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The genes encoded by the RD1 locus are known to be important for intracellular 

survival of pathogenic mycobacterium, however their role in counteracting host 

defense is not known.  I hypothesize that RD1 is involved in counteracting host 

oxidative response by secreting ROI-neutralizing enzymes such as catalase and 

superoxide dismutase.    In support of this hypothesis I have shown that M. marinum 

RD1 mutants are more sensitive than wild type to ROIs both in vitro and in BMDM.  

Western blot analysis on the KatG protein levels within the bacterial cells grown in 

7H9 rich medium demonstrated that wild type bacteria produced significantly higher 

amount of KatG than the RD1 mutants.  When the bacteria were exposed for 2 hours 

to H2O2, wild type showed a significant reduction of the KatG level, while the RD1 

mutants maintained constant levels of KatG, suggesting that RD1 genes might be 

involved in the secretion of KatG upon exposure to H2O2.  These results together 

demonstrate an important unknown function of RD1 in resistance to ROIs.   
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Chapter 1: Introduction 

It is estimated that one third of the world’s population is infected by Mycobacterium 

tuberculosis.  M. tuberculosis is a facultative intracellular pathogen that survives and 

grows within host macrophages.  An important characteristic of M. tuberculosis infection 

is the formation of granulomas at the site of bacterial implantation. It is the necrotization 

of these granulomas that aids in the aerosol spread of the bacterium.   Of those infected 

with M. tuberculosis, only 10% develop active tuberculosis, the remaining 90% may have 

a low level of infection capable of reactivating at later times (North, 2003).   

One of the characteristics that make M. tuberculosis such a successful pathogen is its 

ability to survive within the toxic environment of the host cell.  After phagocytosis, a 

macrophage will activate numerous defense mechanisms in order to eliminate bacteria as 

well as present antigens to elicit an acquired immune response (Kaufmann, 1988).  M. 

tuberculosis has developed mechanisms to derail the antimicrobicidal processes of the 

host cell and thus persist within the macrophage.  During the process of phagocytosis, 

mycobacterium initiate the transcription of several genes.  This sudden change in gene 

expression likely represents the upregulation of virulence genes necessary for 

overcoming host defenses (Ehrt, 2001).   

One mechanism utilized by mycobacterium to overcome host defense is the inhibition of 

phagolysosome fusion.  Typically a phagosome will undergo a maturation process that 

ends with acidification and fusion to the lysosome.  Mycobacterium block this process by 

inhibiting the preceding increase in cytosolic calcium levels (Malik, 2000).  The 

inhibition of a cytosolic rise in calcium also inhibits another host defense mechanism, 

apoptosis.  Apoptosis is induced by the macrophage as another means of killing the 
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bacterium and presenting its antigens.  By inhibiting calcium fluxes, mycobacterium 

indirectly inhibits the activation of the caspase cascade that leads to the formation of the 

apoptosome (Briken, 2004). 

The inhibition of phagolysosome fusion and apoptosis ensure mycobacterium survive 

inside the phagosome.  However, to survive within the phagosome, they must overcome 

other aspects of host defense such as reactive oxygen and nitrogen intermediates. 

Reactive Oxygen Intermediates 

Upon phagocytosis, a complex known as NADPH oxidase assembles on the phagosome.  

NADPH oxidase is composed of two membrane-bound components, gp91phox and p22phox, 

and four cytosolic components, p40phox, p47phox, p67phox and RacGTPase.    The position 

of gp91phox and p22phox on the plasma membrane ensures that upon phagosome formation, 

superoxide is generated directly into the phagosome.  This process occurs when p47phox is 

phosphorylated allowing it to transport the complex to the membrane (Heyworth, 1991).  

The NADPH oxidase complex accepts electrons from NADPH and donates them to 

molecular oxygen to generate superoxide (Babior, 1999).  

In 1983, Nathan et al. showed that macrophages activated with gamma interferon 

increased their capacity to release peroxides.  Further research showed that gamma 

interferon activated transcription factors which increased transcription of NADPH 

cytosolic components resulting in a greater number of complexes assembled. In resting 

cells this transcription level is noticeably lower, however, the process of phagocytosis 

alone can activate the assembly of the NADPH complex (Cassatalla, 1990). 

The superoxide generated by NADPH oxidase is the starting material for the formation of 

several different reactive oxygen intermediates (ROIs).  Superoxide can undergo 
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spontaneous dismutation to form hydrogen peroxide (H2O2).  Hydrogen peroxide can 

then combine with superoxide to form the hydroxyl radical (OH-).  Transition metal 

catalysts enhance this reaction rate via the Haber-Weiss reaction.  Phagocyte-derived 

peroxidases can interact with H2O2 to form HOCl.  Superoxide reduction of HOCl can 

also yield OH- (Miller, 1997). 

The numerous ROIs produced vary in their toxicity.  Superoxide itself is relatively 

unreactive although it may be able to target specific enzymes.  Hydrogen peroxide, OH-, 

and HOCl are much more toxic and can penetrate membranes.  These ROIs are capable 

of extensive damage such as lipid peroxidation; enzyme inactivation and DNA strand 

breaks (Hampton, 1998).   

NADPH oxidase-generated ROIs play an extremely important role in host defense.  

Individuals with chronic granulomatous disease are particularly susceptible to a number 

of infections because they have an inactive NADPH oxidase complex, making them 

unable to generate ROIs which typically kill many intracellular pathogens. Also, mice 

with p47phox-/- show a similar phenotype, characterized by the reduction of the respiratory 

burst and increased susceptibility to infection (Jackson, 1995).   

In addition to the direct effect of ROIs on bacteria within the phagosome, ROIs play a 

significant role in cell signaling within the cytosol.  The ROIs localized to the cytosol has 

two origins, one being from the NADPH oxidase complex and the other from the 

mitochondria (Park, 2004) (Woo, 2004).  Recent evidence has shown that mitochondria 

are induced to produce ROIs in response to bacterial LPS suggesting an important role 

for mitochondrial ROIs in the immune response, most likely through the initiation of 

signaling cascades.  Furthermore, research has shown that the ROI-mediated signaling 



 4 
 

 

may be a unique attribute of mitochondrial ROIs (Asehnoune, 2004).  In support of this 

theory, the specific inhibition of mitochondrial ROIs following viral infection leads to 

reduced NFκB activation while the inhibition of NADPH oxidase has no effect 

(Mogensen, 2003).  Thus inhibition of cytosolic ROIs by the ROI inhibitor NAC will 

block NFκB activation, presumably by inhibition of mitochondrial ROIs (Sim, 2005).  

The role of the mitochondria in generating ROIs has been linked to the uncoupling 

protein 2 (UCP2).  This protein is believed to be involved in negatively regulating the 

release of ROI from the mitochondria.  LPS decreases ucp2 expression leading to an 

increase in mitochondrial ROI.  Hence ucp2-/- mice are more resistant to pathogens such 

as Toxoplasma gondii because of an inability to increase mitochondrial ROI levels upon 

infection (Arsenijevic, 2000). The down regulation of ucp2 occurs through Map kinases 

(MapK) and p38 pathways and the subsequent increase in cytosolic ROIs leads to 

increased downstream signaling events such as apoptosis (Emre, 2006).  Consequently, 

bacteria would benefit two fold by eliminating ROIs, decreasing intracellular signaling 

and eliminating the direct toxic effects of ROI on the bacteria. Given the deleterious 

effects of ROIs, it is clear why many pathogens have developed mechanisms to 

counteract them. 

Defense Mechanisms against ROIs  

Some examples of intracellular pathogens that inhibit ROIs include Leishmania 

donovani, Salmonella enterica, Mycobacterium leprae and Brucella abortus.  Leishmania 

promastigotes can express a surface glycoconjugate lipophosphoglycan (LPG), which can 

impair monocyte oxidative responses (Brandonision, 1994).  M. leprae produces a similar 

lipid, phenolic glycolipid 1, which is also capable of scavenging ROIs (Chan, 1989).  S. 



 5 
 

 

enterica have multiple mechanisms for inhibiting ROIs including the production of 

antioxidant scavengers, heat shock proteins and superoxide dismutase (Diepen, 2002).  

Another mechanism employed by S. enterica is the inhibition of NADPH oxidase 

recruitment to the phagosome, a mechanism controlled by Salmonella Pathogenicity 

Island 2 (SPI-2).  Research to demonstrate this phenotype showed that in SPI-2 mutants 

NADPH oxidase localized to the phagosome but not in wild type (Vazquez-torres, 2000).   

One ROI-neutralizing mechanism common to many intracellular pathogens is the 

expression of superoxide dismutase (Sod), an enzyme that breaks down superoxide.  E. 

coli that had been genetically altered to allow invasion of epithelial cells were unable to 

survive intracellularly, however their survival increased when they were made to express 

increased levels of periplasmic superoxide dismutase (Battistoni, 2000).  Similarly, 

Salmonella mutants lacking the periplasmic SOD were shown to be much less virulent 

than wild type (de Groote, 1997).  A comparable phenotype is seen in infections with 

Brucella abortus mutants that lack periplasmic SOD (Gee, 2005). 

