PRA: Massively Parallel Heuristic Search

by M. Evett, |. Hendler, A. Mahanti, and D. Nau

TECHNICAL
RESEARCH
REPORT

SYSTEMS
RESEARCH
C E N T E R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 91-107

PRA*: Massively Parallel Heuristic Search

Matthew Evett* James Hendler! Ambuj Mahanti* Dana Nau®

University of Maryland

Abstract

In this paper we describe a variant of A* search designed to run on the massively
parallel, SIMD Connection Machine. The algorithm is designed to run in a limited
memory by use of a retraction technique which allows nodes with poor heuristic values
to be removed from the open hist, until such time as they may need reexpansion, more
promising paths having failed. Our algorithm, called PRA* (for Parallel Retraction
A*), is designed to maximize use of the Connection Machine’s memory and processors.
In addition, the algorithm is guaranteed to return an optimal path when an admiss-
able heuristic is used. Results comparing PRA* to Korf’s IDA* for the fifteen-puzzle
show significantly fewer node expansions for PRA*. In addition, empirical results show
significant parallel speedups, indicative of the algorithm’s design for high processor
utilization. .

Please address correspondence to:

James Hendler
Computer Science Dept.
University of Maryland
College Park, MD 20742

*Institute for Advanced Computer Studies and Compuier Science Department. E-mail:
evett@cs.umd.edu.

TComputer Science Department, Systems Research Center, and Institute for Advanced Computer Studjes.
E-mail: hendler@cs.umd.edu

}Systems Research Center, Computer Science Department, and Institute for Advanced Computer Studies.
E-mail: am@cs.umd.edu.

$Computer Science Department, Systems Research Center, and Institute for Advanced Computer Studies.
E-mail: nau@cs.umd.edu.

1 Introduction

The use of search is ubiquitous in the field of computer science. Problems such as computing
a traveling salesman tour, playing chess, solving the Tower of Hanoi problem, etc., can, in
principle, be solved by examining the nodes in a large search space. A major contribution of
research in the field of artificial intelligence has been the design of heuristic search programs
- programs that take advantage of informed guesses to guide the search. One of the best
known examples of the use of this technique is the solution of the “15-puzzle,” a sliding
blocks problem consisting of fifteen numbered, movable tiles set in a 4 X 4 frame. One cell
of the frame is always empty, thus making it possible to move an adjacent numbered tile
into the empty cell. The problem is to find a sequence (preferably optimal) of tile moves
that will transpose a given initial board position into a given goal position.

Heuristic search focuses on using information about the problem to guide the search. In
the fifteen puzzle, for example, a well known heuristic can be used to estimate the maximum
number of moves needed to get to a known goal from any board. Using this estimator,
search techniques can be designed that will produce an optimal solution, while searching
only a small portion of the search space. Among the best known of these techniques are
A* [18] and several of its variants [1, 17, 18, 19]. These algorithms use a combination
of the number of moves used in known partial solutions, added to the estimated distance
(the heuristic) from each partial solution to the target, to estimate how “promising” each
partial solution is. Paths are searched in order of this value; the most promising paths
searched first. In addition, the A* algorithm is guaranteed to return the optimal path
when the heuristic is “admissable” (that is, when the heuristic consistently underestimates
the cost of reaching the goal). Even using heuristics, the size of the search space can be
prohibitively large for many problems. For example, the number of search states in the 15
puzzle is 15!/2 > 239, Even with heuristic guidance, A*'s search may require examining
many millions, even billions, of board positions.

Given the large number of board positions that need to be searched, this problemn (and
others like it) would seem to be an excellent candidate for massive parallelism — the problem
would appear to be “embarrassingly” parallel. However, a major problem in producing a
parallel version of a heuristic search program is that in most applications of search, the
storage requirements of most of the well known heuristic algorithms grow exponentially
with some measure of the size of the problem. Thus, even using the large memories avail-
able across the many processors of massively parallel machines, it is still not feasible to
solve many interesting and useful problems. In A* and its variants, for example, the en-
tire explicitly generated search space must be stored prior to termination. To circumvent
the large storage requirement of A*.like algorithms, attempts have been made to design
algorithms that can run within limited available memory and yet produce optimal or near
optimal solutions. Unfortunately, most of these eflorts have produceéd algorithms that are
not amenable to massively parallel implementation.

In this paper, we discuss an algorithm called PRA* ({for Parallel Retracting A¥), which
was designed to run in a fixed-size memory and to exploit (SIMD) massive parallelism.
We describe! the algorithm and its implementation on the massively parallel Connection

YA preliminary description of PRA*, without most of the results discussed in the current paper. appears
in {4].

Machine. We present empirical results showing that PRA* examines fewer nodes than both
the best known (serial) limited memory algorithm (IDA* [8]) and a parallel implementation
(IDPS) of that algorithm. We also demonstrate that PRA* exhibits a near-linear speedup
with the addition of extra processors.

The rest of this paper is organized as follows:

1. Section 2 presents the details of RA* (a serial algorithm of which PRA* is a paral-
lelization) and PRA*.2

2. Section 3 discusses how the algorithm was programmed on the Connection Machine.

3. Section 4 discusses other algorithms related to RA* and PRA*, including IDA*,
MREC, MA*, IDPS, and P-IDA*.3

4. Section 5 presents experimental results for PRA*. It includes a comparison of PRA* to
a parallel version of IDA*, and parallel speedup results for PRA*. Section 6 discusses
these results and how they might apply to other search problems.

5. Section 7 contains concluding remarks.

2 The algorithm

In this section we present the details of a memory limited algorithin, PRA*, which has
been designed to run on a SIMD architecture-the Connection Machine (CM), in particular.
PRA* is able to examine a large number of nodes in parallel, while using a “retraction”
scheme to free memory when needed. As we will show below, PRA* will return an optimal
path if the heuristic is admissable.

