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Chapter 1 
 

Introduction 

Operations in low Earth orbit introduce many challenges, whether they involve 

human astronauts, remotely operated equipment, or autonomous or semi-

autonomous systems.  Inertial navigation is a key enabling technology common 

to all space operations.  Because of extremely high costs associated with 

launching equipment into space, systems must be thoroughly tested to ensure 

proper function, but such testing is often difficult, due to the challenge presented 

by recreating the space environment on Earth, especially conditions of 

weightlessness and free motion capability in three dimensions.  The Space 

Systems Laboratory (SSL) at The University of Maryland uses underwater 

neutral buoyancy simulation of space activities as a way of researching 

techniques and equipment for use in orbital operations.  Other techniques to 

simulate weightlessness exist, such as air bearing tables [1], aircraft following 

special parabolic trajectories (e.g. NASA’s KC-135) [2], drop towers [3], overhead 

weight-bearing cables [4], and six-degree-of-freedom (6DOF) gantry robot 

manipulators [5].  None of these techniques, including neutral buoyancy, meet all 

of the desirable criteria for weightlessness simulation, but neutral buoyancy 

testing is the only way to conduct long-duration, full-scale, free flight, three-

dimensional simulations of weightlessness on Earth.   
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Since many space systems have 6DOF navigation requirements – three DOF for 

system inertial attitude, three DOF for system inertial or relative position – it is 

important for neutral buoyancy analogs of space systems to possess similar 

navigational capabilities.  Implementation of rotational navigation systems on 

neutral buoyancy robots has been achieved [6][7] through the use of an on-board 

inertial measurement system (IMU) analogous to those found on aircraft and 

undersea vehicles, but a robust translational navigation system, has proven more 

elusive, with limited successes achieved with variants of an acoustic positioning 

system [7][8][9].  The typical technology choices for inertial, translational 

navigation– GPS [10] for outdoor applications, Pseudolite [11] systems for indoor 

applications – are not suitable due to signal attenuation in water.     

 

This thesis describes efforts made to extend the testing capability of Earth-based 

space simulation by providing an accurate inertial navigation capability for a 

neutral buoyancy environment.  This document describes the development of a 

vision-based inertial positioning system that provides, in real-time, a full 

translational state estimate (inertial position and velocity) to SCAMP SSV 

(Supplemental Camera and Maneuverability Platform - Space Simulation 

Vehicle), a free-flying neutral buoyancy robot used to simulate autonomous and 

teleoperated spacecraft.  The key developments presented herein include an 

accurate vision system calibration technique, and an Extended Kalman Filter for 

the three vehicle translational DOF that merges processed camera 

measurements with dynamic information from robot telemetry to create an 
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optimal state estimate.  Results from underwater testing are also presented that 

characterize the accuracy of the system.    

 

1.1 Description of Problem  
 
The goal of the work described in this thesis is to field a functional and accurate 

vision-based inertial navigation system for a neutral buoyancy environment.  For 

this work, VPS hardware was installed and tested in the University of Maryland’s 

Neutral Buoyancy Research Facility (NBRF), and the tracked “target” requiring 

inertial navigation was a free-flying robotic vehicle known as SCAMP SSV 

(Supplemental Camera and Maneuvering Platform).  SCAMP SSV [6], pictured 

below, was designed as a high-fidelity neutral buoyancy simulation of a rigid, free 

flying, 6DOF teleoperated robotic camera platform capable of performing critical 

inspection tasks in space.   
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Figure 1.1 SCAMP SSV in free flight in the NBRF 
 
 
Because SCAMP SSV has both an onboard computer and an onboard IMU that 

together calculate rotational state feedback (inertial orientation and body angular 

rates), standard closed loop control techniques are used to cause SCAMP SSV 

to autonomously hold a desired attitude, or to follow a desired attitude trajectory 

over time.   

 

To enable closed-loop translational control of SCAMP SSV, a step toward semi-

autonomous or autonomous operation, accurate inertial position and velocity 

feedback is required. Some work has been done on a vision-based relative 

navigation system for SCAMP SSV using a commercially available color tracking 

system to enable identification of a specially colored target [12].  This approach, 

however, requires a “leader” that must be kept in view at all times.  In previous 
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work, an acoustic positioning system was deployed that provided an inertial 

navigation capability for other robots in the neutral buoyancy environment 

[7][8][9].  However, this system was challenged with multi-path reflections in the 

enclosed tank environment and by the requirement to place a substantial amount 

of support hardware on each tracked vehicle.  

 

Previous research [13] established a baseline vision-based inertial navigation 

system for the NBRF known as The Vision Positioning System (VPS).  The goal 

of this previous effort was to accurately (single-digit cm-scale) calculate the 

inertial 3-dimensional (3D) translational motion of SCAMP SSV, with direct 

camera-based position estimates and velocities inferred by differentiation.  VPS 

was originally comprised of eight CCD TV cameras, rigidly mounted underwater 

to the walls of the NBRF.  A single computer on the surface, using a high-speed 

frame grabber, sampled the video signals and processed the resulting images to 

calculate vehicle position.  In previous work, 3D positions were computed from 

individual images, with centroid providing local (camera) X and Y coordinate 

estimates, and local range (Z coordinate) based on tracked object image area.  

Each local 3D estimate was then transformed into a global frame.  Camera 

measurements were then combined with a least-squares algorithm. 

 

In order to be deployed as an accurate inertial navigation system, the baseline 

VPS previously developed required two fundamental enhancements, the 

contributions of this thesis:  accurate characterization of internal and external 
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camera calibration parameters, and a real-time image processing and Extended 

Kalman Filter algorithm capable of combining camera measurements with 

dynamic information provided by the robot into position and velocity estimates.   

 

Previously, of the five internal camera calibration parameters typically considered 

when using consumer-grade CCD TV cameras for machine vision, only one, 

focal length, had been measured.  All six external calibration parameters had 

been considered, but the technique used to find them was not sufficiently 

accurate or robust to disturbances (e.g. water currents).  This work describes a 

robust method to compute the internal and external parameters, as well as test 

results that characterize calibration accuracy and measurement repeatability. 

 

An Extended Kalman Filter was implemented to merge camera measurements 

and vehicle dynamics into real-time state estimates.  This required derivation of 

filter equations and integration of all data from frame grabbers, SCAMP SSV, and 

the control station) and will enable full 6DOF closed-loop vehicle control in the 

future.   

 

1.2 Solution 

With the overall goal of fielding VPS as a functional inertial navigation system for 

a neutral buoyancy simulation environment, work towards that goal was divided 

into three main categories.   
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1) Development of a new VPS calibration technique: A new, two-step 

calibration technique was developed, using algorithms and software that 

are standard in the computer-vision community.  Five internal and six 

external camera parameters were characterized, and the accuracy of 

these parameters was also estimated.   

2) Implementation of a real-time optimal state estimator (EKF): An Extended 

Kalman Filter was implemented in the SCAMP SSV control station 

software that combines the VPS position measurements with current 

vehicle dynamic data to form an optimal, real-time estimate of the position 

and velocity of SCAMP SSV.   

3) Integration of the complete system:  Communication systems between the 

VPS component programs were implemented to enable real-time data 

flow, and structures were put in place to allow subsequent implementation 

of 6DOF closed-loop control on SCAMP SSV. 

 

1.3 Outline 

This thesis describes the development and deployment of VPS as a functional, 

moderately accurate inertial navigation system for SCAMP SSV, focusing on the 

categories listed above.  

 

Chapter 2 provides a brief introduction to the hardware and software components 

that comprise VPS, followed by Chapter 3 that provides background about 

camera models and the related problem of camera calibration.  Chapter 4 
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contains a detailed description of the hardware and image processing algorithms 

required for VPS calibration, while Chapter 5 describes the software architecture 

and algorithms for continuously sampling and processing image and sensor data 

required to create the optimal translational state estimates.  Chapter 6 introduces 

the Extended Kalman Filter algorithm and provides details about its application to 

VPS.  Chapter 7 presents inertial state estimation results for SCAMP SSV, from 

both piloted flight and stationary (static) test series.  Chapter 8 concludes the 

thesis and identifies directions for future development of VPS. 
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Chapter 2 

Vision Positioning System Background 

This chapter describes the major system components of VPS, including 

hardware, software, and computer elements. 

 

2.1 System Hardware 
 
The Neutral Buoyancy Research Facility at The University of Maryland is a 

cylindrical, fiberglass tank of water, 7.62 m (25’) deep and 15.24 m (50’) in 

diameter.  The water is filtered for exceptional visual clarity and maintained at 

approximately 32 deg. C (90 deg. F).  There are 12 brackets, or “hard points”, 

built into the fiberglass of the tank wall.  These provide rigid mounting points for 

equipment that is to be placed in the water.  There is a ring of four hard points, 

spaced at approximately 90° intervals, near the surface of the water, a similar 

ring at mid-depth, and a final ring near the bottom of the tank.  The top and 

bottom hard points are approximately aligned with each other, while the middle 

ring hard points are rotated 45 degrees with respect to the others.  It is to the top 

and middle rings that the VPS camera boxes are attached because of the 

potential for cameras on the bottom hard points having their views blocked by 

hardware resting on the bottom of the tank.  Currents in the tank introduced by 

natural convection and the water-heating system are minimal but not negligible, 

and can introduce significant disturbance forces on unsupported, floating objects. 
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2.1.1 Description of Cameras and Camera Coverage 

Two types of CCD TV cameras are used as sensors in VPS: the Elmo TSE401 

black and white security camera, and the Elmo TNC4614DN color security 

camera.  The CCD chip in both models is 4.88 mm x 3.66 mm, with 768 sels (or 

“sensing elements”) in the horizontal direction, and 494 sels in the vertical 

direction.  When in use, each camera is sealed in a waterproof box designed and 

manufactured by SSL personnel.  Pictured below in Figures 2.1 and 2.2 mounted 

in the NBRF, these camera boxes consist of a white PVC tube, and two DelrinTM 

end plugs that seal on the inner diameter of the PVC tube with radial o-rings.  

One end plug has a clear, flat PlexiglasTM window that seals with an axial o-ring, 

providing a minimally-distorted camera viewing port1.  The other end plug has an 

opening for passing the camera’s video (standard co-axial) and power cables out 

of the camera box.  The opening is sealed with epoxy.  All parts of the camera 

box that come in contact with the water are epoxy, a type of plastic, or stainless 

steel (the fasteners).  The camera boxes on the middle ring are mounted to point 

radially inward, while the boxes on the top ring are fitted with a single pivot axis, 

allowing the cameras to be tilted down.  This increases the amount of the tank 

that is visible to the top ring cameras, which otherwise would have a large portion 

of their fields-of-view (FOV) occupied by the surface of the water.   

       

                                                 
1 Previous designs saw anodized aluminum contacting the water.  Anodic corrosion on the 
aluminum, due to its contact with the stainless steel, made this design not suitable for long-term 
submersion in the NBRF.   
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Figure 2.1 Bottom ring VPS camera 
 

 

Figure 2.2 Top ring VPS camera 
 

ade 

Cables carrying both power and the video signal run from the camera boxes to 

the surface of the water, and then along handrails to terminal blocks.  DC power 

is provided to the terminal blocks from a wall electrical outlet via a medical-gr
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isolation transformer.  The video signals are carried from the terminal blocks b

another set of co-axial cables to the computers that perform the vision 

processing operations.   

 

Camera coverage in the NBRF is not consistent throughout the tank, but varies 

with position.  A significant portion of the center of the tank is visible by all e

cameras, while some areas (such as the center of the tank near the top and 

bottom) are not visible by any cameras.  The cameras were each aimed and 

focused by hand, and no measures were taken to ensure symmetrical coverage 

since there were no requirements for such actions.  Therefore, the cameras ha

varying focal lengths and aiming points, causing a

y 

ight 

ve 

symmetrical tank coverage.  

or example, this can be seen in Figure 2.4.  Camera 2, mounted on the middle 

ring and aimed radially from West to East, is focused more widely than the 

camera opposite it, camera 4. This means that camera 2 sees more of the tank 

than camera 4, but camera 4 will provide slightly better resolution due to its more 

narrow focus.  Figures 2.3 through 2.7 show the camera coverage at the depths 

3’ (0.91m), 7’ (2.13m), 12.5’ (3.81m), 18’ (5.49m) and 22’ (6.71m).  Table 2.1 

contains the legend for the tank coverage maps. 

 

F
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Table 2.1 Legend for tank coverage maps 

Symbol Camera Coverage  
(# cams.) 

+ 0 
• 1 

 2 
 3-4 

x 5-6 
* 7-8 
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Figure 2.3 Camera coverage, depth = 3’ 
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Figure 2.4 Camera coverage, depth = 7’ 

-8000 -6000 -4000 -2000 0 2000 4000 6000 8000
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

Global X axis (mm)

lo
b

 a
xi

s 
(m

m
)

N

S

EW

Figure 2.5 Camera coverage, depth = 12.5’ 
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Figure 2.7 Camera coverage, depth = 22’ 
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2.1.2 Description of SCAMP SSV 

With appropriate object recognition software, VPS could theoretically track any 

object in the tank.  However, the goal for this work was to specifically provide 

inertial navigation for SCAMP SSV, the Supplemental Camera and Maneuvering 

Platform, Space Simulation Vehicle.  SCAMP SSV is one of two SCAMP-class 

robots currently operational at the SSL. The SCAMP-class robots were built to 

provide roving camera views for larger simulations, simulate teleoperated and 

autonomous inspection missions as an underwater analogue to NASA JSC’s 

AERCam [14], and to serve as a test bed for experiments in spacecraft guidance, 

navigation and control.  They are also capable, with some simple modifications 

such as the addition of a tool carrier, of acting as limited astronaut assistants in 

VA simulation.  SCAMP SSV is shown below in Figure 2.8, and with its two side 

d to the 

s.  

E

access covers removed in Figure 2.9. 

 

SCAMP SSV has a hull made of welded, black-anodized aluminum which, when 

assembled, forms a nearly spherical, 26-sided closed polyhedron.  A housing for 

a video camera, which provides the onboard view necessary for a pilot to fly the 

robot, protrudes from the top-front section of the vehicle.  Six bi-directional 

thrusters, aligned in pairs along the body axes of the vehicle, are mounte

hull.  The end caps are rapidly assembled onto the hull by pressurizing 

pneumaseals, and equipment access panels are attached with seal screw

When properly balanced, SCAMP SSV is neutrally buoyant in water in both 
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translation (it neither sinks nor floats) and in rotation (it has no preferred 

orientation), providing the free 6DOF motion that simulates a spacecraft on orbit.     

 

 

Figure 2.8 SCAMP SSV above the NBRF 
 

The central electronics compartment contains the computer stack and the IMU.  

The computer is a 100 MHz Compact PCI Power PC running the VxWorks real-

time operating system, version 1.0.1.  The IMU includes a triaxial accelerometer 

to sense the gravity vector, a triaxial magnetometer to sense the magnetic north 

vector, and three rate gyros, aligned along the body axes of the robot, to sense 

angular velocity.  These sensors, with an A/D board on the computer stack, allow 

SCAMP SSV to compute in real-time an accurate estimate of its inertial 

orientation.  Control algorithms implemented in the onboard flight code allow 
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SCAMP SSV to autonomously hold or track desired attitudes or attitude 

trajectories.  The computer stack also contains LM629-based motor controller 

boards for each of the six thrusters.   

 

 

Figure 2.9 SCAMP SSV with side access covers removed 

ixteen 6V batteries on board the robot provide power to the electronics and 

thrusters.  The batteries are arranged into a 30V control power pack, and three 

 

S
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12V packs, each powering a pair of thrusters.  A final 12V battery pack powers 

r-

ble 

 

the onboard camera. 

 

Communication to and from a surface control station computer occurs over fibe

optic cables, with a single fiber video uplink, and a dual fiber pair for Ethernet-

based data communications.  A pilot controls SCAMP SSV from the control 

station pictured below in Figure 2.10, using the video view from the on board 

camera, a GUI showing telemetry data, and two analog hand controllers to issue 

motion commands.  This control station is known as ReCS, the Reconfigura

Control Station. 

 

Figure 2.10 SCAMP SSV control station, ReCS 
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The hand controllers are standard for space shuttle operations, with the one on 

the left controlling translation, while the one on the right controls rotation.  The 

UI, shown in Figure 2.11, displays real-time telemetry coming from the robot, 

including attitude, angular velocity, and, when VPS is fully functional, inertial 

position and velocity. 

G

 

 

Figure 2.11 SCAMP SSV control station GUI 

n of VPS Computer Hardware  

our desktop computers house the frame grabber boards that accept the video 

signals directly from the video cameras, and run the image processing software 

that creates the measurements VPS uses to compute the position of SCAMP 

 

2.1.3 Descriptio

F
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SSV.  These computers are referred to as the vision computers, Vision 1 through 

s two 

camera attached directly to it, meaning each vision computer controls two 

individual cameras.  Vision 1 controls cameras 1 and 2, Vision 2 controls 

cameras 3 and 4, and so on.  

 

The fourth vision computer was originally used for proof-of-concept testing, and 

has a single, nine-channel Data TranslationsTM DT3133 frame grabber board, 

that is alone capable of controlling up to nine cameras.  This board currently has 

two cameras attached to it, cameras 7 and 8.  Due to differences between the 

FlashBusTM and Data TranslationsTM frame grabber boards, Vision 4 and its 

connected cameras cannot currently operate as part of VPS.   

 

ReCS is built around a 1.0 GHz PC with 256 MB of RAM, running Red Hat Linux, 

version 9, and the KDE desktop application.  The analog hand controllers, 

mentioned above, interface with the control station computer via a National 

InstrumentsTM PCI-6023E A/D board.  The control station software that handles 

communication with VPS and SCAMP SSV, creates and updates the GUI, and 

records telemetry for post-processing is called raptor.   

 

Vision 4.  Currently, three of these computers are identical: each is a 1.7GHz PC 

with 512 MB of RAM, runs on the Windows 2000 operating system, and ha

FlashBusTM MV Lite single-channel frame grabber boards.  Each board has one 
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2.2 System Software Overview 

This section provides an introduction to the major software components used to

operate VPS.  Figure 2.12 is a system-level diagram showing th  various V

computers, the programs that run on them, and how they are connected to ea

other.  More details on VPS_client, raptor, and the SCAMP SSV flight code, 

which are introduced below, can be found in Chapter 5.   

 

 

e PS 

ch 

ll messages passed between VPS_client, raptor, and SCAMP SSV are sent 

ts.  The execution rates of each 

A

through Ethernet-based UDP (datagram) socke

of the software components vary, due to the limitations of hardware (the frame 

grabbers) in the case of VPS_client, and the overhead of refreshing the GUI in 

the case of raptor. 

 

Note that several software elements were created and adapted for use in VPS 

calibration.  Because this software is not used at run-time, it is discussed in 

Chapter 4, which is wholly dedicated to the new VPS calibration technique, and 

not discussed here. 

 

2.2.1 VPS_client 

All of the VPS computer vision code exists in a program called VPS_client.  This 

program currently runs on Vision 1, 2 and 3, and with minor modifications 

required by the different frame grabber board, will be able to also run on Vision 4.   
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keyboard, mouse

 

Figure 2.12 VPS layout diagram 
 

After initialization, VPS_client begins a loop to acquire an image, process the 

image to find the area and centroid of SCAMP SSV, and send this data to the 

control station, that in turn computes an inertial state estimate, 

T.  Each VPS_client process receives an updated [ GGGGGG ZZYYXX
•••

]
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copy of the global position estimate from the control station to determine if the 

 FOV of a camera before an image is taken.  If the vehicle is not 

t camera until the 

vehicle is visible.   

 

 GUI 

e 

P 

  

ther 

2.2.3 SCAMP SSV Flight Code 

SV has three separate threads running 

ead, a 25 Hz state estimation thread, 

commands, calculates the current robot attitude state based on sensor 

 

vehicle is in the

visible to a camera, VPS_client will not acquire images from tha

2.2.2 Control Station Software (Raptor) 

Raptor, the control station program, is an object-oriented C++ program.  The

was created using the Qt open-source GUI development package.  Socket 

communication and GUI update operations in raptor occur as fast as th

computer is capable of executing them, with data from raptor sent to its SCAM

SSV and VPS_client processes only when a message from that client arrives.

Execution of the VPS EKF state estimation algorithm occurs at regular intervals 

(10 Hz) and is controlled by a software timer process independent of the o

raptor operations.  

 

The flight software operating on SCAMP S

independently: a 50 Hz communications thr

and a 25 Hz controller thread.  This software receives and interprets pilot 

measurements, and calculates and commands the control forces applied by the

six thrusters.  
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Chapter 3 

Machine vision is often used, as with VPS, to infer 3D object information from 2D 

image data.  For VPS, the inertial positions of an object, SCAMP SSV, relative to 

some selected world coordinate frame, are to be inferred from images.  This 

requires accurate knowledge of the correspondence between the computer 

image coordinate frame and the selected world coordinate frame.  A camera 

model is a set of equations that relates the two coordinate frames, by 

representing the creation of a computer image from incoming light.  Camera 

calibration parameters are the constants that appear in those equations, and 

camera calibration refers to the act of determining the numerical values of those 

constants.  A camera model, with the values of its associated calibration 

parameters properly determined, allows one to make the desired 2D to 3D 

inference.  This chapter presents background on the topics of camera models, 

calibration parameters, and how to determine the values of those parameters, 

laying the groundwork for a description of the calibration of VPS, described in 

chapter 4.   

 

Calibration and Camera Models 

 

Camera Model and Calibration Background 

3.1 Camera 

 
In the description of any machine vision investigation, it is important to specify 

the camera model that was used.  The camera model consists of the 
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mathematical equations and parameters that are used to model what physically

takes place in the camera – the process of converting incoming light into a 

computer image stored in digital memory.  Just as there are different ways of 

modeling the dynamics of physical systems (Newto

 

nian formulations, Lagrangian 

rmulations, etc.), there are also a variety of camera models used by the 

computer visio

he equations 

 referred to as the ion 

arameters are related to each other in that either one, once specified, defines 

e form and nature of the other. 

tical, 

d 

r 

ination.   

he VPS camera model was derived from Tsai [15], a popular and accurate 

model used by the vision community.  Calibration parameters can be divided into 

fo

n community.  

 

Given t for a certain camera model, the constants in those equations 

are  calibration parameters.  The camera model and calibrat

p

th

 

Each calibration parameter in a camera model typically defines a specific op

geometrical, or physical value relating the computer image frame and a selecte

global coordinate frame.  In some camera models, calibration parameters 

represent artificial, mathematical combinations of the “real” parameters.  In eithe

case, camera calibration involves measuring and or calculating the numerical 

values of the constants for each camera in a vision system.  Accurate values for 

some parameters are available from camera specifications, but the majority 

require experimental determ

 

T
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two groups.  T meters.  

 constants ions that model the interaction of light with 

ical and electronic uired 

 five intrinsic para

Table 3

ymbol Parameter 

he first group is the internal, or intrinsic calibration para

These are in the equat

opt  components inside a camera.   The VPS cameras req

the meters defined in Table 3.1.  

 

.1 List of intrinsic VPS calibration parameters 

S
f Camera focal length (mm) 
CX, CY Coordinates of the principal point on the digital image plane 

(pixels) 
sX Ratio of pixel spacing in X- and Y- directions (no units) 
K First-order radial lens distortion parameter (no units) 
 

 

The extrinsic calibration parameters, or external parameters, define the physical 

 

extrinsic calibration parameters used in 

T

present rotations and translations that are required to transform a camera from 

placement, in both translation and rotation, of a camera with respect to the

selected world coordinate frame.  The 

the characterization of VPS are listed and defined below in Table 3.2.  For the 

Table 3.2 definitions, each camera has an orthogonal, right-handed coordinate 

system, the camera frame [XC YC ZC] , attached to it.  The parameters below 

re

an initial state aligned and coincident with the selected global reference frame, to 

the final “calibrated” state. 
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Table 3.2 List of extrinsic VPS calibration parameters 

Symbol Definition 
R Rotation about the fixed camera X axis, X  (degrees) X C
RY Rotation about the fixed camera Y axis, YC (degrees) 
R Rotation about the fixed camera Z axis, ZC (degrees) Z
TX XC component of translation vector from origin of camera 

coordinate frame to origin of world coordinate frame (mm)  
TY YC component of translation vector from origin of camera 

coordinate frame to origin of world coordinate frame (mm)  
TZ

coordinate orld coordinate frame (mm)  
ZC component of translation vector from origin of camera 

 frame to origin of w
 

 

As can be seen in the above tables, eleven camera calibration parameters 

characterized each of the V  

detail below. 

 

3.2 Mathematical Development of the VPS Camera Model  

T   conversion 

through three intermediate states to the 2D image state stored in computer 

memory and introduces the equations that govern that conversion.  Together, the 

four conversion steps require all eleven calibration parameters.  

 

Note that in practice, these equations are actually applied in the opposite order 

nd thus in inverted form) because the goal is generally to convert captured 2D 

image data into 3D world position data.  These equations are developed from 3D 

world to 2D image coordinates because it is more straightforward to follow, and is 

the standard direction for the presentation of such equations in the literature. 

