
Implementation of the MPL Compiler�yJan M. Rizzuto and James da SilvaInstitute for Advanced Computer StudiesDepartment of Computer ScienceUniversity of MarylandCollege Park, MD 20742February 14, 1995AbstractThe Maruti Real-Time Operating System was developed for applications that mustmeet hard real-time constraints. In order to schedule real-time applications, the timingand resource requirements for the application must be determined. The developmentenvironment provided for Maruti applications consists of several stages that use varioustools to assist the programmer in creating an application. By analyzing the source codeprovided by the programmer, these tools can extract and analyze the needed timing andresource requirements. The initial stage in development is the compilation of the sourcecode for an application written in the Maruti Programming Language (MPL). MPL isbased on the C programming language. The MPL Compiler was developed to providesupport for requirement speci�cation. This report introduces MPL and describes theimplementation of the MPL Compiler.
�This work is supported in part by ONR and DARPA under contract N00014-91-C-0195 to Honeywelland Computer Science Department at the University of Maryland. The views, opinions, and/or �ndingscontained in this report are those of the author(s) and should not be interpreted as representing the o�cialpolicies, either expressed or implied, of the Defense Advanced Research Projects Agency, ONR, the U.S.Government or Honeywell.Computer facilities were provided in part by NSF grant CCR-8811954.yThis work is supported in part by ARPA and Philips Labs under contract DASG60-92-0055 to Depart-ment of Computer Science, University of Maryland. The views, opinions, and/or �ndings contained in thisreport are those of the author(s) and should not be interpreted as representing the o�cial policies, eitherexpressed or implied, of the Advanced Research Projects Agency, PL, or the U.S. Government.1

1 IntroductionA real-time system requires that an application meet the timing constraints speci�ed for it.For hard real-time, a failure to meet the speci�ed timing constraints may result in a fatalerror [2]. Timing constraints are not as critical for soft real-time. The Maruti OperatingSystem was developed to meet the real-time constraints required by many applications. Inorder to schedule and run an application under Maruti, the timing and resource requirementsfor that application must be determined. The development environment for Maruti consistsof several tools that can be used to extract and analyze these requirements [2].The Maruti Programming Language (MPL) is a language developed to assist users increating applications that can be run under Maruti. MPL is based on the C programminglanguage, and assumes the programmer is familiar with C. MPL provides some additionalconstructs that are not part of standard C to allow for resource and timing speci�cation [1].In addition, when an MPL �le is compiled, some of the resource requirements can berecognized and recorded to an output �le. This output �le is used as input to the integrationstage, which is the next stage in the development cycle. During integration, additionaltiming requirements may be speci�ed.Previously, an MPL �le was compiled by �rst running the source code through theMaruti pre-compiler, which created a C �le that was then compiled using a C compiler [1].The pre-compiler extracted the necessary information, and converted the MPL constructsthat were not valid C statements into C code. This required the additional pass of thepre-compiler over the source code. We have created a compiler for MPL that integratesboth the actions of the pre-compiler and the compiler into one stage. In this report, wepresent MPL, and a description of the compiler we implemented. Section 2 de�nes theabstractions used in Maruti. In Section 3, the syntax of the constructs unique to MPL isde�ned. The details of the implementation of the compiler are given in Section 4. Section 5describes the resource information that is recorded during compilation. Conclusions appearin Section 6, followed by an Appendix containing a sample MPL �le, and the resourceinformation recorded for that �le.2 Maruti AbstractionsAn MPL application is broken up into units of computation called elemental units (EUs).Execution within an EU is sequential, and resource and timing requirements are speci�edfor each EU. A thread is a sequential unit of execution that may consist of multiple EUs.MPL allows threads of execution to be speci�ed by the programmer through several of theconstructs provided. A task consists of a single address space, and threads that execute inthat address space. Modules contain the source code of the application as de�ned by theprogrammer. An application may consist of several modules. During execution, modulesare mapped to one or more tasks.3 MPL ConstructsThere are several constructs de�ned in MPL that are not a part of standard C. Theseconstructs have been implemented in the MPL compiler.2

