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We study granular particles, like sand or glass beads, that are mixed in a par-
tially filled, horizontal, cylindrical drum. When the drum is rotated, it is observed
that there is a flowing layer of grains on the free surface of the granular medium.
In addition, if the particles have different sizes, spatial segregation of the particles
by size is obsurved. This segregation occurs in two phases. During the first phase,
called radial segregation, the smaller particles form a radial core. In the second,
called axial segregation, particles segregate into alternating bands along the axis of
the drum.

We perform a detailed study of the characteristics of the flow to determine
the physical mechanisms driving axial segregation. We characterize the top surface
of the flowing layer by tracking particles using a high speed camera. We then
extract average quantities such as velocity and diffusion. The average velocities
show surprising behavior: Particles in small particle bands have a higher downhill
flow velocity than particles in large particle bands. We also observe that there is a

pattern of sideways velocity as a function of position down the flow. Particles flow



into small particle bands in the middle of the flow but flow out of small particle
bands at the bottom.

We present the framework for a new model based on our experimentally ob-
served results. We explain the axial band formation in terms of the observed surface
flow patterns. We show how two physical processes could contribute to the band
formation: A.) Accelerating granular material does not necessarily collide while de-
celerating granular material requires collisions. B.) Different size particles flow at
different velocities. Our framework connects differences in flow velocities on the
surface of the drum with the radial segregation in the bulk of the drum.

We compare these results to current models, including models by Savage, Zik,
Aranson, and Elperin. We test the general model assumption that the particles
always flow in the direction of steepest descent by measuring the surface height of
the banded state with a laser line. We find that although there is some indication
that particles flow in the direction of steepest descent, there is strong flow that is
not in the direction of steepest descent, contrary to the given models.

Finally, we study oscillating patterns in mixtures of three sizes of glass beads.
Ternary mixtures of particles form bands within bands of the different particle sizes.
For certain experimental conditions we observe traveling and oscillating patterns.
We analyze these patterns in light of the different models for granular band forma-

tion.
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Chapter 1

INTRODUCTION

1.1 Sand and Granular Physics

Granular materials are common to our everyday experience. We played with
them in the sandbox and at the beach as children. We empty them out of our shoes,
and try to keep them out of our carpets. They make up much of our food and fill our
pharmaceutical pills. We pile them up and we make walls out of them (especially
if you live in Massachusetts). Granular materials is a general term that refers to a
large class of systems that interact only through direct particle-to-particle contact
forces and no, or very limited, attractive forces. Common granular materials include
sand and rocks, powders and mixtures of glass and steel balls and various foodstuffs
like nuts and corn.

Granular materials appear to be very simple in nature, yet exhibit a variety of
strange and unexpected behavior. From simple sandpiles to powerful avalanches, we
can observe rich and complex dynamics. Granular materials cluster and segregate
when you try to mix them [1, 2]. They ‘remember’ the forces that have been applied
to them [3]. Sometimes they flow like fluids and other times they support weight
like solids [1, 4].

The physics of granular materials turns out to be very complex and hard

to model. Granular materials are constantly dissipating energy and techniques of



statistical mechanics that require conservation of energy, or that assume a minimiza-
tion of energy or entropy, often do not work [5]. Because there are so few particles
compared to a fluid, granular flows cannot always be described by standard fluid
dynamics. Because there are so many, it is impossible to solve the physics of each
particle. While granular systems can be simulated, we do not know what must
be included to model their basic interactions. This in between state of granular
materials can be very frustrating, yet it makes for beautiful physics.

The simple, yet rich and complex, world of granular materials has become an
active area of research in physics in only the last 20 or so years. Many successful
attempts have been made to model granular dynamics [2, 1, 6, 7], and yet each
specific system often requires a new model and new physics. We are still far from,
and may never achieve, anything resembling a universal model of granular materials.
Although difficult to understand, granular physics provides fascinating and beautiful
phenomena to study. It may be the difficult nature of the field that makes it so

intriguing to so many physicists [1, 3, 4].

1.2 Force Chains

A simple pile of sand effectively illustrates some of the complexities of granular
physics. In figure 1.1, we see two seemingly identical piles of sand. The only
difference between them is the way in which they were prepared. One of the piles
was prepared by pouring the sand onto a small area at the center of the sample,

while the other was prepared by evenly raining the sand onto the entire sample area,
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Figure 1.1: Pressure versus radial distance in two piles of sand. The only
difference between the two piles is the method of preparation: The top
pile was prepared by pouring the sand out of a funnel directly into the
center of the preparation area and allowing the pile to build up around
the center. The bottom pile was prepared by pouring the sand evenly
out on the whole area, allowing the excess to avalanche off, until a pile
was formed [3].

namely a finite diameter circle, and letting the extra fall off. Although in both cases
the final state is an identical pile of sand, there is a distinct difference in the way
the pressure is distributed in each pile. The pile that was poured into the center
has a distinct dip in pressure at the center of the sample. The pile that was evenly
rained out has no dip in pressure. Seemingly identical, these sandpiles somehow
‘remember’ how they have been prepared.

This granular memory can be explained by looking at how the weight of a
sandpile is supported. It turns out that weight in a granular material is not evenly
distributed but is instead carried only by some of the particles, along granular ‘force

chains’. Bob Behringer’s group at Duke University measures the force chains in



Figure 1.2: Top: The force chains in a pile of photo elastic discs. Bottom:
A close-up of force chains in a typical system of photo elastic disks [3].

granular systems using photo elastic disks [3]. Light from Photo elastic disks can be
seen through cross polarizers when stress is applied to the disk. In figure 1.2 there
is a picture of typical force chains. The top picture shows a pile of photo elastic
disks, similar to a pile of sand and the bottom shows a typical close-up of the force
chains for a densely packed system. We can see from the picture that the force
chains completely bypass whole areas of particles. Which particles carry the forces
and how the force chains are distributed is dependent on the history of the material.

In the two sandpiles, the differences in preparation method causes subtle difference



in the force chain distributions, giving rise to the pressure difference between the
two systems as shown in figure 1.1.

In sheared systems, the force chains have been shown to depend on the direc-
tion of shear [8]. Couette cell (see figure 1.6b) shearing experiments are done by
putting a granular material between 2 concentric cylinders and then rotating one or
both of them. Toiya et al. [8] observed that, like the sand piles, the flow profiles of
these mixtures were history dependent. When the cell was sheared in one direction
for a long period of time and then the direction of shear was reversed, the initial
flow profile was distinctly different. This was again shown [9] to be due to the force
chains: the force chains carrying the shearing force from the moving walls line up
in the direction of shear.

This has direct application to many areas of geology and industry. Through
force chains, a granular material can remember what has happened to it. A hillside
might look the same to the naked eye, but based on its history it might be ready to
fail. Friedmann et al. found that there is a correlation between the direction of prior
shear and the likelihood of avalanche events [10]. Specifically that a catastrophic
rock avalanche was more probable if the direction of prior shear was the same as

the landslides eventual path.

1.3 Driven Granular Systems

It is a commonly experienced fact that the smallest bits in a cereal box, or in a

box of nuts, always end up in the bottom. When mixtures of different size particles



Figure 1.3: A picture of a mixture of nuts where the large Brazil Nuts
have risen to the top. This picture is from the University of Texas chaos
website (chaos.ph.utexas.edu/Schroeter /images/mixed.jpg).

are perturbed (usually by vertical shaking) the larger particles tend to rise to the
top [11] and even if only a single large particle is mixed in with a sample of smaller
particles, then that large particle will rise to the top. This is called the Brazil Nut
effect, because it can be observed in a container of nuts that the larger Brazil nuts
always rise to the top of the container over time (see figure 1.3).

For a long time it was thought that this was caused by the smaller particles
filling the voids below the large particle(similar to the small particles in a cereal box
falling through the cracks of the larger particles) [11]. Recently, though, it has been
shown that convection rolls exist in vertically shaken containers and that this may
cause the segregation of large particles at the top [12, 13]. The mixture of particles

convects up and then back down again, and the large particles follow the convective



Figure 1.4: Localized excitations, called oscillons, in a driven bed of gran-
ular material [14]. Image from the University of Texas (cns.utexas.edu).

flow up but once the large particles are brought to the top, they can no longer go
back down into the mixture because of their size. Even though this is a very simple
experiment, it is still unclear which description is correct, or if both effects happen
at the same time. For some conditions, the first might be the most accurate, while
for others the second effect might dominate.

Many of the avalanches and other large scale phenomena are caused by the
violent shaking of the earth during an earthquake. In figure 1.4, we see a stunning
display of the effect of shaking on one granular system. As the granular particles are
shaken vertically, localized excitations appear—strong distinct features that oscillate
between a peak and a valley that are called oscillons. These oscillons were observed

by Harry Swinney et al. [14]. Hexagonal, square and mazelike patterns have also



Photo by Brad White. wwwavalanche.com

Figure 1.5: A snow avalanche [17].

been observed depending on system parameters. Other oscillated granular materials

include rods and magnetic beads, and these each form distinct patterns [15, 16].

1.4 Granular Flows

We now look at the characteristics of flowing granular material. The most
obvious form of this in nature is an avalanche of dry grains (snow or dry rocks and
dirt). Avalanches happen when a portion of the hill or mountainside can no longer
support the weight above it. The material then breaks and flows down the mountain
until it reaches a flatter area. An avalanche can be very destructive and dangerous
to anything in its path (see figure 1.5). Although an avalanche flows down an incline

like a fluid, as soon as it reaches the bottom it stops and forms a pile with a distinct
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Figure 1.6: Methods of studying granular flow. (a-b): Moving wall shear
flows. (c-f): Gravity driven shear flows. Figure from reference [21].

angle called the angle of repose. There are a few unexplained exceptions, called long
run-out avalanches, that fluidize and flow up to 10 times longer than expected for a
dry granular material [18, 19, 20].

Some of the methods of studying granular flow in the lab are shown in fig-
ure 1.6 and include shear flows studied with moving walls in straight geometries
(figure 1.6a) and cylindrical Couette geometries (figure 1.6b), a variety of gravity
driven sand flows figure 1.6(c,d,e), and continuous avalanching flows in a rotating
tumbler (figure 1.6f).

All of these flows exhibit segregation phenomena. Makse et al. reported
on granular stratification in an article on avalanche flow in Nature in 1997 [2].

When mixtures of different kinds of materials are poured onto a flat surface (similar



http://physics.clarku.edu/gmw/

Figure 1.7: Stratification in granular experiments [2] (left) and in a solid
rock (right). The rock is an Aeolian sandstone from Petra in Jordan.
The dark layers are coarse grain material while the white layers consist
of finer grained material. The picture of this rock was taken on March
31, 1997 by H. A. Makse and H. Hlalat [22].

to figure 1.6(e)) interesting segregation patterns develop. For a mixture of two
different sizes of particles, the particles spontaneously separate into stratified layers.
In figure 1.7a we can clearly see this distinct layering in an experimental setup [22].

Often, when we look at exposed rock surfaces, we see similar patterns. In
figure 1.7b we see a picture of an exposed rock surface that shows a pattern very
similar to those seen in experiments. Clear stratification patterns of coarse red

material and fine white material can be seen in the exposed rock face.
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1.5 Rotating Drum

In this thesis we examine pattern formation in a rotating drum (systems sim-
ilar to figure 1.6(e)). A long transparent cylinder is partially filled with granular
material, placed on its side to be horizontal with respect to gravity, and then ro-
tated around its axis. Rotating drums in the continuous avalanche regime have
many applications. They are used in a variety of situations in industry, including
rotary kilns and mixers of all sorts. They are used for mixing, humidifying, cool-
ing and heating, and in calcining processes [23]. They also provide an interesting

example of a continuous avalanche, applicable to studies of geological and granular

flows [7, 24, 25, 26].

1.6  Outline of Thesis

The focus of this thesis is on the segregation of different kinds of particles in a
rotating drum. In mixtures of two or more particles sizes, two types of segregation
have been observed: radial and axial segregation. During radial segregation, the
small particles percolate to the bottom of the flowing layer. This happens immedi-
ately upon rotation and extends throughout the drum, forming a radial core of small
particles. During axial segregation, the particles separate into alternating bands ac-
cording to size horizontally across the drum. Axial segregation takes longer—a few
hundred rotations—to become observable. The mechanism for the axial segregation
process is less well understood and is the focus of this thesis.

In this thesis we investigate the axial banding pattern, and in particular at-

11



tempt to answer the question: why do axial bands form? We address this question
by directly studying the properties of the top surface flow of granular material with
a high speed camera. The high speed camera allows us to track thousands of indi-
vidual particles. We can then extract and study averages of these particles, such as
velocities and concentrations. We focus on the role of the velocity differences in the
axial banding process. We also look at the effect of acceleration and deceleration on
mixtures of flowing granular material. We incorporate the entire 3-D nature of the
flow into our analysis.

We begin with an exhaustive background of the literature on rotating drum
experiments in Chapter 2. We review the basic physics specific to granular flow in
a rotating drum. The literature provides extensive scaling experiments that give
insight into the important dynamics. Many of these experiments and arguments
have been extended to bidisperse mixtures in the radially segregated state. We give
an overview of axial band formation and the theories describing this process. We
then present two processes that have not been considered in models to date.

A driving parameter in many models for axial segregation is the difference
in the flowing angle and surface height of the different particle types. Flow in the
direction of steepest descent is usually assumed as the driving force for segregation,
and this is related to the angle at which the surface flows. In chapter 3, we review
the literature on flowing angle, and present results for the flowing angles of the
particles we use in our experiments. We also look at the flowing angle across the
banded state.

In chapter 4, we present novel results on high speed tracking of particles in

12



the top surface flow for mixtures in the banded state. High speed tracking of the
particles has not been done for the banded state in the rotating drum and we
observe fascinating flow patterns. We measure the downhill velocities and find that
particles in a small particle band flow significantly faster than particles in a large
particle band. We look at the velocities in the direction transverse to the flow and
we find an interesting in and out flow pattern around a small particle band. We
then compare the measured surface flow properties to theory.

When we mix three different size particles in a drum we see fascinating patterns
of oscillating bands. We discuss these beautiful results as well as analysis in chapter
5. These results show good qualitative in terms of current theory as the three

particle sizes allow two coupled concentration equations.
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Chapter 2

BACKGROUND AND THEORY

A large volume of work has been done on mixtures in a rotating drum. Studies
have been carried out on mixtures in drums with a large range of shapes: in 2-D
drums, in long 3-D drums, in tilted drums, rotating spheres, and even in helical
drums. Monodisperse, bidisperse, tridisperse, and continuously varying mixtures
have all been studied. Mixtures of particles of different size, density, and shape have
also been investigated. We now review much of this work, focusing on binary and
more polydisperse mixtures of different particle sizes in long 3-D drums. We also
look at monodisperse systems as well as 2-D systems to understand and characterize
the basics of the drum flow. As they are applicable, we will mention other more

obscure systems as well.

2.1 Basic Drum Flow

Depending on the speed of rotation of the drum, many different kinds of motion
can be observed. The different regimes of motion are called, in order of increasing
rotation rate: avalanching, rolling, cataracting, and centrifuging [27]. At very low
rotation rates, the material flows in separate distinct avalanches [28, 29]. The drum
rotates the mass of particles until the surface reaches a critical angle, called the angle

of marginal stability [27], at which point the material avalanches down to the angle
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Conservation of
mass along any
line

Figure 2.1: Left: A picture through transparent endplates of the flow of
granular material in a rotating drum at 7 RPM. The arrows indicate the
direction of flow: particles low down the surface in the area marked by
the red line and then rotating back around in the bulk. Right: A similar
flow but at much higher rotation speeds (28.5 RPM). This flowing surface
has a distinct ‘S’ shape.

of repose. The angle of repose is the steepest angle at which a material is stable
and is the angle at which materials naturally relax to when an avalanche stops. It
is commonly used in the geosciences. Both angles depend on the material type.

The cataracting and centrifuging regime are seen at very high rotation rates.
In the cataracting regime, the particles are thrown into the air and free fall down to
the bottom. In the centrifuging regime, the rotation rate is so high that centrifical
forces take over and the particles stick to the outside of the drum. The rolling regime
is seen at intermediate rotation rates, and is the focus of this work.

The rolling regime is also sometimes called the continuous avalanching regime
because the material flows down the free surface continuously as shown in figure 2.1.

The particles flow at an angle referred to as the dynamic angle of repose. The

15



Figure 2.2: The radially segregated state in a mixture of 1/16”" and
1/8”" steel ball bearings in a rotating drum. The small particles drop
to the bottom of the flowing layer and form a radial ‘core’. Note that
though the drum is rotating, the camera is tilted to the dynamic angle
of repose to obtain this and many of the other images of the side of the
drum.

dynamic angle of repose depends on the rotation rate and the drum diameter, as
well as the particle type and size.

