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Preface

When 1 first studied the visual query paradigm of the MARCO system of
Samet and Soffer [39, 48], T was struck by the novelty of the problem it poses: while
indexing database objects by their properties is well understood, an index to support
MARCO searches should be based not on the properties of any single object, but
instead on the gestalt embodying the mutual arrangement of the multiple objects
in any one database image.

Because the database objects are tagged (as hotels, airports, etc), a simple
inverted-file approach could be used to find the database images containing the
desired set of objects. However, such a design makes no use of the spatial interrela-
tionships of the objects. The techniques described in this dissertation arose from a
desire for a spatial index, that is, an index in which the spatial arrangements of the
objects would play a primary part.

In researching the literature in this area, the work of Gudivada and Ragha-
van [21, 22] stood out as addressing the same kind of problem. Their use of the
slopes of the n(n — 1)/2 line segments between the n point objects presages my
use of both the slopes and lengths in the interpoint method, and their attempts to
support rotation-independent search were an inspiration for the work described in

this dissertation.
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Chapter 1

Introduction

Maps provide a means of maintaining a database of cartographic information.
Although maps are usually thought of as capturing positional information, they are
also used to capture spatial relation information. In particular, relevant objects or
features are represented by symbols, and both the topological layout of these objects
and their inter-object distances are significant. Examples of such maps include floor
plans, blueprints, and satellite images. Examples of features include doorways and
windows, component parts of an assemblage, and rivers, roads, and buildings.

A collection of digitized map images is an example of an image database.
Searching such a database includes the determination of which images within the
database contain a desired arrangement of symbols, such as a beach north of a city
or a youth hostel near a train station. For such a search, the absolute position
of the symbols within the database image is unimportant, only the relative spa-
tial relationship of the symbols is significant. This is called a position-independent
search. Search for symbols with a particular spatial relationship has applications in
mobile computing, mobile data management, moving-object and moving-framework
databases, and location-based services.

While such queries can be posed using conventional database techniques (such

as SQL [41, chapter 4]); constructing a pictorial query by dragging icons (represent-



ing the objects) into an approximation of the desired relationship is a more intuitive
interface. But even when the basic icon-dragging paradigm is extended with addi-
tional menus and controls, the complexity of any query given by a single picture
is limited. A more complex query can be formed by using the Boolean operators
AND, OR, and NOT to join query pictures together into a Boolean expression. The
parse tree for such an expression forms a pictorial query tree [49].

If database images can contain multiple instances of a particular kind of icon
(such as multiple hotels in the same geographic area), an icon in a query image
actually designates (a member of) an icon class, to be satisfied by a correspond-
ing specific icon instance in database images matched. In addition to a topological
arrangement of icon class designators, a query must also specify which spatial re-
lationships between the classes of the query image are to be considered relevant in
the search.

One important task in matching a query picture to a database image is to de-
termine the correspondence between query picture icons and database image sym-
bols. When more than one such mapping is possible, a naive evaluation of the
query tree can result in generation of an anomalous result. If the query tree does
not contain negation (i.e., has only AND and OR operators but no NOT operators)
these anomalous situations can be resolved by introducing binding between icons in
different query pictures, thereby requiring both to match the same database image
symbol. When the query tree does contains negation, however, anomalies arise that
cannot be addressed by icon binding.

This describes a spatial version of retrieval by content, which has been inves-



tigated in both the spatial and non-spatial domains. The MARCO (MAp Retrieval
by Content) system of Samet and Soffer [39, 48] is an example of this search method.

While a minimal database search capability can be constructed using little
more than a basic similarity measure (as a brute-force search would simply compare
the query image against each database image in turn), efficient database access
usually depends upon the existence of an indez, an auxiliary data structure that is
maintained by the database system to allow the efficient determination of (and thus
access to) only the portion of the database relevant to the current task. Indexes
often embody abstraction (with only a subset of the data being replicated into the
index), and structure (supporting access to the index entries in more sophisticated
ways than simply in sequential order of the database proper). The simplest form of
such structure is an ordering. For example, in a book index, only certain key words
are abstracted into the index, which is then alphabetically ordered. However, more
complicated structuring methods are also possible.

As it is inefficient to regenerate the index for each new task, the information
in the index must be in some sense invariant, that is, useful (perhaps to a greater
or lesser extent) for all supported tasks. While many methods of generating an
invariant may be possible, it is also necessary that the method chosen be a use-
ful one. For example, in a database of two-dimensional line segments, one choice
for an invariant would be a single point in four-dimensional space, with the two-
dimensional coordinates of both end points supplying the four required coordinates.
This is known as the corner transformation [40], which is a two-dimensional vari-

ant of an interval representation (e.g., [16]) and used by a number of researchers
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(e.g., [17, 24, 25, 28, 34, 50]). However, while this invariant is useful for queries
involving the line segments themselves, it is not always useful when the queries also
involve the space in which the line segments are embedded (e.g., proximity queries
involving points not on the line segments themselves). In this particular case, an
invariant involving partitioning underlying two-dimensional space and then index-
ing the partitions intersected by each line segment is preferable for answering such
queries.

There have been a number of studies of pictorial queries for image databases
in recent years [44]. Although much of the image database research has examined
matching a single query object to a database object, some prior work [3, 5, 7, 14,
15, 20, 21, 22, 26, 27, 29, 32, 30, 31, 42, 43] does address queries composed of
several objects. Spatial ambiguity is addressed in [7, 14, 15, 29, 32]. In particular,
PQBE [32] can express complex queries as compositions of query images joined by
conjunction and disjunction.

Query in spatial retrieval by content is complicated by the fact that a query
may contain icons corresponding to only a subset of the symbols in the desired
database images, thus comparison between query image and database images must
involve partial matching. Indexing schemes for these databases must allow for query
with differing subsets of the symbols present in database images.

One approach [7, 27, 29] is to extract from each database image a linearization
of the symbols while scanning along one coordinate axis, plus a linearization of the
symbols along the orthogonal axis. These 2D strings are independent of the icons
in any given query, so they can be precomputed and stored in a separate index file.

4



When a query is presented to the system, the two corresponding linearizations can
be extracted from the query image, and similarity can be evaluated as substring
match. Typically the index data retains topological but not metric information.
In the absence of any further categorization of these image linearizations, the en-
tire index (representing all the images in the database) must be accessed for every
query. Thus this is the type of index that reduces the information in each entry but
does not reduce the set of entries that must be accessed. Furthermore, while this
matching is inherently invariant with respect to both linear translation and uniform
scaling, tying characterization of the database image to the coordinate axes makes
rotationally invariant queries quite difficult, if not impossible.

