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Abstract :

" Polynomial matrices over fields and rings p?ovide a unifying framework for many
control system design problems. These rinclrude dynamic compensator désign, infinite di-
mensional systems, controllers for nonlinear systems, and even controllers for discrete event
systems. An important obstacle for utilizing these powerful mathematical tools in practical
applications has been the non-availability of efficient and fast algoritms to carry through
the precise error-free computations required by these algebraic methods. Recently, with
the advent of computer algebra this has become possible. In this paper we develop highly
efficient, error-free algorithms, for most of the important computations needed in linear
systems over fields or rings. We show that the structure of the underlying rings and
modules is critical in designing such algorithms. We also discuss the importance of such

algorithms for controller synthesis.

1. Introduction

The theory of polynomial matrices [8,21,23] plays a key role in the frequency-domain
approach to the synthesis of multi-input/multi-output control and communication systems
[13,24,25]. Examples include coprime factorizations of transfer function matrices, canon-
ical realizations obtained from matrix fraction descriptions, design of feedback -compen-
sators and convolutional coders, and the an:alysis of quantization effects in linear systems.
Typically, such problems abstract in a natural way to the need to solve systems of gen-
eralized Diophantine equa'tions,‘e.g.', the so-called- Bezout equatioﬁ [6,15,19,22]. These
and other problems involving polynomial matrices require efficient polynomial matrix tri-

angularization procedures [16], a result which is not surprising given the importance of
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matrix triangularization techniques in numerical linear algebra. There, matrices with en-
tries from a field can be triangularized using some form of Gaussian elimination. However,
polynomial matrices have entries from a polynomial ring, an algebraic object for which
Gaussian elimination is not defined. For matrices with entries from a polynomial ring
which ié Euclidean—the kind encountered most often in control theory applications—
triangularization is accomplished instead by what is naturally referred to as Euclidean
elimirnation.,v Unfortunately, the numerical .stability and sensitivity issues of Euclidean
elimination are not Wéil understood and in practice floating-point aléithmetic has yielded
poor results. At prese;nt; a reliable numerical algoritﬁm for the trianguiarizafion of po}y- '

nomial matrices does not exist.

This paper presents algorithms for polynomial matrix triangulariéation which entirely
circumvent the numerical sensitivity issues of floating-point methods through the use of
exact, symbolic methods from computer algebra [5,14,20]. Often one encounters the com-
ment that since in practical problems the numerical coefficients are not known precisely,
computer algebra methods are at a disadvantage from a practical point of view. However
this is a misconception. Whether we know the coeflicients accurately or not is not the
issue. The real issue in using these algebraic methods is to what extend we can perform
the required computations within the accuracy of the model data. Existing floating point
methods are poor, highly sensitive and often lead to large errors; essentially since they
suffer from the same problems as computing zeroes of polynomials. The use of exact,
error-free algorithms guarantees that all calculations are accurate to within the precision
of the model data—the best that can be achieved. Furthermore one can calculate with such
algorithms the exact sensitivities involved and therefore judge appropriately the confidence
one should place on the results. Previous computer algebra algorithms for polynomial ma-
trix problems appearing in control systems have been reported in [11]. Their performnce
was very slow even on small size probléms. We place emphasis on efficient algorithms to
compute ezact Hermite forms of polynomial matrices. The triangular, or more correctly,
trapezoidal Hermite form is defined for any matrix with entries from a principal ideal ring
[21,23].  Such matrices arise in many practical problems in communications and control.

" Here we shall focus on matrices having entries which are polynomials with rational coef-
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ficients. An important aspect of the exact triangularization of such matrices involves the
choice of arithmetic. We consider the tradeoffs between rational and integer arithmetic
and choose the latter. This choice leads us to consider algorithms for the division of poly-
nomials over a unique factorization domain (UFD). The standard algorithmn for this task
is well-known [3,4,7,18] and defined more generally for polynomials with coeflicients from
any cémmutative ring with identity. This algorithm is well-suited to the scalar problem of
GCD computation of polynomials 6ver UF Ds since it avoids the computation of GCDs of
the coeflicients. In ’phe‘contexi; of polynomial matrix triangularization ihowever, it becomes
unavoidable to exploit ‘the richer structure of the coefficient ring: the fact that GCDs are
defined on a UFD. As a result we present an alternative to the standard algorithm special-.
ized to polynomials over UFDs but enjoying a certain optimality property which is crucial
to the efficiency of matrix triangularization procedures.

We have implemented algorithms to compute exact Hermite forms of polynomial ma-
trices in the MACSYMA and Mathematica computer algebra languages. We have also
written a suite of auxiliary programs which call on these triangularization procedures in
order to perform the more high-level tasks arising in the frequency-domain approach to
control system synthesis. We conducted simulations with MACSYMA code running on
Texas Instruments Explorer II and give performance results for the triangularization of
polynomial matrices. The algorithms presented here have time performance which is three

orders of magnitude better than algorithms known earlier to control engineers.

2. Facts And Terminology of Polynomials and Polynomial Matrices

In this section we draw upon standard material from modern algebra [10,12]. Denote
by Q[s] the ring of polynomials in the indeterminate ‘s’ with coefficients drawn from
the field of rational numbers, Q The subring Z[s] of Q[s] results when the polynomial
coefficients are restricted to lie in Z, the riné of integers. The leading coefficient of a
prolynomial is the nonzero coefficient of its highest degree term. By convention, the leading
coefficient of the zero polynomial is defined to be one,-and its degree is taken to be —00.
If the leading cocfficient of a polynomial is one, then the polynomial is said to be monzc.