The mechanisms mentioned above demonstrate the importance of neutralization of ROIs 

for intracellular pathogen survival.  In the case of M. tuberculosis, experimental evidence 

suggests that this intracellular pathogen has developed potent mechanisms for inhibiting 

ROIs (Chan, 1992).  Typically, activated macrophages can inhibit the growth of 

mycobacterium through several mechanisms including the production of ROIs. Yet ROI-

deficient macrophages did not allow any significant growth recovery for M. tuberculosis, 

suggesting that the bacteria are insensitive to ROIs (Chan, 1992).  Research done by 

Chan et al. demonstrated that when macrophages are treated with superoxide dismutase 

or catalase, there is no reduction in the antimycobacterial activity of the host cell and that 
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M. tuberculosis is insensitive to H2O2 in vitro. This suggests that M. tuberculosis must 

have mechanisms to inhibit or neutralize ROIs.   

Mycobacterial ROI defense mechanisms 

One mechanism by which M. tuberculosis neutralize ROIs is via the enzymes superoxide 

dismutase and catalase.  Superoxide dismutase (Sod) breaks down superoxide to H2O2 

and water; catalase breaks down H2O2 to water and oxygen.  M. tuberculosis has two Sod 

genes, superoxide dismutase A (SodA) which is manganese associated and superoxide 

dismutase C (SodC) which is copper-zinc associated.  Previous studies detail the 

importance of Sod in neutralizing ROIs.  SodC mutants are more sensitive to exogenous 

ROIs and are susceptible to killing by activated wild type bone marrow derived 

macrophages (BMDM) but not by gp91phox-/- BMDM (Piddington, 2001).  SodA is much 

more difficult to study because it appears to be essential for bacteria viability, making a 

SodA null mutant difficult to obtain.  However, studies using mutants with attenuated 

SodA production showed increased sensitivity to H2O2 and attenuated growth in the 

spleen and lungs of mice (Edwards, 2001).   

The M. tuberculosis catalase, KatG, has been well studied since clinical isolates with 

mutations in KatG are resistant to the common antibiotic INH.  These mutants are more 

sensitive to 10 mM H2O2, with killing rates from 43-67% (Manca, 1998).  Also, M. 

tuberculosis ∆katG are more attenuated then wild type in growth in BMDM, but are 

indistinguishable from wild type when infecting gp91phox-/- BMDM (Ng, 2004).  This 

suggests that the KatG mutant’s growth is inhibited by ROIs produced by the 

macrophage.  Further studies on KatG have shown that the integration of katG gene into 

an attenuated strain of M. bovis that lacked catalase expression restored bacterial 
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virulence (Wilson, 1995).  This research suggests that KatG plays an important role in 

mycobacterium virulence by contributing to the inhibition of ROIs. 

Taken together, the experimental evidence suggests that both catalase and superoxide 

dismutase are important in counteracting ROIs within macrophages.  While SodC is 

found exclusively intracellularly and on the cell surface, both KatG and SodA have been 

shown to be secreted molecules (Braunstein, 2003).  In addition to other secreted 

molecules, these two enzymes were shown to have activity in culture filtrates of 

pathogenic mycobacterium but not in the culture filtrates of nonpathogenic strains such as 

M. smegmatis (Raynaud, 1998).  This suggests that SodA and KatG may play a role in 

the pathogenesis of M. tuberculosis.  These enzymes are secreted in a SecA2 dependant 

manner.  The deletion of SecA2 led to reduced virulence suggesting that the secretion of 

these two enzymes is an important part of their virulence (Braunstein, 2003). 

Oxidative Stress Response of Mycobacterium 

Many pathogenic bacteria exhibit an inducible oxidative stress response characterized by 

an upregulation of genes involved in protection against oxidative stress.  Since the focus 

of my research involved mycobacterial response to reactive oxygen intermediates, it is 

important to address the issue of gene regulation in response to ROIs.  Mycobacterial 

species possess the gene oxyR, a gene equivalent to the oxidative stress response gene 

found in E. coli (Farr, 1991).  However, Mycobacterium tuberculosis have an inactive 

oxyR gene, caused by several mutations (Deretic, 1995).  In other organism oxyR is 

capable of responding to oxidative stress by inducing transcription of important oxidative 

stress response genes.  In M. tuberculosis, the gene operon believed to be most likely 

involved in an oxidative stress response is the FurA/KatG locus.  FurA is the negative 



 8 
 

 

regulator of katG and the promoter upstream of furA is required for katG expression 

(Pym, 2001). 

Previous studies have shown that H2O2 can induce the expression of katG directly in an 

oxyR independent manner.  However, there is some debate as to whether this increased 

expression is capable of protecting the bacteria upon further exposure to H2O2 (Sherman. 

1995).  

One interesting aspect of oxidative stress response is the expression of the ahpC gene.  

Alkyl hydroperoxide reductase (AhpC) is a peroxidase encoded by ahpC, a gene located 

down stream of oxyR, which is not interrupted by mutation in M. tuberculosis.  Although 

ahpC expression is generally low in wild type M. tuberculosis, expression increases 

significantly in katG mutant strains suggesting a compensatory role of AhpC (Sherman, 

1996).  Presumably ahpC expression allows the bacterium to maintain a necessary level 

of peroxidase activity in the absence of KatG, which has both catalase and peroxidase 

activity.   

Another interesting characteristic of AhpC is it’s differential induction in virulent versus 

avirulent species of mycobacterium.  In M. bovis BCG, ahpC expression increases upon 

exposure to H2O2.  However, in the pathogenic strains M. bovis and M. tuberculosis, 

expression of ahpC is constitutively lower and no induction occurs (Springer, 2001).  The 

exact role of AhpC in virulence remains unclear.  Studies on ahpC expression during 

infection show that it is silenced in wild type M. tuberculosis and derepressed in BCG.  

This suggests that ahpC expression may not play a role in resistance to host generated 

ROIs or RNIs.  Other experiments have supported this argument showing that ∆ahpC did 

not appear to have lost any degree of virulence (Master, 2002).  However, it is still not 
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clear whether increased levels of AhpC in avirulent strains corresponds to decreased 

levels of KatG and whether this correlation could explain decreased virulence associated 

with increased ahpC expression.  The increase in ahpC expression in katG negative M. 

tuberculosis isolates would support this claim.  

Reactive Nitrogen Intermediates 

Although the focus of this research is on ROIs, reactive nitrogen intermediates (RNIs) 

and ROIs often work synergistically and both are important mechanisms for 

counteracting bacterial growth.  Activated macrophages upregulate the production of 

nitric oxide (NO), a product of enzymes known as NO synthases.  Similar to the effects 

of ROIs, NO can damage DNA and enzymes.  NO can also combine with superoxide to 

form peroxynitrite, another damaging chemical (Chan, 2001).  Nitric oxide plays an 

important role in inhibiting mycobacterial growth. M. tuberculosis infection of iNOS-/- 

mice shows an increased dissemination of infection (MacMicking,1997).  Despite this 

apparent sensitivity to RNIs, bacteria have developed mechanisms to overcome RNIs in 

the host cell.  For example, the M. tuberculosis noxR1 gene appears to contribute to 

resistance against the toxic effects of RNI although the mechanism is unknown (Ehrt, 

1997). 

RD1 gene loci 

Region of Difference 1 (RD1) is a region of genes that is present in M. tuberculosis but 

absent in the vaccine strain BCG.  RD1 is believed to contribute to the virulence of M. 

tuberculosis and its absence is the reason for attenuation of BCG.  When the vaccine 

strain BCG is complemented with RD1 it acquires increased virulence (Pym, 2002). 
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RD1 encodes a novel secretion system known as secretion in mycobacterium (snm). Two 

proteins known to be secreted by RD1 are ESAT-6 and CFP-10, both of which lack 

classical secretion signals that would target them to Sec secretion.  Some RD1 genes 

proposed to make up a core part of the secretion system are Rv3870, 3871, 3877.  These 

genes encode a triple ATPase and 12 transmembrane domain.  Deletion of any of these 

genes eliminates ESAT-6 and CFP-10 secretion and results in reduced intracellular 

growth of the mutant (Stanley, 2003). 

Many other RD1 genes have also been shown to be important for secretion of ESAT-6 

and CFP-10 and knocking out any of the essential genes leads to reduced virulence 

(Brodin, 2006).  Similarly, deletion of either esat-6 or cfp-10 results in reduced virulence.  