2.1 Description of RA*

PRA* is a parallel implementation of a serial algorithm called RA* (Retracting A*).
Although this paper is about the parallel algorithm, in order to understand PRA* it is best
to first to look at RA*. Pseudocode for RA* is shown in I'igure 1. Appendix B contains the
outline of a correctness proof for RA*. The casiest way to explain RA* is in a comparison
to A*. Below we summarize the similarities and differences between RA* and A*:

1. Like A* RA* searches a state space that can be represented as a graph G in which
nodes represent states in the search, and arcs represent legal transitions between them.
G has a start node s and one or more goal nodes. A solution path is a path starting
at s and ending at a goal node. Each arc has a cost, and the cost of a path is the sum
of the costs of its arcs.

For example, in the 15-puzzle each configuration of the tiles is a node in the state
space, and a node p is connected 1o a node ¢ if and only if by sliding a single tile,
the board represented by p can be transformed into the board represented by ¢. The

In addition, Appendix B contains an outline of a proof of correctness for the RA algorithm.
°In addition, Appendix A contains evidence that the MA* algorithm is incorrect.

procedure RA*(s, M)

put s into T
g9(s):=0
g(s) =00

h(s) := h(s)
7(s) = g(s) + ()
loop
u := the expandable node for which f(u) is smallest,
resolving ties in favor of the most recently generated node
if u is a goal node then
return the path (s,. .., parent(parent(u)), parent(u), u)
else for each child v of u that is not already a child of u in T do
if v € T then Create-and-Install-Child(u, v)
else if g(u) + c(u,v) < g(v) then begin
f(parent(v)) := g(parent(v)) + g(parent(v))
Create-and-Install-Child(u, v)
end
if is a tip node then f(u):= g(u)+ g(u)
while 7' contains more than M — b nodes do begin
let v be the tip node of T for which f(v) is largest,
resolving ties in favor of the least recently generated node
Retract(v)
end
repeat
end RA*

procedure Create-and-Install-Child(u,v)
put v into T
parent(v) := u
h(v) := max(h(v), h(w) — c(u,v))
£(0) = gl0) + h(v)
g(v) =00 '

end Create-and-Install-Child

procedure Retract(v)
w := parent(v)
g(w) := min g(u), h{v) + c(u,v)
J{u) = g(u) + q(w)
remove v from T
il « is now a tip node then begin
h(w) := max(q(u), h(w))
f(w) = g(w) + h(u)
end
~end Retract

Figure 1: RA*
4

start node is the starting configuration of the tiles, and the goal node is the desired
configuration of the tiles. In the 15-puzzle, each arc has a cost of 1, so the cost of a
path is the same as its length.

2. Like A*, RA* ezpands each node t by generating its children. But unlike A*, it may
subsequently retract some of the generated nodes to free space. In RA*, a node t
is ezpandable if ¢t has been generated but has not been expanded, or if ¢t has been
expanded but some of its children subsequently have been retracted. In the latter
case, expanding ? consists of re-generating the retracted children.

3. Like A*, RA* requires a heuristic function h(t) that returns a lower bound on the
cost of getting from ¢ to the goal node. The definition of “cost” is domain-dependent.
For the 15-puzzle, the cost is the number of tile moves from the starting position, s.

4. Like A*, if RA* finds more than one path to t, it retains only a least costly one,
and maintains g(¢) as the cost of this path. The paths themselves are maintained by
having each node point to its immediate predecessor in the path.

5. Unlike A*, RA* does not require that the entire examined search space be stored in
memory. To cope with search spaces that are too large to be stored in memory, RA*
uses a retraction mechanism. When memory is needed, frontier nodes of the scarch
space are retracted, storing their f-values in their parents. If any of a node’s children
are retracted, that node becomes available for reexpansion, its f-value being set to
the minimum of those of its retracted children.

6. Like A*, RA* maintains an estimated cost, f(t), of the cost of getting from s to g
through ¢. However, in RA*, the initial value for f(¢) is not g(1) + h({) but instead
max(g(t) + h(t), f(parent(?))). Furthermore, if RA* ever retracts all of the children
of ¢, it updates f(?) to be the minimum of the f-values of the retracted children.

2.2 Description of PRA*

Pseudocode for the PRA* algorithm is shown in Figures 2 and 3. Below, we describe
the primary differences between RA* and PRA*.

Rather than keeping track of the generated nodes globally as A* and RA* do, PRA*
distributes these nodes over the local memory stores available to its processors. ITach
processor has a bucket capable of holding some fixed number of nodes (280 nodes per
bucket in the current implementation). As each node, t, is generated at its parent node’s
processor, it is installed in the search graph by assigning it to a processor (and thus to that
processor’s bucket). This is done using a hashing function H(?) that returns the address of
the processor to which 7 is assigned. The parent processor broadcasts ¢ to processor H(t),
wlich then installs the node in its bucket. Provided the hashing function is a good one,
the nodes will be well distributed across all processors, and the corresponding processing
load also will be well distributed. (The use of hashing functions for load balancing was
independently developed by Manzini and Somalvico in [14] and [15].) In fact, for all 1he
test problems we ran on PRA*, every processor of the CM was continually active after the
initial set-up phase.

<

procedure PRA*(s)
P := NIL
U:=x
tell all processors to empty their buckets
Initialize(s)
loop
for all buckets (i.e. processors) containing expandable nodes begin
select an expandable node t with lowest f-value,
resolving ties in favor of most recently installed
if ¢ is not the goal node then
for each child v of t such that ¢,(t) € {RETRACTED,NOT-GENERATED} begin
Create-Child(t, v)
¢y(1) := GENERATED
Install(v)
end
else if g(t) < U then.begin t is a goal node
U :=g(t)
P := the path from s to ¢
end
end
for every tip node ¢ such that g(¢) > U, Prune(t)
until the bucket is empty enough or it contains no tip nodes do begin
let u be the tip node with the largest f-value in the bucket,
resolving ties in favor of the least recently installed
Retract(u)
end
repeat

end PRA*

procedure Initialize(s)
parent(s) := NIL
h{s) := h(s)

g(s) =0

J(s) = h(s)

q(s) := 00

¢i($) := NOT-GENERATED, Vi
Install(s)

end Initialize

Figure 2: Pseudocode for the PRA* algorithm (Part 1).

