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     Translating mRNA sequences into functional proteins is a fundamental process 

necessary for the viability of organisms throughout all kingdoms of life.  The 

ribosome carries out this process with a delicate balance between speed and accuracy.  

Although kinetic and biochemical studies along with high resolution crystal structures 

have provided much information about the ribosome, many of the underlying 

mechanisms of ribosome function are still poorly understood.  This work seeks to 

understand how ribosome structure and function are affected by changes in rRNA as 

caused by two very different mechanisms.  mof6-1, originally isolated as a recessive 

mutation which promoted increased efficiencies of programmed -1 ribosomal 

frameshifting, was found to be an allele of RPD3 which encodes a histone deacetylase 

that is involved in transcriptional activation and silencing.  This mutant demonstrated 

a delay in ribosomal RNA (rRNA) processing leading to changes in reading frame 



  

maintenance and ribosomal A-site specific defects.  To understand the role of cis-

acting changes to rRNA, yeast strains deficient in rRNA modifications in the peptidyl 

transferase center of the ribosome were monitored for changes in ribosome structure 

and translational fidelity.  Analyses revealed mutant phenotypes including sensitivity 

to translational inhibitors; changes in reading frame maintenance, nonsense 

suppression and aa-tRNA selection; and increased rates of A-site tRNA binding to the 

mutant ribosome.  One mutant in particular, spb1DA/snr52Δ, promoted increased 

rates of programmed -1 ribosomal frameshifting, increased rates of near cognate 

tRNA selection and A-site tRNA binding.  Structural analysis of spb1DA/snr52Δ 

revealed changes consistent with a more accessible ribosomal A-site.  These results 

suggest that rRNA nucleotide modifications produce small but distinct changes in 

ribosome structure and function contributing to overall translational fidelity. 

 

     Taken together, these data suggest that rRNA, a main component of the ribosome, 

contributes directly to translational fidelity.  Defects in rRNA caused by changes in 

both its processing and modification can cause changes in reading frame 

maintenance, nonsense suppression, aa-tRNA selection and binding as well as 

ribosome structure. 
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Chapter 1: An Ingress 

 

Introduction 

     Translation, the decoding of information contained within messenger RNA 

(mRNA) into its corresponding protein, is a fundamental process carried out in all 

kingdoms of life and is crucial for cell growth and proliferation.  This process is 

mediated primarily by the ribosome in conjunction with associated protein factors.  In 

all growing cells, a vast amount of energy and resources is dedicated to the 

biosynthesis of ribosomes.  It has been estimated that a growing cell manufactures as 

many as 2000 ribosomes per minute (Warner, 1999).  In the face of such intense 

energetic demands, it is essential that the many steps involved in ribosome biogenesis 

be efficient and well coordinated.  The ribosome is made up of two subunits, each of 

which consists of ribosomal RNA (rRNA) and as many as 70 to 100 ribosomal 

proteins.  In eukaryotes, ribosome biogenesis begins in the nucleolus where a large 

precursor rRNA is synthesized by RNA polymerase I (Pol I).  This precursor rRNA 

undergoes a series of cleavage events, nucleotide modifications and folding steps 

resulting in mature rRNA species.  In the yeast Saccharomyces cerevisiae, a 35S 

rRNA precursor is processed into three mature rRNA species: 18S, 5.8S and 25S 

(Figure 1.1) (Decatur and Fournier, 2003).  An additional rRNA component required 

for ribosome formation is 5S rRNA, which is independently transcribed by RNA 

polymerase III (Pol III), processed and exported into the nucleolus for assembly.  In  
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addition to mature rRNAs, production and assembly of the mature 60S (large) and 

40S (small) subunits that comprise a complete 80S yeast ribosome requires 

approximately 80 ribosomal proteins and greater that 150 accessory proteins and 

small RNAs.  In yeast, this process is completed in the cytoplasm with the final 

processing of the small subunit 20S pre-rRNA to mature 18S rRNA (Vanrobays et al., 

2001). 

 

rRNA Modification 

     One vital component of ribosome biogenesis involves pre-rRNA nucleotide 

modification.  Such rRNA modifications are found in all known ribosomes, although 

their location and abundance vary among phylogenetic kingdoms (Rozenski et al., 

1999).  There are over 200 modified nucleotides in human rRNA, over 100 in the 

yeast S. cerevisiae, and close to 40 modified nucleotides found in the eubacteria E. 

coli rRNA.  Three general nucleotide modifications occur in rRNA: 1) 

pseudouridylation – the conversion of uridine to pseudouridine (Ψ), 2) methylation- 

addition of a methyl group to the ribose 2’hydroxyls (Nm), and 3) other 

modifications- primarily base methylation at various positions.  The most abundant 

modifications are pseudouridylation and 2’-O-methylation.    In eukaryotes, two 

classes of small nucleolar RNA-protein complexes (snoRNPs) labeled H/ACA and 

C/D type snoRNPs mediate each of these modification reactions1.  They are classified 

as such because they each contain a small nucloelar RNA (snoRNA) harboring 

                                                
1 In eubacteria, only specific protein enzymes are required to carry out nucleotide modification without 
RNA guides.  In archaea, small guide RNAs, called sRNAs, form snRNPs and are involved in site-
specific RNA modification in an evolutionarily related process to eukaryotes.    Eukaryotic 
modifications and its machinery will be the focus of this work. 
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conserved H and ACA or C and D sequence motifs (often called ‘boxes’) (Balakin et 

al., 1996a). The snoRNPs of both classes consist of a snoRNA, which serves as a 

guide sequence, and at least four specific proteins.  During the modification reaction, 

the snoRNA provides site specificity through base pairing with the target RNA 

allowing the enzymatic protein to catalyze the modification of a specific nucleotide.  

The residue ultimately modified resides within the target RNA sequence that is base 

paired to the guide snoRNA and at a specific location relative to the H/ACA or C/D 

boxes.  Pseudouridylation and 2’-O-methylation reactions are performed by H/ACA 

and C/D box snoRNPs respectively.     

 

     SnoRNA molecules are short, usually ranging between 80-400 nucleotides (nt)2.  

They exist in a wide range of eukaryotes3 with the vast majority of research 

performed in yeast and mammalian systems.  Most H/ACA and C/D box snoRNAs 

are transcribed by RNA polymerase II (Pol II).  Their genomic locations vary among 

eukaryotes.  Most mammalian snoRNAs are located in the introns of protein-coding 

genes, while most yeast snoRNAs are processed from polycisronic transcripts or are 

transcribed from independent genes.  Both intronic and polycistronic transcriptional 

units yield pre-snoRNAs which require processing to mature.  Intronic snoRNAs are 

processed in two ways.  The primary pathway involves debranching the spliced lariat 

followed by exonucleolytic digestion of extraneous sequence.  The second pathway 

operates independent of splicing, where the snoRNAs are excised from the introns 

through endonucleotytic cleavage followed by trimming.  SnoRNAs encoded by 

                                                
2 Some exceptions are snR30 consisting of 608 nt and snR59 with 78nt. 
3 SnoRNAs have been found in eukaryotes including but not limited to humans, mice, Xenopus, D. 
melanogaster, C. elegans, A. thaliana, S. cerevisiae, S. pombe, E. gracilis, and trypanosomes. 
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polycistronic transcription units undergo endonucleolytic cleavage followed 

exonucleolytic processing to remove excess nucleotides.   

 

     All guide H/ACA snoRNAs share a hairpin-hinge-hairpin-tail secondary structure 

with the conserved sequence ANANNA (H box) in the hinge region and the ACA 

motif exactly three nucleotides from the 3’end in the tail structure (Figure 1.2b).  

Guide H/ACA snoRNAs facilitate pseudouridylation through complementary base 

pair interactions with a 6-20 nucleotide stretch of the target rRNA encompassing the 

targeted U residue.  This interaction occurs in such a way as to leave the targeted U 

residue unpaired in a hairpin bulge creating a ‘pseudouridylation pocket’ thereby 

making it available to the pseudouridine synthase (Ni et al., 1997; Ganot et al., 

1997a).  Formation of Ψ is known to require the breakage of the N1-glycosyl bond, 

rotation of the uracil ring by 180° followed by formation of the C5-glycosyl bond 

(Chu et al., 1976).  Guide H/ACA RNAs associate with at least four proteins to form 

a functional snoRNP complex.  The snoRNA-directed pseudouridylation is carried 

out by yeast Cbf5fp (mammalian/human Nap57p/dyskerin) (Lafontaine et al., 1998; 

Zebarjadian et al., 1999).  The other guide H/ACA snoRNA associated proteins in 

yeast include Gar1p, Nhp2p, and Nop10p (Balakin et al., 1996b; Ganot et al., 1997b; 

Henras et al., 1998; Watkins et al., 1998).   

 

     The methylation C/D snoRNAs contain the conserved C (consensus sequence 

RUGAUGA, where R stands for any purine) and D (consensus CUGA) boxes near 

their 5’ and 3’ ends, respectively (Figure 1.2a) (Kiss, 2001).  These boxes are often 
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brought together by a short base pair interaction between the termini.  C/D snoRNAs 

also contain second set of motifs that resemble the boxes C/D called C’ and D’ boxes, 

which are located more internal to the RNA (Kiss-Laszlo et al., 1998).  These 

snoRNAs direct methylation through base-pairing the target RNA with a 10-21 nt 

region of complementarity located immediately upstream of the box D (or D’) region 

of the snoRNA (Cavaille and Bachellerie, 1998).  The nucleotide targeted for 

methylation is located within the base-paired region 5 bp upstream of the D (or D’ 

box) of the snoRNA.  Nm formation involves a methytransfer reaction between S-

adenosyl methionine and the target RNA.  Box C/D snoRNAs are complexed with at 

least three proteins to form a mature C/D snoRNP.  C/D snoRNA guided 2’-0-

methylation of rRNA is performed by yeast Nop1p (human fibrillarin) 

methytransferase (Schimmang et al., 1989).  Other associated proteins in yeast (and 

humans) include Nop56p (hNop56p), Nop58p (hNop58p) and Snu13p (15.5 kDa) 

(Gautier et al., 1997; Lafontaine and Tollervey, 1999; Lafontaine and Tollervey, 

2000).     

 

     It is important to note that nucleotide modification is not limited to rRNA.  Other 

small stable RNAs such as splicing snRNAs (small nuclear RNAs) and tRNAs are 

also modified.  U2 snRNA contains a Ψ residue highly conserved among eukaryotes 

(Zhao and Yu, 2004), that greatly facilitates splicing (Valadkhan and Manley, 2003) 

by establishing a favorable branch site conformation.  Most knowledge obtained 

about modified nucleotides, however, has originated from the extensive studies on 

tRNA modification.  Posttranscriptional modification of tRNA residues occurs  
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throughout the molecule on the sugar or the base.  These modifications in the core of 

the molecule function to facilitate proper folding and increase stability either through 

direct interaction or as a mediator for magnesium ion binding (Kowalak et al., 1994; 

Agris, 1996; Durant et al., 2005).  Modifications in the anti-codon loop of the tRNA 

can contribute to the specificity and stability of the codon:anti-codon interactions 

between the tRNA and mRNA within the ribosome (Sundaram et al., 2000).  tRNA 

modification has also been shown to contribute to its own nuclear export (Kutay et al., 

1998). 

 

Translation 

Overview 

     Ribosomes, along with the rest of the translation machinery, have evolved to 

promote efficient and accurate translation, a delicate balance between speed and 

fidelity.  Translation can be divided into three stages: initiation, elongation and 

termination.  During initiation, ribosomes are loaded onto the mRNA, elongation 

factors are added and exchanged while the start codon is located and outfitted with a 

Met-tRNAi
Met (methionyl initiator transfer RNA) in the ribosomal peptidyl (P) site.  

Elongation involves docking of aminoacyl-tRNAs (aa-tRNA) into the acceptor (A) 

site of the ribosome.  This is followed by decoding, whereby the cognate aa-tRNA is 

recognized and accommodated into the A-site.  The third step is peptidyl transfer, the 

ribosome catalyzed formation of a peptide bond between the amino acids located at 

the 3’ ends of the A- and P- site tRNAs.  Translocation then occurs, allowing the  
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ribosome to encounter the next codon in its A- site so the elongation cycle can begin 

again (Figure 1.3).  This iterative process continues until the ribosome encounters a 

stop codon in its A-site, which stimulates peptide release resulting in translation 

termination.  

 

Initiation 

     In eukaryotes4, translation initiation begins with formation of the eIF2/GTP/Met-

tRNAi ternary complex (Figure 1.4).  This complex binds ribosomal 40S SSU (small 

subunit) along with eIF1, eIF1A, eIF5 and eIF3 to create the 43S pre-initiation 

complex.  The eIF4F complex recruits the 43S pre-initiation complex to the mRNA.  

The components of the eIF4F complex interact with the 7-methylguanosine (m7G) 

cap located at the 5’end of the mRNA molecule and with poly A binding protein 

(PABP) bound to the 3’ end poly A tail thereby circularizing the message.  The 

initiation complex scans the message in a 5’ to 3’ direction in search of the correct 

initiation (AUG) codon, which is located in a favorable sequence context.  Initiation 

codon recognition is thought to involve base-pair formation with the initiator tRNA 

resulting in GTP hydrolysis by eIF2.  This triggers release of eIF2-GDP and the other 

initiation factors which facilitates ribosomal 60S LSU binding to the 40S/Met-

tRNAi/mRNA complex.  The end result of translation initiation yields 80S ribosomes 

bound to the mRNA with the Met-tRNAi base-paired to the AUG codon positioned in 

the P-site of the ribosome.
                                                
4 Translation initiation differs between prokaryotes and eukaryotes in execution but not outcome.  
Differences in prokaryotes include absence of  mRNA 5’cap and start codon recognition involving a 
Shine-delgarno sequence rather than ribosome scanning.  For review see (Kozak, 1999).  Eukaryotic 
initiation will be discussed here.   
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Cap-Independent Initiation 

Translation can also be initiated through 5' cap-independent mechanisms.  Such 

initiation is mediated by ribosomes binding to highly structured regions in the 5' NTR 

(non-translated regions) of RNAs called IRESs (internal ribosome entry site).  IRES 

elements are present in viral mRNAs and vary in size, structure and in the trans-

acting factors required for efficient translation (Pisarev et al., 2005).  Some 

picornavirus IRESs, like encephalomycarditis virus (EMCV), requires initiation 

factors eIFs 2, 3 and 4 for 40S subunit recruitment.  In contrast, the hepatitis C virus 

(HCV) IRES can recruit 40S ribosomal subunits near the initiation codon without any 

initiation factors, but requires the initiation ternary complex for correct positioning 

(Pestova et al., 1998).  Remarkably, the cricket paralysis virus (CrPV) IRES mediates 

initiation in a factor independent manner.  The IRES can correctly assemble and 

position 80S ribosomes and to begin translation in the absence of any eIFs or the 

ternary complex (Wilson et al., 2000). 

 

     Mammalian cellular mRNAs have been identified which also contain naturally 

occurring IRES elements (Hellen and Sarnow, 2001).  The structures, trans-acting 

elements, and functional mechanisms for cellular mRNA IRESs are largely unknown. 

While viral IRES elements often contain one highly ordered structural element which 

is essential for IRES activity, some cellular mRNA IRES elements identified so far 

contain several noncontiguous elements that each have individual IRES activity.  

IRES containing mRNAs encode growth factors, transcription and translation factors, 

and oncogenes, among other proteins.  Interestingly, cellular mRNAs containing 
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IRES elements have been identified that are cell cycle and apoptosis regulated 

(Pyronnet et al., 2000; Stoneley et al., 2000; Hellen and Sarnow, 2001). 

 

Elongation 

     Unlike initiation, translation elongation is highly conserved between prokaryotes 

and eukaryotes5.  Translation elongation consists of three steps: aa-tRNA 

accommodation, peptidyl transfer, and translocation.  These steps can be represented 

as tRNA passage through the ribosome (hybrid-states model; Figure 1.5) (Moazed 

and Noller, 1989; Noller et al., 2002) and subdivided into 7 distinct kinetic stages 

(Figure 1.6).  Elongation begins with delivery of an aa-tRNA to a waiting ribosome, 

which contains a peptidyl-tRNA in the P-site and an empty A-site.  The aa-tRNA is 

delivered in a ternary complex consisting of elongation factor Tu (EF-Tu) bound to 

GTP6.  This initial binding is rapid and the aa-tRNA is positioned in the A/T hybrid 

state on the ribosome such that the aa-tRNA anti-codon end is located in the decoding 

center of the ribosome while its 3' acceptor end has not yet been accommodated into 

the ribosome and does not interact with it (Figures 1.5 and 1.7).  Subsequently, 

codon:anti-codon base-pairing occurs stabilizing interactions between the mRNA and 

aa-tRNA (Pape et al., 1999).  Correct codon:anti-codon interaction is monitored 

through a complex series of interactions and conformational changes involving the 

16S RNA, aa-tRNA and the LSU (Gabashvili et al., 1999; Ogle et al., 2001).  Correct 

                                                
5 Since most kinetic, biochemical and structural experiments were performed in E. coli, its 
nomenclature is used unless otherwise noted.  
6 eEF-1:GTP in eukaryotes 
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interactions and conformational changes are transduced to EF-Tu promoting rapid 

GTP hydrolysis (Rodnina et al., 1995; Gromadski and Rodnina, 2004).  EF-Tu:GDP 

adopts a different conformation which is unfavorable to ribosome binding and 

quickly dissociates (Nissen et al., 1995; Pape et al., 1998).  EF-Tu release allows the 

3'-CCA end of the aa-tRNA to enter the LSU in the A/A site thereby finalizing 

accommodation (Figures 1.5 and 1.7).   

 

     aa-tRNA discrimination takes place at two distinct stages of the translation 

elongation cycle described above (Figure 1.6) (Ogle and Ramakrishnan, 2005).  