If a(s) in Z[s] is a polynomial of degree zero, then a(s) is said to be a wnit of Q[s], i.e.,
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(a(s))™! is in Q[s]. Obviously, the units of Q[s] are precisely the units of @, namely,
@\ {0}. A polynomial a(s) in Z[s] is called primitive if its coeflicients are relatively prime
in Z, ie., if the greatest common divisor of its coefficients is a unit of Z, namely +1.
For any a(s) in Z[s], there exists a non-zero scalar ¢, in Z, unique up to its sign, and a
primitive polynomial p,(s) in Z[s], such that a(s) = ¢, -po(s). The pair (cq,pa(s)) is called
a content-primitive factorization of a(s); with slight imprecision ¢, is called the content of
a(s) and pa(s) its primitive (with respect to ¢, ). A collection of polynomiéls in Z[s] having
contents which are relatively prime is said to be relatively primitive. A polyéomial p(s)
divides a polynomial ¢(s), Writtén p(8)|q(s), if there exists c(s) such that p(s) c(s) = q(s)
A common divisor, CD, c(s) of {p,-(s) 12 =1,...,n} is a polynomial such that c(s)|{p,(s)}
A greatest common divisor, GCD, g(s) of {pi(s)} is a CD of {p;(s)} such that c(s)|g(s)
for any other CD, c(s), of {pi(s)}.

Denote by M[Q[s]] the collection of m X n matrices with entries from ([s]. Similarly,.
M][Z][s]] will denote the subset of M[Q{s]] when the entries are resticted to lie in Z[s]. We
call A(s) in M{[Q[s]] a polynomial matriz. Letting R denote either Z[s] or Q[s], A(s) in
MI(R] is said to be nonsingular if A(s) is square (mn = n) and det A(s) is not the zero
polynomial. A nonsingular polynomial matrix, U(s) in M[R] having a determinant which
is a unit of R is a unit of M[R] and is said to be unimodular (with respect to M[R]).
In this case therefore, U(s)™ = Adj U(s)/det U(s) is itself a polynomial matrix and also
unimodular with respect to M[R]. When the ring R also happens to be a field, the concepts
of unimodularity and nonsingularity conincide, but keep in mind that in the general ring
case 1t 1s unimodularity that coincides with the usual notion of invertibility.

A row of a polynomial matrix A(s) in M|[Z]s]] is said to be primitive if its polynomial
entries are relatively primitive; A(s) is said to bé row (left) primitive, if every row is
primitive. For any A(s) in M[Z[s]], there exists a diagonal matrix Cu in M[Z] and a
row primitive matrix Ps(s) in M[Z]s]]-such that A(s) = Ca - Pa(s). This we call a left
content-primitive factorization of A(s). The diagonal elements of C'4 are called the row
contents of the respective rows of A(s). By ailalpgy with the scalar case, a content-primitive
factorization is obviously unique only up to the choice of the signs of the row contents.

Two polynomial matrices 4;(s) and 1;12( s) in M[Q[s]] (or polynomial vectors if m =1
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or n = 1) are said to be linearly dependent if there exists a coefficient of proportionality
a(s)/b(s) in the field of rational functions such that A;(s) = a(s)/b(s)Az(s). Hence A,(s)
and Aj(s) are linearly dependent if there exist a(s) and b(s) in Q[s] such that b(s)A;(s) -
a(s)A2(s) = 0. This leads to the simple generalization that a finite collection of polynomial
 matrices is linearly depéndent if and only if there exists a nontrivial linear combination
of them employing only polynomial coefficients which equals the zero polynomial matrix.
With this in mind, élementary row and column bperationé for polynomial matrices in
M[Q]s]] take the form: i 7
7 1. interchange of any two rows; ‘

2. addition to any row a polynohial multiple of any other row;

3. multiplication of a row by a nonzero rational.
Performing any of the above operations on an identity matrix results in an elementary
matriz E(s) in M[Q]s]]. Clearly, each such E(s) is unimodular as is its inverse and also
the product of any number of elementary matrices. Conversely, every unimodular matrix is
a product of elementary matrices. Two polynomial matrices A(s) and B(s) are said to be
row equivalent if each can be obtained from the other using a finite sequence of elementary
row operations. In other words, they are related by left multiplication with a unimodular
matrix U(s) such that B(s) = U(s) A(s) and A(s) = U™1(s) B(s).

Every m X n polynomial matrix A(s) in M[Q]s]] is row equivalent to an upper tri-
angular form (or upper trapezoidal form if m # n). Therefore, it can be reduced by a
sequence of elementary row operations to an upper triangular (trapezoidal) matrix H4(s)
in M[Q[s]]- In fact, there exists a unimodular matrix U(s) such that U(s) A(s) = Ha(s)
with H 4(s) satisfying the following conditions:

1. Each entry below the diagonal is identically zero;

o

. Each nonzero diagonal entry has degree greater than the entries above it;

3. Each diagonal entry is monic. | “
We say that Ha(s) is a column monic-Hermite form of A(s). To state conditions more
- precise than these concerning the s’truct>u1‘e‘ of H 4(s) requires the notion of the rank of
a polynoﬁﬁal matrix which we omit. This omission is forgiveable in that rank should

not enter into an exact triangularization algorithm. Indeed, exact rank information for
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polynomial matrices is often obtained most efficiently through triangularization.

