative hypothesis that, on average, M was greater for category ‘m’ (‘g|r’) than

for category ‘g|r’ (‘?’).
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vertical midline, there are only four different ways in which two adjacent and mirror

symmetric individual maps may be oriented relative to each other. As is illustrated

in Figure 3.7, each of these relative orientations (A, B, C and D) corresponds to

a particular side of the square sensory surface (and hence, the superimposed spiral

pattern) being represented by and coinciding with the inter-map boundary. Given a

uniform distribution of sensory stimuli, each orientation should occur with roughly

the same frequency.

Figure 3.7 (next page): Schematic drawings and examples illustrating the four distinct

ways (A, B, C, and D) in which two adjacent mirror symmetric maps may be oriented

relative to each other. No distinction is being made between the reflections of the

map pair with respect to the vertical midline of the cortical lattice. The conceptual

partitioning of the sensory surface into three equally sized, but potentially differently

often stimulated regions is depicted in the schematic drawings where each individual

image of the spiral pattern consists of three differently shaded strips, each an image

of one of the three regions of the sensory surface.
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Figure 3.7: Caption on previous page
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To see if the selection of which edges become adjacent during formation of mirror

image maps could be biased, I altered the previously uniform probability distribution

of stimuli over the sensory surface during learning. This was done by partitioning the

regular 21 by 21 grid of points that serve as a representative sample of the sensory

surface into three consecutive 21 by 7 sub-grids (I, II and III). Each point in sub-grid

I was stimulated, as before, only once during a single epoch of training while each

point in sub-grid II (III) was stimulated twice (three times) during the same period.

During training, I used a fixed lattice size of 25 by 11 output nodes and coordinate-

encoding input patterns, a combination which earlier had produced a pair of mirror

image maps in 19 out of 20 runs (see Table A.1 in Appendix A) when uniformly

probable input stimuli were used. Of these 19 mirror image map pairs, six (three; six;

four) were composed of individual maps that were oriented like in Figure 3.7A(B; C;

D) which is consistent with a uniform distribution (χ2 = 1.42 < 28.87 for the χ2

goodness-of-fit test which, at the 0.05 significance level, confirms the hypothesis that

the observed frequencies are from a uniformly distributed population). In comparison,

of the 20 independent runs of training that were performed using the non-uniform

sensory surface, 19 again produced mirror image map pairs, but now orientation A

(B; C; D) occurred twice (never; never; 17 times) which corresponds to a significant

preference for orientation D (χ2 = 42.68 > 28.87 for the χ2 goodness-of-fit test,

i.e., at the 0.05 significance level, the observed frequencies are inconsistent with a

uniformly distributed population). At orientation D, the most frequently stimulated

region of the non-uniform sensory surface is represented in both maps along the inter-

map boundary (see Figure 3.7D), and the map representations of the least frequently

stimulated region are the most removed from the boundary.

Biological sensory surfaces such as the skin or the retina exhibit a non-uniform
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density of sensors (e.g., the macula versus the rest of the retina) as well as a non-

uniform usage pattern where some regions are stimulated more often than others

(e.g., the fingertips versus the back of the hand). Higher density regions and regions

that are more frequently stimulated are typically magnified in cortical maps, that is,

their cortical representation occupies a disproportionately large area of cortical surface

(Azzopardi and Cowey, 1993; Creutzfeldt, 1978; Dykes and Ruest, 1984; Sereno et al.,

1995). The single-winner SOM model is capable of reproducing this magnification

effect, given inputs that model a non-uniform sensory surface (Grajski and Merzenich,

1990).

As expected, the images of the two more often stimulated sensory surface regions

came to occupy a relatively larger area of the SOM’s lattice (at the expense of the third

least stimulated region) compared to when the three regions were equally frequently

stimulated during training (uniform sensory surface). With the uniformly distributed

sensory stimuli (the baseline), the map representations of the region corresponding

to sub-grids I, II and III consumed, on average, 79.05, 104.0 and 91.95 output nodes

with standard deviations of 13.04, 3.76 and 13.58, respectively. In comparison, with

the non-uniformly distributed sensory stimuli, the averages for regions I, II and III were

57.58, 112.0 and 105.42 with standard deviations of 4.95, 3.30 and 7.70, respectively.

This is a significantly different result. Given the hypothesis that the two samples are

from the same population, the U -test returned a probability of 1.99e-07 (2.69e-06;

0.0056) in favor of the observed differences between the two samples being a chance

event which provides strong support for the alternative hypothesis that the sample for

the non-uniform sensory surface is from a population with a smaller (larger) mean.
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3.4.4 Sensitivity to Model Changes

Certain model parameters had a substantial impact on whether or not a multi-winner

SOM self-organized into well formed maps of the sensory surface, and what the like-

lihood of occurrence was for each of the three types of symmetries between adjacent

maps.

For the radius of competition rcomp = 7 used in the above simulations, I observed

the largest fraction of mirror symmetric map pairs for a lattice width of C = 11

(0.82m, 0.11g, 0.07r). Experiments with C < 11 resulted in a relatively larger

number of glide reflections (e.g., 0.69m, 0.27g, 0.04r for C = 9). For C > 11,

the relative number of rotational symmetries increased (e.g., 0.78m, 0.04g, 0.18r for

C = 13, and 0.68m, 0.02g, 0.30r for C = 15). So, it seems that for a given radius

of competition rcomp, a particular width C of the lattice is optimal for the formation

of mirror symmetric map pairs. If C is smaller (greater) than the optimal value,

the fraction of mirror symmetric pairs decreases while the fraction of glide reflection

(rotationally) symmetric pairs increases.

The initial value of γ, γinit, and γinfl were also important. For γinit = .8 (rather than

.9 as in the experiments above), the fraction of mirror symmetric map pairs dropped

to typically 60%. Rotation and glide reflection symmetry became more frequent with

each occurring in roughly 20% of the cases. In general, values of γinit smaller than

0.9 seem to disproportionately increase the fraction of rotationally symmetric map

pairs. Delaying γ’s descent by increasing γinfl to 0.5 increased the number of cases

in which self-organization failed partially or completely so that no well-formed maps

were discernible in (parts of) the SOM’s lattice. The effects of parameter changes

pertaining to γ especially depend on how the learning rate µ changes over time during

training. I made the above observations on the effects of changes to γinit and γinfl
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while µinit = 0.5, µinfl = 0.5 and µsigma = 0.1 were held fixed.

Two variations of Eq. 3.2 were implemented and tested as well. The first variant

determines the activity of an output node by taking into account all winners (as

opposed to just the closest one) and adding their activity contributions. So, Eq. 3.2

was replaced by

yj =
∑
i∈V

γd(i,j) (3.5)

which, in general, increases the activity of output nodes that are located in an area

of the lattice where several islands of activation overlap. Given Eq. 3.5, it is actually

possible that an output node in an area of overlap becomes more active than a

winner. The second variant prevents this from happening by capping each output

node’s activation if it exceeds 1. Both variants were less conducive to the formation

of mirror symmetric map pairs than the original rule in Eq. 3.2.

I used coordinate-encoding input patterns in most of my experiments since, es-

pecially during the search for suitable training parameters, computational efficiency

was critical. However, in order to demonstrate that coordinate-encoding does not

bias the model in favor of my hypotheses about map formation, the first 10 runs

of each experiment were repeated, except now the networks were trained with high-

dimensional sensory activation patterns as the input patterns. A sensory activation

pattern is a vector with as many components as the number of sample sensory surface

points (441). So, it is computationally much more expensive to use sensory activa-

tion patterns (full encoding) as the inputs to the model than it is to use 2D (3D

after normalization) coordinate vectors (coordinate encoding) as I did in the original

experiments which is why I did not repeat all of the experiments.

Each sensory activation pattern comprises the activation levels of all sensory sur-

face points in response to the stimulation of one of the points. Stimulation of a point
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Table 3.2: Averages over 10 Runs each of Numbers and Pairwise Symmetries

of Learned Maps

Number of Maps Pairwise Symmetries∗

S mean min. max. m g r

11 1.00 1 1 - - -

15 1.00 1 1 - - -

20 1.00 1 1 - - -

25 2.00 2 2 1.00 .00 .00

30 2.00 2 2 1.00 .00 .00

35 2.22 2 3 1.00 .00 .00

40 3.00 3 3 1.00 .00 .00

45 3.00 3 3 .95 .00 .05

50 3.40 3 4 .92 .08 .00

55 4.00 2+ 4 .94 .03 .03

60 4.00 3+ 4 .79 .21 .00

65 4.78 3+ 5 .94 .00 .06

70 5.20 5 6 .93 .07 .00

75 5.50 5 6 .82 .09 .09

∗m = mirror reflection, g = glide reflection, r = 180o rotation, + = unorganized areas also

present
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on the sensory surface evoked a bell-shaped activation pattern: maximum activation

at the center and a monotonous decrease in activation with increasing distance from

the center. Specifically, if the stimulation of point p = (px, py, pz) is encoded by

~x(p) then x
(p)
q , the component of ~x(p) corresponding to the activation level at point

q = (qx, qy, qz), equals pxqx+pyqy+pzqz

(
∑

q′ (pxq′
x+pyq′

y+pzq′
z)2)1/2 . This implies that the sensory acti-

vation patterns evoked by two separate and independent point stimuli are the more

correlated the smaller the distance on the sensory surface is between the two points

(this is true also if coordinate encoding is used). The formation of topographic maps

in the brain then can be explained as the consequence of a tendency to reduce the

distance on, for example, the surface of the neocortex between the representations

of highly correlated afferent signals. The same principle can also explain the forma-

tion of computational or feature maps in the brain where the afferent signals do not

originate from a sensory surface, but instead reside in an abstract internalized input

or feature space.

The overall results, which are given in Table 3.2 (for detailed run-by-run results,

see Table A.2 in Appendix A), were 91% mirror symmetric, 6% glide reflection sym-

metric and 3% rotationally symmetric map pairs, indicating a significant increase in

the fraction of (distorted or undistorted) mirror symmetric map pairs increased sig-

nificantly from 0.94 to 0.97. The statistical significance was verified with a one-sided

χ2-test. The sample size was 500 (272) map pairs for the coordinate (full) encoding,

465 (265) of which were mirror symmetric (distorted or undistorted). Consequently,

χ2 = 6.71, that is, the observed difference between the two fractions is unlikely due

to chance (p < .005). The average number of maps appearing on the cortical lattice

was not significantly different at the 0.05 significance level, regardless of the specific

lattice size R. According to the U statistical test, the difference in the average num-
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ber of maps per lattice was closest to being significant for the 75 by 11 lattice size

(p = 0.08). This provides experimental support for using coordinate-encoding input

patterns as this did not influence the average number of well formed maps per lattice

and, more importantly, did not bias the one-shot multi-winner SOM in favor of mirror

symmetric adjacent maps.

3.5 Discussion

The one-shot multi-winner SOM introduced in this chapter, when trained with input

patterns that encode the stimulation of points on a sensory surface, formed multi-

ple, individually topologically correct maps of the sensory surface. As hypothesized,

multiple maps arose whenever the distribution radius of cortical afferents sufficiently

exceeded that of horizontal intracortical interactions (Brown et al., 2001). For a par-

ticular set of model parameters, adjacent maps were largely mirror symmetric with

respect to their common boundary while for a wide range of model parameters, mirror

symmetry was at least predominant. Two other types of symmetry, glide reflection

and rotational symmetry, occurred between adjacent maps where the former is es-

sentially a form of mirror symmetry, albeit somewhat distorted. When the sensory

surface was subdivided into regions, some being stimulated more often during train-

ing, two adjacent maps, in addition to being mirror symmetric, were almost always

oriented in such a way that their representations of the most often stimulated region

were located next to each other at the inter-map boundary. The other regions were

represented farther away from the inter-map boundary, following the gradient in the

frequency of stimulation. Further, the more often stimulated regions were represented

by a relatively larger area of modeled cortical surface in each of the individual maps,

similar to the magnification of more frequently stimulated sensory regions that occurs
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in biological maps (Azzopardi and Cowey, 1993; Creutzfeldt, 1978; Dykes and Ruest,

1984; Sereno et al., 1995).

The results of this study may have some significant implications in terms of an

understanding of the occurrence of mirror image maps in the brain. They indicate

that after the initial afferent and intracortical wiring, no genetic or other mechanisms

beyond the competitive Hebbian learning used to produce topographic map formation

are needed to explain the occurrence of multiple mirror image maps. The model’s

preference for the formation of multiple, individually topology-preserving maps that

are pair-wise mirror symmetric can be explained by the tendency of competitive Heb-

bian learning to both represent the entire sensory surface and minimize the number

of output node pairs that are relatively close in the lattice, but whose weight vectors

are relatively far apart on the sensory surface. A single topology-preserving map of

the sensory surface, like that typically formed by a standard single-winner SOM, is

the optimal solution to this minimization problem. A single global competition for

activation and learning is essential for the global self-organization of the entire lat-

tice into a single topology-preserving map. However, with a multi-winner SOM, the

information about which output node responds most to a particular input pattern

is only locally available. The process of self-organization generally compensates for

this lack of global knowledge by forming multiple small, but by themselves locally

optimal solutions to the minimization problem, usually optimizing the transitions be-

tween them. The optimal transition manifests itself in the mirror symmetry that was

observed between most adjacent maps of the sensory surface.

As illustrated in Figure 3.8A, in the input space this optimal transition corresponds

to a perpendicular fold in the SOM’s lattice. The other two types of symmetry that

were observed constitute suboptimal transitions from one map to the next. A glide
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Figure 3.8: Various ways in which the cortical lattice became embedded in the input

space, a 2D sensory surface which is shown as a light gray area in the x/y-plane.

Two output nodes (small black rectangles) are connected by a solid line iff they are

adjacent in the lattice. Each case involves two roughly topology-preserving maps of

the sensory surface which have been spatially separated along the z-axis to illustrate

the distortions of the lattice in the input space. For illustrative purposes, the lattices

shown here are much smaller than those used in the actual experiments. A. Mirror

symmetric maps (Figure 3.4A). The lattice of this 10 by 5 SOM folded in the process

of self-organization. The fold is perpendicular to the longer sides of the lattice.

Notice that in general, connected output nodes are close in the input space. B.

Glide reflection symmetric maps (Figure 3.4B, on the right). The lattice of this

11 by 4 SOM contains a diagonal fold, and the output nodes alongside the fold

line (highlighted in blue and separated from the two maps along the z-axis) have

been forced to move counterclockwise (clockwise) in the input space around the top

(bottom) map. Many of the output nodes along the fold line that are adjacent in the

lattice become widely separated in the input space (the width of lines connecting such

nodes has been increased and they have been highlighted in red). C. Rotationally

symmetric maps (Figure 3.4C). The lattice has been twisted in addition to being

folded in the same manner as in A. In this case, it is adjacent output nodes along

the fold line and close to the edges of the lattice whose distance in the input space

increases disproportionately.
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reflection symmetry is the visible expression of a diagonal fold in the lattice combined

with a shearing motion along the fold (Figure 3.8B; on the right in Figure 3.8) which

causes the entire diagonal inter-map boundary to be non-optimal. Rotation symmetry

indicates a combination of a perpendicular fold and a twist of the lattice (Figure 3.8C)

so that only the central region of the inter-map boundary retains its optimality while

near the edges of the lattice, the boundary is non-optimal. The key point illustrated

by Figure 3.8 is that in the latter two cases, output nodes that are close in the

lattice become uncorrelated, that is, far removed from one other in the input space,

rendering these two transitions suboptimal and hence, significantly lowering the M

measurements of lattices that produced these two transitions.

The one-shot multi-winner SOM as a model of biological cortex is a substantial

simplification of biological reality. Nevertheless the model reproduces a number of

features of map formation in biological cortex: the topologically correct representation

of the sensory surface by an individual map, the magnification of more often stimulated

or more innervated regions of the sensory surface, the formation of multiple maps of

the same sensory surface, and the often-observed mirror symmetry between adjacent

maps. Experimentally determined map pairs in biological cortex like that in Figure

2.4II show that the maps often are not perfectly mirror symmetric. Whether these

imperfections are analogous to the glide reflection symmetric maps in my model is

unclear and deserves further investigation.

I also obtained results for which I was unable to find analogs in the experimental

neuroscience literature. The occasional occurrence of rotationally symmetric map

pairs in biological cortex, to my knowledge, never has been reported in experimental

studies. However, the model predicts that, although such an event should be uncom-

mon, map pairs in biological cortex may occasionally exhibit this type of symmetry.
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Its relative rarity might be the reason why it has not been mentioned or observed, ei-

ther because it was not encountered at all or because it was discarded as an anomaly

outside the respective study’s focus. What causes my model to form rotationally

symmetric map pairs is unclear at present, and this issue certainly would deserve to

be addressed by future research, in particular if this type of symmetry is found in

biological cortex and linked to neurological disorders.

The clear preference of my model to orient adjacent maps of the sensory surface

such that their common edge represented the most often stimulated sensory regions

at first glance seems to contradict the results of neurophysiological mapping studies.

For example, the two representations of the hand in areas 3b and 1, respectively, of the

somatosensory cortex of the owl monkey (Merzenich et al., 1978), the squirrel monkey

(Sur et al., 1982), and the macaque (Nelson et al., 1980) are consistently oriented

in such a way that the palm is represented next to the inter-map boundary while the

fingertips, which are relatively more innervated and arguably more often stimulated in

the adult animal, are represented farthest from the boundary. In addition, across these

three species, other body parts like the trunk or the thigh show no clear preference

with respect to whether their most innervated or stimulated regions are represented

next to or distant from the inter-map boundary. However, the adult patterns of

innervation and stimulation are arguably very different from the patterns that persist

during development at the time when cortical map formation occurs so that the above

observations need not be inconsistent with my results. In fact, the model is consistent

with a testable prediction: when adjacent mirror image topographic maps occur in

neocortex, their common edge should represent the region of sensory surface that

develops and innervates first (i.e., that has the most frequent stimuli initially during

map development).
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In addition, note that in my experiments with the non-uniformly distributed sen-

sory stimuli, the size of the SOM’s lattice was fixed and allowed the formation of

only two maps of the sensory surface. With a larger lattice that forms more than

two maps of the sensory surface, it is unavoidable that some adjacent maps are ori-

ented so that the least often stimulated region is represented closest to the inter-map

boundary. Given the results for just two maps, it is a reasonable hypothesis that

the model would tend to minimize the number of such map pairs. For example, on

a lattice that produces four individual maps, only the central pair of adjacent maps

should represent the least often stimulated sensory surface region at the inter-map

boundary. Four successive maps of the body surface have been reported in areas 3a,

3b, 1 and 2, respectively, of the somatosensory cortex of, for example, the macaque

where probably all pairs of adjacent maps (3a and 3b, 3b and 1, 1 and 2) are mirror

symmetric (mirror symmetry between 3a and 3b is likely, but has not been established

thoroughly) (Nelson et al., 1980). So, with respect to the representation of the hand,

it could be that in this particular case, the hand’s most innervated and stimulated

regions are in fact represented next to the inter-map boundary as often (twice) as is

optimal in the case of four successive individual maps.