3.1 Module Name Speci�cationA module may consist of one or more source �les written in MPL. At the start of each MPL�le, the name of the module that the source �le corresponds to must be indicated. This isgiven by the following syntax:module-name-spec ::= 'module' <module-name> ';'.The module-namemay be any valid identi�er that is accepted by standard C. The modulename speci�cation must appear at the beginning of the source �le, before any other MPLcode. The speci�cation is not compiled into any executable code. It is simply used toindicate the module that the functions within the �le belong to.3.2 Shared Bu�ersA shared bu�er can be used to declare memory that may be shared by several tasks, topermit communication between the tasks. A declaration of a shared bu�er requires the typebe de�ned as with a variable declaration. The syntax of a shared declaration is:shared-buffer-decl ::= 'shared' <type-specifier> <shared-buffer-name>.The shared-buffer-name can be any valid identi�er, and the type-specifier can be anyvalid type for a variable. A shared declaration is compiled as a pointer to the type given inthe declaration of the shared bu�er, rather than the type given.3.3 Region ConstructsThe are two constructs used to allow for mutual exclusion within an application.3.3.1 Region StatementThe region statement is used to enforce mutual exclusion globally throughout an entireapplication, and is given by the syntax:region-statement ::= 'region' <region-name>{ mpl-statements }.The mpl-statements may be any number of valid MPL statements. These statementsmake up a critical section.3.3.2 Local Region StatementThe local region statement is used to enforce mutual exclusion within a task, and followsthe same syntax of the region statement:local-region-statement ::= 'local_region' <local-region-name>{ mpl-statements }.3

3.4 Channel DeclarationsChannels are used to allow for message passing within a Maruti application. Each channeldeclared has a type associated with it given by a valid C type-speci�er. This type indicatesthe type of data that the channel will carry.Channels may be declared in both entry and service functions, which will be de�nedbelow. The syntax for channel declarations is:channel-declaration-list-opt ::= { channel-declaration-list }.channel-declaration-list ::= channel-declaration { channel-declaration }.channel-declaration ::= channel-type channels ';'.channel-type ::= 'out' | 'in' | 'in-first' | 'in-last'.channels ::= channel { ',' channel }.channel ::= <channel-name> ':' type-specifier.3.5 Entry FunctionsAn entry function is a special type of function that may be de�ned in an MPL source �le.Each entry function corresponds to a thread within the application. The syntax for an entryfunction de�nition is:entry-function ::= 'entry' <entry-name> '(' ')' entry-function-body.entry-function-body ::= channel-declaration-list-opt mpl-function-body.3.6 Service FunctionsService functions are another type of special function supported by MPL. A service functionis invoked when a message is received from a client. Each service function de�nition requiresan in channel and message bu�er be included in the de�nition. The service function willbe executed when there is a message on the channel given in the de�nition. The de�nitionof a service function is similar to that of an entry function:service-function ::= 'service' <service-name>'(' <in-channel-name> ':' type_specifier ',' <msg-ptr-name> ')'service-function-body.service-function-body ::= channel-declaration-list-opt mpl-function-body.3.7 Communication Function CallsThere are several library functions used to allow for message passing within a Maruti ap-plication.3.7.1 Send CallsEach call to the send function must specify an outgoing channel for the message:void send (channel channel_name, void *message_ptr);4

3.7.2 Receive and Optreceive CallsBoth receive calls, and optreceive calls must be associated with an incoming channel (in,in �rst, or in last):void receive (channel channel_name, void *message_ptr);int optreceive (channel channel_name, void *message_ptr);A call to receive requires that there be a message on the incoming channel. Optreceiveshould be used when a message may or may not be on the channel. Optreceive checks forthe message, and returns a value indicating if a message was found.3.8 Initialization FunctionEach task has an initialization routine that is executed when the application is loaded. Thisfunction is speci�ed by the user with the following name and arguments:int maruti_main (int argc, char **argv)4 ImplementationWe started with version 2.5.8 of the Gnu C compiler. By modifying the source code forthe C compiler, we have created a compiler for applications written in MPL. In additionto what the standard Gnu C compiler does, this modi�ed compiler handles the additionalconstructs de�ned in MPL, and records information about the source code that is neededby Maruti. A source code �le written in MPL is speci�ed with an mpl extension.4.1 Modi�cations to GCC File StructureIn the process of modifying the compiler, some existing �les were modi�ed. In addition,some new �les were also created. The source code for version 2.5.8 of GCC allows compilersto be created for several di�erent languages: C, C++, and Objective C. The GCC compileruses di�erent executable �les for the di�erent languages that it compiles. There are separate�les for C, C++, and Objective C (cc1, cc1plus, cc1obj). The GCC driver, gcc.c, uses theextension of the source �le speci�ed to determine the appropriate executable (and thereforelanguage) to compile the source �le. The driver then executes the compiler, passing on theappropriate switches. The driver was modi�ed to accept input �les with an mpl extension.Cc1mpl is the new executable that was created to compile MPL source �les. When a �lewith an mpl extension is speci�ed as a source �le to be compiled, this new executable �le isused. When an MPL �le is compiled, it automatically passes on the switch -Maruti output,which indicates that the needed output should be recorded to a �le with an eu extension.The executable �les for each language are composed of many object �les. Some of these�les are common to all the languages, and some of the �les are language-speci�c. Thelanguage-speci�c �les added for compiling MPL �les are those �les with an mpl- pre�x.Gperf is a tool used to generate a perfect hash function for a set of words. Gperf is usedto create a hash function for the reserved words for each language. The �les containingthe input to gperf are indicated by a �le name with a gperf extension. There are severaldi�erent *.gperf �les containing the reserved words for the di�erent languages recognized by5