A column integral-Hermite form can be defined in terms of the column monic-Hermite
form. Letting H4(s) denote a column monic-Hermite form for A(s) in M[Q][s]}, multiply
each row of H,4(s) with the respectively smallest positive integer such that the matrix

H',(s) so obtained is in M{Z[s]]. Clearly, '(s) is row primitive and row equivalent to
A(ras). Conversely, suppose that one is given H';(s) satisfying conditions (1) and (2) above
which is row pirimitiVe and row eduivalenfs to A(s). Divide each row of H "A(s) by the leadingr
coefficient of the polynomial on the diagonal of the respective row and call the matrix so
obtained HA(s). Then clearly there exists U(s) ﬁniinodular such that U(s)A(s) = Ha(s)
and H 4(s) is a monic-Hermite form of A(s). This concept of column integral-Hermite form
gives a triangular form in M[Z[s]] for each matrix in M [Q[s]]- If A(s) is nonsingtﬂa,r then
it can be shown that its monic-Hermite form is unique and therefore its integral-Hermite

form is also unique.

3. Triangularizing Polynomial Matrices

The upper triangularization of matrices with entries from a field using a sequence of
non-singular elementary row operations plays a key role in the application of the theory
of vector spaces. Likewise, the upper triangularization of matrices with entries from a
ring using a sequence of unimodular elementary row operations plays a key role in the
application of the theory of wvector modules. Recall that the axioms defining a vector
module (or matriz module or simply module) over a ring R are the same as those defining
a linear vector space except that linear combinations employ scalar coefficients from a
general ring R without the restriction that R also be a field. Thus a vector space over a
field F', V(F), is precisely the matrix module over the ring F, M(F). We only decal with
matrix modules over commutative rings (with identify) so there is no need to distinguish

_module handedness. We employ the notation M[A](R) to denote the m xn matrix module
over the ring R with matrix entries from the additive abelian group A; for the case M[R}(R)
we have been writing ]VI[Rj. Using this notéti‘on.we point out that M[Q](Z) is a module
but that M[Z](Q) is not. We also warn the reader that M{Z][s]] is not a submodule of

| M[Q[s]); a module M[B](R) is said to be a submodule of a module M[A](R) if B is an
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additive subgroup of A and for each bin B, rbis in B for all r in R. Thus, M[Z][s]] is a
submodule of M[Q]s]](Z[s]).

Computing triangular (trapezoidal) forms of matrices can be accomplished on any ma-
trix module of the form M[R] where R is an integral domain, i.e., a commutative ring with
identity having no zero divisors [1,2,17]. However, this cannot in general be accomplished

'usinig only unimodular (i.e., inverfiblé) operations. Nevertheless, the transformation to an
u.f)]p'er triangulaf form using unimédular elementary row opératibns can be performed quite
stxja,ightfor\;vardly——in theory at least—on any mafrix with entries from a fype of integral
domain called a Euclidean ring, for instance on a ﬁ'étrix from M[Q[s]]. The key feature
that Euclidean rings enjoy is the Euclidean division property which we state for Q[s]. Given
polynomials a(s),b(s) in @Q[s] there exist two unique polynomials, the quotient ¢(s) and
the remainder r(s), such that b(s) = ¢(s) a(s) + r(s) end degr(s) < dega(s). Often this
property is stated under the assumption that dega(s) < degb(s) since the proof for the
case deg b(s) < degaf(s) is trivial: choose r(s) = a(s) and ¢(s) = 0. The Euclidean division
lemma for a general Euclidean ring R has a statement which differs from the above only in
that polynomial degree, the ring valuation for }[s], is replaced by the ring valuation for R;
for R = Z (the case considered by Euclid) the ring valuation is integer absolute value. The
fact that the inequality on the degrees of a(s) and r(s) is strict allows one to introduce a
zero into a polynomial matrix using elementary operations. As an example, consider an
attempt to introduce a zero into the (2,1) position of a 2 X 2 polynomial matrix. Suppose
one has found ¢(s) and r(s) as in the division lemma such that b(s) = ¢(s) a(s) +r(s) and

then computes,

, <—(11(8) (1)> (Zg; fl%i%) - (ig; d(S)f(qS()S)C(S)>

using an ébviqusly unimodular pre-multiplication. N(;tice that the degrée of the (2,1)
entry has Been decreased by at least one. By interchanging the rowé, the same procedure
can now be repeated on the 7resulting matrilx and itefated, each step reducing the degree
of the (2,1) entry in view of the strict degree inequality. This process consists entirely of

unimodular premultiplications and clearly cannot continue iﬁdeﬁnitely without yielding a
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constant in the (2,1) entry. If the constant is not zero, one final row exchange and the
obvious elementary row operation will introduce a zero into the (2,1) position. Moreover,
one can show that the resulting polynomial in the (1,1) position will be the GCD of
the original polynomials a(s) and b(s). The use of this process to introduce zeroes into

polynomial matrices we call Euclidean elimination by analogy with Gaussian elimination.

4. Integer vs Rational Arithmetic

The above example also serves to illustrate the fact that rational arithmetic is costly.