The precise role these two secreted molecules play is unknown.  M. marinum contains all 

the nine RD1 genes present in M. tuberculosis and experiments on M. marinum have 

shown that several genes outside the RD1 locus, deemed Extended RD1, are also 

required for ESAT-6 secretion (Figure 1) (Gao, 2004). 

In order to further study the role of RD1 in pathogenesis, I will be working with the 

organism Mycobacterium marinum.  There are several advantages in approaching the 

research through M. marinum experiments.  Whereas M. tuberculosis requires stringent 

bsl-3 conditions and has a replication time of 24 hours, M. marinum can be handled in 

bsl-2 conditions and replicates at the much faster rate of six to eight hours.  This 

difference between the two strains will allow the research to proceed at a faster rate.  The 

two strains are similar genetically so research on M. marinum is useful in understanding 

the pathogenesis of M. tuberculosis.  These two pathogens also have a similar pathology 

in their primary hosts.  Whereas M. tuberculosis causes granuloma formation in humans, 
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M. marinum causes similar pathology in zebrafish suggesting similar pathogenic 

mechanisms.   

The goal of this thesis project was to identify the role of RD1 genes in intracellular 

growth.  To achieve this goal RD1 M. marinum mutants were used.  The in vitro 

sensitivity of RD1 mutants to ROIs was examined followed by cell infection assays to 

determine the role of ROIs in limiting RD1 mutant growth within macrophages.  Western 

blots were then used to identify the role of RD1 in the secretion of catalase and 

superoxide dismutase.  Combined, the results of these experiments can be used to 

confirm my hypothesis that RD1 contributes to intracellular growth via the secretion of 

synthesis of the enzymes KatG and SodA. 
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Figure 1 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The RD1 and extended RD1 region of M. tuberculosis and M. marinum.  Filled 
areas represent extRD1 genes with directions of transcription, and filling colors indicate 
sequence similarities: black, >90%; dark gray, 70–89%; light gray, 55–69%; and open, 
<54%. RD1indicates M. tuberculosis genes deleted in BCG. Mh denotes M. marinum 
genes corresponding to M. tuberculosis homologues1.  

1Gao, L.Y et al.  A mycobacterial virulence gene cluster extending RD1 is required for 
cytolysis, bacterial spreading and Esat6 secretion. 2004 Mol. Microbiology. 53(6)1677-1693. 
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Chapter 2: Results 

RD1 mutants are more sensitive to exogenous ROIs 

In a preliminary study I showed that certain RD1 mutants exhibited growth inhibition 

when grown in 7H9 broth medium lacking catalase.  However, this growth inhibition was 

not obvious for the wild type strain.  This requirement for catalase to grow led us to 

speculate that the RD1 mutants would have increased susceptibility to exogenously added 

H2O2. To test this possibility, we examined the growth of wild type and RD1 mutants that 

were exposed to 1 mM H2O2, by measuring OD600 at 3, 4, and 5 days after the exposure. 

This growth was then compared to that in 7H9 medium lacking H2O2 to get the value of 

percent inhibition.  As seen in Figure 2, wild type showed an average growth inhibition 

of 35%, while the RD1 mutant that had a deletion of both the esat-6 and cfp-10 genes 

(∆esat-6+cfp-10) showed much greater growth inhibition averaging 65%.  
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Figure 2. Sensitivity of wild type and RD1 mutant to 1mM H2O2.  All strains were grown in 
7H9 medium containing catalase. Then the cultures were passaged into 7H9 medium lacking 
catalase, with addition of 1 mM H2O2.  At 3, 4, and 5 days post H2O2 exposure, growth was 
analyzed by measuring the OD at wavelength 600nm.   Results are representative of one 
experiment performed in duplicate.  Statistical significance was examined with the Student t 
test, and P values were recorded. P values for 3, 4, and 5 days post H2O2 exposure are .0491, 
.0347 and .0207 respectively. 

Sensitivity of Wt and RD1 mutant to H2O2

3 4 5
0

10

20

30

40

50

60

70

80

Wt
∆(Esat-6+Cfp-10)

Days post H2O2 exposure

%
  G

ro
w

th
 In

hi
bi

tio
n



 15 
 

 

 

RD1 mutants are resistant to ROIs generated from within the bacteria 
 
To determine whether the hypersensitivity of the RD1 mutant to H2O2 was due to its 

deficiency in neutralizing ROIs from within the bacterial cell or in the extracellular 

milieu, we exposed wild type and the RD1 mutant to paraquat.  Paraquat is a reagent that 

enters the bacterium and combines with dioxygen to produce superoxide; an ROI that 

does not escape from the bacterium yet can be converted to H2O2 and other forms of 

ROIs.  The paraquat assays were performed following the same procedures as those in 

the H2O2 sensitivity assays.  Bacterial growth was determined by measuring OD600 at 3, 4, 

and 5 days after exposure to 1 mM paraquat and the growth inhibition was analyzed 

similarly as in the H2O2 assay. As seen in Figure 3, wild type and the RD1 mutant were 

equally resistant to paraquat, indicating that there were no significant differences between 

the two strains in their capacity to neutralize intracellular ROIs.  The results suggest that 

wild type and the RD1 mutant may have similar levels of intracellular ROI neutralizing 

enzymes, which implies that the difference between the two in sensitivity to exogenous 

ROI might be due to their difference in the production of ROI neutralizing enzymes into 

the extracellular milieu. 
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Figure 3 

 

 

 

 

 

 

 

 
 

Figure 3.  Sensitivity of wild type and RD1 mutant to 1mM paraquat.  Wild type and 
RD1 mutants were initially grown in 7H9 medium containing catalase.  Cultures were 
then passaged into 7H9 medium without catalase containing 1 mM paraquat. At 3, 4, 
and 5 days post inoculum, growth was analyzed by measuring the OD at wavelength 
600nm. Results are representative of one experiment performed in duplicate.  
Statistical significance was examined with the Student t test, and P values were 
recorded. P values for 3, 4, and 5 days post H2O2 exposure are .0.1793, .4534 and 
.3239 respectively. 
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RD1 mutants are deficient for intracellular growth in activated macrophages 

Activated macrophages are known to produce large amount of ROIs to limit microbial 

growth. To examine whether the role of RD1 genes in resistance to the exogenous ROI is 

biologically significant during Mycobacterium infection of host cells, I performed a series 

of macrophage infection studies.  In these studies, wild type or RD1 mutants were used to 

infect activated BMDM at an MOI of 1, and bacterial intracellular growth was 

determined at 0, 24 and 48 hours after infection. The RD1 mutants used in these cell 

infection studies were ∆esat-6 (deletion of esat-6) and ∆cfp-10+esat-6 (deletion of both 

cfp-10 and esat-6). Both RD1 mutants displayed approximately 3-4 fold growth 

inhibition at 48 hours post infection when compared to wild type (Figure 4). The 

intracellular growth defect has been previously shown for multiple RD1 mutants, 

including ∆esat-6, of both M. tuberculosis and M. marinum.  However, the cause of the 

defect remains unknown. 
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Figure 4. Quantification of the intracellular growth of wild type and RD1 mutants 
in activated BMDM.  Macrophages were activated with both LPS and gamma 
interferon and infected at an MOI of 1.  At 0, 24, and 48 hours post infection, the 
cells were lysed, and the bacteria were serially diluted and spotted on to 7H10 
plates for enumeration of bacterial CFU.  Bars indicate standard deviation.  Results 
are representative of one experiment performed in duplicate. 
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The intracellular growth defect of the RD1 mutants can be recovered by the 

removal of ROIs    

In order to determine whether ROIs were involved in inhibiting the intracellular growth 

of the RD1 mutants, BMDM were treated with ROI-neutralizing enzymes to remove 

ROIs and the bacterial intracellular growth was examined.  The first approach I took was 

to treat the activated BMDM with superoxide dismutase and catalase (50 U/ml for each) 

to remove the ROIs generated by the macrophages. Superoxide dismutase breaks down 

superoxide to hydrogen peroxide and catalase works by breaking down hydrogen 

peroxide to water and oxygen.  The intracellular growth of M. marinum in those cells was 

compared to that without the treatment of the enzymes.  As shown in Figure 5, both RD1 

mutants had significantly increased intracellular growth in BMDM treated with the ROI-

neutralizing enzymes compared to that without the enzyme treatment.  On the other hand, 

the growth recovery for the wild type bacteria in the enzyme-treated cells was not 

evident.  These results suggest that the production of ROIs by the activated macrophages 

contributed to the inhibition of the intracellular growth of the RD1 mutants.  It was noted 

that although the RD1 mutants showed significantly recovered growth in the enzyme-

treated cells, their growth still did not reach to the level of the wild type strain, suggesting 

that other factor(s) besides ROIs might have been involved in inhibiting the growth of the 

RD1 mutants within the activated macrophages.  