Berretti, Del Bimbo, and Vicario [4, 5] have addressed the problem of indexing
tagged spatial arrangements of objects, modeling an arrangement of image objects
as an Attributed Relational Graph (ARG). In [5] a metric-space index is described,
using a distance metric function based on the optimal error-correcting (sub)graph
isomorphism problem. While this is an example of an index structure that is more
complex than simple ordering, the algorithm given for the computation of the exact
distance between two ARGs requires (according to the authors) “polynomial time
of the fifth order”. Furthermore, as the ARG used to place each database image
into the index is evaluated using all objects present in that image, the efficiency of
the method given degrades when the query ARG represents fewer objects than are
present in database images. However, their approach does support fuzzy identifica-
tion of database objects.

Alt, Aichholder, and Rote [1] describe a method to determine a pseudo-optimal



matching between two point sets, based on alignment of their Steiner points. Because
the Steiner point is invariant under translation, rotation, and scaling, it provides
the basis for a ”center to point” method that is an alternative to the one described
in Section 5.3.6.3.

Gudivada and Raghavan [22] describe a similarity function STM that is de-
signed to compute the degree of closeness between a query picture and a database im-
age. The algorithm first determines the n icons common to the query and database
images, and then compares the slopes of the n(n — 1)/2 lines between icon pairs
in each database image to the slopes of the lines between corresponding icon pairs
in the query image, thus abstracting away the absolute positions of the icons and
considering only the relative spatial relationships, as captured by these line slopes.
The resulting similarity measure is invariant with respect to both linear translation
and uniform scaling. To incorporate rotational invariance, algorithm STMpg clus-
ters the lines by degree of rotation, uses the mean rotation of the largest cluster to
attempt to undo the rotation, then uses algorithm STM to compute similarity. A
computational proof of the irrelevance of the center of rotation is given. Alterna-
tively, this can be demonstrated via an application of the familiar “alternate interior
angles” theorem from classical geometry. Their approach does generate a measure
of the similarity between a particular query image and a particular database im-
age. However, because the common icon set depends on the particular query image,
their algorithm does not generate an invariant that could be used as the basis of a
database index.

Without any provision for the user to explicitly control “translational ambi-



guity” and “scale ambiguity”, non-translationally-invariant and non-scale-invariant
queries cannot be specified. Consequently, the values of these parameters are hard
coded. If the user interface were to permit a choice of using SIM or SIMy for
any particular query, it could be said that this system permits explicit control of
“rotational ambiguity”.

It should also be noted that these algorithms do not provide an indexing
method per se, but merely a function to compute the similarity between a query
picture and any given database image. In the absence of any independent way to
either abstract information from the database entries or limit the subset of database
entries that must be examined, every database entry must be accessed. Thus the
time to complete a query grows linearly with the total number of images in the
database. Practical databases aspire to sub-linear scale performance. Later work
by Gudivada [21] describes a scheme where a OR string is generated and stored for
each database image. This scheme can be viewed as the polar coordinate analog to
2D strings, instead of scanning along a coordinate axis to generate a string, a radius
is swept around the center of the image and the objects encountered are ordered, first
by angle © and then by distance } from the center. Because this sorting is topolog-
ical, metric information is not retained. The corresponding string can be computed
for a query image, and an algorithm SIMg then computes a similarity value based
on the strings. This computation is parameterized by three user-specifiable con-
stants. Contextual ambiguity is addressed by ObjectFactor, which determines the
relative importance of the same objects appearing in both the query picture and
the database image. Spatial ambiguity is addressed by SpatialFactor, which deter-

7



mines the relative importance of the objects having the same spatial relationships
to each other. If SpatialFactor is zero, then relative orientation is unimportant.
Spatial ambiguity is also addressed by ScaleFactor, which determines the relative
importance of inter-object distance in the similarity computation. If ScaleFactor is
zero, then the computation is invariant with respect to uniform scaling. Providing
explicit control over these search parameters is a major advance over the previous
work.

Like the 2D string, the OR string is query independent, and thus can be
precomputed and stored in a separate index file. Such an index stores the topology
but not the metrics of the database image. However, every entry in the index file
must still be accessed for every query.

The 2D-string is not unambiguous; it is possible for different arrangements of
symbols to generate identical 2D-strings. The Virtual Image system [33] character-
izes the symbols within an image not as a pair of strings but instead as a set of
binary relations between symbols pairs. Each pair of symbols ob; and ob; and the
relationship v between them forms a tuple (0b; v 0b;) and the resulting set of tuples
is used to characterize the database image.

A variant of Virtual Image called Quantitative Virtual Images (QVI), which in-
corporates metric as well as topological information, has recently been proposed [8].
A metric value 0 is added to each binary spatial relationship. Intuitively, this de-
scribes how far to the left (or above) object i lies with respect to object j.

Other schemes for characterizing database images as strings or tuples retain

only the topological relationships between database symbols, thus it is clear that the



metric information is being abstracted away. It would appear that the index entries
generated by QVI contain all the information in the original database image (except
perhaps for a linear offset) and thus this scheme represents not an indexing system
per se, but more an advanced means of compressing the database information to
minimize the number of accesses necessary for an exhaustive scan.

In contrast, the search algorithms described in this dissertation use an abstract
index space whose basis is a set of separable attributes, such as size, shape, and
orientation. For every image in the database, groups of icons are mapped into a
single point in the index space. This is a point-based indexing method [35, Section
3.4]. The goal is to support position-independent search, on either a size-dependent
or size-independent, and either an orientation-dependent or orientation-independent
basis.

Although it was expected that shape would be the most difficult attribute to
characterize, the characterization of orientation is actually the most challenging.
Efficiently dealing with the phenomenon of rotational symmetry generates much of
the complexity associated with this attribute.

The remainder of this dissertation is organized as follows: Chapter 2 introduces
the visual language of the MARCO system. Chapter 3 describes extensions and
modifications to the MARCO visual language to support the new search flexibility
inherent in the new index designs. Chapter 4 analyzes some anomalies that have
been discovered in the current implementation of MARCO’s “NOT” primitive, and
lists some strategies for resolving them. Chapter 5 briefly discusses some issues in the

history and philosophy of indexing, and presents some concepts that are particularly



applicable to spatial indexing. Chapter 6 describes methods to efficiently index
pairs of point objects, including a scheme to compress or prune the resulting index.
Chapter 7 continues with methods to index groups of three objects, by indexing
the triangle associated with each triple. Chapter 8 extends the discussion to groups
of four or more points, which exhibit as-yet unencountered properties. Chapter 9

contains a summary and concluding remarks.
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Chapter 2

Visual Language: Introduction

In this chapter we provide background information for some of the discussion
to follow. A brief mention is made of some difficulties encountered when applying
traditional database techniques to query by content in symbolic image databases.
The important topic of ambiguity is discussed, and three types of ambiguity (match-
ing, contextual, and spatial) are defined. The degree of explicit control of search
parameters is discussed. The problem of multiple mappings is discussed both from
the point of view of spatial databases and from a more general database perspective.
Observations are made as to some qualitative differences between the Boolean NOT
operator and the other two logical operators (AND and OR). The distinction made

will be useful in Chapter 4, when interpretation and binding are discussed.