The particles flow down the surface as shown in figure 2.1 and are rotated
back around in the bulk. The downhill flow extends below the free surface of the
drum and has a lenticular shape: the flow is deeper at the center of the drum as the
deeper particles follow a much shorter path, rotating around in a small half circle
and then avalanching only a short distance down. At low rotation rates, the free
surface is nearly flat. At higher rotation rates, the surface develops an s-like shape

as seen on the right in figure 2.1.
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2.2 Radial Segregation

Looking at the drum from the side as in figure 2.2, it is observed that after
only a few rotations the small particles segregate to the bottom of the flowing layer.
After segregation, the small particles are advected through a shorter path in the
bulk and form a radial core, surrounded by large particles. Radial segregation is
most likely caused by the smaller particles percolating down through the mixture
during the flow as well as by the observed tendency of large particles to flow more
easily farther down a free surface [1, 30].

There is a well defined but continuous transition from large to small particles
as one looks deeper into the flowing layer [31]. Some small particles are still found
near the top surface of the flowing layer and some large particles are found near
the bottom of the flowing layer. G.H. Ristow [27] measured the strength of the
radial segregation numerically and found that the concentration of small particles
was about 20% by volume near the top of the flowing layer as opposed to 80-100% in
the radially segregated core. Invasive probing [32] and magnetic resonance imaging
(MRI) [33] studies have also shown that this radial segregation extends throughout
the whole drum in long 3-D drums.

Segregation similar to radial segregation is seen in many different geometries
with surface flow, including inclined chute flow. Hirshfeld and Rapaport [34] used
molecular dynamics simulation to study a few large particles mixed with a large
number of small particles flowing down an inclined plane. Over time, as with the

brazil nut experiments shown in chapter 1 [11], the large particles rose to the top.
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Radial segregation has also been seen in mixtures of similarly sized but differ-
ent density particles [30]. In that case, the heavier particles generally tend to the
bottom of the flowing layer, though it can be complicated by the tendency of the
heavier particles to roll farther down the flow.

Cantelaube and Bideu [35] studied the statistics of trapping of the small par-
ticles in radial segregation and found that the strength of the segregation increased

/7 1 being a time constant depending on system parameters.

with time as 1 — e~

Using ternary mixtures of 1 mm, 1.5 mm and 2 mm steel beads rotated at
.33 rotations per minute (RPM) Clement et al. [36] studied the concentration as a
function of position in the radially segregated state. They found that the strength

of the radially segregated core of the smallest particles, ¢, followed an exponential

decay with respect to the distance from the center of the drum, r,

c= e (2.1)

They found that « for the largest (2 mm) particles was 0.1 and for the smallest
(1 mm) particles was -0.06 (exponential decay with increasing radius). At higher ro-
tation speeds, for glass beads, Khakhar et al. [31], found similar decays, although at
the highest rotation speed (18 RPM), the decay looked more linear than exponential.

In some binary mixtures in a rotating drum, chaotic bulges have been seen
to form in the radially segregated state [31, 37]. The radial core is not identical
around the z axis but instead has extending bulges of small particles (see figure 2.3)

forming a star looking pattern. This is mainly seen at very low rotation rate, in the
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Figure 2.3: Image sequence showing bulge formation in the radially seg-
regated state. This mixture is a 5% volume mixture of 3 mm (dark) and
1 mm (light) glass beads rotated at 0.75 RPM. Courtesy of Khakhar et
al. [31].

Experiment

avalanche regime, where the flowing surface experiences distinct avalanches, but can
also be seen in some mixtures in the continuous regime. These are similar to streak

formation seen with monodisperse systems of particles differing only in color [1].

2.3 Axial Segregation

In figure 2.4, we see a simple example of axial segregation. Here we have 2
different sizes and shapes of particles, rice and split peas, that have separated into
alternating bands. This segregation is fascinating in that it happens in the direction
perpendicular to the flow and to gravity, unlike most other granular segregation
processes. For example, stratification bands look similar to the bands in the rotating
drum, but are actually more like radial segregation than axial segregation. It is a

very slow, statistically driven, process. The mechanisms for axial banding are a
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Figure 2.4: A mixture of rice and split peas in a rotating drum. The rice
and split peas have completely separated into alternate bands. Picture
from web page of K.M. Hill and J. Kakalios [38].

Figure 2.5: Schematic for the drum with labeled coordinate system.
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subject of great interest and debate.

For reference, we have plotted a schematic of the 3-D drum with the coordi-
nated system that we will use throughout this paper (see figure 2.5). The drum is
rotated around the Z axis such that the flow is in the direction of . The ¢ axis is
positive down into the flow. The axis is turned such that the free surface is aligned
with the x axis. We will refer to the drum diameter and radius in capital letters (D
and R respectively), while we will refer to the particle diameter as little d.

Axial segregation was first observed in a rotating drum by Oyama in 1939 [39,
40]. Axial segregation was subsequently studied in depth experimentally, computa-
tionally, and theoretically. It was observed in many of the experiments that often,
bands formed first near the endwalls and then additional small bands form from one
end of the drum to the other.

The connection between the subsurface and surface flow and between radial
and axial segregation was made by Rogers and Clements [32] using invasive sampling
and by Hill et al [33] using MRI. They were able to show that bands of small particles
form in conjunction with an instability of the concentration of small particles in the
inner core. A local increase in thickness of the inner core (indicating locally more
small particles) generally grows and eventually penetrates the surface. A radial core
of small particles often persists in the large particle bands [32, 33], and some robust
scaling relations can be found for radial and axial segregation (these are discussed
in section 2.4) [24].

We plotted the MRI results along with a schematic demonstrating the band
formation in figure 2.6. Images from the MRI experiment are plotted on the left.
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Figure 2.6: Connection of the radial core to axial band formation: On
the left, MRI images from Hill et al. [33] show the radial segregation
in the banded state. The areas of small particles are white while the
large particles mix with the background and are black. On the right, a
schematic representation of the band formation as an instability in the
radial core. Here the top figure shows the Elkview of the initial radially
segregated state and the figures represent the time evolution of a slice
taken along the dotted line.
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Figure 2.7: Left: A spacetime plot of the long-time dynamics of axial
bands in a rotating drum. Each horizontal pixel line represents the
banding state at one instant in time and time progresses downward.
The bands coarsen over time to form fewer and larger bands. Picture
taken form the work of Boris Levitan [41]. Right: A spacetime plot of a
traveling /standing wave pattern in a mixture of sand and salt. Picture
from the group of Steve Morris [25].

They show a view of the entire drum, a view through cross sections at different
places in the drum and a view through the center of the drum showing the axial
evolution of the radial core. We can clearly see that the axial core exists inside the
large particle bands. Slice number 3 even shows the presence of a subsurface band,
an increased thickness of the radial core that does not reach to the outside of the
drum. On the right in figure 2.6, we show a schematic representation of the time
evolution of the radial core as the bands form.

After the initial array of bands has formed, the bands combine (coarsen) over
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time to create wider but fewer bands (see figure 2.7). Levitan [41] and Stavans [42]
found that the number of bands decreases exponentially. Because this coarsening
process is so slow, it is hard to be certain of the final state. In some experiments, the
final state has been observed to be either a small number of stationary bands [42] or
two completely separated bands [43], depending on experimental conditions. It may
well be that all rotating drum mixtures will eventually segregate completely, but it
takes far too long to be reasonably checked in all experiments. It is also possible
that other factors such as slight tilts in the experimental setup or slight differences
in the drum diameter may drive such slow processes.

A possible connection was made with the formation of a final state (end of
coarsening) and the radial core by Taberlet et al. [44]. They observed in molecular
dynamics simulations that the coarsening appeared to end, after some coarsening,
when the radial core did not extend throughout the entire drum anymore. The
radial core did not extend all the way through the large particle bands, but ‘pinched
off” instead, separating the small particle bands. This stopped further segregation,
or at least strongly increased the timescale for any further segregation process.

In 1997, Morris et al. [25] observed the fascinating pattern evolution shown on
the right in figure 2.7. The pictures shown are spacetime plots of the evolution of the
banding pattern. An average slice is taken from each image in the sequence so that
each new horizontal line of pixels represents the banding pattern at a given time.
Morris et al. found that for certain mixtures of sand and salt and at certain filling
heights, the bands traveled to the left or right. If the drum was perfectly balanced,
particles of one type traveled in one direction and particles of the other type traveled
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Figure 2.8: Spacetime plot of oscillations in a mixture of 0.5 mm
(green/blue), 1.0 mm (yellow), and 2.0 mm (red) glass beads rotated
at around 30 RPM.

in the opposite direction. This created a stunning standing wave pattern. Note that
this experiment had presegregated initial conditions: The drum was seeded with
alternating bands and no radial core before rotation.

Morris et al. [45] and others [42, 46] also observed other strange and interesting
patterns, including a fountain wave pattern, satellite traveling waves, and more. In
a Europhysics letter, Newey et al. [47] reported on the pattern of oscillating bands
for mixtures of three particle sizes shown in figure 2.8.

The size and number of bands generally do not scale with the rotation rate [48,

49]. The Morris group [50] carried out an as-of-yet-unpublished work on how the
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band pattern scales with particle to drum diameter ratio. They found that the
average wavelength of the bands increased linearly with drum to particle diameter
ratio. i.e.

1

A X 4D (2.2)

where d/D is the particle to drum diameter ratio. They used the average
particle diameter of the two particle types for d in this calculation. They also
noticed that there was a maximum particle to drum diameter at which bands would
form. Above d/D = 0.025, no bands formed.

S. Das Gupta [51] observed ternary banding for mixtures of three particle sizes
and Masami Nakagawa [49] observed banding in mixtures with a continuous size
distribution. Nakagawa recorded the number of bands initially formed at different
rotation rates, but found that the number of bands did not show a strong dependence
on the rotation rate.

Patterns similar to axial banding can be observed with fluids. Krasnopol’skaya
et al. [52] observed band formation in rotating drums of mixtures of fluids of different
viscosities. The fluid formed alternating bands of vortices of one type of the fluid. A
detailed comparison was made between this and granular band formation in rotating
drum experiments. Tirumkudulu et al. [53] observed that neutrally buoyant particles
mixed with a single fluid in a rotating cylinder (in this case a Couette geometry)
also clustered and formed bands. Comparison can also be made with two phase

fluid/gas flow in a pipe. Here fluids with different velocities flowing in an confined
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Figure 2.9: View of the drum through the transparent endplates showing
the different sections of the downhill flow. At the top of the flow, particles
are accelerating. In the middle, they are flowing at a high velocity and
mixing. At the bottom, particles are decelerating.

space tend to segregate and break up [54].

2.4 In Depth Flow Studies

It is constructive to look at the basic physics of particles in a rotated drum in
detail. We mark point A as the beginning of the flowing layer (see figure 2.9) for
reference. Here the particles are accelerating downhill in the x direction. In 2-D,
conservation of mass necessitates that either the surface layer of particles must be

getting less dense or particles must be added to the surface flow from the layers
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beneath (or both). A slight y velocity component will be expected in the upper
half of the drum (due to bulk rotation) and this could contribute to particles being
added to the free surface. In the middle of the flowing layer, the flowing layer must
either be less dense, or be composed of a mixture of particles from deeper in the
flowing layer, or both. This middle area of high speed flow is where much of the
mixing between particles should occur (the particles have the most energy here).
At the bottom of the flowing layer, the particles will collide and decelerate. Here
the density must increase again and the particles will be pulled down into the bulk
rotation of the drum.

We must also take into account the granular nature of the flow. Granular
particles are discrete and interact only through repulsive forces and friction. There
is no attractive force between the particles and no tensile stress to oppose separation
of particles. There is no long distance interaction (except through chains of other
particles). This creates an asymmetry in the flow: particles can separate indefinitely
during acceleration (top region), but during deceleration (bottom region), contact
forces will keep particles a distance d apart-resulting in jamming.

The velocity and density profiles of the flowing layer have been studied in
detail for a large number of different experimental parameters [24, 55, 56, 57]. For
all experimental parameters, the velocity profile as a function of depth in the flowing
layer (y) is similar: The velocities decrease linearly from the top of the flowing layer.
Assuming conservation of mass, the velocity of the particles has a direct relation to
the depth of the flowing layer. Assuming that the number density of particles in the
flowing layer is the same as in the bulk, and that the depth of the flowing layer at
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the middle of the drum, dg, is small compared to the radius of the drum, R, then
v, = wR?/(2dy).

A scaling argument based on this relationship can be created. Ottino et al. [24]
plotted y/d vs v.09/(wR?) at the middle of the downhill flow for 1 mm, 2 mm,
and 3 mm glass beads at different rotation rates. They found that the data then
collapsed to 2 possible curves. The reason they gave for the lack of universality
in the collapse was the distinct “s” shape for the smaller beads at high rotation
rates. They extended the scaling to apply to any position in the drum: 7, =
“I 1 — (2/R)? — (§/R)?), where § is the depth of the flowing layer at downhill
position z. For 1 mm beads at different locations of the drum, they found this scaling
accurately collapsed the data onto a single curve. If the thickness of the flowing layer
increasing with the square root of the rotation rate, as seen by Nakagawa [55], then
the velocity will also increase as the square root of the rotation rate.

Khakhar et al. [56] studied the velocity profiles as a function of the Froude
number, w?R/g, and the size ratio of the particle diameter to the drum radius,
d/ R, for glass and steel balls and for sand particles. He found that the scaled layer
thickness, dg/R increased with increasing Froude number and increasing particle di-
ameter to drum radius. He found that the Froude number provided good scaling for
the velocity profiles. Both of the previous two experiments found that the thickness
of the flowing layer, and therefore the average and top surface velocity, increase with
increasing particle size as the square root of the particle diameter (or the ratio of
particle to drum diameter).

Alexander et al. [57] did the most in depth study of the scaling of the velocity
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profile versus rotation rate, particle size, and drum diameter. They found a scaling
of the downhill velocity with changing drum diameters and rotation rates to be v, =
kDw?3(g/d)"/, where g is the constant of gravity, and k is an arbitrary constant.
For identical particles rotated at 10 RPM, the velocities in a drum diameter of 6.3
cm peaks at around 13 cm/s while the velocity for a drum diameter of 24.8 cm
peaks at around 58 cm/s. This is a ratio of d1/d2 of 3.9 and of v1/v2 of 4.46,
reasonably consistent with his prediction that the velocity scales linearly with R.
While this scaling appears to work for changing R, it goes against that seen above
for changing d (and d/D). It gives a different scaling for d/D and shows that d/D
does not provide complete scaling, but the value of d alone needs to be taken into
account as well (not just the ratio d/R). This indicates that there may be different
scaling depending on the parameters of the experiment (rotation rate, particle type,
etc.) for how v will depend on d or R. Our results generally fall in the regime
given in the previous paragraph and therefore will show increasing velocity with the
square root of the ration of particle to drum diameter.

Another important parameter is the velocity fluctuations of the flowing par-
ticles. This can be related to the diffusion, and is often referred to as the effective
granular temperature [58, 59]. The granular temperature is T}, o< (v2) — (v)?. This
is simply the standard deviation (of the velocity) squared. The velocity fluctuations
have been observed to decrease with increasing depth in the flowing layer [24]. When
scaled by the velocity of the particles, the fluctuations actually increase with increas-
ing particle size, but no clear relationship between particle size and fluctuations can

be seen on an absolute scale.
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Figure 2.10: v, for 1 mm beads rotated at 1.6 RPM at two positions offset
from the flowing layer. The top curve is a vertical slice at the downhill
position x=-0.57R (upstream of the flow middle) and the bottom curve
is at x = 0.70R (downstream). Figure from Ottino et al. [24].

31



L e
AR
-2 _%- —
-5 1
o4l N .
LN
y s )
- 5 o6 ¥ . a o, _
I o
. i -
ool B )
06— 1 - =
@
[ ® 3 . 4
i N =
L] -
s B :
o = N N T
0 500 1060 1500 2000
(@) N
or ol e T T rreT .I
-e 4
0.2 - i . - }
a i ..:)
I e |
04| 5 b .
, £
A 05| LR =
.y -
s o 440
0.8 ol
3
-"f" f,
-1 = 8
=
P s
pelae ol vl dimes A
0 0.2 0.4 .G 0.6 L
N/
{b.ll / N theory

Figure 2.11: Total number of beads versus y. The triangles are 1 mm
beads, squares are 2 mm beads, and circles are 3 mm beads. The top
plot is the absolute number of beads, and the bottom plot is scaled by
the number of beads that can fit in an area d?. Figure from Ottino et
al. [24].