For instance; to calculate the coefficients of polynomials of the form d(s) — q(s) c(s) with

¢, d, g in Q[s], one encounters the generic computation a + B+ with «, 3,7 in Q. If these
N* NP N7?

rationals are expressed as ratios of integers @ = 5=, B = {7, ¥ = v, all reduced to

lowest terms, then

N® DA DY+ N8 Nv D

atyo= D= DF D

This computation requires six integer multiplications, one integer addition and the calcu-
lation of a GCD. Although there are more efficient methods [17], it remains a fact that
rational arithmetic is computationally expensive, due in large part to the need for GCD
calculations. On the other hand, if it can be arranged so that «, and v are all integers,
then the same computation obviously requires only two integer multiplications, one integer
addition and no GCD calculation. Thus, our goal is to carry out matrix triangularization
on M[Q[s]] using only integer arithmetic. Clearly, by multiplying each row of any A(s) in
M[Q[s]] by a large enough integer, the denominators of every coefficient of every entry of
A(s) can be cancelled and such a diagonal operation is certainly unimodular in M[Q[s]].
Again, this computation can be arranged more efficiently but because it involves a fixed
| overhead, assume for convenience that A(s) is given in M[Z][s]].

Unfortunately, this creates new difficulties because Euclidean elimination is not de-
fined for M[Z[s]] since Z[s] is not a Euclidean ring. For instance, it is éasy to sce that
the remainder of two polynomials in Qs] Wi"ﬁh integer coefficients has, in gencral, rational
coeflicients; consider the refnainder of 2s after division by 3s—1. In other words, Euclidean

‘ divisioi} is not defined for Z[s]. However, Z[s] is an instance of a polynomial ring with
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coefficients from a commutative ring with identity and for such a ring one has the pseudo-
division lemma, a natural generalization of the Euclidean division lemma. Let C denote a
commutative ring with identity. Given a(s) and b(s) in C[s] with dega(s) < degb(s) there
exist two polynomials, the pseudo-quotient q(s) and the pseudo-remainder r(s), such that
L b(s) = g(s)a(s)+7r(s) and degr(s) < deg a(s) where the premultiplicr L = ag8’ 98 H!
with ag denofing the leading coefﬁciént of a(s); The pseudo-quotient and pseudo-remainder
are uniqué if C' is also an integral domain. The proof of the pséudb—division lemma yields
a division procedur’é called péeudo-division which like Euclidean division enjoys the all- ‘
~ important striétrdegree reduction property; see [18] for the étandard pseudo-division algo-
rithm. — |

Let’s consider an example in which we wish to pseudo-divide b(s) by a(s) where,
b(s) =¥+ 8 —3s*—3s% 482 +25-5
and
a(s) = 3s% 4 55t — 4s% — 95 + 21.

Applying the standard pseudo-division algorithm one obtains,
27b(s) = (9% — 6) a(s) + (—15s* + 3s* — 9),

ie., L = 387571 =27 ¢(s) = 9s? — 6 and r(s) = —15s* + 3s* — 9. This example appears
in [18] as one step in the task of computing the GCD of b(s) and a(s). The next step is
to divide out the content of r(s) and then compute the GCD of a(s) and p,(s) exploiting
the fact that ged(b(s),a(s)) = ged(a(s),p-(s)). The purpose of this content removal is to
keep the size of the coefficients small for purposes of efficiency in succeeding calculations.
However, consider the above computation in the context of a matrix triangularization—our

2 x 2 example will suffice:

(ko 2) (5 63) - () v S

In this situation we see that we are not at liberty to blindly divide the entire second row

by the content of r(s) (or any integer for that mattef) because it may introduce rational
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coeflicients in the (2, 2) entry and thereby ruin our attempt to maintain integer arithmetic.

However, note that another solution to the above pseudo-division example is,
9b(s) = (35> — 2) a(s) + (—5s* + s — 3),

i.e.,, L = 27 is not necessarily the smallest premultiplier for which a “pseudo-quotient”
rzmd—“pseudo—remainder” exist. Obviously, in the matrix case, “L = 9” yields better results
Athan L = 27 since it yﬁelds smaller coeflicients in the second row. Of com:se in this example
the d.i:fference is negligible, however, if the size of the leading coefficient of a(s) is large,
7t;hé difference in computational burden can be quite substantial. Moreover, as we shall see

below, keeping the size of all coefficients as small as possible is a primary goal.

5. Pseudo-division for Polynomials over a UFD

It is apparent that there are smaller (and larger) premultipliers, L, than the one
defined in the pseudo-division lemma. Now the pseudo-division lemma is the best that one
can do in general for polynomials over a commutative ring with identity. But be aware that
the concept of ‘smaller’ referred to in the pseudo-division example is inherited from the fact
that Z is also a unique factorization domain (UFD). Recall, a UFD is a commutative ring
with identity which has no zero divisors and admits prime factorizations. Let U denote
a UFD. One can think of v in U as being “smaller” than u' in U if u is a divisor of u'.
For the problem of pseudo-division of polynomials a(s), b(s) in U[s], what we scek is the

smallest premultiplier L, in U such that if there exist L in U and ¢, r in U[s] satisfying,
Lb(s) = q(s)a(s) +r(s) and degr(s) < degaf(s),

then L, divides L and ¢.(s), r«(s) in U[s] exist such that,

| L,b(s) = q*(é)a(s) + r*<s) andr | degr.(s) < deg q(s)L

A representation for L, is easy to obtain. Let U’ denote the field of quotients of U
and consider U as embedded in U'. The field of quotients of a ring is defined for any ring

which is an integfal domain and thus is defined for any UFD‘; for example Q is the field
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of quotients of Z. Consider a(s), d(s) in U[s] and therefore in U'[s] in the sense of the
embedding. It is a fact that U'[s] is a Euclidean ring since U’ is a ficld and polynomial
rings over fields are Euclidean. Therefore by the Euclidean division lemma there exist o(s),

p(s) in U'[s] such that,
b(s) =e(s)a(s) +p(s)  and deg p(s) < dega(s).