the compiler. The mpl-parse.gperf �le contains all the reserved words for C, in addition tothose added for MPL. For each language, the output from running gperf is then incorporatedinto the *-lex.c �le. This output includes a function is reserved word() that is used to checkif a token is a reserved word. The �le mpl-lex.c is basically the c-lex.c �le, with the outputof running gperf on mpl-parse.gperf instead of c-parse.gperf.The �le maruti.c contains the routines that have been written to implement MPL. This�le is linked in with the executable for all of the languages, to prevent unde�ned symbolerrors from occuring. Calls to the routines contained in this �le occur in both the language-speci�c, and the common �les. The
ag maruti dump is set in main() to indicate whetherinformation about the source code should be recorded to the appropriate output �le. This
ag prevents calls to the routines in maruti.c which are made in the common �les fromoccuring for the languages other than MPL. The �les containing these calls are:� calls.c� explow.c� expr.c� function.c� toplev.cThere are several reasons why the new language-speci�c �les have to be created forMPL. The �les mpl-lex.h and mpl-lex.c needed to be created for MPL because MPL containsseveral additional reserved words not present in C, as mentioned earlier. The �le c-common.crelies on information in the header �le c-lex.h. Since MPL uses mpl-lex.h, mpl-common.cincludes mpl-lex.h, instead of c-lex.h. Bison is a tool that allows a programmer to de�nea grammar through rules, and converts them into a C program that will parse an input�le. The *-parse.y �les are the bison �les used to create the grammar to parse a source�le. Since the grammar for MPL needed to be modi�ed to accept the additional constructs,the mpl-parse.y �le was created. There is one function used in compiling MPL source �lesthat is de�ned in mpl-parse.y, instead of maruti.c. This function needed to access the staticvariables declared in mpl-parse.y, and in order to do so, the function de�nition was placedin that �le. Finally, the �le mpl-decl.c was created, because of its dependence on mpl-lex.h,and also to allow for an additional type speci�cation used in MPL.4.2 Compiling MPL ConstructsMPL extends the C language to allow for various constructs. In order to implement theseextensions, the grammar used to recognize C in GCC had to be extended. The followingare recognized as reserved words for MPL, in addition to the standard reserved words for C:shared, region, local region, module, in, out, in �rst, in last, entry, service, send, receive,and optreceive. The keywords in and out were reserved words in the c-* �les, becausethey are used by Objective C, but in MPL they are used as channel types. In addition tothe new reserved words, rules were added and modi�ed resulting in the rules in mpl-parse.y.4.2.1 Module Name Speci�cationA rule was added to the grammar to parse the module name speci�cation in an MPL �le.The rule for a whole program was also modi�ed to include this module statement. Thisrule expects the module statement to appear before any other de�nitions. Since the module6