Ottino et al. [24] also measured the ¢ velocity profile (the direction perpen-
dicular to the flow—see figure 2.10). They found that particles offset from the center
had g velocities equal to that imparted by the drum, and that the velocities fell off
near the surface of the flow. In Ottino’s experiment, v, fell to about 50% of the
tangential bulk velocity around 50% into the flowing layer.

The number density of particles in monodisperse samples has been studied

in less detail and in only a few works. Qualitatively, Nakagawa [55] observed the
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number density of particles to decrease at the surface (y = 0) of the flowing layer.
Ottino et al. [24] measured the number density as a function of depth (y) for 1mm,
2mm, and 3 mm glass beads (see figure 2.11). They scaled the plots onto 1 figure
by multiplying by d?, and plotting y/d. The plots come close to collapsing, except
that with careful inspection one can see that the curves do not in fact have the
same shape, and for larger particles, the number density begins to decrease much
later. Rajchenbach et al. [60] also observed a decrease in the particle number near
the surface in experimental studies of 1.5 mm steel beads and Ristow [61] observed
a similar decrease in simulations. Bonamy et al. [62] also observed similar dynamics
and defined the area of decreased density as the free surface of the flow as particles
are less confined there.

Taking Rajchenbach’s entirely 2-D experiment as a test case we can analyze
the particle number densities and the velocities with respect to conservation of mass.
The radius of the drum is 10 cm (we start our analysis at 9 cm inside the drum)
and for the fastest curve the rotation rate is not explicitly given in the paper, but
we assume it is around the maximum given for these experiments, 20 RPM. From
his plots we find the relationship between the x velocity and y, v, = 550 mm/s
+25 1/s y. The initial speed is taken to be the speed at which old particles are
replaced by new, or the speed of rotation near the outside of the drum (v = wr).
This gives vy = .053 rad/s x.09 m = 4.77 mm/s. Conservation of mass says that
in one dimension, pv is constant: pv = C, where C} = povy. Taking py to be about
0.7, C1 can be calculated: C1 = 0.8pgsee; X 4.66 mm/s = 3.728 pgeer mm/s . Now
solving for p versus y, v,: p = 3.728 /v, = 3.738 /(550 — 25Yy) psteer- At the maximum
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Figure 2.12: Schematic of the flow near the endwalls. The endwalls pull
the flow up to a higher angle. This causes a flow away from the endwalls
at the top and towards the endwalls at the bottom. This creates an area
of higher velocity just out from the endwalls although friction with the
endwalls slows particles immediately adjacent down.

velocity, v = 500 mm/s, this gives a density of 0.007456 pgiee;, far lower than the
average near the surface of the drum. These curves give number density curves
much steeper and lower than the true observed curves. Particles must be added to
the mixture from below.

When extending the study to three dimensional monodisperse samples in long
drums, we must also take into account the fluctuation in the axial, or z direction and
the effects of the wall on the flow. Unfortunately, studies have not been done on the
z fluctuations and little work has been done on scaling of flows in fully 3-D drums.
Pohlman at al. [63] studied the effect of the walls on the flow of granular materials
in a drum. They found that (as also observed by Donald and Roseman [48]), the

particles flow away from the wall at the top and towards the wall at the bottom.
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They also observed that the velocity was often greater just out from the endwalls.
A schematic of the effect of the endwalls on the flow is given in figure 2.12. The
endwalls also cause an increase in the dynamic angle which we will discuss later in
greater detail.

The velocity profiles of the radial segregated state of particles have also been
studied in depth. Ding et al. [64] used PEPT (Positron emission particle tracking)
to track particles in 3-D and Ottino et al. studied the radial segregation velocities
through transparent endplates [65]. All experiments on radial segregated velocity
profiles find that the flow velocities in a binary mixture showed a linear profile with
depth under the flowing layer with little or no kink at the particle type interface
(similar to that seen for monodisperse particles). This means that the flow profile
under the layer can be predicted from surface measurements only.

Donald and Roseman [66] studied the radial mixing in a long rotating cylinder
of two sizes of particles. They found that mixing increased with increasing ratio
of one particle size to another. The explanation for this is that the voids between
larger particles will appear relatively larger to the small particles for bigger size
ratios. Increasing the drum speed increased the rate of radial mixing. An equal
mixture (by total particle weight) of large and small particles showed the greatest
mixing, and the mixing dropped off as the concentrations were increased or decreased
from there.

The radial and axial mixing of different sized particles is related by the radial
core. We would expect the axial mixing in a bidisperse mixture to increase for

greater ratio in d between the large and small particles. We expect that bands
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will not form for high ratios between large and small particles as the radial mixing

(which leads to radial segregation) and axial mixing will be too strong.

2.5 Theories of Axial Band Formation

Many different mechanisms may be behind band formation, depending on the
experimental conditions. We now provide an overview of the mechanism of band
formation in the literature, conceptual and mathematical. It is worth noting that
many of the models of granular segregation are engineering models, which aim to
provide guidance in design, but not new fundamental principles. We refer again to
figures 2.5, 2.9, and 2.12 in the following discussion.

When Oyama first observed band formation, he noticed that the bands formed
first near the endwalls and therefore attributed the band formation to endwall effects.
The fact that the particles flow at a steeper angle near the endwalls [67], lends
support to this idea. Donald and Roseman [48] also observed that the bands formed
first near the endwalls and claimed that band formation was caused by differences
of the static angle of friction [68] of the different particles as well as by endwall
effects. They argued that the small particles, which generally have a higher angle
of flow, would tend to flow faster. Velocity gradients created by the endwalls would
create areas of higher velocity near the walls and the faster small particles would
be attracted to these areas and bands would form. This was confirmed (see above)
experimentally by Pohlman et al. [63]

Bridgewater et al. [69] suggested that the large particles, being on the top of
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the flowing layer, would be more mobile. They noted that they would then flow to
the lowest points in the bed at the bottom of the flow. Because of the increase in
angle of repose at the endwalls, the lowest point would be the bottom of the flow
right next to the endwalls. This would drive the band formation of large particles
right next to the endwalls and therefore push small particles from the endwalls,
consistent with most experimental observations.

Zik et al. [70] and Nakagawa [49] saw band formation that could not be ex-
plained simply by endwall effects. In a very long drum, the bands formed spon-
taneously near the middle of the drum—too early to be driven by endwall effects
propagating outward from band to band.

In 1990, Das Gupta et al. [51], tested some of the ideas of the preceding
researchers. They noted that the different particle types had different flow angles
(dynamic angle of repose) and that the difference was dependent on rotation speed.
Their mixtures did not band at all rotation rates, but only at rotation rates for
which there was a significant difference in the dynamic angles of repose between
the particle types in the mixture (as measured in monodisperse samples, of course).
They also observed undulations in the shape of the free surface of the material. The
surface of the small particle bands was slightly higher than the surface of the large
particle bands.

Non-endwall driven mathematical models were created based on differences
in flow angle and shape for the different size particles and initiated by statistical
fluctuations in the concentration. According to these models, the difference in shapes

and angle cause particles to flow axially in the direction of steepest descent. In order
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for mass to be conserved there must be backflow for both particle types. Differences
in mobility of the two particle types then gives band formation.
Simple models for axial segregation are often constructed from mass conser-

vation:

0,50 = — zj (23)

where c is the local concentration of a given particle type, and j is the mass flow
current (generally we are here looking at the surface currents, because that is what

we can measure). The axial current, j,, is often assumed to have the form

where D is the usual diffusion coefficient (D > 0) and 3 is a coefficient describing
the strength of the segregation. The first term drives segregation, while the second
term is diffusive and opposes segregation. If (3 is greater than D, then this equation
is effectively a diffusion equation with a negative diffusion coefficient, and particles
tend to concentrate instead of dispersing.

In models that describe the segregation as axial surface flux due to differences
in surface height and dynamic angles of repose [71], axial current is assumed to be

proportional to the gradient in height of the free surface:

Jz x 0y (2.5)

The surface height is proportional to the dynamic angle of repose and the

current can be written as
j. = (0.0 (2.6)
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0 is then proportional to the concentration and (3 is also related to the concentration
of the mixture. Adding this current to a current due to diffusive mixing gives an
equation like the one above with the first term being 2.6.

Under the assumption that 3 is note dependent on the concentration, we can
combine these equations with conservation of mass to get the final equation for the

concentration of particles of a given type:
Oic = —D?c + pd e (2.7)

Although 3 may be dependent on the concentration, this gives us the basic idea of
the form of the segregation equations often used. A noise term can be added to this
equation to account for coarsening, but because these models are first order in time,
they cannot describe traveling waves and other oscillatory behavior. Aranson et
al. [7] created a model by distinguishing the concentration from the dynamic angle
of repose. This gives two coupled equations, which can describe traveling waves
if the concentration and the dynamic angle of repose are out of phase. The first
equation,

Oyc = 0,(—D(c)0,¢ + g(c)0,0) (2.8)

is similar to equation 2.4 above, where g(c) is in the place of 3, and the dynamic
angle of repose no longer proportional to concentration of a particle type in the

mixture. The second equation is:
0 = ajw — 0+ f(c)] + D0,.0 + 70,.c (2.9)

where « is a constant determining the time scale of segregation and f(c) is the static
angle of repose of a mixture of the given concentration. The first term on the right
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describes the local dynamics of the angle of repose, the second describes normal
diffusion, and the third is a concentration based term.

Aranson assumes no radial segregation, a thin flowing layer, and an axial flow
in the rotated bulk—none of which are physically accurate. Despite this, his model
provides interesting insight, as the coupled equations provide a model that predicts
the traveling waves seen in the experiments (see figure 2.8). It is interesting to
consider the concentration term in the second equation as the size of the radial core.
Then more correct physical assumptions might be made. Even though this gives
oscillations, it still requires that the concentration (radial core) be out of phase with
the dynamic angle of repose, and this has been contradicted by experiments which
showed the radial core and particle concentration in phase with the angle of repose
during oscillations [72].

Another problem with this and the other simple diffusion related models is that
Khan et al. [73] showed that the particles in a drum do not obey regular diffusion
equations, but instead are sub diffusive. Khan et al. measured the spreading of a
pulse of grains, and found that both pulses of different size grains and similar sized
grains spread as t'/3 instead of t'/2. This suggests that although the grains mix,
they mix through a process slower than normal diffusion and the mixing term in the
above equations would need to be replaced with a sub diffusive term.

All of the models discussed above assume that the segregation happens at
the 2-D surface of the flowing layer. Except for the Aranson model, they cannot
account for the 3D nature of the flowing layer. Most of the continuum models based

on surface flow assume a difference in the mobility of the two particle types. At
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the same point in the flow, one particle type moves faster (laterally) than the other
particle type. This allows for segregation while simplifying the system to 1-D by
averaging over both x and y. Most models also assume that there is a reverse flow
that is equal for both particle types to conserves mass. It is usually assumed that
the axial flow is caused by a difference in flow surface angle, shape, or height, and
that the backflow happens in the bulk.

In another model, Elperin and Vikhandsky [74] again assume that the particles
flow in the direction of steepest descent, but also work radial segregation into the
model. The radial core was modeled by small particles occupying entirely the center
of the flowing layer (this is unphysical-large particles do just skip over the middle
of the flow). Large particles flow out of small particle bands (or areas of increased
small particle concentration) at the top and back in at the bottom because of the
steeper angle of the small particles. An asymmetry in this out and in flow would
allow segregation to occur. For example, a greater flow at the top (out) than at the
bottom (in) would mean that large particles are flowing out of the small particle
band (assuming equal backflow for both particle types).

Unfortunately, as we shall show later, the specifics of this model are incomplete.
We will create our own mechanism based on a similar principle, taking into account
the entire dynamics of the flow and of the radially segregated core as observed

experimentally in numerous works and outlined above.
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2.6 Framework for a New Model

There are many different conditions and particle properties under which band
formation has been observed. They include difference in particle size, difference in
particle density, and difference in particle shape. Band formation is very generic
and is recreated by the simplest of simulations: in computer simulations and simple
models we have shown that bands can form even in a mixture where only the fric-
tion coefficient is different [47, 44]. Although segregation by itself is very generic,
real experiments are far more complex, and may sometimes be driven by far more
complicated forces.

In order to understand and predict the band formation, these factors must be
taken into account. Two important factors are the connection between the radial
and axial segregation and the effect of the difference of the velocities of the two
particle types. We first investigate the connection between the radial core and the
axial banding and answer the question: what causes the instability of the radial
core?

We present the framework for a model based on the idea that axial flows and
concentrations can vary with downhill position (x). This work is being prepared for
publication in a paper by M. Newey and W. Losert [75]. Similar to the model by
Elperin and Vikhasky [74], we postulate that the free surface in the middle of the
flow is composed of a higher concentration of small particles than the free surface
at the top or the bottom (the top, middle, and bottom are defined in figure 2.9).

The reason for this is simple conservation of mass, because the particles in the
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LARGE BULK

Figure 2.13: A.) A schematic of the radially segregated state demon-
strating the increased number of small particles in the middle of the top
flowing layer. B.) A schematic of the flowing surface, as seen from above,
demonstrating the axial low with this distribution of particles.

flowing layer are flowing faster, the flowing layer will have to be thinner and less
dense (see above). The particles deeper in the bulk will now be closer to the surface
and will be more free to move axially (see figure 2.13a). One model, developed
by Chakraborty [76] for radial segregation, predicted this-that the concentration of
small grains would increase in the middle (middle of x) of the free surface flow (we
see this in our experimental results in chapter 4).

For axial segregation to occur due to free surface flows with this concentration
distribution, the particles at the free surface in the middle of the flowing layer
would need to flow axially toward areas of a larger radial core of small particles
(figure 2.13b). The particles at the free surface at the top or bottom of the flow
would have to flow outward away from areas with a larger radial core of small

particles. This would give a net drift of particles into like particle bands. This net
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segregating flux would be opposed by diffusive (or sub diffusive-see above) mixing.
This would happen until the core surrounding the band was small enough that
mixing balanced the segregating flux.

We relate the strength of the axial flow to both the gradient in the velocity
of the particles (although it could just as easily be related to the gradient in the
dynamic angle of repose) and assume that it is dependent on the gradient in the
concentration. We will provide motivation for this assumption at the end of this
section. The total current of a given particle type will be the integral with respect

to x of the axial current times the concentration:

Jrot = %/]z(x)c(a:)dx (2.10)

Where J;,; is the total z current of particle type i integrated down the free surface
and j.(x) is the axial current of particles as a function of x. We can simplify this
substantially by assuming: No axial flow at the top, ji,, = 0; A constant axial flow,
Jmid, and concentration, C,,;4, in the middle third; A constant axial flow, jy., and
concentration, Cyy, in the lower third. These assumptions are clearly not exact, but
will suffice for a general picture of the dynamics. We also make the assumption that
the axial flow happens in a 2-D layer (in the x-z plane), containing approximately

the same amount of mass all the way down the flow. If j,.;q + jpot = O then:
Jtot - Jmid(omid - Obot) (211)

and if we assume that |J,,,;4| is proportional to the difference of flow angle or downhill

velocity and therefore the gradient in particle concentration, and we introduce a
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mixing term then:

Jtot = _Dacz + ﬂZaCZ(Cmid - Cbot) (212)

Here, like earlier models, we have a diffusion equation that can have a negative
effective diffusion coefficient. This is equivalent to using equation 2.4 with g =
Bo(Crnia — Crot) where [y determines the proportionality of the axial flow to the
concentration. This equation will lead to segregation if (5(Cinia — Chot) is greater
than D.

The term C),;qg — Cho represents the size of the radial core and 0.c, represents
the strength of the axial flow. The term C,,;q — Cpoy Will be a complicated function
of the total concentration over a given x-y slice, ¢(z). If we assume that the radial
core can be represented by an area of constant concentration with an exponential
decay, then a couple of observations can be made. First, when the radial core is too
small, then C,,;q — Cyor will be small, and segregation will be balanced by mixing.
Cinia — Cpor will be dependent on the velocity and on the size of the radial core
(which both should be proportional to the overall concentration c(z)). This term
should grow slowly with increasing concentration of small particles.

Motivations are as follows:

e Assuming the velocity fluctuations are the same for the large and small particle
bands, then the lower density of the faster flowing small particles might cause

an inflow of particle in the high speed middle of the flow.

e Conservation of mass arguments might lead one to expect axial flow towards

areas of higher acceleration and flow away from areas of higher deceleration.
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The asymmetry in the flow, due to the granular nature of the particles, (see
above) will favor an outflow at the bottom, particularly if there has been an

inflow in the middle.

In other words, either one needs a variation in the axial flux between large and
small particles or a varying axial flux as a function of x and a varying concentration
of particles in the x-y plane. Radial segregation gives us the varying concentration
in the x-y plane. The middle of the free surface effectively samples deeper into the
flowing layer. This means that for the radially segregated state, there is a higher
concentration of small particles in the middle of the flow than at the start or finish.