Initial selection takes place prior to GTP hydrolysis.  During this step, cognate and 

near cognate codon:anti-codon interactions are stabilized by the codon recognition 

step and proceed to GTP hydrolysis, whereas non-cognate tRNAs, having no 

significant codon:anti-codon interactions, promote a severely decreased rate of 

GTPase activation (providing a ~650 fold selection for cognate vs. non-cognate aa-

tRNA (Gromadski and Rodnina, 2004)) and dissociate from the ribosome (Yarus et 

al., 2003).  Thus, correct codon:anti-codon interactions serve to slow dissociation of 

the cognate tRNA from the ribosome and increase the rate of GTP activation 

(Rodnina et al., 2005).  The majority of non-cognate tRNAs are rejected during the 

initial selection step.  The proofreading step takes place after GTPase hydrolysis but 

prior to accommodation.  Most of the discrimination between cognate and near 

cognate tRNAs occurs at this step.  Any near-cognate tRNAs that have made it 

through initial aa-tRNA selection can be rejected and dissociate at this step  
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(Pape et al., 1999; Rodnina et al., 2005).  Cognate tRNAs bind more stably and have 

increased rates of accommodation while near cognate tRNAs dissociate more readily 

and have much reduced rates of accommodation.   

 

     A computer simulation has been performed which shows the path of the aa-tRNA 

as it accommodates into the ribosomal LSU (Figure 1.7a) (Sanbonmatsu et al., 2005).  

The simulation shows the aa-tRNA 3' end slips along helix 89 (h89) and h90 and then 

encounters two "gates" which cause the aa-tRNA to pause as it accommodates into 

the ribosome (Figure 1.7b).  The first gate consists of two nucleotides: U2860 of h89 

(E.coli U2492) and h92 A-loop residue C2924 (E. coli C2556).  The second gate, 

which immediately follows the first, is formed by h90 nucleotide U2941 (E. coli 

C2573).  Therefore, altering the local conformation of the ribosome or the incoming 

aa-tRNA could result in changes in accommodation and suggest a means for detecting 

near- and non- cognate aa-tRNAs in the accommodation proofreading step.  It should 

be noted that helices of the LSU rRNA involved in the accommodation of the aa-

tRNA 3'-CCA end through the ribosome (helices 89, 90 and 92) contain several 

modified nucleotides.  

 

     Peptidyl transfer occurs after accommodation and involves the transfer of the 

growing peptide chain situated on the 3' end of the peptidyl-tRNA onto the amino 

acid located on the 3'end of the aa-tRNA.  This reaction is extremely fast and is 

mediated only by the 23S rRNA7 as no cofactors, ribosomal proteins or metal ions 

come into contact with the site of peptidyl transfer 
                                                
7 25S in S. cerevisiae. 



 

 18 
 

 



 

 19 
 

(Nissen et al., 2000; Steitz and Moore, 2003).  Despite many rapid advances in the 

biochemical and crystallographic studies of peptidyl transfer, the exact nature of the 

reaction is unknown.  A few models have been suggested including acid-base 

catalysis (Muth et al., 2000), substrate assisted (Weinger et al., 2004), and an induced 

fit mechanism (Schmeing et al., 2005b).  The induced fit mechanism postulates that, 

upon accommodation, conformational changes in the peptidyl transferase center 

(PTC) in the ribosomal LSU serve to position the peptidyl-tRNA and its peptide chain 

in such a way as to facilitate spontaneous nucleophilic attack of the carbonyl bond 

between the peptidyl-tRNA and its peptide chain by the amino group of the aa-tRNA 

amino acid.  After peptidyl transfer takes place, it is proposed that the P- and A-site 

tRNAs adopt the P/E and A/P hybrid states in the ribosome respectively (Figure 1.5).  

The now empty 3'-end of the P-site tRNA moves into the E site of the ribosome while 

its anti-codon end is still in the P-site.  Simultaneously, the 3'-end of the A-site tRNA, 

which now carries the growing peptide chain, is located in the P-site while its anti-

codon end still resides in the A-site.  It should be noted that while some evidence for 

these intermediates has been found, the true state of the tRNA within the ribosome is 

understandably elusive and thus remains uncertain (Blanchard et al., 2004; Sharma et 

al., 2004). 

 

     Translocation involves the movement of the tRNA:mRNA complex relative to the 

ribosome by three nucleotides causing the deacylated P/E site tRNA to move entirely 

into the E-site, the A/P tRNA carrying the peptide chain to move entirely into the P-

site (P/P), which leaves the A-site devoid of tRNA but harboring the codon 
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previously 3' adjacent on the mRNA (Figure 1.5).  EF-G:GTP8 binds the ribosome 

and mediates GTP hydrolysis which is required for efficient translocation.  The 

precise mechanism of translocation is unknown.  Experiments show that both the 

large and small ribosomal subunits undergo conformational changes during 

translocation (Wilson and Noller, 1998; Gabashvili et al., 1999; Agrawal et al., 1999).  

Cryo-EM studies have revealed ratchet-like motion of the SSU relative to the LSU 

during translocation (Frank and Agrawal, 2000; Spahn et al., 2004). 

 

Termination 

    Translation elongation continues codon after codon until a termination codon is 

encountered in the ribosomal A-site.  The three natural nonsense or stop codons are 

UAA, UAG, and UGA.  In eukaryotes9, all stop codons are decoded by the class 1 

eukaryotic release factor eRF1 with help from the class 2 release factor eRF3 and 

GTP.  This triggers the release of the polypeptide chain through the hydrolysis of the 

ester bond that connects it to the peptidyl-tRNA.  It is then thought that eRF3 

mediated GTP hydrolysis occurs releasing the termination factors from the ribosome 

(Figure 1.8).   

 

     The mechanism of elongation termination is not known.  X-ray crystallographic 

studies revealed similarities in shape between class 1 release factors and the ternary 

complex suggests termination may begin in a similar way to accommodation, 

however, the mechanism of stop codon recognition is not yet completely understood 
                                                
8 eEF-2:GTP in eukaryotes 
9 Translation termination differs between prokaryotes and eukaryotes.  Eukaryotic termination will be 
discussed here. 
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(Ito et al., 1996; Song et al., 2000; Chavatte et al., 2002).  In sharp contrast to 

translation elongation, ester bond hydrolysis requires entry of a water molecule into 

the PTC of the ribosome.  It has been proposed that eRF1 serves to coordinate the 

water molecule for ester bond hydrolysis (Song et al., 2000) or that conformational 

changes upon eRF1 binding would both allow water entry into the PTC and make the 

ester bond susceptible to nucleophilic attack (Frolova et al., 1999; Schmeing et al., 

2005a). 

 
 

Translational Recoding 

     Translating ribosomes normally remain in a single reading frame for the duration 

of polypeptide chain elongation.  Occasionally, however, ribosomes are directed by 

cis-acting mRNA signals to abandon the standard decoding rules of translation.  This 

“recoding” can result from phenomena such as bypassing (hopping over long 

stretches of mRNA), programmed stop codon read-through/redefinition, and 

programmed ribosomal frameshifting (Baranov et al., 2002; Namy et al., 2004).  

These recoding events, or "programmed mistakes", can be exploited as powerful tools 

for elucidating mechanisms influencing translational fidelity.      

 

Programmed Ribosomal Frameshifting 

     Programmed ribosomal frameshift signals on an mRNA cause translating 

ribosomes to shift reading frame, usually by a single nucleotide in the 5’ (-1) or 3’ 

(+1) direction, and continue elongation in the new frame (Brierley, 1995; Dinman, 

1995; Gesteland and Atkins, 1996; Farabaugh, 2000; Baranov et al., 2002; Harger et 
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al., 2002).  This is termed Programmed Ribosomal Frameshifting (PRF) because the 

frameshift is non-random; it is directed by specific signals contained in the mRNA 

message.  This type of recoding occurs during elongation.  PRF is utilized in a wide 

variety of organisms and can be used to regulate gene expression as well as a range of 

cellular processes.  

 

Programmed -1 Ribosomal Frameshifting 

     Programmed –1 ribosomal frameshifting is utilized by animal, plant, and fungal 

viruses, bacteriophages and some cellular genes.  This list includes mammalian 

retroviruses, coronaviruses, astroviruses, arteriviruses, and toroviruses; fungal 

totiviruses; plant viruses such as tetraviruses and tombusviruses; T7 (Condron et al., 

1991) and λ (Hayes and Bull, 1999) (Levin et al., 1993) bacteriophages; bacterial 

insertion sequences (Chandler and Fayet, 1993); and  dnaX in E.coli (Blinkowa and 

Walker, 1990).  Programmed –1 ribosomal frameshifting (-1 PRF), as it applies to 

eukaryotic systems, will be the form of recoding focused on here.  –1 PRF was first 

discovered in Rous sarcoma virus, where the frameshift allows for the production of 

the gag-pol fusion protein (Jacks and Varmus, 1985).  The majority of confirmed –1 

frameshift signals are found in RNA viruses.  A consensus has been defined for the 

basic components of all known eukaryotic viral –1 frameshift signals ranging from 

the relatively simple yeast L-A virus to a more complex virus such as HIV-1.   

 

    Although the molecular mechanism of –1 PRF is not completely understood, the 

cis-acting signal components for eukaryotic viral systems have been well 
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characterized.  The frameshift signal is always found to contain a slippery-site, a 

spacer region and a downstream stimulator such as mRNA secondary structure, most 

commonly a pseudoknot.  The ‘simultaneous slippage model’ (Jacks and Varmus, 

1985; Jacks et al., 1988) was proposed to explain how this signal directed 

frameshifting occurs.  The mRNA pseudoknot directs the translating ribosome to 

pause (Tu et al., 1992; Somogyi et al., 1993), and the spacer region ensures that the 

pause occurs with the ribosome bound amino-acyl and peptidyl tRNAs paired at the 

slippery site (Figure 1.9). The slippery site is a heptameric sequence described as X 

XXY YYZ where X’s are any three identical nucleotides, Y’s are all A or all U, and 

Z is not G.  In the zero frame, the XXY and YYZ codons are base paired with their 

cognate tRNAs in the P- and A-sites respectively.  The sequence of the slippery site is 

such that as the ribosome pauses, the ribosome-bound tRNAs can slip back one 

nucleotide in the –1 direction and all non-wobble bases can correctly re-pair with the 

mRNA.  Peptidyl transfer occurs locking the new frame into place and the 

pseudoknot melts out enabling the ribosome to continue elongation in the –1 frame 

(Harger et al., 2002; Plant et al., 2003).  

 

     The yeast L-A virus is a well-studied model system for understanding –1 PRF 

(Figure 1.10).  The L-A viral genome consists of a double stranded RNA (dsRNA) 

containing two overlapping open reading frames (ORFs) joined by a –1 PRF signal.  

The first ORF encodes Gag, the capsid protein, and the downstream ORF encodes 

Pol, the viral RNA dependant RNA polymerase (RDRP) (Dinman et al., 1991).  If no 

frameshift event takes place, Gag protein is produced. If the translating ribosome 
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encounters the frameshift signal and slips back one nucleotide in the 5' direction to 

continue translating in the –1 frame, a Gag – Pol fusion protein is produced.  The 

ratio of Gag to Gag-Pol proteins is dictated by –1 PRF efficiency.  The L-A virus 

supports a satellite virus named M1.  It encodes no enzymatic or structural proteins of 

its own and relies completely on L-A for capsid and RDRP proteins.  M1 has a small 

dsRNA genome that encodes a secreted protein toxin and immunity to that toxin.  

Cells harboring the L-A and M1 viruses excrete the toxin killing surrounding M1 

minus yeast cells, thereby conferring a growth advantage and an easily assayable 

phenotype (Figure 1.10).  Increases or decreases in –1 PRF have been shown to 

disrupt viral particle formation interfering with L-A and M1 virus propagation 

(Dinman and Wickner, 1992).     

 

     Programmed –1 ribosomal frameshift signals have also been found in cellular 

genes of higher eukaryotes.  The mouse embryonal carcinoma differentiation 

regulated (Edr) gene, a developmentally regulated mammalian gene, utilizes –1 PRF 

for production of its C-terminal end (Shigemoto et al., 2001; Manktelow et al., 2005). 

The human paraneoplastic antigen Ma3 gene contains a functional –1 PRF signal first 

identified through a bioinformatic approach (Wills et al., 2006).  The exact function 

of this gene as well as the role of its –1 PRF frameshift signal is so far unknown, 

however, Ma3 is expressed in the brain and testis and immunity to Ma3 is associated 

with serious brain related defects. 
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Programmed +1 Ribosomal Frameshifting 

     Programmed +1 Ribosomal Frameshifting (+1 PRF) results in a translational 

reading frame shift of one nucleotide in the 3' direction.  Although the precise 

mechanisms differ, +1 PRF signals are composed of a slippery sequence in the  

mRNA and a stimulator that enhances frameshifting.  +1 PRF signals can be found in 

retrotransposons and in both prokaryotic and eukaryotic genes (Farabaugh, 1996).  

There is also a high frequency of +1 PRF signals found in ciliates (Aigner et al., 

2000; Klobutcher and Farabaugh, 2002).     

 

     One of the first examples of programmed +1 frameshifting was identified in E. 

coli and occurs in the prfB gene, which encodes the peptide release factor 2 (RF2).  

prfB gene expression is negatively regulated by its +1 PRF signal.  The frameshift 

signal consists of a slippery site sequence of CUU UGA C10.  The CUU occupies the 

ribosomal P-site paired to a peptidyl-tRNA and the UGA codon occupies the vacant 

A-site.  If there is sufficient RF2 present in the cell, the stop codon is immediately 

recognized and termination takes place.  If the RF2 abundance is low, the ribosome 

pauses allowing the peptidyl-tRNA:ribosome complex to shift one nucleotide in the 3' 

direction thus avoiding the stop codon.  Translation continues in the +1 frame and 

more RF2 is produced.  Experiments in vitro, show that over expression of RF2 

decreases the +1 PRF for the prfB gene, and that expression of defective RF2 

increased +1 frameshifting to almost 100% in vivo (Craigen and Caskey, 1986; Donly 

et al., 1990). 

                                                
10 Incoming frame codon organization indicated by the spaces 
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     The yeast Ty1 retrotransposon +1 PRF signal has a slippery sequence comprised 

of CUU AGG C11 (Figure 1.11).  The CUU occupies the ribosomal P-site paired to a 

peptidyl-tRNA and the AGG codon occupies the vacant A-site.  The AGG codon is 

decoded by the low abundance tRNAArg.  The elongating ribosome pauses, waiting 

for the rare tRNAArg.  This pause increases the chance for the petidyl-tRNA occupied 

ribosome to slip forward one nucleotide such that the GGC codon now occupies the 

vacant A-site.  This GGC codon corresponds to an abundant tRNAGly.  

Accommodation of the tRNAGly occurs and translation elongation continues in the 

new +1 reading frame.  Five fold over expression of hungry codon tRNAArg caused a 

43-fold decrease in +1 PRF (Belcourt and Farabaugh, 1990).  Likewise, deletion of 

the hungry codon tRNAArg caused +1 PRF to approach 100% (Kawakami et al., 

1993). 

  

     All known antizymes require +1 PRF for their gene expression (Ivanov et al., 

2000).  An example in higher eukaryotes is rat ornithine decarboxylase (ODC) 

antizyme (Matsufuji et al., 1995).  Ornithine decarboxylase converts ornithine to 

putrescine, and is the rate-limiting step in polyamine biosynthesis (Pegg, 1986).  

ODC antizyme regulates ODC expression by binding to ODC dimers causing them to 

dissociate and targeting them for degradation (Hayashi and Murakami, 1995).  ODC 

antizyme gene expression is regulated by a +1 PRF signal whose efficiency is 

regulated by polyamines (Rom and Kahana, 1994).  Full length active ODC antizyme 

is only produced in the event of a +1 frameshift which is regulated by polyamine 

concentrations.
                                                
11 Incoming frame codon organization indicated by the spaces 
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Nonsense Suppression 

     Nonsense suppression, also called stop codon read-through, occurs when a 

termination codon is decoded either by a natural suppressor tRNA (non-programmed) 

or by stop codon redefinition (programmed), and subsequent translation continues in 

the 3’ direction.  The stop codon can be redefined as a natural amino acid or as an 

unusual amino acid such as selenocystein or pyrrolysine12 (Hatfield and Gladyshev, 

2002).  Different organisms utilize programmed nonsense suppression for the 

production of certain genes including viruses (Skuzeski et al., 1991) and Drosophila 

(certain developmental genes oaf, kelch and hdc) (Robinson and Cooley, 1997; 

Steneberg and Samakovlis, 2001).   

 

     Non-programmed nonsense suppression (the term 'nonsense suppression' will be 

used throughout this text for simplicity) allows the formation of multiple polypeptides 

from one message and is utilized extensively by RNA viruses.  Naturally occurring 

nonsense suppressor tRNAs are found in prokaryotes and eukaryotes including yeast 

and mammals and serve to decode the stop codons.  All known nonspecific nonsense 

suppressor tRNAs are cellular tRNAs that also decode cognate codons. Consequently, 

unconventional codon:anti-codon interactions are required for nonsense suppression.  

Suppressor tRNAs vary.  For example, the UAG stop codon can be decoded by 

tRNAGln with a CUG anticodon in S. cerevisiae, and by tRNATyr with an anti-codon 

of GΨA in Drosophila.  Viruses that utilize stop codon read-through infect a wide 
                                                
12 Selenocysteine incorporation: mechanism conserved for all kingdoms except higher plants and 
fungi; Pyrrolysine: mechanism seen in bacteria.  
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range of hosts including plants (tomato bushy stunt virus, TBSV) and animals 

(murine leukemia virus, MuLV).  MuLV utilizes stop codon read-through for its 

reverse transcriptase production.  As the sole means of reverse transcriptase enzyme, 

nonsense suppression is required for viral propagation.  The precise mechanism of 

nonsense suppression is not fully known. However, the surrounding sequence and 

structural environment of both the mRNA stop codon and nonsense suppressor 

tRNAs are crucial for nonsense suppression (Kuchino and Muramatsu, 1996; Beier 

and Grimm, 2001).  It has been suggested that interactions between the mRNA 

surrounding the stop codon with the ribosomal small subunit rRNA may be involved 

(Namy et al., 2001).    