Adjacent maps of the same sensory surface in biological cortex often receive their

inputs from different sources, for example, from different sets of sensors (Dykes and

Ruest, 1984; Jones, 1984; Rakic et al., 1991), although there is a considerable overlap

in some cases (Nelson et al., 1980). In my model, there exists only one source of

inputs. However, even if adjacent cortical maps receive their inputs from different

sources, these sources would often still be correlated, especially with respect to the

part of the signal that conveys the relative positions of stimulations (for example,

cutaneous and deep tissue pressure sensors). Provided the level of correlation between
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the different input sources is sufficiently high, the net effect on map formation would

be the same as with a single input source. So, in a sense, I essentially do model

multiple, but with respect to stimulation location information, very highly correlated

input sources.

Some investigators explain observations about the structure of biological cortex

in terms of the effects of wiring optimization (e.g., Dehay et al. (1996); Cherniak

(1995); Welker (1990); Young (1992)). The cortical areas that underly adjacent

mirror symmetric cortical maps tend to be interconnected in a roughly topographic

manner, that is, most connections are between roughly corresponding points in the

two maps (van Essen et al., 1986; Stepniewska and Kaas, 1996; Roe and Ts’o,

1995). In addition, it has been observed that inter-map boundaries often coincide

with cortical folds (Welker, 1990). If the goal is to interconnect two adjacent cortical

areas whose boundary coincides with a cortical gyrus in a one-to-one fashion, then the

best strategy in terms of minimizing total connection length is to connect the areas

in a mirror symmetric fashion. So, one can argue that mirror symmetric adjacent

cortical maps are a mere consequence of the mirror symmetric connectivity between

adjacent cortical areas. However, the connectivity between any two adjacent cortical

areas never follows a strict one-to-one pattern. Rather, each point in one area projects

to a circumscribed target region in the other area so that there is considerable overlap

between targets. This divergence of intra-cortical connections is thought to be even

more pronounced during early development which is characterized by an excess of

connections, many of which are later pruned. That raises the question of whether

mirror symmetric connectivity between adjacent cortical areas and even cortical folds

are the effects of the earlier formation of mirror symmetric maps in these areas and

later pruning of connections by competitive Hebbian learning.
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It is being acknowledged that extreme variability exists across different individuals

of the same species with respect to their cortical maps (to the extent where no

corresponding points can be established in the maps of different brains) (Dykes and

Ruest, 1984). This variability is hardly ever discussed in mapping studies. Cortical

maps also show a remarkable ability to reorganize quickly in response to changes in

stimulation frequencies, denervation and stroke damage (Allman, 1984; Dykes and

Ruest, 1984). Despite these indications favoring an explanation that is at least in

part based on learning, topographic map formation in the brain is often thought to

be brought about by genetically-mediated molecular gradients that are present during

development (Grove and Tomomi, 2003; Levitt, 2000; Zhou and Black, 2000). The

existence of multiple neighboring topographic maps of the same sensory surface is

sometimes conjectured to have evolved due to genetic mutations (Allman and Kaas,

1971; Allman, 1984; Krubitzer, 1995), and it has been suggested that they may

provide fitness advantages due to separation of spatial/temporal processing, parallel

processing of different sensory attributes, minimization of connection distances, and

other factors (Kaas, 1988; Cowey, 1981; Jones, 1990). However, there has been

little speculation as to why such maps often exhibit reflection symmetry, and the

relative contributions of activity-dependent versus activity-independent mechanisms

remain the source of some debate, even for individual maps (Cohen-Cory, 2002;

Grove and Tomomi, 2003). In my computational model, the formation of multiple

pair-wise mirror symmetric topographic maps relied entirely on Hebbian learning and

range-limited competitions for activation and learning. So, the necessity of genetic

and evolutionary mechanisms in map formation is perhaps limited to the layout of

the computational substrate (“hardware”), that is, the parcellation of cortex into

regions/areas (Sur and Leamey, 2001) and the specification of very coarse afferent
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connectivity, thereby determining high level properties like, for example, the overall

number of maps of a particular sensory surface that will form. For the actual process

of map formation, my model raises the possibility that activity-dependent mechanisms

like competitive Hebbian learning significantly contribute to it, in particular having

an influence on the relative orientation of adjacent maps and perhaps affecting the

evolution of their genetically-guided afferent connectivity.
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Chapter 4

Sequential Inputs

In this chapter two biologically-inspired features are added to the previously intro-

duced one-shot multi-winner SOM. These two features, local lateral connectivity and

temporally asymmetric Hebbian learning, provide the necessary additional compu-

tational power to process temporal input sequences with the one-shot multi-winner

SOM. The specific temporal sequence processing task considered is the creation of

a unique spatial representation for sizeable sets of temporal sequences. The first

section gives an overview of past work on temporal sequence processing with SOMs

and views it from the perspective of this work’s novel approach which is detailed

in the subsequent section. A presentation of the experimental results that were ob-

tained when the one-shot multi-winner SOM was applied to the task of representing

phoneme sequences corresponding to word pronunciations follows. These results and

directions for future research are discussed in the final section.

4.1 Past Self-Organizing Maps for Sequence Processing

As noted in Chapter 2, the vast majority of past work on SOMs, as well as related

neural network methods (Bishop et al., 1998), has involved static, i.e., time-invariant,

input patterns where a network’s activation pattern in response to one input is not
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influenced by previous inputs. The results of these studies do not carry over directly to

temporal sequences of inputs, a significant shortcoming given that sequential inputs

are very common (e.g., language, motion in visual fields, movement feedback).

In response to this problem, several extensions to the basic SOM method have

been proposed during the last decade to support temporal sequence processing. These

extended SOMs are very diverse, so I consider them first in terms of the tasks they

address and second in terms of the methodologies they adopt.

The specific temporal processing tasks that have been addressed include predic-

tion, recall, recognition and representation. Prediction is concerned with the accurate

computation of the next element in a sequence from previously observed sequence

elements. In Principe et al. (1998), for example, a SOM was successful at predicting

artificial chaotic time series as well as controlling a wind tunnel which required the

prediction of wind speed changes. In Rao and Sejnowski (2000), a SOM-like network

of two recurrently connected chains of neurons learned to predict the next in a series

of left-to-right or right-to-left moving stimuli. The recall task takes prediction a step

further, requiring that the SOM reproduce all elements of a sequence in the correct

temporal order when given an initial cue, for example the first element of the se-

quence. This has been accomplished in Kopecz (1995) and Abbott and Blum (1996)

with 2D fully laterally connected SOMs for one or two low-dimensional sequences. In

Gerstner et al. (1993), a fully laterally connected network of 1000 nodes (not arranged

according to any topology) was shown to be capable of storing and retrieving four

sequences, and its theoretical capacity estimated at 100 sequences.

Recognition of temporal sequences has generally focused on identifying a given

input sequence as a member of a class by mapping it onto a particular output lattice

location or locations which correspond to class prototypes learned from previously
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seen sequences. There have been many efforts to achieve this, such as Chappell

and Taylor (1993); Euliano and Principe (1999); Kangas (1990); Somervuo (1999,

2003); Varsta et al. (1997); Wiemer (2003). Finally, and most directly related to my

work, is the problem of transforming temporal sequences into relatively unique spatial

representations, i.e., into relatively unique final activation patterns on the output

lattice that represent the sequences and thus might be viewed as reminiscent of “cell

assemblies” (Hebb, 1949). Such a time-to-space representation may be beneficial in

data visualization and as an initial input processing step in a larger neural system for

sequence recognition (Chappell and Taylor, 1993). To my knowledge, the only other

study to address this task was that of James and Miikkulainen (1995), but several of

the sequence recognition models above are also necessarily concerned about how the

prototypes are arranged on the output lattice relative to one another.

These past temporal sequence processing SOMs can also be viewed from the

perspective of the diverse methodologies they have proposed. The simplest approach

has been just to leave the original one-shot single-winner SOM model untouched and

to preprocess sequential inputs via an external short term memory. For example,

in some studies a fixed number of successive input patterns were concatenated to

form a single static pattern (Kangas, 1990). Others have suggested averaging the

patterns in a sequence over time and feeding the average as a static pattern to

the network (Carpinteiro, 1999). However, these approaches assume that the range

of inter-pattern relations across time is quite limited. Many other forms of short

term memory are reviewed elsewhere (Barreto et al., 2003; Mozer, 1993). Another

approach has employed ‘leaky-integrator’ or other temporal neuron models as the

output nodes (Chappell and Taylor, 1993; Varsta et al., 1997), while yet another idea

has been to capture temporal relations in the input via lateral connections between
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the output nodes, rendering the SOM a truly recurrent neural network (Abbott and

Blum, 1996; Gerstner et al., 1993; Kopecz, 1995; Rao and Sejnowski, 2000). Finally,

in Euliano and Principe (1999) and Wiemer (2003), spreading wavefronts of activation

(activity diffusion) were used to alter the typical activation dynamics of the one-shot

single-winner SOM so that learning is characteristically affected by the temporal order

of the inputs.

4.2 Adding Temporally-Asymmetric Hebbian Learning to the One-Shot

Multi-Winner SOM

At present there is no general consensus as to how best to process sequences with

SOMs, and this topic remains a very active focus of current neurocomputational

research (Barreto et al., 2003). In this context, the goal of the work described

here was to extend one-shot multi-winner SOMs in a biologically plausible way to

make them more effective in processing and representing large sets of variable-length

sequences. Unlike most past related work described above, I focus solely on the task

of developing a unique spatial representation for each of the input sequences, with

the idea that this is also a precursor for effective pattern recognition.

To achieve this goal, I extended the one-shot multi-winner SOM described in the

previous chapter as follows. As a mechanism for supporting sequence processing,

I introduced into SOMs, for the first time to my knowledge, the use of temporally

asymmetric Hebbian learning to train local, or range-limited, intra-lattice connections.

These local lateral connections are very different from those used in past multi-winner

SOMs: they are not used to produce a “Mexican Hat” pattern of lateral interactions

and they are adaptive. Further, their adaptation is temporally asymmetric in a fashion

inspired by recent experimental evidence showing that changes in biological synaptic
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efficacy in cortex (Markram et al., 1997) and other structures of the brain (Bi and

Poo, 2001, 1998; Zhang et al., 1998) are sometimes due to temporally asymmetric

Hebbian learning: a synapse is strengthened (LTP) if pre-synaptic action potentials

precede excitatory post-synaptic potentials by typically 20-50ms, and weakened (LTD)

if the time course is reversed.

While a few past modeling studies have used temporally asymmetric Hebbian

learning to store and retrieve sequences (Abbott and Blum, 1996; Gerstner et al.,

1993; Rao and Sejnowski, 2000), these past studies were not concerned with either

map formation or the transformation of sequences into spatial representations as I

consider here. The model described here can be distinguished from that of James

and Miikkulainen (1995) which successfully dealt with the representation task but did

not use multi-winner SOMs, lateral connectivity, or temporally asymmetric Hebbian

learning, as I do here. My approach is also very different from the pattern recognition

system of Somervuo (1999) which, after initial training of a standard one-shot single-

winner SOM on non-sequential inputs, uses an external construction algorithm to

convert the SOM into a network with connections between arbitrarily-distant nodes

(i.e., its lateral connections are neither local nor learned with temporally asymmetric

Hebbian learning). In summary, the fundamental hypothesis examined in this chapter

is that training a one-shot multi-winner SOM whose short-range lateral connections

undergo temporally asymmetric Hebbian learning transforms variable-length temporal

sequences into reasonably unique spatial patterns of activity, even while map forma-

tion of the input space persists.

While the sequence processing SOM described here is very general, to assess its

functionality I used specific sequences of feature vectors. Each vector in a sequence

is the feature-based encoding of an English phoneme. Each sequence corresponds to
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the phonetic transcription, based on the NetTalk corpus (Sejnowski and Rosenberg,

1987), of a 2 to 10 phoneme noun naming an object, taken from the widely-used

Snodgrass-Vanderwart word corpus (Snodgrass and Vanderwart, 1980). For example,

/h E l @ k a p t Ä r/ is the phonetic sequence transcription of ‘helicopter’, and /p/,

the fourth from last phoneme in the transcription, is equivalent to a distinct tuple of 34

binary feature values: [consonantal=1, vocalic=0, compact=0, diffuse=1, grave=1,

acute=0, nasal=0, oral=1, tense=1, lax=0, . . . ]. See Appendix B for a complete

set of phoneme encodings and further details about the input data. In this context,

the SOM’s task is the unsupervised acquisition of an internal representation for the

‘spoken’ names of a set of objects, the representation for each name ideally being

unique.

Initially, before the first vector of an input sequence is presented to the SOM,

all output nodes are inactive. From this initial state, the activation pattern develops

deterministically at discrete time steps (one time step per input phoneme vector,

hence “one-shot”) based on the current input vector and the activation pattern at

the previous time step. This implies that, for example, in the case of ‘bow’ (/b o/) and

‘bowl’ (/b o l/), after the input of /o/, the respective activation patterns are identical.

For ‘bow’, this is the final activation pattern, and hence its spatial representation.

According to my hypothesis, the last feature vector /l/ of ‘bowl’ should trigger a

change in the activation pattern across the output lattice of the trained one-shot

multi-winner SOM so that the spatial representation for ‘bowl’ differs from that of

‘bow’.

Figure 4.1A shows the basic architecture of the one-shot multi-winner SOM for

sequence processing. The recurrent network transforms an input sequence of patterns

into a final single static output pattern (the sequence’s spatial representation) where
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Figure 4.1: A The global architecture of the temporal sequence processing one-

shot multi-winner SOM. B An output node with its weighted connections from the

input layer and from the output nodes in its immediate 8-neighborhood. The different

widths of the solid lines (arcs) indicates that in general the efficacies of the connections

differ.

each component of the output corresponds to a node of the output lattice. The

output lattice itself consists of a regular, rectangular grid of R rows by C columns

of Q = R C nodes. I again measure the distance on the output lattice between two

output nodes i and i′ at positions (r, c) and (r′, c′) using the box-distance metric,

d(i, i′) = max(|r − r′|, |c− c′|).

In contrast to the one-shot multi-winner SOM of the previous chapter, the tem-

poral sequence processing extension of it incorporates additional lateral intra-lattice

connections between the nodes that form the output lattice. As illustrated in Figure

4.1B, an arbitrary output node i receives a connection from each node of the input

layer as well as from each output node within a circumscribed connection neighbor-

hood, Nconn(i) = {j | d(i, j) ≤ rconn}, centered at and including i. Note that these
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connections are not used to generate a Mexican Hat pattern of activation as was

done, for example, in von der Malsburg’s model of orientation sensitivity (von der

Malsburg, 1973), but that they are entirely dedicated to temporal sequence process-

ing. Every connection to i carries a real-valued synaptic weight indicating its efficacy.

If the input layer consists of P nodes then the connection to the ith output node from

the jth input is weighted by wij, and ~wi ∈ R+P is the afferent weight vector of i.

Analogously, the weights on the incoming lateral connections of output node i are

stored in the lateral weight vector ~vi ∈ R+Q. In particular, vij corresponds to the

weight on the lateral connection from j to i (d(i, j) ≤ rconn), vii = β ∈ R is an

immutable weight on the self-connection of i, and vij = 0 if i and j are not connected

(d(i, j) > rconn).

The level of activation of an arbitrary input or output node ranges between 0 (in-

active) and 1 (fully active). The activation levels of all P input nodes compose the

afferent vector ~x ∈ [0, 1]P , normalized to be of unit length. Similarly, the activation

levels of all Q output nodes form a vector ~y ∈ [0, 1]Q, the SOM’s output or map

activation pattern. For any output node i, only those components of ~y which corre-

spond to activation levels of output nodes in i’s connection neighborhood Nconn(i)

are directly relevant since i receives lateral connections only from those nodes. The

activation levels of all nodes are updated synchronously at discrete time steps, one

step per input vector in a sequence. Thus the afferent input vector as well as the

map activation pattern are time-variant.

Given an input sequence X = ~x(1), . . . , ~x(k), the map activation pattern, initial-

ized as ~y(0) = ~0, evolves over a period of k time steps. The final map activation

pattern ~y(k) is then said to be the spatial representation of temporal sequence X.

At the beginning of time step t ≥ 1, the net input h is computed independently for
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each output node i as:

hi(t) = α~wT
i ~x(t) + (1− α)~vT

i ~y(t− 1) (4.1)

where fixed parameter α ∈ [0, 1] determines the relative contributions of afferent

versus lateral input vectors, and T indicates the transpose of column vectors ~wi and

~vi.

To compute ~y(t) from ~h(t), a computationally efficient one-shot mechanism is

used which approximates the competitive activation dynamics (Mexican Hat pat-

tern) that has been implemented in some past iterative multi-winner SOMs via a

computationally-expensive numerical solution of differential equations (Reggia et al.,

1992). However, unlike with traditional one-shot single-winner SOMs, multiple win-

ners occur: every output node i which receives a net input greater than that of all

other output nodes within i’s connection neighborhood is taken to be a winner. Since

parameter rconn is usually chosen to be small relative to the size of the entire output

lattice, typically multiple winner nodes exist. Each winner is then made the center of

a ‘peak’ of activation. The distribution of activation within a single peak is such that

winner node i at its center is maximally active (yi = 1), and the activation level of

each non-winner node j within i’s connection neighborhood decreases exponentially

with increasing distance between j and i. The activation peak centered at i does

not extend beyond the connection neighborhood of i. However, two or more peaks

may partially overlap, in which case their contributions to the activation level of an

output node in the region of overlap are added, but may not exceed 1. Specifically,

and similar to what was done in the previous chapter, if the set V (t) of winner nodes

at time t is:

V (t) = {i | ∀j 6= i : j ∈ Nconn(i) ⇒ hj(t) < hi(t)} (4.2)
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then the activation of output node j is:

yj(t) = min

1,
∑

i∈V (t)


γd(i,j) if j ∈ Nconn(i)

0 otherwise

 (4.3)

where γ ∈ [0, 1] determines the shape of each peak of activation (higher γ means

slower drop off).