Particles flow towards higher concentrations of small particles in the middle
of the flow, and they flow away at the top and bottom of the flow. Taking into
account the higher number of small particles in the middle of the flow, this can lead
to a net flow of small particles to areas of higher concentration of small particles,
and large particles to areas of higher concentration of large particles. If this effect
is large enough to overcome mixing, then segregation results.

In the following chapters, we will measure the surface flow properties of the
banded state. We will experimentally test and compare each model in the following

chapters (see outline of chapters in chapter 2).
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Chapter 3

DYNAMIC ANGLE OF REPOSE

Most of the models use a concentration dependent dynamic angle of repose
as a driving force for segregation. The dynamic angle of repose has been measured
extensively in experiments and simulation, and differences between angles of repose
of different particle types have often been linked to band formation. In order to
compare our experiment with other experiments and these models, we present re-
sults from the literature on the measured dynamic angles of repose as well as our
own measurements on the dynamic angle of repose for the systems used in our

experiments.

3.1 Background

The most important question is how the dynamic angle varies with particle
parameters. The dynamic angle of repose of a flowing material is related to the
static angle of repose for that material at rest. The static angle of repose has been
measured for different particle sizes and shapes. It was observed that the static
angle of repose decreases with increasing particle size and increases with increasing
particle non-sphericity for 10/16 and 22/30 sieved powder [77]. For small glass
spheres, sizes ranging from 75 to 600 um, the static angle was observed to also

decrease with increasing particle size [78].
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The dynamic angle of repose has been measured for a variety of experimental
conditions. It is generally measured in quasi 2-D drums through transparent end-
walls or by using magnetic resonance imaging. The height of the surface is extracted
and is fit to a line. For high rotation rates where the free surface is not flat but has
a characteristic s-shape, either an average is taken of the entire flow, the angle is
measured at the mid-point, or at the steepest point of the flow. Often the steepest
point of the flow is very near the mid-point of the flow. Using the angle at the
midpoint of the flow tends to give a higher answer for s-shaped flow, but both give
qualitatively similar results.

The dynamic angle of repose has been measured for a variety of particle types
and for a variety of drum systems. It has been observed to increase with increasing
particle roughness [32, 56]. Sand (high roughness) particles have much higher dy-
namic angles of repose than glass beads, and glass beads have slightly higher angles
than steel. The variation of the dynamic angle with size in the literature can be
confusing and sometimes gives conflicting results. We provide an experiment by

experiment overview of the pertinent results:

e Ristow et al. [67] used glass balls (beads) of size 1.5 mm and 3.0 mm in an
acrylic 7 cm diameter drum. They observed decreasing dynamic angle with

increasing particle size above 15 RPM but identical angle below.

e Ristow et al. [67] used mustard seeds of diameter 2.5 mm and 1.7 mm in an
acrylic 7 cm diameter drum. In this case, they saw increasing dynamic angles

of repose with increasing bead size below 20 RPM and identical angles above
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20 RPM.

e Hill et al. [26] used 2.85 mm and 0.5 mm glass beads in a 13 cm diameter Plex-
iglas drum. They observed decreasing angle of repose for increasing particle

size above 5 RPM and identical angles below.

e Khakhar et al. [56] used glass and steel balls of similar size and varied the
drum diameter between 4 and 16 cm. They saw a decrease in angle of repose
with decreasing drum diameter or increasing particle to drum diameter. This
is similar but not the quite the same as seeing a decrease in dynamic angle

with increasing particle size.

e The Morris group [25, 73] used 75-212 pm and 300-710 pm sand in a 2.7 cm
diameter drum. They saw a decrease in the angle of repose with increasing

particle size.

e Rogers and Clements [32] used glass beads of size 0.65 mm and 0.50 mm. They

found a 0.5 degree difference in the angle between the two sizes of glass beads.

e Hill et al. [79] used a mixture 2 mm and 4 mm fluid filled spheres in a 7.5
diameter acrylic drum. When rotated at 15 RPM, the dynamic angle decreased
with increasing concentration of large particles. When rotated at 30 RPM, the

dynamic angle did not change with concentration of large particles

For most experimental conditions, the angle of repose has been seen to increase
with decreasing particle size, although the opposite is seen in some cases [67]. Often
the dependence on particle size depends on the rotation rate: the particles have
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similar angles at some rotation rates, but the angles diverge as the rotation rates
increase (or decrease). In many cases this divergence has been linked to the start of
band formation [26, 67].

The reason for the differences in the dependence of observed angles on particle
size is not completely clear, but the details of the flow are affected by a variety
of factors. The type of material that the drum is made out of might play a role,
as rougher walls would tend to pull the particles to a higher starting point before
avalanching. The absolute diameter of the drum might also be important as the
ratio of particle diameter over drum diameter does not always provide good scaling
in these experiments. The different methods of measuring these angles could also
play a significant role.

The scaling dynamic of angle of repose has been studied as a function of
rotation rate. Rajchenbach [28], observed that the dynamic angle of repose increased
with R? for low rotation speeds, whereas Dury et al. [67] and Yamane et al. [80]
observed a linear increase with rotation speed for a range of particles. Orpe and
Khakhar [56] also found a near linear increase of dynamic angle with rotation rate.
Khosropour et al. [81] considered a wider range of rotational speeds and obtained a
slower than linear increase in b with rotational speed.

In experiments and simulations of 3-D drums, Dury et al. found that the
dynamic angle of repose at the endplates was 4-5 degrees higher than in the rest of
the drum [67]. The angle decayed exponentially with the distance from the endwalls.
Dury et al. determined a characteristic length for the decay of the angle away from

the endwalls and found that it scaled with cylinder radius.
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Figure 3.1: Dynamic angles of repose plotted against rotation rate for
1/16” (stars) and 1/8” (crosses) steel balls in a 10 cm diameter drum.
The solid lines are linear fits to each curve. Unfortunately, error bars
are unavailable for this plot.

3.2 Dynamic Angle vs. Rotation Rate

We were able to measure the dynamic angle of repose through the transparent
endplates of our drum by imaging the side flow with a color camera. We extracted
the free surface by eye and fit to a line. Because the angle is greater right next
to the wall, the free surface away from the wall was higher and showed up in our
imaging. This made it unclear how to extract the free surface on the lower half of
the flow and we only used the top half of the flow in our fit. In figure 3.1 we plotted
the dynamic angles of repose for 1/16” and 1/8” spherical steel balls as a function of
rotation rate. A linear fit has been applied to the angle versus rotation rate for each
particle size. The sensitivity of the angle fit to the error is significant, and there

is a high likelihood of systematic error due to methods of finding the free surface
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Figure 3.2: Experimental setup for measuring the free surface with a laser line.

(probably +0.5 degrees), but qualitative comparisons can be made. It is immediately
noticeable that for low rotation rates, the smaller particles actually have a lower
angle of repose than the large particles. At around 16 RPM, the dynamic angles for
the two particle types cross and above that rotation rate, the smaller particles have
a larger angle of repose. A little below 7 RPM, the lowest rotation rate plotted, the

flow is no longer continuous and flows in discrete avalanches.

3.3 Laser Line Measurements

In order to directly measure the surface height and surface angle of the granular

mixture in the banded state away from the endwalls, we used a laser line. This
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Figure 3.3: Height profile of the flowing surface as measured by a laser
line for steel beads rotated at 12 RPM. The top plot shows a comparison
of the profile for 1/8” (crosses) and 1/16” (diamonds) steel beads. The
bottom plot shows a sample linear fit to the profile for the large particles.
Although it was extremely difficult to accurately determine exact error
bars in this experiment, they were generally on the order of the symbol
size.
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method has been used before in a rotating drum by Khan et al. [73] and in avalanche
experiments by Losert et al.

We illuminated the sample from above with a laser line (see figure 3.2), and
took images with a high resolution color camera that was level horizontally with
the drum. Observed from the side, height differences can be detected as vertical
deflections of the laser line. Normally painted particles could be used, but reflective
steel spheres gave the best results.

A 90 degree difference in orientation between the laser line and the camera
gave the best possible resolution of the surface height differences. Multiple images
were taken for each position of the laser line and the average center was calculated
using image analysis. We slowly scanned in the x direction to obtain the profile
down the flowing layer. For one measurement, the scanning took about 5 minutes,
and so our technique is only accurate if the system does not change significantly in
that time.

Knowing the complete geometry of our setup, we can create a 3-D picture of
the free surface. The dynamic angle of repose is extracted by fitting the entire flow
to a line and taking the arctangent of the slope. Figure 3.3 shows the laser line
profiles for 1/16” and 1/8” steel balls in the banded state (we will discuss these
in detail below). We fit the profiles to a line (figure 3.3) and for the low rotation
speeds we are considering here, the flow profile showed only slight deviations from
linearity.

To characterize our samples, we first measured the dynamic angle of repose

for monodisperse samples of 1/8” and 1/16” steel beads. We measured these from
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Figure 3.4: Dynamic angles of repose at 12 RPM from the sidewalls and
inward. The top plot (A) gives the dynamic angle of repose for 1/16”
(lower solid line) and 1/8” (higher solid line) steel balls. The middle plot
(B) shows an exponential fit to the 1/16” steel balls. The lower plot (C)
compares the monodisperse angles with the angles of a mixture of the
two particle types, in the initial mixed state and in the banded state.
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the left side wall to about 8 cm into the drum. This gave both the wall effects and
the monodisperse steady state dynamic angle far from the wall. We can see from
fig. 3.4a that the large particles have a dynamic angle of repose about 1.5 degrees
higher than the small particles. The angle near the wall is a little over 2 degrees
higher than the angle away from the wall, as opposed to the 4-5 degree difference
seen in simulations and experiments by Dury et al [67]. When we compare our
dynamic angles of repose with our measured angles from the side we find good
agreement.

In figure 3.4c, we plot the angles near the wall for binary mixtures of 50%
1/16” and 50% 1/8” steel beads in the initial mixed and in the banded states.
Because a single scan of the laser line down the entire flow took around 4-5 minutes,
it represents an average of the state of the drum during that time. The initial mixed
state therefore represents the radially segregated state during the first 5 minutes of
rotation. Fortunately, mixtures of steel beads at these rotation rates took a long
time to form bands and the state of the sample did not change significantly over the
5 minutes of the laser scan.

We notice some interesting properties of the initial mixed state and the banded
state near the endwalls. First, the initial mixed state angle starts out at the angle of
the large particles near the wall and goes slowly to the angle of the small particles far
from the wall. It is possible that this is a result of the long time it took the angle to be
measured and represents the beginnings of segregation—of increasing concentration
of large particles right next to the wall. Second, the banded state near the endwalls
starts out with a high angle (large particle band) near the endwall. It then drops
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below the angle for monodisperse small particles (small particle band) and goes back
close to the angle for large particles. It is interesting that the small particle band
has a dynamic angle lower than the dynamic angle for the monodisperse mixture.

In figure 3.5, we have plotted the angle of flow across a band of small particles
in the center of the mixture. Similar to a band near the wall, the angle of flow is
lower by about 2 degrees across the band of small particles. Our fitting method has
a distinct effect on the resulting difference in angles: If instead of fitting the entire
surface, we find the angle by fitting only the middle of the flowing layer, then the
difference is somewhat lower, around 1-1.5 degrees. The dynamic angle of repose
around a small particle band is what would be expected from the monodisperse
measurements. The angle is lower over the band of small particles. The dynamic
angle does not immediately go to the angle for the large particle at the edge of the
small particle band. Instead, it slowly transitions from one angle to the other, with
the lower angle of small particles extending into the band of large particles. This is
an indicator that the concentration of small particles does not immediately drop to
zero at the edge of the band, but that the core of small particles extends into the
large particle band.

The most prominent feature in the axial velocity is the in and out axial flow at
the edges of the band of small particles. If we look at the left edge of the band, we
see a small positive (right-hand) velocity at the start of the flow, a larger positive
velocity in the mid range x positions, and a very large negative (left-hand) velocity
at the end of the flow. The opposite is seen at the other edge of the band so that

there is an axial velocity into the band at the middle of the surface flow and a large
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Figure 3.5: Top: An image from the laser line scan of the banded state.
Bottom: The dynamic angle of repose of the flowing particles as a func-
tion of position in the banded state. The top and bottom figures are
aligned so that their x axis are equivalent.
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axial velocity out of the band at the very bottom. At the top of the flow, there is a
slight axial flow of particles into the small particle band, but this is small compared

to the axial flows at the middle and bottom.
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Chapter 4
HIGH SPEED IMAGING

4.1 High Speed Imaging

The physical explanations for axial band formation revolve around the flow of
the free surface of the granular materials. Each model has a different description of a
flow at the free surface that drives band formation. Because of contradictions in the
different models, many physical questions remain unanswered: How do the particles
move axially to allow pattern formation? Do the small and large particles have
different mobilities or do they flow homogeneously? Does the flow go in the direction
of steepest descent and does this cause band formation? Do velocity gradients play
a role in band formation? We now attempt to answer these questions by directly
measuring the free surface flow of particles in the banded state of a rotating drum.

We analyze individual particle motion and compute average velocities using
direct imaging. We imaged the top surface of the flow with a high speed high resolu-
tion CCD camera. We imaged the radial flow from the side through the transparent
endplates. We took images at 1000 frames per second, with a resolution of 1280
by 512. The system was illuminated by a single bright light so that each particle
reflected a single bright spot. After some image analysis these spots were identi-
fied and tracked and particle positions and velocities were extracted by tracking

using particle tracking software originally developed by Grier and Crocker in IDL
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(Interactive Data Language).

Only the surface can be imaged by our camera. In these experiments, the
camera has a depth of field on the order of centimeters. Because it images only
reflected spots, the camera cannot distinguish between particles right at focal point
from particles a few particle diameters above or below from the focal point. When
the density of the particles is lower, the camera will pick up particles in the top layer
as well as particles deeper in the flow. We find that experimentally, for monodisperse
samples, the image always contains the same number of particles, no matter what
the actual density of the mixture in the area being imaged by the camera.

Because we cannot tell from the images what the density of the sample is,
we define the free surface of the mixture as the area that is seen by the camera.
When appropriate we will also include areas directly beneath this free surface in our
discussion of the results, though we cannot image particles motion in such subsurface
layers.

We will present data taken for steel balls of diameters 1.59 mm (1/16”) and
3.18 mm (1/8”), since steel beads are more spherical and monodisperse, and can be
more accurately tracked in images. We have published or are preparing to publish
much of this data [75, 47, 82, 83]. Some of the main results were also verified for
glass beads of size 0.5 mm and 1.0 mm for comparison to our earlier works described
in chapter 5 and other published results. By measuring the spot intensity of each
particle we can distinguish small and large particles on the surface of the granular
flow. The accuracy of distinguishing particles is decent, with misclassification of
3 — 5%: meaning that 3 — 5% of large particles are tracked as small particles and
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3—5% of small particles are tracked as large particles. The misclassification here will
cause any differences found by comparing particle motion for the two particle sizes
to be underestimated by about 10% for a mixture with 30 —70% small particles [84].
The error caused by misclassification will be much greater as the relative percentage
of one type of particle goes down (40% underestimation if we only have 10% of one
particle type in the image). Thus we focus particle size dependent results on regions
where both particle types are present in comparable quantities.

The correct scale on images for each experiment was found by measuring the
distance in pixels from the bottom of the drum to the top of the drum in a single
image. Because we know the inside diameter of the drum to be 10 c¢m, this gave the
scaling of pixels per millimeter. In experiments where this was not possible because
the camera area was zoomed in too far to see the entire drum, either a ruler was
placed in the image on the outside of the drum or individual particle diameters were
measured and compared. The last tended to underestimate the pix/mm and was
only used as a last result.

Depending on the experiment (and the camera zoom) the scale was usually
between 3 and 5 pixels/mm. The camera lens and the lens shaped plastic top of
the drum provide some distortion in the resulting image, and though these were
not corrected for, the distortions are minimal compared to the patterns we observe.
Because we use multiple particle sizes, and it is not yet known how various properties
scale with particle size and rotation rate, we will present our results in dimensional

units (as opposed to non-dimensionalizing our plots).
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4.2 Downhill Flow Velocities

We measured the downhill flow velocities for binary mixtures of 1/16” and
1/8” steel beads using the particle tracking methods as described above. To first
compare particle motion in our mixture to past work, we imaged the drum from the
side in the radially segregated state. The camera was aligned as well as possible
so that the horizontal was parallel to the flowing surface of the drum (as shown
in figure 2.2 in chapter 2). These particular experiments were done at 7 and 24.5
rotations per minute (RPM). At 7 RPM, the surface was flat and so alignment of
the camera with the drum was simple. At 24.5 RPM, the surface had a distinct “s”
shape (figure 2.1 in chapter 2) and so alignment was done by eye to be as close as
possible to straight on average. All of the flowing layer from left (ie. top or start of
the flowing layer) to right (ie. bottom or end of the flowing layer) was included in
the image as well as most of the way down into the bulk rotation.