 

     Defects in stop codon read-through can occur through two distinct mechanisms.  

The first is a decrease in fidelity resulting in misincorporation events such that a near 

or non-cognate tRNA can more easily decode a stop codon.  The second involves a 

reduction in the efficiency and accuracy of the termination machinery itself.  

Mutations that lead to increase rates of stop codon read-through have been identified 

on both the large and small subunits of the ribosome.  On the small subunit rRNA, 

mutation C1054A in E. coli (Pagel et al., 1997), and its yeast counterpart (Chernoff et 

al., 1996) were shown to cause increased rates of nonsense suppression.  In E. coli, 

these effects were shown to be caused by decreased rates of association of the release 

factor to the ribosome (Arkov et al., 2000) and of subsequent peptidyl-tRNA 

hydrolysis (Arkov et al., 1998).  In the large subunit of the E. coli ribosome, the 
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mutation G1093A in the GTPase center of the ribosome also results in increased 

nonsense suppression (Arkov et al., 2002). 

 

Summary 

     The ribosome is a complex machine made of rRNA and proteins that performs the 

translation process efficiently and accurately.  Biochemical and kinetic studies along 

with new advances in ribosome x-ray crystal structures have allowed researchers to 

begin the tremendous task of understanding the process of translation and the 

underlying mechanics of the ribosome.  Despite the myriad of recent advances, there 

are still may questions left unanswered.  This dissertation seeks to elucidate the 

effects of changes in ribosomal RNA on the translational fidelity and structure of 

ribosomes in S. cerevisiae.  Chapter 2 explores the effects a histone deacetylase 

which causes defects in rRNA processing, has on cell growth and translational 

fidelity.  Chapter 3 investigates the affect modified rRNA residues in the peptidyl 

transferase center of the yeast ribosome have on ribosome structure and the resulting 

translational fidelity in yeast.  Chapter 4 discusses how changes in ribosome structure 

can lead to changes in fidelity for different stages of the translation cycle, as well as 

exploring future directions of rRNA modification research. 
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Chapter 2: Delayed rRNA processing results in significant 
ribosome biogenesis and functional defects 
 

Introduction 

 A growing yeast cell devotes a large amount of energy and resources to the 

production of ribosomes, each of which must be able to translate mRNAs with 

extremely high accuracy (Warner, 1999).  Although a premium has been placed on 

fidelity of the translational apparatus, programmed recoding events, such as -1 PRF, 

provide a convenient means to probe the molecular mechanisms underlying ribosome 

structure/function relationships as well as providing a unique window into the 

translation elongation cycle.  There are a number of parameters that can influence the 

ability of ribosomes to maintain translational reading frame (Harger et al., 2002).  

These include: changes in the residence time of ribosomes at a particular PRF signal, 

and the precise step of the elongation cycle that such a kinetic change might occur; 

changes in the stabilities of ribosome-bound tRNAs due to alterations in intrinsic 

ribosomal components such as ribosomal proteins and rRNAs; and defects in the 

abilities of ribosomes to recognize and correct errors.  In combination with the current 

high-resolution structural understanding of ribosomes, this approach is leading to new 

insights into ribosome structure/function relationships.  

 

 In the course of these studies, alleles of several yeast chromosomal genes have 

been characterized that specifically increase -1 PRF efficiency.  Nine chromosomal 

mof mutants (Maintenance Of Frame) were originally described (Dinman and 

Wickner, 1992; Dinman and Wickner, 1994; Dinman and Wickner, 1995), and alleles 
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of other translation-associated genes with Mof - phenotypes have also been identified 

(Jones et al., 1995; Balasundaram et al., 1994; Dinman and Kinzy, 1997; Ruiz-

Echevarria et al., 1998; Meskauskas and Dinman, 2001).  Concomitant loss of the 

killer virus occurs in strains harboring the mof1-1, mof2-1, mof4-1, mof5-1, mof6-1 

alleles (Dinman and Wickner, 1994).  MOF2 and MOF4 are allelic to SUI1 (Cui et 

al., 1998) and UPF1 (Cui et al., 1996) respectively.  This work focuses on the cloning 

and characterization of MOF6.  We show that mof6-1 is an allele of RPD3, the well-

characterized histone deacetylase, that is involved in transcriptional activation and 

silencing (Struhl, 1998; Suka et al., 1998).  The defect is dependent on the histone 

deacetylase activity of the gene product, and can be rescued by the human homolog, 

HDAC1. Expression of the mutant rpd3 alleles results in delayed exit from lag-phase 

growth and premature auxotrophic shift, suggestive of a defect in carbon source 

mobilization and utilization. The frameshifting defect is most pronounced in early log 

phase, when demand for newly synthesized ribosomes is greatest. The demonstration 

that deletion of either the SIN3 or the SAP30 genes (Sun and Hampsey, 1999) also 

promoted frameshifting and virus maintenance defects suggests a heterochromatin-

associated defect. Processing of the 35S precursor-rRNA was delayed in isogenic 

strains harboring mutant rpd3 alleles and in cells containing gene knockout alleles of 

SIN3 and SAP30.  In actively growing cells, this delay in rRNA processing appears to 

be the primary event that results in a 60S ribosomal subunit biogenesis defect.  The 

resulting unstable ribosomes have specific aminoacyl-tRNA binding defects that 

result in decreased peptidyl transferase activities. This in turn results in decreased 

rates of peptidyl transfer, allowing ribosomes stalled at the -1 PRF signal more time 
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to slip. We suggest that the heterochromatic-associated Rpd3p/Sin3p/Sap30p 

complex (Sun and Hampsey, 1999) could be physically involved in helping to 

coordinate a very early and critical step in the ribosome biogenesis process.  

Alternatively, abrogation of the function of this complex may result in repression of 

synthesis of the snoRNAs responsible for modification of bases in the large subunit 

rRNA that are associated with A-site.  Lastly, the observed phenotypic defects may 

result from an uncharacterized function of Rpd3p involving direct modification of 

ribosomal or other proteins associated with the ribosome biogenesis machinery. 

 
 

Materials and Methods 

Strains, media, and genetic methods  

     The S. cerevisiae strains used in this study are presented in Table 2.  

Oligonucleotides were synthesized and purchased from Integrated DNA Technologies 

(IDT) and are listed in Table 4.  DNA sequence analysis was performed by the 

RWJMS DNA Synthesis and Sequencing Laboratory.   E. coli strains DH5∀ and 

MV1190 were used to amplify plasmids, and E. coli transformations were performed 

using the standard calcium chloride method as described previously (Sambrook et al., 

1989).  Yeast were transformed using the alkali cation method (Ito et al., 1983).   

YPAD, YPG, SD, synthetic complete medium (H-) and 4.7 MB plates for testing the 

killer phenotype were used (Wickner and Leibowitz, 1976).  Cytoduction of L-A and 

M1 from strain JD758 into rho-o strains were as previously described (Dinman and 

Wickner, 1994). Restriction enzymes were obtained from Promega, MBI Fermentas, 
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and Roche. T4 DNA ligase and T4 DNA polymerase were obtained from Roche, and 

precision Taq polymerase was obtained from Qiagen. Radioactive nucleotides were 

obtained from NEN.  Dr. Michael Hampsey generously provided the rpd3), sin3∆, 

and sap30∆ yeast strains, and the transcription derepression defective ume6 strains 

were gifts from Dr. Andrew Vershon. 

 

     To monitor temperature sensitivity, cells were grown to saturation and equal 

numbers, spotted on selective media and grown at either the permissive temperature 

(30°C) or the restrictive temperature (37°C) for 3 days. Lack of, or severely reduced 

growth was indicative of temperature sensitivity.  Similarly, 10-fold serial dilutions of 

cells were spotted onto medium containing sparsomycin (5µg/ml), anisomycin 

(5µg/ml), or paromomycin (800µg/ml) to monitor sensitivities to these drugs.  To 

monitor sensitivity to cycloheximide, cells were grown to saturation and 0.1 OD595 

were spread on selective media.  A sterile filter disk containing 100ng of 

cycloheximide was placed in the center of each plate.  Cells were grown for three 

days and zones of growth inhibition measured. 

 

     The killer virus assay was done by replica plating S. cerevisiae colonies onto 

4.7MB plates (Wickner and Leibowitz, 1976) with a freshly seeded lawn of strain 

5x47 (0.5 ml of a suspension at 1 unit of O.D.550 per ml per plate). After 2-3 days at 

20ΕC, killer activity was observed as a zone of growth inhibition around the killer 

colonies.  dsRNA of L-A and M1 viruses were prepared as described (Fried and Fink, 

1978; Liermann et al., 2000) and separated by electrophoresis through 1.0% non-
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denaturing agarose gels and visualized by ethidium bromide staining.  RNA blotting 

was used as previously described (Dinman and Wickner, 1994) to monitor the 

abundance of L-A and M1 dsRNAs. 

 

Plasmid and strain constructs, programmed ribosomal frameshift, and 

transcriptional derepression 

     A YCp50 based S. cerevisiae genomic library was purchased from ATCC (Rose et 

al., 1987).  The genomic clone that complemented the mof6-1 ts- phenotype was 

given the name pJD155.   Subclones of pJD155 were generated by partial digestion 

with EcoR I, and self ligated using the Roche rapid ligation kit.   The pRS series of 

plasmids have been previously described (Sikorski and Hieter, 1989; Christianson et 

al., 1992).  Full length RPD3, PEX6, and AAD14 genes were amplified from genomic 

DNA from JD932D by polymerase chain reaction using the oligonucleotide primers 

1+2 (rpd3 alleles), 3+4 (PEX6), and 5+6 (AAD14) (See Table 2B), cloned into 

pRS314 and pRS316, and were designated pRPD3, pPEX6 and pAAD14.  The mof6-

1 allele was amplified from genomic DNA obtained from strain JD469-2C using 

primers 1+2.  PCR reactions using the oligonucleotide primers 1+2 were carried out 

under the following conditions:  Denaturation of dsDNA for 30 seconds at 95OC, 

annealing at 48OC for 45 seconds, 4 min elongation.  PCR products were purified 

using a Qiagen kit, digested with Xho I and Pst I, and were ligated into pRS314, or 

pRS316 (Sikorski and Hieter, 1989).  PCR reactions using oligonucleotide primers 

3+4 (PEX6) or 5+6 (AAD14) were carried out under the following conditions: 30 

seconds at 95OC denaturation of dsDNA, 45 sec. annealing at 48OC, 6 minutes 
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elongation time.  PCR products were purified using a Qiagen kit, digested with Kpn I 

and Sal I (PEX6), or Xho I and Pst I (AAD14), and ligated into pRS314.  To make 

pHDAC1, the 1.5 kb Bam HI fragment containing the HDAC1 cDNA (a generous gift 

from Dr. S. L. Schreiber) was excised from pBJ5/HDAC1-F (Taunton et al., 1996) 

and inserted into Bam HI digested pG-1 (Schena and Yamamoto, 1988), thus placing 

the human gene under control of the constitutive yeast PGK1 promoter.  The 

synthetic oligonucleotide H151A (Table 2B) was used to create pH151A using 

standard methods (Kunkel, 1985).  Subcloning PEX6 into pRS306 (Sikorski and 

Hieter, 1989) generated plasmid pPEX6, which was used to integrate the URA3 into 

the PEX6 locus of yeast strain LNY95.  pRPD3, pSIN3 and pSAP30 were generous 

gifts from Dr. M. Hampsey. 

 

 Plasmids p-1 and p0, which were used to monitor programmed ribosomal 

frameshifting, have been described previously (Tumer et al., 1998).  Briefly, in these 

plasmids, transcription is driven from the yeast PGK1 promoter into an AUG 

translational start site.  The E. coli lacZ gene serves as the enzymatic reporter, and 

transcription termination utilizes the yeast PGK1 transcriptional terminator.  In the p0 

plasmids, lacZ is in the 0-frame with respect to the translational start site, and 

measurement of ∃-galactosidase activity generated from cells transformed with these 

plasmids serve as the 0-frame controls.  In the p-1 series, lacZ is in the -1 frame with 

respect to the translational start site, and is 3' of the L-A programmed -1 ribosomal 

frameshift signal such that ∃-galactosidase can only be produced as a consequence of 

a programmed -1 ribosomal frameshift.  The efficiency of programmed ribosomal 
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frameshifting is calculated by determining the ratio of ∃-galactosidase activity 

produced by cells harboring either p-1 divided by the ∃-galactosidase activity 

produced by cells harboring p0, and multiplying by 100%.   All assays were 

performed in triplicate. 

 

 Plasmids pAV73 and pAV138 were used to monitor transcriptional 

derepression in cells harboring alleles of RPD3 (Vershon et al., 1992).  pAV73 is a 

URA3, 2µ, CYC-LacZ fusion reporter plasmid that is used as a control to establish a 

baseline.  PAV138 contains a URS1 site from the HOP1 promoter cloned into the 

Xho I site of pAV73.  It represses lacZ expression in a Ume6p/Sin3p/Rpd3p 

dependent manner.  The pAV73/pAV138 ratios of β-galactosidase activities were 

used to calculate the ability of the RPD3 variants to derepress lacZ reporter gene 

transcription as previously described (Vershon et al., 1992).  All assays were 

performed in triplicate. 

 

 in vivo [35S]Methionine Incorporation 

     Labeled methionine incorporation assays were performed as previously described 

(Carr-Schmid et al., 1999).  Briefly, isogenic rpd3Δ strains containing wild type 

pRPD3 or pmof6-1 were grown in 30 ml of -met -trp medium at 30°C to an O.D.595 of 

1.0.  Unlabeled methionine was added to a concentration of 50 µM and 

[35S]methionine and [35S]cystine (Expre35S35S Label, NEN Life Science Products) 

were added to each culture to final specific activities of 1.1 µCi/mL.   Samples were 

harvested at 0 min and at 15 min intervals for 60 min.  Incorporation of the [35S]-
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labels was monitored by cold trichloroacetic acid precipitation.  For each time point, 

1.2 mL aliquots were harvested from which 0.2 mL was used to determine the O.D.595 

of the cultures.  One ml of ice-cold 20% trichloroacetic acid (TCA) was added to the 

remaining 1 ml of each aliquot, incubated on ice for 10 min, heated to 70°C for 

20 min, and filtered through pre-wet Whatman GF/C filters.  Filters were sequentially 

washed with 10 ml of ice cold 5% TCA and 10 ml of 95% ethanol, dried, and 

radioactivity of samples was determined by scintillation counter.   All time points 

were taken in triplicate.  Experiment performed in duplicate. 

 

Pulse-Chase Labeling of rRNA 

     Pulse-chase labeling with L-[methyl-3H]methionine was carried out on the 

isogenic wild-type, mof6-1, rpd3∆, rpd3-H151A, sin3∆, and sap30∆ strains as 

previously described (Dunbar et al., 1997; Lee and Baserga, 1999).  Twenty thousand 

cpm per sample was resolved on a 1.2% formaldehyde-agarose gel. Labeled RNAs 

were transferred to a zeta-probe membrane (Bio-Rad), sprayed with EN3HANCE 

(Dupont), and exposed to x-ray film. 

 

Polysome and 2-dimensional NEPHGE analyses 

     For polysome analyses, cytoplasmic extracts, prepared as described by (Baim et 

al., 1985), were fractionated on 7% - 47% sucrose gradients buffered with 50 mM 

Tris-acetate, pH 7.4, 50 mM NH4Cl, 12 mM MgCl2, 1 mM DTT. Gradients were 

centrifuged in an SW41 rotor at 40,000 rpm for 135 min at 4°C, fractionated and 

analyzed by continuous monitoring of A254 (Ohtake and Wickner, 1995b).  For 
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NEPHGE analyses, 40S and 60S  ribosomal subunits were separated by 

ultracentrifugation through a 7% - 27% sucrose gradient in the presence of 500mM 

EDTA.  Purified ribosomal subunits (≈195 µg /sample) were separated by non-

equilibrium pH gradient gel electrophoresis (pH gradient of 3.5% -- 11.5% in the first 

dimension, 12.5% polyacrylamide separating gel in the second dimension) and were 

visualized by silver staining by the Kendrick Laboratories (Madison WI). 

 

Preparation of tRNAs and of donor and acceptor fragments 

     Yeast tRNAs were charged with [14C]phenylalanine as previously described 

(Harris and Pestka, 1973; Meskauskas and Dinman, 2001).  Briefly, a 400 µl reaction 

mix composed of 200 Φg of yeast tRNA (Sigma), 25 mM Tris-HCl pH 7.5, 20 mM 

MgCl2, 10 mM ATP, 50 nmol phenylalanine (313 mCi/mmol, NEN), 50 µl 

aminoacyl-tRNA synthetase (Sigma, 9U/ml)  was incubated for 25 min at 37ΕC. 

After addition of 40 ml of 3M sodium acetate (pH 5.0) the mixture was extracted 

twice with an equal volume of water-saturated phenol and once with chloroform.   It 

was then precipitated with 2.5 vol of ethanol at –20ΕC for 1 hour.  After 

centrifugation for 10 min, the pellet was resuspended in 50 ml of 2 mM potassium 

acetate (pH 5.0).  [14C]Phe-tRNAPhe was separated from uncharged tRNAs by anion 

exchange chromatography (DEAE).  Acetylation of charged tRNAs was performed as 

previously described (Haenni and Chapeville, 1966).  Briefly, [14C]Phe-tRNAPhe  was 

resuspended in 200 µl of 0.2 M sodium acetate (pH 5.0) followed by addition of 2.5 

µl of acetic anhydride.  After 1-hour incubation on ice, another 2.5 µl of acetic 
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anhydride was added and incubation at 0ΕC continued for an additional hour. The 

tRNA was precipitated by addition of 2.5 vol of ethanol.  The  [14C]Phe-tRNAPhe and 

acetyl-[14C]Phe-tRNAPhe were subsequently digested with 500U of RNase T1 in 200 

µl of 0.3 M sodium acetate (pH 5.0) for 1 hour at 37ΕC, and the reaction mixtures 

were purified using DEAE Sephadex as previously described (Pestka et al., 1970).  