name speci�cation does not result in any executable code, the only action taken is to recordthe module name given by the programmer.4.2.2 Shared Bu�ersThere are no rules added to the grammar for a shared bu�er declaration. When a variabledeclaration is parsed, a tree is created that keeps track of all the speci�cation informationgiven for that declaration. For example, typedef and extern are two of the possible typespeci�cations. The token shared is recognized as a type speci�cation, just as typedef andextern are recognized. When a declaration is made, these speci�cations are processed inthe function grokdeclarator() in mpl-decl.c. When a shared speci�cation is encountered,the declaration is converted to a pointer to the type speci�ed, instead of just the typespeci�ed. Other than this conversion to a pointer, the declaration is compiled just as anyother declaration would be compiled in C.4.2.3 Region ConstructsThe region constructs are considered statements in MPL. Several rules were added to parsethese constructs, and the region and local region statements were added as options for avalid statement in the grammar for MPL.Both region and local region statements are compiled in the same manner. Each regionhas a name, and a body which is the code within the critical section. In order to protectthese critical sections, calls are made to the Maruti library function maruti eu(). When aregion is parsed, the compiler generates two calls to maruti eu(), in addition to the codein the body of the region. The �rst call is generated just before the body, and the secondcall just after. These calls are generated through functions in maruti.c. The functions arebased on the actions that would have been taken, had the parser actually parsed the callsto maruti eu() in the source �le.4.2.4 Channel DeclarationsThe rules added for a channel declaration allow any number of channels to be declared ineither an entry or a service function. Each channel declaration requires several pieces ofinformation:� Channel-type� Channel-name� Type speci�er indicating the type of data that channel carriesA linked list of declared channels is maintained. For each declared channel the followinginformation is saved:� Channel-name� Type information1. Size in bytes2. String encoding the type of the data� Channel-id 7

The channel-id is a unique identi�cation number assigned to each declared channel.Channel declarations do not add to the compiled code. The channels are not allocatedmemory. The information describing each channel is simple stored in the linked list. Duringcompilation, whenever a channel is referenced, the appropriate information is obtained fromthis list.4.2.5 Entry FunctionsEntry function de�nitions are compiled di�erently than other function de�nitions. An entryfunction would appear in an MPL �le in the following form:entry <entry_name> ()<channel_declaration_list_opt>{ <mpl_function_body>} Where entry name is an identi�er that is the name of the entry function, thechannel declaration list opt contains any channels the user wants to de�ne for that func-tion, and mpl function body is any function body that would be accepted as a de�nition ina standard MPL function. Semantically the entry function is equivalent to the followingMPL code:_maruti_entry_name (){ while(1){ maruti_eu();entry_name () ;}}entry_name (){ mpl_function_body} An entry function is compiled into two functions, as if the two functions given above hadbeen part of the source �le. Essentially, the �rst function is just a stub function that callsmaruti eu(), then calls the second function compiled. As with generating function calls,the routines to generate the code for entry function de�nitions are based on the actionsthat would have been taken had the parser actually parsed the code for the two separatefunctions.4.2.6 Service FunctionsService functions de�nitions are handled very much like entry function de�nitions. Thesyntax of a service function di�ers slightly from that of an entry function, since it requiresthat an incoming channel and a message bu�er be de�ned:8

service <service_name> (<in_channel_name> : <type_specifier>, <msg_ptr_name>)<channel_declaration_list_opt>{ <mpl_function_body>} Like the entry functions, service functions are semantically equivalent to two functions,where one is simply a stub function calling the second function that is generated:_maruti_service_name (){type_specifier _maruti_msg_ptr_name ;while(1){ if (optreceive (_maruti_in , id , & _maruti_msg_ptr_name, size)){ service_name (& _maruti_msg_ptr_name);}}}service_name (msg_ptr_name)type_specifier *msg_ptr_name;{ mpl_function_body} The service name, channel declaration list, and mpl function body are all the sameas described previously for entry functions. In addition, service functions have two otheritems speci�ed in their de�nitions. The �rst is a channel. Every service function requiresa channel be speci�ed. This channel is always declared as an in channel with the namein channel name. The type is given by type specifier as if it had been declared in thechannel declaration list. The channel is used to invoke the service function. This inchannel is used by the optreceive in the stub function that calls the function containing theservice function body. When a message is received on this channel, the service function isexecuted. The second additional item is a message bu�er used by the service function. Thename of this message bu�er is given by msg ptr name, the type is given by type specifier.This bu�er is used to hold the message received from the client that invoked the servicefunction, and is passed to the second function containing the body of the service function.4.2.7 Communication Function CallsThere were three library functions provided for message passing mentioned previously: send,receive, and optreceive. Function calls to any of these three library functions are handleddi�erently than other function calls. In the MPL grammar, send, receive, and optreceiveare all reserved words. The MPL syntax for all of these calls is the following:<function-name> (<channel-name>, <parameter-2>);9