Now write o(s) = n(s)/D for n(s) in Uls] and D in U with D and the content of n(s)

relatively priine in U. Then,

D b(s) = n(s) a(s) + D p(s) ;and deg D p(s) < dega(s). -

Clearly, D p(s) is in U[s] so that one must conclude that L., ¢.(s), and r.(s) repectively
differ from D, n(s) and D p(s) by at most a unit of U. Thus, we may choose L, = D
and this suggests one method to compute L, and then by uniqueness ¢«(s) = n(s) and
re(s) = D p(s). Letting L = a38"7°8*+! (assuming dega(s) < degb(s)) and making an
appeal to the pseudo-division lemma it is not hard to show that L, = L/ gcd(L, ¢,) where
¢, denotes the content of the pseudo-quotient for the premultiplier L. Finally note that,

ng(Lv Cq) = ng(ng(a07 qo)a ng(ao, QI), LR ng(a07 Qn—m))-

Although this gives us a representation for L,, it does not lead to the most efficient
computation for L, due in large part to the fact that the coefficients of ¢(s) are already
too “big”. Thus what we want is an efficient algorithm to compute L., ¢.(s) and r.(s).
The algorithm given next computes the Ly, ¢«(s) and r.(s) as discussed above. It is a
distinct improvement over the pseudo-division lemma given in [18] in that it computes
with smaller numbers. It does so by exploiting the richer structure of polynomial rings
with coefficients from a UFD but at the cost of both generality and GCD calculations.

However, in the matrix problems we cornsiderrthis cost is unavoidable.
Algorithm M - Pseudo-division of Polynomials over a UFD

Given two nonzero polynomials b(s) = bos™ + bys" ! + oo + b, and a(s) = ags™ +
a;s™1 4 et an, in Uls] with m < n, this algorithm computes the smallest L., pseudo-

quotient ¢.(s), and pseudo—rémainder r«(s) as discussed above. It coinputes L., q«(s), and
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> numbers than first

r+(s) directly by computing GCD’s on the fly. This involves “smaller’
using the pseudo-division algorithm and then computing GCDs as outlined above. Bigger
numbers cost more in GCD calculations and given the size of the integers encountered in
polynomial matrix computations, e.g., easily greater than 1000 digits, this algorithm can

save a substantial amount of time. For simpler notation we drop the ‘asterisk’ subscript

in the algorithm’s definition.

BEGIN: L -
 mnm « min (m, 7;1--— m)
g — GCD(by,a0)
l—ay/g
L1
by — bo/g
For i = 1 thrun — m Do
For y =1 thrun —m Do
bj —b; 1
EndDo
For j =1 thru min(mnm,n —m —:+1) Do
bjticy < bjpic1 —ajxb;
EndDo
g — GCD(b;,ao)
l—ay/yg
L« Lxd
b; < b;/g
‘ndDo
END

The algorithm terminates with the first n — i + 1 coeflicients of b(s) overwritten accord-
ing to {bo, 51, e bn_,'n-} —{q0,91,---,qn—m } and the remaining coefficients over written

according to {by—my1,---, bn} —{ro, ey Tmo1}-

Algorithm M - Proof of Correctness



The informal language description of Algorithm M basically implements the following

recursion for k = 0,1,...,n —m,

bD(s) = i(s);
gk = ged(ag, b3 V);

Ik = ao/9k; 7
=8l -
b®(s) = 1 65D (s) ~ pi a(s).

Observe that deg b(k)(s) < deg b(k"l)(s) for k =0,1,...,n — m because lj bgk_l) = pi ay
(where bgk) of course denotes the leading coefficient of b*)). Hence, degb®~™(s) <
deg a(s). From the algorithm’s definition we sce that ry(s) = b(*~™)(s) and L, = [[r—q lk-

Solving the recursion above we obtain
8™ () = Lyb(s) — (poli +  lnems™ ™™ + -+ + Pucm—1ln—ms + Pnm) a(s)-

The algorithm therefore yields,

n—m L* i
Q*(S) = Z ( T ) Pk Sn——m——k,
k=0 Hi—_—O li

whence,

L, b(s) = q«(s)a(s) + r(s) and degr.(s) < dega(s),

with Ly in U and ¢«(s), r«(s) in U[s]. Thus the algorithm indeed computes a valid solution;
next we show that it is optimal. Supposer there exist another L in U and ¢(s), r(s) in Uls]
such that, V

L b(s) = gq(s)a(s) +r(s) and deg r(s) < dega(s).
Then by commutativity L. Lb(s) = L L, b(s) implies,