The second approach I took was to treat the activated BMDM with 5 mM N-acetyl 

cysteine (NAC) to remove the ROIs produced by the cells.  Unlike superoxide dismutase 

or catalase which remove a specific species of ROI, NAC is able to remove multiple 

species of ROIs by increasing the levels of the antioxidant scavengers within the cell, 
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making it a more potent neutralizer of ROIs than the addition of the above two enzymes.  

As shown in Figure 6, the RD1 mutants showed an even higher growth recovery in the 

cells treated with NAC than in the cells treated with the two enzymes.  Interestingly, even 

wild type bacteria exhibited slightly increased growth in NAC-treated cells.  Although 

the increased growth of wild type is not statistically significant, there is still the 

implication that high levels of ROIs produced by activated macrophages can limit the 

intracellular growth of both wild type and the RD1 mutants but with a much higher 

inhibitory effect on the RD1 mutants than wild type.  
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        Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Intracellular growth of wild type and RD1 mutants in activated BMDM treated or 
not treated with 50U/ml SOD and 50U/ml catalase.  BMDM were activated with gamma 
interferon and LPS and infected at an MOI of 1.   At 0, 24 and 48 hours post infection, the 
cells were lysed and the bacteria were serially diluted and spotted on to 7H10 plates for 
enumeration of bacterial CFU. Inset figure shows the recovery of the RD1 mutants when 
treated with SOD and catalase at the 48-hour time point.  Results are representative of one 
experiment performed in duplicate.  Error bars indicate standard deviation. Statistical 
significance for results of inset figure was examined with the Student t test, and P values 
were recorded.  P values for wild type and ∆cfp-10+esat-6 are .3341and .0358 respectively.  
P values not applicable for ∆esat-6 
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      Figure 6 
 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 6. Intracellular growth of wild type and RD1 mutants in activated BMDM treated or not 
treated with 5mM NAC.  BMDM were activated with gamma interferon and LPS and infected at an 
MOI of 1.   At 0, 24 and 48 hours post infection, the cells were lysed, and the bacteria were serially 
diluted and spotted on to 7H10 plates for enumeration of bacterial CFU. Inset figure shows the 
recovery of the RD1 mutants when treated with NAC at the 48-hour time point. Results are 
representative of one experiment performed in duplicate.  Error bars indicate standard deviation. 
Statistical significance for results of inset figure was examined with the Student t test, and P values 
were recorded.  P values for wild type, ∆esat-6 and ∆cfp-10+esat-6 are .2713, .0131 and .1317 
respectively. 
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RD1 mutants show no recovery in BMDM deficient in NADPH oxidase 

The NADPH oxidase enzyme complex is involved in producing abundant ROIs in 

activated neutrophils or macrophages.  To investigate whether the ROIs produced by the 

NADPH oxidase complex played a role in inhibiting the intracellular growth of the RD1 

mutants, I compared the growth of the mutants in BMDM from the gp91phox or p47phox-

knockout mice to that from the wild type mice.  Both gp91 and p47 are essential subunits 

of the NADPH enzyme complex.  The intracellular growth assays were performed 

similarly as described above. The results showed unexpectedly that the RD1 mutants and 

wild type did not gain growth recovery (Figure 7).  These results suggest that the ROIs 

produced by NADPH oxidase do not play a major role in limiting the intracellular growth 

of RD1 mutants. 
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       Figure 7 

 

 

 

 

 

 

 

Figure 7. Intracellular growth of wild type and RD1 mutants in activated BMDM 
from gp91phox-/- and p47phox-/- mice. BMDM were activated with gamma 
interferon and LPS and infected at an MOI of 1.   At 0, 24 and 48 hours post 
infection, the cells were lysed, and the bacteria were serially diluted and spotted 
on to 7H10 plates for enumeration of bacterial CFU. Results are representative of 
one experiment performed in duplicate.  Error bars indicate standard deviation.  
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RD1 mutants show no growth recovery in BMDM deficient for iNOS 

Nitric oxide produced by the iNOS enzyme can react with superoxide to form an even 

more toxic radical, peroxynitrite, which is a potent antimicrobial agent.  I showed above 

that the removal of the ROIs produced by the NADPH oxidase complex did not benefit 

the growth of the RD1 mutants.  One possible explanation is that the superoxide 

produced by an NADPH oxidase-independent source reacted with nitric oxide generated 

by iNOS to form peroxynitrite, which might have produced a potent growth inhibition for 

the mutants.  To test this possibility, I examined the growth of the RD1 mutants in 

BMDM from iNOS-knockout mice and compared it to that from the wild type mice.  

Activation and infection of BMDM were performed similarly as described above.  The 

results showed that wild type or the RD1 mutants did not gain grow recovery in the 

iNOS-knockout macrophages (Figure 8).  In fact, both bacteria somehow showed slightly 

reduced growth in the knockout cells.  Therefore, the reactive nitrogen intermediates did 

not seem to play a role in inhibiting the intracellular growth of the RD1 mutants in 

activated macrophages.   
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          Figure 8 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 8.  Intracellular growth of RD1 mutant in BMDM from iNOS-/- mice.  BMDM were 
activated with gamma interferon and LPS and infected at an MOI of 1.   At 0, 24 and 48 
hours post infection, the cells were lysed, and the bacteria were serially diluted and 
spotted on to 7H10 plates for enumeration of bacterial CFU.  Results are representative of 
two experiments performed in duplicate. Error bars indicate standard deviation. Statistical 
significance was examined with the Student t test, and P values were recorded.  P values 
for wild type, ∆esat-6 and ∆cfp-10+esat-6 are.1201, .4890 and .2763 respectively. 
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RD1 genes may play a role in the synthesis and/or secretion of KatG 
 
To determine whether the increased sensitivity of the RD1 mutants to ROI was due to 

their defect in the synthesis and/or secretion of KatG, I examined the production of KatG 

in both the bacterial cell lysates and culture filtrates by Western blot analysis.  In my 

initial analysis, I analyzed KatG production by the bacteria grown in the Sauton’s 

minimum defined medium. No KatG was detected in the culture filtrates of both wild 

type and RD1 mutants, suggesting that the amount of KatG secreted into the Sauton’s 

medium was under the detectable level (data not shown).  Since a difference in the 

intracellular level of KatG may also explain differential sensitivity of wild type and RD1 

mutants to ROIs, the cell lysates of wild type and RD1 mutants were probed for KatG.  

The results presented in Figure 9A showed that the RD1 mutants had varying levels of 

KatG within the crude cell lysates.  Quantification of the KatG levels within the crude 

cell lysates showed that the differences between wild type (set at 100%) and the majority 

of the RD1 mutants might not be significant, except that the Mh3878::kan mutant 

produced strikingly more KatG than wild type (Figure 10).    

Previous research has suggested that KatG may be a cell wall associated protein, hence 

possible differences between wild type and the RD1 mutants in the amount of KatG 

associated with the cell wall might also explain the differences between them in the 

sensitivity to ROIs.  To analyze the differences in the cell wall-associated KatG, the 

cytosol plus cytoplasmic membrane fraction was separated from the cell wall fraction by 

centrifugation, and the cytosol plus cytoplasmic membrane fraction was probed for KatG 

using anti-KatG antibodies.  The results in Figures 11 and 12 showed that the RD1 
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mutants had varying levels of KatG in the cytosol plus cytoplasmic membrane fraction, 

for example the Mh3876::kan and Mh3879::kan mutants had much reduced levels of 

KatG compared to wild type.  Many other RD1 mutants showed more or less similar 

levels of KatG compared to wild type.  The Mh3878::kan mutant again showed much 

higher level of KatG than wild type.  However, wild type bacteria clearly did not show 

significantly reduced level of KatG when compared to most of the RD1 mutants, 

implicating that there was no differential localization of KatG on the wild type bacterial 

cell wall.  