The resulting A-site specific [14C]Phe-CACCA (acceptor) and P-site specific acetyl-

[14C]Phe-CACCA (donor) fragments were used as substrates for the tRNA fragment 

binding assays. 

 
 

Purification of ribosomes and tRNA binding assays 

     Salt washed ribosomes were purified as previously described (Merrick, 1979; 

Meskauskas and Dinman, 2001).  Briefly, yeast cells were grown in 0.5 L of YPAD 

overnight, collected by centrifugation, and washed twice with buffer A (20 mM Tris-

HCl pH 7.5, 10 mM MgCl2, 1 mM DTT, 0.1 mM EDTA, 0.25 M sucrose).  The cell 

pellet was suspended in 20 ml of buffer A, 30g of glass beads (0.45mm diameter) 

were added, and cells were disrupted by vortexing.  The yeast lysate was centrifuged 

twice for 15 min at 15,000 rpm in a Sorvall S34 rotor, and the supernate was pelleted 

at 100,000 x g for 3 hrs.  The pellet was suspended in 6 ml of buffer B (20 mM Tris-

HCl pH 7.5, 10 mM MgCl2, 1 mM DTT, 0.1 mM EDTA, 0.25 M sucrose, 0.5 M 

KCl), and placed on a cushion of 3 ml of buffer C (20 mM Tris-HCl pH 7.5, 10 mM 

MgCl2, 1 mM DTT, 0.1 mM EDTA, 1 M sucrose, 0.5 M KCl). After centrifugation at 

50,000 rpm for 4 hours (SW55 Ti) the pellet was dissolved in 1 ml of buffer A. After 

a clarifying spin for 1 min in a microfuge, OD260 readings were taken (1 A260 unit = 
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19 pmol ribosomes, see (Abraham and Pihl, 1983). Protein content of ribosomes was 

also estimated using Protein Assay Reagent (Biorad). Ribosomes were suspended in 

buffer A at concentration 4 pmol/µl, and stored at –70oC. 

 

 The whole-tRNA and tRNA fragment binding assays followed a modification 

of the previously published protocol (Harris and Pestka, 1973; Meskauskas and 

Dinman, 2001).  Briefly, ribosomes (400 pmol) were incubated with 800 pmol of 

whole tRNAs, donor, or acceptor fragments in 500 µl of a buffer containing 70 mM 

Tris-acetate pH 7.2, 40 mM magnesium acetate, 0.4 M potassium acetate, and 50 mM 

NH4Cl.  Ethanol was added to a final concentration of 30%, and 20Φl aliquots were 

taken during the time course at 24ΕC.  Samples were diluted to 1ml with cold buffer 

(50 mM Tris-HCl, pH 7.2, 0.4 M KCl, 40mM MgCl2, 30% Ethanol), immediately 

precipitated onto a Millipore filter, washed with 1 ml of the dilution buffer, and 

counted in a scintillation counter. The reaction mix without ribosomes was used as 

control.  All assays were performed in triplicate. 

 

Puromycin reaction with tRNA fragments 

Puromycin reactions were performed as previously described (Diedrich et al., 

2000) with slight modifications.  Ribosomes (20 pmol) were incubated with 5 pmol of 

CACCA[14C]AcPhe (682 d.p.m./pmol) in 300 µl of PR Buffer [25 mM HEPES-KOH 

pH 7.4, 135 mM NH4Cl, 250 mM KCl, 20 mM MgCl2, 33% EtOH] at 0o C for 10 

min. Puromycin was added to final concentrations of 1 mM, and reaction mixtures 

were incubated on ice. At indicated time points  50 µl aliquots were taken and 
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reactions stopped by the addition of equal volumes of a 0.3 M NaOAc solution 

saturated with MgSO4. Puromycin was extracted with 1 ml of EtOAc and the 

radioactivity was determined by liquid scintillation counting. In all the studies 

controls were performed in the absence of puromycin to determine the nonspecific 

extraction of CACCA[14C]AcPhe. Control values (generally less than 2%) were 

subtracted from the values obtained in the presence of puromycin. 

 
 

Results 

mof6-1 is an allele of RPD3 

     The ts– phenotype of mof6-1 cells (Dinman and Wickner, 1994) provided a simple 

selective trait for the cloning of the wild type gene.  mof6-1 cells (JD469-2D) 

transformed with a YCp50 based genomic library(Rose et al., 1987) were replica 

plated to selective media and subsequently shifted to non-permissive temperature 

(37°C).  Approximately 1.2 x 104 colonies were screened (4.8 genome equivalents) 

and three that grew at the restrictive temperature were isolated.  Positive plasmids 

were rescued from yeast into E. coli, and reintroduction into mof6-1 cells confirmed 

their abilities to confer growth at the non-permissive temperature.  The inserts in all 

of the genomic clones were approximately thirteen Kb in length, and sequence 

analysis mapped them all to the same region of chromosome XIV.  One of the 

genomic clones, pJD155, was used for the subsequent characterization of MOF6.    

Meiotic linkage analysis was used to ascertain whether pJD155 harbored MOF6 as 

opposed to a second site suppressor.  The URA3 gene was inserted into the PEX6 
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locus of a MOF6 ura3 strain (JD 972A) (Figure 2.1a), providing a scorable phenotype 

for genetic linkage analyses.  Diploid cells (JD972A x JD469-2D) were sporulated, 

and the genotypes of 26 tetrads were determined.  All of the tetrads scored as parental 

ditypes, i.e., 2:2 segregation of Ura+ ts+: Ura– ts–.  The absence of crossover events 

demonstrates tight genetic linkage between the MOF6 and the site of URA3 

integration (PEX6), confirming that MOF6 was present in the yeast genomic DNA 

insert of pJD155. 

 

 Partial restriction analysis of pJD155 revealed four Eco RI restriction 

fragments, which were designated A, B, C, D based on their relative mobilities 

(Figure 2.1a).  All subclones generated from partial Eco RI digestion which did not 

contain the B fragment were unable to complement the temperature sensitive 

phenotype (e.g. pJD155.CAD). Sequence analysis revealed that the B fragment 

contained RPD3. To determine whether MOF6 is RPD3, or whether the B fragment 

contained other genetic information required for transcription initiation or 3' end 

formation of flanking genes, clones of the individual open reading frames that were 

present on the genomic clone were generated by PCR as described in Materials and 

Methods.  mof6-1 cells harboring either pJD155 or pRPD3 but not pPEX6 or pAAD14 

were able to grow at restrictive temperatures (Figure 2.1).  Further, an RPD3 clone 

generated from mof6-1 genomic DNA, pmof6-1, was not able to compliment the ts– 
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phenotype, confirming that RPD3 is both necessary and sufficient to complement the 

mof6-1 ts– phenotype (Figure 2.1).  .  

 

     Programmed ribosomal frameshifting assays were used to examine whether 

pRPD3 could complement the mof6-1 frameshifting defect.  The frameshift test 

plasmids p-1 and the 0-frame control p0 were introduced into mof6-1 cells harboring 

pRPD3, pPEX6, pAAD14, or pmof6-1 and the affects on -1 PRF were assayed.  

Whereas introduction of the wild-type gene pRPD3 restored –1 PRF efficiencies to 

wild type levels (approximately 2.0%), frameshifting efficiencies remained elevated 

in cells harboring the other clones (Figure 2.1a).  Sequence analysis of mof6-1 clones 

isolated from three independent PCR reactions revealed the presence of a single base 

transition, G1218A, corresponding to change at the amino acid level of aspartatic acid 

to asparagine (GAT à AAT) at position 407, approximately 30 residues from the C-

terminus of the protein (data not shown).  A ClustalW analysis (Thompson et al., 

1994) reveals that yeast has an acidic residue at this position while the RPD3 

homologs from humans, mice and Arabdopsis contain the basic arginine, suggesting 

that there may be a requirement for a charged residue in this environment.  

Unfortunately, the lack of structural information pertaining to this region of the 

protein precludes additional speculation on the functional role of this amino acid 

residue. 

 
 Two additional plasmid-borne rpd3 alleles were constructed for further 

studies.  Since the mof6-1 mutation did not occur in the putative deacetylation motif 

(Kasten et al., 1997), we constructed an allele in this domain changing the histidine at 
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position 151 to an alanine residue (pH151A), which was previously shown to nearly 

abrogate Rpd3p deacetylase activity (Kadosh and Struhl, 1998).  In addition, since 

HDAC1 is the most homologous of the at least seven different human histone 

deacetylases to RPD3 (see (Taunton et al., 1996; Wang et al., 1999), we used a clone 

in which transcription of the human HDAC1 cDNA was driven from the yeast PGK1 

promoter (pHDAC1).  In order to further characterize mof6-1 independent of strain-

specific background effects, all subsequent experiments were performed with 

plasmid-borne alleles in a the rpd3::LEU2 gene disruption strain YMH270.  The 

resulting isogenic strains were subsequently transformed with the p-1 and p0 

frameshift test vectors, and -1 PRF efficiencies were determined. Frameshifting 

efficiencies were significantly elevated in cells harboring pmof6-1, pH151A, and 

vector alone, while addition of the wild-type gene or the human homolog reduced –1 

PRF efficiencies to wild-type levels (Figure 2.2a).   

 

To examine the affects of the different rpd3 alleles on killer virus 

maintenance, L-A and M1 were first introduced by cytoplasmic mixing into the rpd3) 

strain harboring the wild-type RPD3 gene on a URA3 based CEN plasmid, and stable 

Killer+ colonies were identified.  The resulting strain was then transformed with low 

copy TRP1 vectors harboring the different RPD3 alleles, or with a vector control.  In 

parallel to the frameshifting results, increased – 1 frameshifting efficiencies 

correlated with loss of the killer phenotype (Figure 2.2b) and with loss of the M1 

satellite virus (Figure 2.2c).  Assays for transcriptional repression (Figure 2.3) and 

cycloheximide hypersensitivity (data not shown) also demonstrated correlations 
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between these classic rpd3-associated phenotypes and defects in programmed –1 

ribosomal frameshifting.   In addition, introduction of pmof6-1into wild-type cells 

had no effect on –1 frameshifting efficiencies, demonstrating that this does not 

represent a gain of function allele (data not shown). Taken as a whole, these data 

define the mof6-1, rpd3-H151A and rpd3) as mof-specific alleles of RPD3. 

 

Correlation of growth and frameshifting defects in the rpd3 mutants 

  It was observed that the initial appearance and subsequent growth of colonies 

of rpd3∆ cells transformed with the various plasmid-borne mutant alleles of rpd3 was 

delayed relative to those containing the wild-type gene.  Measurement of growth rates 

revealed significant quantitative differences.  In logarithmic growth, doubling times 

of cells harboring either vector alone or the pH151A allele were approximately 1.4-

fold longer than wild-type controls.  The growth defect was even greater in mof6-1 

cells where doubling times were increased approximately 1.6-fold compared to 

isogenic wild-type cells.  Shifting cells from stationary phase growth to fresh 

medium, and subsequent monitoring of cell growth rates revealed that the mutants 

also exhibited significantly different effects on the quality of growth as compared to 

isogenic wild-type controls.  Particularly striking was that the mutants remained in 

lag-phase growth for approximately 2 hr longer than wild-type controls (Figure 2.4a), 

suggestive of a defect in the ability of the biosynthetic apparatus to respond to the 

presence of a rich nutrient source. Similarly, the onset of diauxic shift occurred 

approximately 2 hours earlier for cells harboring pmof6-1, and 1 hour early for 
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pH151A and vector alone as compared to those expression the wild-type gene.  This 

result suggests inefficient utilization of carbon source by the mutants. 

 

     Given the original translation-associated defect of mof6-1, we examined whether 

these cells exhibited any gross defect in protein synthesis.  Rates of incorporation of 

[35S] labeled methionine and cysteine into newly synthesized protein were determined 

in mid-logarithmically growing cells as described in the materials and methods.  The 

results (Figure 2.5) demonstrate that that rates of protein synthesis in mof6-1 cells 

were approximately 75% that of wild-type cells. 

 

     Previous experiments had demonstrated that programmed –1 ribosomal 

frameshifting efficiencies remain stable throughout the growth cycle in wild-type 

cells (Dinman et al., 1991).  In light of the effects of the mutants on cell growth, –1 

PRF efficiencies were monitored during lag-phase, log-phase, and after diauxic shift 

in isogenic rpd3∆ cells harboring vector alone, pRPD3, pmof6-1, and pH151A.  The 

results of these experiments show that –1 PRF defects were maximized in the mutants 

in lag-phase, becoming less severe as cells progressed through the growth curve 

(Figure 2.4b).  The effect was most notable in mof6-1 cells.    The results suggest that 

the frameshifting defects were maximized in the mutants when demand for ribosomes 

was the greatest, and that –1 frameshifting efficiencies decreased in parallel with the 

demand for newly synthesized ribosomes. That no such effect was observed in wild-

type cells is in line with the bioeconomic model of regulation of ribosome 
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biosynthesis (Warner, 1999), and suggests a defect in the regulation of ribosome 

biosynthesis (see below). 

 

Deletion of other genes linked to heterochromatin-associated functions also result 

in the Mof - phenotype 

     Deacetylation of histones by Rpd3p promotes local chromatin condensation, 

resulting in transcriptional repression of nearby RNA pol II transcribed genes 

(reviewed in (Courey and Jia, 2001). Although Rpd3p is able to deacetylate histones 

in vitro, in vivo deacetylation of histones by Rpd3p requires the co-factors.  Mutations 

in any of the components of the Rpd3p/Sin3p/Ume6p repression complex lead to 

gene-specific derepression of RNA pol II regulated genes and concomitant 

transcriptional activation (Hassig et al., 1997; Kadosh and Struhl, 1998).  Conversely, 

mutations in any of the components of the Rpd3p/Sin3p/Sap30p repression complex 

lead to the opposite effect, i.e. enhanced transcriptional silencing of RNA pol II 

transcribed genes artificially inserted into heterochromatin contexts (Sun and 

Hampsey, 1999).   

 
 Given the model describing the histone deacetylase complex, if mof6-1 is 

acting through either of these complexes, then sin3 mutants would also exhibit Mof– 

phenotypes.  Further, if the effect is on a heterochromatin-associated function, e.g. 

transcription or maturation of rRNAs, sap30 mutants should also promote increased –

1 PRF efficiencies.  Conversely, ume6 mutants should promote increased –1 PRF 

efficiencies if the effect is on genes found in euchromatin, e.g. ribosomal protein 
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genes. Figure 2.6 shows that deletion of either SIN3 or SAP30 resulted in increased -1 

PRF efficiencies, while three separate ume6 alleles did not.  The sin3∆ and sap30∆ 

strains also had significant killer virus maintenance defects, whereas ume6 strains 

were able to stably maintain the killer virus (data not shown).  These results 

demonstrate that 1) the histone deacetylation apparatus is involved in a process that 

results in a specific translational fidelity defect, and 2) the effect is likely to involve a 

process in the heterochromatin environment.   

 

Mutation of genes involved in the histone deacetylation apparatus result in 60S 

ribosomal subunit biogenesis defects 

     That a defect involving heterochromatin should result in a translational fidelity 

defect suggested a ribosome biogenesis defect involving rRNA transcription or 

processing.  Given the involvement of the histone deacetylase complex in 

transcription-associated processes, the effects of these alleles on rRNA transcription 

and processing were examined by pulsing cells with [3H]-methylmethionine, which 

specifically labels the methylated RNAs, the most abundant of which are those 

transcribed from the 35S operon.  Though no differences were observed with regard 

to either the rates of 35S pre-rRNA synthesis, nor in its eventual maturation to 18S 

and 25S rRNAs, the amount of time required for the initial processing step of the 35S 

pre-rRNA in the mutant cells was delayed by approximately 3 min as compared to 

wild-type controls (Figure 2.7).  A steady state analysis revealed that there was no 

accumulation of any precursors in the mutant cells (data not shown).   Polysome 

analyses of ribosomes 
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isolated from isogenic wild-type, rpd3∆, mof6-1, rpd3-H151A, sin3∆, and sap30∆ 

strains were suggestive of biogenesis defects in the 60S ribosome subunits as 

evidenced by decreased levels of 60S ribosomal subunits, increased areas under the 

80S peaks, and decreased polysome peaks (Figure 2.8).   

 

 Ribosome biogenesis defects are not due to global defects in ribosomal protein 

expression.   

      We have previously found that defects in specific ribosomal proteins result in 

increased programmed ribosomal frameshifting efficiencies (Peltz et al., 1999; 

Meskauskas and Dinman, 2001).  Thus, one possible explanation for the observed 

effects could be that these alleles promote altered expression of ribosomal proteins 

(RPs).  To address this, approximately 200µg samples of 60S and 40S ribosomal 

subunits isolated from isogenic wild-type and mutant cells were separated in two 

dimensions by nonequlibrium pH gradient electorphoresis (NEPHGE), and RPs were 

visualized by silver staining.  No gross differences in the staining patterns were 

observed between wild-type and mutant samples (data not shown).  These results 

demonstrate that the effects of the rpd3 mutants on programmed ribosomal 

frameshifting and ribosome biogenesis are not due to defects on the synthesis of 

ribosomal proteins. 