(L u(s) = Lu g(s))a(s) = Lur(s) — L1a(s).
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Since there are no divisors of zero in a UFD this gives,
deg(L q+(s) — Ly q(s)) + deg a(s) = deg(Ly 7(s) — Lr.(s)).
Since deg( Ly m(s) — Lr(s)) < max{degr(s),degr.(s)} < dega(s) it must be true that,

deg(L gu(s) = Lu g(s)) = =00, -

‘and therefore L, q(s) = L g¢«(s)- By equating coeflicients we obtain, -

L. \ . S
) L(Hk l)pk:L*qk k=0,1,...;,n —m,.
\lli=oti/ '

so that,

k
QkHli:PkL k=0,1,...,n—m.
i=0

For k = 0 we get lopgo = Lpo and therefore lo|Lpy. However, from the definition of the
algorithm Iy and py are relatively prime in U, or coprime, and so in fact ly|L. For k =1

we get lolign = Lpy and therefore [y l(%)pl Again, by construction [; and p; are coprime

and so llll%. In general we have [, and p; coprime and l1qr = (E'Ifk—_l)pk so that for

k =mn — m we obtain,

L
by ——
o

n—m—1

As a result Iy -+ 1,_,,|L and therefore L,|L. QED

6. Pseudo-Euclidean Elimination

The introducton of a zero below the diagonal of a matrix A(s) in M[Z[s]] can now be
performed using Algorithm M. This procedure we shall call pseudo-Eﬁclidrean elimination
(PSEE) for obvious reasons. Consider triahgularizing the matrix:

1 8 - s

A(s) = 45s  —10s—10 3s° +s+ 10
T—5s 6s*—1 ~ 4s2-10

14



Pseudo-Euclidean elimination yields,

7577325 0 —1351755s% 4 137394052 — 51025505 — 7152750 \
-0 89145 —43605s% + 77103s% — 2341895 — 35190
-0 0 3706425s* — 5202000s% + 1853212552 4+ 156710255 + 7152750

and this illustrates the main diéadvantage of triangularization on M|[Q[s]] performed over
M|[Z][s]]—the coefficient growth of the polynomials. As the number of rows and columns
in the matrix increases, this coefficient growth continues unabated and begins to erode
the advantage of using integer arithmetic. One approach to handle this new source of
coefficient growth is to remove the content of the current row after each pseudo-Euclidean
division step. It is better to remove the row content as soon as possible in this way
rather than waiting due to the cost of computing GCDs of large integers, nevertheless, we
illustrate row content removal for the current example. Factoring the above matrix into a

left content-primitive form C4 H',(s) yields,

765 0 0 9905 O —1767s® + 1796s* — 6670s — 9350
0 9 0 0 9905 —4845s% + 8567s* — 26021s — 3910
0 0 65025 0 0 57st — 80s + 285s% + 241s + 110

The superfluous left content of this matrix can then be discarded since this is equivalent to
multi]_,)lyingrA(s) by C;lithgreby keeping the coeffcient size to a minimum. We emphasize
that C4 is unimodular with respect to M[Q[s]] but not with respect to M[Z[s]]. We stress
that up to the signs of the_rentries across the rows H'(s) is the sameA matrix which would
have resulted had we employed row content re’moval after each pseudo-Euclidean division
step and that this is the more efficient strategy. Note that the above polynomial matrix

H' (s) is nonsingular and in column integral-Hermite form and that therefore the unique
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column monic-Hermite form of A(s) is obtained directly from H,(s) as,

(1 0 _ 17675° 4 179652 1334s _ 1870

9905 5905 1981 1981

— 969+ | 8567s%  26021s _ 782

Ha(s)=10 1 1987 T 905 9905 1981
0 “- 0 R 84 803 + 5 + 2413 + 15170

We see that PSEE prov1des an efﬁc1ent trlandularlzatlon procedure for f\/f [Z[s]] but,
- str 1ct1y speaking, PSEE modlﬁed Wlt‘l content factorization is not a valid trlano ularization
procedure for M[Z[s]] because content femoval is not a unimodular operation in M{[Z[s ]]
On the other hand, augmenting PSEE with content factorization is a unimodular opera-
tion for M[Q[s]} and yields an efficient triangularization procedure for M|[Q][s]] by avoiding
rational arithmetic while maintaining integers of the smallest possible magnitude through-

out an elimination. An analogous remark can be made about any pair of modules of the

form M[U[s]] and MI|U'[s]] as discussed above.
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7. Algorithms for Triangularizing Polynomial Matrices
Algorithm T — Column-Oriented Triangularization of Polynomial Matrices

Given an N X N nonsingular matrix A € M[Z]s]], this algorithm overwrites A with a
triangular form obtained by a sequence of unimodular, elementary row operations. It
avoids rational arithmetic by using pseudo-division as defined in Algorithm M in order
to achieve maximum computational efficiency with minimum coefficient growth. In ad-
dition, it further inhibits cbefﬁcieﬁt érowth by factoring out the:row content after each
' Apseudo~Euc>lidéan— division step. This algorithm operates in a column oriented fasl;ion by
“successively zeroihg out the entries in each column below the diagonal. This-is shown

pictorially below.

8 8 8 8 R
8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
1
S CcC O OoOR
8 8 8 8 8
8 8 8 8 &8
8 8 8 8 8
8 8 8 8 8
!
O OO o8
cC oo K 8
SO K8 8 8
o8 &8 8 R
8 8 8 8 &8

Assume there exists a pre-defined function
MinimumDegreelndex(A, k) := argmin{deg Ay x,...,deg An 1}

which returns the index of the row of A whose k!* entry is a non-zero polynomial of lowest
degree among the rows {k,k +1,... N}. If Ag x(s) = Agq1,6(s) = Ani(s) =0, then it

returns —oo, the degree of the zero polynomial by our convention.