To test my central hypothesis, namely that my model learns to spatially represent

the sequences in the training set fairly uniquely, I use the 1-norm to quantify the

difference between two final activation patterns ~y and ~y ′: d(~y, ~y ′) = ||~y − ~y ′||1 =∑Q
i=1 |yi − y′i|. Using distance measure d, I assess the overall performance of my

model by measuring over all distinct sequences X (of length k) and X ′ (of length

k′) from the training set, the distance between the spatial representations of X and

X ′. I use three quantitative measures of how the model performs overall in separating

different sequences into unique final spatial representations. First, I count the number

of pairs of distinct sequences in the training set for which the model ends up with the

same final map activation pattern: |Z| = |{{X,X ′} : X 6= X ′, d(~yX(k), ~yX′(k′)) =

0}|. The model uniquely represents all sequences if |Z| = 0, otherwise there are

pairs of distinct sequences which the model ‘confuses’. The second measure is the

minimum distance dmin between two spatial representations computed over all pairs

of distinct sequences in the training set: dmin = min
X 6=X′

d(~yX(k), ~yX′(k′)). Notice

that dmin = 0 for as long as |Z| > 0 and |Z| = 0 as soon as dmin > 0, and that

dmin and |Z| are often complementary, not redundant. Training could, for example,

significantly increase dmin from a pre-training value already greater than zero, while

|Z| remains 0. Or training may decrease |Z| to a smaller value still greater than

zero, while dmin remains 0. Finally, I measure the average distance between two

spatial representations computed over all pairs of distinct sequences in the training
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set: d̄ = 1
|S|

∑
{X,X′},X 6=X′

d(~yX(k), ~yX′(k′)), where |S| is the number of sequences in

the training set.

Before training, each weight is independently initialized with a random value from

the interval [0, 1], each afferent weight vector is normalized to unit length, and each

lateral weight vector is normalized such that ∀i :
∑

j 6=i vij = 1. The one-shot multi-

winner SOM learns by adjusting its weights in response to the repeated input of all

temporal sequences in the training set in random order. The number of training

epochs is 1000. The input of a single arbitrary temporal sequence of length k causes

the SOM to pass through k time steps. At the end of each time step t, after the

construction of activation pattern ~y(t), the weights of the SOM are modified.

For the afferent weight vector ~wi of the ith output node, the learning rule is:

~wi(t) = ~wi(t− 1) + µyi(t)~x(t) (4.4)

~wi(t) = ~wi(t)/||~wi(t)||2 (4.5)

Eq. 4.4 implements typical temporally symmetric Hebbian (or competitive) learning

where µ ∈ (0, 1] is the afferent learning rate. Renormalization in Eq. 4.5 restricts

~wi to move across the surface of the unit hypersphere, generally in the direction of

the current afferent input ~x(t). In contrast, the learning rule for the lateral weights

is unusual in being a temporally asymmetric variant of Hebbian learning. As noted

earlier, recent experimental studies have found this learning rule to sometimes govern

changes in synaptic efficacy in cortex (Markram et al., 1997) and other parts of the

brain (Bi and Poo, 2001, 1998; Zhang et al., 1998). Given two output nodes i and j

where 0 < d(i, j) ≤ rconn, the efficacy of the connection vij to i from j at time t is

increased proportional to yj(t− 1), the activity of j at the previous time step, times

max(0, yi(t)−yi(t−1)), the increase in the activity of i relative to the previous time
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step:

vij(t) =


vij(t− 1) + . . . if j 6= i and . . .

· · ·+ ηyj(t− 1) max(0, yi(t)− yi(t− 1)) . . . j ∈ Nconn(i)

vij(t− 1) otherwise

(4.6)

vij(t) = vij(t)/
∑

j 6=i
vij(t) for i 6= j (4.7)

where η ∈ (0, 1] is the lateral learning rate. In general, Eq. 4.6 is intended to capture

a notion of cause and effect across time: the connection to i from j is strengthened if

j’s preceding activity contributes to an increase in the activation of i. This is consis-

tent with the results of a previous analysis of temporally asymmetric Hebbian learning

which concludes that overall change in the synaptic efficacy is proportional to the rate

of change in post-synaptic activity (Roberts, 1999). Note that the subsequent renor-

malization may result in a net decrease of a connection’s efficacy due to competition

for ‘growth’ with the other incoming lateral connections of i. This relates to previous

observations that temporally asymmetric Hebbian learning is inherently competitive

and self-stabilizing due to a balance of weight increases (LTP) and decreases (LTD)

(Song et al., 2000; Royer and Pare, 2003). I use a simple method, that is, explicit

renormalization, to implement such competition and stability.

As is typical for the training of traditional one-shot single-winner SOMs, the values

of certain parameters in the learning rule depend on how far training has progressed.

For example, training of one-shot single-winner SOMs is often divided into two phases:

a rough ordering/self-organization phase corresponding to large values for γ and µ,

and a convergent phase corresponding to small values for γ and µ. Analogously for

the sequence processing one-shot multi-winner SOM, and much in the same way it

was done for the one-shot multi-winner SOM of the previous chapter, parameters γ,
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µ and η monotonically decrease in a non-linear fashion from some initial value to a

smaller final value. For example, γ(t) = γfin + (γinit − γfin)/(1 + e(t−γinfl)/γσ) where t

is the fraction of completed training epochs, γinit (γfin) determines γ’s initial (final)

value, γinfl is the point of inflection, and γσ determines the rate of decline. Similar

functions are used for µ and η.

4.3 Results of Using the Model to Learn Temporal Sequence Representa-

tions

I first demonstrate that, with a suitable set of parameters, training of the sequence

processing one-shot multi-winner SOM improves the uniqueness of the transformation

of sequences into spatial representations. Next, the changes in model performance are

measured as the size of the training set is systematically varied, and the formation of

feature maps and patterns in the lateral connectivity of the network are examined. Fi-

nally, the difference between the spatial representations of any two distinct sequences

in the trained model is examined and found to relate to the similarity or dissimilarity

of the two sequences.

4.3.1 Learning Unique Representations

An initial exploration of the parameter space using particle swarm optimization meth-

ods (Kennedy et al., 2001) readily established a value for each of the model parameters

(see top of Table 4.1) such that training significantly improves the performance of

the model across all three performance (uniqueness) measures. The great extent

of the parameter search space and the computational cost of network training (the

latter, due to the additional lateral connections, being even greater than in the pre-

vious chapter; see Section 3.1) forces one to limit both the size of the output lattice
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Table 4.1: Best Parameter Set for the One-Shot Multi-Winner SOM

Parameter Set

rconn α β γinit γfin γinfl γσ µinit µfin µinfl µσ ηinit ηfin ηinfl ησ

4 .64 .05 .37 0 .2 .16 .44 0 .4 .0001 .62 0 .8 .04

Performance: 30 by 20 nodes, 60 training sequences

d̄ dmin |Z|

pre-training 16.5 (1.003) 0 (0) 11.8 (4.27)

post-training 23.1 (0.998) 0.4 (0.88) 1.4 (1.27)

Performance: 40 by 30 nodes, 175 training sequences

d̄ dmin |Z|

pre-training 31.1 (1.10) 0 (0) 58.9 (9.55)

post-training 45.1 (1.18) 0 (0) 11.0 (6.58)

and the training set to restrain the time needed to train the network repeatedly.

The initial experiments were done with a 30 by 20 node network and 60 randomly

chosen distinct sequences. I initially expected that strongly self-inhibitory output

nodes (β strongly negative) and a very limited influence of the afferent inputs on

the activation dynamics (small αfin) would be critical to the formation of unique spa-

tial representations. However, both the particle swarm optimization algorithm and a

systematic manual trial-and-error exploration of the permissible range of values de-

termined that self-inhibition was not optimal and that a much higher value (0.64)

for αfin, corresponding to a much stronger influence of the afferent input, produces

better performance.

The performance results in the middle of Table 4.1 give the means and standard

deviations (in parentheses) for the three performance measures, each averaged over
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Figure 4.2: Pre-training (light gray) and post-training (dark gray) histograms of the

distances between the spatial representations for every two distinct sequences from

the training set containing 60 sequences. The histogram counts have been averaged

over 20 independent experiments. The error bars represent one standard deviation.

The shape of the obscured right tail of the pre-training histogram resembles the right

tail of the post-training histogram.

20 independent experiments, obtained with the listed parameter values and the 30

by 20 node network. An independent experiment constitutes initializing the model

using different random initial weights, measuring pre-training performance, training

the model, and measuring post-training performance. Figure 4.2 shows that train-

ing significantly reduces the number of sequences that the model transforms into

identical or very similar spatial representations. Training also increases the overall

distance between the spatial representations of two distinct sequences in general, in-

dicated in the figure by a post-training right-shift of the distance distribution’s peak
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in conjunction with the reduction of the distribution’s left tail. As an example of

how the one-shot multi-winner SOM learns to better separate two distinct but similar

sequences, consider the two sequences /b O l/ (ball) and /b o l/ (bowl). For the

model, they are relatively hard to distinguish, since they are short and differ only in

the intermediate similar phoneme. Nevertheless, on average, the distance d between

the two sequences’ final activation patterns increases from 3.0, prior to training, to

10.0, after training. This is illustrated in Figure 4.3 for a single representative ex-

periment. The figure shows pre-training (top) and post-training (bottom) plots of

the development over time of the activation pattern that the winner nodes form on

the output lattice at each time step. Time proceeds along the horizontal axis, and

the pattern of winner nodes (’•’ for ball, ‘x’ for bowl) is shown after input of each

phoneme on a grid that represents the output lattice. The initial pattern of winner

nodes are identical for both sequences after seeing just the first identical phoneme,

but the patterns diverge at subsequent time steps, leading to different final patterns

which are shown on the right-most grid, even though the final afferent inputs to

the network are identical (the phoneme /l/). The lines (dotted for ‘ball’, dashed for

‘bowl’) in this figure that sometimes connect winner nodes of subsequent time steps

can be viewed as causal relationships: a winner node is connected to all nodes in its

connected neighborhood that won at the previous time step, only if the node would

not have won at the current time step without the lateral input from these previous

winners.

Several qualitative differences between the pre-training and post-training activa-

tion dynamics of the model were observable in general. First, the total number of

winner nodes on the output lattice tended to increase after training, indicating a

more efficient use of the space that is available on the output lattice to provide an
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encoding (not observable in Figure 4.3). Second, the fraction of winner nodes that

win because of the lateral input from previous winners increases: after training, the

lateral connectivity of the model apparently influences the activation dynamics much

more strongly. Finally, and most importantly, the distance between the final activa-

tion patterns of two distinct sequences usually tends to increase. This suggests that

the temporally-asymmetric training of the model’s lateral connections is the major

cause of the overall increase in uniqueness of the sequences’ spatial representations.

That this latter result is quite general, and much more dramatic for more different

sequences than the two rather similar ones illustrated here, is seen in Figure 4.2.

Figure 4.3 (next page): Pre-training (A) and post-training (B) traces of winner

nodes for the sequences /b O l/ (ball; ’•’ and dotted lines) and /b o l/ (bowl; ’x’ and

dashed lines). If a winner node is connected by lines to winner nodes at the previous

time step, then the node would not have won without the input it received from the

previous winners. The final winner nodes or, equivalently, activation patterns (right-

most grid) are almost identical prior to training (A), but substantially more distinct

after training (B). After training, more winners depend on the input they receive

from previous winners via lateral connections (many more lines in B), indicating that

the lateral connectivity much more strongly influences the activation dynamics after

training, and is thus likely to be a major cause of the more unique final activation

patterns.
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Figure 4.3: Caption on previous page
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Despite a significant increase in performance, the relatively small networks used

meant that all unique representations were learned in only 4 out of the 20 independent

experiments conducted with 60 sequences. In the other 16 experiments, a total of

only seven pairs of sequences were transformed into the same spatial representation

after training. These pairs either ended in two successive consonants (horse/box,

needle/eagle, iron/corn), shared a relatively long common suffix (sweater/helicopter,

iron/corn), or both started with /k/ and ended with similar consonants (cup/couch,

cup/coat, couch/coat).

A systematic exploration of varying parameters one at a time showed that the

model’s good performance was relatively insensitive to significant parameter changes.

However, for parameter α which controls the relative influences of afferent and lateral

inputs, I found only a narrow range of values 0.6 ≤ α ≤ 0.7 for which |Z| reaches

nearly minimal values and dmin exceeds zero. Unlike the other parameters, the choice

of α thus appears critical to optimal performance.

I conducted seven independent experiments with a larger 40 by 30 version of the

one-shot multi-winner SOM that was trained using the same parameter values with

the complete set of 175 distinct sequences; the results are shown at the bottom of

Table 4.1. A comparison of the performance values for the two different network

sizes in Table 4.1 shows that the twice-as-large model trained with roughly three

times the number of distinct sequences performed approximately the same. Training

of the larger model increased d̄ by 50%, did not increase dmin and decreased |Z|

by 84%, which compares to an increase of d̄ by 40%, a very small increase of dmin

and a decrease of |Z| by 88% for the smaller model. The total number, over all

experiments, of pairs of confused but distinct sequences increases by roughly a factor

of six from seven for the smaller model trained with 60 sequences to 43 for the
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larger model trained with 175 sequences (see Appendix C, Table C.1, for a list of

all pairs of confused sequences). Note, however, that the total number of pairs of

distinct sequences increases by roughly a factor of 8.6 from 1,770 to 15,225. Some

representative examples of sequence pairs confused by the larger network model in

different runs are: bell/ball, tiger/spider, tomato/potato, fly/butterfly, bottle/beetle,

box/ox, and sweater/tiger.

4.3.2 Effects of Memory Load on Performance

Memory load as used here refers to the number of sequences in the training set

in relation to the number of output nodes. To assess memory load effects on the

performance of the smaller 30 by 20 network, using the parameter values from Table

4.1, the number of sequences in the training set was varied from 10 to 175. All

training sets, except the set containing all 175 sequences, were generated by the

successive subtraction (addition) of 10 randomly chosen distinct sequences from (to)

the training set containing 60 sequences that I used in Section 4.3.1.

Figure 4.4 shows that after training the three performance measures for the one-

shot multi-winner SOM react differently to variations in the size of the training set,

measured as the number of pairs of distinct sequences that can be formed from

sequences in the training set. The mean distance between the spatial representations

of any two distinct sequences, d̄ (dmean), remains roughly constant over the entire

range of tested training set sizes. The average minimum representation distance,

dmin, quickly drops to zero, so with this small network there are often a few confused

sequence pairs present. The data suggests an overall near-linear dependency of |Z|

on the number of pairs of distinct training sequences, or a roughly quadratic increase

of |Z| in terms of the number of training sequences.
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Figure 4.4: The influence of training set size on the three performance measures

dmean = d̄, dmin and |Z|. For each training set size, four independent experiments

were conducted, except for the set of size 60 for which the number of independent

experiments was 20. Shown are performance means, each with an error bar of one

estimated standard deviation (its direction is chosen to minimize clutter and is irrele-

vant otherwise). While dmean = d̄ remains constant, dmin very quickly drops to zero.

|Z| increases proportionally to the number of pairs of distinct sequences.
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4.3.3 Map Formation

Past afferent input vectors have substantial influence, via recurrent lateral connec-

tions, on the activation dynamics of the one-shot multi-winner SOM during the pro-

cessing of a sequence. This effect is non-existent in more typical one-shot single-

winner SOMs which, when trained on a set of unsequenced input vectors, form maps

where similar inputs (inputs that are close to one another in input space) are mapped

onto or represented by nodes that are close to one another on the output lattice, and

vice versa. I assumed that the ‘reverberation’ of past inputs in the network would

disturb and prevent the formation of feature maps of the input phonemes. This

assumption turned out to be incorrect.

As can be seen in Figure 4.5, which is a representative example, feature maps

of single phonemes, that is, single input feature vectors, did form. For example, the

model clearly separated clusters of vowels from consonants. These are the two top-

level categories any reasonable clustering algorithm would identify because they are

most dissimilar based on the set of feature vectors. Unlike in traditional single-winner

SOMs, the maps formed by the one-shot multi-winner SOM exhibit substantial re-

dundancy. For example, in Figure 4.5, twelve isolated clusters of vowels are visible

where the clusters are similar to one another in terms of which particular vowels they

contain. These redundant clusters arise due to the distributed representation used,

and are reminiscent of the multiple redundant clusters sometimes seen in biological

sensorimotor cortex (see, for example, Donoghue et al. (1992); Georgopoulos et al.

(1988)). Internally clusters are more homogeneous than at their periphery, that is,

nodes in the center of a cluster are more similar to their immediate neighbors (lighter

cells) than nodes on the periphery of a cluster (darker cells). The same applies to the

areas of the output lattice that have become sensitive to consonants. The result is
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a multitude of small non-redundant feature maps with no discernible boundaries be-

tween them that form one globally redundant map. Surprisingly, qualitatively similar

maps form for α-values as low as 0.2, that is, even if the afferent inputs have very

little influence on the activation dynamics of the model.

Figure 4.5 (next page): The bottom half of a trained one-shot multi-winner SOM

measuring 40 by 30 nodes (175 distinct sequences; network parameters as in Table

4.1). Each cell is one node that is labeled by the phoneme (white characters for vowels,

dark characters for consonants) whose feature vector is closest to the node’s afferent

weight vector. Vowels have been separated on the map from consonants based on their

phoneme feature vectors. Multiple vowel clusters or ‘islands’ can be seen at different

locations in a ‘sea’ of consonants. A cell’s background brightness corresponds to the

average dot-product between the afferent weight vectors of the node it represents and

that node’s immediate neighbors: the brighter the node the more similar its input

sensitivity is to that of its immediate neighbors. Lateral connections with a weight

> 0.2 are shown as arrows pointing from the source toward the destination node. The

length of an arrow is proportional to the square root of the connection weight. The

distance of the destination node equals the number of concentric arcs at the arrow’s

base. The arrow is black if it points from a vowel to a consonant or vice versa; it is

white if it points from a vowel (consonant) to a vowel (consonant). The pattern of

strong lateral connections suggests that they represent frequent phoneme transitions

in the training sequences. In the training sequences, a vowel is almost always followed

by a consonant, and in the output lattice, most connections originating at “vowel

nodes” indeed terminate at “consonant nodes” (black arrows).
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Figure 4.5 also shows all lateral connections whose weights have increased signif-

icantly during training1. A visual inspection suggests that nodes sensitive to vowels

tend to send strong connections to nodes sensitive to consonants. It is one of the

properties of the training set that in all but three cases (out of a total of 222), a

vowel in a sequence is followed by a consonant. This gives rise to the hypothesis that

strong lateral connections coincide with the frequent transition from a particular input

phoneme to a particular next input phoneme in the sequences of the training set. To

test this, I measured the correlation between lateral connection weights and phoneme

transition frequencies. I recorded, for each possible input phoneme transition ~x(t) to

~x(t + 1), the sum of the weights on all lateral connections from a node i to a node

j (i 6= j) where ~x(t) maximizes ~wT
i ~x(t) and ~x(t + 1) maximizes ~wT

j ~x(t + 1). Each

greater-than-zero sum2 was then paired with the absolute frequency with which the

respective phoneme transition ~x(t), ~x(t + 1) occurs in the training sequences. These

pairs are the data points from which the correlation coefficient is computed. This

was done repeatedly and independently for both a small (30 by 20 nodes trained

with 60 distinct sequences; 20 independent experiments) and a large (40 by 30 nodes

trained with 175 distinct sequences; 7 independent experiments) SOM output lat-

tices, prior to and after training. Table 4.2 summarizes the results by providing the

mean (and standard deviation) of each correlation coefficient, as estimated from the

results of the respective number of independent experiments. Prior to training, the

then random lateral connection weights are not correlated with phoneme transition

frequencies. After training, the two quantities are very highly positively correlated,

1The threshold is 0.2. Prior to training for an output lattice of 40 by 30 (30 by 20) nodes, the

mean lateral weight is 0.0008 (0.0017) with a standard deviation of 0.0040 (0.0058).