Channel-name should be a previously declared channel, and parameter-2 should be apointer. These function calls must be compiled di�erently, since these are not the actualparameters used when the call is generated. In the case of a call to send, the actualparameters must be as follows:send (<channel-id>, <parameter-2>, <channel-size>);In the case of a call to either receive, or optreceive, the parameters required are:receive | optreceive (<channel-type>, <channel-id>, <parameter-2>, <channel-size>);The channel-type for a receive or optreceive call is an integer generated by the compilerthat will indicate an in, in �rst, or in last channel.When one of these three function calls are encountered, there are special rules in thegrammar to handle it. A function in maruti.c is called which generates the appropriateparameters, and then the function call itself. These function calls are generated as men-tioned above for the calls to maruti eu(). The channel-name speci�ed by the user is usedto obtain the necessary parameters. Given the channel name, the linked list of channels issearched to �nd the corresponding channel, then the channel-id and the channel-size areobtained from that node in the linked list. There is also some type checking done at thisstage. The compiler veri�es that only an outgoing channel is speci�ed for a send call, or anincoming channel for the receive and optreceive calls. The compiler also checks that anychannel referenced has been previously de�ned.The grammar for MPL was modi�ed so that a call to any of the communication functionsmay occur anywhere that a primary expression occurs, since that is where other functioncalls are permitted to occur.4.2.8 Initialization FunctionThe user-de�ned function maruti main() is compiled as an ordinary C function.5 PEUG FileThe source code of an MPL �le is broken up into elemental units. Each elemental unitidenti�es the resources that it requires. These elemental units are used later in the develop-ment process for scheduling the application. The output �le created by the MPL compilercreates a Partial Elemental Unit Graph (PEUG) for the given source �le. The name of this�le is the name of the source �le, with the mpl extension replaced by an eu extension.There are several di�erent types of information recorded in this PEUG �le.5.1 Module NameThe �rst line in the output �le indicates the name of the module, and will appear as:peug <module-name>The module-name is taken directly from the module name speci�cation given in the MPLsource �le. 10

5.2 File NameThe second line in the source �le indicates the name of the target �le that is created by thecompiler, where file-name is the target:file <file-name>5.3 Shared Bu�ersEach time a shared bu�er is declared its name and type information is recorded to theoutput �le:shared <shared-buffer-name> : (type-description-string>, <type-size>)The type-description-string and type-size of a shared bu�er is obtained from thetype speci�cation, and is represented in the same manner as the type and size for a chan-nel. Although the shared bu�er is actually a pointer to the type it is declared as, thetype-description-string represents the object being pointed to, and not the pointer itself.5.4 Entry, Service, and User Function De�nitionsIn MPL, a user may de�ne ordinary functions in addition to the entry and service functionsthat are permitted in MPL. For each entry, service or ordinary user-de�ned function, thereis an entry in the output �le. This entry has the following format:<function-type> <function-name>...size <stack-size>Function-type can be either function, entry, or service, indicating which type of functionis being de�ned. Function-name is the declared name of the function in the source �le.Stack-size is the maximum stack size needed by this function. This stack-size includes thearguments pushed onto the stack preceding any function calls occuring within the functionbody. There will also be other information concerning the body of the function that willappear between the function-name, and the stack-size. The entry for the maruti main()function will be the same as those for other user de�ned functions. Entry and servicefunctions will contain some additional information not applicable to ordinary functionsthat will be described below.5.4.1 ChannelsFor each channel that is declared, a description of the channel is written to the output �le.These descriptions will occur right after the statement indicating the name of the currentfunction:<channel-type> <name> : (<description-string>, <size>)11

The channel-type and channel-name will be the type and name speci�ed in the source�le. The description-string and size are based on the type speci�cation in the channeldeclaration. Channel descriptions will occur only in entry and service functions. A servicefunction will always contain at least one channel description, since the syntax of a servicefunction requires a channel be named in the de�nition. A channel description will also beoutput for every send, receive, and optreceive call, since these calls require a channel as oneof their parameters.5.4.2 Function CallsEach time a function call is parsed, there will be a line in the output �le:calls <function-name> {in_cond} {in_loop}This line indicates where a function call occurs, and which function is being called. Thein cond and in loop indicate if this function call appears within a conditional statement orwithin a loop. These labels will be seen only if their respective conditions are true.5.4.3 Communication Function CallsAny call to a communication function is recorded similarly to other function calls. There isa line indicating the name of the function, as shown above for a function call. In addition,there will be a line describing the channel associated with that communication function call.This line will appear just as the line for the channel de�nition described above appears.5.4.4 EU BoundariesThe output �le for an MPL source �le indicates where each elemental unit (EU) begins bythe following:eu <N> {region_list}The N indicates an EU number. Each EU within a source �le has a unique number.There are several places where EU boundaries are created:� Start of a function� Start of a region� End of a region� Explicit calls to maruti eu()The initial EU occuring at the beginning of a function that is not a service or entry functionis a special case. This is always labeled as \eu 0" in the output �le, and does not representan actual EU.Each EU may also be followed by a list describing one or more regions. This listrepresents the regions that this EU occurs within. The description of a region appears as:(region-name instance access type)The region-name is just that given by the user, and the type indicates if a region is local(local region construct) or global (region construct). The access indicates if the access isread or write. The instance indicates the instance of this region within the source �le.Each instance for a region within a source �le is unique.12