PS cameras.  Each of these will be discussed in

Consider a 3D world position [XG YG ZG] .  This section traces its

(a
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The st age 

inates are given in Table 3.3.  Each coordinate transformation is described 

below. 

 

Table 3.3 D  coordinates to 2D computer 

 
Data State Definition 

ates achieved in transition from global (world) to computer im

coord

ata transition states, from 3D global
image coordinates 

[XG YG ZG]T 3D coordinates in the global reference frame (mm) 
[XC YC ZC] T 3D coordinates in the local camera reference frame 

(mm) 
[XU YU A] Real undistorted 2D image coordinates in X and Y 

directions (mm), and object image area (mm2) 
[XD YD A] Real distorted 2D image coordinates in X and Y 

directions (mm), and object image area (mm2) 
[XFD YFD A] Digital distorted 2D image coordinates in X and Y 

directions (pixels), and object image area (pixels) 
 

 

3.2.1 Step One: [XG YG ZG]T to [XC YC ZC]T Conversion 

Figure 3.1 depicts a spherical object of radius R and two coordinate frames - a 

global frame and a camera frame.  of the object in the global frame 

 GP = [XG YG ZG]T, while its position in the camera frame is CP = [XC YC ZC]T.   

G

where  

 The position

is

The relationship between GP and CP is given by the rigid body transformation 

equation: 

   

 CGCC R ,PPP +⋅=              (3.1) orgG
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=RC
G 3x3 rotation matrix that rotates the global frame into the camera 

         frame, the elements of which are r11, r12,  r13, r21,…r33  

nd  

 

ates 
 T

 

A rotation matrix must be orthonormal, setting constraints on column unit-vector 

magnitude, and inter-column orthogonality.  With these six constraints in mind, 

only three independent calibration parameters are required to fully specify the 

nine-member matrix .  There are a variety of ways to reduce a rotation matrix 

to an equivalent set of three parameters.  The technique used in the calibration of 

VPS is known as X-Y-Z fixed angles [16].  In this formulation, three rotation 

a

=orgG
C

,P  [TX TY TZ]T, translation vector from the origin of the 

camera frame to the origin of the global frame, in camera frame 

coordinates, as shown in Figure 3.1 

 

 

 

 

 

 

 

 

CP = 
XG
YG
ZG

GP = 
XG 
YG 
ZG 

Z

Figure 3.1 Conversion from global coordinates [XG YG ZG]T to camera coordin
[XC YC ZC]
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X
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C 
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Z
G

^

^
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YG
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Spherical object 
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angles, RX, RY and RZ, which can be alternately thought of as roll, pitch and yaw 

angles, are used to specify a rotation matrix.   

 

To illustrate the use of X-Y-Z fixed angles, consider two frames, A and B, initially 

aligned.  To orient frame B in the orientation specified by a set of X-Y-Z fixed 

angles, frame B would first be rotated by RX about the XA axis, then by RY about 

the YA axis, and finally by RZ about the ZA axis.  Notice that the reference axes, 

about which the rotations are applied, retain a constant orientation.   

 

 The three X-Y-Z fixed angles, combined with the three components of the 

T

 perspective 

rojection presuming pinhole camera geometry (Figure 3.2). 

vector orgG,P , comprise the six extrinsic calibration parameters that define the 

physical orientation and position of a camera with respect to a selected global 

reference frame.  

 

3.2.2 Step Two: [X

C

C YC ZC]  to [XU YU A] Conversion 

The initial creation of an image is described mathematically with

p
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Figure 3.2 Conversion from camera coordinates [X  Y  ZC C C]T to ideal image 

 

r 

bject, in units of length (e.g. mm), are given by the equations 

coordinates [XU YU A] 

 

Assume that a spherical object, of radius R, is being observed.  Relative to the 

camera, the object is at the position [XC YC ZC]T.  The third component of the 

position vector in camera coordinates is known as the range of the object, or the

distance from the camera to the object along the camera’s optical axis.  Unde

the pinhole perspective projection assumption, the image coordinates of the 

o

 

C

C

Z
Xf

UX ⋅
=        (3.2) 

nd a

C

C
U

Z
YfY ⋅

=       

ical object will be  

 

(3.3) 

 
The image area of the spher

XC YC 

ZC 

Image center, or 
principal point 

Optical center

f 

ZĈ

YĈ

XĈ

A 

XU 

YU

Optical axis
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2rA ⋅π=      (3.4) 

where 

CZ
Rfr ⋅

=      (3.5) 

 

frame coordinates to undistorted image coordinates, the 

only camera calibration parameter required is the focal length, f. 

 

3.2.3 Step Three: [XU YU A] to [XD YD A] Conversion 

mposed of optical elements with spherical surfaces 

To convert from camera 

Camera systems that are co

suffer from unavoidable geometric distortions.  The image coordinates of an 

observed object will be displaced farther from (pin-cushion distortion) or closer to 

(barrel distortion) the optical axis compared to the coordinates predicted by the 

pinhole projection model.  This displacement grows in magnitude as the image 

coordinates get farther from the optical axis because the angle between the 

incoming ray of light and optical axis is greater at these coordinates.                    

 

Distortion occurs both radially and tangentially from the optical axis.  Radial 

distortion is illustrated below in Figure 3.3.  The displacement due to radial 

distortion is typically modeled by the equations 

 

( )...4
2 +r              (3.6) 2

1 ⋅+⋅⋅=∂ rKrKXX rDr  
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( )...4
2

2
1 +⋅+⋅⋅=∂ rKrKYY rrDr              (3.7) 

where  

2
DD Y2 2Xr +=            (3.8) 

 

Similarly, the displacement due to tangential distortion can be modeled by the 

equations 

 

( )...4
2

2
1 +⋅+⋅⋅=∂ rKrKYX ttDt             (3.9) 

 

( )...4
2

2
1 +⋅+⋅⋅=∂ rKrKXY ttDt         (3.10) 

 

Note that for equations 3.6 to 3.12, all values of X, Y, and r are in physical units 

of length (e.g. mm).  Due to the physics of optical elements, radial and tangential 

f r appear in the distortion models.  The values Kri and Kti are the distortion 

distortion is proportional to the even powers of r,,and thus only the even powers 

o

coefficients that must be characterized in order for a camera system to be 

calibrated for distortion.  In many vision applications using off-the-shelf CCD TV 

cameras and lenses, tangential distortion is insignificant and ignored, and only 

the first power series of the radial distortion model is retained.  This standard was 

applied to VPS, yielding equations relating the undistorted (U) and distorted (D) 

image coordinates as 

 

( )21 rKXX DU ⋅+⋅=           (3.11) 
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( )21 rKYY DU ⋅+⋅=          (3.12) 

 image 

The conversion between undistorted image coordinates, and the real, distorted 

image coordinates thus only requires one camera parameter, the first-term radial 

U U D 

YD] involves solving a system of 2 nonlinear equations, while conversion from [XD 

D U U

since the latter conversion is required for VPS.  Note also that the object area A, 

as it is used in VPS, is not significantly affected by distortion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Conversion from ideal image coordinates [XD YD A] to distorted
coordinates [XD YD A] 

 

distortion coefficient K.  Note in (3.11) and (3.12), conversion from [X  Y ] to [X

Y ] to [X  Y ] involves only simple addition and multiplication.  This is fortunate, 

Coordinate center for 

physical image frames 
undistorted and distorted 

(principal point) 

Physical image plane 

YU,

D

^

XU,

D

^

[ X  Y ]
δX

U U 

[ XD YD ]

δY



 

 

3.2.4 Step Four: [XD YD A] to [XFD YFD A] Conversion 

The distorted image coordinates are in units of length, typically mm.  Before an 

image can be processed in software, it must be sampled and digitized.  Thus, the 

d

coordinates, or frame coordinates (as in a captured frame, not a coordinate 

a 

, 

A 

age is 

imply an array of intensities saved in a computer memory medium.  The 

er left-hand corner, with positive X pointing to the 

ght, and positive Y pointing down.  A digital image array is two-dimensional if 

the image is black-and-white, with each pixel containing a gray-scale intensity 

value.  A color image is represented by a set of three two-dimensional arrays of 

istorted image coordinates of an object must be transformed into digital image 

frame).   

 

In modern CCD video cameras, light collected by the optical system falls onto 

CCD (Charge-Coupled Device) chip, and is converted into an analog or digital 

video signal.  A CCD chip, typically a few mm in length and width, is made up of 

a two dimensional array of very small sensor elements, or sels.  A single frame

or snapshot at some instant in time, can be captured using a frame grabber.  

frame grabber is a device that can sample the analog video signal originating 

from the CCD chip and record that sample as a digital image.  A digital im

s

individual, discrete intensities in the digital image are called pixels.  Thus, 

coordinates in a digital image are measured as the number of pixels away from 

the origin of the image in the X and Y directions.  The origin of an image is by 

convention set to be the upp

ri
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intensities, one for each of the three primary colors: red, green and blue.  The 

conversi rdinates involves 

sev ral para

 

on from distorted image coordinates to frame coo

e meters.  Figure 3.4 illustrates this conversion.    

 CX 
 XFD 

YFD 

XD 

Y  

CY 

D

CX 

 

Figure 3.4 Conversion from distorted image coordinates [XD YD  A] to distorted 
computer image coordinates [XFD YFD  A] 

 

Ideally, the center of the digital image plane, or CCD chip, would be perfectly 

 with the optical axis, or center of the physical image plane.  This is never 

the case in reality though, and the coordinates of the optical axis in the digital 

measured in 

tical 

aligned

image frame must be found experimentally.  These coordinates, 

pixels, are often referred to as the piercing point [CX, CY].  Physically, the op
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axis intercepts the CCD chip, not the frame grabber, so intuitively, CX and CY 

portant value in vision algorithms is the computer image 

quivalent location of the piercing point, not the physical piercing point.  

 

Since distorted image coordinates are (typically) measured in mm, and image 

st also occur.  For the Y direction, 

this term (DY) depends on the number of sels in the CCD chip in the Y direction, 

 

should be measured in sels, not pixels.  They are in fact measured in pixels, 

however, because the im

e

coordinates are in pixels, unit conversion mu

and their physical spacing. 

 
FY

Y
N

D =      (3.1

where 

=CCDH height (Y direction dimension) of CCD chip, mm 

 =FY

CCDH 3) 

N  number of sels on the CCD chip in the Y direction  

 

The distorted computer image Y coordinate in pixels is then given by: 

 

Y
Y

D C
D
YY +=       (3.14FD ) 

 

sion term is slightly different because a In the X direction, the mm-to-pixels conver

frame grabber samples a video signal in the X direction.  The output from the 

CCD chip is transmitted by the camera one row followed by another, and 
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sampled in a similar manner by the frame grab

grabber, the sample spacing in the Y dire

conversion factor (DX’) is 

efined by the equation 

ber.  Therefore, at the frame 

ction is determined by the Y direction 

spacing of the sels on the CCD chip.  In the X direction, however, the frame 

grabber sampling determines the spacing, so the conversion factor depends on 

the number of X direction pixels that are sampled.   The 

d

 

CX

FXCCD
X

N
N

N
WD ⋅='         (3.

where 

=  width of the CCD chip, mm 

 =

FX
15) 

CCDW

FXN  number of sels on the CCD chip in the X direction 

 =  number of pixels sampled by the frame grabber in the X direction 

The equation for the X direction coordinate in the distorted digital image is then 

defined by the equation 

CXN

 

 

X    
X

D
FD C

D
XX +=

'
   (3.16) 

ne final parameter is required to accurately convert from real image data to 

igital image data, and it is related to the horizontal scanning mentioned above.  

he analog signal coming from a CCD video camera is initially a discrete, or 

taircase, signal.  Each “step” on the staircase signal corresponds to a different 

 

O

d

T

s
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sel on the CCD chip.  The long series of steps is formed from the outputs from 

ne row of sels on the CCD chip, then the output from the next row, and so on.  

The signal is , and form 

a smooth signal.  When a frame grabber samples such a signal, the image is 

being scanned in the horizontal direction.  A problem arises when this sampling 

occurs, because the X direction spacing of the frame grabber samples is never 

exactly equal to the X direction spacing of the CCD sels.  Thus, a scaling 

parameter, s , must be introduced to account for this horizontal sampling error.  

This is only a problem in the X direction, because the Y direction sel spacing 

controls the frame grabber sampling in the Y direction. 

 

When the ratio of pixel spacing is taken into account, equation (3.16) becomes 

 

o

 then low-pass filtered to blur the boundaries between sels

X

X
X

D
XFD C

D
sX += ⋅

'
        

 

The three parameters, C

X  (3.17) 

e 

Approach to Camera Calibration  

Many camera calibration techniques have been developed over the years, by 

both the machine vision and photogrammetry communities [17].  Each differs in 

details, but nearly all of the calibration techniques follow the same general path 

X, CY, and sX, required to model the transformation of 

real, distorted image coordinates into distorted digital image coordinates, are th

last of the eleven calibration parameters used for VPS. 

 

3.3 General 
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to finding the numerical calibration parameter values.  The calibration proces

are overviewed in Figure 3.5.  Calibration algorithms typically accept two set

input data, known 3D coordinates and corresponding measured 2D image poin

This data is then passed through a set of equations to compute the calibrati

parameters.  

ses 

s of 

ts.  

on 

 

 

 

 

 

 

 

 

 

 

The first input to most calibration algorithms is a series of calibration points, or 

locations, in 3D space.  These points are typically targets or features on a 

calibration fixture.  Some calibration algorithms are designed to use non-coplanar 

3D calibration points – points dispersed throughout a volume.  To simplify the 

mathematics involved, other algorithms use coplanar calibrations points.  This 

simplification comes at a price however, as coplanar calibration algorithms have 

 

 

 

 

 

 

 

 

KNOWN 3D MEASURED 2D
POINTS IMAGE POINTS

MATH 

CALIBRATION
PARAMETERS

 

 
Figure 3.5 Generalized diagram of calibration techniques 
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reduced accuracy and capability when compared to non-coplanar techniques 

put 

ets are 

ection of 

n pattern is a 

heckerboard. 

ot 

tion points form the first input to a 

camera calibration algorithm. 

 

The second input is the set of 2D image coordinates corresponding to each (or to 

as many as possible) of the 3D calibration targets.  To obtain these 2D 

coordinates, an image of the calibration fixture is taken with the camera to be 

[15][17][18][19]. 

 

3D calibration targets must have two key characteristics in order to serve as in

to a calibration algorithm.  First, when the calibration fixture is viewed in a 

computer image, the 2D image coordinates corresponding to each 3D world 

location must be easily and accurately identifiable.  To facilitate this, targ

usually defined as the centers of spheres in non-coplanar calibration fixtures.  

For coplanar calibration fixtures, they are usually defined as the inters

lines or the vertices of squares.  The classic coplanar calibratio

c

  

The second characteristic is that the 3D locations [XG YG ZG]T of the calibration 

points or targets must be known relative to one another.  It is convenient, but n

necessary, to allow one of the calibration targets to define the origin for the 

calibration fixture and of the global coordinate system –once the calibration 

fixture is removed, the former location of the target remains the global origin.  

The known 3D coordinates of the calibra
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calibrated.  The image can then be analyzed, either automatically or manually, to 

 targets.  Care must be taken that 

paired with the correct 3D coordinates.  Otherwise, 

the calibration algorithm will render invalid output.   

he combination of 

mizes the error function.   

ions are generated, etc.  Algorithms that do not employ 

quares sense, 

identify the 2D image locations of the 3D

specific 2D coordinates are 

 

Given a series of 3D world coordinates, and a series of corresponding 2D 

coordinates from a captured computer image as inputs, it is possible to find the 

calibration parameters of the camera that was used to generate the image. This 

can be done in one of two ways.  In the first, each point in the 2D and 3D 

coordinate tables is used to define an equation.  The system of equations 

developed from all of the points, once solved, provide the calibration parameter 

values.  The second way is to use each point to create a term in an error 

function, and then use an optimization algorithm to find t

calibration parameters that mini

 

While similar in approach, calibration techniques can differ greatly from each 

other mathematically.  Optimizing calibration algorithms differ from each other in 

optimization techniques, the structure of the objective function, the manner in 

which the initial condit

nonlinear optimization solve linear equations, often in a least-s

generated from the world and image coordinates.  As with the nonlinear 

optimizing calibration algorithms, a variety of linear techniques are also available.  
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See references [15] and [17] for more details on the advantages and 

disadvantages of the many calibration techniques that exist.    

 

Note that because lens distortion is an inherently non-linear process, it m

ignored by the purely linear techniques.  

ust be 

s 

apter 

r 

Therefore, precision vision application

must rely on nonlinear calibration methods, such as the method developed by 

Roger Tsai [15].  This calibration technique is discussed in more detail in Ch

4 and was used to calibrate VPS because of its characterization of a full set of 

camera calibration parameters, distortion coefficients included, and its nonlinea

refinement of the parameter estimates. 
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Chapter 4 

which are difficult to manufacture and 

meras are all pointing inwards instead of 

in one general direction, simple, coplanar calibration patterns could not be used 

 created additional 

n 

cribes the VPS calibration process, while Sections 4.3 and 4.4 

resents the intrinsic and extrinsic calibrations, respectively.   

4.1 Motivation for a New Calibration Technique 

Calibration of VPS 

The calibration of the VPS cameras presented several challenges seldom 

encountered in other machine vision tasks.  Typically, when calibrated volumes 

are small, a few cubic meters at most, small, highly accurate calibration fixtures 

can be used.  Large volumes mean both long distances, where errors are 

magnified, and large calibration fixtures, 

characterize accurately.  Because the ca

for extrinsic calibration.  The underwater environment also

procedural overhead to all calibration activities.        

 

This chapter describes how these challenges were addressed.  The first sectio

discusses previous VPS calibration work that motivates the new technique.  

Section 4.2 des

p

 

In previous VPS calibration work [13], a partial set of intrinsic and a full set of 

extrinsic parameters were obtained with a single ball target, moved to multiple 

tank locations.  This was achieved through a technique developed from the 
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ground up at great effort.  The initial calibration successfully allowed VPS to 

produce static position estimates that agreed, from camera to camera, to 

approximately 15 cm.  It had several limitations, however.  Distortion, piercing 

point and the X and Y axis scaling factor sX were not modeled.  This is 

understandable, because these parameters are often only barely significant.  

lso, it was impossible, despite great effort, to immobilize the calibration target 

ally 

 initial calibration effort, a new VPS 

alibration method was developed.  To facilitate implementation and capitalize on 

ted. 

imultaneously.  This was important because while distortion is small, it can be 

significant in portions of the FOV of the VPS cameras.  Also, f should be 

estimated simultaneously with the distortion coefficient, because distortion can 

A

due to water currents, which made it also impossible to locate it with a high 

degree of accuracy.  Finally, the range of the calibration target was calculated 

based on its image area, and this value was subsequently used in calculating 

calibration parameters.  Object image area is an extremely difficult parameter to 

measure accurately due to its sensitivity to illumination conditions, and is typic

wise to avoid if possible. 

 

Based on the lessons learned from the

c

previous work by the vision community, a strategy of using calibration techniques 

and software that have been validated in academia and industry was adop

This strategy provided several advantages.  First, techniques existed that 

allowed the full complement of intrinsic parameters to be estimated 

s

change the apparent size of an object, and thus f.  A characterization of the 
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accuracy of the calibration could also be generated.  The intrinsic parameters, 

e 

ch 

g 

4.2 Overview of New Calibration Technique 

he new VPS calibration technique is a two-step process that calibrates intrinsic 

ras 

RF 

d 

locations of each target.  The 2D image target coordinates and their 

especially f, act as inputs to the extrinsic calibration process.  Errors in the 

intrinsic parameters are magnified in the extrinsic parameter estimation.  It was 

hoped that the accuracy of VPS calibration could be improved to allow vehicl

position estimation in the accuracy range of a few cm.  Some techniques 

developed in the computer vision community also avoided the use of area, whi

is desirable.  Finally, it was hoped that this strategy would greatly reduce the time 

required to create a new VPS calibration procedure set since it employed existin

software and techniques. 

 

T

and extrinsic parameters separately.  Both steps are performed with the came

mounted in their operational positions, which ensures calibration parameters  

include the effects of the camera housing assembly and the underwater NB

environment.   

 

The first step involves taking multiple images of a checkerboard pattern and 

processing them automatically to compute the intrinsic parameters f, CX, CY, an

sX.  The second step involves a large calibration fixture with 20 fixed spherical 

calibration targets attached, each with a known relative position.  Images of the 

calibration fixture are taken and processed manually to find the 2D image 
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corresponding 3D physical target coordinates are inputs to an algorithm.  The

algorithm computes the extrinsic calibration of the camera that took the image.  

This extrinsic calibration is relative to a global reference frame attached to the 

calibration fixture.  As part of the extrinsic calibration, 

 

the distortion coefficient is 

lso calculated.   

The algorithm used in the extrinsic calibration can, in fact, be used to calculate all 

of the calibration parameters.  The intrinsic parameters are calibrated separately, 

however, because they can be found with far greater accuracy in this way.  The 

extrinsic calibration algorithm begins by computing all eleven parameters.  It then 

discards its values for f, CX, CY, and sX, and replaces them with the accurate 

values from the earlier intrinsic calibration.  It then uses these intrinsic 

arameters, and its original estimate of K, to recalculate the extrinsic parameters 

 

 

e discussion focuses on the implementation details and accuracy of 

e results.  Step-by-step instructions on calibrating VPS can be found in [20].  

The VPS cameras were intrinsically calibrated using the MATLABTM calibration 

a

 

p

to complete the calibration process.   

 

A description of both algorithms and results from the intrinsic-extrinsic calibration

sequence are found below.  Because these methods were taken from the

literature, th

th

 

4.3 VPS Intrinsic Calibration  

toolbox [21], a MATLABTM implementation the algorithm reported in [19].   
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As is standard in the vision community, the 3D calibration points in this

are the distinct corners of squares on a black and white checkerboard.  For VPS 

calibration, 

 algorithm 

a large checkerboard was made that was suitable for use under 

ater.  The squares are 57.85 mm on each side and the usable checkerboard is 

s 

capture a wide variety of checkerboard orientations, and should be nearly 

nges 

e orientation of the checkerboard while suspending it in front of a camera that 

is taking images.  Each orientation of the checkerboard provides a series of 3D 

calibration points with known relative locations.  

 

c ard im

oard 

he rest of the points (or corners) will have 3D coordinates (relative to the origin) 

determined by the number of squares between them and the origin.  Both the 

w

9 squares by 9 squares.  The calibration process begins by taking a series of 

images of the checkerboard with the camera that is to be calibrated.  The image

must 

filled by the checkerboard.  This can be accomplished if a diver slowly cha

th

After the user loads the che kerbo ages into the MATLABTM calibration 

program, the program asks the user for the number and size of the squares, and 

prompts the user to identify on each of the images the outer corners of the 

usable checkerboard.  The term “usable checkerboard” means the part of the 

checkerboard that does not include any boundary squares.  These boundary 

squares may not be full squares.  The outer corner of the usable checkerb

will be one boundary in from the absolute edge of the checkerboard.  The first 

corner identified by the user in each image is considered to be the global origin.  

T
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global X and Y coordinates of each point will be a multiple of 57.85 mm (the 

dimension of the squares), and the global Z coordinate will be zero, because the 

points are all coplanar.  Figure 4.1 shows two typical checkerboard image

for the intrinsic calibration. 

 

 

s used 

          

Figure 4.1 Sample checkerboard images for VPS intrinsic calibration 
 

ter 

 

orithm that solves for the intrinsic parameters has three steps.  A closed 

rm, analytical solution provides initial estimates of the extrinsic parameters2, 

 

Using initial guesses based on the square size and the user-identified ou

corners of the checkerboard, the program then searches for and finds the 

corners of all of the squares using edge-detection.  The locations of the corners

in the image become the 2D coordinates corresponding to the 3D planar 

locations.   

 

The alg

fo

and the intrinsic parameters minus the radial distortion coefficients.  It is followed
                                                 
2 In this algorithm, a set of extrinsic parameters, spatially relating the camera to the 
checkerboard, will be generated for each image, whereas all of the images are used to compute 
the intrinsic parameters.  The extrinsic parameters calculated in this step are discarded.   
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by a linear optimization to estimate the radial and tangential distortion 

coefficients, and finally a full nonlinear optimization to refine all of the parameter 

estimates. 

 lens distortion is ignored, the relationship between the 2D image coordinates 

T T  m = [XFD YFD]T, 

and  

⎢⎥⎢ ,P orgGC RAs           (4.1) 

ters 

lements 

tions, 

ree (m, M) sets will provide a closed-form solution to , , and the 

res) 

close to the truth.  The next step is to use these estimates to find estimates of the 

 

If

[XFD YFD] and the 3D coordinates [XG YG ZG] is linear.  Setting

M = [XG YG ZG]T, that relationship is represented by the following system 

 

[ ]
⎦

⎤

⎣

⎡
⋅=

⎦

⎤

⎣

⎡
⋅

11
Mm CG

 

Here, s is a scaling factor, RG
C  and orgG

C
,P  are the extrinsic calibration parame

(the rotation matrix and translation vector), and A is a 3x4 matrix whose e

are algebraic combinations of the intrinsic calibration parameters, excluding any 

distortion parameters.  By the means of several linear algebra manipula

⎥

RG
C orgG

C
,Pth

intrinsic parameters.  More data sets are used as input to a linear (least-squa

optimization of the parameters.  This first, linear solution step is nearly identical 

to the first step of the extrinsic calibration algorithm, described in the Section 4.4. 