 
 

The mutants result in aminoacyl-tRNA binding in defects 

     One previously unexplained phenotype of rpd3 mutants has been their sensitivity 

to cycloheximide, a translational inhibitor (Vidal and Gaber, 1991).  In light of our 
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data showing that these classes of mutants promote a ribosome biogenesis defect 

specific to 60S subunits, we employed a pharmacogenetic approach using well 

characterized antibiotics to investigate the specificity of the defects.  Sparsomycin, 

which increases the affinity of ribosomes for the 3’ (donor) end of peptidyl-tRNAs 

(Jayaraman and Goldberg, 1968; Herner et al., 1969; Moazed and Noller, 1991) was 

used as a P-site specific probe.  Anisomycin, which decreases ribosomal affinities for 

the 3’ (acceptor) ends of aminoacyl-tRNAs (Grollman, 1967; Carrasco et al., 1973; 

Schindler, 1974) and, paromomycin, which stabilizes binding of near-cognate tRNAs 

in the decoding center of the small subunit rRNA (Carter et al., 2000; Ogle et al., 

2001; Vicens and Westhof, 2001) served as probes for A-site specific defects.  Figure 

2.9 shows that although sparsomycin had no effect relative to wild type on cells 

harboring the various rpd3 alleles (rpd3∆, mof6-1, and rpd3-H151A), or the sin3∆ 

and sap30∆ mutants, all of the mutants were hypersensitive to anisomycin, and all but 

sap30∆ were hypersensitive to paromomycin.  These data indicate that the 

translational defect caused by mutations in these genes is specific to the ribosomal A-

site.  To further investigate the biochemical basis for these observations, tRNA 

binding experiments were performed comparing isogenic wild-type and mof6-1 

ribosomes.  Although no differences were observed in the binding of the 3’ ends of 

either donor or acceptor fragments (data not shown), the binding profiles for intact aa-

tRNAs were dramatically different (Figure 2.10).  Specifically, mof6-1 ribosomes had 

decreased initial rates of aa-tRNA binding, and had lower overall affinities for aa-

tRNAs.  In addition, precipitous dropoff in aa-tRNA binding at the 60 min time point 

suggests that mof6-1 ribosomes are less stable than their wild-type counterparts.  
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Ribosomes from mof6-1 cells have decreased peptidyl transfer activities 

     We previously demonstrated that peptidyl transfer defects can specifically promote 

increased–1 PRF efficiencies (Dinman et al., 1997).  It is possible that a defect in 

binding of aa-tRNA could result in diminished peptidyl transferase activities.  This in 

turn might enable elongating ribosomes to pause longer at the programmed –1 

ribosomal frameshift signal, providing them with more time to shift.  To test this 

hypothesis, we compared the peptidyl transferase activities of ribosomes isolated 

from isogenic wild-type and mof6-1 strains using the puromycin reaction.  Figure 

2.11 shows that ribosomes purified from mof6-1 cells have significantly reduced 

peptidyl transferase activities as compared to wild-type controls. These findings 

illuminate the biochemical basis for the Mof- phenotypes of these cells.  

 
 

Discussion 

mof6-1 was originally isolated as a recessive mutation in S. cerevisiae that 

promoted increased efficiencies of programmed -1 ribosomal frameshifting and 

rendered cells unable to maintain the killer virus (Dinman and Wickner, 1994).  In the 

present study, we have shown that MOF6 is a unique allele of RPD3, that it does not 

represent a gain-of-function allele, and that the deacetylase function of Rpd3p is 

required for maintaining wild-type levels of frameshifting, maintenance of the yeast 

killer virus, and proper timing and extent of downstream rRNA processing events and 

ribosome maturation.  
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     We previously demonstrated that peptidyl transfer defects can specifically promote 

sensitivity to translational inhibitors anisomycin and paromomycin, these data suggest 

an A-site specific defect which results in increases in -1PRF.  This frameshifting 

defect is most severe during lag phase of growth, when the demand for ribosomes is 

highest.  Mutant cells also display delayed exit from lag-phase growth in which may 

indicate defects in ribosome production and integrity.  As the demand for new 

ribosomes outpaces the ability of the cell to supply them, the cell would tend to 

produce a greater fraction of defective ribosomes in an attempt to keep up with 

demand.  Additionally, the mutants strains enter into diauxic shift before the wild-

type. These data could suggest that these cells are inefficiently utilizing the carbon 

source in the growth medium due to their functionally compromised ribosomes 

producing a large amount of inaccurately translated, inactive protein products.  Such 

an unproductive use of cellular and environmental resources could account for the 

increased lag time and early entry into diauxic shift. 

 

Specific interactions of the Rpd3p-Sin3p complex with other factors, e.g. Ume6p 

or Sap30p, have been genetically shown to have differential effects on RNA Pol II 

transcribed genes in either euchromatin or heterochromatin environments (Sun and 

Hampsey, 1999).  Our observation that mutants of RPD3, SIN3 and SAP30, but not of 

UME6, affect programmed –1 ribosomal frameshifting and virus maintenance suggest 

that these translation-associated defects are due to effects in the heterochromatin 

environment.  The data also demonstrated no quantitative effect on rates of 35S rRNA 
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synthesis suggesting that defects in ribosome biogenesis and function was not due to 

an rRNA transcriptional defect.  Rather, we have shown that the defect is a delay at 

the earliest stage in the 35S pre-rRNA processing program.  Since processing of the 

35S pre-rRNA is co-transcriptional (Fath et al., 2000), and since the histone 

deacetylase complex is known to influence chromatin structure, one possible 

explanation for our observations could be that deviations from the wild-type 

heterochromatin environment cause defects in the early stages of ribosome biogenesis 

possibly by altered production of the involved machinery.  

 

In light of the well defined steps involved in rRNA maturation (Kressler et al., 

1999; Venema and Tollervey, 1999; Leary and Huang, 2001)our data suggest the 

possibility that the defect may be at the level of rRNA base modification, e.g. 2’-O-

ribose methylation (Nm) and/or pseudouridylation.  These types of base modification 

have been specifically shown to localize to “functional” regions of the ribosome 

(Decatur and Fournier, 2002).  Of particular interest with regard to the ribosomal A-

site specific defect observed here are the large numbers of modified bases clustered in 

regions of the large subunit rRNA that are associated with the A-site/aa-tRNA 

interactions, and the peptidyl transferase center (Decatur and Fournier, 2002; 

Ofengand, 2002).  These include 1) the peptidyl transferase center core region, 2) the 

region of helix 38 that forms an “A-minor motif” with 5S rRNA (Nissen et al., 2001), 

3) helix 69, which appears to form an important bridge between the aa- and peptidyl-

tRNAs (Stark et al., 2002), and 4) the A-loop at the end of helix 92 (though the lack 

of effect of mof6-1 ribosomes on acceptor fragment binding argue against the defect 
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affecting this particular structure). Thus, an alternative to the altered heterochromatin 

topology hypothesis could be that a deficiency in the histone deacetylation machinery 

could result in repression of the RNA polymerase II transcribed box C+D and/or box 

H+ACA snoRNAs, which act as essential guides for base-specific rRNA modification 

(Decatur and Fournier, 2002; Ofengand, 2002), resulting in the observed delay in 35S 

rRNA processing.   

 

Whatever its origin, the early delay in rRNA maturation is affecting a series of 

downstream processes involved in the biogenesis and functionality of ribosomes.  

These effects are specific to the formation and/or the function of the A-site. The 

resulting ribosomes are less accurate than their wild-type counterparts and have 

decreased peptidyl transferase activities.   

 



 

 70 
 

Chapter 3: Effects of rRNA modifications in the PTC of 
yeast ribosomes on translational fidelity and ribosome 
structure 
 

Introduction 

     Extensive research into rRNA modification has enabled mapping of the majority 

of Ψ and Nm residues in eukaryotic and archaeal ribosomes, as well as identifying the 

snoRNA molecules that guide their modification.  However, little is understood about 

the functional roles of nucleotide modification.  It is known that nucleotide 

modifications within the ribosome are not located randomly.  This is most clearly 

seen in the ribosomal large subunit (Figure3.1), where modifications cluster in highly 

conserved areas of the ribosome devoted to peptidyl transfer, A- and P site tRNA 

binding sites, the peptide exit tunnel and intersubunit bridges (Samarsky and 

Fournier, 1999; Ban et al., 2000; Yusupov et al., 2001; Decatur and Fournier, 2002).  

This clustering is seen in organisms ranging from E. coli to humans with the number 

of modifications increasing with evolutionary complexity (Ofengand et al., 1995).   

 

     Despite this high degree of conservation, most snoRNAs responsible for guiding 

these modifications can be individually deleted with minimal detriment to the 

organism indicated as small or no change in growth (Lowe and Eddy, 1999; 

Samarsky and Fournier, 1999).  Disrupting/deleting pseudouridine synthase proteins 

responsible for modification of only two or three residues in E. coli did not produce 

discernable differences in exponential growth rates between wild-type and mutant
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 stains in vivo.  However, when grown together the mutants strains were strongly out 

competed by the wild-type suggesting a growth advantage conferred by the 

modifications (Raychaudhuri et al., 1998; Raychaudhuri et al., 1999).  E. coli 

ribosomes reconstituted in vitro without posttranscriptional rRNA modifications are 

severely defective in catalytic activity (Green and Noller, 1996).  Interestingly, global 

disruption of Ψ or Nm formation in vivo results in strong growth defects in yeast, as 

seen resulting from point mutations of yeast modification enzymes Cbf5p and Nop1p; 

proteins encoded by essential genes in yeast (Tollervey et al., 1993; Zebarjadian et 

al., 1999). Modifications found to be essential are often performed by a snoRNP that 

harbors a component also essential for rRNA processing.  These results in aggregate 

suggest that rRNA modifications may be individually dispensable for survival, but 

together serve to optimize rRNA structure for production of accurate and efficient 

ribosomes.       

 

     While it is has become clear that modified residues in ribosomal RNA can 

contribute to ribosome function, how these modified residues accomplish this feat is 

still largely unknown.  Based on the chemical properties of Ψ and Nm residues, 

possible functional roles can be inferred but not established.  It has been suggested 

that Ψ residues contribute to stability by producing increased potential for base 

stacking, as well as by offering an extra hydrogen bond donor as compared to uridine 

(Charette and Gray, 2000; Helm, 2006).  Nm residues offer protection against 

hydrolysis by bases and nucleases and can create structural changes by changing the 

hydration sphere around the oxygen, blocking sugar edge interactions and favoring 
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the 3’endo ribose configuration (Williams et al., 2001; Helm, 2006).  Thermodynamic 

and NMR based studies of Ψ containing hairpin RNAs revealed that a Ψ residue is 

stabilizing when located at a stem loop junction and slightly destabilizing when 

located in single-stranded loop regions when compared to unmodified RNAs 

(Meroueh et al., 2000).  Recent NMR studies of the highly conserved and highly 

modified LSU H69 of the human ribosome observed discernable but subtle secondary 

structure differences between rRNA with and without the modifications (Sumita et 

al., 2005). 

 

     Functional and structural studies beyond growth characterization and stability 

measurements have been performed implicating rRNA modification defects as 

causing changes in translation rates and ribosome integrity.  In E. coli, mutants 

lacking methylation of the m1G745 residue located in the LSU exhibit a decreased 

growth rate, decreased rate of polypeptide chain elongation rate, defects in ribosome 

profiles and showed resistance to the antibiotic viomycin (Gustafsson and Persson, 

1998).  In yeast, knockout strains were created which lack each of six snoRNA genes 

that guide pseudouridylation of residues in the PTC of the ribosome, as well as one 

strain that lacked all six genes (King et al., 2003).  The resulting mutants were 

characterized and only one individual mutant, the snR10 deletion strain, had 

phenotypic defects.  However, deletion strains of all six snoRNA genes promoted 

moderate defects in growth and translation rates, sensitivity to the drug paromomycin, 

and changes in ribosome profiles.  These defects were more pronounced in the six 

snoRNA deletion strain than with the snR10 deletion alone. This suggests that at least 
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one or some combination of the additional hypo-modified residues present in the six 

gene deletion strain was necessary to produce the increased severity of phenotypic 

defects seen in the multiple snoRNA deletion strain.  Structure probing experiments 

also revealed altered LSU rRNA structure for the multiple snoRNA deletion strain.  

 

     Other functional studies have centered around two methylated nucleotides, mU2920 

and mG2921, in the A loop of the yeast ribosome.  There are two components thought 

to be involved in the methylation of these rRNA residues: the guide snoRNA snR52, 

and the site-specific methyltransferase Spb1p, an essential yeast nucleolar protein.  

Primer extension analysis revealed a functionally redundant pathway whereby snR52 

or Spb1p could methylate residue Um2920 (Bonnerot et al., 2003).  Later TLC (thin 

layer chromatography) experiments revealed a different mechanism whereby Spb1p 

and snR52 were responsible for methylation of Gm2921 and Um2920 respectively, and 

showing that Spb1p could methylate residue Um2920 in the absence of snR52 (Lapeyre 

and Purushothaman, 2004).  Despite this discrepancy, it is clear that deleting both 

snR52 and Spb1p results in severe defects in growth rates and polysome profiles, as 

well as paromomycin sensitivity (Bonnerot et al., 2003).  This makes Spb1p an 

important exception to the snoRNA guided modification rule in eukaryotes.  The E. 

coli homolog of Spb1p, FtsJ/RrmJ, methylates 23S rRNA residue Um2552 the 

equivalent of yeast Um2920 (Caldas et al., 2000).  Deletion of this protein in E. coli 

results in severe growth defects, temperature sensitivity, and altered ribosome profiles 

(Bugl et al., 2000).    
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     Despite their high level of conservation and distribution in functionally important 

areas of the ribosome, rRNA modifications belie their individual importance with a 

lack of defects in their absence.  However, the changes in ribosome profiles and 

rRNA structures suggest the intriguing possibility that the translation process may 

indeed be altered in some way.  One way to monitor the functional effects associated 

with these ribosomal changes is to assay for changes in translational fidelity.  Here, 

several single and one double deletion strains of previously characterized snoRNAs 

known to modify the PTC of the yeast ribosome were monitored for changes in 

translational fidelity.  The results show that defects in rRNA modification produce 

allele specific mutant phenotypes including increased sensitivity to translational 

inhibitors; defects in virus propagation; changes in translational fidelity as monitored 

by +1 and –1 PRF, aa-tRNA selection and non-specific nonsense suppression; 

changes in the rates of aa-tRNA binding to the ribosomal A-site; changes in rates of 

peptidyl transfer; and structural changes in the ribosome surrounding the peptidyl 

transferase center. 

 
 

Materials and Methods 

 

Strains, media, and genetic methods 

     The S. cerevisiae strains used in this study are presented in Table 2.  Escherichia 

coli strain DH5α was used to amplify plasmids (listed in Table 3), and E. coli 

transformations were performed using the high-efficiency transformation method 

(Inoue et al., 1990).  Yeast cells were transformed using the alkali cation method (Ito 
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et al., 1983). YPAD and synthetic complete medium (H-), as well as YPG, SD, and 

4.7 MB plates used for testing the killer phenotype were prepared and used as 

described previously (Dinman and Wickner, 1994).  Oligonucleotide primers were 

purchased from IDT (Coralville, IA) and are listed in Table 4.  Yeast deletion strains 

snr10Δ, 34Δ, 37Δ, 42Δ, 46Δ and isogenic wild-type were provided by M.J. Fournier.  

Yeast strains snr52Δ, spb1DA, the double mutant and an isogenic wild-type were 

provided by G. Lutfalla. 

 

Killer virus assay and viral dsRNA analyses 

     Cytoduction of the L-A and M1 killer virus into snoRNA knockout strains and 

subsequent killer virus assays were carried out as previously described (Dinman and 

Wickner, 1992). Briefly, viruses were introduced into [rho0] cells by cytoduction, 

cytoplamic mixing without mating.  Cells were streaked for single colonies on 

selective media (-arg).  Colonies were replica plated onto SD, YPG, and 4.7MB 

plates seeded with 5X47 killer indicator cells.  Colonies were scored for growth on 

YPG, and the absence of growth on SD medium.  Killer activity was observed after a 

few days at room temperature as a zone of growth inhibition around the Killer+ (K+) 

colonies.  Total RNAs were extracted from cytoduced wild-type and snoRNA 

knockout strains as previously described (Harger and Dinman, 2003).    Single 

stranded RNA was removed from the total RNA sample by adding 10-20μg total 

RNA and 0.5ng RNase A in 0.5M NaCl, 1X TE and digesting at RT for 30 min. 

Resulting double stranded nucleic acids were extracted once each with saturated 
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phenol (pH 6.6) and chloroform, precipitated, resuspended in deionized water, and 

separated and visualized through an ethidium bromide stained 1% agarose TAE gel.  

 

Dual Luciferase Assays 

     Dual luciferase assays in yeast were performed as previously described (Harger 

and Dinman, 2003).  These involve the use of a 0-frame control reporter and −1, +1 

ribosomal frameshift, nonsense suppression, and misincorporation test reporter 

constructs.  Miscoding efficiencies were calculated by determining the firefly/Renilla 

luminescence ratios from cell lysates expressing each the control and test reporters, 

then dividing the test ratio by the control ratio and normalizing by the wild-type.  At 

least three readings derived from lysates derived from a minimum of three different 

yeast cultures were used.  All assays were performed with enough replicates to 

achieve confidence levels of >95%, and standard errors were calculated as previously 

described (Jacobs and Dinman, 2004).  Luminescence readings were obtained using a 

TD20/20 luminometer (Turner Designs Inc. Sunnyvale, CA). Reactions were carried 

out using the Dual-Luciferase® Reporter Assay system (Promega Corporation, 

Madison, WI). 

 

Drug Sensitivity 
 
For dilution spot assays, yeast cells grown to logarithmic phase were initially diluted 

to 1 × 106 colony forming units (CFU)/ml. Subsequent tenfold dilutions were made 

and 3 µl were spotted either onto rich medium on rich medium containing anisomycin 
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or sparsomycin (10 and 20 μg/mL) and incubated at 30°C.  Anisomycin and 

sparsomycin were obtained from Sigma-Aldrich, St. Louis, MO. 