The scale on the experiments viewed through the transparent endplates was
7.9 pixels/mm. To get good spatial resolution over the thin flowing layer we divided
the image into sections 5 pixels by 5 pixels (0.63 mm by 0.63 mm) and averaged our
particle tracking velocities in each of these. We then averaged these over the middle
(in x) third of the drum to get good statistics. In figure 4.1, we plot the downbhill
velocities versus the depth below the surface (y). The results agree with the results
found the literature [64, 65| and we see a linear decrease in velocity in the flowing
layer with increasing depth and an exponential transition to bulk rotation with the

drum. The slope is constant from small to large particles, with little or no kink in
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Figure 4.1: Downhill velocity, v,, as a function of depth in the flowing
layer, y, as viewed through the transparent endplates. This was a binary
mixture of 1/16” and 1/8” steel beads in the radially segregated state
rotated at 7 RPM. This is the same mixture as that shown in figure 2.2.
The top plot shows v, (diamonds) plotted with the number of small
(crosses) and large (triangles) particles. The arrows indicate which ver-
tical axis the data corresponds to. The bottom plot shows a linear fit to

Ug.
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Figure 4.2: Downhill velocities, v,, as a function of x, for a binary mix-
ture of 1/16” and 1/8” steel beads rotated at 12 RPM. Average velocities
are plotted for particles in a small particle band (crosses), particles in
large particle bands (squares), and the initial radially segregated state
(diamonds). Dashed lines represent polynomial fits to each curve. Error
bars for this data are smaller than the symbol size in the graph.

the velocity profile. We fit the slope to a line (solid line in figure 4.1), which gave a
slope of -0.0169 1/ms and an intercept of 0.54 m/s.

In order to study the flow properties of particles during band formation we
imaged the drum from the top, through the cylindrical walls. We aligned the camera
with the cylinder so that the horizontal camera axis was aligned with the cylinder z
axis and the particles flowed in the positive x direction. To compare with the laser
line measurements, the drum was rotated at 12 RPM. The surface at this rotation
rate is reasonably straight.

We followed the evolution of the banding pattern, including the initial tran-
sient, by taking image sequences every 2 minutes for about an hour. The first image

sequence was taken after only 5 seconds of rotation (1 rotation). When necessary,
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we stopped the drum while the data was being saved. Each time the drum is started
a transient occurs where particles are brought to an angle higher than the normal
dynamic angle of repose before flowing down and stabilizing at the dynamic angle of
repose. To mitigate the effect of this we allowed the drum to rotate for a minute be-
fore and after taking images (of course, the stopping and starting of the drum could
still have affected the band formation). Later on in the experiment, we increased the
time between sequence acquisition, and we allowed the flow to run uninterrupted
between image sequences.

In many of our plots, we plot data for the small particle band and for large
particle bands. The small particle band refers to averages over the right-hand small
particle band in figure 4.3 from its left edge to its right edge. The large particle
band refers to the area from 60 pixels (14.3 mm-about 9 small particle diameters)
in from the right side of the left small particle band to 60 pixels before the left side
of the right small particle band as well as the area of large particles just to right of
the small particle band.

We divided the image and particle tracking results into sections 20 pixels by 20
pixels (4.77 mm—-about 3 small particle diameters). We plot the downhill velocities,
vy, for the initial mixed state (triangles), for a small particle band (crosses), and for
a large particle band (squares) in figure 4.2. The initial mixed state was averaged
over 5 runs from ¢ = 5s to t = 480s to get good statistics, and radial segregation
will have already happened. The large and small particle banded velocities were
averaged over 7 runs from ¢t = 2760s to ¢ = 4765s. During this time, the large

and small particles banded state was stable over several hundred drum rotations,
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though further coarsening would have occurred on longer timescales. The error in
these averages is much lower than the size of the symbols in the figure.

The scaling given in chapter 2 [85, 24] predicts a polynomial dependence of
the velocity on x and we fit polynomials to the velocity curves (dashed line). The
smaller particle’s velocity fits nicely with its peak slightly later in the flow. At the z
center of the small particle band, the peak in v, is even sharper. The large particle’s
velocity does not fit as well as it tends to plateau, with a long, flat peak. The small
particles flow at significantly higher speeds than the large particles at all points
down the flow. The velocity profile of the mixed state flow velocity is in between
the magnitude of the small and large particle band flow velocities, indicating that
the initial mixed state has higher velocity gradients than large particle bands.

In this run, the band we are looking at formed very slowly, taking 3500 seconds
(about 1 hour) to form a steady state band. In figure 4.3 we have plotted a time
sequence of the x velocity versus axial z position. Corresponding images from some
of the data sets are shown for reference and visualization purposes. The velocities are
averaged over the middle third of x to get good statistics on the peak flow velocity
while still averaging over an area of somewhat constant v,. Almost at the very start,
we see a slight increase in the velocity in the area where a band is forming, indicating
the presence of an increased concentration of small particles, and a large radial core.
At this point there is also a slight increase in the number of small particles on the
surface, but it is barely visible.

In this figure (figure 4.3) we can also see the long tales of the particle velocities.
The increase in velocity extends beyond the edges of the visible small particle band,
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Figure 4.3: v, as a function of z as it evolves in time during the band
formation. The images on the left are frames from the camera corre-
sponding to 10 min., 40 min., and 1 hour 19 min. The velocities are
plotted in black with error bars and the lighter (red) connected circles
are the number of particles. Although error bars are shown only for
velocities, they are approximately the same size for the number of par-
ticles.
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Figure 4.4: v, of particles in a small particle band (crosses) and in a
large particle band (squares) as a function of time. The actual error
bars here are less than the size of the symbols, but there is significant
systematic error from run to run possibly having to do with periodicity
in the width of the band as the drum rotates.

indicating the extent of the radial core. The laser line measurements earlier showed
that the dynamic angles of repose show similar tails. The left hand band of small
particles is much wider. Around 1800 seconds into the run, this band influences the
velocities 75 mm (about 25 large particle diameters) from where it will later form.

The velocity peaks tend to get tighter (thinner) and higher as time increases
and the bands become more distinct. We measured the area under the banded state
and found that it was roughly constant, although the area for the right-hand bands
increases with time with a maximum area at around 3000 s.

In figure 4.2, the ratio in peak velocities between large and small particles
graphs was approximately 1.35. Because the velocities reach a maximum generally
in the center of a band, and we averaged over the entire band, the ratio in maximum

small band velocity and minimum large band velocity will generally be larger. In
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figure 4.3 the ratio of maximum small velocity to minimum large velocity in the final
banded state is 1.467. Both of these numbers are close to 1.41 which is the particle
size scaling expected by experiments on monodisperse samples [56]: \/m where
d; s is the diameters of the large and small particles respectively.

We also plot the velocity in the large and small particle band as a function of
time in figure 4.4. The error over a single measurement is low, but there is significant
error from run to run. This error may be caused by the starting and stopping of the
flow or more likely by high frequency oscillations in the band width. These that can
clearly be seen by eye following the band through a few rotations and are similar to
those seen in simulations in the literature [44, 86]. They have a oscillation period
on the order of one rotation of the drum.

The velocities for the small particle (large particle) bands appear to increase
(decrease) linearly as a function of time. If the velocities are proportional to the
concentration of small particles, then the concentration increases linearly over time
as well. Note, that this is the concentration of particles over a constant z, from
Zieft YO Zpignt, the left and right sides of the final small particle band. The velocity
increases from about 0.175 to about .21 in about 2000 s giving an approximate slope
of 1.75 X 10™°m/s>.

We studied the effect of varying the rotation rate on the properties of the
already formed stable band. We stopped the motor in between changing the rotation
rate and allowed the mixture to run for 1 minute at the new rotation rate before and
after taking an image sequence. This has the advantage that the same banded state

can be compared for different rotation rates. On the other hand, granular materials
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Figure 4.5: v, versus rotation rate for particles in a small particle band
(crosses) and particles in a large particle band (squares). The error bars
are smaller than the size of the symbols.

often exhibit memory effects and the dynamics of the flow might have been different—
even for a similar looking band-if we had started the drum at another rotation rate.
We do not know if this banded state is stable at the other rotation rates.

The variation of the x velocity versus rotation rate for particles in small and
large bands is plotted in figure 4.5. Above about 10 RPM, the velocities increase
linearly with rotation rate, as expected by the scaling results of Ottino [24] et al.
(see discussion in chapter 2).

We plot the derivative of the velocity with respect to x and t in figure 4.6.
Alexander et al. [57] found the acceleration to be an important parameter in their
scaling arguments. Our accelerations (0,v,) show symmetric acceleration profiles,
with the larger particles have a longer area of low acceleration (flattened velocity
peak-see figure 4.2). Comparing to Muzzio et al.’s data, increasing the size of our

particles compares to decreasing the rotation rate of theirs. This suggests a scaling

71



N
o
|
>4

— O Large
N Ta A Small
%)
= 54
\E/ : o 4 a 4 A
é 04 = é B ag B g g o g
?< -5 ° 8 A&
5
3 A g
-10x10 N T T T T 1
0 20 40 60 80 100
X (mm)
1.0
"o 0545 %5 " .+,
= 0.0 RETTEY
© VT 2o El o g .
—~ + o, o
§ '0.5_ + S_] ] +
ho) + 0O
-3 +
-1.0x10 1, : : : : |
0 20 40 60 80 100
X (mm)

Figure 4.6: Top: 0,v, as a function of x. Bottom: The acceleration,
Oyv,, as a function of x. Once again, the error bars are in general on the
order of the symbol size.
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parameter of the size of the particles that could be introduced. The derivative
of v, with respect to x, or (0yv,)v,, relates nicely to the effective stretching or
thinning (9,p) of the flowing granular layer. Thinning or the effective decrease in

density (assuming 1-d flow) can be calculated from A,p = where (] is a

G
vZALv 0
constant. The differences in the magnitude of (dv,/dx) for the small particles and

large particles are the largest at around x=25 mm and x=75 mm (in figure 4.2, this

is where the velocities begin to diverge significantly).

4.3 Axial Velocities

All of the models for axial segregation assume that the important dynamics
happen in the top surface of the flowing material. This intuitively makes sense
because the particles are less dense near the top surface and are not held down
by particles above them. They are more free to move and they are moving faster
downhill. In experiments in the x-y plane, the y velocity fluctuations have been seen
to be higher near the surface of the flowing layer [24] (ie. near y=0).

Using this assumption, segregation requires an axial (z) flow of particles on this
top surface. The differences between each model are sometimes subtle, but always
involve this axial flow. Many of the models predict axial flow in the direction of
steepest descent and differences in axial mobility of the different particle types. We
now compare our surface measurements to those and other model assumptions.

Because of the errors in distinguishing large and small particles, it is difficult

to separately measure the large and small particle drift. Calculations for one type of
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particle in the band of another type are very unreliable. The only way to distinguish
between the large and small particle band would be right at the edge of the band, and
the number of particles that would apply here would be few, as the band edges are
pretty distinct. In the transient, when the band is only partly formed, the velocity is
too small compared to the error to distinguish particles. The concentrations depend
on position and the finite size of our averaging sections also complicates the issue

and so we choose not to attempt to distinguish between particles for the z velocity.

Figure 4.7: Contour plot of v, in the banded state. Bright (orange)
contours represent positive (right) axial velocity. Dark (blue) contours
represent negative (left) axial velocity. The darkest and brightest con-
tours represent -0.02 and +0.02 m/s respectively.

The axial (z) velocities are an order of magnitude lower than the downhill (x)
velocities. In order to visualize the axial flow of the particles in the banded state,
we overlaid an image of the banded state at t=4765 s with a color contour, shown
in figure 4.7. Dark (blue) contours represent negative (left-hand) axial velocity and
bright (orange/yellow) contours represent positive (right-hand), axial velocity. The

brightest and darkest contour lines represent numbers near +0.02 m/s and -0.02
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Figure 4.8: The axial velocity, v,, as a function of x averaged over sec-
tions 60 pixels by 20 pixels to the left and right of the small particle band.
The triangles represent the initial v, averaged over the entire image.
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Figure 4.9: The axial current, j,, calculated from j, =

(Nmyv,/Ax)/Area, as a function of x. The current was averaged over
sections 20 pixels by 20 pixels to the left (hollow circles) and right (solid
circles) of the small particle band.
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m/s respectively. A plot of the drift at the left and the right edges of the band is
shown in figure 4.8. We averaged over an area 60 pixels wide (3 sections) in z at the
visible edge of the each band.

The most prominent feature in the axial velocity is the in and out axial flow at
the edges of the band of small particles. If we look at the left edge of the band, we
see a small positive (right-hand) velocity at the start of the flow, a larger positive
velocity in the mid range x positions, and a very large negative (left-hand) velocity
at the end of the flow. The opposite is seen at the other edge of the band so that
there is an axial velocity into the band at the middle of the surface flow and a large
axial velocity out of the band at the very bottom. At the top of the flow, there is a
slight axial flow of particles into the small particle band, but this is small compared
to the axial flows at the middle and bottom.

The current dp/dt can be calculated:

Nmu,
Adzx

Js = (4.1)

where j, is the density current, N is the number of particles, m is the 2-D mass
of a given type of particle, and the area, A, is AzAxz. The resulting density current
J» is plotted in figure 4.9 at the left and the right edges of the small particle band.
The current is similar to the axial velocities as expected. Although the currents look
symmetric around their middle, the flux is skewed in the negative direction and there

is a net outward flux (see table 4.1). There may also be axial flow underneath the

top surface layer but we expect that it will decrease quickly as a function of depth
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Table 4.1: Total Fluxes

Total flux (kg/(m?s)):

Left edge -47.6
Right edge -4.2
Total -51.8
Mean -2.35

under the top surface (as the downhill velocity decreases as well).

One source of systematic error in the drift could be the slight decrease in the
dynamic angle of repose (2 degrees) of the small particle bands. Because this means
that the camera will see the top of the small particle band as slightly farther away
and the bottom of the band as slightly closer, this could cause a slight outward
drift all the way down the flow—for a band right in the center of the camera view.
The magnitude of the apparent drift from a small change in surface angle can be
approximated from: v, ~ v tan™'(—L * msinﬁ) where L is the width of the
band, R is the radius of the drum, r is the distance from the camera to the band,
and 6 is the offset angle. For r = 0.5 m, L = 5 c¢cm, # = 2 degrees, and R = 5
cm, this equals (0.002)v,, and so v, ~ 0.0004 m/s. The maximum magnitude of
the drift velocity that we see is around 0.02 m/s, much more than this slight error.
Furthermore, the bands are not exactly centered in the field of view of the camera,
and off-center bands still show the same drift pattern.

In figure 4.10 we plot the drift at the left edge of the band as a function of

rotation rate for 3 slices in x (top, middle, bottom). Within the error bars, the z

velocity does not appear to change significantly with increasing rotation rate. This
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Figure 4.10: v, averaged at the left side of the small particle band, as a
function of rotation rate. v, is shown averaged over the top third, the
middle third, and the bottom third of the downhill flow.

is surprising since the x velocity increases significantly with increasing rotation rate,
and we might have expected the z velocity to increase as well. Hajra et al. [87]
showed that the radial diffusivity increased at a rate much slower than linear with
rotation rate. So the relatively constant axial velocity might not mean a significant
decrease in the segregation. For one thing, the higher velocity will mean that the
flowing layer samples deeper into the radial core.

In our mixture, the radial segregation tended to get weaker with higher rota-
tion rate. As we have seen in chapter 2, strong radial segregation tends to oppose
axial segregation. As the radial segregation gets weaker due to increased rotation

rate, the axial banding will not require as strong surface currents.
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4.4 Granular Temperature

An effective granular temperature is often defined from the fluctuations in
the velocity [24, 88]. The granular temperature has the form T, = (v2) — (v)*.
Notice that temperature normally has units of %va, but the granular temperature
is defined without the mass. Experimental studies [89] and simulations [90] have
shown that there is no equipartition of energy between large and small grains in a
range of driven granular systems. Instead the nature of energy sharing is complex
and depends on how the system is excited. Therefore one must assume that particles
of different kinetic energy interact in a flow, and that the differences in kinetic energy
depend on the system properties.

The velocity fluctuations, or the squared standard deviations in the velocity,
still can provide interesting insight into the dynamics of the flowing properties. This
assumes that the actual velocity fluctuations can be distinguished from the error in
our particle tracking. The group of Michel Louge [91] outlined a nice discussion of
the errors in determining the granular temperature. They discussed two relevant
sources of measurement error that might contribute to the temperature: errors in
tracking the particle centers due to finite pixel size and the error due to collisions
occurring between frames.