 

Assuming that distortion is small, these estimated parameters should be quite 
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distortion parameters.  [XFD YFD]T and [XFU YFU]T are the 2D distorted and 

undistorted, respectively, digital (measured in pixels) image coordinates, while 

D YD]T and [XU YU]T are their 2D real, or physical (measured in mm), 

counterparts.  The estimated parameters are used

to calculate both the ideal real image coordinates, [XU YU]T, and the ideal digital 

image coordinates, [XFU YFU]T.  For two-term radi disto on, th se ca

ed with equations (3.6), (3.7), (3.14), and (3.17) to form the system 

 

[X

 with a set of 3D coordinates M 

al rti e n be 

combin

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ⎥

⎦⎣ −⎦⎣⎥⎦⎢⎣ +⋅−+⋅− FDFUrUUYFDUUYFD
YYKYXCYYXCY 2

⎤
⎢
⎡ −

=⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡ +⋅−+⋅− FDFUrUUXFDUUXFD

XXKYXCXYXCX 1
22222

22222

 

(4.2) 

          

where [XFD YFD]T are the 2D coordinates m corresponding to M.   With 

corresponding (m, M) sets, the obvious 2n-dimension linear system is then 

constructed to solve for Kr1 and Kr2 in a least-squares sense.  It is impor

t that these distortion coefficients are not actually used in the VPS model, 

but are necessary to refine the other intrinsic parameters.  The value of 

actually used in VPS is calculated during extrinsic calibration, and is discussed 

below. 

 

Finally, nonlinear optimization, to refine all of the parameters simultaneously, is 

performed by minimizing the cost functional  

 

n 

 tant to 

point ou

K 
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( )
2

1
,21 ,,,,,∑

=

− iorgGCrri RKKA MPmm           (4.3) 

using the same n sets of (m, M). 

 

4.3.1 VPS Intrinsic Calibration:  Results and Analysis 

 
Table 4.1 below summarizes the intrinsic calibration results for the VPS cameras.  

These results all fall within the expected ranges of the respective parameters.  

The lenses of the VPS cameras accommodate focal length f adjustment from five 

mm to 40 mm, and each camera was focused to give it nearly as wide of a field 

of view as possible (the shortest possible f).  Thus, f values near 5 mm were 

expected.  CX and CY should generally not be far from their ideal values, 320 

pixels and 240 pixels, respectively, which is the case.  The CY values for 

cameras 3 and 4 are a bit higher than expected, but still acceptable.  The sX and 

K values are all near to the ideal values of one and zero, as expected. 

 

It is important to note that the camera model used in the intrinsic parameter 

estimation software uses representations of focal length and distortion different 

from those used in VPS and the extrinsic calibration software [22].  This was not 

a problem with regards to focal length f, as a simple calculation converts from 

one representation to the other.  The distortion representations, however, could 

not be equated.  The MATLABTM calibration toolbox represented distortion as in 

[18].

n

i

CG
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( )2rA ⋅  1XU +⋅= KX D     (4.4) 

 

( )21YU +⋅= rA ⋅   KYD  (4.5) 

wher

+   (4.6) 

he representation of distortion in VPS was identical to that in the extrinsic 

            

e 

2  2Xr = UU         Y

 

T

calibration software, described in [15]. 

 

( )21 rKXX ⋅+⋅=              (4.7) 

 

BDU

( )21 rKYY BDU ⋅+⋅=             (4.8) 

where  

D Y+     (4.9) 

 

Since read nve to KB isto icien culated 

using rboa s c ot be used in the determination of the 

extrin ers,  VP n alg s. ason ly the 

other four intrinsic parameters calculated in this step were used, while the 

distortion coefficients were computed concurrently with the extrinsic parameters, 

by the technique discussed in the Section 4.4. 

2 2
D  Xr =   

 KA cannot ily be co rted in , the d rtion coeff t cal

 the checke rd image ould n

sic paramet  or in the S visio orithm  For this re , on
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Table 4.1 VPS intrinsic calibration results 

  f (mm) CX (pix) CY (pix) sX K 
Camera 1 6.3301 279.19 225.98 1.0251 0.007183 
Camera 2 7.1428 324.20 217.64 1.0268 0.005184 
Camera 3 7.9902 303.38 303.14 1.0274 0.002120 
Camera 4 6.7967 314.00 325.01 1.0265 0.008442 
Camera 5 5.7769 320.03 230.10 1.0266 0.009502 
Camera 6 6.5814 300.19 216.75 1.0257 0.005405 
Camera 7 7.3099 298.95 253.82 1.0255 0.005726 
Camera 8 6.8419 330.62 242.48 1.0264 0.005833 

 

 

The MATLABTM calibration toolbox program supplies, along with calibration 

parameter values, estimates of the accuracy of those values.  Below is a table 

containing the upper bounds for the errors in the intrinsic calibration parameters 

for each camera, as computed by the program.  

 

Table 4.2 Error bounds (+/-) on the VPS intrinsic calibration parameters 

  f (mm) CX (pix) CY (pix) sX K 
Camera 1 0.0061 1.30 1.30 1.54E-05 n/a 
Camera 2 0.0065 1.52 1.42 1.40E-05 n/a 
Camera 3 0.0092 1.95 1.85 1.83E-05 n/a 
Camera 4 0.0051 1.18 1.20 1.18E-05 n/a 
Camera 5 0.0066 1.43 1.53 1.83E-05 n/a 
Camera 6 0.0058 1.60 1.51 1.39E-05 n/a 
Camera 7 0.0072 1.71 1.72 1.59E-05 n/a 
Camera 8 0.0045 1.22 1.12 1.04E-05 n/a 

 

 

When each of the checkerboard image sets was initially analyzed with the 

MATLABTM calibration toolbox, the calculated errors were much higher.  The 
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errors were reduced by three different techniques.  First, the total number of 

ates.  

hat 

 were 

at 

tools.  

lculate the coordinates of these vertices by 

-running the edge-detection process.  With the refined 2D coordinates, a final 

en 

it of 

e VPS equipment and configuration, but is seen as sufficient to 

ive our cm-accuracy final positioning goal.  The accuracy of sX in the vision 

equ

those o s 

of K in Table 4.1 were calculated by the algorithm discussed in Section 4.4.  The 

imp  

does p

accura

 

 

images used to calculate the parameter estimates was increased, and the 

parameters were recalculated.  This drove down the uncertainty in the estim

Second, using error analysis tools built in to the program, specific images t

were causing large amounts of error were eliminated, and the parameters

again recalculated. Finally, 2D image coordinates of checkerboard vertices th

were causing large errors were identified, again using built-in error analysis 

The program was instructed to reca

re

set of calibration parameters was computed.  Accuracy goals of 0.01 mm for 

focal length, and two pixels for CX and CY were used as guidelines to know wh

to stop refining the intrinsic calibration.  This appears to be roughly the lim

capability for th

g

ations is not as important as that of f, CX , or CY, and was accepted once 

ther parameters were determined to be sufficiently accurate.  The value

lementation of this algorithm does not calculate accuracy estimates for K, but

rovide estimates for overall calibration quality, as will be discussed.  Thus, 

cy information for K to put in Table 4.2 is unavailable. 
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4.4 

The ex ], 

known plementation of this 

me

intrinsic and extrinsic calibration 

modific

param X Y X

compu

 

The 3D xtrinsic calibration were more difficult to create 

tha

define 

req

 

1. le 3D targets:  The algorithm 

2. um of 14 targets must be visible from all eight VPS cameras:  All 

e at 

ate 

3. table” in images:  Viewing a computer 

image of the fixture, a user must be able to easily and accurately locate 

VPS Extrinsic Calibration 

trinsic calibration of the VPS cameras follows a method reported in [15

 as Tsai’s calibration method.  A C language im

thod [22] was modified for use with VPS.  Tsai’s method computes the 

parameters simultaneously.  The major 

ations made to the software were to allow the use of the four intrinsic 

eters found using the MATLABTM calibration toolbox (f, C , C , s ) to 

te the extrinsic parameters. 

 calibration points for the e

n for the intrinsic calibration.  A calibration fixture was required that would 

the 3D calibration reference points.  The fixture had the following 

uirements: 

It must have a minimum of 14 highly visib

required 14 data points in order to do a full optimization for all extrinsic 

parameters.    

A minim

eight cameras must take their calibration images of a motionless fixtur

the same time, for the cameras to all reference the same global coordin

frame.  This suggested a small target volume, visible from all cameras. 

The targets must be accurately “loca
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the image coordinates of the targets (minimum 14), from any viewin

angle.  This suggested a large target volume 

g 

where targets would not 

occlude each other in any VPS camera view. 

 3D 

ese positions need to be 

an order of magnitude more accurate than the accuracy of the desired 

vision task [15].  Since the position g accuracy goal of VPS is single-digit 

cm-sca  better than 

single-digit mm accuracy. 

id so 

 

 fixture 

isassembly 

would be undesirable because of dimensional stability and ease of use 

4. It must be easy to obtain accurate measurements of the target

positions: The [XG YG ZG]T positions of the targets, with one target acting 

as the origin, or the [0 0 0] point, are required.  Th

in

le accuracy, the target positions were required to within

5. The targets must be dimensionally stable:  The targets need to be rig

that between calibrations their positions will not change significantly.  

6. The targets must fill as large of a volume as possible:  The accuracy of the 

calibration over the entire field of view of the camera improves if the

can occupy a large fraction of that field. 

7. The fixture must be stored safely and easily in the NBRF: D

issues. 

8. The fixture coordinate system must be aligned with the N-E-D inertial 

reference frame:  For the positional and rotational reference frames to 

align, the fixture’s X axis must be able to be aligned with magnetic North, 

and its Y axis with the East vector. 
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9. The fixture must be inexpensive:  Only a few hundred dollars were 

available for the construction of the fixture.   

 

Figure 4.2 shows the fixture that was constructed to meet the above 

requirements.  The calibration frame is a cube, 127 cm (50”) in dimension, made 

f square commercial structural aluminum extrusions.   

 

o

 

Figure 4.2 VPS calibration frame installed in the NBRF 
 

Attached to the cube are 20 aluminum posts, approximately 36 cm (14“) in 

length, with hollow plastic spheres attached to the end of each to act as the 

calibration targets.  This number of targets allows a camera to still see more than 

the minimum of 14 targets even when a few are blocked from view by the 
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structure.  The spheres were painted black to enhance their visib

oles drilled in them to allow water to enter and exi

hen in the NBRF, the calibration fram ts on  of fo

ng stilts. Before libration, the stilts are rigidly attached to a heavy truss that 

m  permanently in the tank, and the frame is lowered onto the stilts using 

nderwater air bags.  Ball 19 is the origin of the global reference frame, and the 

ector from ball 19 to ball 18 defines the global X axis.  Between these two balls 

 a fixture onto which a w rproof com

ame to be slightl tated to align its X axis with magnetic North.  The Y axis is 

erpendicular to the X axis, and, assuming the frame is level, points East.  Figure 

4.3 illustrates the ball locations, where the compass attaches, and the calibration 

fixture’s reference frame.  When not in use, the calibration fixture hangs above 

e neutral buoyancy tank, as shown in Figure 4.4, from a dedicated crank-

operated 

 

ility and had 

h t the fixture.   

 

W e si  top ur, approximately 3 m 

lo  a ca

re ains

u

v

is ate pass can be attached.  This allows the 

fr y ro

p

th

crane. 

 60 
 



 

 61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 VPS calibration frame ball locations and reference frame 
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Figure 4.4 VPS calibration frame hanging above NBRF 
 

In orde ts 

ed.  Measuring the target positions in all three axes at once would be 

global reference planes, and would also 

require complex measurement devices.   

measure rigidly attached to it.  Two sliding measuring blocks can be moved along 

r to use the calibration fixture, accurate positions of each of the targe

was requir

difficult and require complicated equipment.  Measuring the positions one axis at 

a time would require three perpendicular 

 

Therefore, the ball-to-ball distances were measured.  These then acted as inputs 

into a minimization problem that solved for the 3D positions.  The ball-to-ball 

distances were measured using a large set of calipers built especially for this 

purpose.  They consist of a long aluminum square tube with a metal tape 
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the length of the tube, and fixed at any desired position using cap screws.  

Attached to the measuring blocks are templates with semi-circular cutouts that 

atch the diameter of the spherical targets.  Beneath the semi-circular cutout, 

 

wn 

m

aligned with its center, is an edge for reading the millimeter mark on the tape 

measure.  With the semi-circular templates positioned over two targets, the

distance between the targets in mm can be found by subtracting the lower 

measurement from the higher one.  Based on operational experience, the 

measurements taken with the caliper are considered accurate to a tolerance of 

plus or minus two mm.  A picture of one of the sliding measuring blocks is sho

below. 

 

 

Figure 4.5 Sliding measuring block on VPS calibration frame caliper 
 

With n targets, the potential number of target-to-target measurements, m, is 

defined by  
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( )
2

2 nnm −
=         (4.10) 

 

Thus, for 20 targets, there are 190 potential measurements.  Because the caliper 

was occasionally obstructed by the structure of the frame, only approximately 

180 measurements could actually be taken. Table A1 in the Appendix shows the 

measurements recorded for the frame.  Any field that contains a zero indicates 

either that the measurement was not obtainable, or that its value is elsewhere in 

the table.   

 

With 20 targets, there were 60 unknowns that had to be solved– the X, Y, and Z 

coordinates for each target.  This number could have been reduced to 57, 

because one target was set to be the origin, but it was left at 60 to simplify the 

numerical analysis.  The 180 measurements each created one term in a scalar 

objective function.  If Lj,k was the measurement from ball j to ball k, and [Xj Yj Zj]T 

and [Xk Yk Zk]T were the true coordinates of balls j and k, then the term in the 

objective function for that measurement would be 

 

          (4.11) 

 

The scalar objective function would then be the sum of all of the terms 

 

( ) ( ) ( ){ } 2

,
2222 2 ⎟

⎠
⎞⎜

⎝
⎛ −−+−+−= kjkjkjkjjk LZZYYXXe  
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= =

=
20

1

20

1j k
jkeE     (4.12) 

 

ince the d  any  itself is z ro, ejk = 0 if j=k. 

 minimization with a 180-term scalar objective function in 60 unknowns will 

ave a multitude of local minima, making the solution quite sensitive to initial 

onditions.  Figure 4.6 illustrates how a sufficiently accurate initial guess of the 

rget coordinates was calculated, and how the global coordinate system was 

ttached to the calibration frame.   

  

S istance from ball to e

 

 A

h

c

ta

a
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Figure 4.6 Illustration of VPS calibration f
 

Accurate initial guesses of the target locations were computed deterministically.  

The plane defined by the top three targets, balls 18 thru 20, was defined as the 

X-Y plane.  Balls 18 thru 20, by this definition, had a Z coordinate of 0.  Ball 19 

was assigned to be the origin and ball 18 was assumed to lie on (and thus 

define) the X axis.  Ball 20 was assumed to be on the X-Y plane, at the location 

[X20 Y20 0] .  With the above assumptions, the 3D positions of targets 18 thru 20 

can be solved deterministically using only the three inter-target distances, L , 

L18,20, and L19,20, where Li,j is the measured distance between ball i and ball j.  

Ball 19 defines the global coordinate system origin, while ball 18 defines the X 

axis at [L18,19 0 0] .  The coordinates of ball 20 can then be solved: 

18 

19  20 

[X19 Y19 Z19] = 
[0 0 0]  L19,20

L18,19
L18,20

[X20 Y20 Z20] = 
[X20 Y20 0]  

 

 

 

 

 

 

 

 

 

rame reference targets 

T

18,19

T
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2
20

2
20

2
19,18 YXL +=             (4.13) 

 

( )222 XXYL −+=      20192020,19   (4.14) 

 

where X20 and Y20 are the only unknowns.  This is illustrated in Figure 4.6. 

 

The remaining 17 targets all lie on one side of the X-Y plane, thus all have 

positive Z coordinates.  As a result, the 3D position of each subsequent target 

can be computed using o e a e een it and targets 18 

thru 20.  The system of eq tion   

 

2
18,k +   (4.15) 

 

n thly three me surem nts betw

ua s for any ball k is

222
kk ZY +kX=L   

( ) 22 Y+ 2Z  19
2L +=             (4.16) 

 

19,k kkk XX −

( ) ( ) 22
kZ+2020, kk XL +    (4.17) 

 

In this system of equations, only  un own.  This system was 

solved algebraically for each of the remaining 17 targets.  Using the resulting set 

of 3D positions as initial conditions, the minimization algorithm is then executed 

to adjust the estimated positions and find the combination that will best match the 

2
20X−2 = K YY −

Xk, Yk, and Zk are kn
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physical measurements.  Minimization was performed in MATLABTM using the 

built-in FMINS function, which is an implementation of the Neld r-M ad si

minimization algorithm.    

 

Table 4.3 shows the initial position estimates of the targets calculated 

deterministically using 54 m asu  ( u  for targets 18 thru 20, 

and 3x17=51 measuremen  for i g ble 4.4 shows the 

position estimates after optimization with respect to all of the measurements. 

 

Table 4.3 Target 3D initial position estimates 

Ball # X (mm) 

e e mplex 

e rements 3 meas rements

ts the rema ning tar ets).  Ta

Y (mm) Z (mm) 
1 1398.85 740.24 2089.87
2 8.43 9.42 2088.96
3 1789.22 570.14 1681.24
4 1520.81 -330.44 1675.8 
5 850.79 -685.65 1670.35
6 -70.29 -411.05 1674.35
7 -205.3 1  1180.2 686.93
8 5  1  109.49 602.76 651.37
9 1314.55 451.91 1076.24

10 654.09 -185.65 1371.74
11 31.18 471.09 794.28 
12 677.42 1098.78 1283.04
13 1815.6 631.97 420.98 
14 868.11 -687.5 428.81 
15 -479.06 277.06 427.01 
16 492.8 1603.85 425.64 
17 1445.31 1319.23 441.31 
18 1189 0 0 
19 0 0 0 
20 216.18 1152.91 0 
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Once an optimized set of 3D positions is obtained, a set of “synthetic” target j to 

target k distances, Lsj,k can be calculated from 

 

( ) ( ) ( )222 ZZYYXXLs −+−+−=     (4, kjkjkjkj .18) 

 

Table 4.4 Target 3D position estimates, after optimization 

Ball # X (mm) Y (mm) Z (mm) 
1 1397.93 738.90 2090.29
2 8.23 9.66 2088.10
3 1790.44 571.66 1680.08
4 1517.64 -333.17 1677.56
5 849.49 -688.31 1669.34
6 -64.94 -406.14 1679.47
7 -204.65 1180.65 1687.10
8 507.64 1600.93 1652.87
9 1313.35 447.97 1076.97

10 654.88 -187.56 1371.11
11 30.22 470.44 794.00 
12 677.19 1097.55 1283.97
13 1815.94 633.41 420.27 
14 868.62 -689.73 423.67 
15 -478.86 277.79 424.83 
16 494.40 1605.58 422.74 
17 1446.52 1319.50 438.75 
18 1189.35 0.00 0.00 
19 0.00 0.00 0.00 
20 216.81 1152.53 0.00 

 

 

hese synthetic measurements are then compared to the physical 

measurements.  Since some measurements w

easurements that exhibit large differences between the physical and synthetic 

values, and contribute disproportionately to the error term, are then discarded 

T

ill naturally be better than others, 

m
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and the minimization is run again to improve the optimization.  Table A2 in the

Appendix shows a set of synthetic ball-to-ball measurements, calculated after 

optimization.  These measurements can be compared to the raw measureme

in Table A1. 

 

Raw measurements were removed from the optimization until the difference 

between each raw and synthetic measurement was less than 1.0 mm.  

Approximately 30 of the 180 measurements were discarded in this manne

of the discarded measurements differed from their synthetic counterparts by 1 to

3 mm, except for one measurement that differed by 5 mm.  The discarded 

measurements, highlighted in Table A2, are 

 

nts 

r.  All 

 

dispersed among the targets roughly 

venly.  Note that because a new table of synthetic measurements was 

highlighted 

measurements are identical to their corresponding real measurements to the 

precision shown.  In the calculation of subsequent synthetic measurements, a 

difference of 1 mm or greater was observed, and these measurements were 

discarded.   

 

If the minimum of three measurements is used to compute the position of target 

k, and they are all in error by only 1.0 mm, then |EPOS|, the magnitude of the 

maximum error possible in the position vector of a ball k, is given by 

 

e

computed after the removal of each measurement, some of the 

=⋅= 2
, 0.13|| kMAXPOSE  1.73 mm      (4.19) 
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From (4.19), the true cen ea e a  to reside within a 

sphere of radius

ter of ch targ t will be ssumed

3  mm, c tered e o e position.  Reference 

[15] indicates that in gener  kno  o ates of calibration 

fixture targets should be a rder n o rate than the desired 

accuracy of the vision task. This means that based on these target locations, and 

assuming correspondingly od 2 e  is used, an extrinsic 

calibration can be comput hat o i ity to allow the desired 

cm-level accuracy for VPS.  This

accuracy, because that de ds v c algorithms, the state 

estimator, etc.  It only means that errors due solely to the calibration are unlikely 

to make the desired accur  un l

 

The final optimized 3D target positions are shown in Table 4.5. 

en  on th ptimiz d target 

al, wledge f the 3D coordin

n o  of mag itude m re accu

 go D imag  coordinate data

ed t  will be f a suffic ent qual

 does not guarantee the desired system 

pen on the ision pro essing 

acy attainab e. 
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Table 4.5 Optimized, final 3D target coordinates 

Ball # X (mm) Y (mm) Z (mm) 
1 1398.20 738.28 2090.70
2 8.11 9.58 2088.52
3 1790.59 571.78 1679.89
4 1517.14 -333.85 1678.18
5 849.19 -688.38 1669.80
6 -65.42 -405.73 1681.57
7 -204.53 1180.84 1687.28
8 507.80 1600.59 1653.46
9 1312.64 447.13 1077.74

10 654.61 -187.98 1371.50
11 30.08 470.35 794.38 
12 677.38 1097.37 1284.06
13 1815.66 632.62 420.51 
14 868.23 -690.53 424.99 
15 -479.07 277.74 425.40 
16 494.45 1604.96 422.44 
17 1446.82 1318.94 438.98 
18 1188.89 0.00 0.00 
19 0.00 0.00 0.00 
20 217.33 1151.23 0.00 

 

 

A MATLABTM program compute3Dballcoords.m computed the 3D target 

positions from ulting 3D 

target positions to a file named frm_3dpos_date.dat, where, by convention, 

date is the day the raw frame measurements were taken. 

 

To obtain the 2D image coordinates of the calibration targets, a MATLABTM 

image-processing program named set2Dballcoords.m was written that allows a 

user to open a bitmap image of the calibration frame taken with the camera that 

is to be calibrated, such as the image shown in Figure 4.5.  The program allows 

the user to zoom in on the targets, one at a time, and center a circular tool over 

 the raw measurements.  The program outputs the res
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the target.  This is illus

record the im rgets that are too 

obstructed for their center to The program writes the 2D 

image coordinates to a 

convention runXX-

camX_2Dp.dat. 

 

trated in Figure 4.7.  The user then clicks the mouse to 

age coordinates of the target.  The user can skip ta

 be accurately identified.  

.dat file for later use.  For an image file named by 

runXX-camX.bmp, the output file will be named 

 

Figure 4.7 Image of calibration frame from camera 2 

 

 73 
 



 

 

 

 

A program could be written that, through the use of vi

 

Figure 4.8 Zoomed calibration frame target 

sion algorithms, could 

utomatically find the centers of each ball, thus eliminating the human error 

 

 

lls, then analyzed the edge to select part or 

arts on which to base the creation of an arc, and then found the center of that 

e in 

a

involved with doing so manually, and also saving the user the time required to

carefully center the targeting tool on the balls.  This option was not pursued for 

several reasons.  A program capable of doing this task as well as a human would

have had to have been reasonably complex in order to handle the many partially 

obstructed balls encountered in the images.  It would likely have used edge 

detection to find the edge of the ba

p

arc.  This analysis would have had to have taken into account that one or more 

sections of the same ball might be visible, that balls could appear merged (on

front of the other), and that due to illumination differences between the tops and 

bottoms of the balls the tops would appear slightly flattened.   
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All of these, if unaccounted for, could have caused errors that were a large

fraction of the ball radius.  A human can account for these things very easily, and 

can reliably record the center of partially obstructed balls to within a tenth or

twentieth of a ball radius if care is taken.  In the end a human would need to be

called upon to make the decision of whether or not to discard a ball from the lis

and would be needed to number each ball in the images, so time savings over 

the current method would not have been spectacular.  The large amoun

(likely as much as several weeks) to write such a program was seen as need

since the current 2D ball-finding technique was implemented in a few days, and 

need not be repeated unless a camera is disturbed.  