 

Ribosome isolation 
     S. cerevisiae ribosomes were isolated at 4°C as previously described (Meskauskas 

et al., 2005).  Cultures (I L) were grown in YPAD to O.D595=1 , harvested by 

centrifugation and washed 1 time in 40ml cold 0.9% KCl and frozen in liquid 

nitrogen.  Before use, frozen cells were thawed on ice and 40ml cold 0.9% KCl was 

added for a second wash.  Cells were resuspended to a concentration of 1ml/2g pellet 

in Buffer A [20 mM Tris-HCl pH 7.5 at 4o C, 5 mM Mg(CH3COO)2, 50 mM KCl, 

10% Glycerol, and 1mM phenylmethylsulfonyl fluoride (PMSF), 1 mM1,4-

dithioerythritol (DTE) added immediately prior to use].  Add 1 ml equivalent 0.5mm 

zirconia beads to a 2 ml conical tube, then fill with cell solution and vortex at 4°C to 

disrupt using a Mini-bead beater in 2 min bursts, with intermittent 2 min incubation 

on ice.  Repeat two to four times until cell lysis is complete.  Cells were transferred to 

a 5ml polycarbonate centrifuge tube. Beads were washed with Buffer A and wash 

solution containing cells was transferred to the 5ml polycarbonate centrifuge tube 

until full.  Tubes were centrifuged using a Beckman micro-ultracentriguge MLS-50 

rotor 25 min 20,000rpm.  The supernatant was transferred, while avoiding the pellet, 

to a 5ml pollyallomer tube containing a 1 ml cushion of cold Buffer C [20 mM Tris-

HCl pH 7.5 at +4o C, 5 mM Mg(CH3COO)2, 50 mM KCl, 25% Glycerol, and 0.1 mM 

PMSF, 0.1 mM DTE added immediately prior to use].  Samples were centrifuged as 

before except for 2 hours 20min at 50,000 rpm using the slowest acceleration and 
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deceleration settings. The supernatant was discarded and the fines were gently 

washed away from precipitate with 1ml Buffer C.  Ribosomes resuspended in 100 to 

300 μL cold Buffer C w/DTE and PMSF.  Samples were centrifuged for 1 min 12000 

rpm 4°C to clarify lysates.  Supernatants were transferred to a new tube.  Ribosomes 

were aliquoted and stored at -80°C.  Concentrations were determined using optical 

density (1 OD260 = 20 pmol). 

 

Purification of aminoacyl-tRNA synthetases 

     Aminoacyl-tRNA synthetases were purified as previously described with minor 

modifications (von der Haar F., 1979). Two pounds of frozen cake yeast (George R. 

Ruhl & Son, Inc., Hanover, MD) were placed in 500 ml of buffer A [0.2 M Tris-base, 

0.3 M NH4Cl, 20 mM MgSO4, 1 mM EDTA, 0.15 M dextrose] and allowed to thaw 

and ferment overnight. Cells were disrupted by three passages through an ice-cooled 

Microfluidaser at ~18,000 lb/in2, cell debris was removed by centrifugation at 4 °C in 

a Beckman JLA rotor at 10,000 rpm for 30 minutes, and 800 ml of supernatant was 

obtained. Fines and nucleic acids were precipitated by addition of polyethylenimine 

(1.73 g/lb of cells, equivalent to 4.32 g/liter of lysate) over a period of 5 minutes with 

slow stirring. Precipitates were removed by centrifugation at 4 °C using a GSA rotor 

at 9,000 rpm for 40 minutes. Proteins in the supernatant were precipitated by addition 

of 472 g of ammonium sulfate per liter of extract (70 % saturation), and precipitates 

were collected by centrifugation in a GSA rotor at 12,000 rpm for 45 minutes at room 

temperature. The pellet from this step was suspended in 43.75 ml of buffer C [30 mM 

potassium phosphate, pH 7.2, 1 mM EDTA, 1 mM DTE, 0.01 mM PMSF] per 100 g 
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of pellet and subsequently dialyzed in 2 liters of buffer C overnight with two changes 

of buffer. The extract then was clarified by centrifugation in a GSA rotor at 12,000 

rpm for 45 minutes at 4 °C. The supernatant was diluted 2.5 times with buffer C and 

fractionated through a Sephadex CM50 column equilibrated with buffer C. The 

column was washed with buffer D [30 mM potassium phosphate, pH 7.2, 1 mM 

EDTA, 0.01 mM PMSF, 10 % glycerol] with 50 mM KCl. The proteins were eluted 

from the column using a series of step gradients composed of buffer D containing 150 

mM, 300 mM, and 500 mM KCl. The material eluted by buffer D with 150 mM KCl 

contains phenylalanyl-tRNA synthetase activity. Proteins were precipitated by 

addition of 472 g/liter of ammonium sulfate, and pellets were suspended in buffer D 

containing 50 mM KCl. Extracts were dialyzed against 1 liter with two changes of 

buffer D50 for 10 h, after which they were clarified by centrifugation in a GSA rotor 

at 12,000 rpm for 45 minutes at 4 °C. The obtained preparations of aa-tRNA 

synthetases were aliquoted and flash frozen in liquid nitrogen. 

 

 Synthesis of aminoacyl-tRNA and acetylated aminoacyl-tRNA 

     Yeast phenylalanyl-tRNAs were aminoacylated by scaling up a previously 

described method (von der Haar F., 1974). The reaction mix (5 ml) contained 300 

mM Tris-HCl, pH 7.6, 100 mM KCl, 20 mM MgCl2, 0.4 mM ATP, 40 µM [14C]Phe 

[496 mCi/mmole], plus 5 mg of tRNA-Phe and 475 µl of aminoacyl-tRNA 

synthetases (D150) purified as described above. Reaction mixtures were incubated for 

30 minutes at 30 °C, and proteins were removed by extraction with acid-phenol-

chloroform. [14C]Phe-tRNA was separated from uncharged tRNA and free [14C]Phe 
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by high-performance liquid chromatography (HPLC) as previously described (Triana-

Alonso et al., 2000) with the following modifications. Samples were loaded onto a 

4.6x250 mm JT Baker wide-pore butyl column equilibrated with buffer A [20 mM 

NH4(CH3COO), 10 mM MgCl2, 400 mM NaCl; pH 5.0] at 1 ml/min. The column was 

washed with 10 ml of buffer A, creating conditions under which free phenylalanine 

and aminoacyladenylate are eluted from the column. Uncharged tRNAs were eluted 

by isocratic elution with 19 ml at 15 % of buffer B [20 mM NH4(CH3COOH), 10 mM 

MgCl2, 400 mM NaCl, 60 % methanol; pH 5.0). [14C]Phe-tRNA was eluted using a 

step gradient to 100 % of buffer B. Elution of aminoacyl-tRNA was monitored by 

OD260/280 readings, and [14C]Phe-tRNA peak and concentrations were determined by 

scintillation counting. The presence of aminoacyl-tRNA in the eluted material was 

confirmed by gel filtration through G-25 spin columns and by nonenzymatic 

hydrolysis of ester bonds at basic pH (Kaneko and Doi, 1966). Ac-[14C]tRNA was 

obtained in a similar manner. Yeast phenylalanyl tRNA was charged with [14C]Phe as 

above and extracted with phenol. The [14C]Phe-tRNA was acetylated by addition of 

64 µl of acetic anhydride at 15 minutes intervals for 1 h on ice (Triana-Alonso et al., 

2000). The reaction mix was clarified by centrifugation at 15,000 rpm for 3 minutes, 

and Ac-[14C]Phe-tRNA was purified by HPLC as described above. 

 

Characterization of peptidyl transferase activity 

     Peptidyl transfer assays were performed essentially as previously described 

(Meskauskas et al., 2005).  The protocol was carried out on ice or at 4°C at all times 

unless otherwise noted.  Briefly, complex C [80S ribosomes, Ac-Phe-tRNA, poly(U)] 
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was formed by incubating 120 pmol ribosomes, 0.4 mg/ml poly(U), 0.4 mM GTP, 

and 100 pmol Ac- [14C]Phe-tRNA in 200 μL of binding buffer P [80 mM Tris-HCl, 

pH 7.4, 11 mM magnesium acetate, 160 mM ammonium chloride, 6 mM β-

mercaptoethanol, and 2 mM spermidine] for 20 min at 30°C.  The complex was 

filtered through a Millipore HA filter, and washed with binding buffer. Complex C 

was extracted off the filter disk by gently shaking in binding buffer containing 0.05% 

of Zwittergent 3-12 for 30min at 4°C.  Complex C extract was pre-incubated at 30°C 

for 5 min to activate ribosomes.  2mM puromycin was added to complex C in 100 μL 

of binding buffer P to begin the reaction. Time points were taken at 0, 2, 5, 10, 20, 30, 

60, 120 min by removing 100 μL aliquots and terminating the reactions by addition of 

100 μL of 1.0 N NaOH.  Reaction products were extracted with 0.5 ml of ethyl 

acetate, and radioactivity was determined by scintillation counting. Control values of 

reaction mixture without puromycin and of extracted complex C were obtained in 

each experiment.  The data were analyzed using Prism Graph Pad software and was 

fit to give the value of Kapp, the apparent rate constant of the entire reaction at a given 

concentration of puromycin using the equation Y=-Ae^(-kt)+C where Y is the 

normalized counts per minute (CPM), C is the final value of the normalized CPM, 

and t is the time in minutes.   

 

tRNA binding activity 

     Aminoacyl-tRNA binding to the A-site of the ribosome was carried out as 

previously described (Meskauskas et al., 2005).  Briefly, a reaction mixture of 12-25 

pmol ribosomes, 0.4 mg/ml poly (U), 0.4 mM GTP, and in 50 μl of binding buffer A 
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[80 mM Tris-HCl, pH 7.4, 11 mM magnesium acetate, 160 mM ammonium chloride, 

6 mM β-mercaptoethanol, and 2 mM spermidine] was preincubated with uncharged 

tRNA (4:1 tRNA/ribosomes) at 30°C for 15 min to occupy ribosomal P- and E-sites 

by uncharged tRNA.  The mixture is added to increasing amounts of [14C]Phe-tRNA 

(4 to 264 pmol) and incubated at 30°C for an additional 15 min to allow formation of 

[14C]Phe-tRNA–80S–poly (U) complexes. Aliquots were then applied to 

nitrocellulose membranes, washed, and the resulting radioactivity of the membrane 

was measured by scintillation counting. Background levels of radioactivity were 

determined using a blank sample and subtracted from the test samples.  The data were 

analyzed using Prism Graph Pad software and was fit to a nonlinear regression one 

site binding curve (Y=Bmax*X/(Kd + X)) where Y is normalized CPM values, and X 

is tRNA concentration in μM. 

 

     Acetyl-aminoacyl-tRNA binding to the P-site of the ribosome was carried out as 

similar to the A-site binding protocol with the following modifications.  Briefly, 

purified ribosomes in Buffer C were thawed on ice and treated with 1mM puromycin 

and 1mM GTP (adjust PMSF and DTE to 1mM) and incubated at 30°C for 30 min to 

remove aminoacyl-tRNAs.  A reaction mixture of 12-25 pmol treated ribosomes, 0.4 

mg/ml poly(U), and 50μl binding buffer P [80 mM Tris-HCl, pH 7.4, 11 mM 

magnesium acetate, 160 mM ammonium chloride, 6 mM β-mercaptoethanol, and 2 

mM spermidine] is added to increasing amounts of Ac-[14C]Phe-tRNA (4 to 264 

pmol) and incubated at 30°C for 15 min to allow formation of [14C]Phe-tRNA–80S–
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poly(U) complexes.  The protocol then proceeds as described above for aminoacyl-

tRNA binding reactions. 

 

Structure Probing on Ribosomes in vitro 

     Purified ribosomes in Buffer C were thawed on ice and treated with 1mM 

puromycin and 1mM GTP (adjust PMSF and DTE to 1mM) and incubated at 30°C 

for 30 min to remove aminoacyl-tRNAs.  Puromycin treated ribosomes were 

incubated with DMS (dimethyl sulfate), Kethoxal or CMCT (1-cyclohexyl-3-(2-

morpholinoethyl) carbodiimide metho-p-toluene) as previously described (Kiparisov 

et al., 2005). Treated rRNA was extracted and slow-cool annealed in annealing buffer 

(250mM TrisCl pH 8.3, 200mM KCl) to 32P-end-labeled primers (Table 4) which are 

used to investigate the ribosomal peptidyl-transferase center and A-loop.  Primer 

extension and RNA sequencing were both performed using AMV reverse 

transcriptase (Roche, Mannheim, Germany) at 42°C for 30 min.  Primer extensions 

were performed using 4μM dNTPs.  Reaction products were separated through a 10% 

urea-polyacrylamide gel and visualized using a BioRad phosphoimager.  

 
 

Results 

     Previous studies have implicated rRNA modification defects with changes in 

growth rates, translation rates and ribosome integrity.  In order to more precisely 

determine the role of rRNA modifications in the translational fidelity of the ribosome, 

we have chosen several previously characterized snoRNAs and one protein that 
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modify residues around the peptidyl-transferase center of the ribosome and performed 

assays on strains deficient in these modifications to monitor changes in translational 

fidelity.  These are single knockout strains of snoRNAs snR10, snR34, snR37, snR42, 

and snR46 which together pseudouridylate six rRNA residues in the PTC of the yeast 

ribosome, with snR34 modifying two of those residues.  Additionally, single and 

double knockout strain snr52 and a methylase deficient mutant of the essential yeast 

protein Spb1, which are responsible for methylation of mG2921 and mU2920, were 

analyzed (Figures 3.2 and 3.3).  Since Spb1p is an essential yeast protein, a methylase 

deficient mutant with a D to A substitution affecting the AdoMet-binding site was 

used (Bonnerot et al., 2003; Lapeyre and Purushothaman, 2004).  Mutant strains 

snr10Δ, spb1DA, and spb1DA/snr52Δ have slow growth phenotypes. 

 

rRNA modification mutants show sensitivity to translation inhibitors 

     Several protein translation inhibitors are known to specifically interact with the 

ribosome (Tenson and Mankin, 2006) and can therefore be used as probes for changes 

in ribosome function.  Paromomycin binds the decoding center of the A site (Vincens 

and Westhof, 2001) and stabilizes binding of near-cognate tRNAs (Ogle et al., 2001) 

can serve as a probe for A site-specific defects.  Anisomycin binds the A-site crevice 

that normally accepts the amino acid side-chains of A-site bound aminoacyl-tRNAs 

(Hansen et al., 2003b) interfering with the binding of 3’ end of the aa-tRNA 

(Grollman, 1967; Carrasco et al., 1973; Schindler, 1974) and can therefore be used as 

an A-site specific probe.  Sparsomycin binds on top of the CCA end of a P-site bound 

substrate and interacts with it interfering (Hansen et al., 2003a) with the binding of 
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the 3’ end of the peptidyl-tRNA (Jayaraman and Goldberg, 1968; Herner et al., 1969; 

Moazed and Noller, 1991) and can be used as a P-site specific probe.  Previous 

studies reported that spb1DA mutants were sensitive to paromomycin, and that 

sparsomycin had no effect (Bonnerot et al., 2003).  The snr10Δ mutant was also 

shown to be sensitive to paromomycin (King et al., 2003).  In order to achieve a 

better understanding of the drug sensitivity profiles for all of the mutants, we 

performed standard 10-fold dilution spot assays on plates containing differing 

amounts for each of the translation inhibitors anisomycin and sparsomycin (Figure 

3.4).  The data show spb1DA/snr52Δ cells to be sensitive to anisomycin at a 

concentration of 20 µg/ml, with no effect on wild-type growth at this concentration.   

Wild-type strains show no change in growth on 20ug/ml sparsomycin, while mutants 

snr34Δ and snr46Δ were sensitive to the drug at this concentration. 

 

Virus propagation in rRNA modification mutants 

      The yeast killer virus system is composed of the dsRNA L-A helper virus and M1 

‘killer” satellite viruses.  The L-A virus genome consists of two overlapping ORFs, 

gag and pol, which encoded the structural protein and the RNA dependent RNA 

polymerase respectively.  The two ORFs are joined by a programmed –1 ribosomal 

frameshift signal where a –1 PRF event results in synthesis a gag-pol fusion protein.  

The M1 satellite virus genome encodes for a secreted toxin.  The pre-toxin provides 

the infected cell with immunity to the toxin, while secretion of the mature toxin 

results in death of uninfected yeast cells.  A change in the efficiency of –1 PRF alters 
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the ratio of structural to enzymatic viral proteins produced for particle assembly 

thereby interfering with the ability of yeast to maintain the L-A helper and M1 

satellite viruses (Dinman and Wickner, 1992).  M1 propagation also depends on the 

level of free large subunits in yeast, such that mutants with altered amounts of free 

ribosomal LSU fail to maintain the M1 virus (Wickner, 1996).  The yeast killer virus 

model system can be utilized to identify defects in virus propagation as a possible 

result of altered translational fidelity, specifically programmed –1 ribosomal 

frameshifting.  Thus, the snoRNA mutants were screened to determine their ability to 

maintain the M1 killer virus as a phenotypic identifier of translational associated 

defects.  The L-A and M1 viruses were introduced into [rho0] wild-type and mutant 

cells and assayed for the killer phenotype (Figure 3.5a).  The data showed the wild-

type strains and several mutants were able to maintain the killer virus (K+).  However, 

the mutants snr37Δ and snr46Δ showed weak killer (Kw) phenotypes, snr10Δ rapidly 

lost the killer virus (K-), and severe viral maintenance defects were observed with the 

mutants spb1DA and spb1DA/snr52Δ.  Previously published data indicates altered 

ribosome profiles for mutants snr10∆ (King et al., 2003)and spb1DA/snr52Δ 

(Bonnerot et al., 2003) which included ribosomal LSU defects and could be a 

contributing factor to their virus propagation defects. 

 

     In order to rule out the possibility that a defect in the processing or secretion of the 

killer toxin (Wickner, 1996) is responsible for the observed killer phenotype and not 

virus maintenance, double-stranded viral RNA was extracted from wild-type and 
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mutant yeast cells and visualized (Figure 3.5b).  The analysis revealed that M1 dsRNA 

abundance correlated with the observed killer phenotypes; i.e. M1 dsRNA was  

observed the in the strains which showed the K+ phenotype and was absent or faint in 

strains that showed K- or Kw phenotypes respectively. 

rRNA modification mutants cause defects in translational fidelity 

     Defects in rRNA modification have been implicated in changes in translation rates 

and ribosome integrity (Gustafsson and Persson, 1998; King et al., 2003).  In order to 

more precisely determine the role of rRNA modifications in the translational fidelity 

of the ribosome, we have performed assays that monitor various aspects of 

translational fidelity, namely changes in programmed ribosomal frameshifting, aa-

tRNA selection, and nonsense suppression in vivo.  A bicistronic dual-luciferase 

reporter system, described in Figure 3.6, was developed to quantitatively monitor 

these changes in fidelity (Harger and Dinman, 2003).  The control reporter is a yeast 

expression vector containing Renilla and firefly luciferase genes, which yields active 

Renilla and firefly luciferase proteins.  Programmed –1 and +1 frameshifting test 

reporters are constructed by inserting a frameshift signal, L-A or Ty1 respectively, 

between the Renilla and firefly genes such that firefly luciferase is only produced in 

the event of a frameshift.  Renilla luciferase serves as an internal control thereby 

eliminating effects due to differences in mRNA abundance, mRNA stability or 

translation rates between the test and control reporters.  Nonsense suppression test 

reporters contain a stop codon (UAA, UAG, or UGA) six nucleotides into the firefly 

luciferase gene; therefore, firefly luciferase is only produced when nonsense 

suppression occurs.  The misincorporation test reporters were created by mutating the 
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firefly catalytic residue R218 from the wild-type AGA codon to either the near-

cognate AGC codon or non-cognate TCT codon the result of which is that active 

firefly luciferase is only synthesized when the incorrect tRNAArg is selected.  