6 ConclusionsBasing MPL on C has simpli�ed the development of both the language and its compiler.The language is easy to learn for any programmer that has used C before, since thereare a limited number of additional constructs unique to MPL. Using the GCC C sourcecode provided an existing compiler, rather than implementing a new one. The source codefor GCC only needed to be modi�ed to handle some additional constructs, and producesome additional output. This made the implementation fairly simple. However, the GCCC compiler also provides some functionality that is not needed by MPL. Much of thisfunctionality provided is not even permitted. These restrictions are not enforced by thecompiler, but should be detected within the development cycle.Prior to the development of the MPL compiler using GCC, compiling an MPL source�le required two steps. The source �les were initially passed through a pre-compiler toextract the available resource information and parse the MPL constructs. The pre-compilerwas responsible for converting the MPL code into valid C code, which was then compiledusing a standard C compiler. The new implementation of the compiler eliminates someof the redundant processing that is done when the pre-compiler is used. The informationobtained through the pre-compiler already existed in the internal structure used by the GCCcompiler. This information just needed to be recorded. Instead of parsing source code �lesin the two steps independently, the functionality of the pre-compiler has been incorporatedinto the compiler itself. The MPL compiler provides a single tool that extracts all theavailable information at the initial stage of develpment.In the future, a version of MPL may be implemented that is based on the Ada pro-gramming language. GNAT is a compiler for Ada 9X that is being developed at NYU.GNAT depends on the backend of the GCC compiler. Using the source code for GNAT,an implementation of MPL based on Ada would be similar to the current implementationbased on C.
13

AppendixA MPL FileThe following is a sample of MPL source code:module timer;typedef struct {int seconds;int minutes;int hours;} time_type;shared time_type global_time;maruti_main(argc, argv)int argc;char **argv;{global_time->seconds = 0;global_time->minutes = 0;global_time->hours = 0;return 0;}entry update_second()out disp : time_type;{time_type msg;region time_region {global_time->seconds++;if (global_time->seconds == 60)global_time->seconds = 0;msg = *global_time;}send (disp, &msg);}entry update_minute()out display : time_type;{time_type msg;region time_region {global_time->minutes++; 14

if (global_time->minutes == 60)global_time->minutes = 0;msg = *global_time;}send (display, &msg);}entry update_hour()out display : time_type;{time_type msg;region time_region {global_time->hours++;if (global_time->hours == 24)global_time->hours = 0;msg = *global_time;}send (display, &msg);}service display_time(inchan : time_type, time){printf("Current Time: %d : %d : %d", time->hours, time->minutes, time->seconds);}

15

B PEUG FileThe corresponding PEUG �le for the source code above is:peug timerfile timer.oshared global_time : ($(iii), 12)function maruti_maineu 0size 4entry update_secondout disp : ($(iii), 12)eu 2eu 3 (time_region 1 W global)calls maruti_eueu 4 calls maruti_eucalls sendout disp : ($(iii), 12)size 32entry update_minuteout display : ($(iii), 12)eu 5eu 6 (time_region 2 W global)calls maruti_eueu 7 calls maruti_eucalls sendout display : ($(iii), 12)size 32entry update_hourout display : ($(iii), 12)eu 8eu 9 (time_region 3 W global)calls maruti_eueu 10 calls maruti_eucalls sendout display : ($(iii), 12)size 32service display_timein inchan : ($(iii), 12)eu 11 calls optreceivein inchan : ($(iii), 12)calls printfsize 52 16

References[1] James da Silva, Eric Nassor, Seongsoo Hong, Bao Trinh, and Olafur Gudmundsson.Maruti 2.0 Programmer's Manual. Unpublished.[2] Manas Saksena, James da Silva, and Ashok Agrawala. Design and Implementation ofMaruti-II. In Sang H. Son, editor, Advances in Real-Time Systems, chapter 4. PrenticeHall, 1995.[3] Richard Stallman. The GNU C compiler, version 2.5.8., Manual. Info �le obtained fromgcc.texi in source code distribution.

17