procedure CreateChild(t,v)
parent(v) := 1 .
h(v) := max(h(v), h(t) — ¢(t,v))
g(v) = g(t) + c(t, v)
f((v)) := g(v)+ h(v) Same as max(f(t),g(v)+ h(v)).
q(v) 1= o0
end Create-Child

procedure Install(v, status)
send v to processor H(v) Collisions are possible here
for every processor receiving a v Note context shift
if the bucket is full then staius := OUT-OF-MEMORY
else if v is already in the bucket as v’ then
if g(v") < g(v) then status := CHEAPER-PATH-EXISTS

else begin New node offers cheaper path
Prune(v’)
replace v* with » in bucket
end
send status to processor H (parent(v))
if status = OUT-OF-MEMORY then Returned to original context
Retract(v) Retract and Prune are intra-processor here.

else if status = CHEAPER-PATH-EXISTS then Prune(v)
end Install

procedure Retract(v)
send v to processor I (parent(v))
for every processor receiving v Context shift
let u = parent(v) Retrieve parent from bucket.
¢(u) == min(q(u), (v) + ¢(u,v))
set ¢,(u) = RETRACTED
if ¢;(u) € {RETRACTED,PRUNED},V; w has no other children.
h(u) := max(g(u), h(u))
f(u) = g(u) + h(u)
remove v from bucket Returned to original context
end Retract

procedure Prune(v)
send v to processor I (parent(v))
for every processor receiving v ' Context shifl
parent(v) is stored in current processor’s bucket, and so is casily retrieved.
cy(parent(v)) := PRUNED

J(parent(v)) := g(parent(v)) + ¢(parent(v))
end Prune

Figure 3: Pseudocode for the PRA* algorithm (Part 2).

7

.\

Like RA*, PRA* chooses nodes for expansion on the basis of their f-values. But unlike
RA*, PRA* expands many nodes simultaneously. In particular, each processor selects from
its bucket an expandable node having the smallest f-value among the nodes in that bucket,
and expands that node. Because each processor expands the node that is locally the best, a
locally chosen goal node is not necessarily globally the best. Consequently, the first solution
path found by PRA* may not be optimal. To handle this situation, PRA* maintains two
global values: P is the best complete solution path found so far, and U is the cost of this
path. Any leaf node ¢ for which f(¢) > U is pruned. Once a solution is found, the algorithm
does not terminate until all nodes have been pruned. (Solutions are recorded as they are
found, so that the algorithm is free to prune the solution paths as well.)

Retraction does not occur in RA* until all memory is exhausted. In PRA*, however, re-
traction occurs whenever any one processor’s memory is exhausted. Unfortunately, because
the search space is distributed across all processors, it is possible for a bucket to become
filled with non-frontier nodes, and thus have no candidates for retraction. In particular, in
the last few lines of the INSTALL procedure (see Figure 3,) if the bucket is full then the node
to be installed, ¢, will instead be retracted, even if it has a better f-value than all the nodes
in the bucket. In almost all cases, this will only cause a temporary delay: as the algorithm
proceeds, a node will eventually be retracted from the bucket (because the f-value of the
frontier will eventually become larger than that of some leaf node in the bucket), so that
the next time #’s parent is expanded, ¢ will be installed. Nonetheless, in the current imple-
mentation of PRA*, a “full-bucket” condition theoretically can lead to deadlock state from
which PRA* will not terminate-¢ might be permanently locked out of the bucket. (RA*,
on the other hand, is guaranteed to terminate if a solution exists.)

The situations that could give rise to the kind of lockout described above are rather
bizarre. For example, lockout could arise if there is a subtree T' such that (1) all non-leaf
nodes in T are hashed to some set of buckets {iy,...,4x}, (2) these nodes completely fill the
buckets {i1,..., 4}, (3) the leaf nodes of T are all hashed to buckets other than {4y,...,4;},
and (4) upon expansion of any leaf node t of T, cach child of ¢ hashes to one of the buckets
{i1,...,ik}. If the hash function is a good one, the probability of occurrences such as
this are so low as to make it impossible in'any practical sense. PRA* can be modified to
check for such lockouts at the cost of extra memory or node expansions. However, given
the implausibility of such situations occurring (particularly in the 15-puzzle) the current
implementation doesn’t make such checks.

3 Implementation details

The implementation of PRA* on the SIMD connection machine was relatively straightfor-
ward. However, several aspects of the algorithm could be implemented in multiple ways.
While we generally did not try to optimize board expansion or other 15-puzzle specific code,
we did attempt to make best utilization of the processors, and to minimize the time spent
in interprocessor communication, bucket manipulation, and the pruning of non-leaf nodes.

3.1 Interprocessor Communication

Because PRA* distributes the nodes of the search space across all processors, the algo-
rithm requires frequent interprocessor communication. Some of these operations result in a
high degree of communication congestion at certain processors. This congestion can signifi-
cantly degrade run-time performance. * The overhead of dealing with such communication
congestion was significant in PRA*.

For example, in the first line of the Install procedure (Figure 3), every processor that has
created a new node (and that is usually every processor) attempts to send that node, ¢, to
its assigned processor, H(t). Because these broadcasts are simultaneous, many processors
will receive broadcasts from several others simultaneously. In the current implementation,
however, only one of these “colliding” broadcast messages gets through. The current im-
plementation uses a “transfer, acknowledge, retry” technique to deal with collisions. The
receiving processor acknowledges receipt to the successful sender. Processors receiving no
such acknowledgement rebroadcast their message until it gets through. Thus, it can take
many actual broadcasts (the average was six to nine for the 15-puzzle) to effect one abstract
broadcast.

To ameliorate the performance degradation resulting from the need for these multiple
broadcasts we split the process into two phases. In the first phase, the broadcast messages
consisted of only the address of the sending processors (16-bits). As described above, these
messages were subject to collision. As these messages arrived they were enqueued. In the
second phase, after all messages had been received, the processors iterated through their
queues, retrieving from the original senders the full node data structures (160 bits) of the
newly received children®. The retrieval process does not suffer message collisions.

The enqueing method requires more communication operations (because of the addi-
tional operations constituting the retrieval phase), but fewer large ones. This is important
because the run-time of send operations on the CM is proportional to the size of the message.
In most circumstances the run-time saved by using the smaller (16-bit) sends outweighed
the time required for the few additional larger (160-bit) ones. PRA* minimizes its losses
due to message collision by minimizing the size of colliding messages.