 

 

 

 

t, 

t of time 

less 

nother MATLABTM program, called make_extcal_rd.m, or “make extrinsic 

ram 

2], 

 the calibration 

A

calibration raw data”, combines the output from the optimization program (the 3D 

target locations from frm_3dpos_date.dat) and the image-processing program 

(the 2D manually identified target image coordinates) into one file.  This prog

automatically removes the 3D coordinates for targets that were skipped when 

finding the 2D image coordinates. 

 

The program cal_fuse.c, which is a modified version of software found in [2

accepts as input the intrinsic calibration results (based on the checkerboard 

images), and the 2D and 3D calibration frame data for the extrinsic calibration.  It 

then calculates, based on the calibration frame data alone, a full set of 

parameters.  Because of the relatively small number of targets on
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frame, and the long distances involved, this initial calibration is not highly 

f, an

 

s fixed.  By doing 

is, the minimization algorithm in cal_fuse.c (described below) needs only to 

 to 

 extrinsic parameters of higher accuracy than if only the calibration 

ame data was used.   

15].  

irst, CX and CY are assumed to be their ideal values, 320 and 240, respectively, 

and distortion is ignored.  With these assumptions, a linear equation can be 

derived that relates a global 3D coordinate, [XG YG ZG]T, to the X and Y image 

ates, [XFD YFD].  The parameters in the equation are sXr11, sXr12, sXr13, r21, 

r22, r23 w and jth column of the rotation 

matrix  YG ZG]T and [XFD YFD] 

sets), a system of these equations is so

parameters.  Since each equation is homogeneous, one of the parameters is set 

l solution.  This means that the solved 

accurate.  It then discards the just-computed values of CX, CY, d sX, replaces 

them with those from the separate intrinsic calibration, and recomputes the

extrinsic parameters, treating the new intrinsic parameters a

th

optimize for the six extrinsic parameters instead of for all eleven, allowing better 

convergence.  Also, since the intrinsic parameters calculated from the 

checkerboard images are based on more data points than those calculated 

initially by cal_fuse.c, they are of a higher accuracy.  These can thus be used

calculate

fr

 

The calibration algorithm implemented in cal_fuse.c is described in detail in [

F

coordin

, sXTX, and TY, where each rij is the ith ro

 RC
G .  With eight or more control data points ([XG

lved to render estimates for these eight 

to a constant value to avoid the trivia

parameter values are linearly scaled versions of the true values. 
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The next step is to force orthonormality of the first two rows of RC
G by scaling the 

row vectors to unit magnitude.  The third row of the rotation matrix is then 

recovered by taking the cross product of the first two rows. 

f the translation 

ctor, T , and the focal length, f.  Since we have estimates for the full rotation 

matrix, a linear equation can be derived with f and T  as the only two unknowns.  

Again, with two or more control point data sets, estimates for  and T  can be 

solved. 

 

Using the estimates computed or assumed above, the next step is a nonlinear 

optimization to refine the parameters.  The error function to be minimized is: 

 

)       (4.20) 

where 

n = number of calibration targets used 

(Xi,Yi) = observed image coordinates of target i 

(Xi’,Yi’) =  image coordinates target i, predicted based on current 

    parameter estimates 

  

This minimization is achieved using the Levenberg-Marquardt minimization 

technique.  In order for this method to be used, a non-redundant representation 

 

The next step is to calculate estimates for the third component o

ve Z

Z

f Z

( ) (∑∑
==

−+−=
n

i
ii

n

i
ii YYXXJ

1

2

1

2 ''  
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of rotation is require tion, since it uses 

nin members to re ent 3 rees o edo fo t rix 

at on nt n p e on 

sim  le ce ap

 

4.4  E  C n s l
  

able 4.6 below contains the results of the VPS extrinsic calibration.  The rotation 

ngles, RX, RY, and RZ, are X-Y-Z fixed angles, with the camera frame as the 

, are in 

d.  A rotation matrix has redundant informa

e pres deg f fre m.  There re, the ro ation mat

this step is c verted i o Euler a gles, a re resentation of relativ  orientati

ilar to X-Y-Z fixed ang s introdu d in Ch ter 3. 

.1 VPS xtrinsic alibratio :  Result and Ana ysis 

T

a

fixed coordinate system.  The translation components, TX, TY, and TZ

camera frame coordinates.  Table 4.7 contains the error metrics calculated for 

the VPS extrinsic calibration, along with a record of the number of calibration 

targets that were used for the calibration of each camera.  
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Table 4.6 VPS extrinsic calibration results 

  RX  RY RZ TX (mm) TY (mm) TZ (mm)
Camera 1 94.72° -80.21° 175.40° -614.66 -1208.47 6921.82
Camera 2 91.12° 7.65° 179.89° 283.17 -1245.12 6792.34
Camera 3 -83.61° 83.70° 5.86° 565.41 -1500.57 7413.26
Camera 4 -90.82° -9.15° 0.08° -489.02 -1229.02 7555.31
Camera 5 7391.42-54.55° -61.39° -34.30° -258.17 -223.93 
Camera 6 6 .27 34 1.956.50° -22 ° -169.92° 1.59 -83  6914.25
Camera 7 4 6.24° 132.38° 5 .69 71.41° 5 88.11 -1468 7206.4
Camera 8 -68. 20.05° -222.95 -949.48 7689.7466°  6.65° 

 

 

Unlike the program used to compute the intrinsic parameters, the C 

imp  of Ts gorithm ([1 2]) does no ide toleran  for 

dividual calibration parameters.  Instead, the accuracies of all of the parameter 

stimates for an individual camera are combined into three error metrics.  The 

e 

are the Average Object Space Error and the 

Maximum Object Space Error, both in mm.  The first is the average error 

between the actual 3D global locations of the calibration targets, and the 

predicted 3D global locations of the targets.  The predictions of the target 

locations are made based on the 2D image coordinates and the final calibration 

parameters.  The Maximum Object Space Error is simply the largest discrepancy, 

lementation ai’s al 5], [2 t prov ces

in

e

first, the Normalized Pixel Error (in pixels) is an amalgamation of different pixel-

space errors that accumulated during the parameter estimation calculations, and 

is difficult to interpret physically.  It serves as a way of getting a feel for how on

camera’s calibration compares to that of another.   

 

More meaningful error metrics 
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among all of the calibration targets, between actual and predicted 3D locations.  

o note that these error metrics take into account the inaccuracies 

parameters.  

 

Table 4.7 Error metrics for VPS extrinsic calibration 

Normalized  Avg. Object Maximum No. Targets 

It is important t

of both extrinsic and intrinsic calibration 

  
Pixel Error 

(pix) 
Space  

Error (mm) 
Object Space 

Error (mm) 
Visible 

Camera 1 0.60 2.12 4.78 17 
Camera 2 0.64 1.91 5.97 18 
Camera 3 1.18 3.03 8.59 18 
Camera 4 0.76 2.32 4.49 18 
Camera 5 0.73 3.10 6.61 19 
Camera 6 1.07 3.92 11.21 20 
Camera 7 0.76 2.31 7.43 20 
Camera 8 0.70 2.29 6.40 20 

 

 

The error metrics can be conservatively interpreted.  For a given camera, and for 

a vision task being performed at a range similar to that of the calibration frame (in 

the middle of the tank), the error introduced by calibration inaccuracies alone 

should not exceed the maximum object space error listed for that specific 

camera.  The error is also unlikely to be smaller than the average object space 

error in the table (2 – 4 mm).  
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Chapter 5 
 

VPS Software Components 

This chapter contains a detailed descr

associated with VPS.  Section 5.1 provides details about VPS_client, the 

program responsible fo l-time from the VPS cameras and 

processing them to create usable measurements.  Section 5.2 describes the 

raptor program.  T oftware that ru AMP SSV control 

station, and is also the program in which the optimal state estimator, the 

Extended Kalman Filter, is implemented.  Section 5.3 contains a description of 

the software that runs on SCAMP SSV during its operation.   

 

5.1 Image Acquisition and Pr  Program: VPS_client 

Figure 2.7 illustrated that VPS_client executes on the four vision computers, 

each grabbing frames from two VPS cameras.  Figure 5.1 is a more detailed 

graphical representation of how VPS_client interacts with the other components 

f VPS.  The algorithm executed by VPS_client is shown in Figure 5.2.   

iption of the software applications 

r acquiring images in rea

his is the s ns on the SC

ocessing

o
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Figure 5.1 Information flow diagram for VPS_client 
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1.  Initialize camera numbers and frame grabber boards. 
2.  Load background image pixel arrays bg[i] (cameras i=1, 2) 
3.  Load calibration data. 
4.  Set camera number i=1 
5.  If (SSV is in FOV for camera i) then 
     a) Capture and process image pix[i] from camera i 
     b) Send measurement data to raptor; read state estimate update from raptor 
6.  Else if (SSV is out of FOV for camera 1 and camera 2) then 
     a) Pause 1 second; request new state estimate from raptor 
     b) If raptor has not responded in 10 requests for state estimates 
      i) Capture, process image from camera i 
     ii) Send measurement data to raptor; read state estimate update from raptor 
7.  Switch to other frame grabber/camera (If i=1 then i=2; if i=2 then i=1) 
8.  Goto Step 5. 

 
Figure 5.2 VPS_client algorithm 

 
 

.1.1 VPS_client Initialization 
 

2 

s VPS_client how many camera/frame grabber sets it will 

need to control – in this case, two.  The second and third integers identify by 

r w rds.  In this case, we see that 

5

At run time, VPS_client first looks for a file called camnums.dat.  This file must 

reside on each vision computer, in the directory that houses VPS_client.  The 

camnums.dat file for Vision 1 contains the following data: 

 

1 
2 
-1 
 

The first integer notifie

numbe hich cameras are connected to the boa

board 0 has camera 1 attached, and board 1 has camera 2 attached.  The final 

number identifies that the end of the list has been reached.  The number of 

cameras present and an end-of-list identifier are redundant.  They both exist 
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because of legacy code that allowed one 8-channel frame grabber to control all 

eight VPS cameras.  After accessing camnums.dat, other global variables 

required for the operation of VPS_client are also initialized. 

 

Next, the frame grabber boards are initialized.  Memory is allocated where the

captured images (pix[i], cameras i=1, 2) can be stored, their specific par

ir 

ameters 

quired for operation with VPS are set, and the powered-on status of the 

n 

e 

e 

cur under normal VPS operations, but only 

t the beginning of tests or during system development. 

5.1.2 Image Acquisition and Processing 

loop, a local copy of the global state estimate of the tracked object is checked.  If 

re

cameras is verified.  The background images (bg[i], cameras i=1, 2) and 

calibration data, based on the camera numbers found in camnums.dat, are the

loaded into the appropriate locations in memory.    

 

Next, VPS_client prompts the user for input indicating how it is to function.  Th

user can choose from normal operation, or a series of special functions.  Th

special functions allow the user to capture and store background images, pass 

live video through to the computer monitor, test network communications, and 

perform other system tests and trouble shooting operations.  This step is not 

shown in Figure 5.2, as it does not oc

a

 

During normal operation, the image acquisition and processing functions and the 

raptor communications functions execute in a loop.  After each iteration of the 
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its position is in the field of view (FOV) of the camera, then the frame gra

commanded to capture an image with that camera, and the time is recorded 

locally in VPS_client.  Then the image is processed, the measurement sent to 

raptor, and a new global state estimate is received.  Note that raptor only sends

global state estimate after it has received information from VPS_client.  This 

bber is 

 a 

rocess is repeated over both frame grabbers at approximately 8 Hz.    

ras, no 

a copy of the latest global state estimate is requested 

om raptor at 1-second intervals.  VPS_client makes this request by sending 

dummy data to raptor – data with a value of -1 in each of the camera data 

positions.  The EKF knows to reject this data, but having received something, still 

returns the latest global estimate.  Once the global estimate indicates that the 

tracked object has returned to the FOV of one or both of the cameras, normal 

execution of the loop will resume.     

 

If the tracked object were outside the FOV of all of the VPS cameras, none of the 

cameras would be commanded to take images with which to update the global 

estimate.  In this case, it is possible for the global state estimate to get “stuck”, 

especially with poor or absent EKF dynamic propagation, and to remain constant 

even if the tracked ob ameras.  To 

p

 

If the tracked object is out of the FOV of one camera that camera is skipped.  A 

new iteration of the while loop is then begun, this time with the next camera.  If 

the tracked object is not in the FOV of either of the two VPS_client came

images are grabbed, and 

fr

ject returns to the FOV of one or more c
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prevent this, if VPS_client has had to request data from raptor 10 times 

consecutively, the vision functions (acquisition and processing) and the norma

communications are e

l 

xecuted.  If the tracked object remains outside all camera 

OVs, then the vision processing algorithms will not generate useful data, and 

tion 

F

will send, as before, a dummy set of data with pixel values of -1.   

 

The image acquisition and processing functions are encapsulated in a func

named DoVisionWork().  In this function, the first action is to acquire an image 

pix[i] from camera i using its frame grabber board.  Figure 5.3 is an example of 

an image with SCAMP SSV in the FOV, as it appears immediately after 

acquisition by camera 4. 

 

 

Figure 5.3 VPS image in its initial state 
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The image processing actions executed next are a standard series of operations 

used in many vision applications (see [23], and [13] for more details about its 

application to VPS).   

 

Prior to operation of VPS, a set of background or static images bg[i] must be 

acquired.  Once an image with the tracked object is acquired, the corresponding 

static background image is subtracted from the image.  Recall that in 8-bit 

grayscale computer images, a pixel value of 0 corresponds to black, and a pixel 

value of 255 corresponds to white.  After subtraction, corresponding pixels in the 

static and acquired images that are nearly the same will be very dark (nearly 

zero) in the processed n the static and 

acquired images, which is the case in the region of the image where SCAMP 

SSV is found, pixels in the processed image have higher values.  Put simply, the 

new image will be lighter in regions that differed from the background, and nearly 

black where the images were the same.  Figure 5.4 is a sample background 

image for camera 4, and Figure 5.5 is the example image from above after the 

background has been subtracted.  Note that new background images are 

acquired just before each test to account for lighting conditions and static object 

changes. 

 

 

image.  If pixels differ greatly betwee
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Figure 5.4 VPS background image 
 

 

 

Figure 5.5 VPS image after background subtraction 
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Next, the image is thresholded to create a binary (all pixels are either 0 or 255) 

image.   Any pixel that is under a certain threshold (darker than the cut-

to 255 (white), and any pixel over the threshold (lighter than the cut-off) is set t

(black).  The pixels that are set to black are considered part of the tracked bject. 

Figure 5.6 shows the example image after thresholding.     

 

off) is set 

o 0 

o  

 

Figure 5.6 VPS image after thresholding 

eally, the binary image created after thresholding would only contain one 

ontiguous region of black pixels, which would correspond to SCAMP SSV.  

Experience shows that in addition to this egion, there will be random black pixels 

throughout the image referred to as “salt-and-pepper” noise. These are removed 

by looking at each black pixel in the image, and setting it to white if in its 

 

Id

c

r
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surrounding area there are very few other black pixels.  This is accomplished by 

a function called denoise(), which, for each black pixel in a thresholded image, 

counts the integer number of black pixels, ρ, in its neighborhood.  The 

neighborhood of a black pixel is defined as a square region, of dimension 2λ, 

with the black pixel in the center.  If ρ is less than some threshold value, ρmin, the 

black pixel is set to white, and left black if ρ is above the threshold.  If ρmin is set 

too low, or λ too large, not all noise pixels will be eliminated.  If the opposite is 

the case, some pixels on the edge of the tracked object could be erroneously set 

appropriate e 

object p ise has been 

moved.   

to white.  Trial and error was used to find values of ρmin and λ that were 

 for VPS.  ρmin = 15 and λ = 5 were found to provide a good balanc

between eliminating all salt-and-pepper noise pixels, and few, if any, tracked-

ixels.  Figure 5.7 shows the example image after the no

re
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Figure 5.7 VPS image after noise removal 

Once a clean binary image is available, the area of the r bot, nd its age

centroid coordinates, all in pixels, are calculated.  The area is simply the total 

number of black pixels in the image, while the X and Y c troid coord

alculated as the average pixel distance from the X and Y axes of all the black 

he centroid coordinates calculated are [XFD YFD] , or the distorted digital 

coordinates.  The EKF equations can be constructed to take into account the 

lens distortion, but this would require numerous additional math operations for 

 

o  a  im  

en  inates are 

c

pixels.  Recall that by convention, the origin of an image is at the top left-hand 

corner, with positive X pointing to the right and positive Y pointing down.   

 

T



 

each measurement processed by the filter.  It is

the centroid coordinates before using them in the EKF.  To do this, [XFD YFD] 

ust first be converted into distorted real image coordinates, [XD YD]  by inverting 

 more efficient to first undistort 

m

equations (3.17) and (3.14) to form the equations 

 

( )
X

XXFD
D

DCX '⋅−
s

X =     (5.1) 

 

( ) YYFDD DCXY ⋅−=             (5.2)  

 

Now, using the distortion coefficient, an be undistorted by 

applying inverted versions of equatio

 

the coordinates c

ns (3.11) and (3.12) 

( )( )221 DDDU YXKXX         (5.3) 

 

+⋅+⋅=

( )( )221 DDDU YXKYY +⋅+⋅=                  (

 

The undistorted real image coordinates [X

5.4) 

ck into U YU] can now be converted ba

digital form, this time into undistorted digital image coordinates, by applying 

equations (3.17) and (3.14), or equation (5.1) and (5.2) in reversed form  

 

X
X

XU C
sX

X +FU D
⋅

=              (5.5)
'
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Y
Y

U C
D
Y

Y +=          (5.6)FU  

V 

 

After the undistorted digital centroid coordinates and image area of SCAMP SS

are ready, they are packed into a message called vps_data and sent to raptor.  

The message vps_data is a specially defined struct variable.  Its form and 

contents are shown in Table 5.1.   

 

Table 5.1 vps_data structure sent to raptor 

Variable Type Contents 
integer camera number 
float[3] [area, XFU, YFU] 
struct timeval long integer seconds, 

long integer microseconds 
 

 that the 

puters (running Windows 2000) and the raptor control station 

computer (running RedHat Linux) have 

test, the clock on both computers is synchronized to an external time source to 

eliminate, as much as possible, any time drift that has occurred between the 

computers since the last test.  On the vision computers, this is done through the 

 

The camera number is used to ensure that each measurement is used correctly 

in updating the state estimate.  The timeval struct contains the current number of 

seconds and microseconds that have elapsed since January 1, 1970, and is 

standard on both UNIX/LINUX and Windows platforms.  It is important

vision com

synchronized clocks.  Before each VPS 
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w32time command.  On the ReCS computer, this is done by restarting the NTP 

 

osition estimate is currently 

sed in VPS_client.  SCAMP SSV moves slowly enough that its velocity does not 

 a 

(5.7) 

 

Table 5.2 global_data structure sent to VPS_client 

Variable Type Contents 

(Network Time Protocol) daemon via the command /etc/init.d/ntpd restart.  

 

The message the VPS_client receives from raptor is also a struct variable.  Its 

form and contents are shown in Table 5.2.  Only the p

u

need to be considered when determining whether or not to pull an image from

certain camera.  In 0.125 seconds (the approximate time between the 8Hz image 

acquisitions for a given camera), if traveling at its estimated terminal velocity of 

0.2 m/s, SCAMP SSV could be expected to translate a maximum of  

 

0.125 s x 0.2 m/s = 0.025 m = 2.5 cm    

 

The “error” data member in global_data is not currently used or assigned a 

meaningful value in either VPS_client or raptor, and is implemented for potential

future use.  It could, for instance, be used to carry the value of the maximum or 

mean error covariance term (defined in Chapter 6) from the EKF. 

 

float[3] position ⎥
⎦

⎤
⎢
⎣

⎡ ∧∧∧
GGG ZYX  

float[3] velocity 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ •••
∧∧∧

GGG ZYX  

float error 
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5.2 Control Station Software (Raptor) 

Many contributors at the Spa s Laborat  developed the raptor 

control station software.  It is important to note that overview here will focus 

on those components that pertain spe ificall o VPS.  For more 

details related to the raptor code, see [24] and [25].  

 

Figure 5.8 is a graphical representation of how raptor interacts with the other 

VPS computers and programs.  It should be noted that thus far, the discussion

the VPS software has been developed  a non-specific “tracked object” 

instead of to the specific robot that was used in this research, SCAMP SSV.  This 

made sense for the discussion of VPS_ d to any 

spheroid object (and in the future, potentially to any object).  Since raptor is 

designed to control specifically (but not exclusively) SCAMP SSV, and the final 

section of this chapter is a discussion of the SCAMP SSV software itself, the 

“tracked object” terminology will be dropped.  This should not be interpreted as 

eaning the VPS architecture can only be used with SCAMP SSV – given similar 

state estimation a an be made to 

ccommodate nearly any neutral buoyancy robot. 

ce System ory have

 the 

 of the software c y t

 of 

 referring to

client since it can be applie

m

nd communication strategies, VPS and raptor c

a
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Saved 
Timer running 

Extended 

 
Figure 5.8 Information flow diagram for raptor 

 

The four vision computers, each running VPS_client, send vps_data structures to 

computer, it sends to that computer the latest inertial state estimate 

raptor at unscheduled times, continuously and as fast as they can pull in and 

process images.  Each time raptor receives a new measurement from a vision 

∧

X for 

SCAMP SSV in the form of a global_data structure.  Raptor stores the vps_data 

RAPTOR 
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messages in a global array.  As new messages from individual cameras arrive

they overwrite the previous message from that camera in the array.    

 

Similarly, raptor is also continuously communicating with SCAMP SSV.  Its 

, 

communication frequency is set at 50 Hz by SCAMP SSV’s flight program.  In 

closed loop attitude control mode, raptor sends to the robot a vector of desired 

inputs converted directly from pilot hand controller inputs: BFDES  are the desired 

body forces, and BωDES are the desired body angular velocities.  Raptor will also 

e ame inertial position and velocity (in th  near future) send SCAMP SSV the s

estimate it sends to the vision computers, 
∧

X .  It receives from SCAMP SSV th

robot’s internal state estimate, 
∧

X , which contains the robot’s attitude 

quaternion q and its applied inputs U .  SCAMP SSV sends other telemetry 

e 

ACT

, but these do not affect the operation of 

 

The EKF runs as a separate process within the raptor code.  A timer is started as 

part of the raptor initialization to control the execution of the EKF.  At a fixed 

frequency, this timer calls a single function, do_VPS_filterwork().  Each time 

do_VPS_filterwork() is called, it accesses the vps_data measurements stored in 

the global array, finds the measurements that are recent enough for use, and 

SSV

data to raptor, such as sensor readings

VPS.  These data are represented by S in Figure 5.8.  Global variables within 

raptor store this information, and are updated every time a new message is 

received.  If the pilot instructs raptor to do so via the GUI, it will save the data 

stored in these variables to a data file at approximately 100 Hz. 
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uses them to update
∧

X .  It also accesses data from SCAMP SSV’s telemetry 

quired in the EKF, but does not check that data’s age.  It assumes that 

because of SCAMP SSV’s high commun

sufficiently recent.  The next time raptor communicates with the vision computers 

or with SCAMP SSV, it sends them the updated

re

ication frequency, the telemetry is 

∧

X .  The EKF algorithm will be 

discussed further in Chapter 6. 

 

5.3 SCAMP SSV Flight Software 

Although not modified for this research, the SCAMP SSV onboard software is 

overviewed for completeness.  Figure 5.  three MP SSV real-time 

threads t VxWorks O/S.   

 

The communications thread, running at 50Hz, receives BUDES and 

9 shows the  SCA

hat run under the 

∧

X  from raptor, 

and sends X
∧

w sensor data from the magnetometer, accelerometer, and rate gyros (IMU), 

and (via an A/D board not shown in the diagram), computes from that data 

current values of the robot’s state, .  The controller uses BUDES  and to 

compute commands that are sent to the thrusters.  In the future, the controller will 

be augmented to allow it to automatically control the position of SCAMP SSV as 

well as its orientation.  For more details on the SCAMP SSV software and its 

evolution, see [6]. 

SSV  to raptor.  The state estimator thread, running at 25 Hz, receives 

ra

SSV

∧

X SSV

∧

X
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Figure 5.9 Information flow diagram for SCAMP SSV 
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Chapter 6 

ptimal State Estimation and the Kalman Filter 

th a discussion of the role of state 

oduced, and the most popular linear optimal 

state estimation algorithm, the Kalman Filter, is discussed.  The Extended 

Kalman Filter (EKF) is also introduced, which is a method of applying linear 

Kalman Filter techniques to nonlinear systems.  In Section 6.2 the EKF 

equations, as applied to VPS, are presented, along with details on the 

characterization of system and measurement noise statistics.    