2.1 Conventional Database Techniques

Conventional database techniques (such as SQL) can be applied to spatial
retrieval by content, with varying degrees of success. Data items that occur only
once per database image (such as display images stored as Binary Large Objects) can
simply become attributes in a row-per-image table. However, data items that occur
more than once per image must either be packed into a single per-image attribute

or stored in a secondary table. The latter approach is workable for data items that
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@ select distinct image.map
from image, symbol H, symbol A

8 where image.id = H.im and

H.im = A.im and
@ H.type = "hotel" and

A.type = "airport" and
dist(A.loc,H.loc) < 8 and

Context: Both symbols must be found dir(A.loc,H.loc) = "north"

Spatial: ~ Distance and orientation are both significant

@ Hotel @ Airport
(a) (b)

Figure 2.1: Query expressed in Pictorial and Conventional Form

occur only once per symbol, such as instance-specific symbol annotation information.
However, the number of inter-symbol relationships (such as inter-object distance and
relative spatial orientation) grows as the square of the number of symbols present.

As an example, if the usual 8 cardinal directions (North, Northeast, East, ...)
are recognized and 30 symbol types are distinguished, each instance of a symbol in
the database can be represented by a row of a table with 240 attributes (distance
to nearest symbol type 1 in North direction, distance to nearest symbol type 2 in
North direction,...distance to nearest symbol type 1 in Northeast direction,. .. ).

With this database structure, queries involving particular symbols within a
given distance can be specified by reference to the appropriate field. However, the
addition of a single new symbol type to the query system requires that 8 new fields
must be added to every row in the table Such a scheme scales quite badly.

In general it is not possible for a symbolic image database to explicitly repre-
sent all information necessary to support the full range of desirable queries. Instead
of storing the information explicitly (as all the N(N —1)/2 possible inter-object dis-

tances and orientations) the information is usually stored implicitly, as the spatial X
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and Y coordinates of each of the NV symbols. In Figure 2.1 the query “Find a hotel
within 8 miles north of an airport” is shown in (a) pictorial and (b) conventional
(SQL) form. For the pictorial query, it is assumed that the ambiguities inherent in
pictorial specification (described more fully in the next section) have been resolved.
For the conventional query, it is assumed that the conventional database model is
extended by the addition of database procedures for the distance and direction op-
erators. The relational database model depends strongly on successful optimization
to achieve reasonable query execution times, and the success of such an implemen-
tation will depend on the extent to which queries containing these distance and
direction primitives can be optimized.

As a result of the implicit storage of information, spatial queries expressed
in a conventional query language (such as SQL) become complicated, sometimes
requiring a nested query structure. The construction of such a query is not intuitive
and therefore difficult for the naive user. Pictorial query trees were developed as a

more intuitive way to accomplish retrieval by contents in image databases.

2.2  Ambiguity in Pictorial Queries

There are many different ways to interpret the meaning of any particular query
picture. Consider the query picture in Figure 2.1 which contains a hotel icon and
an airport icon. Such a picture could be interpreted as a request for all database
images that contain both a hotel and an airport. Under this interpretation, the

spatial positions of the icons in the query picture are unimportant. Under a differ-
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ent interpretation, some aspect of the spatial positions of the icons (such as relative
orientation) could be considered important. A query picture with a hotel icon po-
sitioned north of an airport icon could be interpreted as a request for all database
images in which a hotel lies north of an airport. Under yet another interpretation,
such a query picture could be interpreted as a request for all database images that
contain either a hotel or an airport. Because of this lack of an unambiguous inter-
pretation, query pictures are said to possess ambiguity. Three kinds of ambiguity

are distinguished [48]:

1. If the database images were created by a pattern recognition algorithm, each
instance of the recognition of a symbol may possess an associated confidence
factor. Icons in a query picture are either present or not; a query picture by
itself gives no knowledge of the required matching confidence required for each
of its icons. Such matching ambiguity can be resolved by specifying a required

matching confidence factor for each query icon.

2. The differing ways of interpreting the meaning of the spatial relationship be-
tween the icons in the query give rise to spatial ambiguity. For some queries,
such as finding a hotel near an airport, only inter-object distance is important,
and relative spatial orientation is irrelevant. For other queries, such as finding
a hotel north of an airport, orientation may be the only significant spatial
relation. In both of these cases, the query picture contains both a hotel icon
and an airport icon. The ambiguity is in determining what (if anything) is

important about the spatial relationships of the icons in the query picture.
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3. If a query picture contains several icons, it is not clear if the intent is that
a desired database image contain every one of them, or merely that any one
of them be present. For example, to find a place to spend the night, a query
picture might be constructed containing a campground icon, a hotel icon, and
a youth hostel icon, with the interpretation that any one of them is desired.

This distinction of any versus all is one form of contextual ambiguity.

It is also not clear if the appearance of a certain set of icons in a query picture
is meant to preclude the appearance of additional symbols in the database
images to be found. This distinction of others versus no others is another

form of contextual ambiguity.

Some query construction systems resolve these ambiguities by imposing a fixed, hard
coded interpretation. Others provide explicit controls to vary the interpretation of

a query picture on a query by query basis.

2.3 Explicit Control of Query Execution Parameters

One axis along which query construction systems differ is the degree of explicit
parametric control provided to the user. With no explicit control, the interface is
fully automatic; thus the user need not expend the effort to understand any explicit
controls, but a given query may or may not produce the desired results. If it does
not, no further recourse exists. For example, the similarity metric of PQBE [32]
is tied to spatial directions; a rotationally-invariant query cannot be specified. On

the other hand, the similarity measure of Gudivada and Raghavan [22] is inherently
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rotationally-invariant; hence a non-rotationally-invariant query cannot be specified.

The decision to provide explicit controls can require more user training, but
yields a higher probability that any particular ad-hoc problem can be addressed by
the interface. For example, in SQBS [15] the “Cardinal Directions” spatial relation is
only considered if the user explicitly specifies an orientation (for instance, by drawing
a North arrow as part of the sketch). This allows both rotationally-invariant and

non-rotationally-invariant queries to be issued by the same interface.