3.2 Bucket Manipulation

Bucket nodes are sorted and indexed with two keys, f-value and board position, to facilitate
the two most common reasons for accessing the buckets. Even with the double-indexing,
though, operations involving the buckets are slow because the CM does not provide efficient
address indirection. There is no operation to, “move the data at the address stored at
address X to address Y.

Address indirection can be accomplished through use of the CM’s sideways array data
structures, but these are fairly cumbersome, and the operations using them are slow.
Nonetheless, they are the best mechanism available, and PRA* uses sideways arrays to
represent buckets, and several indexing schemes (requiring a significant amount of memory)
to optimize sideways array operations. Even with oplimization, these operations comprise a

#We have discussed this elsewhere [5].
®The most recent release of *Lisp includes a send-with-queue operaiion, hut we've not yvet altered the
implementation to use it.

significant amount of the program’s run-time. It can be argued that this is the price to pay
for duplication detection. Nonetheless, if the CM could be modified to provide quick address
indirection (say, two to ten times slower than a standard move operation), we estimate that
PRA* would run at least ten times faster.

3.3 Messages to Pruned Nodes

Another implementation complication arose from our treatment of pruned non-leaf nodes.
Two situations can cause non-leaf nodes to be pruned: a cheaper path may be found to the
non-leaf node, t, or a solution node with a better f-value may have been found, prompting
PRA* to prune t. In either case, we decided not to prune existing descendants of t; to
traverse {’s entire subtree, scattered across many processors, for the purpose of pruning
the subtree, is too expensive an operation. Instead, these nodes remain in their respective
buckets. These nodes are left to prune themselves upon detecting that their parent node
has been pruned. Eventually, the “detached” descendants of ¢t may have reason to send a
message to their no longer existing (pruned) parent (usually to indicate to their parent that
they have been retracted or pruned.) For example, node ¢’ sends a message to its parent
node, t. The receiving processor (which had formerly held) detects that ¢ is not stored
in its bucket, and returns a message to this effect. Only then, having detected that it is a
component of a pruned subtree, does ¢’ prune itself.

4 Related Work

4.1 Serial Limited-Memory Heuristic Search Algorithms

As shown in [3], every admissible search algorithm must expand all surely cepandable nodes
before finding a solution. Since the number of such nodes often grows exponentially with
some measure of the problem size, every admissible search algorithm must either have an
exponential amount of memory in which to store these nodes, or else (if it operates in a
limited amount of memory) it must delete nodes that have already been generated and
possibly regenerate them later.

IDA* [8] was the first algorithm to solve 15-puzzles efficiently within limited memory.
IDA* is a tree-search algorithm, and works with graph search spaces by unfolding them into
search trees. IDA* is iterative, executing a depth-first search that is delimited by a threshold
that is increased atl each iteration. In each iteration, IDA* executes a depth-first search
from the root node until a goal node is found or all nodes with f-values within the current
threshold have been examined. If a goal node is not found, the threshold is incremented
and the search restarted (a new iteration) from the root node. Because IDA* simulates
the best-first search strategy of A* by using an underestimating threshold value, it it is
guaranteed to find an optimal solution under admissible heuristics. The space complexity
of IDA¥ is linear in the depth of the search tree. However, it is known that IDA* makes
significantly more node expansions than A* in practice. Thus, for problems where node
expansion time is significant, IDA* fares badly.

The algorithm MREC [24] is a variant of IDA*. MREC is a recursive marking algorithm
that maintains an explicit graph during the search. When it runs out of memory, it uses

10

N
¢

IDA* to increase the threshold value at its tip nodes and continue searching. Eventually
MREC finds a solution path in the explicit graph or with the help of IDA*. Thus, MREC
can use a larger initial memory than IDA*, but otherwise is not much different from IDA*.

MA* [2] is a significantly different algorithm for use with limited memory—it attempts
to optimize the use of memory during search. During each expansion phase, MA* generates
only one child of each node selected for expansion, only partially expanding that node. It
maintains an explicit graph and runs like any standard marking algorithm for networks,
such as MarkA [1]. As in MarkA, MA* performs bottom-up cost computations. When
out of memory, it selectively prunes nodes and arcs from the explicit graph. These pruned
nodes, and other partially expanded nodes can be reexpanded at a later time. It can be
shown that through bottom-up computation and selective generations of children, MA*
maintains the best-first node selection strategy of algorithm A*.

The significant differences between MA* and RA* concern how nodes are expanded and
selected for expansion. RA* fully expands nodes, installing all children of n in the explicit
graph. MA* on the other hand, installs only one child during each expansion. The order
in which MA* generates and installs the children of a node is determined by the relative
heursitic values of the children. Because of the different expansion techniques, the minimum
amount of memory required for MA* is L, and is bL for RA*, where b is the maximum node
branching-factor and L is the maximum number of nodes on any path that can be generated
by A*. With larger amounts of memory, RA* will run more and more like A*, behaving
exactly like A* if there is enough memory that no retractions are needed. In contrast,
because MA* generates only one of a set of sibling nodes at a time, it can reselect and
reexpand a node again and again to get all the children of that node—and this can occur
even when there is sufficient memory to hold all the siblings simultaneously.

MA*’s need to generate children selectively, and the bottom-up nature of its marking
algorithm, make it difficult to envision a massively parallel form of MA* without a fully
shared memory. Moreover, we have shown in a recent study citelimitations that MA* as
presented in [2] is incorrect. We briefly describe these results in Appendix A.

4.2 SIMD Heuristic Search Algorithms

While there has been great deal of rescarch into serial heuristic search, and some into coarse-
grained MIMD search® [6, 9, 23], research into SIMD search algorithms is just beginning.
Other than PRA*, the only attempts we know of to develop SIMD search algorithms have
been parallelizations of IDA* [20, 22, 10, 11].