The additional fluctuation due to particle tracking error is given by:
2 2

where A, is the uncertainty in the particle center in terms of pixels, p is the size of
a pixel and F is the rate at which images are taken. For nearest pixel accuracy, A,
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would be 1/2.

The accuracy of our particle tracking will depend on the size and nature of our
particles. The particle tracking program can achieve subpixel accuracy by averaging
over an entire circular spot (with Gaussian intensity distribution) and fixing the
center. For spots that are too small or that are not circular, the accuracy will go
down. The code is officially rated for an accuracy of up to 0.1 pixels. This is only
true for particles that are larger than 5 pixels in diameter. Lower than this, the
accuracy significantly decreases. The accuracy is difficult to estimate. If we put it
somewhere in-between, we might get an accuracy of 1/4th of a pixel and a A, of
1/8. Our frame rate, F is 1000 frames/s and our pixel size p in this experiment is
about .24 mm/pix. This gives a velocity fluctuation contribution from error in the
tracking of 0.0006 m?/s?. If instead the A, is 1/4 then we get fluctuations of .0024
m?/s?.

The average number of collisions a particle experiences between successive
images is

Neoll = fcoll/F (43)

where F' is the frame rate as defined before and f..; is the frequency of collisions.
Assuming that f..; is less than F', then a decrease in the temperature can be derived:
AT = 2T,

In order to estimate the time between collisions and other causes of our velocity
fluctuations, we plot the velocities as a function of time for a few representative

particle tracks in figure 4.11. The top graph represents the z velocities, the middle
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Figure 4.11: Sample particle tracks for 2 sets of 100 track indices. The
top plots show v,, the middle plots show v,, and the bottom plots show
the corresponding track numbers. The array indices are evenly gridded
in time. Each set of particle tracks shows multiple particles, and the
particle identification number is shown in the bottom plot.
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graph is the x velocities, and the bottom graph is the particle number being plotted.
The velocities generally do not change drastically in one time step but instead tend
to change every 2-15 time steps. Only the smallest fluctuations shown should come
from the pixilated nature of the image, although this depends on the particle spot
size and shape.

In figure 4.12 we show contour plots of the axial velocity fluctuations of the
banded state. The bright contours represent areas of high temperature. In fig-
ure 4.13 we plot the z velocity fluctuations (7)) for the large and small particles at
different times. The filled symbols and the crosses represent the small particles, and
the empty symbols and the X’s represent the large particles. We notice that the
fluctuations are on the order of 0.002 m?/s* which is larger than the best possible
accuracy but significantly lower than nearest pixel resolution. At the very least,
these plots mean that we must be getting at least 1/2 (A, = 1/4) pixel resolution.

Some very distinct features are noticeable in the plots. Generally the smaller
particles have higher fluctuations. In the small particle band, the fluctuations of
the small particles are much lower, except at the very bottom of the small particle
band where the fluctuations are very high. There is a clear asymmetry in the
fluctuations at the top and the bottom of the small particle band. We also notice a
lot of systematic looking error in the fluctuations of the large particles, ie. the large
particles fluctuations show no consistent patterns.

Even if we assume that the contribution from particle tracking errors to the
fluctuations is high, 0.001 m?/s? and that it varies significantly over the mixture,

there are still some things that we are able to glean from the temperature. First, the
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Figure 4.12: Color contour plots of the axial (z) velocity fluctuations.
Bright (yellow) contours represent high fluctuations, and dark (purple)
contours represent low fluctuations. The contour lines represent a range
from 0 to 0.005 m?/s?.
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Figure 4.13: The axial (z) velocity fluctuations as a function of x. Fluc-
tuations are plotted for small particles in a small particle band (crosses),
large particle in a small particle band (x’s), small particles in large par-
ticle bands (hollow squares), large particles in large particle bands (solid
squares), small particles in the initial mixed state (hollow triangles), and
large particles in the initial mixed state (solid triangles). Small particles
in large particle bands and large particles in small particle bands will
have large errors due to misclassification.
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fluctuations are clearly much higher at the bottom of the small particle band. This
is most likely an indication of true increase in temperature due to collisions that are
needed to slow down the flow (deceleration). At the top, the accelerating particle
are likely to see the same or fewer collisions as the mixture stretches since particles
can accelerate due to gravity alone, without the need for collisions (or receive energy
from neighbors).

Second, there a distinct drop in the fluctuations for small particles over the
small particle band. It is impossible to determine whether this is an indication
of true temperature difference or just due to the differences in particle tracking or
collision frequency of the different particle types. Or it may be that the particles in
the small particle band collide much more often. This would raise n..; and lower

the temperature.

4.5 Concentration

An important parameter in the model by T. Elperin as well as in our proposed
model is the distribution in the concentration of particles. Using the data from our
experiment on binary mixtures as viewed from the side (see figure 2.2), we measured
the number concentration of the small particles versus radial position. Because the
bottom of the mixture was not imaged, we measured across a horizontal slice near
the beginning of the bulk rotation and calculated r, the distance from the drum
center, from 7 = v/h% + 22, where h is the vertical (y) distance from the center of

the drum and is a constant in this analysis. The error in distinguishing between
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Figure 4.14: Top: Number concentration (in the bulk) of small parti-
cles as a function of distance from the radial center of drum. Bottom:
Concentration by area of small particles as a function of distance from
the radial center of the drum. Exponential fits (solid lines) have been
applied to both data sets. This is data for a 50% filling binary mixture
of 1/16” and 1/8” steel beads rotated at 7 RPM (See figure 4.1).
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large and small particles was significantly less from the side than from the top
because the zoom was higher. For the bright area of the image we are measuring,
the misclassification was well under 2% (See appendix 2).

We plot the concentration of small particles as a function of r in figure 4.14.
The first plot shows the number of small particles over the total number of particles
and the second shows the mass concentration (this was found by using the cross
sectional area of a single particle: Agnai/Asotar). The particles are nearly constant
for the first 12 mm (about 8 particle diameters) and then show an exponential drop
off (as seen in other experiments [36]). At the very end, there is a spike in the
number of particles, but this is largely because we are encountering the wall of the
drum which is being tracked as small particles.

We fit the decreasing area of concentration to an exponential (solid line).
The exponential fit to the concentration (Agman/Atotar) gave a characteristic length,
A = 4.21 mm, and a vertical offset of Cy = 0.043. The amplitude was e*™® = 272,
giving the edge of the core (where ¢, ~ 1), rp = 24.2 mm.

Looking now at the mixture from above, we plot the number of small particles
for the small particle band in the process of forming at t = 720 s in figure 4.15.
At the top and bottom of the mixture, large particles tend to get tracked as small
particles as they are rotating up into the mixture and therefore appear fainter.
There is also some mistracking in the ( 5%) in the rest of the mixture, and this will
cause observed differences between large and small particles to be damped by about
10% [84]. Despite this, we see a distinct increase in the number of small particles

in the middle of the free surface. This is consistent with the arguments given in
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Figure 4.15: Top: The number of small (solid squares) and large particles
(hollow squares) versus x as seen by the camera on the top surface at
run 7 (720 s). A 2nd degree polynomial has been fit to the data (solid
line). Bottom: The concentration of small particles N./4

" N,JA+NL’
the top surface with the corresponding polynomial fit.

as seen on
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chapter 2 based on conservation of mass. The number of particles fit well to a 2nd

degree polynomial.

4.6 Discussion

We are now in a position to test each model with our results. In every model
the bands form due to the growth of initially small concentration differences. Almost
all models assume that the flow happens entirely in a thin surface layer and drift in
the direction of steepest descent proportional to the gradient of the surface height
(h) with respect to z, j, o 0,h. Often an undefined or bulk backflow which is
equal for each particle type is assumed as well. Often, the models assume that the
velocities of the different particle types are different, even at the same point in the
flow. Small particles would then be flowing past larger particles at a given point in
the flow.

The models give predictions for the dynamics as follows:

e Savage [71]: Required a difference in the lateral mobility of the particles and
a higher angle of flow one particle type. He also required that there be a

difference in the height of the two surfaces all the way down the flow.

e Das Gupta [51]: Did not require a difference in angle, but required an increase
in height for the small particle band all the way down the flow. Required a

higher mobility of small particles at all points in the flow.

e O. Zik [70]: Required a difference in the angle of flow and shape of the flow
between the two particle types. Also required a difference in mobility of the
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particles that, in the model, was due to their difference in monodisperse dy-

namic angle of repose.

e Aranson [7]: Claimed that the dynamic angle of repose could be out of phase
with the concentration of the mixture. Particles flow in the direction of steep-
est descent. Required a difference in mobility of the particles which, in the

model, was due to differences in the static angles of repose.

e Elperin [74]: Allowed homogeneous flow of large and small particles with dif-
ferences in concentration at different x positions. This allows for the dynamics
of the radial core to be incorporated in his model. Required an “s” shape free
surface and flow of particles out of a small particle band at the top and into
the small particle band at the bottom with an asymmetry between the in and

out How.

e Newey and Losert: We do not assume drift proportional to d,h and allow for
homogeneous flow. We require that there are more small particles at mid x
positions. We also require drift into small particle bands in the middle of the
flow and out of small particle bands at the top or bottom. The driving force for
drift is the differences in flow velocity between large and small particle bands.
The radial core would be incorporated in a model through the dependence of

concentration of particles on x-y position.

The profiles we saw in chapter 3 did not give any increase in the average height

for either particle type and were reasonably symmetric at the top and bottom. Thus,
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Figure 4.16: The height difference of the surface obtained from the laser
line experiments described in chapter 3, A_h, plotted alongside the axial
current at the left and right of the band. The height difference is simply
the difference between the height at the center of the small particle band
and the height a few particle diameters into the large particle band. An
approximation to the gradient might be calculated from Ah/Ax.

the assumptions of Das Gupta and Savage are immediately violated as both require
a raised free surface for one particle type.

We compare our measurements to the hypothesis that the axial current is
proportional to the direction of steepest descent: j, oc 0.h. In chapter 3, we observed
that at 12 RPM, the small particle bands have a shallower angle than the large
particle bands. This gives a direction of steepest descent towards small particle
bands at the top and away from small particle bands at the bottom.

In figure 4.16 we have plotted the difference in the heights at the middle of a
small particle band and in a large particle band (from the profiles in figure 3.3). We
have plotted the currents, j., to the left and right of the small particle band. Note

these are not taken from the same band, but from two different experiments with a
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binary mixture of 50% small particles at the same rotation rate. Similarly, we have
plotted height differences and the axial velocity contour together in figure 4.17.

The axial current is in the same direction as steepest descent at the top and the
bottom. On the other hand, in the middle of the flow where there is inward drift,
there is little z height gradient. Obviously a model assuming drift proportional
to axial height gradients cannot give this middle drift. It might be possible to
incorporate it into some of the models as the correcting backflow.

We also find that as far as we are able to measure, the particles flow homoge-
neously. That is, a small particle and a large particle at a given 3-D position in the
flow will have the same x velocities. We were unable to compare z velocities.

Our results fit in some ways with the model of Elperin and Vikhansky, as we
do have an asymmetric axial flow at the start and end of the downhill flow, and
a higher concentration of small particles in the middle. On the other hand, they
also did not account for the middle of the flowing layer. Slight corrections might be
made to their terms to allow for an inward middle flow, giving a more physically
correct description.

The ideas that we formulated at the end of chapter 2 were based on all of
our available data plus insights from the literature. The differences in x position
of the net flow of particles and the differences in x position of the number of small
particles near the free surface, as seen in our experiments, give a driving force for
segregation. Particles flow into the small particle band in the middle-the region
where more small particles are near the free surface—and out of the small particle

band at the ends—the region where the top surface consists mostly of large particles.
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This gives a net flow of small particles into small particle bands and large particles

into large particle bands.
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Chapter 5
TERNARY PATTERNS

5.1 Polydisperse Mixture Background

To expand upon our work, we also studied the long term dynamics of the
band formation. Binary mixtures have been studied extensively in the literature.
The number of variables that it is possible to vary with mixtures in a rotating drum
is vast. One can vary the rotation rate, the drum filling fraction, the percentage of
each component, the polydispersity, the type of particles, and more. The effect of
many of these on band formation have been investigated in the literature for different
mixtures. We expand upon the literature by studying the effect of increasing the
polydispersity on the pattern formation in a system of different sized glass beads.

Ternary and mixtures of more particle sizes have special utility, as they can
give information that would not otherwise be available. The existence of a middle
particle type can help to tell the order and sequence of band formation. More
polydisperse systems are also more like real geological situations, which tend to
involve a large range of sizes. Parts of this work recently appeared in Europhysics

Letters [47].
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5.2 Experimental Setup

Two drums were used: For the initial experiments, a short, 38 cm long, 10 cm
diameter drum was used, which was later replaced by a 67 cm long, 10 cm diameter
drum (the same one used in the high speed and laser line experiments). Both drums
were made of transparent perspex with transparent perspex endplates. We will focus
on the mixtures in the longer drum here. The drum was half filled with particles
and was rotated at 10-30 RPM. Most of the experiments reported on here will be for
rotation rates of 30 RPM. The experiment used a high resolution color CCD camera
placed to image the top surface of the granular material. In addition, we imaged
the sample through the transparent sideplates to investigate radial segregation.

For the majority of the experiments, we used colored glass beads, with various
sizes between 0.2 mm and 8 mm. Although the beads were made to be similarly
spherical and smooth, the smaller beads (1 mm and below) tended to be more rough
and less spherical. In some cases we also used ceramic or steel balls of around 1
mm. For the main ternary results that we focus on here, we used blue/green 0.5

mm beads, 1.0 mm gold beads, and 2.0 mm red beads.

5.3 Basic Axial Band Formation

Using an equal percentage of 1 (gold) and 2 mm (red) diameter glass beads,
we confirmed that a binary mixture of our particles formed axial bands as expected
for the rotation rates studied here. We observed radial segregation, with the small

particles on the bottom of the flowing layer, after only a few rotations of the drum.
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Figure 5.1: Banding in a binary mixture of 1.0-1.25 mm (gold) and
2.0-2.25 mm (red) glass beads. This experiment was run with equal
concentrations of small and large particles with a 50% filling fraction
rotated at 30 RPM. This image was taken after 257 seconds of rotation.

We observed the typical pattern of alternating bands, with the larger 2 mm glass
beads next to the wall. A picture from this experiment is shown in figure 5.1. The
bands near the endwalls formed early on in the process, although not necessarily
first, and the bands formed away from the endwalls in no particular order. The
bands in this binary mixture coarsened over time as expected. Binary mixtures did

not show any traveling bands or oscillatory behavior.

5.4 Band Within Band Formation

The focus of this chapter is on ternary mixtures of particles in a rotating
drum. It has been observed in other studies that ternary [51] and continuous dis-
tribution [49] mixtures segregate in order of size (small to intermediate to large).
We expand upon these studies, looking at different filling fractions and particle sizes
and types, and find new and interesting phenomena in polydisperse mixtures.

The richest patterns and dynamical instabilities were obtained from mixtures
of three particle types. We used three sizes of colored glass beads, 0.5-0.75 mm

(green/blue), 1-1.25 mm (gold), and 2-2.25 mm (red). The percentage of each
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Figure 5.2: An image sequence for a mixture of 40% 0.5-0.7 mm
(green/blue), 33% 1.0-1.25 mm (gold), and 27% 2.0-2.25 mm (red) (50%
filling fraction) rotated at 30 RPM. The upper right image shows the
view from the side of the radial core for a different run with the same
mixture.

particle size in the drum was varied. The drum was rotated at 30 rpm for periods
of several hours.

Figure 5.2 shows radial segregation and the axial band formation process.
Similar to binary mixtures, we found radial segregation after only a few rotations
with the small particles in the center surrounded by the medium particles, with the
large particles on the outside. This radial segregation can be seen at the endwalls
as shown in the inset to figure 5.2.

After radial segregation, but before axial segregation, the largest (red) particles
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predominate on the externally visible cylindrical surface of the tube. After about
one minute of rotation axial bands begin to form, starting with bands of the medium
sized particles. Within another minute, the smallest particles form bands inside the
bands of medium sized particles. Bands within bands like this form across the entire
tube until, after 5 minutes, there is a roughly evenly spaced array of bands within
bands.

As seen in experiments on binary mixtures, the axial pattern coarsens with
time (i.e., bands merge to form wider bands), sometimes on very long timescales of
hours or days. Generally we did not run the experiment long enough to observe the
final pattern, but when we let it run for long periods of time (of order days), we
observed a final state with a single band within band pattern.