2.4  Multiple Mapping in Pictorial Query By Content

More than one feasible mapping from query icons to database image symbols
can exist in any of these three cases: when a query picture contains more than one
instance of an icon, when it contains any wild card icons (icons that match any
symbol), or when a database image contains more than one instance of a symbol.
This multiple mapping situation has only been partially addressed in symbolic image
databases. In many cases it is not permitted; the assumption is made that only one
instance of any particular symbol may occur in any database image, and that only
one instance of any particular icon may occur in any query picture. Under these
restrictions multiple mapping cannot occur.

When multiple mappings do occur, it can sometimes be the case that some
mappings satisfy the query constraints but others do not. In such cases it is difficult
to say that a particular database image either matches or does not match a particular

query. When there are several pictures in a pictorial query expression, a naive
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evaluation of the expression can yield anomalous results. The query evaluation

engine must deal carefully with such cases.

2.5 Multiple Mapping in Other Domains

The multiple mapping problem is not unique to the domain of pictorial queries.
It can occur any time an item from a query can match one of several items in a
database entry.

Consider a database of textbooks and authors. A user might search for text-
books of which the author is both a college professor and a medical doctor. However,
books often have more than one author, so the single query term “author” can have
multiple mappings to the database entry term(s) “author”. Now, how can a query
be written to retrieve books with the same author as professor and medical doc-
tor, without also retrieving books of which one of the authors is the professor and
another is the medical doctor?

This query does not contain negation, thus the anomaly introduced by the
presence of multiple mapping is of a type that can be addressed by binding, to
ensure that the same object is matched by different parts of the query. Binding
the two instances of the search target “author” so that the same author must be
both a professor and a medical doctor specifies the correlation desired between the
evaluations of the two clauses in the target expression. It is expected that situations
in which binding is not a sufficient solution (analogous to those presented later in

this chapter for spatial databases) will occur in non-spatial databases as well.
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P&Q

Figure 2.2: Universe needed to evaluate Boolean NOT

2.6 NOT is Qualitatively Different from AND and OR

An important qualitative difference between the Boolean NOT operator and
the AND and OR operators is that AND and OR can be evaluated without reference
to the universe of objects, whereas the evaluation of NOT requires such a universe.
Evaluation of the AND and OR operations requires only an equality operation be-
tween the objects under consideration. Figure 2.2 shows two sets P and Q and
the results of AND and OR operations between them. For the AND operator, the
objects in one set can be examined in turn, and each one can be matched against
every member of the other set. If an object from the first set matches any object of
the second set, that object is part of the result of the AND. Evaluation of an OR
operation can also be done using only an equality operation. Objects from both the
first and second sets become part of the result, with the equality operation being

used to ensure that no object occurs in the result more than once. In neither case
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is a definition of the universe of objects required. Evaluation of the NOT operator
requires such a definition. As the objects in the input set are defined not to occur in
the result set, the only possible source of result objects is such a universe definition.
Thus, it is quite likely that data structures designed to support the evaluation of
AND and OR operations may require redesign to support NOT operations.

This is the reason the algorithm described in Section 4.4 preserves both the
matching and non-matching interpretation sets. The union of these two sets is pre-
cisely the interpretation universe, and the NOT operation can easily be implemented

by exchanging the two sets.

2.7 MARCO

Our research group has developed a pictorial query specification technique
for image databases that addresses the issues of matching, contextual, and spatial
ambiguity inherent in pictorial queries. A brief description is presented here. More
details, including a description of the semiautomatic methods used to build the test
database and illustrations of the user interface in action, can be found in [48, 49].

SAND (Spatial And Nonspatial Data) [2] is a prototype spatial database sys-
tem, developed to be a research vehicle for work in spatial indexing, spatial al-
gorithms, interactive spatial query interfaces, etc. The basic notion of SAND is
to extend the traditional relational database paradigm by allowing row attributes
to be spatial objects (e.g., line segments or polygons), and by allowing spatial in-

dexes (such as quadtrees [35] or R-trees [23]) to be built on such attributes, just

19



as traditional indexes (such as B-trees [41, chapter 11]) can be built on nonspatial
attributes.

MARCO (MAp Retrieval by COntent) [39, 48] is a map image database sys-
tem developed as a SAND application. MARCO image processing is done in two
phases. In an initial phase a scanned map image is semiautomatically parsed and
the locations of various spatial features are stored in a database. Once the database
is built, pictorial queries (expressed as pictorial query trees) can be run against the
stored database. Icons representing the objects of interest are dragged from an icon
menu to a position in the query picture being constructed. Pictorial query trees can
be constructed from query picture leaf nodes and internal nodes corresponding to
Boolean logic operations.

In the MARCO approach, matching, contextual, and spatial ambiguity are
resolved by providing explicit control over each kind of ambiguity. The matching
similarity level (MSL) determines a lower bound on the certainty required to match
a database image symbol to a query icon. A MSL of 0.5 requires at least a 50%
confidence in recognition of a symbol for the icon to match that symbol.

The conteztual similarity level (CSL) specifies how completely the overall col-
lection of symbols in a database image must match the collection of icons in the
query picture. There are four possible settings for CSL. When set to “All symbols;
no others”, every icon in the query picture must match a unique symbol in a database
image, and no other symbols may be present in that database image. When set to
“All symbols; maybe others”, every icon in the query picture must match a unique

symbol in a database image, but additional symbols in that database image are
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permitted. When set to “At least one symbol; no others”, at least one of the icons
in the query picture must match a symbol in a database image, and the database
image cannot contain any symbols that are not in the query picture. Finally, when
set to “At least one symbol; maybe others”, at least one of the icons in the query
picture must match a symbol in a database image, but additional symbols in that
database image are permitted.

The spatial similarity level specifies how completely the spatial relationships
(inter-symbol distance and relative orientation) of the symbols in a database image
must match the spatial relationships of the icons in the query. There are five pos-
sible settings for SSL. When set to “Exact same location”, the relative positions of
database image symbols and of the corresponding icons in the query picture must
be identical. When set to “Within distance; same direction”, each pair of database
image symbols must have the same relative orientation and be no farther from each
other than the corresponding query picture icons. When set to “Any distance; same
direction”, each pair of database image symbols must have the same relative orien-
tation as that of the corresponding picture query icons, but no constraint exists on
inter-symbol distances. When set to “Within distance; any direction”, each pair of
database image symbols must be no farther from each other than the corresponding
query picture icons, but no constraint exists on relative orientation. When set to
“Any distance; any direction”, there are no spatial constraints at all.