BEGIN:
For k = 1 thru N-1 Do
index ]\lim'mumDegreé[nde:v(A, k)
If index # —oo Then
A, & Ainder,. (exchénge. TOWS k and index)
For n = k 4+ 1 thru N Dp (zero out all entries in colurﬁn k below Ak,k)
EndlessLoop

num «— pseudo — quotient(An i, A k)

17



denom « pseudo — remainder(An g, Ag )
A, denom x A, —numx Ay
An,. — An,.[GCD{content(An,),...,content(An N)}
If A, 1 =0 then exit EndlessLoop
Ay, & Ag,,
End EndlessLoop 7 ] ,
~ EndDo - . » : - 7 ; )
EndIf ‘ ; -
EndDo
End

It is emphasized that this is a ‘paper’ algorithm. In fact, the working code based on the
above is more efficient and can handle singular (we have not defined the notion of rank
of a polynomial matrix here) and non-square matrices and the entries can initially belong
to Q[s]. However, these programming considerations just complicate matters and obscure

the basic operation.

Algorithm P — Principal Minor-Oriented Triangularization of Polynomial Matrices

This algorithm is similar to the one above except it performs the zeroing process in a
leading principal minor oriented fashion so that the algorithm consists of N — 1 stages
where the k X k leading principal submatrix is in a triangular form by the end of the
k" stage. Furthermore, the algorithm employs an additional substage which reduces the
degrees of the polynomial entries above the diagonal on the fly using pseudo-division as in
Algorithm M. The order in which the degrees are reduced is important and is based upon
notions from [16] for triangularizing matrices in M[Z]. The order is shown picﬁorially

below.

T r T T z x 1 2 z =z x 2 3 z 2z
z x z T x- 0 =z =z z =z 0 2 1 2 =z
z z x z 2| —={zxz 2 z  z|—=10 0 2z 2 =z
T r x T Z T T T x Z ' T r r T T
T T T T r xr x T T T T T :1:/



|
R OO OoOR
8 O O8
82 O 8 NG
8 8 =W
8 8 8 8 &

|
oo o oR
oo o8 R
OO K8 & 8
o8 8 8 8
8 8 8 8 &

The output matrix is in column integfal—Hermite form, not simply triangularized as in
Algorithm T, but with the entries above the diagonal ,(;f degree less than the diagbnal entry.
Clearly, the monic column Hefniite form is easily obtained by left multiplication i:v‘vith the
appropfiafe di—agonal matrix of ‘ratio:nal numbers, a unirm_odula'r matrix with respect to

M[QEs). | : -

BEGIN:
For £ = 2 thru N Do
For n =1 thru k — 1 Do (triangularize the k x k'® leading principal minor)
If deg A, n > deg Ag n Then Ax — A,
EndlessLoop
num « pseudoquotient( Ay n, An )
denom «— pseudoremainder(Ag n, Ann)
Ay, denom x Ag, — num* Ay |
Ag, — Ax, /|GCD{content(Ay1),...,content( A n)}
If A, # 0 then Ag,. « A, . else Exit EndlessLoop
End EndlessLoop
End Do
For i = —1 thru —k +1 step —1 Do (reduce degs of abv diag polys in k x k** minor)
For j =i+ 1 thru 0 Do ’
If deg Agtiky; > deg Apyjr4; Then
num «— pseudoq“uotient(AkQ,kﬂt, Akk;-{-j,kk:i-j)
denom «— plSGUdOT@TVTLCLZ'nd‘eT(Ak.H,k+—j,Akk+j,kk+j)
Apgi,. & denom x Ay —numx Agyj.

Apyi, — Apyi /GCD{content(Aryi1), - ,content(Agyi N)}
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EndIf
EndDo

EndDo
EndDo
End

We close this section by noting that in Both Algor?'tﬁm T and Algorithm P each
pseudo-Euclidean division step affects the entire row and the row céntent is removed after
each division step . Alternatively, one could solve a écalar Bezout identity for each ééro
to be introdrﬁcéd using pseudoédiizisién techniques and then I;_)erform' a single elementary
row operation followed by a the-row content is removedrow content removal. However, the
single row content of the latter method will be much larger than any of the “elementary”
row contents computed by Algorithm T or Algorithm P. This makes the alternative method
much less attractive than at first glance in light of the fact that computing the many “small”

row contents is more efficient than computing the single “large” row content.

8. Simulation Results

Simulations were performed to determine the average time required to triangularize
a square polynomial matrix and the maximum coeflicient length of the output matrix
using both Algorithm T and Algorithm P (see attached graphs). The maximum coefficient
length is the number of digits of the largest (in absolute value) coefficient appearing in
any polynomial entry of the output matrix. Each matrix had polynomial entries with
randomly generated integer coefficients uniform on [—99,99]. Runs were parameterized by
the dimension of the matrix, which ranged from 2 to 16 and the maximum degree of its
polynomial entries, chosen uniformly on [0, degreemax], as degreemax ranged from 1 to 6.

These simulations were conducted on a Texas "Intruments Explorer II with 16 mb of
physical mémory and 128 mb of virtual Nemory running at’ 40 MHz using the MACSYMA
version of our algorithms. The graphs represent the results of th_e simulations averaged
over H runs. The results indicate that Algorithm T was moderately faster than Algorz:thm
P in triangularizing matrices up to 9 x 9. At that point-Algorithm T was still faster for

triangularizing matrices with lower degree polynomials; but slower in the higher degree
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polynomials. This can be attributed to the fact that Algorithm P requires less memory
during computations due to its substage which reduces the degrees of the polynomials
above the diagonal on the fly. Therefore costly garbage collections, a technique of freeing
dynamically allocated memory, are reduced.