The earliest attempt at a SIMD version IDA* was done by Powley and Korf [20]. They
parallelized IDA* by allowing individual processors to execute separate depth-first searches
to different thresholds (cost bounds). The first solution found is not guaranteed to be
optimal, so search continues until a better solution is found or until a solution is proven
to be optimal. This approach requires very little load-balancing, but the speedup result
obtained by this algorithm was only 707 (4.9% of the 16K processors used).

Threc more parallelizations of 1DA* were developed later: two versions of the P-IDA*

8Coarse-grained MIMD parallelization of IDA*, witl each processor searching to a different threshold,
has shown near-linear speed-ups, but only for small numbers of processors [23]. As the number of processcrs
increases, speed-up declines.

11

algorithm [22, 21], and the IDPS algorithm [10]. These, more recent efforts have had more
success. One of the versions of P-IDA* has achieved a 4600-fold speed-up on a 16K Con-
nection Machine [22], and similar results have been obtained for IDPS [10].

P-IDA* works by dividing up the search space into subspaces, each with its own “start”
node (which may be some distance away from the real start node). Initially, a single
processor is assigned to each subspace, to do an IDA*-style search of that subspace. But
after each threshold, more or fewer processors may be allocated to each subspace in order
to achieve load balancing.

IDPS differs from P-IDA* in three essential ways. First, IDPS uses a different static
load balancing strategy to initially distribute the subspaces across the processors. Second,
IDPS uses a different dynamic load balancing strategy which results in very high efficiency.
Third, IDPS offers two variations of node generation strategy, allowing the algorithm to
optimize its performance for different domains.

4.3 Comparing PRA* with the Parallizations of IDA*

IDA* stores only the current node and the path from that node back to the start node
s; and similarly, the parallel versions of IDA* store only the current nodes and the paths
from those nodes back to s. This technique requires- that IDA* and its parallelizations
regenerate many nodes many times over. These regenerations are necessitated in two ways.
First, whenever the threshold is increased, the search tree of the previous threshold cycle
must be regenerated. Second, any node t in the search space may be accessed along many
different paths. For the 15-puzzle, for exainple, most board positions (the exceptions are
those in which the “empty” tile is in a corner or on an edge) are accessible by a single
tile move from any of four adjacent board positions. Because IDA* and its parallelizations
maintain no history of which nodes have been previously examined, they must reexamine
the entire subtree of descendants of ¢ each time t itself is examined.

A* avoids this redundant work by storing all nodes as they are examined. This makes it
possible for A* to detect when a node is later reached via a path using a different adjacent
node. (We call this duplicate detection.) A* doesn’t reexamine the duplicate’s descendant
sub-tree unless it has discovered a cheaper path to the duplicate. The central problem with
A* is that the search space for most interesting domains is far too large to be stored in
memory. PRA*, rather than trying to solve a scarch problem with a minimal amount of
memory, as does IDA*, searches by oplimizing its use of memory. 1t maximizes its use of
available memory so as store as many of the previously examined nodes as possible, and so
nminimizes the need for redundant node examinations.

Unfortunately, in terms of run-time, the cost of duplicate detection in PRA* is quite
high. It necessitates PRA*’s use of general interprocessor communication (among the most
expensive operations on the CM) and the code to search each bucket for a duplicate when-
ever a new node is added. These two functions account for about 92% of PRA*’s run-time
on 15-puzzle problems (though some interprocessor communication would be required for
load-balancing in any case.)

PRA*’s load-balancing scheme is predicated on the need for duplicate detection. The
hashing function, because it is known to every processor, guarantees that a duplicate,
regardless of at which processor it was generated, will be sent to the processor holding the

12

'

original. Using a hashing function for load balancing has disadvantages. First, there is
no guarantee that nodes will be distributed evenly across the processors. The distribution
is a product of the hashing function and the search space. Second, the topology of the
hashing distribution has nothing to do with the topology of the search space itself. This
necessitates general interprocessor communication—as opposed to faster “nearest neighbor”
communication—for communication between processors representing nodes adjacent in the
search space.

Our main criticism of IDA* derivatives like P-IDA* and IDPS is that though they enjoy
a run-time speed-up with increasing numbers of processors, they do not benefit {from the
larger memory associated with larger parallel machines, and thus they do not do any less
total work. For example, Powley et al report [21] that P-IDA* required roughly the same
number (slightly more, actually) of node expansions to solve a problem as serial IDA*,
regardless of the number of processors. For some problems [7], IDA*’s number of node
expansions (and thus its runtime) can be as high as 2(2?"), where n is the number of node
expansions that would be done by A*. Thus, simply adding more processors to an IDA*-
like algorithm may not be enough to make a problem tractable. In view of this criticism,
it is of obvious interest to design a parallel algorithm that will become closer to A* as
more processors and their corresponding memory are added. PRA*, which is more like A*,
exhibits this behavior. n

Powley et al [21] argue that PRA* will enjoy less and less benefit from duplicate checking
as problem size increases. They claim that for large enough problems, the benefit to be
derived from the finite number of nodes that PRA* can store will become inconsequential.
This is far from obvious. Indeed, the opposite may be true.

It is true that as problem size increases, PRA* is able to store a relatively smaller propor-
tion of the search space, and thus must fail to detect an increasing number of duplicates. On
the other hand, PRA* will tend to store a large proportion of the higher (closer to the root)
nodes in the search graph. The value of such duplicate detection for such nodes becomes
increasingly important with larger problems because the benefits of avoiding duplicates are
exponential in the distance of the duplicate from a goal. Alternatively, it may work out
that the topology of the search space is such that the duplicates tend to be those nodes
that have not yet been retracted. The interaction between PRA*’s retraction mechanism,
and the topology of the search space would seem to be the main factor in the effectiveness
of duplicate checking in PRA*. We don’t believe that the simple proportion of search space
size to memory size is an adequate metric of duplicate-checking effectiveness.

5 Experimental Results

We have used the 15-puzzle to test the performance of PRA*. The algorithm is invoked
with a starting board position, and outputs the moves necessary to reach a given goal state.

The 15-puzzle is known to have a large search space. In [8] Korf presents the results
of running IDA* for one hundred random start states. The number of nodes expanded by
IDA* varies from several hundred thousand, to over six billion. The P-IDA* parallelization
of IDA* [22] achieves siinilar results. (P-IDA* requires about four percent more node
expansions than IDA*, on average.)