The current version of the MARCO query construction system provides on
screen menus to set the MSL, CSL, and SSL values independently for each query
picture in a query tree. Thus, one SSL setting affects all pairs of icons in a particular
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picture, even though it would be desirable to set different SSL values for each pair
of icons. Similarly one MSL setting affects all icons in a particular picture, although
it is recognized that the ability to set different MSL values for each icon would be
desirable. If the user interface is changed to support a separate MSL specification
for each individual icon, the value of MSL to be used for testing the “no others” CSL
constraint would no longer be well specified. One suggestion is to remove the “no
others” semantic from the CSL menu and embed it into a new icon, perhaps with a
death’s head motif. Presence of that icon in a query picture would invoke a semantic
in which that icon matches the “other” symbols (those not matched by other icons
in the query picture), and such matching causes the database image to be considered
undesirable for the query picture. This death’s head icon would then be an intuitive
place to specify the MSL value to be used for this “no others” constraint. These
limitations in specifying SSL. and MSL values are solely in the user interface code,
there are no such limitations in the actual database search algorithm.

Database images deemed to match the query are presented in a separate re-
sponse window, with boxes draw around symbols that correspond to query icons.
Experimental extensions of the user interface incorporate additional interface ele-
ments for stepping between the different mappings returned by the query evaluation
engine.

Queries for a specific symbol and for pairs of symbols constrained by their
mutual distance were first described in [38] and [47] but the full user interface was
not yet present. The pictorial query user interface was described in [46], which
also described contextual and spatial ambiguity and similarity. In [45] the case of
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more than one instance of a symbol in a database image was discussed, but the
case of more than one instance of an icon in a query picture was explicitly left to
future research. In [48] Boolean combinations of query pictures were described, and
examples were presented that included Boolean NOT. In [49] the first explicitly
tree-structured queries were presented.

In [19] Folkers describes a graph theory based algorithm for computing the
full set of mappings produced at a single query picture. The computation of sub-
graph isomorphism is known to be NP-complete, but with the addition of contextual
constraints the worst case time complexity is (depending on the exact contextual
constraint), either O(m 2™) or O(m 2™*™), where the query picture has n icons and
the database image has m symbols. The addition of spatial constraints can result

in significant further reductions in running time.
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Chapter 3

Visual Language Modification for New Capabilities

The visual language used in the MARCO system needs to be enhanced to
allow access to the additional search capability provided by the index structures
devised to support the formats of the queries discussed in Chapters 6 through 8.
This chapter discusses visual language elements (“widgets”) to allow explicit control

of the sensitivity to the search of the size and orientation of the icons in the query.

3.1 Control of Size-Independent Search

As the new database index structures support both size-dependent and size-
independent search, it must be possible for the user to control this facet of the
database search capability. The following sections describe two proposed forms of a
user-language element (or “widget”), to provide the user such control.

One candidate for a size stringency control widget is shown in Figure 3.1(a).
The small triangle icon at the left and large triangle icon at the right are meant to
be visual cues to suggest the widget’s function. The calibration line in the center
indicates the control setting corresponding to an exact size match with the associated
query picture. The left and right thumbs set the minimum and maximum scale
factors allowed for the search. The gray bar is a visual cue to the range of sizes

selected. The open circles on the thumbs are meant to be an application-wide visual
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Figure 3.1: Linear Search-Size Widget

cue that the associated interface element is movable and a control, and to provide
an unambiguous place to click when the thumbs are close to overlapping (as in
Figure 3.1(b)). Control programming for this widget should constrain the thumbs
so they are not allowed to overlap.

Figure 3.1(b) shows a size-dependent search, in which images are sought that
match the given arrangement exactly. Figure 3.1(c) shows a search allowing the
arrangements found to be anywhere from somewhat smaller to quite a bit larger.
Figure 3.1(d) shows a completely size-independent search.

Another candidate for a size stringency control widget is shown in Figure 3.2(a).
The four calibration ticks show the control setting corresponding to an exact size
match with the query picture (use of a third circle for this function seems to result
in a somewhat cluttered widget). It is possible that a better alternative might be
the use of different colors, or some other differentiating circle attributes, such as
dotted or dashed circles, or the use of thicker and thinner strokes.

The inner and outer circles comprise the movable thumbs to set the minimum

and maximum scale factors allowed for the search. The gray annulus is a visual cue
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Figure 3.2: Circular Search-Size Widget

to the range of sizes selected. As with the design previously described, the open
circles on the thumbs are a visual cue. Control programming for this widget should
constrain the circles so they are not allowed to overlap.

Figure 3.2(b) shows a size-dependent search, in which images are sought that
match the given arrangement exactly. Figure 3.2(c) shows a search allowing the
arrangements found to be anywhere from somewhat smaller to quite a bit larger.

Figure 3.2(d) shows a completely size-independent search.

3.2 Control of Orientation-Independent Search

As the new database index structures support both orientation-dependent and
orientation-independent search, it must be possible for the user to control this facet
of the database search capability. An proposed design for an orientation stringency
control widget is shown in Figure 3.3(a). The vertical calibration line indicates

the control setting corresponding to an exact orientation match with the associated
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Figure 3.3: Search Orientation Widget

query picture. The two thumbs control the degree of orientation variation to be
allowed for the search, and the gray pie wedge is a visual cue for the current setting.
The control programming should prevent the thumbs from crossing; however, it is
not necessary that the pie wedge always contain the calibration line, as the shape
of the thumbs provides a visual cue for the thumb polarity.

Figure 3.3(b) shows an orientation-dependent search, in which images found
must contain the desired arrangement in exactly the orientation given, Figure 3.3(c)
shows a search that allows the images found to be rotated anywhere from somewhat
to the left to quite a bit more to the right. Figure 3.3(d) shows a completely
orientation-independent search.

Other widget designs are possible, and constitute one area for further research.
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3.3 Control of Mirror-Image Search

As described in Section 7.2, in order to accommodate inline point arrangements
the new database structures map both the left-handed and right-handed versions
of configurations to the same database index point. As a byproduct, mirror-image-
invariant searches are easily supported, simply by omitting some of the filtering
normally performed after the index is accessed. However, it must be possible for
the user to control use of this feature. As only a simple binary go-nogo control is
required, the required visual language extensions are not expected to be particularly

complicated.
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Chapter 4

Negation

This chapter presents examples of the various kinds of anomalies that the pres-
ence of multiple mapping introduces into the pictorial query tree evaluation process.
These examples show that when the query tree contains only Boolean AND and OR
operators these anomalies can be addressed by adding symbol binding, (as is present
in the current MARCO system), but when the tree contains NOT operators the sim-
ple addition of symbol binding is insufficient to resolve the anomalies. One solution
to this problem is then presented: refinement of the semantics of the visual language
to specify that, instead of computing a match or no match value for the database im-
age as a whole, a separate value is computed for each unique mapping of query icons
to database image symbols. It is shown that this refinement (in combination with
symbol binding), is sufficient to address an extended class of anomalies. A novel
notational scheme is described that can be used to hand-evaluate pictorial query
trees with respect to specific candidate database images. This evaluation method is
intuitive, self consistent, and produces both a final yes or no answer for any given
database image and a set of feasible mappings that can be useful in displaying the
final results of the query to the end user. An algorithm to evaluate the scheme using

a bottom-up traversal with partial results represented by bitmaps is presented.
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Queries Database Images
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All query pictures:

CSL: All symbols; maybe others
SSL: Within distance; any direction
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Figure 4.1: Binding resolves type 1 multiple mapping anomaly

4.1 Binding as a Partial Solution to Multiple Mappings

Figure 4.1 shows (a,b) a pictorial query tree constructed to find a campground
close to a fishing site and a restaurant. The contextual similarity level (CSL) for
both query pictures is specified as “All Symbols, Maybe Others”, so query picture (a)
must find both a campground and a restaurant, and query picture (b) must find both
a campground and a fishing site. The spatial similarity level (SSL) for both query
pictures is specified as “Within Distance, Any Direction”, so the campground and

restaurant found by picture (a) must be no farther than 7 distance units from each
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other, and the campground and fishing site found by picture (b) must be no farther
than 7 distance units from each other. Candidate database image I is shown in (c).
Normally a database system such as MARCO would display actual map frames,
which would not necessarily show inter-symbol distances. These diagrams present
candidate database images in a schematicized form, with distance annotations added
for clarity. As can be seen, for each database image a yes or no value for each query
picture can be derived, and these values can be combined logically to give a useful
answer.

This query produces an intuitively satisfying result as long as no database
image contains more than one camping site. When a database image contains more
than one camping site, however, as in the case of (d,e) the same query and (f)
candidate database image II, it can return a result that seems intuitively anomalous.
This can happen whenever there are multiple distinct mappings between the query
icons and the database image symbols. The following notation is used to uniquely
name the mappings. Query picture icons are labeled by bold upper case letters, and
database image symbols are labeled with bold numbers. These labels will always
appear to the lower right of the objects they label. Inter-object distances are shown
in light italic numbers, which in database images will be placed so as not to be easily
confused with the numeric labels. Mappings are named by a string of letters and
numbers denoting the icon to symbol mappings. In Figure 4.1, the two mappings
for query picture (d) are A1l and A2. In some cases, a dash is used to indicate that
no database image symbol matches a given query picture icon, such as in A1B-C3.

This signifies that query icon A matches symbol 1, query icon B does not match
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any symbol in the database image currently under consideration, and query icon
C matches symbol 3. This notation is not part of the MARCO user interface. It
was developed as a pencil and paper notation to facilitate conceptualizing mappings
as independent entities. These names are dependent on both the query tree and
the database image; even within the context of the same query tree there is no
correspondence between mapping names for one database image and mapping names
for a different database image.

In this example, query (d,e) reports database image II because the two camping
site icons are not required to match the same database symbol. To remedy this,
icons A and B of this query can be specified as being mutually bound, as in query
(g,h). In the actual MARCO user interface, unbound icons are drawn in black and
white and display color is used to draw bound icons, that is, all icons drawn in red
are part of a bound group, all icons drawn in blue are part of a different, disjoint
bound group. To make black and white copies of this chapter more readable, these
diagrams show bound icon groups in differing shades of gray. The fishing sites in
query tree (g,h) are shown in gray to signify that they are mutually bound.

When the query with binding (g,h) is processed, details of the mappings at
each query picture are preserved, so that binding can be checked when the AND op-
erator is evaluated. Because icons A and B are mutually bound and match different

database symbols, it can be determined that database image II does not match the

query.
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4.2 Multiple Mappings with Negation

Figure 4.2 shows (a) a simple query picture specifying a picnic site and a
fishing site that are no more than 2 distance units apart, and (b,c) a range query,
constructed to match a fishing site and a campground whose inter-object distance
is between 2 and 6 units. It does this by finding pairs whose distance is less than 6
units, then excluding those whose distance is less than 2 units.

The actual MARCO query construction system displays negation somewhat
differently than in these diagrams. Negation of a pictorial query (leaf) node is
indicated by drawing a horizontal bar over the node, while negation of an operator
(internal) node is indicated by changing the operator name, such as from AND to
NAND or from OR to NOR. In this chapter NOT is displayed as a separate node so
that both of these cases can be treated in a unified way, and so that the intermediate
results between the operator and the negation can be shown in the diagrams.

The simple query picture (a) is identical to component (c¢) of the range query.
When there is only one mapping from the query icons to the database symbols (as
is the case with (d) candidate database image I), it is possible to give a single,
consistent yes or no answer for this picture.

In the following discussion it will be shown that it is not possible to consistently
assign a value for this query picture in the presence of multiple mappings.

Candidate database image II (h) contains the symbols from image I and also a
second picnic site symbol. This second picnic site introduces a second mapping for

icon A. When the same queries (e) and (f,g) are applied to database image II, the
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Figure 4.2: Type 2 multiple mapping anomaly caused by negation
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anomaly caused by negation and multiple mappings can be demonstrated. It is not
possible to give a consistent answer for the query picture represented by (e) and (g).
In the case of (e), the answer must be yes, or database image II will not be found
by the query. However, if yes is reported in (g), then database image IT will not be
found by query (f,g). The Boolean logic that leads to this false negative result is
shown in the figure. The presence of the second mapping causes the range query
to fail. This situation arises whenever at least one mapping satisfies the constraints
(e.g., A2) but at least one other mapping fails to satisfy the constraints (A1). In such
cases it is not possible to assign a consistent yes or no value to the query picture.
If the database image is the unit of reporting, the match between a given query
picture and a given database image must have a consistent yes or no value, regardless
of the position of that query picture in the expression tree. By showing examples in
which the same query picture, matching the same database image, should generate
inconsistent answers, these examples demonstrate that it is not possible to do so.
One solution to this problem is not to report yes or no for each database
image, but instead to report yes or no for each individual mapping. When the
mappings are reported as separate entities (as in j,k,m), both the simple query (j)
and the composite query (k,m) can be made to yield an intuitively satisfying result.
Note that both successful and failed mappings must be reported, because failed
mappings become successful mappings if the subtree is negated. Note also that the
space complexity of the intermediate results increases as the computation proceeds.
One way of describing this situation is by reference to the predicate calculus.
The actual evaluation of the spatial constraints in a query picture is done on the
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basis of the mapping. For example, in order to evaluate the distance between two
symbols, it must be known precisely which symbols are being considered, in order for
their spatial positions to be used in the distance formula. Yet an answer is required,
yes or no, for the database image as a whole. A single answer is actually derived
using an operator from the predicate calculus, one that is usually called “exists”
and is written as 3 in logic formulae. If any one mapping exists that satisfies the
query constraints, the database image satisfies the query.