 

6.1 Optimal Estimation Theory 

articular dynamic 

ystem, with x as the state vector, and u as the input control vector: 

 

                         (6.1) 

 

The open loop block diagram for such a 

 

 

 
 
O

In Section 6.1, this chapter begins wi

estimation in closed-loop control strategies.  Once this groundwork is laid, the 

idea of optimal state estimation is intr

6.1.1 Introduction to State Estimation 

Consider a general set of differential equations that model a p

s

( )uxx ,f=
•

 

simple system would be as follows 
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Figure 6.1: Simple open-loop block diagram 

 

Suppose that the following control law was desired for this system:  

 

•
xu 

( )eu k=      (6.2) 

 

where e is an error vector, typically defined as the difference between the state 

 xD.  vector and some exogenous reference vector characterizing desired behavior

 

xxe −= D        (6.3) 

 

Assuming the full, uncorrupted state vector x was available for use, a feedback 

loop could be constructed as in the following block diagram: 

 

 

 

 

 

 

Figure 6.2 Simple closed-loop block diagram 

∫ x( )= uxx ,f
•

•
xu  ∫ x( )ekx ( )uxx ,f=

•e 

xD 
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In many real systems, knowledge of the full state vector x is not available.  

Instead, sensors provide a vector of measurements, z.  Some elements of z may

that model the relationships between the elements of x and z are called the 

sensor 

 

indeed be measurements of individual state elements, while others are likely 

values that represent combinations of several state elements.  The equations 

model, and denoted as 

 

( )xz c=        (6.4) 

As can be seen in figure 6.3, an obstacle to the construction of a closed loop 

control system has now emerged.  Because the control law requires x, and only z 

is available, there is a gap in the flow of information. 

 new component, an observer g(x), is required in the system to bridge this gap.  

 

 

  

 

 

 

Figure 6.3 Discontinuous closed-loop block diagram 

 

•
xu  ∫ x( )ek ( )uxfx ,=

•e 

xD 

( )xc

x z 

A

An observer is a computational algorithm that creates an estimate of the state 

vector, 
∧

x .  Generally, observers use the equations that comprise the system 
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dynamics f(x,u) and the sensor model c(x), along with the vectors z and u to 

create 
∧

.  When an observer is employed, the er v ctor i forme
∧

ror e s d using x  x

instead of x.  This is illustrated in Figure 6.4.  Note that the line coming from the 

observer, carrying the estimate 
∧

x  is dashed.  

does not construct 
∧

This is to indicate that the observer 

x  algebraically, but does so by other means (discussed 

later). 

 

 

 

rver 

dynamics f(x,u) are potentially nonlinear.  The state estimation algorithms 

applied in VPS are based on extended techniques that start by linearizing th

•

 

 

 

xu  ∫ x( )ek ( )uxfx ,=
•e 

xD 

( )xc( )xg

x

z

∧

Figure 6.4 Closed-loop block diagram with obse

 

The discussion has thus far been for the general case where the system 

nonlinear dynamics to simplify the analysis.  Therefore, the discussion will now 

leave behind the general nonlinear formulation of f(x,u), in favor of a linear 

formulation.   

 

Assume that the dynamics of the example system, as well as the equations of 

the sensor model, are linear, and can be represented by the linear systems 

e 
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uxx ⋅+⋅= BA                      (6.5

 

•
) 

 

xz ⋅= C              

 

(6.6) 

where A, B, and C are constant matrices.  This type of system is referred to as 

being Linear-Time-Invariant (LTI).   

 

The Luenberger Observer [26] is the most common form of observer for linear 

systems that can be represented by (6.5) and (6.6).  T

combines the system dynamic equations and the sensor model equation to 

create a new system of differential equations that govern the evolution of the 

state estimate in a two-step process.  First, a prediction step, , 

propagates what the derivative of 
∧

he Luenberger Observer 

ux ⋅+⋅
∧

BA

x  would be if the state vector 

exactly with the state estimate.  In the second step, 

the derivative of 
∧

x matched 

the correction or update step, 

x  is updated based on the discrepancy between the actual 

sensor measurement vector, z, and the predicted measurement vector, 
∧

z .  In the 

continuous m, the two-step nature is not immediately apparent, since 

both are applied in the same equation.  The two separate steps are more 

apparent in the discrete time formulation, which is discussed later in this chapter.  

-time syste

The predicted measurement vector can be thought of as what the sensors would 

read if the state vector was exactly 
∧

x .  The matrix L is the estimator gain matrix, 
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and affects the relationship between 
∧

x  and the measurement residual, 
∧

− zz .  

∧

 is obtained through integration The state estimate x of its differential equation.  

Equations (6.7) and (6.8) below, along with (6.5) and (6.6), are the equations for 

a Luenberger Observer.  Figure 6.5 shows a block diagram of the observer/ 

controller system.   

 

(6.7) 

 

⎢ −⋅+⋅+⋅=

∧∧
⋅= xz C      

⎦

⎤

⎣

⎡ ∧∧∧

⎥

•

zzuxx LBA       (6.8) 

ges 

asymptotically to the true state – certain conditions must be met.  Specifically, the 

 

 

 

 

 

 

 

•
xu  ∫ x( )eke 

xD 

∧
x

∧∧

⎥
⎦

⎤
⎢
⎣

⎡ ∧∧∧

⋅+⋅=
•

z=z C

−⋅+⋅+⋅=

⋅ x
•

zzuxx LBA

uxx BA

xz ⋅= C

Luenberger Observer

 

Figure 6.5 Luenberger Observer in a closed-loop system 

 

At this point it must be pointed out that for the observer above to successfully 

calculate the state estimate – that is, to calculate a state estimate that conver
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matrices A and C must together be observable.  This means that with the gi

and C it must be possible to design L such that the matrix A-LC will be 

exponentially stable, or equivalently, all of the eigenvalues of the matrix A-LC w

have

ven A 

ill 

 negative real parts.  For a more detailed discussion of observability, see 

[27]. 

 

The discussion so far has relied on two unstated assumptions.  The first, that the 

equations in (6.1) and (6.5), for the general and the linear formulations 

respectively, model the system dynamics perfectly, and that there are no inputs 

ssible to model physical systems exactly, 

 the system model equations.  Physical 

systems are also typically subject to

and t in 

wh example 

r process noise.  Sensor models too have limited accuracy.  Typically, the 

at model the dynamic system need to be expanded to take 

these departures from the ideal.  Continuing with the linear formulation, let the 

vector w represent both process noise, and any inaccuracies in the system 

to the systems other than those applied via the control vector u.  This is rarely a 

safe assumption.  Because it is impo

there is some inherent uncertainty in

 process noise – unexpected, unmodeled, 

 often random inputs due to uncontrollable aspects of the environmen

ich the system exists.  Wind gusts acting on an airplane are a good 

o

sensor outputs are also corrupted by measurement noise – random or even 

systematic errors that alter the measurements from what they would be if the 

sensors were perfect. 

 

The equations th
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dynam quations, and let the ic e vector v represent measurement noise and 

accuracies in the sensor model.  The matrix G is simply a noise vector-scaling 

GBA               (6.9) 

 

in

matrix, and is often assumed to be the unit matrix. The new system equations 

are 

 

wuxx
•

 

⋅+⋅+⋅=

vxz +⋅= C                (6.10) 

 

mator can now be introduced.  Reference [27] gives the 

following definition: 

 

An optimal estimator is a computational algorithm that processes 
measurements to deduce a minimum error estimate of the state of a 
system by utilizing: knowledge of system and measurement 
dynamics, assumed statistics of system noises and measurement 
errors, and initial condition information.  

 

Unlike an observer, an estimator takes into account, through the way in which the 

gain matrix alculating 

e state estimate.  What makes a state estimator optimal, and the most popular 

 

 

The optimal state esti

 L is calculated, the measurement and process noise when c

th

algorithm for creating an optimal estimator (the Kalman Filter), are the topics of

Section 6.1.2.   
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6.1.2 The Kalman Filter  

A Kalman Filter is an optimal state estimator of the same general form as the 

te.  

 

 

 

 

 

Before the Kalman Filter can be described, some statisti

troduced.  Let the vector 
~

 

Luenberger Observer.  It is for use with systems that have strictly linear system 

dynamics and a linear sensor model.  Although it is a major difference, it differs 

from the Luenberger Observer only in the way in which the gain matrix L is 

computed, and the resulting special properties this provides to the state estima

Figure 6.6 shows the block diagram of the more realistic system model, with 

sensor and process noise shown.   

•
xu  ∫ x

 

 

 

Figure 6.6 State estimator in a realistic closed-loop diagram 

( )eke 

xD 

∧
x

z∧∧
⋅= xz C

⎤⎡ ∧∧∧
•

xx +⋅=
•

A u⋅B

xz ⋅= C

⎥
⎦

⎢
⎣

−⋅+⋅+⋅= zzuxx LBA

State Estimator/Kalman Filter 

v

w

 

cal details need to be 

in x  be defined as the error between the state estimate, 

∧

x , and the true state vector, x 
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xxx −=
∧~

             (6.11) 

 

ach element in the vector 
~
xE  is a random variable – each can take on an infinite 

and the variety of real values.  Since it is hoped that the error between the state 

estimate is small, the elements in 
~
x  hopefully will never stray far from zero.  Let 

e symbol E represent the “expected value” of a random variable or vector of 

the 

covariance matrix of 

th

random variables.  The expected value is the value that the random variable is 

most statistically likely to take over time.  Let the matrix P be defined as 

~
x : 

 

~~
E       (6.12) 

 

P is also known as the error covariance matrix of the estimator with which it is 

v

square of the standard deviation, σ, of the ith element of 

⎥
⎦

⎤
⎢
⎣

⎡
⋅=

T

xxP

associated.  The ith major diagonal element of P will ha e values equal to the 

~
x  

 

2

i

         (6.13) 

 

, )(~ ⎟
⎠
⎞

⎜
⎝
⎛σ= tP

x
diagi     

If all of the elements of 
~
x  for some state estimator have a normal (or Gaussian) 

distribution about a mean of zero, as in the equation  
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=⎥⎦
⎤

⎢⎣
⎡ ~

E x  0     

 

then the estimator is referred to as unbiased.  In such a case, the error 

covariance matrix P is diagonal.    

         (6.15) 

 

The trace of the error covariance matrix P is the sum of its diagonal elements, 

nd acts as a measure of the expected magnitude of 

              (6.14) 

 

A Kalman Filter is an unbiased, minimum variance observer for linear systems.  It 

is a minimum variance observer because L, the Kalman Gain Matrix, is 

calculated such that it minimizes the following objective function 

 

[ ]PtLJ
ti xt i

trlim)(lim)(
2

~
∞→∞→ ∑ =⎟

⎠
⎞⎜

⎝
⎛σ=

~
xa .  In other words, the 

o 

es for w and 

, referred to as Q and R  

trace of P is a measure of how close the state estimate is to the actual state 

vector.    

 

Necessary to the development of the Kalman Filter equations are the 

assumptions that plant dynamics and measurement model are linear.  It is als

assumed the plant and measurement noise vectors, w and v, respectively, are 

Gaussian and zero-mean.  Also required are the covariance matric

v
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[ ]TEQ ww ⋅=                      (6.16) 

 

[ ]TR vv ⋅= E           (6.17) 

 

 

 dev ent 

 

)()()( QGAtPtPAtP ⋅+⋅+⋅=
•

 

−R  

ted in a digital computing environment, discrete time 

rmulations of the Kalman Filter equations are required.  The value of a variable 

at time k will be represented by the addition of a subscript k, as in x .  To 

represent the value of a variable exactly at one time step before or after time k, a 

subscript of k-1 or k+1 will be affixed, respectively.  To denote the value of a 

 (as opposed to an entire 

time step before time k), the subscript k(-) or k(+) will be affixed.    

 

Given without proof, the equations for the Kalman Gain Matrix and the 

propagation of the error covariance matrix are given below.  These must be used

in conjunction with (6.7) and (6.8).  It is assumed that A, B, C, Q and R are 

constant matrices.  The matrices P and L vary with time.  For a full elopm

of the Kalman Filter equations, refer to [28].  

T TT )()( tLRtLG ⋅⋅−⋅            (6.18) 

1T)()( ⋅⋅= CtPtL          (6.19) 

 

Since VPS is implemen

fo

k

variable immediately before or immediately after time k
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The discrete time equivalents of (6.9) and (6.10) are 

 

          (6.20) 11111 −−−−− +⋅Λ+⋅Φ= kkkkkk wuxx

kkk C vxz +⋅=     

.  It 

ome time k in the future, given the value 

f the state at a pre time k-1.  If the time step Ts between time k and time k-

1 is constant, and the system dynamics matrix A is also constant, 1−k  is

constant matrix, and is given by the equation 

     (6.22) 

   (6.21) 

 

In (6.20), the matrix 1−Φk  is the state transition matrix of the dynamic system

allows the calculation of the state x at s

o vious 

Φ  a 

 

sTA
k e ⋅

− =Φ 1

 

Given constant values for Ts and B, the matrix 1−Λk  is also constant.   This matrix 

aps the change in x caused by an input u applied over a time step Ts.  It is 

iven by the equation  

 

sT

⎠

⎞

⎝

⎛

0

  (6.23) 

 

f the Kalman Filter is to provide a value for k

∧

x  given the previous 

stimate, )(1 +−

∧

kx , the control inputs u, and measurements z, that arrived during 

m

g

Bde A
k ⋅

⎟
⎟

⎜
⎜ τ=Λ ∫ τ⋅

−1    

The goal o

e
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the last time step.  First, the estimate is propagated forward based on the system 

dynamics and the input vector u by the equation 

 

−− ⋅Λ+⋅Φ= kkkkk uxx         (6.24) 

 

In addition to the state estimate, the error covariance matrix P must also be 

propagated forward with the equation 

      (6.25) 

 

where Qk-1 is the covariance matrix of the process noise vector at time k-1.   

 

If the noise sources creating w are assumed to be uncoupled, Qk-1 will be a 

diagonal matrix, with the diagonal elements being given by 

2
,,1 iikQ wσ=−      (6.26) 

 
 

where σ  is the standard deviation of the w. 

 

Next, the estimate is corrected based on the measurement data with the 

equation 

 

∧∧

11)(11)( −−+−

 

11)(11)( −−+−−− +Φ⋅⋅Φ= k
T
kkkk QPP  

 

 

ith element of i
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⎥
⎦

⎤⎡
⋅−⋅+=

∧∧∧
CL xzxx          (6.27) ⎢

⎣
−−+ )()()( kkkkk

The Kalman Gain Matrix, Lk, required in (6.27), is calculated by the equation 

 

 

[ ] 1
)()(

−
−− +⋅⋅⋅= k

T
k

T
kk RCPCCPL           (6.28) 

 

9) 

)(−k

where Rk is the measurement noise covariance matrix 

 

Similarly to Qk-1, if the noise sources contributing to v are assumed to be 

uncoupled, Rk will also be a diagonal matrix, with the diagonal elements being 

given by 

 

2
,, iikR vσ=              (6.2

 

where σi is the standard deviation of the ith element of v. 

 

In (6.27), 
∧

⋅C x  is 
∧

z .  If more than one measurement is available for the 

correction step, (6.27) can be applied as many times as necessary.  In this case, 

each measurement being applied individually to the estimate as it stood after the 

each measurement would correct the already-corrected estimate, as opposed to 

tep. 

 

prediction s
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The matrix P also needs to be corrected for each measurement with the equation 

 

[ ] )()( −+ ⋅⋅−= kKk PCLIP             (6.30)

 

where I is the identity matrix of appropriate dimension.   

The Extended Kalman Filter 

As stated previously, one of the conditions necessary for the Kalman Filter 

equations to be valid is that both the system dynamics and the sensor model can 

be represented in the linear forms shown in (6.9) and (6.10).  Many st

however, cannot be represented in this way, and are of the more general form in 

(6.1) and (6.4). 

 

If either f(x) or c(x) represent nonlinear vector functions, an Extended Kalman 

Filter must be used, which uses the linearization of the plant dynamics and 

sensor model about the current state estimate.  In the case of S, th

physically nonlinear dynamics of SCAMP SSV can, with accuracy sufficient for 

is appli ation, be modeled as being linear.  This means that the propagation 

ix will remain 

 

 

6.1.3 

sy ems, 

 VP e 

th c

equations for both the state estimate and the error covariance matr

as given above.  The sensor model, c(x), however, is nonlinear.  The state 

estimate correction equation changes from (6.27) to  
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⎥
⎦

⎤⎡
⎟
⎞

⎜
⎛

−⋅+=
∧∧∧

cL          (6⎢
⎣

⎟
⎠

⎜
⎝

−−+ )()()( kkkkkk xzxx .31) 

 

⎝
ent to 

the estimated measurement 
∧

where ⎟
⎞

⎜
⎛

−

∧

)(kkc x  is the value of c(x) evaluated at  )(−

∧

kx .  It is also equival
⎠

z .   

 

The equation for the Kalman Gain Matrix

⎛⎞⎛⎞⎛

 

 and the error covariance correction also 

change 

1

)()()()()(

−

−
∧

−−
∧

−
∧

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠
⎜⎜
⎝

⋅⋅⎟⎟
⎠

⎜⎜
⎝

⋅⎟⎟
⎠

⎜⎜
⎝

⋅= k

T

kKkkk

T

kkkk RCPCCPL xxx       (6.32) 

)()()( −−

∧

+ ⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−= kkkkk PCLIP x        (6.33) 

where 

⎞

( )( )
( ) ( ) )(

|)(

−
∧

=
∂

∂
⎟
⎠

⎞
⎜
⎝

⎛
−

∧

kt
t

tc

k
kk

xx
x

x
=⎟⎜C kkx            (6.34) 

 

6.2 Implementation of VPS Extended Kalman Filter 

 

k

The state estimation task posed to VPS is to combine the measurements from 

the position sensors, the cameras, with the body forces exerted on the robot by 

the thrusters, to create an estimate of the robot’s translational state, or its inertial 

position and velocity.  The plant dynamics are fully linear, and thus amenable to
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a standard Kalman Filter, but because the sensor model is nonlinear,

Extended Kalman Filter is required. 

 

 an 

he translational state vector, x, for the system was assigned as follows 

 

emented as three separate, identical two-

dimensional state estimators.  The EKF is currently implemented as one six-

dimensional estimator, with many of the elements of the A, B and C matrices 

s would take 

as 

d by 

 time for SCAMP SSV to traverse the diameter of the NBRF in a 

T

T

GGGGGG ZZYYXX ⎥⎦
⎤

⎢⎣
⎡≡

•••

x  

 

Assigning x in this way makes the A matrix (shown below) block diagonal, and 

allows the EKF (in the future) to be impl

having a value of zero.  Splitting up the EKF into three smaller EKF

advantage of the sparse nature of these matrices, and reduce the number of 

“multiply-by-zero” operations.  This would make the EKF more efficient, but 

slightly more complex to implement.  Since the speed of the EKF did not appear 

to be limiting its performance, the original six-dimensional architecture was 

retained in this development effort for the sake of simplicity.   

 

Since SCAMP SSV moves very slowly through the water it was assumed, it w

assumed that drag increases linearly with velocity instead of quadratically – at 

low speeds the difference will be small.  This is the assumption that allows the 

dynamics to be modeled as being linear.  The terminal velocity was estimate

measuring the
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straight line at maximum thrust.  In this test, SCAMP SSV traversed 

y approximately 48’ in 86 seconds, indicating a terminal velocity of approximatel

0.2 m/s.  Thus 

 

iDTiDRAG vCF ⋅−=,         (6.35

 

where F

) 

e axes of the global reference frame.  Thus, the 

quation of motion for SCAMP SSV in the XG  axis (the equations of motion in the 

YG and ZG axes will be identical in form and are omi

X, FY, and FZ  are along th

e

tted) will be 

 

G
DTX

G XCFX
•••

⋅−=          (6.3
mm

6) 

 

Necessary to the calculation of inertial control forces, and thus the propagation of 

the state estimate, are the instantaneous inertia att ude e timate  of th

 SSV computes its attitude on board, using data from the magnetometer 

nd accelerometer, both of which are tri-axial instruments.  The magnetometer 

outputs the direction of the magnetic-North vector, while the accelerometer 

outputs the direction of the down vector, both in SCAMP SSV’s body coordinate 

frame.  By taking the cross product of the down and magnetic-North vectors, 

SCAMP SSV has access to three perpendicu

inertial attitude reference frame) expressed in its own body coordinate frame.  

SCAMP SSV uses the reference frame to calculate its own relative attitude 

quaternion.   

l it s s e robot.  

SCAMP

a

lar inertial reference vectors (an 
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SCAMP SSV sends the t ommanded body 

rces, to raptor as telemetry.  At each iteration, the EKF converts the current 

trix for transforming vectors from the body frame into the inertial 

lobal) frame, .  The EKF uses it to rotate the body forces into the inertial 

 

       (6.37) 

 

Given the forms of x and u CDT, the system dynamics 

are modeled as  

 

wuxx ⋅+⋅+⋅=
•

GBA           (6.38) 

where 

 

 at itude quaternion, as well as the c

fo

SCAMP SSV quaternion into a rotation matrix, as outlined in [10].  This matrix is 

the rotation ma

 RG
B(g

frame via the following equation 

BG
B

G R FF ⋅=

, and the drag coefficient 
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G  six-dimensional identity matrix 

 

and w is a zero-mean Gaussian process noise vector.  The symbol m is the robot 
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≡

mass in air.    

 

Applying (6.22) and (6.23) renders the following values the constant matrices 

1−Φ k  and 1−Λ k  

 

⎤⎡c 00

where 

⎟
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ⋅− TC

DT

SDT

C
1

 

Originally, the VPS sensor model was also to be fully linear. From each captured

image of SCAMP SSV, the vision computers would have computed a full 3D, 

global position estimate, [X

−⋅= med 1  

 

G YG ZG]T, according to the equations in Chapter 3.  

The sensor dynamics would have been 

 

vxZ +⋅= C       (

where 

6.39) 

[ ]TZYX≡Z  

 

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

≡
010000
000100C  

GG

⎤⎡ 000001

ree 

robot’s image area.  The 

nge of SCAMP SSV (the value of ZC) is computed based on the area, and 

values for XC and YC are calculated from (3.2) and (3.3).      

G

 

and v is a zero-mean Gaussian measurement noise vector in units of length.   

 

In order to calculate a full 3D inertial position estimate based on one image, th

pieces of information need to be derived from each image – the X and Y digital 

image coordinates of the centroid of the robot, and the 

ra
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Unfortunately, range calculations based on image area are notoriously 

inaccurate.  The image area of an object in a binary image is heavily dependant 

on illumination.  In a location of high illumination, object edges will be sharper 

than in a location of low illumination, and when thresholding is performed, more 

pixels from the object will remain in the binary image.  Local illumination in the 

NBRF does change slightly, based on proximity to overhead lights and objec

the tank that can cast shadows.  Therefore, if SCAMP SSV is imaged in two 

different locations with equal physical ranges from a given camera, but with 

unequal illumination conditions, its measured range can differ significantly.  

Similarly, becaus

ts in 

e of skylights in the roof above the NBRF, sunlight fluctuation 

ue to clouds or time of day a auses the apparent range of SCAMP SSV to 

tuation 

ess of each image as ed to bring it up to some reference 

rightness, but this would do nothing to correct the spatial illumination fluctuation.  

 

sting and simulations indicated that small variations in the image area of 

SCAMP SSV, on the order of five percent, could account for position errors of 

greater than 30 cm.  Since this level of image object area variation was very 

possible, and even probable in the plann d operational activities of VPS, the use 

d lso c

change over time even if it is perfectly still.  This temporal illumination fluc

could be compensated for with a function that increases or decreases the 

brightn  it is captur

b

Initial te

e

of area for range calculation was abandoned.   
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VPS was implemented such that from each captured image that contains 

f the robot, [XFU YFU].  Since only 

o values are obtained from one image, more than one image is required to 

calculate the full 3D state estimate.  In this implementation, each image can be 

thought of as providing to the state estimator a 3D line through space, on which 

the center of the robot lies.  Ideally, simultaneously captured images would 

render 3D lines that crossed each other at exactly the same 3D location – the 

coordinates of

so the estimator computes the location in space that comes the closest to being 

on all of them.   

 

This formulation causes the sensor measurements to become nonlinear 

functions of the positional elements of the state vector.  The sensor dynamics are 

now   

 

SCAMP SSV, only two pieces of information are extracted – the undistorted X 

and Y digital image coordinates of the centroid o

tw

 the robot.  In reality, it is likely that none of the 3D lines will cross, 

( ) vxZ += c     (6. 40) 

⎦⎣Y

 

and v again represents a zero-mean Gaussian measurement noise vector, but 

this time in units of pixels.   

where 

( ) ⎥
⎤

⎢
⎡

≡
FU

FUX
c x  
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The nonlinear functions relating the 3D inertial position of SCAMP SSV [XG YG

ZG]T to the ideal measurements [XFU YFU]T, are 
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These equations are used to compute the predicted measurement, )(
∧∧

= xz c

Since the sensor model is non-linear, the EKF equations must be implemented.  

To linearize th

derivatives C(x), as defined in (6.34), are required .  These were calculated to be 
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. 

e sensor dynamics c(x) about a given state estimate, the partial 
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where 
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Both c(x) and C(x) were calculated symbolically using Mathematica™.     