The speculation that wild type bacteria grown in the 7H9 rich medium, rather than 

Sauton’s medium, might contain higher level of KatG than the RD1 mutants is intriguing, 

because all of the above described in vitro and cell infection experiments examining the 

sensitivity of RD1 mutants to ROIs were performed using the bacteria grown in 7H9 

medium.  Therefore, I wondered whether the different growth conditions might have 

caused the differences in the KatG levels in wild type or the RD1 mutant bacteria.  To 

further evaluate this possibility, I examined the KatG level in the cell lysates of wild type 

and RD1 mutants grown in 7H9 medium.  The results presented in Figures 13 and 14 

showed that wild type bacteria produced significantly more KatG than the RD1 mutants 

when grown in the 7H9 medium.  Quantification of the KatG levels indicated that the 

KatG level of wild type bacteria was approximately 3- and 2-times higher than that of the 

∆esat-6 and the ∆cfp-10+esat-6 mutants, respectively.  Therefore, the results indicated 

that wild type bacteria grown in the 7H9 rich medium produced a significantly higher 

level of KatG than the RD1 mutants, suggesting that the RD1 genes are possibly involved 

in the optimal production/synthesis of KatG.   
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Another important aspect to look into was the dynamics of the KatG level in response to 

the exposure to ROIs.  Interestingly, after exposure to 1 mM H2O2, the KatG level of wild 

type bacteria dropped significantly within 2 hours by 150% (Figure 14).  This rapid drop 

of the KatG protein level in wild type bacteria can be accounted for by two possibilities, 

one is the degradation and the other the secretion of the KatG protein.  Intriguingly, the 

drop of KatG for both RD1 mutants after exposure to 1 mM H2O2 was not as evident as 

for wild type, implying that the drop of KatG level in wild type bacteria probably was not 

due to degradation but rather the secretion of KatG.  The above experiment was 

performed only once. If the results can be reproduced, the data would suggest that the 

RD1 genes might be involved in both the production/synthesis and the secretion of KatG 

when grown in the rich medium, consistent with the observation that wild type bacteria 

are more resistant than the RD1 mutants to H2O2.   
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5. Mh3868b::kan 
6. Mh3867::kan 
7. Mh3881::kan 
8. Mh3866::kan 
9. ∆esat-6   
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A

B

Figure 9. Analysis of KatG within the crude cell lysate of wild type and RD1 
mutants grown in Sauton’s minimum defined media by Western blot.  Cell 
lysates were processed and proteins separated on a 4-20% gradient SDS gel.  
Proteins were probed with anti-KatG (A) and  anti-GroEL (B)  antibodies.  Lanes 
are indicated on the side of the blot.  These results are representative of a single 
Western blot experiment 
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Figure 10 

 
 
 

 

 

 

 

 

 

Figure 10 Quantification of KatG levels present in the samples presented in 
Figure 9.  Quantification was performed using ImageJ software.  The KatG levels 
were normalized according to the levels of GroEL. Wild type levels of KatG are 
set to 100% so RD1 mutant levels of KatG are expressed as a percent of the wild 
type level. 
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        Figure 11 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Mh3878::kan 
2. Mh3868a::kan 
3. Mh3879::kan 
4. Mh3876::kan 
5. Mh3868b::kan 
6. Mh3867::kan 
7. Mh3881::kan 
8. Mh3866::kan 
9. ∆esat-6   
10. ∆secA2 
11. wt 
12. Mh3868c::kan 
13. ∆esat-6   
14. ∆esat-6  
15. ∆cfp-10+esat-6 

 
 

Figure 11. Analysis of KatG localized to cytosol and plasma membrane for 
bacteria grown in Sauton’s minimum defined media.  Crude cell lysates were 
centrifuged to remove cell wall extract. The remaining cytosolic and plasma 
membrane proteins were separated on a 4-20% gradient gel and KatG was probed 
with an anti-KatG antibody. Lanes are indicated on the side of the blot.  These 
results are representative of a single Western blot experiment 
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Figure 12 
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Figure 12. Quantification of KatG levels present in the samples presented in 
Figure 11.  Quantification was performed using ImageJ software.  The KatG 
levels were normalized according to the levels of GroEL. Wild type levels of 
KatG are set to 100% so RD1 mutant levels of KatG are expressed as a percent of 
the wild type level. 
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5. ∆esat-6 – 1 mM H2O2 
6. ∆esat-6 – 20 mM H2O2 
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8. ∆cfp-10+esat-6 – 1 mM H2O2 
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Figure 13. Analysis of KatG expression in the cell lysates of RD1 mutants 
grown in 7H9 medium following exposure to H2O2.  Wild type and RD1 
mutants were initially grown in 7H9 medium then exposed to H2O2 for 2 
hours prior to processing of cell lysate.   Proteins the cell lysates were 
separated on a 4-20% gradient gel and probed with anti-KatG antibodies (A) 
and anti-GroEl (B). Lanes are indicated on the side of the blot. These results 
are representative of a single Western blot experiment 
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Figure 14. Quantification of the KatG protein levels for the samples presented 
in Figure 13. Quantification was performed using ImageJ software.  The KatG 
levels were normalized according to the levels of GroEL. Wild type levels of 
KatG are set to 100% so RD1 mutant levels of KatG are expressed as a 
percentage of wild type levels. 
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RD1 may play a role in the regulation of AhpC 
 
Published data has demonstrated a clear link between the production of KatG and AhpC, 

in which there is an induction of AhpC as compensation for a decrease of KatG.  

Therefore I examined whether the RD1 mutants, which as described above may be 

deficient in the production/synthesize and secretion of KatG, would express an increase 

in AhpC after exposure to ROIs such as H2O2.  AhpC protein was detected by Western 

blot, using the same cell lysates described above from bacteria grown in 7H9 medium for 

KatG analysis.  The results shown in Figures 15 and 16 showed that wild type bacteria 

expressed relatively constant levels of AhpC following exposure to H2O2.  However, the 

RD1 mutants showed markedly increased levels of AhpC following the H2O2 exposure. 

After exposure to 1 mM H2O2 ∆esat-6 and ∆cfp-10+esat-6 appeared to induce AhpC by 

approximately 125% and 100% more, respectively.  The results are consistent with the 

previously described link between KatG and AhpC and further support my above 

observation that the RD1 mutants have deficiency in KatG synthesis and secretion.  
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2. Wt – 1 mM H2O2 
3. Wt – 20 mM H2O2 
4. ∆esat-6 – 0 H2O2 
5. ∆esat-6  – 1 mM H2O2 
6. ∆esat-6 – 20 mM H2O2 
7. ∆cfp-10+esat-6  – 0 H2O2 
8. ∆cfp-10+esat-6 – 1 mM H2O2 
9. ∆cfp-10+esat-6 – 0 H2O2 
 

Figure 15.  Analysis of AhpC expression in the cell lysates of RD1 mutants  
grown in 7H9 medium following exposure to H2O2.  Wild type and RD1 
mutants were initially grown in 7H9 medium then exposed to H2O2 for 2 
hours prior to processing of cell lysate.   Proteins the cell lysates were 
separated on a 4-20% gradient gel and probed with anti-KatG antibodies (A) 
and anti-GroEl (B). Lanes are indicated on the side. These results are 
representative of a single Western blot experiment 
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Figure 16 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Quantification of the AhpC protein levels for the samples presented in 
Figure 15. Quantification was performed using ImageJ software.  The AhpC 
levels were normalized according to the levels of GroEL. Wild type levels of 
AhpC are set to 100% so RD1 mutant levels of AhpC are expressed as a 
percentage of wild type levels. 
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The role of RD1 genes in the synthesis and/or secretion of superoxide dismutase is 
inconclusive  
 
Here I examined another ROI-scavenging enzyme, superoxide dismutase.  My 

preliminary study focused on the secretion of this enzyme by wild type and the RD1 

mutants.  I first examined the enzyme activity in the culture filtrates of wild type and the 

RD1 mutants grown in Sauton’s minimum defined medium.  The culture filtrate proteins 

were separated by a 15% non-denaturing agarose gel and the superoxide dismutase 

enzyme activity was detected by incubation with nitroblue tetrozolium.  As seen in 

Figures 17A and 18A, the RD1 mutants and wild type bacteria all showed the clear band 

for superoxide dismutase at varying degrees of intensity.  In general, the wild type 

bacteria produced little superoxide dismutase activity compared to the RD1 mutants.  

Some RD1 mutants, such as Mh3868a::kan, Mh3868b::kan, Mh3868c::kan, 

Mh3867::kan, and the ∆esat-6 mutants secreted much more SodA compared to wild type.  

The above results of the enzymatic activity were further confirmed by Western blot 

assays shown in Figures 17B and 18B.  It is also interesting to note that the SecA2 mutant 

appears to secrete superoxide dismutase despite previous studies that imply that SodA 

may be secreted via the SecA2 secretion system (Braunstein, 2003).  However, the 

secretion of SodA is not likely to be exclusive to SecA2 given the fact that when 

secretion is analyzed under different growth phases, the SecA2 mutant has been shown 

secrete SodA, which is confirmed in by our Western blot.    