To test our algorithm, we have compared the performance of the IDPS algorithm (which

13

Figure 4: Comparison of PRA* and IDPS sorted by IDA* node expansions

Figure 5: Comparison of PRA* and IDPS sorted by solution path length

is similar to P-IDA*) against that of PRA* using a 16K processor CM-2 with a Sun-4 front-
end. In addition, we have run PRA* using different numbers of processors to examine
parallel speed-ups. For the heuristic function h we used the sum over all tiles ¢ of the
Manhattan distance from #’s current to its desired location.

5.1 Comparison with Parallel IDA*

It was our hypothesis that the design of PRA* would enable it to cxpand significantly
fewer nodes than IDPS when solving 15-puzzle problems. To test this hypothesis, we ran

PRA* and IDPS on 45 15-puzzle initial and target pairs for which known IDA* performance

has been published [8]. We then compared the number of node expansions performed by

IDPS with the number of node expansions (we use the term expansions to represent both

expansions and reexpansions) computed by PRA*.

Figure 4 shows the results sorted by the number of node expansions for IDPS (circles
represent the IDPS results, squares the PRA* results). As can be seen, PRA* made fewer
node expansions than IDPS for all but the smallest problems. For the 15-puzzle, as in
many search problems, solution length is a reasonable indicator of the difficulty in finding
an optimal solution, although there is a large variance. Figure 5 shows the same data as
the previous figure, sorted by the length of the optimal solution paths. Exponential curves
have been fit to both sets of data. As can be seen, the curve fit to the PRA* data appears
to indicate that PRA* performs exponentially better than IDPS (%2 for IDPS vs. %17
for PRA*). 1In the absence of any contrary evidence, it seems reasonable to anticipate
that PRA* will continue to require exponentially fewer expansions than IDPS for larger
problems.

5.2 Parallel Speed-up

For the Connection Machine (and other SIMD systems) computing speed-up is difficult as
the “single processor” case is often uncomputable, as is the case for PRA*. To run the al-
gorithm on a CM restricted to use only one processor would require a prohibitive amount of
CPU-time. For some algorithms, speed-up can be calculated indirectly by first calculating
the algorithin’s efficiency (as Powley et al did for P-IDA* in [22].) Unfortunately, this tech-
nique is possible only when the efficiency of the algorithm can be estimated directly. This
appears impossible for PRA* because the interaction between the retraction and hashing
mechanisms makes it difficult to determine what proportion of PRA*’s “work” (retractions

14

Figure 6: Speed-up comparisons (multiplier is 1000)

and expansions) would be germane to RA*’s.

To observe parallel speed-up, we calculated an adjusted speed-up which takes the 1000
processor computation as the base case, and computes run-time speed-ups with respect to
this number. Thus, although exact comparisons to a serial case cannot be computed (as
they could for coarse-grained MIMD algorithms) an approximation of a speed-up eflect can
be computed.

Figure 6 shows graphs of adjusted speed-up vs. 1000’s of processors for four different
fifteen puzzles of increasing difficulty (the number of expansions for the 16K processor case
is displayed for each graph). As can be seen, relative speed-up appears to be linear with the
number of processors. For small problems, though, this linearity can plateau at a saturation
point. Such problems do not present enough work to adequately utilize all the available
processors. The addition of more processors doesn’t hasten the solution of the problem.
As the number of nodes to be searched increases, the number of processors at which this
saturation occurs also increases. As shown in Figure 6, by 800K expansions we are already
seeing the saturation disappearing for the 16K processor case. For the 1.6M expansion
problem, the saturation effect is completely absent. This leads us to believe that larger

* puzzles, which can require tens of millions of insertions, will not exhibit this saturation
effect even for significantly larger SIMD machines. Consequently, we believe PRA* will
scale-up well to larger problems and machines.

6 Discussion

Heuristic search algorithms may be divided into two groups: graph-search algorithms (which
do duplicate detection) such as A*, C [1], Graphsearch [18], MIMD Parallel] A* [9] and
PRA*, and tree-search algorithms (which do not do duplicate detection) such as IDA*,
MREC, MA*, P-IDA*, IDPS and MIMD Parallel IDA* [23]. The choice of whether to use
a parallel graph-search algorithm such as PRA* or a parallel tree-search algorithm such as
IDPS or P-IDA* depends on the problem domain. There are two major features of the
domain which will affect the space-time tradeoffs: node expansion time, and how heavily
the domain is “latticed”.

6.1 Node Expansion Time

For domains in which expansion time dominates run-time performance, such as some rep-
resentations of the Traveling Salesman Problem, a graph-search algorithm such as PRA*
is to be preferred over an IDA* derivative. PRA*’s strength is that it tries 1o minimize
the total number of expansions needed to find a solution. This strength offers the biggest
returns in such a domain. ,

In domains where node expansion is relatively simple, an IDA* derivative, like IDPS,

15

may be best. Of course, the topology of the search space is an important factor, too. If the
search graph is heavily cross-linked or latticed, the amount of redundant reexaminations of
search subtrees in IDPS may outweigh any savings in avoiding duplicate checks.

6.2 Search Space Topology

For domains which are not heavily latticed, and in which expansion time is relatively in-
expensive, a tree-search algorithm such as IDPS is probably the best choice. There, the
run-time savings due to duplicate checking are not as significant as they might be for more
complex domains. The 15-puzzle is such a domain, and thus we expected IDPS to run faster
than PRA* on this problem. Empirical studies confirmed this, with IDPS running about
ten times as fast as PRA* for the problem suite featured in 5.7

In heavily “latticed” domains the sheer amount of redundancy avoided by duplicate-
checking may outweigh the time spent discovering the redundancies. In such cases, the num-
ber of nodes expanded by algorithms such as IDA* and IDPS (which do not do duplicate-
checking) can sometimes be as high as ©(2%27), where n is the number of nodes expanded
by algorithms such as A* which do duplicate-checking [7]. PRA*, which does as much
duplicate-checking as possible within its memory restrictions, will tend toward A*’s perfor-
mance characteristics. Thus in such cases, PRA* may still outperform IDPS even if node
expansion is cheap.