Recoding efficiencies were measured for each mutant as described in the methods.  

The data are represented as fold wild-type values and summarized in Table 1.   

 

     The spb1DA/snr52∆ double mutant showed the largest increase in –1 PRF 

efficiency (1.5 fold of wild-type) (Figure 3.7).  This result is in agreement with the 

viral propagation data as this mutant was unable to propagate the M1 killer virus.  

Subtle increases in –1 PRF were observed in a few mutant strains (1.2 fold or lower).  

Only small (1.2 fold or lower) increases in +1 PRF were observed in any of the 

mutants (Figure 3.7).   

      

     Values for near and non-cognate aa-tRNA selection events are reported in Figure 

3.8.  The snr10Δ mutant strain displayed small increases in both near and non cognate 

aa-tRNA selection events (both 1.3 fold).  The mutant snr46Δ shows a small increase 

in only non-cognate aa-tRNA selection at 1.3 fold of wild type.  The double mutant 

spb1DA/snr52Δ shows a significant 1.9 fold increase in near cognate aa-tRNA 

selection events and a very slight increase in non-cognate aa-tRNA selection at 1.2 

fold which is higher value than that of either of the single mutants.  The spb1DA 

single mutant actually exhibits a slight (0.8 fold) decrease in non-cognate aa-tRNA 

selection when compared to its wild-type strain with no effect on near-cognate 
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selection events.  The snr52Δ single mutant shows no change in non-cognate aa-

tRNA selection events, but does display a 1.4 fold increase in near-cognate values. 

   

     Nonsense suppression efficiencies were measured for each stop codon (UAA, 

UAG, and UGA) and reported in Figure 3.9.  With the exception of snr42Δ, similar 

trends for changes in nonsense suppression are observed for all three stop codons in 

each mutant strain.  Decreases in nonsense suppression ranging from 0.3 to 0.8 fold 

of wild-type were observed in mutant strains snr37Δ, snr10Δ and the double mutant 

spb1DA/snr52Δ.  A significant increase in nonsense suppression was displayed in the 

snr46Δ mutant strain with values of 1.4, 2.0 and 1.3 fold of wild-type for stop codons 

UAA, UAG and UGA respectively. 

 

Changes in aminoacyl-tRNA binding and peptidyl transfer rates 

     Defects in translational fidelity could possibly be due to changes in tRNA binding 

to the ribosome and peptidyl-transfer rates.  Two phenotypically interesting mutants 

were chosen and biochemically characterized.  The mutant strains chosen were 

snr46Δ and spb1DA/snr52Δ.  The mutant snr46Δ showed sparsomycin sensitivity, the 

Kw phenotype, no significant change in +1 and –1 PRF, and exhibited increases in 

non-cognate aa-tRNA selection events and nonsense suppression  The double mutant 

spb1DA/snr52Δ was anisomycin sensitive, could not propagate the M1 virus, showed 

an increase in –1 PRF, an increase in near-cognate aa-tRNA selection events, and 

decreased nonsense suppression.  Ribosomes were isolated from the isogenic wild-
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types and mutant strains and the affinities for aa- and peptidyl-tRNA as well as 

peptidyl transfer rates were determined as described in the methods.  The binding 

constants determined for aa-tRNA affinity to mutant and wild-type ribosomal A-site 

indicated increased binding to the A-site for both mutants (Figure 3.10).  The wild-

type isogenic to the mutant snr46Δ Kdapp was 1.8 µM-1 ±0.4 while the mutant Kdapp 

was determined to be 0.3 µM-1 ±0.05.  Similarly, wild-type SPB1 SNR52 was shown 

to have a Kdapp of 0.6µM-1 ±0.2 while the mutant strain spb1DA/snr52Δ showed a 

Kdapp of 0.3 µM-1 ±0.1.  Different wild-type binding constants are observed because 

the two wild-type stains are not isogenic.  Affinities of tRNA for the ribosomal P-site 

were measured as described in methods using [14C]-Ac-Phe-tRNA and the isogenic 

wild-type and mutant ribosomes (Figure 3.11).  There was no change in Kdapp for P-

site binding of either mutant when compared to their isogenic wild-type strain.  

Peptidyl-transfer rates were measured using the puromycin reaction as described in 

the methods.  Both mutant strains displayed increases in peptidyl-transfer rates when 

compared to isogenic wild-type values (Figure 3.12).  The Kapp of the mutant snr46Δ 

was 0.06 min-1 ±0.003 while its isogenic wild-type showed a Kapp value of 0.04 min-1 

±0.003.  Wild-type SPB1 SNR52 was shown to have a Kapp of 0.02 min-1 ±0.004 

while the mutant strain spb1DA/snr52Δ showed a Kapp of 0.04 min-1 ±0.007.   

 

Structure changes observed in the PTC of a modification deficient ribosome 

    It has been speculated that the post-transcriptional nucleotide modification like that 

demonstrated in rRNA could serve to increase the stability of the local RNA structure 

or decrease risk of degradation (Decatur and Fournier, 2002; Helm, 2006).  With this 
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Table 1:   

Summary of rRNA modification mutant phenotypes 

All values are reported as fold of the isogenic wild-type values except drug sensitivity and killer virus 

maintenance data. 
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in mind, in vitro structural probing was performed on the wild-type and mutant 

ribosomes biochemically characterized in the previous section.  Mutants snr46Δ and 

spb1DA/snr52Δ and isogenic wild-type puromycin treated ribosomes were incubated 

with the chemically modifying agents CMCT, kethoxal and DMS in vitro.  The 

rRNAs were extracted and primer extension analyses performed using primers 

sufficient to transverse the entire PTC i.e. helices 89-93.  Figure 3.13 shows a 

representative autoradiogram for the wild-type and mutant spb1DA/snr52Δ strains 

with each primer 25-6 and 25-10.  Observed differences between wild-type and 

mutant protection patterns and their nucleotide locations are indicated.  Residues 

C2843 and C2851 in helix 93 were deprotected in the presence of DMS treatment.  

The A-loop residue U2923 showed increased protection from CMCT treatment.  

There were no significant differences between protection patterns observed for 

isogenic wild-type and mutant snr46Δ ribosomes (data not shown).  

 
 

Discussion 

       Although decoding takes place in the small ribosomal subunit, it is not surprising 

that the large subunit would play a part in determining translational fidelity.  The 

large subunit interacts with all but the anti-codon stems of both the A- and P- site 

tRNAs, binds elongation factors including the EF-Tu:GTP:tRNA13 ternary complex 

and EF-G:GTP14, and is the site of release factor binding.  Previous studies have 

shown that mutations in rRNA residues of helix 89 in the peptidyl transferase center 

                                                
13 eEF-1:GTP:tRNA in eukaryotes 
14 eEF-2:GTP in eukaryotes 
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of E. coli ribosomes result in defects in stop codon recognition and reading frame 

maintenance (O'Connor and Dahlberg, 1995).  Interestingly, residues in helix 89 

along with other residues within the peptidyl transferase center are post-

transcriptionally modified, although the functional contributions of this residue are 

unknown.  The snoRNAs characterized in the current are snR10, snR34, snR37, 

snR42, snR46, snR52 and the essential yeast protein Spb1p which modify residues 

Ψ2922, Ψ2825/Ψ2879, Ψ2943, Ψ2864, Um2920 and Gm2921 respectively.  The modified 

residues are located on helices 89-93 of the PTC of the yeast ribosome (Figures 3.2 

and 3.3).  Modification of residue Ψ2825 is guided by snR34 in yeast and is conserved 

through evolution.  However, deletion of snR34 or RluE, the gene responsible for the 

homologous modification in E. coli, conferred no obvious disadvantage (Samarsky et 

al., 1995; Del Campo et al., 2001; King et al., 2003).  Residues Um2920 and Gm2921 

modified by snR52 and the protein Spb1p respectively are also conserved throughout 

evolution. Residue Gm2921 has been shown to interact with the 3’ end C75 of the A-

site tRNA (Mueller et al., 2000).  Strains lacking each of these eight PTC 

modifications, and one strain lacking two were investigated to determine the 

contributions that each of these modifications made to translational fidelity. 

 

     Biochemical characterization of the spb1DA/snr52∆ double mutant revealed an 

increase in peptidyl transfer rates for the mutant ribosome as determined by the 

puromycin reaction assay.  Since peptidyl transfer is an extremely fast reaction, 

occurring almost instantaneously (Katunin et al., 2002), it is interesting that mutant 

ribosomes could perform the reaction any faster than wild-type.  To understand these 
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data, it is necessary to analyze them in the context of the assay.  Puromycin is an A-

site tRNA analog that mimics its aminoacylated 3’CCA end (de Groot et al., 1970; 

Hansen et al., 2003a).  The puromycin reaction assay involves the diffusion of 

puromycin into the A-site of ribosomes pre-loaded with peptidyl-tRNA, peptidyl 

transfer takes place and the resulting puromycin bound tRNAs are measured. 

Therefore, any increase in peptidyl transfer rates could result from an increase in the 

rate at which puromycin diffuses into the A-site.  This could suggest that these mutant 

ribosomes have A-sites that are more accessible.  Structure probing analyses of 

spb1DA/snr52∆ mutant ribosomes demonstrated changes in the protection patterns 

that are consistent with a more open A-site conformation (Figure 3.13).  Two 

residues, C2843 and C2851, displayed decreased protection from DMS treatment, and 

one residue, U2923, showed increased protection from CMCT.  Residue C2851 is 

located on helix 89 and makes direct contacts with the A-site tRNA (Figure 3.14).  

The fact that the residue is deprotected suggests that contacts with the A-site tRNA 

are abolished possibly resulting in a more open conformation around the A-site 

tRNA.  Residue U2923 provides further insight into the A-site changes observed for 

this mutant.  This residue is located on the A-loop and is adjacent to the gate residue 

C2924, one of the nucleotides which form the first gate that the 3’ of the aa-tRNA has 

to pass through as it accommodates into the PTC (Figure 3.14).  This residue is also 

two and three nucleotides away from residues Gm2921 and Um2920, respectively, 

which are lacking their modifications in this mutant.  It may be that the absence of 

these methylations causes a shift in the local conformation causing U2923 to move 

into a more protected region.  It would follow that the adjacent gate nucleotide would 
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shift as well, most likely away from its partner residue, U2860, involved in creating 

the first gate.  This would open up the first gate producing a more accessible 

conformation with less steric hindrance to puromycin diffusion which would result in 

the observed increase in peptidyl transfer rates. 

 

     All other biochemical and genetic phenotypes observed for this mutant are in 

agreement with this model.  Further biochemical characterization of spb1DA/snr52∆ 

revealed increased rates of A-site tRNA binding.   The open conformation of the A-

site in mutant ribosomes would allow for easier accommodation of the aa-tRNA 

thereby resulting in this observed increase in affinity for aa-tRNA.    It would also 

follow that opening up the A-site and disabling the accommodation gate would 

produce a less discriminate A-site.  This is consistent with the observed increase in 

near cognate aa-tRNA selection events (1.9 fold of wild-type) for the spb1DA/snr52∆ 

mutant strain.   

 

     The mutant also promoted increased rates of -1 PRF (1.5 fold over wild-type) and 

demonstrated anisomycin sensitivity.  These two phenotypes are usually associated 

with decreased A-site binding, while increased A-site binding usually correlates with 

anisomycin resistance (Meskauskas et al., 2003; Meskauskas et al., 2005).  Normally, 

defects in the ribosome that decrease its affinity for A-site tRNA also lead to 

increases in -1 PRF through an increased pause time during accommodation allowing 

more time for slippage, and since anisomycin can compete with A-site tRNA binding 

(Carrasco et al., 1973) , mutant strains with decreased affinity for aa-tRNA have 
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additional problems with accommodation resulting in reduced viability in the 

presence of anisomycin.  Here, we see ribosomes with an increased affinity for A-site 

tRNA but are sensitive to anisomycin.  However, these data could result from a more 

open, less discriminate ribosomal A-site.  A less stringent A-site may promote the 

binding of, or increase the diffusion rates for, small molecules like anisomycin.  This 

could interfere with peptidyl transfer causing the decreased growth in the presence of 

anisomycin observed for the mutant strain.  It may also be that a less discriminate A-

site with a more open conformation could better facilitate tRNA slippage thereby 

increasing -1 PRF rates.  Additionally, the deprotection of residue C2851 may 

indicate suboptimal placement of the A-site tRNA which could also facilitate slippage 

thereby increasing -1 PRF rates.  The inability of the spb1DA/snr52∆ mutant strain to 

propagate the killer virus is consistent with increased -1 PRF efficiencies.  However, 

previous studies have also indicated that this mutant displayed altered ribosome 

profiles (Bonnerot et al., 2003) which could also contribute to its complete inability to 

maintain the killer virus independent of changes in -1 PRF (Ohtake and Wickner, 

1995a).  Finally, that +1 PRF, which only involves peptidyl-tRNA slippage, was not 

affected is consistent with the lack of effects on P-site tRNA binding and with the 

absence of structural changes in the area surrounding the peptidyl-tRNA.   

 

     All mutant strains were also tested for changes in nonsense suppression for all 

three stop codons, and phenotypic changes were observed for several mutants 

including spb1DA/snr52∆.  Class 1 release factors span the decoding center to the 

peptidyl transferase center (Rawat et al., 2003).  It is not unexpected that changing the 
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local conformation of the large subunit in the PTC region of the yeast ribosome 

would have affects on translation termination.  Cryo-EM structures of a class 1 

release factor bound to the E. coli ribosome indicate that regions of the protein make 

contacts with portions of the large subunit including the GTPase associated center, 

and helices 89, 92 and 93 of the PTC (Figure 3.15) (Klaholz et al., 2003; Petry et al., 

2005).  Mutant strain spb1DA/snr52∆ exhibited a decrease in nonsense suppression 

for all three stop codons when compared to wild-type values indicating an increase in 

the fidelity of stop codon recognition.  Since spb1DA/snr52∆ demonstrated an 

increase in near cognate aa-tRNA selection events, it is surprising that the fidelity of 

stop codon recognition was increased.  It may be that the mechanisms allowing for 

less stringent aa-tRNA selection extends to the binding and recognition of the release 

factor thereby increasing stop codon recognition.  It may also be that changes in the 

PTC of these mutants facilitate the peptidyl-tRNA hydrolysis reaction.  Crystal 

structure analysis of the ribosome in complex with release factors 1 and 2 show the 

conserved RF1 GGQ motif in close proximity to the A loop of the peptidyl 

transferase center (Figure 13.6).  Since the mutant strain spb1DA/snr52∆ lacks the 

methylation of two residues found on the A-loop, it is conceivable that these mutant 

ribosomes could alter release factor binding or activity either through direct 

interactions or by inducing local conformational changes.  Structure probing analyses 

of themutant strain spb1DA/snr52∆ did demonstrate an increased protection for 

residue U2923 which is also located on the A-loop indicating local conformational 

changes for the A-loop of mutant ribosomes. 
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     These data taken together suggest that the mutant ribosomes harboring 

methylation deficient residues U2920 and G2921 have a less discriminate A-site with 

a more open conformation.   It would appear that residues Um2920 and Gm2921  

function, at least in part, to facilitate entry of the proper aa-tRNA into the A-site by 

correctly positioning helix 89 and the gate residue C2924.   

 

     Structure probing of spb1DA/snr52∆ mutant ribosomes also revealed the 

deprotection of residue C2843 which makes direct contact with the GTPase 

associated center (GAC) of the ribosome.  An alternative, but not mutually exclusive, 

explanation to the one proposed above could be that changes in the conformation of 

this functional center of the ribosome could also cause the changes in both nonsense 

suppression and the decreased discrimination in aa-tRNA selection.  The GAC is a 

flexible region of the ribosome and its conformation changes with its functional state 

(Valle et al., 2003).  It has been proposed that the different orientations of the GAC 

provide factor binding discrimination between EF-Tu:GTP and EF-G:GTP  (Sergiev 

et al., 2005a).  Interestingly, mutational studies of LSU rRNA designed to mimic the 

different GAC conformations demonstrates changes in chemical protection patters for 

helix 89 when the GAC position is altered (Sergiev et al., 2005b)  It may be that the 

structural changes observed for the spb1DA/snr52∆ mutant ribosomes on helix 89 

where it contacts the GAC indicates changes in the local conformation affecting the 

GAC.  This could alter interactions with EF-Tu causing changes in initial tRNA 

binding and subsequent GTP hydrolysis which may explain the decrease in aa-tRNA 

discrimination and the increase in aa-tRNA binding to the A site.  Similarly, changes 
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in the GAC that would interfere with EF-G binding and translocation could increase 

the pause time during -1PRF thereby increasing the chance for slippage resulting in 

the observed increase in -1PRF efficiencies.  It has also been shown that mutations in 

the GAC in E. coli ribosomes can affect nonsense suppression by causing an increase 

in stop codon readthrough (Arkov et al., 1998).  Therefore, it is not unreasonable to 

speculate that changes in the local conformation of the GAC and the PTC could cause 

the observed decrease in stop codon readthrough seen for the spb1DA/snr52∆  mutant 

strain.  Further structure probing analyses of the GAC and surrounding areas would 

be required to investigate this model. 