Generally, the results demonstrate that RD1 mutants secrete equivalent or even higher 

levels of superoxide dismutase than wild type when the bacteria are grown in the 

Sauton’s medium.  As I described above, RD1 genes are likely involved in the synthesis 

and secretion of KatG when grown in 7H9, but not Sauton’s medium. Therefore it is not 
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conclusive whether these genes play a similar role in the synthesis and/or secretion of 

superoxide dismutase when the bacteria are grown in 7H9 medium.   
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        Figure 17 
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Figure 17. Analysis of the protein levels of superoxide dismutase in the culture filtrate 
of wild type and RD1 mutants grown in Sauton’s defined minimal media. A) SodA 
enzymatic activity. The nondenatured culture filtrate was separated by a 15% gel.  
Activity was measured by incubation with nitroblue tetrozolium followed by a solution 
of TEMED, riboflavin and potassium phosphate.  B) Western blot probing for SodA.  
Proteins of the culture filtrates were separated by a 4-20% gradient gel and SodA was 
probed with anti-SodA antibodies. C) Western blot probing for Antigen 85, which is 
protein secreted via the SecA1-dependant pathway.  Lanes are indicated on the side. 
These results are representative of a single Western blot experiment. 
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Figure 18 
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Figure 18. Quantification the enzymatic activity (A) and protein levels (B) of 
SodA for the samples presented in Figures 17 A and B. Quantification was 
performed using ImageJ software.  Wild type level of SodA was set to 100% so 
SodA levels of were expressed as a percent of wild type levels 
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Chapter 3: Experimental procedures 

Bacterial Strains and Media 

RD1 mutant strains were created by Gao et al, 2003.  Bacteria were cultures in 

Middlebrook 7H9 (Difco) supplemented with 0.2% glycerol, 0.05% Tween 80, and 10% 

albumin-dextrose-catalase enrichment (7H9 broth) or on Middlebrook 7H10 agar (Difco), 

supplemented with 0.5% glycerol and 10% oleic acid-albumin-dextrose-catalase 

enrichment. Antibiotics used for RD1 mutant media was kanamycin (30 µg/ml) Initial 

inoculums were cultured at 32˚C with shaking (100RPM) to confluence.  Cultures were 

then concentrated in 7H9 containing 30% glycerol and stored at –80C for subsequent use.   

Cell Culture Lines 

Bone marrow derived macrophages were derived from bone marrow exudates of cells 

extracted from the femurs of female 6-week-old C57BL/6 mice obtained from Jackson 

laboratories (Bar Harbour, Maine).  Cells were flushed using 2% FBS in PBS.  Following 

isolation and washes, cells were cultured for four days at 37˚C in 5% CO2.  The media 

used for culturing BMDM was Dulbecco’s Modified Eagle Media (DMEM) modified 

with 10% fetal bovine serum, 15% L929 cell supernatant, 1% glutamine and 2% HEPES 

buffer.  After four days, fresh media was added to the cells and culture was maintained 

four more days before further processing. Bone marrow derived macrophages were also 

isolated from p47phox-/-, gp91phox-/- and iNOS-/- mice. 

 

 

 



 44 
 

 

 Hydrogen Peroxide and Paraquat (methyl violegen) in vitro Assays 

Wild-type M. marinum and RD1 mutants ∆esat-6 and ∆cfp-10+esat-6 were grown in 

7H9 liquid medium with catalase to late log phase (OD600≈1.2-1.5).  All bacterial cultures 

were standardized to OD600= 1.2 by diluting with 7H9 without catalase medium.  130ul 

of the standardized bacterial culture were further diluted with 1ml 7H9 without catalase 

medium.  125 µl of this solution was then inoculated into Erlenmeyer flasks containing 

30ml 7H9 without catalase.  Hydrogen peroxide and paraquat solutions with specific 

concentrations were also prepared with 7H9 without catalase culture medium and then 

inoculated into flasks with cultures.  Cultures were grown in 32˚C with constant shaking 

(100RPM).  Three days after the initial inoculum, OD600 readings were taken to measure 

bacterial survival after initial exposure to extracellular hydrogen peroxide and paraquat.  

The statistical analysis of the data were performed with Student’s t test using Graph 

Prism software. 

Bone Marrow Derived Macrophage Infection 

BMDM cells were seeded at a density 2.5 x 105 per ml or 5x104 per well in 96 

well plates.  Cells were activated one day prior to infection by treatment with BMDM 

infection medium containing interferon gamma at a concentration of 100 U/ml.  BMDM 

infection media consists of DMEM, 10% FBS, 1% glutamine and 2% Hepes buffer. Cells 

were conditioned at 32˚C for 24 hours prior to infection.  Two hours prior to infection, 

cells were treated with infection medium containing 10 ng/ml LPS. For recovery assays, 

ROI-inhibitors were also added at this time.  Cells were treated with either 50 U/ml 

superoxide dismutase-PEG and 50 U/ml catalase-PEG, or 5 mM N-acetyl cysteine 

(NAC).  
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Prior to infection bacteria were grown to OD600 of 1.2-1.5.  Bacteria were 

processed by washing with PBS followed by isolation of single bacteria by passage 

through a 26G needle two times.  Bacteria concentrations were adjusted in BMDM 

infection media with the required concentration of superoxide dismutase /catalase and 

NAC.  Bacteria were added to BMDMs to establish a multiplicity of infection of 1.  After 

a two-hour incubation at 32ºC at 5% CO2 pressure, cells were washed three times with 

PBS.   Cells were then incubated with infection media containing 4 µg/ml streptomycin 

as well as the appropriate concentration of the ROI inhibitor used for that infection. 

At each time point, 0 (immediately after two hour infection), 24 and 48, cells 

were lysed using cell lysis media triton.  For the time 0 and 24-hour time points, cells 

were lysed by the addition of 200 µl of 0.1% triton followed by a ten-minute incubation 

at 32˚C.  After resuspending, 20 µl was transferred to 180 µl of PBS.  Six 1:10 serial 

dilutions were made and 10 µl of each dilution was spotted onto a 7H10 plate.  For the 

48-hour time point, the 200 µl supernatant was combined with 20 µl of 4% triton.  The 

adherent cells were treated with 200 µl of 0.1% triton.  After a 10-minute incubation both 

supernatant and adherent cells were resuspended and 20 µl from each was transferred to 

160 µl PBS for serial dilutions.  

For each infection, untreated wild type BMDM were infected simultaneously with the 

BMDM treated with ROI inhibitors.  Cell infections with untreated BMDM followed the 

same procedures with the exception being the addition of the ROI neutralizing reagents.  

Infections performed on mutant cell lines (iNOS-/-, gp91phox-/-, and p47phox-/-) followed the 

same procedure as those used to infect wild type untreated BMDM.  The statistical 

analysis of the data were performed with Student’s t test using Graph Prism software. 
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Culture filtrate and cell lysate preparation of RD1 mutants 

RD1 mutants were inoculated from frozen stock into 7H9 medium. This culture 

was passed two times into Sauton’s minimal media. Each passage was done at the point 

that the cultures had reached confluence as determined by OD600 of 1.2 to 1.4.The final 

cultures were grown for 6 days.  The culture filtrate was separated via centrifugation at 

3800 RPM for ten minutes followed by filtration through a filter cup.  The remaining 

pellet containing whole cells was frozen at –80˚C.  EDTA (pH 7-8) was added to the 

culture filtrate at a concentration of 1 mM.  The culture filtrate was then concentrated to 

1ml by ultracentrifugation at 4˚C using centriplus ultracentrifugation tubes. Cocktail 

proteinase inhibitor was added to concentrated culture filtrate. Culture filtrates were 

normalized to the weight of the pellets and adjusted to 1011 bacteria/ml. 

Prior to preparation of whole cell lysates, pellets were measured and concentrations were 

normalized by resuspending in 20 mM Tris buffer (pH=7.5), containing a cocktail of 

proteinase inhibitors. Cells were then subjected to four rounds of bead beating performed 

at maximum speed for thirty seconds per round.  Between each round cells were kept on 

ice.   Tubes were then centrifuged two times at 3000xg at 4˚C for 10 minutes.  The 

remaining supernatant was crude cell lysate containing cell wall, cytosol, and plasma 

membrane. 

To remove the cell wall portion, the crude cell lysate was centrifuged at 16,000xg for 60 

minutes. The pellet was washed two times and saved as the cell wall fraction. Prior to 

use, culture filtrates and cell lysates were normalized using the BCATM Protein Assay Kit 

(Pierce).   
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For induction experiments bacteria were grown from frozen stock in 7H9 liquid medium 

with catalase to late log phase (OD600≈1.2-1.5). Cultures were adjusted to OD600  1.0 prior 

to treatment with 1 mM or 20 mM H2O2 .  Cultures were incubated with H2O2 for two 

hours prior to processing of cell lysates. Processing of cell lysates occurred as previously 

described. 

Immunoblot analysis of culture filtrate proteins and whole cell lysates 

Culture filtrate proteins and whole cell lysates were subject to SDS-PAGE.  20 µl of 

normalized protein was loaded onto 4-20% gradient gel for each strain. This was 

followed by transfer to nitrocellulose membrane followed by visualization by 

chemiluminescence (BioRad) Antibodies used to probe membrane include rabbit 

polyclonal anti-M. marinum KatG (titer 1:2500), Rabbit polyclonal anti-Mtb SodA 

antibody (titer 1:2000), rabbit polyclonal antigen 85  antibody (titer 1:2000), rabbit 

polyclonal AhpC antibody (titer 1:500) and mouse monoclonal GroEL antibody (titer 

1:50).   