 

6.3 Noise Characterization 

Accurate characterization of system and measurement noise can be one of the

most difficult steps in implementing an optimal state estimator.  In the 

development of VPS, the characteristics of w were estimated based on 

experience with the robot.  The characteristics of v were determined em

for a static SCAMP SSV, and estimated for the dynamic case based on 

observing dynamic test data.  This allowed the system and measurement no

covariance matrices, Q

 
 

pirically 

 

es on 

  (6.50) 

 

eled forces.  These forces include 

so 

ise

k-1 and Rk, to be computed. 

 

6.3.1 Process Noise Characterization 
 
Using the X-axis as an example, the equation for the sum of the inertial forc

SCAMP SSV along one axis is  

 

FCmF GDTGXG δ+⋅+⋅=
•••

∑ XX     

where δF represents the total of unmod

disturbance forces (noise), such as those from currents in the water.  They al

include errors in the dynamic model equations that cause the actual force 

exerted by the thrusters to be different from the commanded or modeled force.  
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There are many potential discrepancies between the real vehicle and the model 

that could create unmodeled forces.  The maximum single direction force exerted 

y one thruster pair was estimated in [6] to be 9 N.  This estimate was based on 

 

erform equally.  By accepting this estimate, the assumption is also accepted, 

even though there will be significant differences between 

life, and alignment.  Also, the force in the inertial axes is calculated by 

rotating the robot body forces into the global reference frame using the 

instantaneous robot attitude estimate.  This attitude estimate will invariably be 

imperfect, thus corrupting the calculated inertial force estimate.  The actual 

forces applied by the thrusters are modeled as constant over EKF time steps, 

which is also a departure from the actual physical system, in which thruster 

forces can change in a continuous manner. 

1−k

he kinematic model for SCAMP SSV does not suffer from uncertainty, since by 

definition the kinematic equations do not involve any forces, and the propagation 

b

thrust testing performed with several thrusters, and assumes all thrusters to

p

thrusters due to wear, 

battery 

 

These model errors exist because they are either too time consuming and 

difficult to characterize accurately, or impossible to characterize.  Therefore, an 

“educated guess” was made as to their magnitudes, and different values were 

experimented with to find a level that gave acceptable performance.  The 

disturbance forces are modeled as unknown inputs, and multiplied by the Λ  

matrix just as the control inputs are.    

 

T
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of the velocity is ideal.  However, for Q to be full rank, the velocity members must 

also be assumed to have some small amount of process noise. 

 

The Qk-1 matrix was assumed to be constant, and was defined as follows: 

 

( ) VFkkk ΕQ +σ⋅Λ⋅Λ= −−−
2T

111      (6.50

where 
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The two parameters that can be adjusted in (6.50) are σF and εV.  The first, σF, 

represents the expected standard deviation of the unmodeled forces, in Newtons, 

incident on SCAMP SSV at any point in time.  It was initially estimated to be 2 N, 

but during dynamic testing it was determined that σF = 4 N is more appropriate, in 

that with the lower value, the state estimate would at times diverge unrecoverably 

from the true state when measurements were either very few or unavailable.  The 

value of 

ould be (arbitrarily) 50 times

εV was set to 0.08 during testing, and was set to this level so that it 

 smaller than σw F. 
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6.3.2 Measurement Noise Characterization 
 
Because the elements of the process noise vector could not be observed directly,

and the dynamic model is already based on the best estimate of the robot’s 

dynamics currently available, Q

 

er 

bottom of the NBRF.  It has an adapter 

ttached to the top that enables SCAMP SSV to be easily attached and released 

using a hose clamp. 

 

 

 
 

k-1 could only be estimated.  Rk, on the oth

hand, can be developed empirically.  SCAMP SSV was placed in the water, and 

firmly attached to a rigid fixture, as shown in figure 6.5.  The fixture is one of the 

stilts upon which the calibration frame rests during use.  It is rigidly bolted to a 

large and heavy truss that rests on the 

a

 

 

 

 

 

 
 

 
Figure 6.7 SCAMP SSV rigidly attached to fixture for sensor noise 

characterization tests 
 

With the robot rendered stationary, 250 images were captured using a single 

camera.  The images were processed to extract the undistorted image 
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coordinates, [XFU YFU], and area of the robot.  The centroid coordinates in all 250

images would have been identical if noise was absent.  The measurement noise 

covariance matrix was measured directly from the variance in the X

 

YFU 

 

⎥⎢k  

Recalling that the diagonal elements of R  represent the square of the standard 

deviations, σ, of the measurement noise vector members, it can be seen from 

(6.46) that σ for the measurement noise is channels is estimated to be less than 

0.13 pixels.  This suggests that the measurement noise in both XFU FU

e less than 3σ = 0.4 pixels for 99% of the time.   

  Due to lighting 

hanges, background objects, and the limited robustness of VPS to bad camera 

ata, the 0.4 pixel estimate was significantly exceeded during both static and 

dynamic tests. For example, SCAMP SSV may be in a location or orientation that 

FU and 

values between images.  This was done using the MATLABTM command 

COV([XFU YFU]), where XFU and YFU are vectors containing the 250 individual XFU 

and YFU values.  This process was repeated with six cameras, with SCAMP SSV

in five different positions.  Averaging the Rk values from the different tests, the 

following result was obtained: 

 

⎦

⎤

⎣

⎡
=

0168.002.
002.0121.

R            (6.51)

 

k

 and Y  will 

b

 

It is important to note however that this Rk matrix represents the minimum 

measurement noise that will be present, and is for the static case.

c

d

 130 
 



 

either caused glare on one of the robot’s body panels or removal of some of the 

th 

hese 

 and 

efore, 

e much larger than 

at calculated under static conditions.  Based on measurements gathered during 

ynamic testing of VPS, measurement noise seemed to typically be less than 

pproximately 4.5 pixels, so this was assumed to be the close to the 3σ value for 

e measurement noise, and iation of slightly greater than one-

ird that value was used.  With σ=

robot’s area due to a dark object being behind it in the background image.  Bo

of these situations caused the apparent image area of SCAMP SSV to be 

reduced, which also caused a substantial shift in the estimated centroid.  T

sources of measurement noise will be discussed in more detail in Chapters 7

8.  This data was not considered in the calculation of the Rk matrix.  Ther

the Rk matrix to be used for actual state estimation needs to b

th

d

a

th a standard dev

th 3 , and σ2=3, the following Rk matrix was 

sed in gathering the results presented in Chapter 7 

⎥
⎦

⎤
⎢
⎣

⎡
=

3002.
002.3

kR                   (6.52) 

easurements that suffer from either panel glare or background object image 

artifact should be rejected by the EKF.  This functionality was not implemented 

during this research effort, but is discussed in Chapters 7 and 8.  

 

 

u

 

 

M
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6.3.3 VPS EKF Implementation on the Control Station Computer 
 
The Extended Kalman Filter equations outlined above were incorporated into

raptor, the software that runs the control station from which SCAMP SSV is 

piloted.   As mentioned previously, the calculation of the state estimate is 

controlled by a t

 

imer that runs separately from the rest of the control station 

perations, such as communication and telemetry archiving.  Figure 6.6 

 

Figure 6.8 Algorithm of the VPS Extended Kalman Filter 

 

o

illustrates the EKF algorithm as it is implemented in raptor.   

 

 

 

 

 

 

 

 

 

 

 

 

1) Initialize all global variables needed by the EKF. 
2) Initialize and start EKF timer. 
3) Store the current inertial attitude estimate, qk, and body forces. 
4) Use q  and the body forces of the previous time step to compute u . 

5) Propagate from )(1 +−
∧

kx  to )(−
∧

kx . 

7) Set the valid measurement array. 

a) Compute the current partial derivatives, C

k-1 k-1

6) Propagate from Pk-1(+)  to Pk(-) 

8) For each valid measurement zk: 

b) Compute the predicted measurement, ck( )(−
∧

kx ). 

d) Correct P  based on x ). 

e) Correct kx  based on zk, ck( )(−kx ), and Kk. 

9) Update Pk-1 and )(1 +−kx . 

 

. 

k( )(−
∧

kx ). 

c) Compute the Kalman Gain Matrix, Kk. 

k Kk and Ck( )(−
∧

k
∧ ∧

∧

10 )Update Raptor global variables for storage and communication. 
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Immediately after raptor is started, all of the variables needed for the EKF are 

declared and initialized.  Once this is done, the timer is started.  The EKF is 

executed at a fixed frequency, because this causes 1−Φ k  and 1−Λk  to be consta

matrices, greatly reducing the number of calculations required at each iteration o

nt 

f 

e estimator.   

time step and the dynamic model, t
∧

th

 

At each time step, the timer executes a single function, do_VPS_filterwork().  

Each time do_VPS_filterwork() is called, it first accesses the SCAMP SSV 

telemetry data from raptor, which is updated at 50 Hz.  It calculates the control 

forces in inertial coordinates, uk, applied to the robot by the thrusters at the 

current time step and stores them.  Based on the inertial forces from the previous 

he EKF propagates the state estimate, x , 

and the error covariance matrix, P, one time step into the future.   

 

Then the EKF accesses the vps_data meas a global array.  

This data comes to raptor as fast as the frame grabbers can acquire images, and 

VPS_client can process and send it.  The EKF looks at an array of raw VPS 

measurements, and selects from it only the measurements that are recent 

enough for use, meaning they were obtained less than one time step ago.  Once 

the valid subset of measurements has been selected, 

urements, stored in 

∧

x , starting at its value 

after the propagation step, is repeatedly corrected – once for each valid 

measurement.  For each measurement used, new values of the necessary 

intermediate variables, such as Kk, P, and so on, must be computed.  If there are 
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no valid measurements – if for instance SCAMP SSV has flown into an area in 

the NBRF where it is not visible to any cameras – a new state estimate would still 

e propagation based on the dynamic model and 

the applied control forces.  No correction would take place in such a situation.   

 

Once the state estimate has been corrected with the last measurement, the EKF 

updates the appropriate global variable in raptor, and then waits until the timer 

signals it to perform another iteration.  Raptor will not send this new inertial state 

estimate to SCAMP SSV or to the vision computers until those systems send to 

raptor their own transmissions, but this communication is done completely 

independently from the operation of the EKF. 

 

be computed, but only from th

 134 
 



 

Chapter 7 

Static and dynamic tests were conducted in the NBRF to determine the accuracy 

of the EKF state estimates of VPS.  For the static case, it would ideally be 

possib

ajectory, and the tracking properties of 

VPS could be observed for that trajectory.  However, there is no readily available 

ethod to provide these “truth” 

                                              

Positioning Results 

le to place SCAMP SSV at several known, fixed locations in the NBRF, 

and then compare the position estimates that VPS provided for each location 

with the known truth.  Similarly, in the dynamic case, it would be ideal if SCAMP 

SSV could be moved through a known tr

measurements or trajectories.3  This would m

require an accurate and independent inertial navigation system that would verify 

the performance of VPS, but such a system is unavailable. 

 

To compensate for the lack of external verification measurements, the VPS 

cameras were partitioned into  groups, supplying measurements to independent 

state estimators.  The individual state estimates are compared over a variety of 

positions and trajectories for agreement.  In addition to this, both static and 

dynamic testing was performed using all six operational VPS cameras to supply 

measurements to a single EKF. 

 

   
3 A railcart system was devised to provide a known linear trajectory for the previous acoustic positioning 

stem studied for inertial navigation in neutral buoyancy.  Although a possible avenue of future work, 
underwater use of this railcart was infeasible for this thesis due to both mechanical fixture and electronics 
availability and operational status. 

sy

 135 
 



 

Section 7.1 presents data taken for static estimation tasks using measurement 

data only.  Section 7.2 presents data gathered showing the state estimate 

evolution under applied input forces, with measurement data absent.  Section 7.3 

presents dynamic state estimation results for SCAMP SSV teleoperated in the 

NBRF with six VPS cameras providing data to a single EKF, while Section 7.4 

presents dynamic state estimation results using multiple EKFs relying on non-

overlapping subsets of camera inputs. 

 

7.1 

7.1.1 Static Position of Hanging Ball, Double EKF 

As a simple assessment of static positioning accuracy, a water-filled ball, 

the NBRF from a white rope.  This 

black ball simulated SCAMP SSV, allowing extensive system testing without the 

necessity of frequently sealing the robot

positio  ball eas in the 

crane’s line of motion (roughly North-So

Since the force inputs to the EKF were zero, the EKF computed the position of 

the black ball using the camera measurements only in what is effectively an 

erative least-squares calculation.  Figure 7.1 shows the black ball hanging in the 

BRF, as seen from camera 2. 

Static Positioning Results 

 

covered in black fabric, was suspended in 

 and checking for leaks, etc.  The 

n of the  could be changed ily using the crane, but only 

uth) and in the vertical (ZG) direction.  

it

N
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The operational VPS cameras were separated into two sets, and each was 

associated w  an in nde F.  

Figure 7.1 Black ball, simulating SCAMP SSV, hanging in the NBRF 

 

ith depe nt EK The separated architecture is shown in 

Table 7.1. 

 

Table 7.1 Double EKF Architecture 
 

Filter  Camera Number  Camera Viewing Direction 
Camera 1 Middle ring, + X direction 
Camera 2 Middle ring, + Y direction 

EKF1 

Camera 5 Top ring, -Y and +X directions 
Camera 3 Middle ring, - X direction 
Camera 4 Middle ring, - Y direction 

EKF2 

Camera 6 Top ring, +Y and +X directions 
 

 

Table 7.2 contains position estimates, calculated by the two estimators, for the 

black ball hanging in three positions in the NBRF.  The positions below are 
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average positions over approximately 10 seconds.  The |E| values represent the 

 magnitude of the error vector between the ball positions as estimated by EKF1

and EKF2.  Table 7.3 contains the standard deviation information for these tests.  

 

Table 7.2 Double EKF static black ball position estimates, three positions 
 

  EKF1 EKF2   
Position |E| (m) X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

1 -0.1531 0.9387 -0.4689 -0.1725 0.9412 -0.4621 0.0207 
2 -0.7217 0.8007 -0.0634 -0.7027 0.8196 -0.0446 0.0327 
3 0.4963 1.0611 0.475 0.4734 1.072 0.474 0.0254 

 

Table 7.3 Double EKF static black ball position standard deviations, three 
positions 

  EKF1 EKF2 
Position σX (mm) σY (mm) σZ (mm) σX (mm) σY (mm) σZ (mm) 

1 .019 .008 .016 .004 .012 .012 
2 .028 .009 .014 .011 .021 .026 
3 .007 .016 .033 .005 .087 .065 

 
 

Table 7.2 shows that for this task, the position estimates calculated by the two 

independent estimators agree to within about 3 cm.  This also may be a 

pessimistic agreement level, since the ball had a small periodic motion due to 

ater currents and the flexible crane suspension.  This also heavily influences 

the size KF as 

the truth, or reference, for the other.  It does not guarantee system accuracy, 

however, because a syste tic e l  b Fs to calculate the 

same incorrect position.  T  doe at v  the position estimation 

task can be performed repeatably, for the camera groupings selected.   

 

w

of the standard deviations for these data.  This test is using one E

ma rror cou d cause oth EK

his s indic e, howe er, that
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7.1
 
To get static data with SCAMP SSV, the robot itself was attached to the rigid 

fixture (the stilt) described in Chapter 6.  As with the  ball, position data was 

obtained for three positions.  The stilt wa  attached to its base truss in three 

l

hole patterns is well known, the relative loc s of ossible SCAMP 

SSV positions are 

 

able 7.4 shows the X, Y and Z coordinates of SCAMP SSV for each of the three 

tional 

 

 

Position X (m) Y (m) Z (m) 

.2 Static Position of SCAMP SSV, Single EKF 

black

s

ocations, defined by bolt hole patterns in the truss.  Since the spacing of the bolt 

ation the three p

also known.   

T

static positions, as calculated by a single EKF, using data from all six opera

cameras, and Table 7.5 contains the standard deviation data for those 

measurements.  Table 7.6 shows two things: the known distances between the

three static positions, as calculated based on the bolt hole patterns, and the 

distances between the static positions as calculated from the position estimates 

provided by VPS.  The first column should be read as “the distance from position 

1 to position 2”, etc.  The line from positions 1 to 2 lies roughly on the global X

axis, and the line from positions 2 to 3 lies roughly on the global Y axis.   

 

Table 7.4 Static SCAMP SSV position data, using all 6 cameras 
 

1 -0.2644 0.6944 1.2113 
2 0.9155 0.8805 1.2119 
3 1.111 0.0682 1.2127 
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Table 7.5 Static SCAMP SSV standard deviation data, using all 6 cameras 

Position σX (mm) σY (mm) σZ (mm)
1 .022 .060 .104 
2 .004 .003 .006 
3 .053 .008 .058 

 

Table 7.6 Position-to-position distance values: actual and as calculated by VPS 
 

Distance 
Actual  

Distance (m)
VPS 

Distance (m)
Difference 

(m) 
1 to 2 1.054 1.194 0.140 
2 to 3 0.819 0.836 0.017 
1 to 3 1.335 1.33 -0.005 

 

It can b

ed by VPS, agree well – to within 2 cm – with the 

physical distances.  This is not the case for the distance from positions 1 to 2, 

which differs from the real distance by 14 cm.  This is caused by an important 

source of error inherent to VPS.  The vision processing algorithms implemented 

in VPS assume a dark robot on a light background.  Dark objects that do exist in 

the background, when SCAMP SSV moves in front of them, can corrupt the 

centroid coordinates of the robot.  This is the case with position 2 in the static 

SCAMP SSV tests.  Figure 7.2 is an image acquired by camera 1 for static 

position 2.  It can be seen that it is in front of a vertical member of a truss.  After 

image proce sed on the 

igure 7.3. 

e seen that the distances between positions 2 and 3, and between 

positions 1 and 3, as measur

ssing, the image centroid of SCAMP SSV is calculated ba

dark shape shown in F
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Figure 7.2 SCAMP SSV in static position 2, viewed from camera 1 

 

 

Figure 7.3 Image from Figure 7.2, after vision processing 

 

It is clear that many pixels of the SCAMP SSV image that should legitimately be 

et to black have been erroneously set to white, due to the truss member in the s
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background.  Camera 5 also suffers from a similar corruption due to another 

x 

ainst intuition, since it would 

e thought that if the estimate of position 2 is inaccurate, any distances 

computed us xplained, 

however, by the fact that noise coming from a came ot introdu d equally to 

 in rm  

YFU] pair  The ea n tw me fro

pecific camera and the inertial position is defined by equations (6.35) and 

(6.36). n 

along the camera’s optical axis, or in other words, inform about range.  As 

an example, consider a camera with an optical axis parallel to the global Y-axis.  

If this camera ere p ing mely y da is n wou t in any 

way corrupt the global Y-axis estimate, because the data from that camera is not 

used to update the Y-axis estimate.  It would only corrupt the global estimates in 

the global X and Z axes.     

 

 

truss in its background for positions 1 and 2.  The type of data corruption shown 

in Figures 7.2 and 7.3 could be mitigated using a technique known as conve

hulling, in which an open or area can be “filled in” by a vision algorithm.  This will 

be discussed more in Chapter 8.  

 

Notice that the measured and actual distances from position 2 to 3 agree much 

better than those from position 1 to 2.  This goes ag

b

ing that position would also be inaccurate.  This can be e

ra is n ce

all global axes.  The measurements from each camera are  the fo  of [XFU

s.  nonlin r relatio ship be een a asurement set m a 

s

 A single camera cannot provide information about an object’s positio

ation 

 w rovid extre  nois ta, th oise ld no
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7.1.3 Static Position of SCAMP SSV, Double EKF 
 
Table 7.7 shows the VPS position estimates of SCAMP SSV, in the same three 

tatic positions, as computed by the two independent EKFs, and Table 7.8 

ed, 

 

 

s

contains the standard deviation data for the same tests.  This data is present

as was the double EKF black ball data, to show that VPS is capable of providing

position estimates that are repeatable between different sets of cameras.  The 

value |E| in Table 7.7 represents the magnitude of the error vector between the

position estimates calculated by EKF1 and EKF2.  

 

Table 7.7 Static SCAMP SSV position data, double EKF 

  EKF1 EKF2   
Position X (m) Y (m) Z (m) X (m) Y (m) Z (m) |E| (m) 

1 -0.2155 0.677 1.2435 -0.2725 0.7008 1.2197 0.0662 
2 0.8717 0.7844 1.1796 0.74 0.9321 1.1289 0.2043 
3 1.1193 0.0547 1.2065 1.1229 0.08 1.2301 0.0348 

 

Table 7.8 Static SCAMP SSV standard deviation data, double EKF 

  EKF1 EKF2 
Position σX (mm) σY (mm) σZ (mm) σX (mm) σY (mm) σZ (mm) 

1 .081 .034 .042 .005 .004 .002 
2 .312 .092 .136 .161 .354 .150 
3 .015 .005 .015 .005 .001 .001 

 

 

Position 2, and to a lesser extent position 1, still suffer from camera noise due to

dark objects in the background.  Therefore, as expected, the position estimate

for these positions, as calculated by EKF1 and EKF2, do not agree as closel

 

s 

y as 
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the independent estimates for position 3, which did not have a dark object behind

the robot.   

 

 

ince both cameras 1 and 5 are on EKF1, its position estimate is likely less 

 

n schemes 

at can enhance the ability of VPS to robustly estimate static (and dynamic) 

p

 

7.2 Dynamic State tion  No M rement Data  

In order to verify the ope he ropag tep of the EKF, SCAMP 

SV was sent control force commands from the hand controllers while hanging 

stationary from a crane above the deck of the NBRF.  In this test, the SCAMP 

SSV computer and attitude sensors were functioning as they do in free flight, with 

robot attitude was being calculated onboard in real time and sent back to raptor 

and the EKF.  This attitude information was used to convert body forces into 

global forces.  Camera data was not sent to the EKF for this test.  Since no 

measurement data was available for use in the update step of the EKF, the 

S

accurate than that of EKF2.  If only the output for EKF2 is used to calculate the 

distance from positions 1 to 2, that distance is calculated as 1.043 m, which is

only 1 cm different from the actual distance of 1.054 m.  The agreement in the 

real position-to-position distances and those measured by VPS indicates that 

VPS is capable of accurate (single digit cm-scale) static position estimation, in 

the absence, or rejection, of noise due to dark background objects.  This is a 

highly qualified statement, but there are many candidate noise-rejectio

th

osition.   

 Evolu  with easu

ration of t state p ation s

S
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estimator “thought” the robot was moving freely, with its motion governed by the 

dynamic equations and the commanded forces.  The predicted motion calculated 

by the EKF was compared to the force input to verify qualitative agreement.   

 

This test was performed with SCAMP SSV approximately aligned with its body X 

axis pointing East (in the positive inertial Y direction), its body Y axis pointing 

South (in the negative inertial X direction), and body Z axis pointing down (in the 

positive inertial Z direction).  Table 7.9 presents the directions of the forces that 

were commanded during this test with respect to the robot body reference frame, 

and with respect to the global reference frame.  Figure 7.4 shows the global force 

commands sent to the robot using the translational hand controller.   

 

Table 7.9 Ap l frames 

Time 
Span 

Body 
Thrust  

Global 
Thrust 

proximate force directions in SCAMP SSV body and globa

(sec) Direction Direction 
9 to 14 (+) XB (+) YG

15 to 20 (+) YB (-) XG
21 to 32 (-) XB (-) YG
33 to 43 (-) YB (+) XG
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Figure 7.4 Global force inputs applied to SCAMP SSV 

 

In this test, the robot body axes were not exactly aligned with the global axes as 

desired, so, for instance, forces applied in the body X direction do not result in a 

clean and exclusive global Y direction force, but produce a force predominantly 

along the global Y direction, and smaller forces along the other two global axes 

as well.  In addition to this, it is difficult to guarantee pure single axis input to the 

hand controller. 

  

Figures 7.5 through 7.10 are the position and velocity plots over time that the 

EKF calculated based on the force input. 
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Figure 7.5 Estimated global X axis position versus time, propagation test 
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Figure 7.6 Estimated global X axis velocity versus time, propagation test 
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Figure 7.7 Estimated global Y axis position versus time, propagation test 

0 10 20 30 40 50 60
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time (sec)

G
lo

ba
l Y

-a
xi

s 
ve

lo
ci

ty
 (m

)

 

Figure 7.8 Estimated global Y axis velocity versus time, propagation test 
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Figure 7.9 Estimated global Z axis position versus time, propagation test 
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Figure 7.10 Estimated global Z axis velocity versus time, propagation test 
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It was expected that under full positive or negative hand controller commands 

(maximal force commands) in a given axis, the EKF should predict acceleration 

along that axis up to a constant terminal velocity, and then a diminution of the 

m/s, based on the tests described in Chapter 6.   

The results shown in the figures above indicate, qualitatively, that the VPS EKF 

the observed terminal velocities.  The slopes of the position plots agree with the 

velocity over a short time to zero upon cessation of the force input.  For positive 

thrust, terminal velocity is approximately 0.2 m/s, and for negative thrust –0.1 

 

is capable of propagating the state estimate based on commanded force inputs.  