It appears that both of these algorithms run close to exponential time. The slopes
of the semi-log plots of the timings increase slightly With incréasing polynomial degree.
The maximum coeflicient length was apprqximatély the saﬁxe for-each algorithm and tlie
cocfficient growth appears to be sub—‘expone;ltia,l with increésing matrix dimension. A
16' X 16 matrix witl{ degree 6 polynomials is the largest that has béen attempted with
Algorithm P. It required 40 hours to triangularize with the resulting matfix having a
maximum coefficient length of 2115 digits. |

Although Algorithm T was faster than Algorithm P on the smaller matrices, it did not
Lave the overhead of putting the matrix into a canonic form in the process; Algorithm P
transforms the input matrix into the canonic integral-Hermite form as described earlier.
The output matrix of Algorithm T therefore requires the application of an auxilliary algo-
rithm to reduce the degree of the polynomial entries above the diagonal in order to put it
in strict integral-Hermite form. Of course this is not necessary if one is only interested in
rank information.

If one keeps in mind the fact that our simulation results were run on full, random ma-
trices, which tend to yield worst-case performance, then these simulations indicate that our
algorithms in their current state are ideally suited for problems in which max{m,n} < 9.
Such problems include many practical control system designs, textbook problems in a
classroom/lab environment, and empirical error analyses involved in research for alterna-
tive apporaches to the machine computation of triangular forms of polynomial matrices
based on other arithmetics such as floating-point or residue arithmetirc'[fi)]. For larger
problems, our code ‘can be modified in various ways to yield approximate results in much
less time while providing some degree of error control. For instance, after"thc integer co-
cfficients have reached a certain presp_eciﬁéd, maximum size, the triangularization can be
interrupted momentarily and the matrix A(s) in M[Z[s]] at its current state of triangu-

larization can be converted to an associated matrix A'(s) in M[Q][s]] by premultiplication
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with a diagonal matrix in M[Q]. The matrix A'(s) can then be “floated” to any desired

decimal precision and then re-expressed as a matrix in M[Q[s]] and finally converted back

Z|[s]] to continue the triangularization. An ad hoc technique such as this is certainly
approximate but if done properly can yield better results than the ad hoc floating-point
techniques currently used. Refinements of this idea for Algouthm P with error bounds
and simulation results W111 be appear elsewhere.

V\/e also compared our Hermite algorithm to the built-in Hermite algomthm included
with the Scratchpad II and Maple computer algebra packages. Onabxd example generated

randomly as above our code ran over 100 times faster.
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9. Summary of Functions

MACSYMA is a Lisp based system for performing formal, symbolic calculations using
both error-free and arbitrary artihmetic. Since it is Lisp based, MACSYMA runs the
fastest on Lisp machines - computers which have Lisp instructions hard-coded into their
‘microprocessors, such as the Texas Iristruments Explorer II. Mathematica is a relatively new
computer algebra system written in >‘C’ which has capabilities similar to MACSYMA. We
have been running M athematica on a NeXT machine. If an input matrix has polynomials -
with decimal or floating-point coefficients, the coefﬁcients must first be rejéxpressed as
I:atibs of copﬁme integér's——both MACSYMA and Mathematica have efficient, built-in
functions to do this. |

The following is a summary of the high-level auxiliary programs which we have to
date implemented in MACSYMA and Mathematica. They perform most of the common,

high-level tasks arising in the frequency-domain approach to control system synthesis.

o IightMatriz Fraction(H(s)) — Computes a right matrix fraction description of the
transfer function matrix H(s), i.e., computes the matrices N(s), D(s) such that H(s) =

N(s) D(s)™'. The LeftMatrixFraction description is analogously computed.

» Bezout(N(s),D(s)) — Finds the homogenous and particular solutions to the Be-
zout equation, i.e., finds polynomial matrices X,(s),Y,(s), X1(s),Ys(s) such that
Xp(s) X(8) +Yp(s) N(s) =TI and Xp(s) X(s)+ Ya(s) N(s) = 0. Used for designing
feedback compensators in the frequency domain.

o ColumnReduce(D(s)) — Column reduces the polynomial matrix D(s), i.e., multiplies

D(s) by an appropriate unimodular matrix such that the matrix of leading coefficients

of its entries is nonsingular. RowReduce is analogously computed.

-e Clontroller(H(s)) — Finds a controller form realization of the transfer function ma-
trix H(s). Controllability, Observer and Observability realizations are analogously

computed.

o Hermite(N(s)) — Finds the canonic column Hermite form of the polynomial matrix

P\I(S).
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RightCoprime(N(s), D(s)) — Determines the greatest common right divisor of the
polynomial matrices N(s) and D(s). If it is not unimodular, it is factored out of
both matrices making them right coprime. Used for finding minimal realizations.

Left Coprime is analogously computed.

Smith(N(s)) — Finds the Smith form of the polynomial matrix N(s). This is a
canonic, diagonal form of a polynomial matrix. SmithMcM illan(H(s)) — Finds the
Smith-McMillan form of the transfer function matrix H(s). This is a canonic, rational,

diagonal form of a matrix whose entries are ratios of polynomials.
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