7 Conclusions

In this paper we have presented PRA*, an algorithm for heuristic secarch that takes ad-
vantage of the SIMD architecture of the CM. The algorithm has some of the advantages
of a best-first search such as A*, while still functioning within a limited memory. To en-
able it to operate in limited memory, PRA* uses a process of retraction (and possible later
reexpansion) of nodes with poor f-values.

We have shown empirically that PRA* expands significantly fewer nodes than parallel
implementations of IDA*. In addition, PRA* is designed to maximize processor utilization
on SIMD architectures, and empirical results show that it promises to be scalable to larger
and more complex search problems.

Acknowledgements

This work was supported in part by an NSF Presidential Young Investigator award for Dr.
Nau with matching funds from Texas Instruments and General Motors Research Laborato-
ries, NSI Equipment grant CDA-8811952 for Dr. Nau, NSF Grant NSFD CDR-83003012
to the University of Maryland Systems Research Center, NSF grant IRI-8907890 for Dr.
Nau and Dr. Hendler, and ONR grant N00014-88-K-0560 for Dr. Hendler. Matthew Evett

"This comparison is somewhat unfair to PRA*, because our implementation of IDPS used a heavily
optimized node expansion routine and our implementation of PRA* did not. Our IDPS node expansion
routine ran several times as fast as our PRA* node expansion routine. If we had recoded PRA¥* to use
the same node expansion routine we used in 1DPS, its runtime would have been much closer to what we

observed for IDPS.

16

is supported in part by a DARPA/NASA assistanceship administered through the UM
Institute of Advanced Computer Studies.

References .

[1] Bagchi, A. and Mahanti, A. Three approaches to heuristic search in networks JACM
32, (1985)

[2] Chakrabarti, P, Ghose, S, Acharya, A. and De Sarkar, S. Heuristic Sreach in restricted
memory AI Journal, 41 (1989)

[3] Dechter, R. and Pearl, J. The Optimality of A* in Kanal, L. and Kumar, V. (eds)
Search in Al, North-Holland.

[4] Evett, M., Hendler, J., Mahanti, A. and Nau, D. “PRA*: A Memory-Limited Heuristic
Search Procedure for the Connection Machine,” Proceedings of The Third ILEE Sym-
posium on the Frontiers of Massively Parallel Computation, College Park, Maryland,
October 1990, pp. 145-149.

[5] Evett, M. and Hendler, J. Run-Time Performance Degradation of Interprocessor Com-
munication Operations on the Connection Machine. Technical Report (forthcoming),
Dept. Computer Science, Univ. Maryland, College Park, 1991.

[6] Ferguson, C. and Korf, R. “Distributed Tree Search and its Application to Alpha-
Beta Pruning,” Proceedings of The Seventh AAAI National Conference on Artificial
Intelligence, Saint Paul, Minnesota, August 1988, pp. 128-132.

[7] Ghosh, S. Doctoral Thesis (in preparation), University of Maryland.
[8] Korf, R. Depth First Iterative Deepening AI Journal, 27 (1985)

[9] Kumar, V., Ramesh, K. and Rao, V.N. “Parallel Best-First Search of State-Space
Graphs: A Summary of Results,” Proceedings of the Seventh AAAI National Confer-
ence on Artificial Intelligence, Saint Paul, Minnesota, August 1988.

[10] Mahanti, A. and Daniels, C.J. “SIMD Parallel Heuristic Search,” Technical Report
('S-TR-2633, Computer Science Department, University of Maryland (March, 1991).

[11] Mahanti, A. and Daniels, C.J. “A SIMD Approach to Parallel Heuristic Search,” Work-
shop on Parallel Computing of Discrete Optimization Problems, Univ. Minnesota, May
22-24, 1991.

[12] Mabanti, A. and Ray, K. “Network Search Algorithms with Modifiable Ileuristics,” in
Kanal, L. and Kumar, V. (eds) Search in AI, North-Holland, 1988.

[13] Mahanti, A., Nau, D., and Ghosh, S. “Limitations of Some Limited-Memory Algo-
rithms,” Technical Report, Computer Science Department, University of Maryland
(forthcoming).

17

[14] Manzini, G. and Somalvico, M. Probablisitic Performance Analysis of Heuristic Search

Using Parallel Hash Tables, extended abstract, Proceedings of the International Sympo-
sium on Artificial Intelligence and Mathematics, Fort Lauderdale, FL, January, 1990.

[15] Manzini, G. and Somalvico, M. Probablisitic Performance Analysis of Heuristic Search
Using Parallel Hash Tables, submitted to Annals of Mathematics and Artificial Intel-
ligence.

[16] Nau, D., Mahanti, A., Evett, M. and Hendler, J. “RA*: A Memory-Limited Heuris-
tic Search Algorithm and its Parallel Implementation,” Technical Report, Computer
Science Department, University of Maryland (forthcoming).

[17] Nau, D., Kumar, V., and Kanal, L. General Branch and Bound and its relation to A*
and AO*, AT Journal, 31 (1987).

[18] Nilsson, N. Principles of Artificial Intelligence, Tioga, CA (1980).
[19] Pearl, J. Heuristics, Addison-Wesley, MA (1984).

[20] Powley, C. and Korf, R. SIMD and MIMD parallel search, Working notes of the 1989
AAAIT Spring Symposium on Planning and Search, Stanford, CA (1989)

[21] Powley, C., Korf, R. and Ferguson, C. IDA* on the Connection Machine. Interna-
tional Workshop on Parallel Processing for Artificial Intelligence (PPAI-91), Sydney,
Australia, August 24-25, 1991.

[22] Powley, C., Korf, R. and Ferguson, C. IDA* on the Connection Machine. Workshop on
Parallel Computing of Discrete Optimization Problems, Univ. Minnesota, May 22-24,
1991.

[23] Rao, V.N., Kumar, V., and Ramesh, K. A Parallel Implementation of Iterative-
Deepening-A* Proceedings of the Sizth National Conference on Artificial Intelligence
(AAAI-87).