2Lateral connections with a weight equal to zero are considered non-existent. Hence, sums equal

to zero are excluded from the analysis.
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Table 4.2: Correlation between Lateral Weight Magnitude and Phoneme

Transition Frequency

training set & model size → 60 sequences,

30x20 nodes

175 sequences,

40x30 nodes

pre-training -0.0664 (0.0165) -0.0536 (0.0141)

post-training 0.6939 (0.0277) 0.6263 (0.0311)

lending strong support to the hypothesis that strong lateral connections coincide with

the frequent phoneme transitions.

4.3.4 Representation Distance and Sequence Similarity

I now consider the question of whether or not similar input sequences are transformed

into similar spatial representations, that is, final map activation patterns. To measure

the similarity of spatial representations, the 1-norm distance d that I have used all

along plus a winner separation distance are both used. Recall that, at the end of train-

ing when the parameter γ determining activation peak widths approaches zero (see

Eq. 4.3 and γfin in Table 4.1), only the winner nodes are significantly (and fully) ac-

tive. Let the (row, column) positions of the winner nodes in the spatial representation

~y following the final phoneme of one input sequence be (r1, c1), (r2, c2), . . . , (rk, ck),

and the positions in ~y ′ for a different input sequence be (r′1, c
′
1), . . . , (r

′
k′ , c′k′), and

without loss of generality take k ≥ k′. I then define the winner separation distance dsep

between ~y and ~y′ to be the average distance on the output lattice from a winner node

in ~y to the closest winner node in ~y′: dsep = 1
k

∑k
i=1 min1≤j≤k′(|ri − r′j|+ |ci − c′j|).

For comparison purposes, I also need a measure or measures of the similarity

of any two input sequences of phonemes used for training. In general terms, the
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similarity (dissimilarity) of two sequences is typically measured in terms of the two

sequences’ optimal alignment or “edit distance”, and so I adopt this method here.

The algorithm for computing optimal alignment is described in detail, for example, in

Gusfield (1997). In short, an alignment of two sequences is a recipe for translating

one sequence into the other using essentially two operations: the insertion of a special

‘blank’ element into a sequence and the substitution of an element in one sequence

with an element at the same position in the other sequence. Each substitution

operation in an alignment is associated with a cost or score which is a function of

the two elements being substituted. The sum over all substitutions in an alignment

is the score (cost) of the alignment. An optimal alignment maximizes (minimizes)

the score (cost) of translating one sequence into the other. To avoid length-based

biases, I normalize the score (cost) of each optimal alignment by its length. I adopt

the convention that each inserted blank equals the blank’s immediate predecessor

in the sequence. As all input elements are binary-valued feature vectors, I adopt a

Hamming distance cost measure (very similar results were also found using Euclidean

distances instead). As a score measure, I use the Tversky feature count (Tversky,

1977; Tversky and Gati, 1978), a well established method in linguistics for measuring

the similarity of phonemes. With this latter measure, if two phonemes are encoded

by the feature vectors ~x and ~x ′, then their similarity equals the difference between

the number of features they share and the number of features they do not share:

|{i : xi = x′
i = 1}| − |{i : xi = 1, x′

i = 0}| − |{i : xi = 0, x′
i = 1}|.

The correlation analysis was performed for each of the four possible combinations

of a representation distance measure (d or dsep) compared to a sequence similarity

(Tversky) or dissimilarity (Hamming) measure. Two differently size versions of the

model were used (30 by 20 nodes and 60 distinct sequences versus 40 by 30 nodes
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Table 4.3: Correlation between Representation Distance and Sequence Sim-

ilarity

training set &

model size →

60 sequences, 30x20 nodes 175 sequences, 40x30 nodes

pattern distance

measure →

1-norm winner

separation

1-norm winner

separation

pre- vs. post-

training →

pre post pre post pre post pre post

feature vector

distance or

similarity

measure

Hamming dis-

tance

.3284 .2893 .3041 .3779 .3874 .3594 .3863 .4141

Tversky feature

count

-.3438 -.2917 -.3214 -.4054 -.3950 -.3641 -.3946 -.4245

and 175 distinct sequences). The small (large) instance of the model was initialized

20 (7) times with different random initial weights and subsequently trained. In each

of these independent experiments, the four correlation coefficients were computed

prior to and after training.

The correlation coefficients, averaged over the respective number of independent

experiments, are listed in Table 4.3. Overall, these results show that both before

and after training, there is a substantial positive correlation between input sequence
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Hamming distances and their final activation pattern distances, and a substantial

negative correlation between input sequence similarities (Tversky’s measure) and their

final activation pattern distances. Most intriguing is that the magnitudes of the

correlation measured in terms of winner node separation are always increased by

training. The bold (italic) table entries indicate a statistically significant (p ≤ 0.01)

increase (decrease) of the post-training relative to the pre-training absolute level of

correlation.

4.4 Discussion

Most past work on self-organizing maps (SOMs) has focused on processing non-

sequential input patterns and has used Kohonen’s one-shot single-winner approach to

map formation. As noted earlier, the latter bases learning on a single global winner

node for each input pattern, and uses a one-shot “best match” winner selection

process for computational efficiency. While very successful for the non-sequential

tasks for which it is intended (Kaski et al., 1998a), various past approaches extending

such SOMs have been and continue to be developed to process temporal sequences

because of the importance of this issue (see Section 4.1).

In this chapter, I have examined the specific question of the extent to which the

one-shot multi-winner SOM introduced in the previous chapter can be modified to

learn a unique spatial representation or encoding of temporal sequences while still

retaining traditional map formation properties. Two factors seem to be very impor-

tant in facilitating sequence processing with SOMs, both being biologically plausible.

First, instead of the global single-winner activation dynamics of more traditional

Kohonen-style SOMs, I used multiple simultaneous winner nodes. Such a distributed

or coarse representation is motivated by its potential to encode/represent a larger
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number of temporal sequences. Using multiple local activation peaks like this is also

more consistent with activity patterns in the cerebral cortex, and for this reason has

been adopted in several past SOMs directed at modeling neurobiological observations

(Bednar and Miikkulainen, 2000; Cho and Reggia, 1994; Li, 2002; Pearson et al.,

1987; Reggia et al., 2001; Sutton et al., 1994; von der Malsburg, 1973). However,

unlike these past studies with non-sequence processing tasks, I retained the one-shot

winner selection of Kohonen SOMs for computational efficiency.

The second enhancement to traditional SOMs was to add local intra-lattice lateral

connections that undergo temporally asymmetric Hebbian learning. The motivation

for this type of connections was to enable the now recurrent network to capture

temporal transitions via lateral shifts in activation peak locations. As discussed above,

this extension also derives from biological data that has demonstrated such temporally

asymmetric learning experimentally (Bi and Poo, 2001, 1998; Markram et al., 1997;

Zhang et al., 1998). My learning rule (Eqs. 4.6, 4.7) intuitively tries to capture and

enhance the causal relationships between activation peaks at one time instant and

subsequent nearby activation peaks at the next time instance.

With these two extensions, the resulting sequence processing one-shot multi-

winner SOM was found to be remarkably effective in developing unique spatial repre-

sentatives (unique final activation patterns across the output lattice) for sizable sets of

real-world temporal sequences. Even with the relatively small networks I used, maps

could learn unique encodings for almost all 60 sequences, or 175 sequences for the

somewhat larger maps. While not perfect (typically a very few sequences remained

confused after training), the learning process clearly and consistently increased the

uniqueness of representations over time. As similar input sequences tended to produce

similar final activation patterns over the output lattice, not surprisingly the confused
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input phoneme sequences often were similar, especially in their initial and/or final

subsequences (e.g., ball/bell and spider/sweater).

A somewhat unexpected finding was that in spite of the sequential nature of the

input, the multiple simultaneous winner nodes, and the lateral intra-lattice connectiv-

ity that influenced selection of winning nodes, well-organized maps of the individual

phoneme input patterns still formed. These were reminiscent of maps seen with tra-

ditional one-shot (Kohonen) SOMs, with similar phonemes being generally adjacent

to one another. For example, there was clear cut separation of vowel and conso-

nant phonemes from one another. Of course, since unlike with traditional SOMs my

model has multiple simultaneous winner nodes, multiple copies of such maps were

present. This finding was very robust to variations in the weighting given to afferents

vs. lateral connections (parameter α).

The findings of this study suggest that SOMs have a greater role to play as

useful tools for sequence processing than is generally recognized. Still, there is room

for future research to improve on the capabilities of SOMs in this regard. Perhaps

most important, future theoretical and experimental studies are needed of ways to

guarantee the uniqueness of the spatial representations that are learned for similar

input sequences. While it might be true that using larger networks could resolve this

issue, a more satisfying solution would use methods that increase the effectiveness of

the time-to-space mapping without enlarging the maps. Some methods, which were

not examined here, that might be explored include the use of noise during training to

encourage more separation of the final activation patterns of very similar sequences,

or increasing the time span of learning effects on lateral intra-lattice connections from

one time step to two or three (reaching back further in time has proven effective in

improving supervised sequence learning in some past non-SOM systems).
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Chapter 5

Genetic Multi-Objective Optimization of a One-Shot

Multi-Winner SOM

The overall goal of this chapter is to improve the performance of the sequence pro-

cessing one-shot multi-winner SOM of the preceding chapter when applied to the

task of learning unique spatial representations for large sets of variable-length tem-

poral input sequences. This goal is pursued in two stages. First, possibilities for

improvement via modifications of the network design are identified and then tested

to determine the best combination of design alternatives. Subsequently, and using

the best modified network design, the previously fixed parameters of the network that

determine its activation and learning dynamics are optimized using a genetic multi-

objective optimization algorithm. These efforts produce a system that outperforms

the original network in terms of the arguably most important performance measure.

However, the experimental results are not exclusively in favor of this new system as

explained in the discussion at the end of this chapter.

5.1 Possibilities for Improvement

In the previous chapter, I introduced the temporal sequence processing one-shot multi-

winner SOM as a method aimed at solving the problem of learning unique spatial
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representations for large sets of temporal sequences. Overall, the method performed

satisfactorily, learning unique representations for most of the temporal sequences in

the training set, while still maintaining map formation. However, even with the

best set of parametric values I could derive for determining aspects of the SOM’s

architecture and activation and learning dynamics (see Table 4.1), the method still

confused an average of approximately 2% to 6% of the sequences in the training

set with other training sequences, that is, the network transformed those sequences

into non-unique spatial representations. Here I hypothesize that this behavior is

due to shortcomings in the original design of the one-shot multi-winner SOM. To

address these shortcomings, I propose and evaluate specific combinations of design

alternatives.

Different combinations of design alternatives would be expected to lead to dif-

ferent sets of optimal parameter values, in particular different from those in Table

4.1. The search for optimal network parameters is further complicated by the fact

that multiple objectives need to be taken into account. Specifically, the objectives

are the maximization of the minimum distance dmin and the maximization of the av-

erage distance d̄ between the spatial representations of two distinct sequences where

minimum and average are computed with respect to all sets of two distinct sequences

from a predetermined set (e.g., the training set like in Section 4.2). The effectiveness

of the particle swarm optimization technique (Kennedy et al., 2001) that aided the

discovery of the previously best parameter set (see Section 4.3.1) for the original

sequence processing network is limited. Particle swarm optimization is not a multi-

objective optimization technique per se and so, multiple objective functions need to

be aggregated to form a single objective function whose optimization leads to the

discovery of only a single solution where there are typically many different combi-
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nations of decision variable (i.e., network parameter) values that are all optimal in

the multi-objective sense. For this reason, in this chapter I describe work employing

the recently developed NSGA-II genetic multi-objective optimization algorithm (Deb

et al., 2002) instead of particle swarm optimization to determine optimal parameter

settings for the initially most promising combination of one-shot multi-winner SOM

design alternatives.

I now consider six possible design alternatives for the sequence processing one-

shot multi-winner SOM. Three of the six considered design alternatives are inspired by

neurobiological reality. First, the distributed, multi-focal patterns of activation found

in biological cortex comprise foci of differing activation levels (Donoghue et al., 1992;

Georgopoulos et al., 1988; Pei et al., 1994) where the maximum level of activation at

each focal point presumably is directly related to how well the neural elements at the

respective location are tuned to their particular inputs at the time. However, in the

original one-shot multi-winner SOM, all foci of activation featured a homogeneous

distribution of activity with the winner node at the center being maximally active.

Alternatively, the activation level of each winner node can be made proportional to

how well the weights on its incoming connections match the current inputs. This

should lead to a smaller fraction of the training sequences being confused by the

network since even if two distinct sequences cause the exact same output nodes to

be the winners that comprise the final activation pattern, their respective activation

levels now may differ, something that was not possible in the original design.

The second design alternative aims to improve the learning ability of the network

by allowing a weight on a lateral intra-lattice connection to decrease in response to

subsequent inputs activating the output node at which the connection terminates prior

to activating the output node from which the connection originates. This is different
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from the originally implemented learning rule for the weights on lateral intra-map

connections (Eq. 4.6). With the original rule, a weight could decrease only due to the

renormalization of lateral weight vectors (Eq. 4.7) which penalizes those weights that

have grown relatively little or not at all since the last time step. The new learning

rule more accurately models biological temporally asymmetric Hebbian learning where

synaptic efficacy is actively reduced when the post-synaptic neuron fires prior to the

pre-synaptic neuron (Bi and Poo, 2001, 1998; Markram et al., 1997; Zhang et al.,

1998). Because of the increased specificity of the weight changes, the new learning

rule is expected to increase the overall performance of the sequence processing one-

shot multi-winner SOM. In addition, the proposed change to the learning rule will

be seen to constitute a simplification of the network which lowers the computational

cost of its training.

The third biologically-inspired alternative allows the formation of inhibitory lateral

intra-lattice connections. The original rule explicitly prevented lateral weights from

taking on negative values. However, in biological cortex, inhibitory lateral intra-

cortical connections, while outnumbered by their excitatory counterparts, exist and

apparently contribute to cortical information processing. By removing the biologically

implausible constraint of all-excitatory intra-lattice connections, the one-shot multi-

winner SOM’s lateral learning rule becomes simpler and potentially more powerful.

The remaining three design alternatives are aimed at removing biases and inconsis-

tencies. Output nodes near the lattice boundaries of the original sequence processing

one-shot multi-winner SOM were found to be more likely to win the competitions for

activation and learning than nodes near the center of the lattice. This was because

nodes near the boundary had fewer competitors (unlike in Chapter 3 where this factor

was controlled). The fourth alternative is thus to make to make each node compete
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with (and receive connections from) its N closest neighbors in the lattice as with the

non-sequence processing one-shot multi-winner SOM of Chapter 3, and as opposed

to having a fixed radius of competition as in the previous chapter. To reduce compu-

tational cost, lateral weight vectors in the sequence processing network were originally

normalized so that their components added to one. Optimizations in the network’s

implementation have caused other factors to dominate computational cost so that

a fifth possible modification is to allow lateral weight vectors to be normalized to

unit length, ensuring consistency with the normalization to unit length of all afferent

weight vectors. Finally, if a node in the output lattice is relatively close to multiple

winner nodes, the respective contributions of the winners to the node’s activation

level can be combined in different ways. In the original sequence processing network

of the previous chapter, the contributions were accumulated, which sometimes ren-

dered non-winner nodes maximally active. The activation level can alternatively be

set to the maximum of the contributions as was done in Chapter 3, thus avoiding

maximally active non-winner nodes.

The remainder of this chapter is organized as follows. After a brief introduction of

basic concepts and terms that are central to multi-objective optimization, the design

alternatives for the sequence processing one-shot multi-winner SOM are described

formally in more detail and side-by-side with the original design choices. Thereafter

the results of evaluating specific combinations of design alternatives and optimizing

the network parameters are presented, followed by a discussion that relates the results

to neurobiological reality and argues their relevance with respect to temporal sequence

processing in computer science.
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5.1.1 Multi-Objective Optimization

Recently, there has been a surge in research on new, and particularly ge-

netic/evolutionary multi-objective optimization algorithms and their applicability to

various optimization problems (Coello, 2001; Corne et al., 2000; Deb et al., 2002;

Jensen, 2003; Knowles and Corne, 2000; Tan et al., 2002; Zitzler and Thiele, 1999).

The application domains of multi-objective optimization techniques are diverse, rang-

ing from the classic domain of engineering (Gaiddon et al., 2004; Kanazaki et al.,

2004; Marseguerra et al., 2004) to, for example, physics and chemistry (Hennessy

and Kelley, 2004), and medicine (Schreibmann et al., 2004).

The central concept in multi-objective optimization is domination (Coello, 2001;

Deb, 2001). Two solutions to an optimization problem with multiple, often conflicting

objectives are not comparable in general. One solution might be better with respect

to one objective, while the other is superior with respect to a different objective.

An important situation occurs when one solution is in fact better than another with

respect to at least one objective and not worse with respect to the other objectives.

In that situation, the better solution is said to dominate the other solution. The

set of solutions that dominate all other solutions, but not each other, is called the

Pareto-optimal front (Pareto, 1896).