The velocities achieved under maximum positive and negative thrusts agree with 

sign and magnitude of the velocity plots in all axes.  The results also indicate that 

the EKF correctly converts body axis forces into global forces.  The body axis 

forces in Table 7.9 are converted into the correct global forces, which in turn 

accelerate the robot along the correct global axis.  While this cannot be 

interpreted as an exhaustive demonstration of the accuracy of the EKF 

propagation, it does demonstrate that the EKF is faithful to the simple dynamic 

model assumed for SCAMP SSV.  
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7.3 Dynamic SCAMP SSV State Estimation, Single EKF 
 
For dynamic tests, SCAMP SSV was piloted in a smooth, continuous trajectory, 

near the center of the NBRF such that all six operational cameras had near-

continuous coverage of the vehicle.4  The trajectory below in Figure 7.11 was 

recorded in real-time by VPS, using all six operational cameras. 

 

Figures 7.12 and 7.13 show the global X axis position and velocity, respectively, 

of SCAMP SSV versus time.  The position plot shows smooth estimate evolution 

over time.  There is a spike of roughly 0.3 m at approximately 57 seconds.  In the 

noisiest regions – from 5 to 25 seconds, from 57 to 75 seconds, and 135 to 155 

seconds, the oscillation of the plot is no more than 10 cm.  This oscillation is 

shown in Figure 7.13, which is a magnified view of the 125 to 170 seconds 

section of Figure 7.12.  Plots for the Y and Z axis positions and velocities are not 

shown for this test, but are for tests described in the next section. 

 

                                                 
4 Although software was in place to reject camera data once the vehicle left one ore more images planes, 
this software is n onditions.  
Additionally, use dependent 
state estimates that validate camera calibration and, except for possible systematic errors, EKF accuracy. 

ot yet fully debugged, resulting in erroneous state estimates under certain c
 of all cameras allowed the data to be split into unique subsets, providing in
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Figure 7.11 Trajectory of SCAMP SSV in 3D 
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Figure 7.12 SCAMP SSV global X axis position vs. time 
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Figure 7.13 SCAMP SSV global X axis velocity vs. time  
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Figure 7.14 SCAMP SSV global X axis position vs. time, magnified  
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Figure 7.15 and Figure 7.16 are also plots of global X axis position and veloc

but this time information from the EKF error covariance matrix P is included.  The 

first and second diagonal elements of P correspond to the global X axis pos

ity, respectively.  The square root of those elements is the standard 

σ, of the X axis position and velocity.  According to the EKF, there is a 

99% probability that the true value of the X axis position and velocity will lie wit

 of its estimates of those values.  The additional traces on figures 7.15 and 

7.16 are the 3σ error bounds for position and velocity. 

ity, 

ition 

and veloc
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hin 

±3σ

 

 
0 50 100 150 200 250

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

time (sec)

ob
al

is
i

Global X-axis position
-3*sigma lower bound

G
l

 X
-a

x
 p

os
it

on
 (m

)

+3*sigma upper bound

 

Figure 7.15 SCAMP SSV global X-axis position vs. time, with ±3σ error bounds 
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Figure 7.16 SCAMP SSV global X-axis velocity vs. time, with ±3σ error bounds   

 

In Figure 7.15, for most of the plot the estimate and the error bounds are 

 

indistinguishable at the scale shown, so Figure 7.17 below shows a magnified 

view of the Figure 7.15 for the interval between 105 and 112 seconds.  It can be 

seen that for all of that section, the error bounds are not more than 1 cm above

and below the estimated value.   
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Figure 7.17 SCAM 3σ error bounds, 
magnified for T=105 s to T=112 s 

 

 

The error bound plot in Figure 7.15 presents some questions.  The error bounds 

greatly expand between approximately 133 and 155 seconds, which is expected, 

because this region of the state estimate exhibits more noise than others, and 

should thus have larger error bounds.  However, there are other regions of the 

estimate that exhibit noise for which the error bounds remain small, such as the 

spike that occurs at approximately 57 seconds.  According to the EKF, the state 

estimate at these regions is just as accurate as the regions where little noise is 

seen.  To better understand what is happening, it is necessary to look at the 

measurements provided by the cameras.  Figures 7.18 through 7.23 show the 

camera measurem ring the test. 
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Figure 7.18 Camera 1 pixel measurements 
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Figure 7.19 Camera 2 pixel measurements 
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Figure 7.20 Camera 3 pixel measurements 
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Figure 7.21 Camera 4 pixel measurements 
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Figure 7.22 Camera 5 pixel measurements 
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Figure 7.23 Camera 6 pixel measurements 
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The sections in Figures 7.18 to 7.23 where the plots of both XFU and YFU drop 

suddenly to a value of –1 occur when part of SCAMP SSV is about to leave the 

(0 + R

camera’s FOV, and correspond to the limits (0 + RSSV) < XFU  < (640 - RSSV) and 

 error bounds. This spike is 

aused by a combination of things.  The data log, recorded by the EKF, indicates 

 to 

s 

ns 

h 

on 

as one or two camera measurements available 

ven zero is theoretically possible, but statistically unlikely), and as many as six.  

 

ation 

s, 

SSV) < YFU < (480 - RSSV), where RSSV is the radius of SCAMP SSV, in 

pixels, predicted based on its current position estimate. 

 

At approximately 10 seconds, there is a spike in the

c

that at this time, the measurements from cameras 3 and 4 were not used, due

the proximity of SCAMP SSV to the edge of the FOV.   Figures 7.20 and 7.21 

verify this, as the YFU values at that time are approaching the limit of 480 pixels.  

This reduces the number of useful cameras from six to four.  Since the camera

sample at approximately 8 Hz in an unsynchronized manner, and the EKF r

at 10 Hz, the EKF will have a varying number of measurements available at eac

iteration.  Even if SCAMP SSV is in the FOV of all six cameras, at each iterati

of the EKF there can be as few 

u

(e

The spikes in the error bounds are caused when the number of available camera

measurements is further reduced from four to one and two cameras per iter

by this camera sampling/EKF frequency mismatch.  Finally, also at this time, 

camera 1 suffers from camera noise (visible in Figure 7.18) of roughly 30 pixel

which far exceeds the predicted 3σ measurement noise of 3 3  pixels.  Since the 

EKF trusts the characterization of the noise statistics established in R, the 
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measurement noise covariance matrix, it accepts this noisy data as accurate

This causes a large discrepancy between 
∧
x  (the state estimate after 

.  

)(−k

∧
e 

s 

 error bounds between 135 and 155 seconds is likewise 

aused by a reduction in the number cameras providing useful data.  SCAMP 

 

occur 

propagation, but before any corrections) and )(+kx  (the state estimate after on

or more corrections).  The variance added by Qk in the propagation at each time 

step is not decreased by the application of multiple measurements, which cause

the increase in the size of Pk seen in Figure 7.18.   

 

The expansion of the

c

SSV is outside the (usable) FOV of camera 1 from 130 to 152 seconds, camera 3

from 132 to 149 seconds, and camera 6 from 133 to 137 seconds, as seen in 

Figures 7.18, 7.20, and 7.23, respectively.  The EKF log indicates that the 

multiple spikes in the error bounds between 130 and 155 seconds again 

when the number of usable cameras is further reduced by the sampling/EKF 

iteration frequency mismatch.   

 

A concern that arises when looking at error bounds shown in Figure 7.15 is that 

the error bounds do not increase in some areas of the plot where the state 

estimate exhibits noise, such as between 57 and 75 seconds, and between 100 

and 110 seconds.  It is expected that where the measurements contain more 

noise, the difference between the propagated state and the updated state would 

increase, causing an increase in the error bounds. It can be seen from Figures 
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7.15, and 7.18 to 7.23, that the noisy estimate sections correspond to nois

camera measurements, but why do the error bounds not grow accordingly? 

 

y 

is is the case because while the noise from some of the cameras at these 

 

d, 

F 

 by 

a, which is on the order of 50 pixels.  

The EKF accepts this extremely noisy data as being true within the statistics 

represented by R

measurement.  The other less noisy camera measurements further update the 

state estimate to be cl Pk, but the 

damage done by the noisy measurement is re il the next EKF iteration.  

This indicates that further testing needs to be done to tune the values of R and 

Q, in order to find values that more accurately reflect the true noise statistics of 

the system.  This also indicated that t ject noisy data need to 

be improved.  The error bounds should rise when data is noisy, or indicate falsely 

that the vehicle velocities are very large.  This means that in general, Rk needs to 

be increased at this time, and Qk decreased.  This will place more confidence in 

Th

locations in the plot exceeded that which was modeled in R, the EKF had access

to a sufficient number of measurements to reduce the size of Pk.  This means it 

increased its confidence in the estimate, but the confidence was ill founde

since it was based in part on measurements that were noisier than the EK

expected possible.   

 

The spike in the X axis position estimate that occurs at 57 seconds is caused

the noise in the camera 3 measurement dat

, and thus changes the state estimate according to the 

oser to reality, and reduce the magnitude of 

tained unt

he algorithms that re
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the dynamic model than it now receives, and less in the measurements.  

Measurement rejection strategies can also be pursued to reject bad data.  This 

work will be discussed in Chapter 8. 

  

There are three likely sources of the error that caused the noisy estimates seen 

above.  The first was mentioned in Chapter 6, and can be found by looking at the 

measurements themselves, and the regions of the images to which they 

correspond.  In Figure 7.17 it can be seen that camera 1 provides noisy 

measurements approximately 15 seconds into the test.  These measurements 

are in the region of XFU = 260 pixels, and YFU = 310 pixels.  Figure 7.24 is the 

background image for camera 1 used in this test.  The position [260 310] is 

marked in the image with a white cross. 
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Figure 7.24 Background image for camera 1, coordinates [260 320] indicated 

 

At the image coordinates [260 320], part of SCAMP SSV lies in front of the 

vertical member of truss.  With SCAMP SSV in this location, part of its area will 

be removed from a measurement image along with the dark background object 

when the image is thresholded.  This will not occur consistently, due to slight 

variations in perceived robot darkness caused by its changing attitude, and by 

fluctuations in illumination.   

 

 164 
 



 

Another potential source of noise is caused directly by changes in the attitude of 

SCAMP SSV.  Figure 7.25 shows an image taken from camera 2, during 

measurement noise characterization.  SCAMP SSV just happens to be at such 

and attitude and location as to cause a glare off of some of its panels.  This 

greatly affects its image area after thresholding, as is seen in Figure 7.26.  

Although it is possible that this effect caused some of the measurement noise 

observed in this test, images were not saved during the test so it cannot be 

known for certain. 

 

 

Figure 7.25 SCAMP SSV with glare on top panels, raw image 
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Figure 7.26 SCAMP SSV with glare on top panels, thresholded image 

 

It is possible to apply a vision algorithm that would fill in the gaps in the image of 

SCAMP SSV.  This technique is known as convex hulling, and is discussed 

briefly in Chapter 8.   

 

The final potential source of error is glare from direct sunlight, entering through 

skylights and windows in the building that houses the NBRF.  This glare can 

appear during a test, either on the NBRF wall or the vehicle itself, fluctuate 

significantly, and disappear in a matter of seconds, and thus is hard to until spot 

aside from detailed post processing of vision data.  It can also appear in a 
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background image, and then be absent for the duration of a test, which will 

severely affect the camera that took the background image.  Again, because 

images were not saved to disk during this test, this source of noise cannot be 

pointed to with certainty, but it can also not be ruled out.  An example of this 

glare was captured during a previous test, and is shown below in Figure 7.27. 

 

 

Figure 7.27 Example of glare from direct sunlight 



 

7.4 Dynamic SCAMP SSV State Estimation, Double EKF 

7.4.1 Non-Ideal Test Conditions 
 
Next, the double EKF architecture was used to create two independent estimates 

of the position and velocity of SCAMP SSV while in free flight.  Since each EKF 

uses at most three cameras to update its estimate in this test, the estimates are, 

as expected, noisier than when all six cameras are used.  Figure 7.28 shows the 

3D trajectory of SCAMP SSV as measured by EKF1, and Figure 7.29 shows the 

3D trajectory as measured by EKF2.   

 

Figures 7.30 to 7.32 show the X, Y and Z axis position estimates calculated by 

both EKF1 and EKF2.   
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Figure 7.28 Trajectory of SCAMP SSV in 3D, measured by EKF1 
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Figure 7.29 Trajectory of SCAMP SSV in 3D, measured by EKF2 
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Figure 7.30 SCAMP SSV global X axis position vs. time, EKF1 and EKF2 
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Figure 7.31 SCAMP SSV global Y axis position vs. time, EKF1 and EKF2 

 

0 10 20 30 40 50 60 70
0.6

0.8

1

1.2

1.4

1.6

1.8

2

time (sec)

G
lo

ba
l Z

-
)

ax
is

 (m

Global Z-axis position, EKF1
Global Z-axis position, EKF2

 

Figure 7.32 SCAMP SSV global Z axis position vs. time, EKF1 and EKF2 
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In the X and Y axes, the two EKF position estimates agree to within 3 cm for 

most of the test, and to within 10 cm for the duration of the test.  The Z axis 

estimates vary by as much as 20 cm for portions of the test, for example from 0 

to approximately 13 seconds.  These regions of large discrepancies can all be 

traced in the EKF log files to times when data from only either one camera or no 

cameras was available to the EKF for updating the state estimate.  The regions 

where two and three cameras were available for use are those where the two 

independent state estimate consistently agree to within 3 cm or less.  Evidence 

of measurement noise, such as that discussed above, is seen in the plots as 

well, for instance at 35 seconds in Figure 7.32 and at 12 seconds in Figure 7.31.  

 

The error bound plots for the X, Y and Z axis position and velocity estimates 

calculated by EKF1 are shown in Figures 7.33 to 7.38.  The error bounds are, as 

expected, larger than those seen in the test conducted with all six cameras 

providing measurements to one EKF.  They are small (in the position plots) only 

when the individual EKFs get to use two or more measurements for updating the 

state estimate.     
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Figure 7.33 SCAMP SSV global X axis position vs. time, EKF1, with ±3σ error 
bounds 
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Figure 7.34 SCAMP SSV global X axis velocity vs. time, EKF1, with ±3σ error 
bounds 
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Figure 7.35 SCAMP SSV global Y axis position vs. time, EKF1, with ±3σ error 
bounds 
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Figure 7.36 SCAMP SSV global Y axis velocity vs. time, EKF1, with ±3σ error 
bounds 
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Figure 7.37 SCAMP SSV global Z axis position vs. time, EKF1, with ±3σ error 
bounds 
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Figure 7.38 SCAMP SSV global Z axis velocity vs. time, EKF1, with ±3σ error 
bounds 
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The position plots computed by EKF2 are shown in figures 7.39 to 7.41, but due 

to an error in the EKF2 software, the velocity estimates were not recorded during 

this test and are thus unavailable for plotting.  Since, like EKF1, EKF2 also had 

use of only three VPS cameras, at many iterations of the EKF it had between 

zero and two measurements with which to update the estimate.  As a result, the 

error bounds on the state estimate are, as with EKF1 data, larger than those 

seen in the test where all 6 cameras were linked to a single EKF.  There are, 

however, more periods in the EKF2 plots where the error bounds are small than 

1 plots.  This is due to the fact that one or more of the EKF1 cameras 

suffered from high amounts of noise in this test.  In other words, EKF2 suffered 

in the EKF

m

suffered from this as well as noisy camera

 

ainly from the low number of measurements at each EKF iteration, while EKF1 

 data, and is thus worse, in terms of 

error bounds, than EKF2.  Recall that EKF1 has camera 1 and camera 5, both of 

which suffer from significant dark objects in their backgrounds, increasing the 

noise of their measurements.  It is only natural for EKF1 to be noisier than EKF2 

for this reason. 
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Figure 7.39 SCAMP SSV global X axis position vs. time, EKF2, with ±3σ error 
bounds 
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Figure 7.40 SCAMP SSV global Y axis position vs. time, EKF2, with ±3σ error 
bounds 
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Figure 7.41 SCAMP SSV global Z axis position vs. time, EKF2, with ±3σ error 
bounds 

 

 

 
These results indicate that in order to reduce the error bounds to reasonable 

levels (on the order of a few centimeters), three or more measurements at each 

EKF iteration are desirable.  They also indicate that the first predicted 

measurement, which is based on the state estimate after propagation forward 

one time step, is significantly different from the first received measurement.  The 

error covariance matrix becomes small during an EKF iteration only when the 

state can be updated by multiple measurements (three or more) in a single 

iteration.  This illustrates that the accuracy with which the dynamics of SCAMP 

SSV are modeled needs to be improved. 
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7.4.2

 

Figure 7.42 shows the global X axis position and velocity plots for the 576 

second free-flight trajectory executed by SCAMP SSV.  The Y and Z axis plots 

have similar performance.  State estimation was performed using data from all 

six cameras. 

 Near-Ideal Test Conditions 
 
Additional testing was conducted to better characterize the capabilities of VPS

under near-ideal testing conditions, meaning with nearly constant ambient 

lighting and little direct sunshine.  This was accomplished on a cloudy day, and 

the positioning results are presented below.   
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Figure 7.42 SCAMP SSV global X axis position (top) and velocity (bottom) vs. 

time 
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To compare the accuracy of data sets coming from each camera, three plots 

were generated for each camera.  The first plot compares the image area of 

SCAMP SSV (A) measured by a camera with the predicted image area, 
∧

A , both 

of which are measured in pixels2.  The second and third plots compare the 

measured XFU and YFU  centroid coordinates with the predicted centroid 

coordinates, FUX
∧

 and FUY
∧

, respectively, all of which are measured in pixels.  

These predicted area and centroid values were computed based on the global 

position estimates computed by the EKF using input data from all 6 cameras.  

The global position estimates were transformed into position estimates in each 

g the 

equations presented in Chapter 3.  The predicted centroid coordinates were 

generated in a similar way to 
∧

A .  These plots are shown in Figures 7.43 through 

7.48. 

 

camera’s local coordinate frame, and the  converted to pixel values usinn
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Figure 7.43 Camera 1 measured and predicted camera data 
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Figure 7.44 Camera 2 measured and predicted camera data 
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Figure 7.45 Camera 3 measured and predicted camera data 
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Figure 7.46 Camera 4 measured and predicted camera data 
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Figure 7.47 Camera 5 measured and predicted camera data 
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Figure 7.48 Camera 6 measured and predicted camera data 
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These plots clearly show why the use of object area in performing accurate vision

tasks is best avoided.  Note that in all of the plots, the difference between the 

predicted and measured area plots is much greater than the predicted and 

measured centroid plots, and the measured area plots often take very 

excursions away from the predicted data.  The measured centroid data general

matches the p

 

ly 

redicted data well, with some notable exceptions.   

mage 

of SSV 

ars 

 Figure 7.45 (camera 3).   Although this appears to be a dramatic error, in 

reality this will not degrade EKF accuracy, because an area value of -1 is set 

whenever the vehicle is designated as outside the image plane in order to 

prevent this camera’s data from being used. 

 

Only one other centroid discrepancy type is present – in Figure 7.44 (camera 2) 

an offset is seen between the measured and predicted X-centroid value between 

large 

 

The most common exception is where SCAMP SSV nears the edge of the i

plane.  In this case, e.g. Figure 7.43 (camera 1) at t=240 seconds, as part 

leaves the image plane, the area appears to decrease and the centroid appe

to remain further inside the image plane than would otherwise be the case.  This 

situation has the potential to reduce EKF accuracy, since this data is not yet 

successfully rejected by the software.   

 

Another notable difference between the predicted and measured centroid is 

when SCAMP SSV actually leaves the image plane entirely, as is the case twice 

in
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times  the 

tan , this phe en a

similarly-colored object (e.g., part of a space telescope mockup that was in the 

tank during this test).  Part of the vehicle is indistinguis le from

background, making it appear smaller (area  low) a ffset (

true position. 

 

and standard deviation of differences 

xels of 

tural 

a values 

290-400 seconds.  Based on the data and locations of other objects in

k nomenon appears wh  SCAMP SSV flies p rtially in front of a 

hab  the 

 too nd o in XC) from its 

Table 7.10 summarizes the average 

between the measured and predicted camera data shown in Figures 7.43 

through 7.48.  On average, each camera experienced between 2-4 pi

noise, with camera 2 noise appearing somewhat higher because of the struc

interference apparent in Figure 7.44.  The average difference for the are

is much higher, and ranges from 267 to 773 pixels2.  Note that at the center of 

the tank, 1 pixel is equal to approximately 8 mm, the exact value of which 

depends on camera focal length and distance from the camera to the center of 

the tank. 
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Table 7.10 Deviation between predicted and measured camera data 

 Area difference (pixels2) XFUc difference (pixels) YFU difference (pixels) 
 average average average σ σ σ 

Camera 1 301.9 396.4 2.38 2.49 3.29 2.9

Camera 2 773.2 977.3 5.45 7.64 9.09 10.9

Camera 3 511 447.5 2.64 3.53 3.58 3.62

Camera 4 267.1 157.1 4.3 5.79 3.53 3.61

Camera 5 500.9 431.7 2.42 2.15 3.05 2.3

Camera 6 300.1 460.1 3.81 4.28 1.98 1.61
 

 
A VPS simulator was implemented in order to test the effect of removing camera 

data sets from the state estimation sessions.  The simulator had two 

components.  The first component sent camera data, recorded during a live 

SCAMP SSV flight test, to the VPS EKF at appropriate times based on 

timestamps associated with the camera data.  The second component sent the 

EKF the SCAMP SSV attitude and thrust data that corresponded to the camera 

measurements being sent to the EKF by the first component.  This allowed the 

EKF to “think” it was communicating normally with the cameras and SCAMP SSV 

when it was actually participating in post-processing simulations.   

 

By preventing certain camera data from being sent to the EKF, different camera 

configurations could be tes his is similar to the 

double EKF configuration testing presented earlier, but allows many camera 

configurations to be tested serially without placing the robot in the water or 

changing the EKF code.  The state estimate data computed using all six cameras 

ted for the same flight test.  T
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was compared to what the state estimate data would have been for three unique 

2-camera configurations.  This was done by running the simulator three times, 

each time suppressing data from a different set of four of the six cameras.  The 

EKF was run with camera data from cameras 1 and 2, cameras 3 and 3, and 

cameras 5 and 6.  The global X, Y, and Z position of SCAMP SSV vs. time, as 

computed by the four independent camera/EKF configurations (the above three 

configurations plus the estimate using all 6 cameras) are shown in Figures 7.49 

through 7.51. 
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Figure 7.49 SCAMP SSV global X axis position vs. time, as computed by four 

EKF/camera configurations 
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ur Figure 7.50 SCAMP SSV global Y axis position vs. time, as computed by fo

EKF/camera configurations 
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 four 

EKF/camera configurations 
Figure 7.51 SCAMP SSV global Z axis position vs. time, as computed by
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All of the position results are in agreement, in general, as can be seen from

plots above.  The noisy camera 1-2 EKF result between times 240-300 second

illustrates how background structures, etc. can degrade accuracy, particularly

with a low level of redundancy (thus camera 2’s minimal effect on the ove

 the 

s 

 

rall 6-

camera state estimate).  Note also the noise in the camera 3-4 EKF estimate 

around time 120 seconds and 400 seconds.  This “drift” results from the fact that 

the vehicle had traveled out of the camera 3 image plane (see Figure 7.45), and 

camera 4 provides no YG data in its centroid estimate. 

 

The X, Y, and Z velocity plots for the four unique simulated camera/EKF tests 

matched identically, and were thus not shown.  This is likely because the Qk 

elements corresponding to velocity are very small in comparison to the Rk values.  

ndent EKF c figur am  1- a 3 and 

camera he resu ab 1 incl ll oints  t for 

which camera 2 provided erroneous data and camera 3 provided no data, and is 

us a conservative indication of the agreement between the independent 

This potentially caused the propagated velocity values to dominated any 

corrections that were made to the velocities due to the measurements.  There 

may also be an error in the program that either generates or records the velocity 

elements of the state incorrectly under simulation. 

 

Table 7.11 summarizes the differences between the EKF positional state 

estimates based on data from all six cameras and the estimates computed by the 

three indepe camera/ on ations (c era 2, camer -4, 

 5-6).  T lts in T le 7.1 ude a data p , even hose 

th
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camera/EKF configurations.  Note that although the camera 2 errors were 

he overall EKF, the absence of camera 3 data that caused the 

n artifact of the pair-wise camera 

imulation that did not reduce accuracy in the 6-camera EKF estimates. 

 

 are very 

s is 

at 

 

e the 

gle 

ations 

Global y(m) Global z(m) 

propagated to t

discrepancies in the camera 3-4 EKF are a

s

The camera 1-2 discrepancy accentuates the need to better reject erroneous 

measurements, as did previous results.  However, the remaining results

promising.  First, it can be seen that with good data, the use of two camera

actually sufficient to yield a state estimate accurate to the cm level, indicating th

SCAMP SSV can be tracked almost anywhere in the tank (see coverage maps,

Figures 2.3 through 2.7).  Second, it can be seen that with highly-redundant 

measurements (from 6 total cameras in this case), even somewhat bad data 

(e.g., camera 2 between t=290-400 seconds) does not significantly degrad

six-camera overall state estimate.  This is an important result, even with 

improved object detection / image rejection algorithms, because inevitably sin

bad data points will be used, and the real strength of the EKF is its ability to 

reject bad data through statistical averaging. 