We were also able to visually confirm that the radial segregation extends
throughout the entire tube before and after band formation for both small and
medium particles (see the bottom of figure 5.4). We wet the glass particles with
anti-static spray and rotated the tube until band formation was observed. We then
stopped the drum rotation and allowed the mixture to come to rest. The interstitial
fluid created liquid bridges between the particles. In the case of 0.5 mm and some 1.0
mm particles, these liquid bridges were strong enough to hold the particles together
so that they retained their bulk patterns. The larger particles were too heavy and
flowed more freely. This allowed us to see the extent and form of the radial core. It
clearly extended beyond the bands, and small particles could be found at all axial
positions (even if there were two few to clump together), indicating the presence of

a radial core in the banded state, similar to the results found using MRI for binary
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Figure 5.3: A spacetime plot showing the initial band formation for a
mixture of 27% 0.5-0.7 mm (green/blue), 33% 1.0-1.25 mm (gold), and
40% 2.0-2.25 mm (red) rotated at 30 RPM (50% filling fraction). The

vertical axis represents 5 minutes of rotation.

mixtures.

To visualize the evolution of the banding pattern over long time periods, we
create spacetime plots. A space-time plot is made by representing the entire pattern
at each time step in a single horizontal line. At each z position in the drum, a vertical
average is taken. This gives a horizontal line of pixels representing an the horizontal
pattern of the image at each time. These horizontal lines are stacked so that the
first is at the top and times proceeds downward.

In figure 5.3, we display a space-time plot of the initial band formation in a
ternary mixture of 0.5, 1.0, and 2.0 mm beads. Images were taken every 1.7 seconds
and the entire image represents about 5 minutes of rotation. Looking closely at this
image we notice a couple of features. First, we can see the characteristic band-in-

band formation. At the beginning (top) of every band within band, we see a yellow
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peak representing the initial medium particle band. This is followed by a small
particle band forming inside it. Once formed these bands appear to be very stable
on the short time periods we are observing here.

In the band on the far left we notice faint coarsening that happens even before
the appearance of small particles. You can see two faint yellow trails (medium
bands) that combine together as the small particles appear. It is interesting that
the area where the medium particles first form is not always the same as the center
of the band within band. The size of the medium particle bands on each side of a
small particle band is also not always the same. When the medium particle band
forms initially to one side of where a small particle band will form, then that side
will tend to have a large band of medium particles.

The explanation for the observed band within band formation can be described
by a simple schematic (see figure 5.4). The pattern of band formation (bands-in-
bands) is consistent with the connection we have made in our model (see chapter
2) between radial and axial segregation [33, 32]. We will discuss the dynamics of
bands within bands in the context of our model further below. For mixtures of four
or fewer particle sizes, the axial segregation pattern and the sequence in which the
bands appear can be described as shown schematically, in a cross-section parallel
to the free surface, in Figure 5.4(a)-(d). After a few rotations, radial segregation
extends throughout the entire tube (Figure 5.4a). An instability of this axially
uniform state begins to expand outward (Figure 5.4b) until the outermost edge of
the core, made up of medium sized particles, reaches the cylindrical wall of the tube

(Figure 5.4c). As viewed from the outside of the tube, this would be a band of
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Figure 5.4: (a)-(d) Schematic of the band formation process shown in
a cross-section parallel to the free surface. (e) An actual image of the
inner core of small particles using wet glass particles. When the drum
rotation was stopped, the interstitial fluid created liquid bridges between
the particles. In the case of 0.5 mm and some 1.0 mm particles, these
liquid bridges were strong enough to hold the particles together so that
they retained their bulk patterns.
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Figure 5.5: Total bandwidth of each particle type vs. input composition
of small particles. Bandwidth of 2mm particles (red crosses), lmm par-
ticles (green squares) and 0.5 mm particles (blue triangles). Each data
set is fit to a line. They are plotted with the slope one line (black dashed
line) which represents the total concentration of small particles in the
mixture. Note that the total bandwidth of small particles, or the total
amount of small particles in bands, is less than the number of particles
in the mixture, indicating the presence of a radial core of small particles.

medium sized particles (Figure 5.2b). The inner core continues to expand until the
smallest particles reach the surface (Figure 5.4d) thus forming the band within band
structure visible at the surface (Figure 5.2¢,d).

Although this accurately describes the sequence and patterns that are created,
there is a lot of variety in how this pattern might look in real life. There is com-
petition between the radial segregation of small and medium, and of medium and
large. Different ratios of these particle sizes can lead to interesting dynamics as we
shall see below.

We varied the composition percentage of the large and small particles while
holding the composition of the medium particles the same. We studied the banded

state as a function of the composition percentage of small particles. We shall see
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Figure 5.6: Band formation in an equal mixture of 4 particle sizes: 0.5
mm (green/blue), 1.0 mm (gold), 2.0 mm (red) and 4.0 mm (clear) glass
beads. The filling fraction was 50% and the drum rotation rate was 30
RPM.

in the next section that some of the richest patterns happen when the composition
of the small particles is high. We have plotted in figure 5.5 the total width of all
the bands of each particle type (averaged over time after the bands had formed) vs.
composition percentage of the small particles. We added the widths of each band in
the steady state for each pattern at each composition. Linear fits have been applied
to these plots.

When the composition of small particles is low, the large particles predominate
on the surface (due to radial segregation). As composition increases, the bands of
largest particles decrease in total width, and the smallest particles increase in total
width. The medium particles retain a roughly constant total width over the whole
range. We have plotted the slope one line, or the line representing the total amount
of small particles in the mixture. We find that the data representing the total
amount of small particles in bands is below this line. This is consistent with our
observation that many small particles are still in an inner core.

We also mixed four particle types with clear 4 mm particles added in equal
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volume to the mixture (still total 50% filling fraction). We found them to also
segregate both radially and axially. The axial segregation pattern again showed a
band within band formation starting with the largest particles and going to the
smallest. The banding here is not as distinct as for ternary mixtures and the order
of band formation was not easily observable.

We tested mixtures of five and six different particle sizes by adding 8 mm clear
(five) and 0.2 mm (six) beads to the mixtures. This gives a ratio of 64:1 between
the largest and smallest particle diameters. These mixtures of five and six different
particle sizes quickly segregate radially, but do not segregate axially at all for the
large range of rotation rates we have investigated (from intermittent avalanching
to centrifugally dominated regimes). To determine whether axial segregation is too
slow to be observed, we seeded mixtures with an initial band of the smallest particles
(one sixth of the total mixture) and observed the evolution of that band. The
band gradually disappeared after roughly 200 rotations for a large range of rotation
speeds (between 10 and 110 rpm), indicating that axial segregation is suppressed
for mixtures of five or more particle types in our system.

The scaling of Morris [50] predicts a cutoff of particle to drum diameter ratio
for binary mixtures: d/D < .025. Here, d refers to the average size between the
two particle types and D is the drum diameter. In other words, d/D must be less
than .025 or bands will not form. In our mixture of six particle sizes, the particle
to drum diameter ratios of our beads, d/D, were 0.002 (0.2 mm), 0.005 (0.5 mm),
0.010 (1 mm), 0.020 (2 mm), 0.040 (4 mm), and 0.080 (8 mm).

The ratio, d/D < .025, for the 8 and 4 mm, is .060 (well over the critical
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ratio),and the average for the 4 and 2 mm beads is .030 (just barely over the critical
ratio). This suggests that binary mixtures of 2 and 4 mm beads may or may not
form bands, and binary mixtures of 4 mm and 8 mm beads definitely would not.
Considering mixtures of four, five, and six of these particle types, we see that d/D <
40 for the 4 mm beads with all the lower diameter bead sizes is near or below 0.025,
while d/D < 40 for the 8 mm beads with the lower diameter beads is above 0.025.
It was only in the mixtures of five or six particle types that these 8 mm beads were
introduced and these beads did not band. Therefore these results are consistent
with this earlier prediction.

The beads underneath the 8 mm particles may still form bands that were not
visible but it is more likely, because they are more confined, that they will not be
easily able to form bands if the topmost layer does not. Another reason for the lack
of segregation in the five and six particle size mixtures is that as the total number
of particles goes down for each particle type, there will be more interaction between
non- “nearest-neighbor” particle sizes. For example, there would be fewer 4 mm
beads between 2 and 8 mm beads and therefore more interaction between 2 and 8
mm beads. As we saw in chapter 2, we would expect this to increase the mixing

that opposes axial segregation.

5.5 Ternary Oscillations

When we increased the concentration of small particles in a mixture of three

particle types, we observed fascinating oscillations in some of the band positions
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Figure 5.7: On top: Space-time plot of oscillations in a ternary mix-
ture of 0.5 mm (blue/green), 1.0 mm (gold), and 2.0 mm (red) particles.
This mixture has a high concentration of small particles (40% small,
33% medium, and 27% large particles). On bottom: A space-time plot
of oscillations in a mixture with an even higher concentration of small
particles (53% small, 33% medium, and 13% large particles). Both ex-
periments had a rotation rate of 30 RPM.
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and widths over time. Figure 5.7a shows a space-time plot of a mixture with excess
small particles (40% small particles, 33% medium, and 27% large particles). The
mixture initially coarsens (at the very top of the space-time plot) and quickly goes
into oscillations of the axial band positions in locations where the bands are closest.
The bands on the left of the figure oscillate with a period of about 40 minutes, before
coarsening to increase the width and spacing of the bands. As the oscillations end
and the band coarsens, some very striking patterns occur: we see one of the large
bands move to the right and connect with another large band, but then instead of
combining, it reverses direction and moves back near its previous position. It almost
appears as if it is ‘bouncing’ off the other large particle band.

These semi-stable oscillations and this ‘bouncing’ pattern were first reported
on in the literature by Newey et al. [47]. Similar oscillations and patterns occurred
in almost every experiment that we ran with above 33% concentration of small par-
ticles. In figure 5.7b we show another example of oscillations, this time with higher
time resolution, and without the distinct ‘reflecting’ event. This one is interest-
ing in that some of the bands oscillate with a period that is exactly 1.5 times the
predominant period of oscillation. The shortest period here is about 1 hour.

In figure 5.8, we have plotted the band positions and widths for one of the
oscillating bands from figure 5.7a. The band width for the large particles (red)
is unchanged with time while the width of small (blue/green) and medium (gold)
particle bands oscillates with time. The observed change in width of bands of
small particles requires influx and outflux of particles. This is consistent with our
observation that an inner core of small and medium sized particles remains within
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Figure 5.8: The positions and widths versus time of the small
(blue/green), medium (gold), and large (red) particle bands.
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bands of larger particles (Fig. 5.4). The presence of an inner core near the small
and large particle bands means that new material can be easily obtained from the
surrounding mixture. Transport of material between bands of large particles, on the
other hand, is inhibited.

It is interesting to note that the widths of the small and medium particles
oscillate out of phase (by about /2 radians). The center positions of the small
particles are also out of phase with the center positions of the other two particle
types. This suggests out of phase coupling between the interactions of the large and
medium and the large and small particles, which we discuss in more detail below.

To ascertain the sinusoidal form of the oscillations, we fit the center positions
of the large particle band to a sine function in figure 5.9. On top we have the real
data as well as the fitted sine wave. The curve fits well to a sine wave although
the center position shifts in the data. On the bottom we have plotted the fourier
spectrum of the wave. We see a distinct peak, at about the fitted frequency of the
oscillating data.

We calculated the fourier spectrum for all of the bands in experiments where
oscillations were observed. We extracted the frequency and list the frequencies for
the different bands and runs in table 5.1. The amplitude appears to vary significantly
from run to run, but the period is, for the most part, between 2000 s and 3000 s
(40 and 60 minutes). Rarely a few larger periods appear, which are 1.5 times higher

than the others.
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Figure 5.9: On top: A sine fit to an oscillating band from run 0. Fourier
spectrum of the band center position during the time of oscillation.
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Table 5.1: Oscillating Bands

run size (mm) | band frequency | period (s) | amplitude
(1/s) (cm)
0 0.5 16 0.000439 2278.127 0.65
0 0.5 17 0.000384 2604.467 0.7
0 0.5 18 0.000410 2439.024 0.3
0 2.0 03 0.000439 2278.112 1.6
0 2.0 04 0.000384 2604.167 0.5
0 2.0 06 0.000455 2200.000 0.8
6 2.0 00 0.000365 2739.726 1.0
9 2.0 05 0.000333 3000.000 2.2
9 2.0 06 0.000300 3333.333 2.5
9 2.0 07 0.000225 4444 .444 3.0
9 2.0 08 0.000225 4444 .444 3.0
9 2.0 08 0.000375 2666.667 3.0
12 2.0 08 0.000475 2105.263 2.0
12 2.0 08 0.00058 1724.138 2.0
14 2.0 10 0.0002 5000 2
14 2.0 11 0.0004 2500 2

5.6 Traveling Bands

In addition to oscillating bands, we also see traveling band patterns. A space-
time plot of two runs that exhibited this phenomena is shown in figure 5.10. The
bands follow a fascinating menorah-like pattern, branching away from the middle
of the pattern. In the first run, all of the small particles on the right end up in the
middle, leaving only large and medium particles on the right. In the second run
there are still small particle bands on the right. In the second run, we also see one
of the bands exhibit a brief oscillation after the branching has been completed. As
we make observations and consider this interesting pattern, we note that most of

the observations apply to the oscillating bands as well. It may be that traveling
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Figure 5.10: Two spacetime plots showing a distinct traveling wave pat-
tern. The images are taken from a run with 53% small, 33% medium,
and 14% large particles (left image) and 47% small, 33% medium, and
20% large particles (right image). Filling fraction is 50% and the rotation
rate is 20 RPM.

waves result when all the bands move in the same direction and oscillating bands
result when the bands ‘want’ to move in opposite directions.

The direction of the movement of the particles is not always the same as the
direction of the movement of the bands. Looking in figure 5.10, we see that while
the large, medium, and small particle bands may be moving to the right, the small
particles are moving to the left (because the area of small particles is getting larger
in the middle). The sideways velocities of the traveling bands also appear to increase
right before they combine with other bands.

Another interesting observation is the movement of a small particle band is
accompanied by an asymmetry in size of the medium particle bands on each side of
the small particle band. The small particle bands almost always move away from the

side where there are fewer (or no) medium particles. This is true for the oscillations
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in figure 5.7 as well. This means that segregation is occurring on one side of the

band, while on the other the particles are mixing and diffusing.

5.7 Discussion

These oscillations can be understood in a couple of ways. A simple diffusion
term can never give oscillations, but two coupled equations could. When working
with a mixture of three particles types, one particle type can always be eliminated
by the relation: ¢; + ¢o +c3 = 1, where ¢; is the concentration of particle type i.
In a review article still in developement, Aranson proposed using C'4 = ¢; — ¢3 and
Cp = ¢y — c3, in a coupled system of diffusion equations like those given for binary

mixtures (see equation 2.4).

0,Cy = DAa,SCA -+ NAaEOB (5.1)

0,Cg = DBaSCB + ,uB(?fCA (52)

If 14 and pp have opposite signs (i.e. the oscillations of the two equations are
out of phase) then this gives the observed oscillations.

Looking carefully at our oscillating spacetime plots (figure 5.7) and at figure 5.8
we see that the particles do oscillate out of phase in space and time. An easy
verification of the oscillations in time can be made by taking a vertical line down one
of our oscillating space time plots at the edge of an oscillating band (see figure 5.11.

The concentration as a function of time goes from small to large to medium to small
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Figure 5.11: A zoomed in section from the leftmost oscillating band in
figure 5.7a. If we follow the solid line downward, we can see oscillations in
time that are 120 degrees out of phase: we go through a small band, then
through a large band, then through a medium band, and then through
a small band again, etc.
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again. If each of these are sine waves and the visible particles represent peaks in the
sine waves, then each of the concentrations are oscillating 120 degrees out of phase.

We now compare to our model, using ¢; and ¢y as C'4 and C'g for convenience.
A similar result could be worked out with other models by replacing v, with the
dynamic angle of repose #. In equation 2.12, we gave a simplified equation for the

concentration:

Jtot = —D@Cz + ﬁQaCZF(C) (53)

where F(c) = Cpiq — Cpoe. For a three particle system, we assume the downbhill
velocity, v, to depend on the sum of the concentrations, ¢; + ¢5. The diffusive mixing
will be different for different particle size ratios (see chapter 2), ie. Dgpqy mixed with
medium particles will be different than D,,,.; mixed with large. Radial segregation
is not complete and the top surface flow will consist of mixtures of large, medium,
and small particles. The diffusion coefficients for each particle type will be dependent
on the concentrations of the other particles. We label the diffusion coefficient for
small particle D;(cy, c2) and the diffusion coefficient for medium particles D2(¢y, ).

The axial current will be dependent on the gradient in the velocity which is
dependent on ¢; + ¢3. F(c) will depend mainly on the concentration of the particle

type in question.