The goal in multi-objective optimization is to find the Pareto-optimal front to

a given problem. Typically, this is difficult or impossible to do analytically and so,

heuristic search methods are employed that try to find solutions close to the Pareto-

optimal front (Coello, 2001; Deb, 2001). Ideally, the solutions found are diverse, that

is, they are approximately uniformly distributed along the entire Pareto-optimal front,

and thus they are representative of the whole range of possible trade-offs between

the different objectives, leaving the final choice of a ‘production’ solution from the

111



set of Pareto-optimal solutions with the user.

Several multi-objective genetic optimization algorithms have been developed (e.g.,

Corne et al. (2000); Deb et al. (2002); Knowles and Corne (2000); Zitzler and Thiele

(1999)). In general, it is difficult to objectively compare the effectiveness of these

algorithms (Zitzler et al., 2003). In Deb et al. (2002), the author compared his novel

NSGA-II algorithm with the PEAS (Knowles and Corne, 2000) and SPEA (Zitzler

and Thiele, 1999) algorithms on nine two-objective benchmark functions from the

literature. NSGA-II was found to outperform the other algorithms on all but one of

the benchmark functions. It generated more diverse solutions, maintained a better

coverage of the Pareto-optimal front, and converged closer to the true theoretical

Pareto-optimal front. Although comparative studies by the authors of a particular

algorithm are always problematic, the fact that Deb et al. (2002) was one of ISI’s fast

breaking papers (Deb, 2004) and that since its publication, NSGA-II has been the

subject of numerous mostly application-oriented studies indicates its effectiveness. In

addition, NSGA-II is conceptually simple and thus, easy to implement.

Central to NSGA-II is the combined ranking of both the parent and offspring

solutions in a generation according to their degree of Pareto-optimality (dominance

sorting) and proximity to other solutions (crowding distance sorting). The best ranked

individuals are selected to serve as the parents of the next generation, that is, NSGA-

II is elitist: the offspring does not simply replace the parents, but competes with

them so that the best found solutions are always retained in the population and never

lost. With a set probability, the ‘genomes’ (real-valued vectors) of a pair of parent

solutions that have been tournament-selected from the pool of all parents undergo

recombination via simulated binary crossover (Deb and Beyer, 1999). Each of the two

resulting solutions is, with a certain probability, subjected to a polynomial mutation
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(Deb and Goyal, 1996). The parents and their offspring comprise the new generation

of solutions. This process is repeated either until some convergence condition is met

or a preset number of generations have passed.

In this chapter, NSGA-II will be used to evolve Pareto-optimal values for the

parameters that determine the activation and learning dynamics of the sequence

processing one-shot multi-winner SOM. Each evolved solution, i.e., set of parameter

values, will be evaluated in terms of multiple post-training performance measures.

That is, for each evolved set of parameter values, the one-shot multi-winner SOM,

whose design will be fixed at this point, will first be trained and then its performance

will be determined by measuring the objectives dmin and d̄. These measurements then

correspond to the objective function values for the respective evolved solution, which

mostly determine the rank of the solution and thus, whether or not it is included in

the next parent generation and has a chance to procreate.

5.2 Methods

This section will first make explicit which parts of the original sequence processing

one-shot multi-winner SOM design are kept unchanged. Thereafter it will describe in

detail the six design alternatives for the sequence processing one-shot multi-winner

SOM, contrasting them with the original design choices from the previous chapter.

The final part of this section details the experimental methods.

5.2.1 Unchanged Aspects of the Network

As before, the output or cortical nodes of the one-shot multi-winner SOM are arranged

in a regular, rectangular lattice of R rows by C columns where the distance between

two output nodes i and i′ at positions (r, c) and (r′, c′) respectively is measured by
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the box-distance metric, d(i, i′) = max(|r − r′|, |c− c′|). Each output node receives

connections from all the nodes in the input layer. wij denotes the weight on the

connection from the jth input to the ith output node, and ~wi (||~wi||2 = 1) is the

afferent weight vector of output node i, comprising the weights on all connections

from the input layer. vij stands for the weight on the lateral connection from the

jth to the ith output node, vij = 0 if i and j are not connected, and vii = β ∈ R is a

fixed self-connection weight.

The first steps of the process that the network executes to determine the activation

pattern ~y across the lattice of output nodes in response to an input vector ~x remain

unchanged. First, the net input to each output node i at time step t is computed as

hi(t) = α~wT
i ~x(t) + (1− α)~vT

i ~y(t− 1) where α determines the relative contributions

of afferent (~x(t)) and lateral (~y(t − 1)) inputs to the net input. Next, the set of

winner nodes is determined as V (t) = {i | ∀j 6= i : j ∈ Nconn(i) ⇒ hj(t) < hi(t)}

where Nconn(i) is the set of output nodes that send connections to output node i.

The last step, i.e., computing ~y from ~h will be seen to largely depend on the design

alternatives which are described below.

The high-level procedure for training the network is unchanged. The fixed training

set consists of the same 60 distinct temporal sequences that were used to train the

original network of the previous chapter. They had been selected at random from

the set of all available sequences (phonetic transcriptions of 175 English nouns from

the NetTalk and Snodgrass corpora (Sejnowski and Rosenberg, 1987; Snodgrass and

Vanderwart, 1980), encoded as sequences of 34-dimensional phoneme feature vectors;

see the previous chapter and Appendix B for examples and further details). The

number of training epochs is 1000.

The learning rule that applies to the afferent weights of the network is identical
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to the original rule, that is, the afferent weight vector ~wi of output node i is updated

at time step t according to

~wi(t) = ~wi(t− 1) + µyi(t)~x(t) (5.1)

~wi(t) = ~wi(t)/||~wi(t)||2 (5.2)

where t ranges from one (update in response to the first component vector of the

current input sequence) to k (the length of the current input sequence) and µ ∈ (0, 1]

is the afferent learning rate. In contrast, the design alternatives affect several changes

in the original lateral learning rule which will be presented below.

As before, the values of the parameters γ, µ and η monotonically decrease ac-

cording to the function s(t) = sfin + (sinit − sfin)/(1 + e(t−sinfl)/sσ) from some initial

value sinit to a smaller final value sfin where sinfl corresponds to the steepest point of

the descent (the point of inflection) and sσ determines the overall steepness. Here,

s serves as a placeholder for γ, µ and η, respectively.

The measures of network performance that were defined in the previous chapter

are reused here without any changes. The distance between two final activation pat-

terns ~y and ~y ′ (the activation patterns in response to the last input vectors of two

input sequences) is again measured in terms of the sum of the absolute component-

wise differences between ~y and ~y ′, that is, d(~y, ~y ′) = ||~y− ~y ′||1 =
∑

i |yi− y′i|. The

network uniquely represents all sequences of a set if for every two distinct sequences X

and X ′ from a given set S, the distance between the two corresponding spatial repre-

sentations (i.e., final activation patterns) is non-zero, that is, |Z| = |{{X, X ′} | X 6=

X ′, d(~yX , ~yX′) = 0}| = 0. The minimum, dmin = min
X 6=X′

d(~yX , ~yX′), and the average,

d̄ = 1
|S|

∑
{X,X′},X 6=X′

d(~yX , ~yX′), of the distances between the spatial representations

for every two distinct sequences from a given set serve as the performance measures

for the sequence processing one-shot multi-winner SOM. The performance measure
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dmin is arguably more important than d̄ since it measures the degree to which the

one-shot multi-winner SOM is able to distinguish the most difficult, that is, most

similar pairs of distinct sequences.

5.2.2 Six Potential Design Alternatives

Table 5.1 provides a summary of the six potential alternatives in the design of the

sequence processing one-shot multi-winner SOM, side-by-side with the original design

choices that were made in the preceding chapter. Both alternatives A and F change

the original formula for determining the activation level yj(t) of an arbitrary output

node j at time step t, which is why they will be considered in conjunction here, even

though they are independent of each other. If both alternatives were in effect, the

following new formula would result:

yj(t) = max
i∈V (t)


hi(t)γ

d(i,j) if j ∈ Nconn(i)

0 otherwise

(5.3)

where V (t) denotes the set of winner nodes at time step t and Nconn(i) is the set of

other output nodes from which i receives lateral intra-lattice connections. In Eq. 5.3,

alternative A corresponds to the presence of the scaling factor hi(t), that is, the net

input to winner node i, in front of each γd(i,j) term. Alternative F corresponds to the

use of the maximum operator instead of the original summation operator, and the lack

of an explicit upper bound on the result. The latter originally prevented non-winner

nodes from becoming more active than winner nodes, an effect that cannot occur

with the maximum operator. Intuitively, alternative F prescribes that an arbitrary

output node’s activity equal the maximum (as opposed to the sum) of all sources

of activation in the node’s connection neighborhood. Each source is still Gaussian-

shaped with γ determining the rate of decay (like in preceding chapter), but with
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Table 5.1: One-Shot Multi-Winner SOM Design Alternatives

Design choices made for the se-

quence processing one-shot multi-

winner SOM of the previous chapter

Potential alternatives

A winner nodes are maximally active

(Eq. 4.3)

a winner node’s activation level is pro-

portional to its net input (Eq. 5.3)

B lateral weights cannot decrease prior

to renormalization (Eq. 4.6)

lateral weights are allowed to decrease

prior to renormalization (Eq. 5.4)

C all lateral weights are initially non-

negative and remain non-negative

(Eq. 4.6)

lateral weights initially can be negative

or non-negative and may change sign

during training (Eq. 5.5)

D each output node is connected to and

competes with all other output nodes

within a fixed radius

each output node sends connections to

and competes with its N closest neigh-

bors

E lateral weight vectors are

(re)normalized so that the sum

of their components is one (Eq. 4.7)

lateral weight vectors are

(re)normalized to unit Euclidean

length

F an output node’s activation level is the

sum of the contributions from all win-

ner nodes within the connection neigh-

borhood (Eq. 4.3)

an output node’s activation level is the

maximum of the contributions from

all winner nodes within the connection

neighborhood (Eq. 5.3)
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alternative A in place, its peak amplitude now depends on the net input to the winner

node at the center. Thus, in general, the Gaussian will be the taller the closer the

afferent and lateral weight vectors of the respective winner node are to the afferent

and lateral inputs at the current time step.

Alternatives B and C impact the learning rule that applies to the lateral intra-

lattice connection weights of the network (formerly Eq. 4.6). Alternative B allows

the weight of a lateral connection to decrease if the activity at the previous time step

of the output node at which the connection originates (yj(t − 1)) coincides with a

decrease in the activity of the target node (yi(t)− yi(t− 1)). Specifically,

vij(t) =


max(0, vij(t− 1) + . . . if j 6= i and . . .

· · ·+ ηyj(t− 1)(yi(t)− yi(t− 1))) . . . j ∈ Nconn(i)

vij(t− 1) otherwise

(5.4)

where η ∈ (0, 1] is the lateral learning rate. Alternative C goes a step further by allow-

ing lateral weights to stay or become negative, that is, inhibitory lateral connections

are permitted. The formal rule in this case is

vij(t) =


vij(t− 1) + . . . if j 6= i and . . .

· · ·+ ηyj(t− 1)(yi(t)− yi(t− 1)) . . . j ∈ Nconn(i)

vij(t− 1) otherwise

(5.5)

As opposed to the other design alternatives, B and C are not independent of each

other. Inhibitory (negative) lateral weights are permitted only if lateral weights are

also allowed to decrease prior to normalization, that is, C subsumes B. If alternative C

was in effect, but not B, then a positive lateral weight could never become negative,

and a change in a negative lateral weight would always lead to either a negative lateral

weight of a smaller magnitude or a positive lateral weight which would subsequently
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stay positive. However, the intent of C is to allow all lateral weights to freely change

sign, which requires alternative B to be in place also. That is why Eq. 5.5 includes

the changes to the lateral learning rule that are contained in Eq. 5.4.

In the original sequence processing network, each output node received (sent)

lateral intra-lattice connections from (to) all nodes within a fixed radius. In contrast,

with alternative D in place, each output node receives lateral intra-lattice connections

from all of its N closest neighbors (ties are resolved arbitrarily). Accordingly, the

connection neighborhood of an arbitrary output node i is redefined as Nconn(i) =

{j | j sends a connections to i}. This ensures that all output nodes receive the same

number of lateral connections, thus compete with the same number of other output

nodes for activation and learning, and hence, have at least initially the same chance

of being selected as winners via Eq. 4.2. Beyond this immediate effect, alternative

D further influences the activation and learning dynamics of the network since the

net input to a node, its activation level, and changes to the weights on its incoming

lateral connections all depend on the node’s connection neighborhood.

The last remaining design alternative E concerns the initial normalization and the

re-normalization after an update of the lateral weight vectors. Each lateral weight

vector comprising the weights on all incoming lateral connections to an output node,

but excluding the weight on the node’s self-connection, can be (re)normalized to unit

length (∀i : ||~vi||2 = 1) as opposed to the unit sum (re)normalization scheme from

the previous chapter (Eq. 4.7). The latter, even though it was inconsistent with the

normalization of all afferent weight vectors to unit length, was used originally to cut

the computational cost of network training which has been optimized considerably

since.
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5.2.3 Experimental Procedures

Twelve specific combinations, that is, subsets of design alternatives were selected for

an initial comparison in terms of network performance. Specifically, all six subsets

of the biologically-inspired modifications (A, B and C in Table 5.1) that contain B

whenever C is contained were selected. Each of these six combinations was used

both in isolation and in addition to all of the other three design alternatives (D, E

and F in Table 5.1). This selection includes the empty subset (no design changes)

that corresponds to the original sequence processing one-shot multi-winner SOM and

serves as the baseline for comparison. Based on the results of 10 independent training

runs per combination, and in terms of the performance measures dmin and d̄ (with

respect to the training set of sequences) “best” combination was determined. During

these training runs, the network parameters (α, β, etc.) were set to the values from

Table 4.1, which previously had been found to work best with the original sequence

processing one-shot multi-winner SOM. Note that no genetic optimization took place

during this initial stage of the study.

Only after determining the best combination of design alternatives, the network

parameters were optimized using the NSGA-II multi-objective genetic algorithm (Deb

et al., 2002). Four objective functions were used: the performance measures dmin

and d̄, each evaluated twice after training of the network, once for the sequences

in the training set (the same 60 sequences as in the previous chapter) and once

for the sequences in the test set (the remaining 115 sequences). The number of

test examples was so unusually high compared to the number of training examples

because the high computational cost of training strictly limited the size of the training

set, leaving a relatively large number of unused sequences that were then utilized for

the test set. The initial population of parameter sets contained the previously best
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parameter set and 39 slight random variations of it. The parent population size was

40 throughout the 50 generations for which the algorithm ran. Consequently, a total

of 2000 individual networks needed to be trained and subsequently evaluated with

respect to the four objective functions. In order to eliminate from the optimization

results any variance resulting from differing initial random training conditions, each

of the networks was initialized and trained using the same random number generator

seed, that is, the initial set of weights and the order in which the training examples

were presented was the same for all networks. This of course raises the question to

what degree the optimization results are sensitive to changes in the initial random

conditions of network training. This issue was addressed by conducting 19 additional

training runs with different and distinct initial random conditions for each of the 40

parameter sets comprising the final generation of parents produced by the genetic

algorithm (i.e., the best found solutions due to elitism). The results are presented

below.

The genome of an individual was a real-valued vector where each component

corresponded to one of the network parameters that were subject to genetic opti-

mization. The genomes of a pair of parent individuals always underwent simulated

binary crossover (crossover probability of 1; Deb and Beyer (1999)), and 10% of the

genes (vector components) of the resulting offspring were subjected to polynomial

mutation (Deb and Goyal, 1996) where the maximum magnitude of a mutation was

limited to 0.1. The distribution indices of the polynomial probability distributions that

underly the crossover and mutation operators were both set to 1 (Deb and Goyal,

1996; Deb and Beyer, 1999).
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5.3 Results

The first part of this section presents the results of comparing several alternative

designs of the sequence processing one-shot multi-winner SOM, including the original

design that was used in the previous chapter, in terms of their performance when

applied to the task of learning unique spatial representations for large sets of variable-

length temporal input sequences. Based on these results, one design was selected and

subsequently used as the basis for the optimization of the parameters that determine

the networks activation and learning dynamics. This was done using a genetic multi-

objective optimization algorithm, and the results of its application are detailed in the

latter half of this section.

5.3.1 Manual Determination of the Best Combination of Design Alterna-

tives

Table 5.2 shows how the sequence processing one-shot multi-winner SOM performed

on average over 10 independent training runs (with the standard deviation given in

parenthesis) for each of the selected 12 combinations of design alternatives, using

the network parameters from Table 4.1 in the preceding chapter. The performance

measures were dmin and d̄ with respect to the training set and after training. The top

row corresponds to the original unaltered sequence processing one-shot multi-winner

SOM of the previous chapter. In the subsequent rows, the existence of particular

design changes is indicated by ‘x’ markers in the respective columns to the left where

the column headers correspond to the labels in Table 5.1.

With none of the investigated combinations of design alternatives did the network

perform better with respect to both dmin and d̄ than in its unaltered state. In general,

d̄ was less than for the unaltered network and was especially low for networks that
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Table 5.2: Network Performance for Combinations of Design Alternatives

A B C D, E & F dmin d̄

0.40 (0.88) 23.07 (1.00)

x 0.08 (0.09) 14.91 (0.62)

x 0.50 (0.71) 22.60 (0.92)

x x 0.06 (0.04) 14.76 (0.61)

x x 0.20 (0.63) 20.61 (1.15)

x x x 0.02 (0.02) 14.05 (1.10)

x 0.00 (0.00) 19.15 (0.80)

x x 0.44 (0.25) 17.52 (0.66)

x x 0.00 (0.00) 19.22 (1.12)

x x x 0.46 (0.14) 17.58 (0.72)

x x x 0.00 (0.00) 19.42 (0.68)

x x x x 0.32 (0.15) 16.87 (0.67)

incorporated net input proportional activation (A in Table 5.1) but not the modifica-

tions D, E and F. With the changes D, E and F in place, d̄ recovered some, but still

fell short of the values for the original sequence processing network.

For three specific combinations of design alternatives, the network performed

better with respect to dmin. The largest dmin value (0.50) was measured when the only

design change was to permit lateral weight decreases prior to weight renormalization

(third row in Table 5.1). However, the variance of dmin in this case was relatively

large (0.712).