 

      tRNA binding experiments performed with snr46∆ mutant ribosomes revealed an 

increase in A-site tRNA binding when compared to wild-type ribosomes, but no 

effect on P-site binding.  This result was somewhat unexpected because the mutant 

strain also exhibited sparsomycin sensitivity which would suggest a P-site specific 

defect.  This may be explained by the nature of sparsomycin.  Although sparsomycin 

does not interfere with A-site substrate binding (Goldberg and Mitsugi, 1966; Monro 

et al., 1969), it does compete with A-site binding antibiotics for binding to the 

bacterial ribosome (Barbacid and Vazquez, 1974; Lazaro et al., 1991). Additionally, 

mutating residues or eliminating a modification of a residue in the PTC not in the P-

site of Halobacterium results in sparsomycin resistance (Lazaro et al., 1996; Tan et 

al., 1996).  Presumably, this is because sparsomycin stacks with the flexible A2606 

(E. coli numbering; yeast A2970) upon binding to unoccupied ribosomes causing 

conformational changes throughout the PTC (Porse et al., 1999).   It is possible that 
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the PTC of the mutant snr46∆ is altered in such a way as to foster increased 

sensitivity to sparsomycin.  Increased rates of A-site tRNA binding for snr46∆ can be 

consistent with slightly increase in non-cognate aa-tRNA selection events (1.3 fold 

over wild-type) in that increased rates of the forward reaction involved in initial 

selection, GTP hydrolysis, could both increase rates of A-site tRNA binding and more 

easily allow for the incorporation of non-cognate tRNAs.  Further biochemical 

analyses revealed that the mutant strain snr46Δ also promoted increased rates of 

peptidyl transfer.  However, structure probing of helices 89-93 of snr46Δ mutant 

ribosomes with CMCT, DMS and kethoxal failed to reveal any major changes in 

structure.  It may be, that since accommodation is the rate limiting step for peptidyl 

transfer, mutant ribosomes with increased rates of A-site tRNA binding would lead to 

an increased rate of peptidyl transfer when compared to wild-type ribosomes.  Since 

these mutant ribosomes also exhibit increased accessibility to sparsomycin, this may 

reflect increased accessibility of the ribosome to puromycin as well.  It is also 

possible that structural changes are present in snr46Δ mutant ribosomes but are too 

subtle to be detected by the techniques used.  

 

     Mutant strain snr46∆ displayed an increase in nonsense suppression indicating a 

decrease in the fidelity of stop codon recognition.  This mutant also showed increase 

in non-cognate aa-tRNA selection.  It would appear that defects in translational 

fidelity of this mutant extend into inefficient stop codon recognition as well as a less 

stringent aa-tRNA initial selection step.  Structure probing of the helices in the PTC 

of the mutant ribosomes did not reveal any significant structural changes.  However, 
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snR46 pseudouridylates a residue at the base of helix 89, and mutations made in helix 

89 have previously been shown to cause increased rates of stop codon readthrough 

(O'Connor and Dahlberg, 1995).  Helix 89 also comes in contact with the GTPase 

associated center of the ribosome which has also been implicated in changes in stop 

codon readthrough (Arkov et al., 2002).  Therefore, it is conceivable that changes 

made in this region could produce nonsense suppression phenotypes.  It may also be 

that structural changes are present in areas of snr46Δ mutant ribosomes that were not 

the focus of the chemical probing experiments. 

 

     These data, taken together, show that rRNA nucleotide modifications produce 

small but distinct changes in ribosome structure and function contributing to overall 

translational fidelity.  The double mutant spb1DA/snr52∆ displayed the most severe 

phenotypic defects.  This is most likely due to dramatic changes in local rRNA 

structure resulting from the loss of the methyl groups on two adjacent rRNA residues 

in the A-loop.  Significant changes in translational fidelity were observed in mutant 

strain snr46Δ, although no changes in structure were perceived for this mutant.  It 

may be that this and other mutants do result in changes in rRNA structure, but that 

they were too subtle to be detected by the methods employed.  However, their effects 

were magnified by the biological process, such that they resulted in the observed 

phenotypes.  Our conclusion is that rRNA base modification serves to fine-tune 

ribosome structure by facilitating structural conformations that promote optimal 

function.   
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Chapter 4: Conclusions and Future Directions 

 

     Vast amounts of cellular resources are dedicated to production of ribosomes.  It is 

a very complex and highly coordinated process.  Central to this process is the 

manufacture, modification and assembly of ribosomal RNA.  Analyses in this study 

strive towards achieving a better understanding of the role modifying enzymes play in 

rRNA production and the resulting integrity of the final product. 

 

     The RPD3 gene encodes a histone deacetylase that is involved in silencing of the 

HM mating loci, telomeres and rDNA in yeast.   A mutant allele of RPD3, mof6-1 

demonstrated defects in rRNA processing resulting in changes in translational 

fidelity.   Mutant phenotypes included sensitivity to the translational inhibitors 

anisomycin and paromomycin, increased rates of programmed -1 ribosomal 

frameshifting, decreased growth rates which was most severe in lag phase growth, 

and decreased protein synthesis rates.   Biochemical characterization revealed 

decreased rates of A-site aa-tRNA binding and peptidyl transfer.  Mutant phenotypes 

were dependent on histone deacetylase activity.  These mutant phenotypes may be a 

result of altered timing of rRNA processing events.  Alternatively, mutating RPD3 

may interfere with the transcription of rRNA processing pathway components 

including snoRNAs.  It is also interesting to speculate that there may be a novel 

function for RPD3 perhaps involving modification of ribosomal proteins or other 

components of the processing machinery. 
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     An integral part of rRNA processing during ribosome biogenesis is the 

modification of rRNA residues.  In eukaryotes, rRNA modifications are guided by 

box H/ACA and C/D snoRNAs.  These modifications cluster in conserved regions of 

functional importance within the ribosomes.  They are present in ribosomes of all 

kingdoms studied to date and their numbers increase with evolutionary complexity.  

However, individual modifications are usually dispensable for cell viability.  Despite 

extensive mapping and study of these modified residues, their precise function is 

largely unknown.  Here we have analyzed several mutants deficient in rRNA 

modifications of the peptidyl transferase center of the yeast ribosome for changes in 

translational fidelity.  The data reveal a vital role for at least two rRNA modifications 

in ensuring the accommodation of the correct aa-tRNA into the A-site of the 

ribosome, and another modification that appears to be involved in the fidelity of 

translation termination. 

 

     The mutant strain spb1DA/snr52Δ was deficient in the methylation of A-loop 

residues Um2929 and G2921.  This mutant demonstrated increased sensitivity to the 

translation inhibitor anisomycin and changes in translational fidelity including 

increased in rates of programmed -1 ribosomal frameshifting, increased near cognate 

aa-tRNA selection events, and a decrease in rates of nonsense suppression.  

Biochemical characterization of the mutant ribosomes demonstrated an increase in 

rates of peptidyl transfer and increased affinity of the ribosome for A-site tRNA.  

Structural probing revealed deprotection of two residues in helix 89 C2843 and 

C2851, which make contacts with the GTPase associated center and aa-tRNA 
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respectively.  Taken together, these data suggest that the absence of these 

modifications produces a more available, less discriminate conformation of the 

ribosomal A-site.  This was supported by further evidence provided by structure 

probing experiments.  Another residue, U2923, demonstrated increased protection in 

mutant ribosomes.  This residue is adjacent to one of three ‘gate’ residues in the A-

loop of the PTC.  These gate residues are responsible for monitoring the 

accommodation of the 3’ end of the aa-tRNA into the A-site of the ribosome.  The 

conformation change in a residue U2923, along with all the other data, suggests that 

the gate residue is no longer spatially oriented to correctly monitor the entrance of the 

aa-tRNA into the A-site.  The resulting open conformation leads to a more 

promiscuous A-site.  These data show that individual rRNA modifications may be 

dispensable for cell viability, but they provide important functional contributions to 

the accuracy of translation elongation and termination. 

 

     There are other functionally important areas of the ribosome that contain a high 

density of rRNA modifications.  For example, the loop of helix 69 has at least three 

modified residues and it is known to make intersubunit contacts, and interacts with A- 

and P-site tRNAs (Yusupov et al., 2001).  Functional studies in E. coli revealed 

defects in translational fidelity for mutants of helix 69 (Hirabayashi et al., 2006).  

Extensive genetic, biochemical and structural analysis of this helix would likely 

provide a wealth of information concerning translational fidelity and subunit 

association. 
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     Another interesting facet of rRNA modification is its possible role in human 

disease.  X-linked dyskeratosis congenital (X-linked DC) causes skin and bone 

marrow failure in humans.  It is caused by point mutations in the gene encoding the 

nucleolar protein dyskerin.  Dyskerin is present in the telomerase complex and in 

ribonucleoparticles that pseudouridylate rRNA residues.  Mutations in dyskerin are 

associated with severe telomere dysfunction and defects in pre-rRNA processing and 

the involved machinery (Mochizuki et al., 2004).  Interestingly, cells with mutant 

dyskerin activity also demonstrate a defect in translation of messenger RNAs 

containing IRES elements (Yoon et al., 2006).   It would be interesting to explore the 

possible relationship between rRNA modification and regulation if IRES dependent 

translation.      
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Appendix A: Yeast Strains 
 
 
Strain  Description 
5X47 MATa/MATα his1/+ trp1/+ ura3/+ K–; Standard diploid killer tester 

JD758 MATa kar1-1 arg1 [L-AHN M1] 

JD759 MATα kar1-1 arg1 [L-A HN M1] 

JD469-2D MAT_ leu2-1::pJD85 ura3 his4 mof6-1 

JD932D MATa ade2-1 trp1-1 ura3-1 leu2-3,112 his3-11,15 can1-100 [L-AHN 
M1] 

LNY95 MATa ura3-SK1 leu2-hisG trp1-hisG lys2-SK1 ho::LYS2 ade3-210S 

JD972A MATa ura3-SK1 leu2-hisG trp1-hisG lys2-SK1 ho::LYS2 ade3-
210SPEX6::URA3 
 

YMH171 MATα ura3-52 leu2-3,112 his3 trp1Δ 

YMH265 MATα ura3-52 leu2-3,112 his3 trp1Δsin3::LEU2 

YMH270 MATα ura3-52 leu2-3,112 his3 trp1Δ rpd3::LEU2 

YMH277 MATα ura3-52 leu2-3,112 his3 trp1Δ sap30::LEU2 

AJ82 MATα trp1 leu2 ura3 his4 UME6 

AJ82 11-2 MATα trp1 leu2 ura3 his4 ume6-11-2 

AJ82 66-2 MATα trp1 leu2 ura3 his4 ume6-66-1 

AJ82 77-2 MATα trp1 leu2 ura3 his4 ume6-72-2 

1105 MATα  ura3-52  leu2-3,112  his3  trp1∆  

1106 MATα  ura3-52  leu2-3,112  his3  trp1∆  sin3::LEU2 

1107 MATα  ura3-52  leu2-3,112  his3  trp1∆   rpd3::LEU2 

1108 MATα  ura3-52  leu2-3,112  his3  trp1∆   sap30::LEU2 

1187 
 

MATα  ade2-101  trp1-∆101  ura3-52  leu2-3, 112  his3∆200 

1188 
 

MATα  ade2-101  trp1-∆101  ura3-52  leu2-3, 112  his3∆200  
snr42::HIS3 
 

1189 
 

MATα  ade2-101  trp1-∆101  ura3-52  leu2-3, 112  his3∆200  
snr37::URA3 

 
 
Table 2: Yeast strains 
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Table 2: Yeast strains Continued 

Strain Description 
1190 
 

MATa  ade2-101  trp1-∆101  ura3-52  leu2-3, 112  his3∆200  snr10::LEU2 

1191 
 

MATα  ade2-101  trp1-∆101  ura3-52  leu2-3, 112  his3∆200  snr34::LEU2 

1192 MATα  ade2-101  trp1-∆101  ura3-52  leu2-3, 112  his3∆200  snr46::HIS3 
 

1316 MATa ade2-1 his3-11 leu2-3 112 trpΔ ura3-1 can1-100 spb1Δ::TRP1 pSEY18-
SPB1-OR19(CEN, URA3,Spb1) 

1317 MATa ade2-1 his3-11 leu2-3 112 trpΔ ura3-1 can1-100 spb1Δ::TRP1 p(CEN, 
LEU2,HASpb1DA) 
 

1318 MATα ade2-1 his3-11 leu2-3 112 trpΔ ura3-1 can1-100 snR52Δ::TRP1 
 

1319 MATa ade2-1 his3-11 leu2-3 112 trpΔ ura3-1 can1-100 spb1Δ::TRP1 
snR52Δ::TRP1 p(CEN, LEU2,HASpb1DA) 
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Appendix B: Plasmid List 
 
Strain  Description 
pJD375 0-frame control dual luciferase reporter test (DLR).  Described 

previously (Harger and Dinman, 2003) and Figure 3.6.  Harbors a URA3 
selectable marker. 
 

pJD376 -1 PRF test DLR.  Described previously (Harger and Dinman, 2003) and 
Figure 3.6.  Harbors a URA3 selectable marker. 
 

pJD 377 +1 PRF test DLR.  Described previously (Harger and Dinman, 2003) and 
Figure 3.6.  Harbors a URA3 selectable marker. 
 

pJD 419 0-frame control dual luciferase reporter test (DLR).  DLR cassette 
identical to that in pJD375.  Harbors a LEU2 selectable marker. 
 

pJD 420 -1 PRF test DLR.  DLR cassette identical to that in pJD376.  Harbors a 
LEU2 selectable marker. 
 

pJD 421 +1 PRF test DLR.  DLR cassette identical to that in pJD377.  Harbors a 
LEU2 selectable marker. 
 

pJD431 Nonsense suppression test DLR.  Contain the UAA premature 
termination codon.  Described in Figure 3.6.  Harbors a URA3 selectable 
marker. 
 

pJD 432 Nonsense suppression test DLR.  Contain the UAG premature 
termination codon.  Described in Figure 3.6.  Harbors a URA3 selectable 
marker. 
 

pJD433 Nonsense suppression test DLR.  Contain the UGA premature 
termination codon.  Described in Figure 3.6.  Harbors a URA3 selectable 
marker. 
 

pJD633 0-frame control dual luciferase reporter test (DLR).  DLR cassette 
identical to that in pJD375.  Harbors a TRP1 selectable marker. 
 

pJD634 -1 PRF test DLR.  DLR cassette identical to that in pJD376.  Harbors a 
TRP1 selectable marker. 
 

pJD635 +1 PRF test DLR.  DLR cassette identical to that in pJD377.  Harbors a 
TRP1 selectable marker. 
 

pJD642 Non-cognate tRNA misincorporation test DLR.  Described in Figure 3.6.  
Harbors a URA3 selectable marker. 
 

Table 3: Plasmid List  
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Table 3: Plasmid List Continued 

Strain  Description 
pJD643 Near-cognate tRNA misincorporation test DLR.  Described in Figure 3.6.  

Harbors a URA3 selectable marker. 
 

pJD676 Non-cognate tRNA misincorporation test DLR.  DLR cassette identical 
to that of pJD643.  Harbors a TRP1 selectable marker. 
 

pJD677 Near-cognate tRNA misincorporation test DLR.  DLR cassette identical 
to that of pJD644.  Harbors a TRP1 selectable marker. 
 

pJD699 Non-cognate tRNA misincorporation test DLR.  Described in Figure 3.6.  
Harbors a URA3 selectable marker. 
 

pJD700 Near-cognate tRNA misincorporation test DLR.  DLR cassette identical 
to that of pJD644.  Harbors a TRP1 selectable marker. 
 

pJD702 Non-cognate tRNA misincorporation test DLR.  Described in Figure 3.6.  
Harbors a URA3 selectable marker. 
 

pJD703 Nonsense suppression test DLR.  Contain the UAG premature 
termination codon.  DLR cassette identical to that of pJD43.  Harbors a 
LEU2 selectable marker. 
 

pJD704 Nonsense suppression test DLR.  Contain the UGA premature 
termination codon.  DLR cassette identical to that of pJD433.  Harbors a  
LEU2 selectable marker. 
 

p0 lacZ containing 0 frame control reporter for measuring  -1PRF using β-
galactosidase activity 
 

p-1 lacZ containing -1 frame control reporter for measuring  -1PRF using β-
galactosidase activity 
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Appendix C: Oligonucleotide List 
 
 
Name and 
Description 

Sequence 
5’ – 3’ 

Reverse sequencing 
primer 
 

TTCACACAGGAAACAG 

Universal sequencing 
primer 
 

GTAAAACGACGGCCAGT 

RPD3 sequencing 
oligo 1 
 

GCCGCATAGAATAAGAATGG 

RPD3 sequencing 
oligo 2 
 

GGTTCAAACACAGATCTATACG 

RPD3 sequencing 
oligo 2 
 

GCTGTCGTGTTACAGTGTGG 

PCR primer 1 
(forward XhoI) 
 

CCCCCTCGAGTGTCCCATATTTTGCCTTG 

PCR primer 2 
(forward PstI) 
 

CCCCCTGCAGTTGTCATGCTCAACATGTAGG 

PCR primer 3 
(forward KpnI) 
 

CCCCGGTACCTCATGTAGCCAATTGCTACAC 

PCR primer 4 
(forward SalI) CCCCGTCGACTCAAAATTAGCTCTCACCGC 

PCR primer 5 
(forward XhoI) 
 

CCCCCTCGAGTCAAATAAGTTGCATTGTTCG 

PCR primer 6 
(forward PstI) 
 

CCCCCTGCAGTCAAAAGCTATCCTGGCAGA 

Oligo H151A 
 GCTTCCGATTTTTTTGCAGCATGCAAACCACCCGC 

25-6 
Ribosome structure 
probing helices 93-89 
 

AACCTGTCTCACGACGG 

25-10 
Ribosome structure 
probing h89 
 

GGTATGATAGGAAGAGC 

 

Table 3: Oligonucleotide List 
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