The SodA and Antigen 85 antibodies were obtained from Marcus Horwitz’s lab at 

UCLA. The KatG antibody was obtained from NIH. The GroEL antibody was obtained 

from Colorado State University.  The AhpC antibody was obtained from Dr. Steward 

Cole at the Institut of Pasteur. 

Superoxide dismutase Activity Assay 

For superoxide dismutase enzymatic assay culture filtrate was run through a non-

denaturing agarose gel made up of a 15% stacking gel and a 15% separating gel at 4˚C.  

The culture filtrate used was not subjected to boiling and was combined with loading dye 
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deficient in SDS prior to loading.  Once the gel was run, it was incubated for 30 minutes 

in a solution of 2.5 mM nitro blue tetrazolium.  This was followed by a 20-minute 

incubation with a solution made up of 30 mM potassium phosphate, 30 mM TEMED and 

30 µM riboflavin at pH 7.8.  Bands were then illuminated on a light box. 
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Chapter 4: Discussion 

Although RD1 is well documented to play a critical role in mycobacterium growth within 

host macrophages (Stanley, 2003), it is not understood what host defense mechanism 

RD1 counteracts.  It is also not clearly known how the proteins are secreted by RD1 and 

what functions the secreted proteins have.  I hypothesize that the virulence function of 

RD1 is achieved by secreting neutralizing enzymes, such as catalase and/or superoxide 

dismutase, that counteract the reactive oxygen and nitrogen intermediates produced by 

the host cell.  This hypothesis was supported in part by my initial observation that the 

RD1 mutants grew slower than wild type in 7H9 medium with no supplemental catalase. 

The hypothesis was further supported by the observation that the RD1 mutants had 

significantly reduced growth compared to wild type in 7H9 medium containing 1 mM 

H2O2.  These results suggested that somehow the RD1 mutants were unable to effectively 

neutralize H2O2.  However, this does not exclude other possibilities.  For example, one 

possibility is that the mutants might be less able to repair the oxidative damage by H2O2, 

another possibility is that the mutants’ cell wall might be more permeable to H2O2.  These 

possibilities are discussed in more detail below and elsewhere in this chapter.  

In order to determine whether the mutants’ defect in neutralizing ROI is due to lack of 

secretion of neutralizing enzymes or their synthesis within the bacterial cell, we 

examined the sensitivity of wild type and RD1 mutants to paraquat, a chemical that 

generates superoxide within the bacterial cell, which then is converted to other forms of 

ROIs in the bacteria.  The results showed that wild type and RD1 mutants had 

comparable growth in the presence of paraquat, suggesting that RD1 may play a role 

either in the secretion of the ROI neutralizing enzymes or in maintaining the cell wall 
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permeability to H2O2.  These results argue against the possibility that RD1 is involved in 

repairing damage caused by ROIs.  Together, the above in vitro assays support my initial 

hypothesis that RD1 may be involved in the secretion of catalase and/or superoxide 

dismutase that participate in the neutralization of ROIs.   

To further support my hypothesis, I performed macrophage cell infection studies, in 

which I demonstrated that RD1 played an important role in counteracting ROIs produced 

by the host cell.  Consistent with published results, I showed that RD1 mutants had a 

marked defect in intracellular growth within activated BMDM as compared to wild type.  

Importantly, I showed that upon removal of ROIs produced by activated macrophages, 

using the exogenously added superoxide dismutase and catalase or NAC, RD1 mutants 

exhibited a significant recovery of growth, to a greater extent than wild type.  The results 

indicate that the negative pressure that limits the intracellular growth of the RD1 mutants 

in part comes from ROIs suggesting that the mutants are ineffective in neutralizing ROIs 

produced by the host cell.  The fact that the wild type did not recover to the same extent 

as the mutants suggests that the ROIs within the macrophages were not affecting the wild 

type as much as the mutants.  Therefore, I conclude that RD1 genes play an important 

role in the neutralization of ROIs within activated macrophages. 

In order to determine the source of ROIs that was involved in limiting the growth of RD1 

mutants, I examined the intracellular growth of wild type and RD1 mutants in p47phox-/- or 

gp91phox-/- BMDM.  Interestingly, the mutants did not show any growth recovery in both 

knockout macrophages, implicating that an NADPH oxidase-independent source of ROIs 

was enough to limit the mutant’s intracellular growth.  There are three possibilities that 

may account for the observations.  One possibility is that an NADPH oxidase-
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independent pathway produces the predominant source of ROIs that directly affect the 

intracellular growth of RD1 mutants within activated BMDMs.  The second possibility is 

that the NADPH oxidase-independent source of ROIs limits the mutants’ growth by an 

indirect mechanism.  The third possibility is that the NADPH oxidase-independent source 

of ROIs is sufficient to react with nitric oxide to produce the highly toxic compound, 

peroxynitrite, which limits the intracellular growth of the RD1 mutants.   Below are the 

in-depth discussions on those possibilities.  

With respect to the possibility that an NADPH oxidase-independent pathway produces 

the predominant source of ROIs that directly limits intracellular growth of RD1 mutants, 

it has been reported that oxidases other than NADPH oxidase play a significant role in 

inhibiting the intracellular growth of certain pathogenic bacteria.  For example, xanthine 

oxidase has been reported to play a role in inhibiting the dissemination of Salmonella, 

possibly by inhibiting the intracellular growth of the bacterium (Umezawa, 1997). 

Although NADPH oxidase has been considered the primary source of ROIs for 

phagocytes, it is not known whether it definitely plays a primary role in limiting the 

intracellular growth of RD1 mutants in our experiments due to the following two possible 

reasons.  One reason is that it is not clearly understood whether NADPH oxidase 

generates the primary source of ROIs in BMDM during the cell activation by IFN-γ.  

Measuring and comparing the amount of ROIs produced by BMDMs derived from wild 

type and the phox-knockout mice should provide some insight into this possibility.  It 

would also be beneficial to include the katG∆ as a positive control in phox-/- infection 

experiments since published data demonstrates that the katG∆ shows increased growth in 

cells lacking NADPH oxidase (Ng, 2004).  In addition, it is necessary to determine the 
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ROI levels in the activated BMDM before and after the treatments with superoxide 

dismutase and catalase or NAC to in order to determine whether the ROI levels in treated 

BMDM are similar to those within the phox-/-  BMDMs.   

The other reason is that it is not known whether NADPH oxidase localizes to the 

mycobacterium-containing phagosome.  Salmonella has been shown to inhibit the 

recruitment of the NADPH oxidase subunits to the Salmonella-containing vacuole 

(Vazquez-torres, 2000).  Although inhibition of the recruitment of NADPH oxidase to the 

mycobacterium-containing vacuole has not been experimentally tested, it has been shown 

that mycobacterium inhibit the recruitment of iNOS to the bacteria containing phagosome 

(Miller, 2004).  Examining the recruitment of NADPH oxidase to mycobacterium-

containing phagosome should provide insight into this possibility.   

With respect to the possibility that the NADPH oxidase-independent source of ROIs may 

limit the mutant’s growth by an indirect mechanism, it is noteworthy that the cytosolic 

ROIs derived from mitochondria may play a role.  In order to determine whether 

mitochondria-derived ROIs play a role in inhibiting the RD1 mutants’ growth, specific 

inhibitors to these ROIs could be utilized.  If the mitochondria-derived ROIs are the main 

source of ROIs to inhibit bacterial growth then the inhibition of these ROIs should allow 

the RD1 mutants to recover to a level similar to that seen by the inhibition of ROIs by the 

addition of NAC.   

Mitochondria-derived ROIs are increased upon exposure to LPS and this increase is 

believed to trigger many signaling pathways including NFκB.  Published data suggest 

that the addition of NAC to activated macrophages can block NFκB activation (Sim, 

2005).  Inhibition of NFκB may then inhibit apoptosis, which is often triggered by this 
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transcription factor (Liang, 2004).  Thus it is possible that the addition of NAC or 

superoxide dismutase/catalase to BMDM would inhibit ROIs that are involved in the 

signaling pathways, and this inhibition would allow the RD1 mutants to recover their 

deficient intracellular growth in activated macrophages.  This would suggest that the role 

of RD1 in neutralizing ROIs might be more important for the neutralization of 

mitochondria-derived ROIs for the purpose of inhibiting cell signaling, which possibly 

leads to reducing apoptosis.  However our in vitro studies suggest that the role of RD1 in 

neutralizing ROIs is more important in directly inhibiting the effects of the exogenous 

ROIs.  Therefore, it is equally possible that the mitochondria-derived ROIs may be 

involved in direct inhibition of the intracellular growth of RD1 mutants. Thus, RD1 may 

play either or both roles, one is to directly protect the bacteria by reducing the levels of 

ROIs in the bacteria-containing vacuole, and the other is to indirectly protect the bacteria 

by reducing the overall ROI level within the cell leading to dampening of the ROI-

mediated signaling.  If the inhibition of cell signaling were more crucial, it would be 

anticipated that the removal of only the proximal ROIs from the bacteria-containing 

vacuole via inactivation of the NADPH oxidase might not provide a significant benefit to 

the RD1 mutant bacteria.  An important experiment to test this possibility would be to 

selectively inhibit the mitochondria-derived ROIs and then observe the ability of RD1 

mutants to grow within these cells.  Since mitochondria-derived ROIs have been linked to 

cell signaling, then the recovery of RD1 mutants after the removal of these ROIs would 

indicate that RD1 mutants are more susceptible to the effect of the ROI-mediated 

signaling pathways rather than the direct effect of the ROIs on the bacteria.  The next step 

to confirm this would be to measure the signaling molecules in cells treated with the 
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mitochondria-derived ROI inhibitors.  In order to demonstrate that the inhibition of the 

ROI-mediated signaling might have accounted for the growth recovery of the RD1 

mutants, it would then be necessary to further examine the growth of RD1 mutants in the 

cells upon treatment with an inhibitor for a particular cell signaling pathway, such as an 

inhibitor for the NFκB signaling pathway. 