The variance of dmin was comparatively small (0.142) for the combination of net

input proportional activation (A), permitting lateral weight decreases prior to weight
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renormalization (B) and including modifications D, E and F (third to last row in

Table 5.1). The average of dmin (0.46) for this combination was the second highest

of all the considered combinations, and the value was close to the observed maximum

(0.50). The average performance in terms of d̄ was lower (17.58) than for many of the

other combinations of design alternatives. However, as mentioned earlier, dmin was

considered the more important performance measure. Because of being the second

best combination in terms of the most important performance measure, the average

of dmin, and showing a comparatively small variance in the dmin values that promised

robust results, the final decision was to change the design of the sequence processing

one-shot multi-winner SOM accordingly, that is, to incorporate the modifications A,

B, D, E, and F. This design is fixed from now on and in particular during the next stage

of improving the sequence processing capabilities of the one-shot multi-winner SOM

via the genetic optimization of the network parameters, which so far had been set to

the previously best values for the original sequence processing one-shot multi-winner

SOM (Table 4.1).

5.3.2 Genetic Multi-Objective Optimization of Network Parameters

Table 5.3 lists the network parameters that were subject to genetic optimization,

gives the permissible range for each parameter during optimization, and reviews the

parameters’ functions. The optimization of these eleven network parameters with

respect to the four objective functions (dmin and d̄ evaluated on the training and test

data sets) resulted in all 40 individuals comprising the final parent generation to be

Pareto-optimal solutions. That is, of all the final evolved sets of parameter values

(solutions), none was better than another in terms of all four objectives.

The positions of the solutions in the complete 4D objective function space cannot
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Table 5.3: Network Parameters Subject to Genetic Optimization

parameter permissible range function

α [0, 1] determines relative contributions of afferent vs. lat-

eral inputs to the net input of an output node (in

Eq. 4.1)

β [-1, 1] fixed weight on the self-connections of all output

nodes

γinit [0, .8] smoothness of the activation peaks centered at win-

ner nodes at the beginning of training

γinfl [0, .6] fraction of training epochs until the point of γ’s

steepest descend

γσ [.01, .2] overall steepness of γ’s descend during training

µinit [0, .8] afferent learning rate at the beginning of training

µinfl [0, .8] fraction of training epochs until the point of µ’s

steepest descend

µσ [.01, .1] overall steepness of µ’s descend during training

ηinit [0, .8] lateral learning rate at the beginning of training

ηinfl [0, .8] fraction of training epochs until the point of η’s

steepest descend

ησ [.01, .1] overall steepness of η’s descend during training
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be visualized. However, one can show the solutions projected onto lower-dimensional

subspaces of the objective function space that are of particular interest. For example,

Figure 5.1A shows the solutions in the 2D subspace that is spanned by the two

objectives dmin and d̄ with respect to the training set of input sequences. In contrast,

Figure 5.2A displays the solutions in a different 2D subspace: the one that is spanned

by dmin and d̄ when they are evaluated on the test set of input sequences.

Note that each of the data points in Figures 5.1A and 5.2A is the result of

only a single training run. Recall that during optimization, every network that was

trained started out with the same set of initial random weights and saw the training

sequences in the same random order. So, during optimization, each evolved solution

was evaluated only once in terms of network performance after a single training run,

including the solutions of the last parent generation. For the latter, Figures 5.1A and

5.2A show the objective function values (performance measurements) obtained in this

single evaluation. Consequently, the figures are not suitable for a direct comparison

based on average performance with the original sequence processing one-shot multi-

winner SOM. A comparison like that requires multiple evaluations of each final evolved

set of network parameters based on multiple independent training runs.
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Figure 5.1 (next page): Post-training performance of the evolved network parameter

sets with respect to the training set. A Each of the 40 parameter sets comprising the

last (50th) parent generation is shown with its number plotted centered at the position

that corresponds to the values of dmin (x-axis) and d̄ (y-axis; does not start from zero)

measured after training and with respect to the training set of input sequences. Note

that this plot does not show the Pareto-optimal front. The Pareto-optimal front

exists in the four-dimensional space that is spanned by all four objectives, while A is

a projection of that space onto a subspace that is spanned by two of the objectives

(dmin and d̄ with respect to the training set). Only considering these two objectives,

parameter sets 19, 3, 20, 2 and 26 are the non-dominated solutions. B Here, the

location of each evolved parameter set (number) corresponds to the average values

of dmin and d̄ with respect to the training set, measured over 19 independent training

runs per parameter set where the random number generator seed was always distinct

and different from the seed that was used during the genetic optimization. The radii

of the ellipsoid centered at each number correspond to the estimated variances of

dmin and d̄ for the respective parameter set. The special markers ‘+’ (at the top)

and ‘x’ (near the center) are for comparison. ‘+’ stands for the performance of the

original unaltered network in conjunction with the parameter set from Table 4.1. ‘x’

indicates the performance of that parameter set in combination with the new modified

network.
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Figure 5.1: Caption on previous page
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That is the purpose of the additional 19 independent training runs that were

conducted for each of the 40 Pareto-optimal parameter sets making up the final

parent generation. A different random number generator seed was used to initialize

each training run, leading to a different set of initial weights and a different random

order among the input sequences during training. The objective function values

were computed after training and then averaged over the 19 independent runs per

parameter set. Figures 5.1B and 5.2B show the result, that is, each parameter set is

plotted at the position that corresponds to the estimated means of dmin and d̄ (with

respect to the training set in Figure 5.1B, and with respect to the test set in Figure

5.2B). In addition, the radii of an ellipsoid centered at the position of each parameter

set indicate the estimated variance along each of the respective two dimensions. The

best known parameter set for the original sequence processing one-shot multi-winner

SOM (‘+’) and the same parameter set, but evaluated with the design alternatives

A, B, D, E, and F in place (‘x’) were added to the figures for comparison.

For the training set (Figure 5.1B), all but one of the solutions that were discovered

via genetic optimization performed better on average with respect to at least one of

the two performance measures than the previously best known parameter set, but

only when it was evaluated in combination with the new network design (‘x’ in Figure

5.1B). In direct comparison with the original unaltered network (‘+’ in Figure 5.1B),

all found solutions on average performed worse in terms of d̄, but the majority of

the solutions was on average better with respect to dmin and, in addition, featured

smaller variances along the dmin dimension.

The gap in terms of d̄ between the original network and the optimized solutions

for the new network design widened even further when they were evaluated on the test

set of sequences instead of the training set (Figure 5.2B). For the original network,
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Figure 5.2: Post-training performance of the evolved network parameter sets with

respect to the test set. A and B as in Figure 5.1, but with values based on the test

set (as opposed to the training set) of input sequences.
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the average of d̄ decreased very little from 23.07 for the training to 22.64 for the

test set. This is in stark contrast to the drop in d̄ from around 20 to 15 for many

of the optimized solutions, even though they were the product of optimizing network

performance not only on the training set, but also on the test set. The parameter

set for the original network (Table 4.1) had been (manually) optimized only for the

training set. The situation was different for dmin. The decrease of dmin for the

original network from 0.4 for the training to 0 for the test set was roughly an order

of magnitude larger than the drop in performance from approximately 0.2 to between

0.13 and 0.16 for the in terms of dmin best optimized solutions in Figure 5.2B (e.g.,

solutions 12, 16 and 19).

A comparison of Figure 5.1A with Figure 5.1B and Figure 5.2A with Figure 5.2B

indicates that dmin was much more sensitive to the initial random conditions prior

to training (random number generator seed) than d̄. Specifically, parameter sets for

which dmin was relatively large at the end of optimization (e.g., solution 26 in Figure

5.1A and solution 28 in Figure 5.2A) suffered the most when a random number

generator seed was used that was different from the seed used throughout the genetic

optimization process. These solutions were typically associated with a relatively large

variance along the dmin dimension in objective function space. This variance tended

to diminish the better a solution performed on average along the d̄ dimension. The

variances along the d̄ dimension did not exhibit a similar trend, that is, they seemed

largely independent of the solutions’ average dmin values.

The trade-off between the performance measures dmin and d̄ was closely linked

to parameter α which determines the relative influences of afferent, i.e. external,

and lateral, i.e. lattice-internal, inputs on the activation dynamics of the network.

With respect to the training set, there was a clear trend for solutions with high dmin
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Table 5.4: The Non-Dominated Parameter Sets with respect to Average

Performance on the Training Set

set 27 2 10 13 6 4 21 31 orig.

dmin .89 .81 .70 .52 .36 .26 .22 .17 .40

STD 1.07 .76 .68 .25 .13 .14 .10 .07 .88

d̄ 18.04 18.44 18.68 19.21 19.86 20.02 20.08 20.26 23.07

STD .55 .76 .75 .54 .81 .64 .84 .65 1.00

α ∈ [0, 1] .7335 .7160 .7072 .6533 .6098 .5022 .5051 .4820 .64

β ∈ [−1, 1] -.0046 -.0293 -.0016 -.0976 -.1015 .0084 -.0024 .0229 .05

γinit ∈ [0, .8] .1653 .1286 .1353 .0482 .0847 .0247 .1372 .1269 .37

γinfl ∈ [0, .6] .2156 .1336 .2200 .0538 .0883 .1664 .1467 .1792 .2

γσ ∈ [.01, .2] .1737 .1595 .1711 .1424 .1443 .1611 .1502 .1688 .16

µinit ∈ [0, .8] .4590 .4560 .4651 .4330 .4352 .4589 .4205 .4465 .44

µinfl ∈ [0, .8] .4658 .3757 .4698 .3827 .3716 .4034 .3446 .3675 .4

µσ ∈ [.01, .1] .0579 .0103 .0393 .0100 .0103 .0182 .0217 .0469 10−4

ηinit ∈ [0, .8] .7358 .4540 .7130 .5684 .7055 .6318 .5947 .6061 .62

ηinfl ∈ [0, .8] .7633 .6651 .7654 .7123 .7110 .7248 .7533 .7961 .8

ησ ∈ [.01, .1] .0618 .0290 .0538 .0123 .0224 .0503 .0170 .0631 .04

values (and correspondingly low d̄ values) to also have high α values. Table 5.4

contains example solutions that illustrate this. Specifically, the provided examples

are the non-dominated solutions with respect to average performance on the training

set, listed in ascending (descending) order of their d̄ (dmin) values. In Figure 5.1B,

this corresponds to a walk from one non-dominated solution to the closest next non-

dominated solution, starting with solution 27 to the far right (α = .7335) and ending
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Table 5.5: The Non-Dominated and some Almost Non-Dominated Param-

eter Sets with respect to Average Performance on the Test Set

set 12 19 16 21 31 39 25 18 orig.

dmin .16 .14 .13 .13 .12 .10 .06 .00 .00

STD .06 .05 .05 .07 .04 .05 .06 .00 .00

d̄ 14.30 14.34 14.70 14.38 14.39 14.51 14.34 15.21 22.64

STD .48 .50 .52 .67 .53 .67 .48 .54 .94

α ∈ [0, 1] .4807 .4836 .4795 .5051 .4820 .4539 .5815 .7205 .64

β ∈ [−1, 1] -.0058 .0339 -.0021 -.0024 .0229 .0001 .0301 -.0078 .05

γinit ∈ [0, .8] .1595 .2859 .2411 .1372 .1269 .2586 .2126 .1098 .37

γinfl ∈ [0, .6] .1783 .1606 .1704 .1467 .1792 .1713 .2123 .2285 .2

γσ ∈ [.01, .2] .1600 .1801 .1502 .1502 .1688 .1541 .1898 .1763 .16

µinit ∈ [0, .8] .4493 .4447 .4224 .4205 .4465 .4314 .4408 .4432 .44

µinfl ∈ [0, .8] .3336 .3602 .3041 .3446 .3675 .2597 .4658 .3960 .4

µσ ∈ [.01, .1] .0139 .0607 .0140 .0217 .0469 .0403 .0405 .0509 10−4

ηinit ∈ [0, .8] .3489 .6285 .6931 .5947 .6061 .6180 .6001 .6464 .62

ηinfl ∈ [0, .8] .7382 .7986 .7314 .7533 .7961 .7482 .7680 .7571 .8

ησ ∈ [.01, .1] .0545 .0489 .0219 .0170 .0631 .0212 .0493 .0644 .04

with solution 31 to the far left (α = .4820). None of the other parameters exhibited

an obvious trend like α did. With the exceptions of γinit and µσ, they were overall

remarkably similar to the best known parameter values for the original unaltered

network (last column in Table 5.4).

For the test data set, the trend of α was reversed (it is unclear why). Table 5.5

demonstrates this with example solutions that were either non-dominated or close
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to non-dominated in terms of average performance on the test set. They are listed

from left to right in descending order of their dmin values (which corresponds to a

right-to-left walk in Figure 5.2). The best solutions along the dmin dimension (e.g.,

12, 19 and 16) featured small α values around 0.5. α increased for solutions with

dmin values closer to zero (e.g., 25 with α = .5815) and, for solutions with dmin ≈ 0

(e.g., 18 with α = .7205), α reached the level that was characteristic of the best

solutions with respect to dmin when evaluated on the training set (e.g., 27 and 2 in

Figure 5.1 and Table 5.4). In fact, the best solutions with respect to dmin and the

test set were among the worst in terms of dmin for the training set, but they typically

outperformed the majority of the other solutions in terms of d̄ for the training set.

Figure 5.3 (next page): The pre-training (light gray) and post-training (dark gray)

distributions of the distances between the representations of all pairs of distinct input

sequences for the evolved parameter set 13. A shows the distributions for when the

network was evaluated on the set of sequences that was used for training. B is the

diagram that resulted from evaluating the network using the remaining sequences

that were not used for training, that is, the test set of sequences. Note that the

wider separation of the pre-training and post-training distributions in comparison to

Figure 4.2 is mostly the result of smaller pre-training distances between the sequence

representations due to the net-input-proportional (as opposed to the originally always

maximal) activation of winner nodes.
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Figure 5.3: Caption on previous page.
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Finally, one can compare the pre-training and post-training distributions of the

distance between the two representations of two distinct sequences from the set of all

distinct sequences, like was done in Figure 4.2 for the original sequence processing one-

shot multi-winner SOM. Figures 5.3A and B are the equivalent plots for the modified

network design, trained with the evolved parameter set 13, where Figure 5.3A shows

the distributions for the training set and Figure 5.3B for the test set. Parameter set

13 was representative of the above mentioned drop in average performance by about

five points in terms of d̄, which becomes evident when comparing Figure 5.3A with

Figure 5.3B. Also, the margin separating pre-training and post-training distributions

was usually markedly larger than for the original network design (even for the test set;

compare Figures 5.3A and B with Figure 4.2), owing to the net-input-proportional

activation of the winner nodes which, prior to training, have weight vectors that are

very dissimilar to the input vectors, resulting in low net input values, consequently

low activation levels and thus, small initial representation distances. Training typically

reduced the number of pairs of distinct sequences whose representations were so

similar that their distance was smaller than one (left-most bar in the histograms

of Figures 5.3A and B), just as with the original network. However, recall that

with the original network, the distance between two representations was always an

integer and thus, once the distance was smaller than one, it was in fact zero and the

two representations were not just very similar but identical due to identical sets of

maximally active winner nodes. This is not true for the new network design where

the winner nodes are active proportional to their respective net input so that identical

sets of winner nodes do not imply identical representations (but typically cause very

similar representations).
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5.4 Discussion

The genetic optimization did not yield a parameter set that, in connection with the

new design for the sequence processing one-shot multi-winner SOM, performs better

in all respects than the original network from the previous chapter. However, if one

puts special emphasis on the performance measure dmin, then the genetic optimization

process found many parameter sets that, in conjunction with the new network design,

outperform the original network, either for the training or test data set (but not for

both). With respect to performance on the training examples, parameter set 13 (see

Table 5.4) perhaps is most desirable since it performed better on average than the

original network in terms of dmin, it scored higher with respect to d̄ than any of the

other solutions that were better than the original network in terms of dmin, and both

dmin and d̄ varied relatively little from training run to training run for parameter set

13. However, if it is important that the network forms unique representations not only

for the sequences in the training set, but that this capability generalizes to sequences

not used for training, then parameter set 16 (see Table 5.5) is preferable because of

high averages and small variances for dmin and d̄ with respect to the test set.

Set 13 qualitatively differs from the best known parameter set for the original

network (Table 4.1) in two aspects. First, the network’s output nodes evolved to

be relatively strongly self-inhibitory as opposed to having been mildly self-excitatory

originally (β = −.1 vs .05 originally), the former being more in line with evidence

of the predominantly inhibitory nature of cortical columns (Miller, 2003; Pinto et al.,

2003). Second, the peaks of activation centered at the winner nodes were initially

already extremely more focused (γinit = .05 vs .37) and became even more focused

much earlier (γinfl = .05 vs .2) and more rapidly (γσ = .14 vs .16) than for the

original parameter set. Thus, essentially only winner nodes ever became active. This
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was true for most of the evolved parameter sets (see, for example, Tables 5.4 and

5.5), that is, limiting learning to the winners nodes (and not letting their neighbors

participate in it) seems to be beneficial to network performance in general. Because

the participation of the winners’ neighbors in learning was thought to be crucial for

map formation, no map formation was expected with γ values as low as in parameter

set 13. However, even though map formation was somewhat impaired it still took

place as can be seen in Figure 5.4 where a map that formed on the lattice of a SOM

of the new design (trained using parameter set 13) is shown next to a map produced

by a SOM of the original design (trained using the original parameter set from Table

4.1).

The evolved learning rate parameters {µ|η}init|infl|σ were relatively similar to those

in the original parameter set. That there was a difference of three orders of magnitude

with respect to µσ is a result of the constraint µσ ∈ [.01, .1] that was enforced during

genetic optimization (to limit the search space and to ensure that µ ≈ 0 toward the

end of training). Whether µσ = .01 or µσ � .01 was assumed to not translate into

qualitatively different network behavior since the shape of the sigmoidal descend of

µ during training approaches a step function (is very steep at the point of inflection)

in either case.
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Figure 5.4 (next page): Map formation in the new versus the original sequence pro-

cessing one-shot multi-winner SOM. The map to the left formed on the 30 by 20

lattice of a SOM of the new design that was trained using parameter set 13, that is,

using very small values for γ throughout training (γinit|infl|σ = {.05|.05|.14}), meaning

that only the winner nodes themselves but not their neighbors learn from a particular

input vector. In that situation, map formation, which was thought to rely on a strong

interaction between winner nodes and their neighbors, was unexpected. Nevertheless

an ordered mapping of single phonemes appeared: output nodes sensitive to vowels

(white text labels) and consonants (black text labels) have been spatially separated,

the former forming multiple disconnected clusters that internally, with few exceptions,

comprise only nodes sensitive to vowels. For comparison, to the right is a map pro-

duced by a SOM of the old design that was trained with the original parameter set

from Table 4.1. That parameter set featured much larger values for γ during train-

ing (γinit|infl|σ = {.37|.2|.16}) so that winners and their neighbors made significant

weight adjustments in response to an input. This causes an even more ordered map.