 

Table 7.11 Deviations between 2-camera EKF and 6-camera EKF simul

 Global x (m) 
EKF average σ average σ average σ 

CAM12 0.045 0.066 0.022 0.031 0.035 0.054 

CAM34 0.032 0.052 0.054 0.158 0.025 0.03 

CAM56 0.029 0.04 0.018 0.021 0.027 0.025 
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Chapter 8 
 

Conclusion and Future Work 

This thesis describes the design and implementation of a vision-based ine

navigation system, the Vision Positioning System (VPS), for a neutral buoyan

space simulation robot.  The three main research thrusts included: the 

development of an accurate and robust camera calibration technique, the 

implementation and characterization of an Extended K

 
rtial 

cy, 

alman Filter to combine 

ision and dynamic data in an optimal fashion, and the integration of hardware 

, 

 

de 

 that 

v

and software elements into a functioning system.  As a result of this research

VPS is now capable of providing real-time translational state estimate information

for a neutral buoyancy space simulation robot, SCAMP SSV, and through 

modification to the object recognition software, can be augmented to provi

translational navigation data for any free-flying neutral buoyancy robot.  With 

future additions to increase robustness to lighting changes and other noise 

sources, VPS provides a new and important tool to simulate close-proximity 

orbital robotic and spacecraft operations for a neutral buoyancy environment

will better characterize operations (target tracking) and ultimately enable 

autonomous vehicle operations. 
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8.1 Conclusion: VPS Calibration 
 
Perhaps the most significant contribution of this research was the development of 

procedures and equipment that allow an accurate, repeatable, and robust 

calibration of the VPS cameras.  The accuracy of the intrinsic calibration 

parameters is what allows individual cameras to produce valid 2D data from 

which the crucial inference of 3D world information can be made.  In addition to 

these, accurate extrinsic parameters are required to allow the combination of 

data from multiple cameras into one global estimate. 

 

The two-step calibration procedure detailed in this thesis overcomes several 

challenges, including a relatively large calibration volume, maintaining cm-scale 

accuracy over long distances, inward-pointing cameras, and an underwater 

operating environment.  This procedure provides as one of its outputs an 

estimate of the accuracy of four out of the five intrinsic parameters.  Data on the 

quality of the overall calibration (intrinsic and extrinsic) of each camera is also 

o these accuracy 

e 

 

SCAMP SSV, from one position to another, to within 2 cm.  In other static testing, 

provided by the two-step calibration procedure.  According t

estimates, VPS errors near the center of the NBRF due solely to calibration 

errors, were not likely to exceed 1.0 cm, and in most cases were estimated to b

less than 0.5 cm.  This estimate of calibration accuracy was supported by the 

results of static and dynamic VPS data collection.  For a static test, in the 

absence of significant camera noise due to glare, background objects, and FOV 

limitations, VPS was able to measure the magnitude of relative displacement of
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the position of a black spherical ball was measured simultaneously with two 

independent sets of VPS cameras.  Again in the absence of significant camera 

oise, agreement between the two position estimates was typically within 2 or 3 

data 

 

w 

s 

level 

8.2 Conclusion: VPS Extended Kalman Filter 

The discrete Extended Kalman Filter equations were applied to the VPS state 

estimation task.  In static testing with camera measurements absent, the EKF 

was shown to correctly (in terms of gross global direction and terminal velocity) 

propagate the evolution of the translational state of SCAMP SSV due to control 

force inputs.  In other static testing, where SCAMP SSV was attached rigidly to a 

fixture in the FOV of the each of the VPS cameras and force data was absent, 

n

cm for a wide variety of positions near the center of the camera FOVs.  This 

indicates that the VPS calibration is accurate, and also that the calibration 

procedure is valid. 

 

Another significant challenge in this research effort was to achieve a state where

the robot, the cameras, the VPS_client program, the raptor/EKF software, the 

vision computers, and data collection personnel (a camera operator, dive cre

and SCAMP SSV pilot) were all ready to work at the same time.  This state wa

achieved during this research, and VPS system integration has now reached a 

level of maturity that enables its use without further infrastructure or system 

work.   

 

 

 192 
 



 

the EKF correctly combined data from multiple cameras into one optimal (in a 

least squares sense) position estimate.   

 

Dynamic testing indicated that VPS, under ideal lighting conditions or in the 

ing its 

ome of 

ated the 

al oscillation (noise) 

and 3σ positional error bounds of less than 2 cm (the accuracy of this data 

cannot be reliably estimated, only inferred from static testing, as there is no way 

 

presence of more robust rejection of noisy data, was capable of perform

inertial navigation task.  Camera noise from glare on SCAMP SSV and on the 

NBRF tank surfaces and from dark objects in the background corrupted s

the dynamic data, but other data collected under better conditions indic

EKF is able to track vehicle motion during free flight.  At specific times during 

testing with SCAMP SSV in free flight, when all six VPS cameras contained 

SCAMP SSV in their FOVs, and camera noise was minimal, the EKF tracked 

SCAMP SSV’s position and velocity smoothly, with position

to obtain a “truth” measurement).  This data is tantalizing in that it suggests the 

feasibility of VPS providing inertial navigation of greater accuracy than GPS, but 

is insufficient to declare that (single-digit or low double-digit) cm-scale accuracy  

can be has been achieved. 

 

When fewer than two or three VPS cameras provided data to the EKF (as part of 

either the full six-camera EKF or two separate three-camera EKFs), or when 

camera data was corrupted by noise, the position estimate at times oscillated or

spiked by as much as 0.4 m, and the positional 3σ error bound grew to as much 
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as 1 m.  The dynamic, free-flight state estimation data is therefore inconclusive, 

and indicates that further data collection is needed to prove that the EKF is 

functioning correctly, or to find and correct any errors or deficiencies that remain

 

The EKF currently updates at 10 Hz, and because it is controlled by an

independent timer, it c

.   

 

an easily be modified to run faster if desired.  While further 

ork needs to be done to find values for the R and Q matrices that more 

accurately describe the noise statistics of the system, this step can be 

considered system refinement.  The EKF infrastructure is complete at this time, 

trajectories, and, once a controller is implemented and camera noise rejection 

 

-level 

, 

avigation in a cluttered NBRF environment.  Measures have been 

entified that, if taken, will serve to solve this deficiency.  Other measures have 

w

and can be used for translational state estimation both for recording vehicle 

techniques are implemented, closed-loop position control. 
 

8.3 Future Work 

VPS is now capable of providing inertial navigation, with cm-scale accuracy, 

provided factors such as vehicle location, lighting, and background objects do not

adversely impact acquired image data. It has been noted, however, that cm

tracking performance was demonstrated over a very small volume of the NBRF

for short periods of time.  VPS is not currently capable of providing consistent, 

robust n

id

also been identified that will expand the capabilities of VPS and allow it to be a 

more convenient and powerful research tool.  These measures are organized 

into three main areas: hardware and operational upgrades, further testing and 
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parameter updates, and enhancements to VPS_client and raptor/EKF software. 

The fund

 

amental goal in the development VPS is not to do research in computer 

ision or state estimation, although this did occur, but to create a research tool 

 

8.3.1 Hardware and Operational Upgrades 

fourth vision computer, preferably identical to the three that are now in operation, 

VPS_client software to operate on two different operating systems (Windows 98 

ved from the NBRF for servicing – 

cameras are reinstalled, they will require intrinsic calibration via checkerboard 

sister craft – SCAMP II.  SCAMP II has much more control authority, and is in 

many ways a more robust simulation platform.  This would involve very little work 

v

that can be used to conduct new research in space operations simulation. 

Therefore, this chapter concludes with a discussion of future research 

applications for VPS. 

 

Currently, VPS can accept data from only six of the eight available cameras.  A 

is needed for the remaining two cameras.  This will obviate the need for 

and Windows 2000), and with two types of frame grabber boards.  In addition to 

this, cameras 5, 7, and 8 need to be remo

cameras 7 and 8 for image distortion, and camera 5 in order to get a new plastic 

camera box.  As with any camera that comes out of the NBRF, once these 

images, and all eight cameras will require extrinsic calibration via the calibration 

frame. 

 

VPS should also in the near future be implemented for use with SCAMP SSV’s 
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– simply copying the VPS version of the raptor/EKF code to SCAMP II’s contr

station. 

ol 

tarted before SCAMP SSV flight code execution.  As currently 

plemented, the EKF control timer and EKF data logging begins immediately 

after raptor is initiated.  Thus, the EKF log file necessarily contains useless data 

that is recorded between the time of raptor and SCAMP SSV start up.  Of greater 

SSV flight code and raptor must first be terminated, in that order, and then 

will.  This will also ease VPS initialization – a pilot will be able to fly SCAMP SSV 

creation.  This causes inconveniently long file names, and should be replaced by 

 

There are several enhancements that need to be made to the raptor/EKF 

software to improve the performance and usefulness of VPS as an inertial 

navigation system.  The first enhancements are to improve the user interface 

(display state data) and data acquisition capabilities.  Raptor, the control station 

program, must be s

im

concern is that to stop recording EKF data, and begin a new test, the SCAMP 

restarted in the reverse order (raptor then SCAMP SSV).   

 

As can be imagined, this is very inconvenient.  To remedy this, a button must be 

added to the raptor GUI by which the user can start and stop the EKF timer at 

to approximately the center of the tank (the VPS initial position guess), and then 

start the timer.  The separate VPS_client programs can be running the entire 

time, their data being harmlessly ignored while the EKF timer is turned off.  When 

EKF log files are currently created, they are named according to their time of 
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a sequential file numbering system, similar to the one used by raptor to save 

SCAMP SSV telemetry.     

 

A graphical display of the position of SCAMP SSV should also be added to the 

ptor GUI.  A continuously updated 2D X-Y or 3D X-Y-Z plot indicating SCAMP 

s of VPS 

e 

8.3.2 Further Testing and Parameter Updates 

process and measurement noise in the system, respectively, need to be further 

Q 

accurate values for Q and R.  The values for these matrices that are now 

 and looking at logs of the camera data that was sent to the EKF.  In 

placed in the measurements.  Likewise, the magnitude of R should be increased, 

because it has been observed that camera data exhibiting much greater levels of 

ra

SSV’s current position during a test would greatly increase the usefulnes

to pilots, and could serve as an important component in the simulation of som

space operations. 

 

The values of the matrices Q and R, which define the assumptions about the 

refined in the EKF software.  The linear Kalman Filter equations render a true 

minimum error covariance, zero-mean, or “optimal” state estimate only if R and 

accurately represent their respective noises.  While the non-linear EKF is not 

truly an optimal estimator, because of the linearization step, it too relies on 

implemented in the EKF were, fundamentally, set by intuition developed through 

system use

general, the current magnitude of Q needs to decrease, meaning that too little 

confidence is currently placed on the dynamic model relative to the confidence 
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noise than are now modeled are possible.  How much Q should be decreased 

and R increased should be the topic of further testing, and will depend greatly, in

the case of R, on the noisy-data rejection strategies that are implemented in the

EKF.   

 

The accuracy of the dynamic model also needs to be characterized and 

improved.  The translational drag coefficient and the maximum positive and 

negative thrusts are assumed equal in all axes, which is likely not true for a 

variety of re

 

 

asons.  The terminal velocity test used to estimate the value of the 

rag coefficient should be repeated, several times, on all axes, in both positive 

r 

 

g two separate 

KF’s – one that only used camera data and did not update based on 

r of relying exclusively 

n dynamic propagation.  Comparing the two state estimates would then offer 

where SCAMP SSV 

omes in and out of the FOV’s of individual cameras.  This was avoided as much 

d

and negative directions.  The assumption that all thrusters are equal, and that 

they perform at the same level as documented in [6] may not be valid.  Thruste

performance could be tested to verify their actual performance.  Once Q, R, and

the dynamic model have been refined, a useful regimen of tests would be to fly 

SCAMP SSV in the NBRF, and calculate the state estimate usin

E

propagation, and the other ignoring all camera data in favo

o

insight as to how to further modify Q and R.   

 

The test results shown in Chapter 7 do include some data 

c

as possible in the initial real-time dynamic testing, in order to first characterize 

 198 
 



 

VPS performance in the best possible operational circumstances – that is, with 

SCAMP SSV visible to as many, if not all, cameras.  Further testing is require

characterize VPS performance with fewer cameras having SCAMP SSV in the 

FOV.  Static tests are required in the extreme edges of the calibrated volume, 

where calibration errors are likely to be higher.  Also required are dynamic tests 

where SCAMP SSV follows trajectories 

d 

that take it completely out of all camera 

iews, to have it re-enter some FOV’s at a different position.  Additional software 

l 6DOF 

ing images and distilling from them data 

program, and for VPS, this occurs in the raptor/EKF software.  Rejecting data in 

v

mechanisms may be required to maintain smooth state estimation under such 

operation. 

 

The raptor communication software must also be changed to incorporate the 

translational state estimate of SCAMP SSV, as calculated by VPS, in the data 

buffers sent to SCAMP SSV.   This will allow the implementation of a ful

rotational and translational controller on SCAMP SSV, a goal that has been and 

remains an important target of the Space Systems Laboratory. 

 

8.3.3 VPS_client and Raptor/EKF Enhancements 

 
As the program responsible for captur

useful to the state estimator, VPS_client has much potential to accept 

modifications that will enhance the performance of VPS.   

 

In general, it is convenient to apply all data acceptance/rejection tests in one 
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VPS_client for some reasons, and in raptor/EKF software for others would make 

the software more difficult to understand, and spread data rejection records 

throughout several log files – one for raptor/EKF and one for each instance of

VPS_client.  Therefore, all rejection of suspect camera data occurs in the

But enhancements to VPS_client could allow the

 

 EKF.  

 raptor/EKF to accept or reject 

ata in a more sophisticated manner.   

t 

l image, 

 

is 

n-

shape 

d

 

One planned enhancement is for a function to be added to DoVisionWork() tha

calculates the second moments of the area of black pixels that results from the 

current vision processing algorithms, about the X and Y axes in the digita

IXX and IYY.  Since SCAMP SSV is nearly round, the ratio of IXX/IYY should be

nearly one.  An image where this ratio differs greatly from a value of one likely 

indicates the image suffers from noise caused by either glare or a dark 

background object stealing some black pixels.  It could also mean that instead of 

SCAMP SSV, a diver or a part of a diver has been imaged.  Sending the IXX and 

IYY data to the EKF along with the current data structures would be an easy way 

of enabling the state estimator to reject data corrupted by the most serious 

sources of noise that currently exist in VPS.   

 

Another potential strategy is to “touch up” a noisy image in VPS_client.  Th

technique is known as “convex hulling”.  If SCAMP SSV appears severely no

round in an image, or if it has significant areas of white pixels inside the black 

pixel area, it is possible to implement vision algorithms that would fill in the 
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based on the “good” sections of the robot’s perimeter in the image.  This is m

complex than the previous idea, but would allow some types of bad data be 

corrected and used, thus increasing the robustness of VPS.  This may be an 

important feature if the number of dark background objects in the NBRF 

increases over time, as it has done in the past. 

ore 

 

 

e NBRF during a test, since only the small image area around the robot would 

 

VPS_client currently grabs and processes an entire image at each iteration, 

when it is only necessary to process the section of each image where SCAMP

SSV could conceivably be found, based on its last known position and velocity, 

plus some buffer to account for errors.  This “windowing” strategy would 

decrease the time it takes for VPS_client to process each image since less 

“image” would be processed at each iteration.  This would increase the camera 

sampling rates, and allow the EKF to receive more data if its frequency was 

increased.  Windowing would decrease the necessity for divers to be absent from

th

be observed, and not the entire, potentially cluttered NBRF.  It would also allow 

multiple SCAMP-class robots to be tracked, which is an important ability if the 

goal of satellite formation flight simulation is to be achieved.   

 

Windowing has long been planned for VPS – the internal VPS_client data 

structures are set up to accommodate it, and a function to select the correct 

image region to process has been written.  Once implemented, each time an 

image is acquired the windowing function will define four boundaries, (top, 
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bottom, left and right) are calculated based on the latest global position and 

velocity estimate of SCAMP SSV and the calibration parameters of the camera 

that acquired the image.  These boundaries define the region of the image to 

processed.  Because this functionality has not been tested or debugged, 

however, it is not currently included in the operational code.   

 

Before windowing can be used to track multiple vehicles, VPS_client will re

significant upgrades.  Instead of one VPS da

be 

quire 

ta structure (containing camera 

umber, time stamp, and image area and centroid data), it will need to store and 

 

 

rdinates.  Object finding algorithms, such as the recognition 

y relation templates [28] and others [29] exist and have been implemented in 

t 

n

communicate two or more structures.  Likewise, it will need to keep track of the 

global state estimates of two or more robots.  Two or more instances of the EKF 

would need to run in raptor, one for each of the vehicles.  Cross communication 

between the filters would be required so that each EKF could know when to 

throw out data because the vehicles appeared merged in a given camera view. 

 

Windowing would not, however, eliminate any of the measurement noise due to 

glare or background objects. The ultimate solution to noisy images is to abandon

all of the existing vision processing algorithms in favor of one that knows the 

shape of SCAMP SSV, and can directly “find” it in the image, and calculate its 

image centroid coo

b

the literature and would not need to be developed from scratch.  This radical 

change in VPS strategy would, however, require significant effort to be brough
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about, and would include integrating the algorithm into VPS_client, adapting 

use with the specific shape of SCAMP SSV, and thoroughly testing its behavi

with SCAMP SSV in varying range, illumination and occlusion conditions.  A 

fortunate fact is that the existing calibration procedure, as well as the 

grabbing, communications, EKF and windowing (once it is implemented and 

tested) software would not need to change in the slightest if object finding was 

implemented.  Object finding would still provide the EKF with the centroid 

coordinates of SCAMP SSV in the image.   

 

Several important algorithmic changes could also be made in the EKF software

Most importantly, the techniques by which bad data is identified and rejected

the EKF could be augmented.  The first improvement required is to reject data f

which the difference between the actual measurement vector, z (recall: z =

Y

it for 

or 

frame 

.  

 by 

or 

 [XFU 

ed by the EKF by propagation of 

e dynamic equations, 
∧

FU]), and the expected measurement, predict

z , is too large.  The definition of “too large”, as well as 

, but 

ra data 

e 

th

the criteria for turning this data rejection strategy on and off, would necessarily be 

the subject of development testing.  During initialization, the difference between 

the actual and predicted measurements will naturally and correctly be large

after EKF convergence, it should be small, if the state estimate and came

are both “good.”   

 

Camera data would be assumed “good” until judged “bad” because of a larg

discrepancy from the expected measurement.  The rejection criteria could be 
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expressed as a threshold pixel difference between the actual and predicted 

measurements.  Or, a measurement could be judged “bad” if it placed some 

number of the state variables outside of what the EKF currently judged 

error bound to be.  With regards to the state e

the 3σ 

stimate, “good” means 

“converged”, and could mean that the trace of the state estimate error covariance 

matrix P was below a certain level, to be determined through future testing.  Data 

jection would only occur after convergence, and would cease if for some 

ore robust 

 (IXX, 

an 

e 

plemented and compared to one another.   

 

e 

re

reason the error bounds grew very large again.  This method of identifying and 

rejecting noisy data is expected, if finely tuned, to provide better and m

noise rejection than the strategy based on object image second moments

IYY) discussed above, and since they will both perform similar functions, it is 

unclear if both should be implemented in VPS in its final version.   To make 

informed decision to include or ignore either one, both strategies could b

im

 

It is important to note that to examine the impact of any of the proposed changes 

to the VPS software, a pool test would have to be conducted so that data could

be collected with the new system and compared to data collected with the 

previous version.  This is problematic, because the work associated with 

collecting data with SCAMP SSV in the NBRF is non-trivial, and collecting 

identical data from one test to another (flying in identical trajectories) is 

impossible.  Therefore, a simulation is being developed that will send VPS 

camera data SCAMP SSV telemetry data, collected in a previous test, to th
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raptor/EKF application exactly as if the test was being performed with the robot

the water.  This will allow comparisons of different EKF designs to be made using 

identical input data.  This will be particularly useful in developing more 

appropriate values of the Q and R matrices.  

 

 in 

8.3.4 Future Research Applications for VPS 

 

 

of 

ikely the first research application VPS will be applied to will be the autonomous 

 

ple tasks 

us 

following of predefined trajectories.  Afterwards, software could be implemented 

on SCAMP SSV’s onboard computer or raptor that could test a variety of real-

time autonomous path planning strategies.  Artificial “obstacles” could be defined 

in the software as a set of coordinates that represent hazards to be avoided.  The 

path planner would be responsible for planning safe trajectories, while the 

 

Once the accuracy and robustness of VPS is improved in the manner outlined 

above, it will become an important tool in the hands of space systems 

researchers.  VPS will significantly increase the fidelity with which space 

operations can be simulated in the neutral buoyancy environment, which is the

only environment that can support large scale, long duration simulations 

weightlessness in all six degrees of freedom (rotation and translation).   

 

L

flight control of SCAMP SSV.  Once position and velocity feedback are available,

they can be controlled by various closed-loop control strategies.  Sim

can be simulated at first, such as automatic position hold, and the autonomo
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closed-loop control system would be responsible for calculating and executing 

thrust commands to follow those trajectori

  

mans 

orking in space. 

 

Inertial navigation also enables neutral buoyancy simulations of autonomous 

rendezvous and docking operations.  Initially this would only be possible with one 

SCAMP-class vehicle docking to a stationary target, but once VPS is enhanced 

with windowing and is capable of tracking multiple vehicles, true close-proximity 

spacecraft navigation and guidance  in 3D could be simulated.  This is a very 

important topic of research since collision between spacecraft is usually 

catastrophic, and can be difficult to ensure against given the non-intuitive, 3D 

nature of rendezvous and docking dynamics.   

 

Finally, the simulation of satellites in formation flight is another research activity 
that is enabled by VPS.  The efficacy of relative navigation strategies and 
technologies could be measured using inertial position and velocity 
measurements provided by VPS.  Neutral buoyancy robots could simulate 
satellites navigating by way of GPS, and follow-the-leader formation control 
strategies could be evaluated.   

es.  Algorithms that identify and correct 

for failure events, such as thruster or sensor failures, could also be simulated.

And finally VPS could allow SCAMP SSV to autonomously interact with hu

while simulating human-robot teams w
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Appendix 
 
This appendix con raw and 

synthetic target-to  are 

described in more

 

tains two tables, A1 and A2, which in turn contain 

-target measurements for the calibration frame and

 detail in Chapter 4. 
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Table A1 Raw target-to-target measurements 
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Ball 1 1569 594 1156 1586 1902 1711 1314 0 0 1904 0 1724 2257 2552 2084 1752 2227 2622 2437
Ball 2 0 1 391  1601 1171 0 1257 1725 1710 987 0 1510 2537 1999 1753 2356 2549 2400 2089 2391
Ball 3 0  0 946 1573 2096 2087 1645 779.5 1401 1974 1293 1262 2005 2610 2080 1489 1874 2521 2375
Ball 4 0  0 0 758 1585 2293 2182 1006 927 1907 1705 1614 1458 2435 2527 2067 1740 2287 2591
Ball 5 0    0 0 0 958 2146 2314 0 615 1668 1835 2060 1246 2061 2636 2429 1837 1996 2564
Ball 6 0     0 0 0 0 1593 2088 1730 814 1249 1723 2491 1592 1489 2437 2609 2135 1726 2309
Ball 7 0     0 0 0 0 0 827 1792 1646 1165 973.5 2447 2500 1576 1507 2075 2487 2069 1739
Ball 8 0        0 0 0 0 0 0 1520 1817 0 647.5 2042 2624 2057 1231 1561 2400 2357 1737
Ball 9 0       0 0 0 0 0 0 0 960 1314 932 849 1384 1914 1562 1090 1174 1758 1690
Ball 10 0         0 0 0 0 0 0 0 0 1075 1289 1711 1095 1548 2036 1941 1484 1531 1966
Ball 11 0          0 0 0 0 0 0 0 0 0 1025 1832 1479 658 1281 1689 1481 924 1063
Ball 12 0           0 0 0 0 0 0 0 0 0 0 1503 1993 1657 1017 1166 1765 1820 1365
Ball 13 0            0 0 0 0 0 0 0 0 0 0 0 1628 2322 1640 780 984.5 1968 1734
Ball 14 0             0 0 0 0 0 0 0 0 0 0 0 0 1659 2326 2091 871.5 1188 1999
Ball 15 0              0 0 0 0 0 0 0 0 0 0 0 0 0 1646 2189 1744 699 1197
Ball 16 0               0 0 0 0 0 0 0 0 0 0 0 0 0 0 994 1800 1731 679
Ball 17 0                0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1415 2006 1317
Ball 18 0                 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1189 1509
Ball 19 0                  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1173
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0  0  0 0 4.5 2 679.10 0 0 0 0 0 0 0  0  0 0 99 1799 173Ball 16 

Ball 17 0  0   0 0 0 1414 2000 0 0 0 0 0 0 0  0  0 0 6 1316
0  0   0 0 0 90 0 0 0 0 0 0 0  0  0 0 0 118Ball 18 1506
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