This approach is sufficient only when negation is not present in the query.
When a predicate calculus expression is negated, instances of the 4 operator must
be changed to a different operator, one that is usually called “forall” and is written
as V in logic formulae. The clear implication is that systems that adequately process
negation must at some times collectivize with the exists operation and at other times
must collectivize with the forall operation.

The solution described in this section corresponds to preserving the mappings
as separate entities during the entire evaluation of the query tree, and only then

collectivizing with the exists operation after the tree has been evaluated.

4.3 Multiple Mappings with Negation and Binding

When multiple mappings occur in a query tree containing negation, a third
type of anomaly can arise, one that can be resolved by specifying symbol binding.
In Figure 4.3 pictorial query tree (a,b) returns a false positive for database image

(c) because the fishing site icons from query pictures (a) and (b) match different
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Figure 4.3: Binding resolves type 3 anomaly
database image symbols. So, even though a symbol pair is found that are within
7 units of each other, and a symbol pair is found that are not within 5 units of
each other, they are different symbol pairs. This situation can be addressed by
(d,e) binding the fishing site icons so they must match the same database image
symbol. In a well specified range query both symbol pairs should be bound, to ensure
consistency in all multiple mappings situations. In this case, the two picnic site icons
should also be mutually bound, to protect against a database image containing more

than one picnic site.
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4.4 Pencil and Paper Algorithm

The following pencil and paper algorithm can be used to evaluate a candi-
date database image against a pictorial query tree. As a final notational shortcut
all the mappings in both the accepted and unaccepted sets are compressed into a
single string, with accepted mappings before a slash (/) and unaccepted ones after.
Mappings are separated by commas, and if either set is empty a dash is used as
a placeholder. Some examples using this notation are D2E4,D3E5/D2E5,D3E4 and
A2B-C1/-.

First, for every icon in every query picture, a list of matching database image
symbols is constructed. This process takes into consideration matching similarity
level but not contextual nor spatial similarity levels. Any query picture icons that
do not match any database image symbol are given an empty (dash) matching.

Next, for each query picture, a set of all possible composite mappings is con-
structed. These mappings are then evaluated with respect to the contextual and
spatial similarity levels, and are partitioned into accepted and unaccepted sets.

Finally, a value for the entire query tree is computed using the mapping sets
generated at the query pictures and these rules for the Boolean operators at the
internal nodes: If the accepted and unaccepted mapping sets for operand P are
designated as P* and P~ respectively, and similarly for operand @ as Q' and
@™, the operation NOT P returns P~ / P* (that is, the accepted and unaccepted
sets are interchanged). The operation P OR Q returns P™ x QT U PT x Q= U

P~ x Q% / P~ x @, that is, the Cartesian product of the operand mappings is
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generated and the result accepted set consists of product mappings containing at
least one accepted component, while the result unaccepted set contains only product
mappings composed of two unaccepted components.

The operation P AND Q returns PT*x Q% / Pt xQ~ U P~ xQT U P xQ,
that is, the result accepted set consists of only product mappings containing two
accepted components, while the result unaccepted set consists of product mappings
containing at least one unaccepted component, with the additional provision that
product mappings that cannot be unified are moved from the accepted set to the
unaccepted set.

When the root of the tree is finally evaluated, the result consists of the two
sets of mappings, an accepted set and an unaccepted set. If the accepted set is not
empty, it contains successfully unified mappings which can be used to justify the
matching between the pictorial query tree and the database image being examined.

Figure 4.4 shows a pictorial query tree (a-h) and a candidate database image
(j)- The intuition for this query is that it finds desirable places (hotels, scenic views,
sites of interest, and campgrounds near restaurants), while excluding undesirable
places (sports institutions, holiday camps, and campgrounds near airports). Query
picture (a) specifies a contextual similarity level of “Any symbol; maybe others”,
so a match for any one of the three desirable icons is sufficient for a match, and a
spatial similarity level of “Any distance; any direction”, so there are no constraints
on the inter-object distance or orientation. Query picture (b) specifies a contextual
similarity level of “All symbols; maybe others”, so both a campground and a restau-
rant are required, and a spatial similarity level of “Within distance; any direction”.
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Figure 4.4: Example evaluation without multiple mappings

So, a further requirement is that they be within 8 distance units of each other.

Query picture (c) specifies the same two similarity levels. So, both a campground

and an airport must be found, and they must be within 8 distance units of each

other. Query picture (d) has a contextual similarity level of “Any symbol; maybe

others”, so a match for either of the two undesired symbols is sufficient. As in the

case of picture (a), there are no constraints on inter-object distance or orientation.

The mapping named by the string A2B-C1D3E-F3G-H4J- is the only one that

exists between this query and database image (j). The combined mappings produced

at the OR nodes (e and f) are in the accepted set because the logical operation is OR

and at least one of the component mappings came from an accepted set. At the NOT

node (g), the accepted and accepted sets are interchanged. At the AND node (h),
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Figure 4.5: Example evaluation with multiple mappings

the final mapping is in the unaccepted set because at least one of the components
came from an unaccepted set. The final result is that the query does not match this
database image. Notice that if the holiday camp (4) were not present, the result of
query picture (d) would be -/H-J- and the result of the OR operation (f) would be
-/-F3G-H-J-. The result of the NOT operation (g) would then be -F3G-H-J-/-,
and the result of the AND operation (h) would be A2B-C1D3E-F3G-H-J-/~, and the
database image (j) would matched the query.

Figure 4.5 shows the same pictorial query tree (a-h) with a candidate database
image (j) containing multiple mappings. The restaurant icon E matches both sym-
bols (4) and (5), and each of the two instances of campground icon D and F matches

both symbols (2 and 3). None of the icons in query picture (a) is matched, so it
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returns an empty mapping A-B-C- in the unaccepted set. Each of the icons in query
picture (b) can match one of two symbols, so there are four possible mappings in
all, of which two are accepted (within 8 distance units of each other) and two are
not accepted (not within 8 distance units of each other). The campgrounds icon
in query picture (c¢) could match either (2) or (3), so there are two possible map-
pings, of which one is accepted. Matching at query picture (d) is analogous to
that at query picture (a). At OR node (e) four combined mappings are produced.
Two are accepted (those containing accepted picture (b) mappings) and two are not
accepted (containing unaccepted picture (b) mappings). At OR node (f) two com-
bined mappings are produced, of which one is accepted (from the accepted picture
(c) mapping). At NOT node (g) the accepted and unaccepted sets are interchanged.