For example, there are no consonants at all within the clusters of vowels, and adja-

cent output nodes are overall more similar in terms of their afferent weight vectors

(fewer darkly shaded cells and note that due to different scales, the similarity values

associated with the gray shades are much higher on the right than on the left).
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Set 16 is much more similar to the original parameter set in terms of β and

{γ}init|infl|σ (although the differences that exist are consistent with those of set 13,

i.e., they go in the same direction). The main difference is a much smaller influence

of the afferent network inputs on the network dynamics (α = .48 vs .64 originally

and .65 for set 13). But an influence of the afferent inputs that is still roughly on par

with that of the lateral intra-map inputs is nevertheless much greater than what was

originally expected to lead to good network performance, given the anatomical fact

of many more short-range intra-cortical than afferent connections to cortical neurons

that suggests a relatively small direct influence of the afferent inputs (Braitenberg

and Schüz, 1991).

Even though the genetic algorithm was free to change the parameter values within

their permitted ranges (see the first column of Table 5.4 or 5.5) and independently on

one another, the evolved parameter sets were not radically different from the original.

For example, for all evolved parameter sets it was true that the point of inflection

of the afferent learning rate µ came before that of the lateral learning rate η, that

is, learning on the afferent connections always ceased earlier than learning on the

lateral connections. Also, even though β varied some among the found solutions, the

observed variations were limited to the interval [-0.1040, 0.1847], while the permis-

sible range of [-1, 1] was much wider. One reason for this is almost certainly the

seeding of the initial population with slight variations of the original parameter set

(maximally different by +/- .1 in each parameter), introducing a bias toward finding

better solutions near the original parameter set which makes it less likely for radically

different solutions to emerge. The initial results of repeating the genetic optimization

with different random initial conditions (a different random number generator seed)

indicate that the region of parameter space around the original parameter set is indeed
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not the only region harboring better solutions. The repeat optimization also produced

40 Pareto-optimal solutions, which, while at first glance not being radically better,

did span, for example, a much larger range of the permissible interval for β ([-.6667,

.6114]) and often reversed the order of afferent and lateral weight maturation. This

unfortunately suggests that the fitness landscape underlying the problem of optimiz-

ing the network parameters is complex. Many more independent runs of the genetic

optimization with larger population sizes should ideally have been conducted (some

without biasing the initial population in any way) to delineate the promising regions

of the parameter space with some certainty. However, the high computational cost of

training at least 2000 networks per run, which took roughly three weeks to complete

on the available cluster of workstations (see Section 3.1), made this impractical.

The modified network never performed better than the original network in terms

of d̄. The following is an attempt to explain this result. The original network had

each output node compete for activation and learning with all other output nodes to

which it was connected, that is, specifically, all other output nodes within a radius

of rconn = 4 on the output lattice, thereby favoring output nodes near the lattice

boundaries which, as a consequence of this rule, had fewer competitors and therefore

won more often. For a SOM lattice of 30 by 20 nodes and rconn = 4, the maximum

number of winner nodes that can be present on the lattice at the same time is 24

for the original network which is reached, for example, by the two configurations of

winners on the lattice in Figure 5.5.

The two configurations’ sets of winners are disjunct, i.e., there does not exist

a node that is a winner in both configurations. Hence, the theoretically maximal

distance (measured using the 1-norm metric) between two map activation patterns,

and hence, between the spatial representations of any two input sequences, is 48 for
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A B

Figure 5.5: Two examples of output lattices composed of 30 by 20 nodes with a

maximum number (24) of winner nodes, given that each output node competes

with all other output nodes with a radius of rconn = 4 on the lattice (like with the

original sequence processing one-shot multi-winner SOM of the preceding chapter).

Each square cell corresponds to an output node. The black filled squares are winner

nodes, the empty squares are non-winner nodes. The minimum distance on the

lattice between two distinct winner nodes is four, in accordance with the radius of

competition. The sets of winners in A and B are disjunct, that is, the distance

(1-norm) between these two activation patterns is 48, which is maximal.

the original network. All configurations achieving the maximum number of 24 winner

nodes have in common that 16 of the 24 winner nodes are near the lattice boundary,

that is, in some direction from each of these nodes the distance to the boundary is

smaller than rconn = 4. No more than 16 winner nodes can be near the boundary. By

favoring nodes near the boundary in the competitions for activation and learning, the

original network was biased toward representations with, on average, relatively many
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winner nodes and thus, on average, relatively large distances between any two distinct

representations. This would have had a positive effect on d̄, which is an average over

all pairs of distinct sequences, but would also have limited (probabilistically) the space

of all possible representations, thereby making it more likely for two distinct sequences

to be mapped to the same representation and thus, hurting network performance in

terms of dmin.

One of the network design alternatives was the neutralization of boundary effects.

Instead of having each node compete with all other nodes within a given radius, each

node competes with a given number of nearest other nodes (the number being equal

to the number of nodes within radius rconn = 4 from a node in the center of the

map, i.e., 81). To begin with, this reduces the maximum number of winner nodes

and consequently, reduces the maximum distance between two representations, most

likely negatively effecting d̄. In addition, nodes near the boundary no longer have

an advantage in the competitions for activation and learning. This removes the bias

toward representations with relatively many winner nodes, which should compound the

negative effect on d̄ since, on average, two distinct representations will comprise fewer

winners and hence, the distance between them will be reduced. On the other hand,

the space of representations is no longer constrained (skewed toward representations

with many winner nodes), which should help performance in terms of dmin since two

distinct sequences are now less likely to be mapped to the same representation. This

could explain why the modified network was able to outperform the original network

with respect to dmin, but lacked behind in terms of d̄.
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Chapter 6

Discussion

This work has introduced a new class of one-shot multi-winner SOMs that combines

the key features of the two existing classes of SOMs: the non-iterative, computa-

tionally efficient mechanism by which the winner node is determined in the one-shot

single-winner SOM (Kohonen, 2001), and the distributed, neurobiologically more

plausible and potentially more effective representation of inputs in the iterative multi-

winner SOM (von der Malsburg, 1973). Seen from the perspective of computer

science, this new class of SOMs represents a generalization of the SOM as a success-

ful data processing method in various application domains. When viewed from the

perspective of theoretical neuroscience, the one-shot multi-winner SOM, despite its

simplicity, proves to be a surprisingly interesting computational model that can be

linked to several complex phenomena in biological cortex.

6.1 The Computer Science Perspective

This dissertation first and foremost is a study of the basic properties of one-shot

multi-winner SOMs. SOMs in general are one of the major approaches to unsuper-

vised learning in artificial neural networks and they continue to be a popular research

subject (Kaski et al., 1998b; Oja et al., 2003). Most past SOMs fall into one of two
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distinct classes, one-shot single-winner SOMs (e.g., Callan et al. (1999); Kaski et al.

(1998a); Kohonen (1982); Kokkonen and Torkkola (1990); Principe et al. (1998))

and iterative multi-winner SOMs (e.g., Bednar and Miikkulainen (2000); Li (2002);

Pearson et al. (1987); Reggia et al. (2001); Sutton et al. (1994); von der Malsburg

(1973)), depending on their primary purpose which determines key features of their

architecture and dynamics. One-shot single-winner SOMs have received extensive at-

tention due to their applicability to practical data processing tasks. They have been

used successfully as data visualization, feature detection and pattern classification

tools in a variety of application domains, for example, in computer vision (Deschenes

and Noonan, 1995; Manduca, 1996; Morris et al., 1990; Takacs and Wechsler, 1997;

Toivanen et al., 2003), robotics (Cervera and del Pobil, 1999; Faldella et al., 1997;

Heikkonen and Koikkalainen, 1997), signal and specifically speech processing (Callan

et al., 1999; Kangas, 1991; Kohonen et al., 1984), economics (Deboeck and Koho-

nen, 1998; Kaski et al., 1998a), and bioinformatics (Andrade et al., 1997; Ferrán and

Ferrara, 1991; Hanke and Reich, 1996; Schuchhardt, 1996).

In this research, I have introduced a new class of one-shot multi-winner SOMs,

a natural generalization of the highly successful one-shot single-winner SOM method

that incorporates the biologically-inspired distributed representation of inputs, a key

feature of the more biologically plausible but less computationally efficient class of

iterative multi-winner SOMs. Central to the one-shot single-winner SOM is the com-

putationally efficient selection in one step of the single winner in the global competi-

tion for activation and learning among the output nodes of the network in response

to a particular input (Kohonen, 2001). In the one-shot multi-winner SOM, multiple

localized competitions take place instead, resulting in multiple simultaneous winners

that form a spatially distributed representation of the input across the output lattice
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of the network much like in iterative multi-winner SOMs (Cho and Reggia, 1994;

Pearson et al., 1987; Sutton et al., 1994; von der Malsburg, 1973). However, the

selection of these winners is still a one step process (as opposed to the iterative

mechanism found in iterative multi-winner SOMs) so that computational efficiency is

retained. Table 6.1 summarizes the differences and parallels that exist between the

one-shot multi-winner SOM and the two previously existing SOM classes.

The systematic study of the one-shot multi-winner SOM revealed that its be-

havior constitutes a natural and principled generalization of the behavior of the one-

shot single-winner SOM. Specifically, whenever the size of the one-shot multi-winner

SOM’s output lattice was sufficiently small relative to the extent of the local competi-

tions, a single topology-preserving map of the network’s inputs formed on the output

lattice, a behavior identical to that of the one-shot single-winner SOM (see Figure

3.2C). However, as soon as the size of the output lattice was sufficiently larger than

the extent of the local competitions, multiple neighboring topographic maps formed

(e.g., Figure 3.5). The number of maps was roughly proportional to the size of the

underlying output lattice. Moreover, the overwhelming majority of adjacent topo-

graphic maps were mirror symmetric relative to each other (see Tables 3.1 and 3.2).

The formation of multiple, mostly mirror symmetric maps was robust to significant

changes in the parameters that determine the activation and learning dynamics of the

one-shot multi-winner SOM. These results are consistent with and further underpin

the prevailing theory that explains the SOM’s behavior in terms of the basic principle

of having similar inputs be represented close to one another by nodes in the output

lattice.

When a frequency gradient was introduced so that inputs from near one edge of

the input space occurred three times more often than inputs from near the opposite
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edge, the most frequent region of input space almost always became represented

along the shared boundary between two adjacent maps, and the representation of the

least frequent region was farthest removed from the boundary. Prior to that, with a

uniform input distribution, no such bias had been observed, that is, all four edges of

the input space had equally often been represented next to the inter-map boundary

(see Figure 3.7). Finally, just like with one-shot single-winner SOMs (Grajski and

Merzenich, 1990), the map representations of more frequent input regions occupied

a disproportionately large area of the output lattice, that is, they were represented

with a increased resolution at the expense of less frequent input regions.

In the process of obtaining and analyzing the above results, I developed a new

objective metric for map formation that is especially useful when multiple adjacent

maps are being studied (see Section 3.3). The principled and robust behavior of the

one-shot multi-winner SOM may widen the applicability of SOMs, especially in situa-

tions that call for a high fault tolerance and/or confidence in the SOM’s results. Both

can be achieved by exploiting the multiple redundant map representations that form

in a one-shot multi-winner SOM. The property that frequency gradients in the input

space bias the orientation of adjacent maps may prove useful in data visualization.

Originally, SOMs were designed to process static, that is, time-invariant input

patterns only, and still, the vast majority of the literature on SOMs assumes this type

of input. The generalization of the SOM method to situations where each input is

a temporal sequence of varying input patterns has only relatively recently received

significant attention (e.g., Chappell and Taylor (1993); Euliano and Principe (1999);

Kangas (1990); Somervuo (1999, 2003); Varsta et al. (1997); Wiemer (2003)). How-

ever, a generally accepted approach to temporal sequence processing with the SOM

has not been established and in general, is an unlikely prospect due to the many
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different specific tasks that fall into the category of temporal sequence processing.

The distributed, coding-efficient representations computed by the one-shot multi-

winner SOM promised that the network would perform well when applied to the

specific task of transforming each distinct sequence from a non-trivial set of variable-

lengths sequences into a unique spatial representation. Some form of time-to-space

transformation is almost always part of temporal sequence processing systems that

involve neural networks (Barreto et al., 2003; Mozer, 1993), but the SOM has only

once before been applied to the above specific task (James and Miikkulainen, 1995).

In that study, the SOM was an unaltered one-shot single-winner SOM that simply

remembered the winner node for each vector in the input sequence of vectors, a trivial

but effective method. Here, a novel approach was taken, inspired by the architecture

of biological cortex (Braitenberg and Schüz, 1991) and the learning dynamics at

biological synapses (Bi and Poo, 2001, 1998; Markram et al., 1997; Zhang et al.,

1998). Specifically, the one-shot multi-winner SOM was augmented with local lateral

intra-lattice connections whose weights were trained using temporally asymmetric

competitive Hebbian learning.

The thus extended one-shot multi-winner SOM was trained with temporal inputs

in the form of sequences of high-dimensional feature vectors, each encoding the

sequence of phonemes in an English noun naming an object. The fairly small network

(30 by 20 or 40 by 30 output nodes) learned a unique distributed activation pattern

across the nodes in the output lattice for, on average, 94% to 98% of the distinct

sequences in the training set (60 or 175 sequences total). The sequences that the

network mapped to non-unique spatial representation were typically short and/or very

similar, that is, words with only two to three phonemes and/or sharing the first and/or

last phonemes. In general, the more similar two sequences were the more similar their
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spatial representations tended to be, which is a desirable property in cases where the

spatial representations are destined for subsequent processing. An entirely unexpected

result was the simultaneous formation of phoneme feature maps.

Following the promising results of this first investigation, a range of design alter-

natives for the sequence processing one-shot multi-winner SOM were examined with

the goal to further improve the performance of the system. These efforts showed

that the sequence processing performance of the one-shot multi-winner SOM is gen-

erally robust. The performance of one such design alternative was readily improved

by tuning the parameters of the network using a genetic multiobjective optimiza-

tion algorithm. Most notably, the genetically optimized sequence processing one-shot

multi-winner SOM markedly outperformed the original system in terms of the most

important performance measure, that of the degree to which the two most similar

sequence representations differ.

6.2 Relevance to Neuroscience

Even though the one-shot multi-winner SOM was not an attempt to create a realis-

tic and detailed model of cortical map development, the results obtained with it are

intriguing in the context of current neuroscientific data. The input patterns to the

one-shot multi-winner SOM in Chapter 3 can be viewed as encodings of point stimuli

on a two-dimensional sensory surface like, for example, the skin or the retina. When

trained with these inputs, multiple topologically-correct maps of the sensory surface

formed on the SOM’s output lattice, that is, the modeled cortical surface, provided

the distribution radius of cortical afferents (i.e., the size of the output lattice) suffi-

ciently exceeded the range of horizontal intracortical interactions. These conditions

may indeed be present during brain development when thalamocortical afferent pro-
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jections are more widespread than in adults (Brown et al., 2001; Mountcastle, 1998).

Moreover, topographic maps that were adjacent on the output lattice overwhelmingly

exhibited mirror symmetry, their common boundary being the axis of reflection. Re-

gions of the input surface that were overrepresented in the sample of input patterns

used for training became magnified, that is, their map representations occupied a

relatively larger area of modeled cortical surface. These results persisted in the face

of parameter variations and even a different representation of sensory stimuli as long

as basic map self-organization was not disrupted.

The findings are consistent with observations of topographic maps and their rel-

ative orientations in biological cortex. Specifically, multiple adjacent, roughly mirror-

image topographic maps are commonly observed experimentally in the sensory neo-

cortical areas of many species, including humans (e.g., Drager (1975); Engelien et al.

(2002); Formisano et al. (2003); Merzenich et al. (1978); Newsome et al. (1986);

Sur et al. (1982)), and the magnification effect also is a well-documented property

of many cortical maps (Azzopardi and Cowey, 1993; Creutzfeldt, 1978; Dykes and

Ruest, 1984; Sereno et al., 1995). Thus, when viewed from the perspective of theoret-

ical neuroscience, the one-shot multi-winner SOM comprises the first computational

model of multiple mirror-image topographic map formation in biological cortex.

The model contributes to the ongoing debate within neuroscience on the degree

to which topographic map formation is an activity-dependent (learning-based) or

activity-independent (genetically-determined) process (Cohen-Cory, 2002; Grove and

Tomomi, 2003). The initial parcellation of cortex into multiple regions/areas is gen-

erally believed to be due to genetically-determined chemical markers and independent

of thalamocortical afferent activity (Sur and Leamey, 2001). However, it remains less

clear as to why partially redundant cortical maps occur in these areas, why they are
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so often oriented with reflection symmetry, and what role thalamocortical activity

plays in their formation. Multiple adjacent maps are often hypothesized to arise dur-

ing development due to genetically-mediated chemical gradients (Grove and Tomomi,

2003; Levitt, 2000; Zhou and Black, 2000). They are sometimes conjectured to have

evolved due to genetic mutations (Allman and Kaas, 1971; Krubitzer, 1995), and it

has been suggested that they may provide fitness advantages due to separation of

spatial/temporal processing, parallel processing of different sensory attributes, mini-

mization of connection distances, and other factors (Kaas, 1988; Cowey, 1981; Jones,

1990).

In contrast, multiple mirror-image map formation in the one-shot multi-winner

SOM is driven entirely by a form of competitive Hebbian learning, an activity-

dependent process. This is complementary to and consistent with the prevalent notion

that activity-independent genetic factors initially determine cortical arealization and

affect targeting of thalamocortical afferents. However, it raises the question of how

genetic and activity-dependent synaptic changes might interact during development

and even during evolution, as it seems improbable that evolutionary processes would

hardwire adjacent cortical maps to be mirror images so often unless there was some

advantage to this arrangement (such as consistency with local synaptic plasticity).

Finally, the model makes two specific, testable predictions that may or may not

relate to biological cortical maps. First, when adjacent mirror-image topographic

maps occur in neocortex, their common edge should represent the region of sensory

surface that develops and innervates first (i.e., that has the most frequent stimuli ini-

tially during map development). This is consistent with, for example, the otherwise

surprising location of fingers/toes in biological neocortex far from the symmetry axis

in mirror image hand/foot representations in S1 (see Figure 2.4II), as these distal
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digits appear late during development (Gilbert, 1994; Lonai, 1996). Second, adjacent

maps may occasionally exhibit a very different rotational symmetry. If such previously

unreported rotationally symmetric maps are ever observed experimentally in a small

percentage of currently known cortical map regions, they would provide very strong

support for the model. Such atypically oriented adjacent maps, in the context of

normal connectivity between cortical regions, would be expected to cause abnormal

cortical information processing, and it is natural to speculate that they might ac-

count for some of the cognitive deficits and functional imaging changes observed in

neurodevelopmental disorders such as dyslexia or autism (Frank and Pavlakis, 2001;

Papanicolaou et al., 2003; Temple et al., 2003). The rarity of such atypically oriented

adjacent maps and the very limited experimental data on human maps may explain

why they have not been reported experimentally.