To examine the possibility that the NADPH oxidase-independent source of ROIs may 

react with nitric oxide to produce peroxynitrite, wild type and RD1 mutants were used to 

infect iNOS-/- cells and the results showed no apparent recovery for the RD1 mutants.  

Therefore, RNI apparently is not involved in limiting the intracellular growth of RD1 

mutants in activated macrophages.  Interestingly, wild type bacteria also showed no 

recovery.  This result is unusual since published data suggest that the removal of RNI 

provides a significant benefit to wild type M. tuberculosis (MacMicking, 1997).  It is 

possible that M. marinum are less sensitive to RNI as compared to M. tuberculosis 

although further experimentation is necessary to figure this out. 

Based on the results of the above experiments and the discussions, it is reasonable to 

conclude that RD1 genes contribute to the bacteria’s ability to survive the toxic effects of 

the reactive oxygen intermediates both in vitro and in activated macrophages.  However, 

the precise mechanism by which RD1 works in this process is not clear.  I hypothesize 

that the RD1 secretion system is required to secrete the enzymes superoxide dismutase 

and/or catalase, which neutralize ROIs.  My initial attempts to testing this hypothesis 

were unsuccessful.  In those initial studies, I examined by Western blots the SodA and 

KatG protein levels in culture filtrates or whole cell extracts from wild type and RD1 

mutants grown in the Sauton’s minimal defined medium.  This analysis showed that RD1 
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mutants were not significantly different from wild type in the synthesis of KatG and the 

secretion levels of the enzyme were too low to be detected, although the secretion of 

SodA was more prominent for the mutants than wild type.  The results of this analysis 

were rather contradicting to the observed phenotypes of the mutants both in vitro and in 

cell infections studies.  However, as will be discussed below, when the bacteria were 

grown in the 7H9 rich medium, the opposite phenotypes were observed compared to the 

Sauton’s minimum defined medium.  At this moment, we do not know how the different 

growth conditions caused the significantly different phenotypes. This will be a direction 

of future studies.       

There is a potential problem with using the bacteria grown in the Sauton’s minimum 

defined medium to measure enzyme secretion and synthesis.  It is important to note that 

in all our in vitro and cell infection experiments; the bacteria were grown in 7H9 but not 

Sauton’s medium, indicating that experimentation on the 7H9-grown bacteria would be 

more relevant to the observed phenotypes.  In support of this notion, I demonstrated that 

wild type bacteria grown in 7H9 did produce much higher levels of KatG in the bacterial 

cell than the RD1 mutants grown under the same conditions.  This result is consistent 

with the observation that the RD1 mutants are more sensitive than wild type to ROIs in 

vitro and within activated macrophages.  These results suggest that RD1 genes may be 

involved in the production/synthesis of KatG.  However, our paraquat experiment 

suggested the opposite, that RD1 genes likely are not involved in the intracellular levels 

of the ROI-neutralizing enzymes.  A possible mechanism that can explain the opposite 

observations would be that the RD1 genes are involved in the secretion of KatG, which 

contributes to the resistance of wild type to the exogenous ROIs.  To provide an indirect 
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support to this possibility, I examined the KatG levels in the bacterial cell after exposure 

to H2O2.  I observed that after 2 hours of exposure to H2O2, wild type bacteria showed a 

significant reduction of its KatG level in the cell lysates by approximately 150%.  On the 

other hand, this reduction of KatG level was not significant for the RD1 mutants.  These 

results suggest that RD1 genes may be involved in the secretion of KatG after the 

exposure of wild type bacteria to exogenous ROI such as H2O2, consistent with all our 

observations in the in vitro and cell infection studies.  A further study is imperative to 

examine the KatG levels in the culture medium of wild type and RD1 mutants after the 

induction with H2O2.  Exposing the bacteria to H2O2 for longer time points and 

measurement of KatG expression levels at various growth stages may provide further 

insight into the differences between wild type and RD1 mutants in terms of KatG 

synthesis and secretion.  Another useful experiment to establish the function of KatG 

secretion in contributing to intracellular growth would be to create an RD1 mutant 

capable of secreting KatG through an RD1 independent mechanism.  This mutant should 

show increased survival in activated BMDM, confirming the role of KatG secretion in 

counteracting host defense mechanisms.  The results of these studies should further 

establish an important unknown link between RD1 and KatG. 

One possible explanation for the link between RD1 and KatG could be explained by the 

involvement of RD1 in a unique oxidative stress response.  In M. bovis BCG, ahpC 

expression increases upon exposure to hydrogen peroxide.  However in the pathogenic 

strains M. bovis and M. tuberculosis, expression of ahpC is constitutively lower and no 

induction occurs (Springer, 2001).  Since BCG lacks RD1 it is possible that RD1 is 

involved in the negative regulation of ahpC.  In order to pursue this hypothesis, the cell 
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lysates of the RD1 mutants grown in 7H9 and exposed to H2O2 were probed for AhpC.  

The results showed that RD1 mutants, but not wild type, exhibited significant 

upregulation of AhpC 2 hours after exposure to H2O2.  AhpC induction is somewhat 

linked to avirulence, the mechanism of this AhpC-mediated attenuation is not understood.  

It has been shown that AhpC induction compensates for the lack of KatG in the bacterial 

cell (Sherman, 1996).  Therefore, it is possible that the induction of AhpC in the RD1 

mutants represented a deficiency of KatG, explaining indirectly why the RD1 mutants 

were more sensitive to the exogenous ROIs.  This difference between wild type and RD1 

mutants in the induction of AhpC remains an area that demands increased attention and 

future experimentation. 

The results of the Western blot analysis of wild type and RD1 mutant KatG expression 

under 7H9 conditions indirectly support the hypothesis that RD1 may be involved in the 

secretion of KatG.  While the results of SodA secretion are inconclusive, it remains a 

possibility that analysis of secretion under more relevant growth conditions; RD1 may be 

implicated in the secretion of this enzyme as well.  However, previous studies suggest 

that both KatG and Sod A secretion is SecA2 dependant (Braunstein, 2003).  The basis of 

this claim comes from analysis of SodA and KatG secretion by a SecA2 mutant.  

However, this mutant only shows a defect in SodA secretion when the culture filtrate is 

analyzed after 3 days and again at 7 and 14 days.  However, when secretion is measured 

at 5 days, the mutant appears to secrete SodA.  Similarly, the SecA2 mutant appears to be 

defective in secretion of KatG only at 3 days, when the culture filtrate is collected and 

probed for KatG at later time points, there is not a significant difference between mutant 

and wild type.  The combined results clearly indicate that even mutants lacking SecA2 
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are able to secrete the enzymes SodA and KatG depending on their growth phase.  Thus it 

is likely that SodA and KatG secretion are not mediated exclusively by SecA2.  

Therefore, it remains possible that RD1 may also play a role in the secretion of these 

enzymes, possibly by working in concert with the SecA2 secretion system.  Further 

research will be necessary to establish this possible link. 

Overall the results of this project are extremely promising in predicting the role of RD1 

genes in virulence.  The in vitro assays suggest a direct role for RD1 in neutralizing 

ROIs.  The cell infection assays confirm this role, indicating that the neutralization of 

mitochondria-derived ROIs may be more important for bacteria than the neutralization of 

ROIs generated by NADPH oxidase.  From what is known regarding the importance of 

mitochondrial ROIs in macrophage activation, it is not surprising that mycobacterium 

would seek to eliminate these chemicals.  The mechanism by which RD1 eliminates ROIs 

may be through the production of KatG to the cell wall and extracellular milieu, 

particularly following the exposure to H2O2.  This would suggest a novel role for the 

secretion system, possibly contributing to regulation as well as export of important ROI 

neutralizing molecules.   
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