[24] Sen, A. and Bagchi, A. Fast Recursive Formulations for Best-First Search That Allow
Controlled Use of Memory Proceedings IJCAT-89 {1989).

A Incorrectness of MA¥*

Let G be a tree. Then the set Vi of the surely ezpandable nodes of G is defined inductively
as follows:

1. G’s root node s is surely expandable.
2. A node n in G is surely expandable if its parent is surely expandable and f(n) < h*(s).

We let Ng = |Vg|-

It is well known [3] that if X is any admissible best-first tree-search algorithm, G is a
tree, and n is any node of Vg, then X must generate all of n’s children at least once. Thus,
if we let

No=1+ Z |children(n)|

REVG

(where the “1” accounts for the generation of the start node s, and children(n) is the number
of children of node n), then Ny is a lower bound on the minimum number of nodes that
must be generated by X before finding a goal node in G. In particular, if MA*(0) is a
correct algorithm, then it must generate at least Ny nodes when searching G.

Given any tree G, one way to find No is to count the total number of node generations
by IDA* during its second-to-last iteration. As shown in Table 1, we have done this for the
same twenty problems on which MA*(0) was tested in [2]. As can be seen from the table,
in nine of the twenty problems, MA*(0) generated fewer than Ny nodes, indicating that it
must have behaved incorrectly.

The above is sufficient to show that MA* is not a correct algorithm on trees. In [13],
we show that MA* has even more serious problems when it is run on graphs. In particular,
there are some graphs on which MA* can cycle forever.

19

i

Table 1: Nodes generated by MA¥*, versus Nj.

Problem Ng Nodes genera- Comments
number ted by MA*(0)

5 9076121 5888141 too small
10 136960269 103014250 too small
15 183139862 270016222
20 10118748 11221801
25 62924032 59056169 1too small
30 843100 898573
35 27608527 29600698
40 51195292 34010298 too small
45 2200221 2396522
50 9074587 17989651
55 182869 454994
60 1784841518 1663093494 too small
65 6260108 9993039
70 94422429 83188268 too small
75 33333029 © 727922714 too small
80 20494715 36964227
85 575359 1426580
90 4415745 6328404
95 3219560 3012939 too small

100 29662470 19221994 too small

B Correctness of RA¥*

Below is an outline of a proof that RA* is guaranteed to terminate with an optimal solution,
provided that the following conditions are satisfied:

1. The heuristic function h is admissible, i.e., h(n) < h*(n) for every node n € G.
2. (G contains at least one solution path.
3. There is a number § > 0 such that the cost of each arc is no less than 6.

4. M > bL, where b is the maximum node branching-factor and L is the maximum
number of nodes on any path that can be generated by A*.

The first three conditions above are identical to the conditions required for A* to terminate
with an optimal solution. The fourth condition is necessary in order to guarantee that RA*
has enough memory to run to completion.

We will present the details of this proof in [16]. The intuitive logic for this proof is
presented below.

Let P be any solution path in the state space . We define

pathmmax(P) = max{f(n){n is a node of P},

20

and
Q= }r.pég pathmax(P).

A solution path P’ is called a Q-min path if pathmax(P’) = @ and cost(P’) =
min{cost(P")|pathmax(P”) = @Q}. As an immediate consequence of this definition, G
is guaranteed to have at least one -min path Fy. Note that if & is an admissible heuristic,
then Q@ = h*(s).

Consider the point where RA* selects a node u for expansion, and let P} be the portion
of Py that RA* has generated so far. From the definition of Py, it follows that the tip node
p of P} has f(p) < Q. Therefore, since RA* always selects the node u for which f(u) is
smallest, it follows that f(u) < Q.® This guarantees that if RA* terminates, it returns an
optimal solution.

To show that RA* terminates, we note that when a node n is selected for expansion, a
depth-first search below that node continues (by the “most recent node” selection strategy)
until all generated descendants of n have f-values greater than some tip node of 7' not
below 7. If any descendant of n is ever retracted, its g-value is propagated upward (i.e., to
ancestors), and this value is reflected in the h-values that are propagated downward when
nodes are regenerated. This prevents the algorithm from oscﬂ]atmg (i.e., generating and
" retracting the same node again and again).

#For more details about this kind of arguent, the reader is referred to [12].

21

10000

—O— PRA*
i o daab —#— IDPS
1000 = i~ ofo a 7'0 hpr]
5 SRR AT HT
m - Ha Q Q o u"‘ ()
O mH,-.DEJS () ()
2 100-FEEET
g 1004 i
g]
Y]
10
14

~ Problems (ordered by IDPS run-time)

Figure 4: Comparison of PRA* and IDPS
performance sorted by IDPS node expansions

Expansions

1000000000

100000000

O Avg IDPS expansions
O Avg PRA* expansions

10000000

100000 4+
40 45 50 55 60 65
Solution path length

Figure 5: Comparison of PRA* and IDPS,
sorted by path length (curves of best fit

are far all dafta nnintc)

PRA* appears to require exponentially
fewer expansions than IDPS

Speed-up (1000 processor base case)

it
oo
1

i |

] !] i

18

16 M 634,794 expansions 18 O A
145 2 163+ m 803,845 expansions
4 31 n
125 2 147
] 8
10 5 12~
8- S 10
6_ (] &, g
. a .L § ; B R
4 Z
i Em 2, ™ .T
2 ‘ >] n -
1. 8 u
0 Ln o g T LEELAN ILZR SN2 SSLI OO S S B S G e o e e % 2-. .
° N v e wgaxygn W
lll[lll LA LI LB LR LIRS LERILY LBRS
S I B
164 M 918,990 expansions 18 I —T———T—T—1T
] 816 M 1,638,690 insertions
14 g 107
] o] .
12 2 144 oy
g]
10 - -~ 5 12 N
8— . 810_ .
] ol L. 8 o]
6 ¥ D
42 - m S 64 =
] o,
21 m W 2 4 i .
im g mEEN
O+ttt & 27—
S v e woazgw IN
1000's of processors S N TV ow o AT o o®
1000's of processors
Figure 6:

Some speed-up graphs for PRA*

Speed-up appears to be linear in the number of
processors.