Interestingly, the temporal sequence processing one-shot multi-winner SOM also

exhibited multiple map formation (see Figures 4.5 and 5.4). In this case, individual

maps were ordered projections of the high-dimensional feature space whose dimen-

sions distinguished the distinct phonemes that comprised the input sequences (pho-

netic transcriptions of spoken words). Similarly redundant maps of complex features

like, for example, the orientation of line segments, exist in biological visual cortex

(Hubel and Wiesel, 1962, 1963, 1968, 1979). The intended purpose of the sequence

processing one-shot multi-winner SOM was to learn unique spatial representations for

its temporal input sequences. The simultaneous formation of feature maps suggests

that temporal sequence processing and map formation are compatible.

Temporally asymmetric Hebbian learning of the weights on the lateral intra-lattice

connections of the network proved to be an effective mechanism to learn unique spa-

tially distributed representations for sizeable sets of temporal input sequences. Exper-
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imental evidence for temporally asymmetric Hebbian changes at biological synapses

in cortex (Markram et al., 1997) and other parts of the brain is accumulating (Bi

and Poo, 2001, 1998; Zhang et al., 1998), but its functional role still needs to be

established. The findings obtained with the SOM raise the possibility of a role in

the distributed spatial representation of time-varying stimuli in biological cortex. The

fact that the network tended to create similar spatial representations for similar input

sequences is consistent with functional imaging studies of cortical areas in humans

where similar visual stimuli were found to evoke similar spatially distributed activation

patterns (Haxby, 2001; Riesenhuber and Poggio, 2002).

Finally, since phonetic transcriptions of spoken words naming objects were used

to train the sequence processing one-shot multi-winner SOM, the training results can

be related to cognitive science theories on human language processing, specifically,

the internal representation of spoken words and their pronunciation. The sequence

processing one-shot multi-winner SOM therefore has been adopted as part of a large

scale neurocognitive network of naming and word repetition that is currently under

development.

6.3 Going Further

As mentioned above, the computational properties of the one-shot multi-winner SOM

may be useful in practical application settings. The identification of specific real-

world applications for the one-shot multi-winner SOM is one issue that should be

addressed by future research. Problems to which Kohonen’s one-shot single-winner

SOM has been applied successfully in the past would be a natural starting point for

a usability study. The central question that needs to be answered in these cases is

whether redundant map formation and/or mirror symmetry between adjacent maps
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would be valuable additives to the standard solution found by a Kohonen SOM. For

example, the fact that the orientation of two adjacent mirror maps can be biased by

gradients in the input distribution may prove useful in data visualization whenever

the identification of such gradients is of interest.

Redundant map formation should increase the fault tolerance and thus, the ro-

bustness of a system that uses a one-shot multi-winner SOM instead of a one-shot

single-winner SOM. This increase should be quantifiable via systematic “lesioning”

studies that involve the deactivation of nodes in the output lattice and the “dener-

vation” of the network, that is, the cutting of connections from the input nodes to

the output lattice. The degree of damage to the network could then be related to

the network’s performance, for example, the frequency of classification errors if the

network was used for a pattern classification task. Lesioning studies could also be

used to further determine the validity of the one-shot multi-winner SOM as a compu-

tational model of information processing in biological cortex for which experimental

lesioning data is available that could be compared to lesioned model behavior.

In addition, it may be beneficial to the field of theoretical neuroscience to design

and carry out a study that quantitatively compares the results of past modeling

studies involving iterative multi-winner SOMs with the results obtained when a one-

shot multi-winner SOM is used as the model instead. Two candidate studies are Chen

and Reggia (1996) and von der Malsburg (1973). For both, implementation details

of the respective iterative multi-winner SOM and the training data are available. The

general issue that should be addressed is how the maps formed using the one-shot

multi-winner SOM compare to those formed by iterative multi-winner SOMs. Should

they be the same, then the one-shot multi-winner SOM provides a computationally

more efficient shortcut, allowing larger scale models of cortical map formation to be
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built and investigated. If the maps are different, then one needs to know in what

ways to see which type of SOM is a more accurate model of the biological reality.

The genetic multiobjective optimization of the network parameters of the sequence

processing one-shot multi-winner SOM yielded better performance in terms of the

unique spatial representation of input sequences. However, the ability of the network

to form feature maps was somewhat impaired (see Figure 5.4). An interesting basic

question is whether the inclusion of map formation as one of the objective functions

in the optimization process would restore or even improve the quality of the maps,

while still leading to improved performance with respect to the temporal processing

task.
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Appendix A

Results of Individual Training Runs

Each entry in Tables A.1 and A.2 summarizes the outcome of a single run during the

experiments described in Chapter 3 (each double-row holds the results for a single

experiment). An entry consists of the number of individual maps of the sensory

surface and, in the case of a multiple maps, subscripts that indicate, in order from

the lattice’s top to its bottom, the types of symmetry between adjacent maps: ‘m’ for

mirror symmetry, ‘g’ for glide reflection symmetry, and ‘r’ for rotational symmetry.

For example, 52m,g,r describes a lattice on which five well formed individual maps

of the sensory surface appeared where, from top to bottom, the first and second

maps as well as the second and third maps are mirror images of each other, the third

and fourth maps exhibit glide reflection symmetry, and the fourth and fifth maps are

rotationally symmetric.

In a small minority of runs, the network did not (completely) self-organize, that

is, training did not result in a lattice completely partitioned into distinguishable and

immediately adjacent maps, and these situations are indicated by question marks. In-

stead, parts of the SOM’s lattice remained disorganized. The position of the question

mark in entries with at least one number expression indicates the relative position on

the lattice at which self-organization failed. For example, an entry like 2r?2g denotes
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that the upper and lower parts of the lattice each formed two adjacent maps which

exhibited rotational and glide reflection symmetry, respectively, but that there is a

region in between the two map pairs where no recognizable self-organization took

place.

The right-most column contains the double-row-wise average number of individual

maps per lattice, and, as subscripts, the relative fractions of occurrence for each of

the three symmetry types. Entries containing a question mark do not contribute to

the average, but they do contribute to the relative fractions. The ‘grand total’ to the

bottom-right of the table provides the relative fractions of occurrence for each of the

three symmetry types over all experiments.
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Appendix B

Sequential Training Data

The words (nouns) used in this work are derived from the Snodgrass-Vanderwart cor-

pus (Snodgrass and Vanderwart, 1980) and their phonemes based on the NetTalk

corpus (Berndt et al., 1994; Sejnowski and Rosenberg, 1987). The Snodgrass-

Vanderwart corpus contains 260 names of physical objects (e.g., “apple”), from which

we eliminated all multiword names (e.g., “spool of thread”), words for which, in ex-

periments, subjects did not select the “correct” name for the corresponding picture

at least 90% of the time (using % Corr(1) in (Snodgrass and Yuditsky, 1996)), and

nouns that are not part of the NetTalk corpus. This leaves 175 nouns that we use as

training data. The phoneme sequences corresponding to the selected nouns are taken

from the NetTalk corpus. Altogether 27 consonants and 15 vowels and diphthongs

occur in the NetTalk corpus, for a total of 42 phonemes. Three of the consonants,

/ul/, /um/ and /un/, which rarely or never are part of a selected noun (14, 0 and 3

times), are not distinguished, but considered to be equivalent to /l/, /m/ and /n/.

Construction of distinctive feature vectors for each phoneme is challenging as

sometimes experts in phonology/phonetics/linguistics disagree on what an ideal set

of distinctive features should be (see, for example, (Frisch, 1996)). Our distinctive

features were not based on any modeling considerations, but on well-known previously

162



published feature sets. They provide a unique representation for each distinguished

phoneme that captures at least some of the regularities that make some phonemes

similar to others. All 34 components of a feature vector (input pattern), prior to

normalization, are binary valued: + for a present feature (numerical value 1.0), and

− for an absent feature (0.0); see Tables B.1, B.2 and B.3. The consonant features

were taken mostly from the Jakobson, Fant and Halle feature system (Jakobson

et al., 1951), (Singh, 1976, pp. 34–40), augmented for completeness with additional

phonemes (e.g., /r/) and features by S. Singh and colleagues (Singh and Black,

1966), (Singh, 1976, pp. 48–53). The vowel features include some of the same

features as consonants, plus features based upon the F1 and F2 formants, each

divided into six discrete frequency intervals (VH = very high, H = high, HM = high-

medium, M = medium, LM = low-medium, L = low), taken from (Paget, 1976).

The diphthongs such as /ai/ and /au/ were taken as the average of their two non-

diphthong components for simplicity.

For normalization, each feature vector is projected onto the unit hypersphere in

the next higher dimension. The additional component vr stores the minimal distance

between the original feature vector and the surface of the smallest hypersphere en-

closing all feature vectors: vr = r− ||~v||2 where r is the length of the largest feature

vector. The thus extended feature vectors are then normalized to unit length to pre-

vent input vectors with relatively large norms from having a greater influence on the

activation dynamics. The prior projection step preserves topological information such

as the nearest neighbor relation between the vectors.
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Table B.1: Distinctive Features: Vowels
IPA o a e u @ i I E æ 2 U O Ä ai @U

Keyboard code o ah ay oo uh- ee ih eh ae uh+ u aw er ai au
Consonantal . . . . . . . . . . . . . . .
Vocalic + + + + + + + + + + + + + + +
Compact . . . . . . . . . . . . . . .
Diffuse . . . . . . . . . . . . . . .
Grave . . . . . . . . . . . . . . .
Acute . . . . . . . . . . . . . . .
Nasal . . . . . . . . . . . . . . .
Oral . . . . . . . . . . . . . . .
Tense + + + + . + . . . . . . + + .
Lax . . . . + . + + + + + + . . +
Continuant . . . . . . . . . . . . . . .
Interrupted . . . . . . . . . . . . . . .
Strident . . . . . . . . . . . . . . .
Mellow . . . . . . . . . . . . . . .
+Voicing + + + + + + + + + + + + + + +
–Voicing . . . . . . . . . . . . . . .
+Duration . . . . . . . . . . . . . . .
–Duration . . . . . . . . . . . . . . .
+(Af)Frication . . . . . . . . . . . . . . .
–(Af)Frication . . . . . . . . . . . . . . .
Liquid . . . . . . . . . . . . . . .
Glide . . . . . . . . . . . . . . .
Retroflex . . . . . . . . . . . . + . .
F2,V H . . + . . + + . . . . . . . .
F2,H . . . . . . . + + . . . . + .
F2,HM . . . . + . . . . + . . + . .
F2,LM . + . . . . . . . . . . . . +
F2,L . . . . . . . . . . + + . . .
F2,V L/F1,V H + . . + . . . . . + . . . . .
F1,H . + . . + . . . + . . . . . .
F1,HM . . . . . . . + . . . + . . .
F1,LM + . + . . . . . . . . . + + +
F1,L . . . + . . + . . . . . . . .
F1,V L . . . . . + . . . . + . . . .
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Table B.2: Distinctive Features: Consonants, Part I
IPA p b m t d n Ù Ã k g f v T D

Keyboard code p b m t d n tch dj k g f v th– th+
Consonantal + + + + + + + + + + + + + +
Vocalic . . . . . . . . . . . . . .
Compact . . . . . . + + + + . . . .
Diffuse + + + + + + . . . . + + + +
Grave + + + . . . . . . . + + . .
Acute . . . + + + . . . . . . + +
Nasal . . + . . + . . . . . . . .
Oral + + . + + . + + + + + + + +
Tense + . . + . . + . + . + . + .
Lax . + . . + . . + . + . + . +
Continuant . . . . . . . . . . + + + +
Interrupted + + . + + . + + + + . . . .
Strident . . . . . . + + . . . . . .
Mellow . . . . . . . . + + . . + +
+Voicing . + + . + + . + . + . + . +
–Voicing + . . + . . + . + . + . + .
+Duration . . . . . . . . . . . . . .
–Duration + + + + + + + + + + + + + +
+(Af)Frication . . . . . . + + . . + + + +
–(Af)Frication + + + + + + . . + + . . . .
Liquid . . . . . . . . . . . . . .
Glide . . . . . . . . . . . . . .
Retroflex . . . . . . . . . . . . . .
F2,V H . . . . . . . . . . . . . .
F2,H . . . . . . . . . . . . . .
F2,HM . . . . . . . . . . . . . .
F2,LM . . . . . . . . . . . . . .
F2,L . . . . . . . . . . . . . .
F2,V L/F1,V H . . . . . . . . . . . . . .
F1,H . . . . . . . . . . . . . .
F1,HM . . . . . . . . . . . . . .
F1,LM . . . . . . . . . . . . . .
F1,L . . . . . . . . . . . . . .
F1,V L . . . . . . . . . . . . . .

165



Table B.3: Distinctive Features: Consonants, Part II
IPA s z S Z w r l j h N

Keyboard code s z sh zh w r l y h ng
Consonantal + + + + + + + + + +
Vocalic . . . . . + + . . .
Compact . . + + . . . . . +
Diffuse + + . . . . . . . .
Grave . . . . . . . . . .
Acute + + . . . . . . . .
Nasal . . . . . . . . . +
Oral + + + + + + + + + .
Tense + . + . . . . . + .
Lax . + . + . . . . . .
Continuant + + + + + . . . . .
Interrupted . . . . . . . . . .
Strident + + . . . . . . . .
Mellow . . . . . . . . . .
+Voicing . + . + + + + + . +
–Voicing + . + . . . . . + .
+Duration + + + + . . . . . .
–Duration . . . . + + + + + +
+(Af)Frication + + + + . . . . + .
–(Af)Frication . . . . + + + + . +
Liquid . . . . . + + . . .
Glide . . . . + . . + . .
Retroflex . . . . . + . . . .
F2,V H . . . . . . . . . .
F2,H . . . . . . . . . .
F2,HM . . . . . . . . . .
F2,LM . . . . . . . . . .
F2,L . . . . . . . . . .
F2,V L/F1,V H . . . . . . . . . .
F1,H . . . . . . . . . .
F1,HM . . . . . . . . . .
F1,LM . . . . . . . . . .
F1,L . . . . . . . . . .
F1,V L . . . . . . . . . .

166



Appendix C

Pairs of Confused Sequences

Table C.1: Pairs of Confused Sequences

30 by 20 map, 60 distinct training sequences

/h O r s/ (horse) /b a k s/ (box)

/n i d l/ (needle) /i g l/ (eagle)

/ai r n/ (iron) /k O r n/ (corn)

/s w E t Ä r/ (sweater) /h E l @ k a p t Ä r/ (helicopter)

/k 2 p/ (cup) /k o t/ (coat)

/k 2 p/ (cup) /k @U Ù / (couch)

/k @U Ù / (couch) /k o t/ (coat)

40 by 30 map, 175 distinct training sequences

/b E l/ (bell) /b E r/ (bear)

/f E n s/ (fence) /b a k s/ (box)

/f a k s/ (fox) /b a k s/ (box)

/f l ai/ (fly) /b @ t Ä r f l ai/ (butterfly)

/p æ n t s/ (pants) /f a k s/ (fox)

/f a k s/ (fox) /f E n s/ (fence)

/p æ n t s/ (pants) /f E n s/ (fence)

/t ai g Ä r/ (tiger) /s p ai d Ä r/ (spider)

/p æ n t s/ (pants) /b a k s/ (box)

/f l @UÄ r/ (flower) /f I N g Ä r/ (finger)

/p æ n t s/ (pants) /æ k s/ (axe)
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/k i / (key) /d a N k i / (donkey)

/b E l/ (bell) /b O l/ (ball)

/b o/ (bow) /b i / (bee)

/b a t l/ (bottle) /b i t l/ (beetle)

/h æ m Ä r/ (hammer) /f I N g Ä r/ (finger)

/h O r s/ (horse) /b a k s/ (box)

/k ai t/ (kite) /k o t/ (coat)

/h O r s/ (horse) /f a k s/ (fox)

/h æ m Ä r/ (hammer) /f l @UÄ r/ (flower)

/p æ n t s/ (pants) /h O r s/ (horse)

/2 n y @ n/ (onion) /l ai @ n/ (lion)

/h O r s/ (horse) /æ k s/ (axe)

/t @m e t o/ (tomato) /p @ t e t o/ (potato)

/l æ d Ä r/ (ladder) /f l @UÄ r/ (flower)

/k 2 p/ (cup) /k æp/ (cap)

/h O r s/ (horse) /f E n s/ (fence)

/s w E t Ä r/ (sweater) /f l @UÄ r/ (flower)

/r u l Ä r/ (ruler) /f l @UÄ r/ (flower)

/t ai g Ä r/ (tiger) /f l @UÄ r/ (flower)

/t ai g Ä r/ (tiger) /r u l Ä r/ (ruler)

/s p ai d Ä r/ (spider) /f l @UÄ r/ (flower)

/t ai g Ä r/ (tiger) /f I N g Ä r/ (finger)

/k æ t/ (cat) /k æ p/ (cap)

/b a k s/ (box) /æ k s/ (axe)

/s p ai d Ä r/ (spider) /r u l Ä r/ (ruler)

/s w E t Ä r/ (sweater) /r u l Ä r/ (ruler)

/s w E t Ä r/ (sweater) /f I N g Ä r/ (finger)

/s w E t Ä r/ (sweater) /t ai g Ä r/ (tiger)

/s w E t Ä r/ (sweater) /s p ai d Ä r/ (spider)

/p ai n æ p l/ (pineapple) /æ p l/ (apple)

/s w E t Ä r/ (sweater) /h æ m Ä r/ (hammer)

/t ai g Ä r/ (tiger) /h æ m Ä r/ (hammer)
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Kohonen, T., Mäkisara, K., and Saramäki, T. (1984). Phonotopic maps – insightful

representation of phonological features for speech recognition. In Proc Int Conf

Pattern Recognition, pages 182–5, Los Alamitos, CA. IEEE Computer Society

Press.

Kokkonen, M. and Torkkola, K. (1990). Using self-organizing maps and multi-layered

feed-forward nets to obtain phonemic transcriptions of spoken utterances. Speech

Communication, 9(5–6):541–9.

Kopecz, K. (1995). Unsupervised learning of sequences on maps with lateral con-
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