Jl = (61&301 -+ 628202)F(01) — D1 (Cl, 02)@01 (54)

JQ = (61&301 -+ 628202)F(Cg) — DQ(Cl, 02)8202 (55)
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Figure 5.12: Image sequence for band formation with uneven particle
concentrations on either side of the band.

Taking 0;c = 0,J, and rearranging terms, we get:

Oicy = 102¢1F(cl) — Di(cl, ¢2)0%cy + [20coF(cl) (5.6)

Oico = 3202y F(c2) — Dy(cl, c2)02cy + 10%c1 F(cl) (5.7)

Here we have coupling interaction in two places: in the diffusion coefficients
D, 5 and in the last term in each equation. These equations allow oscillations in

space and time assuming the oscillations of ¢; and ¢, are out of phase.
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In figure 5.12, we have provided a schematic of how traveling waves might
occur. The large and medium particles have a 2:1 size ratio, the medium and small
have 2:1 size ratio, but the large and small particles have a size ratio of 4:1. In other
words, the radial segregation and diffusion mixing will be stronger for interfaces
between large and small particles with 4:1 size ratio.

If the medium particle band was small on one side of a small particle band,
there would be more interaction between small and large particles and the particles
might diffuse on that side while segregating on the other, causing movement of the
small particle band away from the small medium particle band. If there are fewer
medium particles near one side of a small particle band, then there will be more
interaction between the small particles and the neighboring large particles. This will
cause the diffusion to be higher on this side of the band. If this diffusion is higher
than the segregation, strength then the band might move. Mixing on the right side
of the band means that small particles will move right and large particles will move
left. Segregation on the left side of the band would mean that small particles were
also moving right and large left there. This would give a net movement of small
particles to the right but of the small particle band to the left.

Oscillations may occur with more complicated interactions between the three
particle types. One thought is that oscillations may occur when two bands are
traveling in opposite directions, as the core will grow when the bands get close
together. This may stop the movement of the band, and if there was a difference in

the core between particle types, cause the bands to reverse direction .
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Chapter 6

CONCLUSIONS

In this work we have presented a series of new and interesting experimental
results on the banded state of granular particles in a rotating drum. We studied
the basic surface characteristics of the band formation through high speed imaging
and laser line deflections. Our results are applicable for a range of conditions and
materials in the rotating drum, and are generally consistent with earlier experimental
data. Our data provides a more complete picture than earlier studies. Based on
our observations we discuss two flow processes that are important for understanding
the physical mechanisms that lead to axial segregation and present evidence that
one hypothetical process that is used in several models of axial segregation may not
always be correct. In summary, our results our:

1.) We find that the particles follow an interesting axial velocity pattern: In
the high speed middle of the flow, particles drift towards small particle bands. In
the decelerating bottom of the flow, particles tend to flow away from small particle
bands.

2.) We find that particles in small particle bands actually flow downhill faster
than particles in large particle bands. This creates an interesting shear flow as you
traverse the band in the axial direction: The small particles shear past the large

particles. We present evidence that natural asymmetries in a granular flow lead to
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the axial pattern given above being caused by this difference in downhill velocity.
One piece of evidence is the increased velocity fluctuations at the bottom of the flow
in the small particle band. This leads to outward flow from small to large particle
bands at the bottom of the flow.

3.) We measure the surface height of the banded state in the rotated drum.
We test current models for axial segregation that assume that gravity forces particles
to move in the direction of steepest descent. We find that though there are surface
height differences that can explain some of the axial velocities, height differences are
insufficient to drive the axial flow that we experimentally observed.

These results paint quite an unexpected picture of the motion of particles
flowing in the drum. With our natural eyes we can discern little except fast down-
hill low on the surface of the drum, and yet, the particles flow sideways, in and
out, as they move down the hill. These results don’t fit with the more intuitive
understanding that has been presented previously. Most of the models in the liter-
ature explain the band formation through axial surface flows driven by gravity in
the direction of steepest descent. As shown above, our results only partially match
up with these models. Instead, a better driving force for axial flow might be the
differences between the downhill flow velocities of the large and small particle bands.

Regardless of the driving force, a similar mathematical form for the axial seg-
regation of the particles can be determined: The segregation is described using a
diffusion equation with a negative diffusion coefficient, similar to Spinodal decom-
position. This naturally suggests that an investigation of this common description

might be useful.
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a) simulation

Figure 6.1: Example of fluid thread breakup from Douglas et al. [54].
Pictures are shown for experiment (right) and simulation (left).

Figure 6.2: On the left: Simulation results of the large beads in run C.
The color of each grain is chosen according to the position after a short
time. On the right: Schematic cross sections showing a typical merging
event [44].
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We can make comparisons with phase separation, which is found in a vari-
ety of systems such as non-mixing fluids, thin films, and alloys. Jack Douglas’
group [54]has done extensive work on phase separation of two fluids in confined ge-
ometries. In figure 6.1, we show the segregation of two fluids in a cylindrical tube.
Inspecting the figure, we see clear similarities to band formation in a rotating drum.
Like band formation in a rotating drum, the fluid’s initial state is a segregated core
of one fluid type surrounded by the other fluid type. This core breaks up into bands
much like in a rotating drum. In figure 6.2, we show a very similar picture from
simulations of a rotating drum from work done by Taberlet et al. [44]. We have
outlined experimental evidence that points to similar behavior as well in chapter 5.
Sometimes, oscillatory instabilities are also seen exactly like those in our ternary
mixture of particles in the rotating drum.

The evolution of the concentration field during phase separation is often mod-
eled using the Cahn Hilliard equation.

oC 2 p! 4
= = MVA(C) = V'] (6.1)

where C is the concentration, M is the mobility, and f is the free energy. The
Cahn Hilliard equation gives the change in the concentration based on the deriva-
tives of the free energy. It often results in a diffusion equation like the equations
describing segregation that we have examined in chapters 2 and 4. This suggests that
reasonable comparisons might be made with our experiment and phase separation

theory.
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When Cahn Hilliard is used leading to segregation, the process is often called
Spinodal decomposition. Spinodal decomposition happens when there is a downward
curvature in the free energy leading towards segregation. Then, small fluctuations
in the concentration decrease the free energy and those concentration differences
grow. The decreasing free energy due to segregation is offset by a cost caused by
the boundary between the two phases. This can lead to a specific wavelength formed
by initial phase separation process (see to the work of Khan et al. on drums).

One problem with this kind of analysis arises because axial segregation is
not a movement from an unsegregated state to a segregated state, but instead the
system goes from one segregated state to another. If a free energy were defined the
axially segregated state might have a lower free energy than the radially segregated
state. Mixtures that segregated axially would have lower free energies in the axially
segregated state and mixtures that did not would have higher free energies. The
free energy could be lower for two reasons: the segregation is stronger in the axially
segregated state, or the surface area of the boundary between the two phases is
lower. The second reason is similar to experiments done on the breakup of fluids in
mixtures (see above). In those cases, the fluid thread breaks up into droplets when
the surface area of the droplets are less than the surface area of the core.

One basic necessity for this kind of analysis is the ability to define a free energy.
Problems arise in granular materials as it is very difficult to define a free energy.
There is no free energy in a flowing granular material since the system is not in
thermal equilibrium. Instead it is constantly driven and dissipates energy. Some

think that such a system would choose a state of minimization of energy dissipation
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rates, rather than minimization of free energy. So the question is not what is the
energy, the question is what other function could be used instead of energy.

One way to define the interface penalty is to look at the shear velocity. If we
minimize dissipation, part of the interface penalty could come from a velocity shear.
The higher the shear, the more energy is dissipated, particularly between different
particle types. Even though there is shear on the surface between the large and the
small particle bands, it is significantly less than the shear in the radially segregated
state between particle type. It is intuitive that a system of similar type particles
might dissipate less energy everywhere in the flow as well, particularly if one particle
type wanted to flow faster than the other.

Regardless, one would of course have to choose a minimization function that
is smaller in the axially segregated state. This brings us back to the basic question
of how to model the band formation (ie. what function to choose).

We have, in the previous chapters, presented the foundation for a model to
describe granular pattern formation in a rotating drum through completely novel
physics. This foundation is conceptual in nature, and could have similar form to
many of the models currently out there. It is possible that those models could be
modified to take into account the physics demonstrated in this thesis without too
much trouble. Associating this work with that in phase separation might then be a
logical next step.

The focus of this thesis is not on the prediction, or even the modelling of
this pattern formation. Rather, it is on understanding the science of why these
fascinating patterns form. Predictions can be made using various simulations, but
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this was not our focus. Instead we illuminated some key ideas on why the granular
patterns formed.

Our results are consistent with scaling studies done on granular mixtures, as
outlined in chapter 2. As observed by Khakhar et al. [56] and Ottino et al. [24],
our velocities are inversely related to the square root of the particle diameter. Our
proposed mechanisms are consistent with the lense like flow profile observed by
Ottino et al. [24] and the density profiles observed by Rajchenbach [60].

An important observation made in chapter 2 is that, because the velocity
decreases linearly as a function of depth below the surface, the velocities below the
surface can be inferred from the velocities on the surface. Therefore, we have related
the axial segregation process to the radial core. The velocity of the particles depends
on the size of the radial core. An asymmetry in the drift drives band formation
through a basic asymmetry in the physical processes in granular flows. Since we
assume the drift happens near the surface, the strength of the axial segregation
is determined by how strong the radial segregation is. Weaker radial segregation
allows more small particles to be near the surface and to participate in the axial
flow. While some radial segregation is required for this process, very strong radial
segregation tends to weaken axial segregation.

Though we have investigated a wide variety of experimental conditions, many
further checks remain to be done. Our proposed mechanism allows for concrete
predictions that can be checked experimentally. The processes that we looked at
here are not just important for the rotating drum but may also play a significant
role in other experiments on flowing granular mixtures.
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Appendix A
RELATING FLOW CONCENTRATION TO CORE SIZE

A.1 Derivation

A.) Define the top layer as the amount of material 'visible’ to the camera, or

it could be the amount of massing in a normal packing in a certain distance d:

S

ood = AC;m (A1)
ood = o(z,y)l (A.2)

B.) Flux balance: The mass flow of particles through the top layer must be
the same as the amount rotated back by the drum. The amount rotated through a
distance 1 on the surface will equal the amount rotated back by the drum according

to mass flux balance:

R
/ logwrdr = olv, = opdv, (A.3)
R
oow/2(R* — R2) = sigmaoydV, (A.4)
2dv,
ﬁ:ﬁ—i? (A.5)
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This equation for any vertical line perpendicular to the flowing surface through

the drum mass.

(A.6)

Where r1 is the distance at which the core is no longer concentration one and

begins to decay.
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Appendix B

PARTICLE TRACKING DETAILS

B.1 Particle Tracking

The mixture of glass or steel beads is illuminated with a single bright lamp
so that each particle on the surface of the flow reflects a single bright spot. These
bright spots can be identified and tracked using software developed by Grier and
Crocker in IDL. First the software processes the images so that only the bright spots
remain. Then the bright spots are identified and the particles are connected in time.
After that velocities are computed from the displacements in the particle tracks.

The processing has a few simple parts to it. The images are 8-bit gray scale,
and the brightness of each pixel is represented by a value from 0 to 255. It is
necessary to know the approximate size of the bright spots that we want to track in
the image. A bandpass filter of this size is applied to remove noise and pick out the
spots. The image is also thresholded—all pixels with a value (brightness) less than
the threshold value are removed.

In figure B.1a we have plotted a small blowup section of the original image and
the result of the image processing is shown in figure B.1b. The mixture shown is a
binary mixture of steel beads in an initial mixed state with small and large particles
on the flowing surface. The program picks out the obvious bright spots shown in

figure B.1b as individual particles. The next step is done by connecting the particle
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Figure B.1: An image sequence showing the image processing and par-
ticle tracking. A. The original image, B. Processed image, C. Processed
image with arrows representing tracked particle velocities (the velocities
are magnified for the purpose of demonstration).

positions over time. The algorithm connects the particles by comparing each image
in sequence and connecting particles based on displacement. It is necessary that the
particles do not move more than the minimum distance between particles, otherwise
the tracking code will not work. Parameters are entered for the minimum separation
between particles (to prevent tracking the same particle twice) and the maximum
radius of the particles.

The particle tracking code is very powerful. It continues to track particles
even if they disappear and come back on the same trajectory a short while later.
Parameters can also be entered for the maximum distance a particle can move to be
counted, the minimum number of frames a particle must stay in order to be tracked,
and a reference offset velocity for all of the particles.

The particle tracking code returns values for the position, intensity, ellipticity,

and velocity of the particles. In fig. B.1c is an overlay of the velocities (multiplied
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by a factor of 7 for visibility) on the processed image(fig. B.1b). We see that the
particle tracking does a reasonably good job of tracking the particles. There are
many sources of error: Some particles do not stay on the surface long enough to be
tracked; Sometimes the code misidentifies the same particle as a different particle at
a later time and so the particle may not stay long enough to be tracked; Sometimes
particles are large enough that they have multiple reflections and get tracked as two
particles. It varies for different material types and sizes. In general steel beads are
tracked the most accurately, and large transparent glass beads are the least accurate.

Regardless, for all particle types, the number of particles is in the millions and

averages can be calculated very accurately despite the errors.

B.2 Distinguishing Between Large and Small Particles

One of the variable that the particle tracking code calculates is the integrated
intensity (ie. brightness and size) of the bright spot. Different size particles give off
different size spots. The particles can then be distinguished by size. Unfortunately,
due to the particle tracking algorithm, we can only track and therefore distinguish
particles with about a 2:1 size ratio. Because the code requires the particle size as
an input, as the size ratio goes to 2:1 and beyond, the particle tracking becomes less
and less accurate and then impossible.

Of course there is some overlap in the brightness, and some small particles will
be tracked as large and some large particles will be tracked as small. Therefore if

we are comparing some quantity (like average velocity) of the two, this will tend to
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Figure B.2: Intensity distributions for particles in individual images
(top) and for averages of a single particle track (bottom). Gaussian’s
were fit to each plot and are plotted as well.

make it look like the difference between the two is less than it is.

There are two different methods by which particles can be identified. The
first is to simply classify particles based on brightness at each time step. With this
method, a particle identified as a large particle in one from might be identified as a
large particle in a later frame. Particles are identified in each frame independent of
the other frames. The other method is to average the intensity of a tracked particle
over its entire lifetime and then to use this intensity to classify the particles. This
method might seem more effective but there are some problems with it.

We try 2 ways to estimate the error in classification: a. plot the Gaussian
of the intensity for the two methods of distinguishing particles and determine the

overlap and b. to look by eye and make a rough estimate of the percentage of
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particles that are misclassified.In figure B.2, we show the intensity histograms for
the two methods of identifying particles. In both cases, there is overlap. In table B.1
we list the error in the tracking for the histogram of method 1, for the histogram
in method 2, and by eye analysis of data classified with method 1, as well by eye
analysis of radial data classified with method 1.

There are some immediately noticeable problems or causes of systematic error
in the classification. First is that at the top and bottom of the image, the particles
stop flowing and drop under the surface. There are also reflections of the particles at
these places. Here we tend to track a lot of small particles that don’t exist. Either
we track large particles as small (there brightness is lower because they are dropping
below the surface) or reflections of large particles as small particles. All of these are
for binary mixtures of 1/16” and 1/8” steel beads.

The method where we average the intensity over a whole particle track before
classifying actually magnifies this problem. The average is pulled down enough by
the particles spending a lot of times at the edges, that large particles that are only
tracked near the edges tend to be tracked as small. This means this error penetrates
farther from the edges of the drum.

Arthur Lewbel [84], a respected economist, worked out the error in comparing
two variables due to misclassification of one or both of them. If two measured
variables are classified as small or large (for example) and then they are compared,
the misclassification will cause the observed difference between the two to be lower
than the true difference. In an extreme example, if more than 50% of the particles

classified as small are actually large, than the observed difference between the two
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Table B.1: Misclassification: For the by eye, we looked at 1/10th

banded state and calculated

near the edge

Method 1 Method 2 by eye radial by eye
Nomall 2.03248 x 10° | 34298.7 201 558
Niarge 3.18062 x 10° | 26597.8 274 249
Niotar 5.2131 x 10° | 60896.5 474 807
Ng = Nymallasiarge | 107789 2143.43 9 7
nr, = Niargeassmail | 98192.2 1662.52 13 10
Extra 243642 1126.48 5 NM
# Not Tracked NA NA 39 22
bo 0.053 0.062 0.045 0.0125
by 0.018 0.063 0.047 0.0402

particles will give an answer opposite in sign to the truth (assuming there is a

difference).

If by is the probability of misclassifying small particles as large and b; is the

probability of misclassifying large particles as small and r is the number of small

particles, m is the percentage underestimation when subtracting F; — Fp,, where F

is a quantity that varies with particle type:
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