At AND node (h) a set of eight mappings are produced. Initially two mappings
are accepted (those containing accepted mappings from each of the sub-nodes) but
binding processing is done at AND nodes, and icons D and F are mutually bound.
Mapping A-B-C-D2E4F3G1H-J- fails the binding test, because it assigns different
symbols (2 and 3) to icons D and F. Because of this, the mapping is moved from
the accepted set to the unaccepted set.

Only mapping A-B-C-D3E5F3G1H-J- survives into the final result. Intuitively
this makes sense because symbols (3) and (5) are the paired camping site and restau-
rant for which the camping site is not close to airport (1). The existence of a mapping
in the accepted set means this database image matches the query, and that map-
ping gives the correspondence between query icons and database symbols that a
user interface would need to produce an explanation, if requested.
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Figure 4.6: Loss of ability to exclude based on distance

4.5 Remarks on Negation

By maintaining all the mappings generated at each query picture, partitioning
them into accepted and unaccepted sets, and combining those sets at AND and OR
nodes in the way described, the union of the accepted and unaccepted sets in the
intermediate results data structure is exactly the complete universe of mappings for
the subtree those results represent. This provides the very information necessary

for correct implementation of the negation operation.

4.6 Loss of Expressive Power

A certain amount of expressive power is lost, however, by the decision to treat
mappings as independently reported units. Consider again the textbook-author
example. One might issue a query for “A book on human sexuality that was not

authored by Johnson” but be returned Masters and Johnson nevertheless, because
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there exists an author (i.e., mapping from query-author to one of the database-
authors) that is not Johnson, e.g., Masters. This can also occur in visual queries.
Figure 4.6 shows (a,b) a query that excludes the presence of a sports institution
within a threshold distance, (¢) a database image with only one sports institution,
(d,e) the same query, and (f) a database image with two sports institutions, one
within and the other farther than the distance threshold. Reporting the mapping
that matches the distant sports institution is a direct analogy to the two-author
textbook anomaly.

H. Samet has observed that this anomaly can be addressed by defining both
a not all operator and a not any operator [36]. Such an ability to parameterize
the NOT operation adds a powerful explicit control to the user interface. However,
the cognitive load imposed on the user by negation is already large, with both
the over bar notation for query pictures and negation of subtrees by specifying
negated operators (NAND, NOR etc). To add to this cognitive loading by essentially
doubling the number of ways negation can be specified would seem to work against

the intuitive nature of the pictorial interface.

4.7 Implementation

This section describes an algorithm to perform a postorder traversal of the
query tree, building an intermediate data structure based on a bitmap representation
of the mappings at each node.

Efficient algorithms for query by content will use some form of database index-
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Figure 4.7: Options for intermediate data structure
ing. The current MARCO code uses an index of symbols, their containing database
images, and the relative x-y coordinates of the each symbol within its database im-
age. Because not all symbols occur in all database images, an enumeration of the
database images in which a particular symbol exists forms a sparse list. The sparse
lists for the symbols that match icons in the query picture are used to generate
an intermediate result list containing all database images with symbols mapping to
query icons, and enumerating all the different query icon to database symbol map-
pings. These lists become input to the Boolean logic operators at the internal nodes

of the tree.

Figure 4.7 shows several different ways the icon to symbol mappings can be

represented in the intermediate data structure. While there are six possible ways to
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map the icons in query (a) to the symbols in database image 242 (b), only four satisfy
the spatial constraint of the query. In (c¢) the intermediate data structure contains
only a bitmap, with one bit representing each possible mapping. This requires the
smallest amount of memory, but requires additional IO to the index (to reacquire
the symbol mappings) every time an AND node must process binding, plus one more
time when presenting the final query results to the user. In (d) the bitmap and a
minimal amount of core data are maintained. The mappings corresponding to the
bits in the bitmap can be regenerated without requiring redundant reads from the
database index. In (e) the information is represented in explicit form. Alternative
(d) requires somewhat less space than alternative (e), (in this example five entries
rather than six), because the number of entries required by alternative (d) is the
sum of the degrees of multiple mapping represented, while for alternative (e) it is
the product of the multiple mapping degrees. This space savings comes at the cost
of the time necessary to regenerate the mappings when binding must be processed.

The current MARCO code uses representation (e), but maintains only the
satisfying mappings (such as those marked by Y in the figure), and does not maintain
list entries for database images with only non-satisfying mappings. This is sufficient
to process queries containing only AND and OR, but is the root cause of the current
difficulties with negation.

Data structure (c) in Figure 4.7 is the least memory intensive choice for the
organization of the intermediate data structure. To demonstrate that this minimal
data structure can support both AND and OR operations as the tree is evaluated,
Figure 4.8 shows how both operations can be accomplished. The data being com-
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Figure 4.8: Combining bitmaps at internal nodes

bined in this example is not related to the example data from Figure 4.7, only the
data structure itself is being considered.

The input data is a bitmap, with each bit corresponding to one of the possible
mappings. The ordering convention used in these examples is that simple mappings
are numbered from left to right, while composite mappings are ordered with the
rightmost mapping varying most rapidly. If the bit is set, that mapping is currently
in the accepted set (that is, exists to the left of the / in a mappings list). If the bit
is not set, that mapping is currently in the unaccepted set (to the right of the /in a
list). So the mapping set A2/A1 is represented by the bitmap 01, because the left bit
corresponds to Al which is not in the accepted set while the right bit corresponds

to A2 which is in the accepted set.
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In (a) the bitmap 01 (representing a mapping set A2/A1) is combined with the
bitmap 101 (representing a mapping set B3,B5/B4) at an AND node to produce the
bitmap 000101, which represents the mapping set A2B3,A2B5/A1B3,A1B4,A1B5,A2B4.
The details of the computation are shown in (b). The Cartesian product of the two
bitmaps is produced, with an output bit set only if both the input bits contributing
to it are set. This computation does not rely on the individual icon mappings, so
it cam be accomplished using nothing more than the two input bitmaps. In (c¢) the
bitmap 010 (representing a mapping set A2/A1,A3) is combined with the bitmap 10,
(representing a mapping set B4/B5 at an OR node to produce the bitmap 101110
which represents the mapping set A1B4,A2B4,A2B5,A3B4/A1B5,A3B5. The details
of the computation are shown in (d). The Cartesian product of the two bitmaps is
produced, with an output bit set if either of the input bits contributing to it are set.
Again, this computation requires nothing more than the two input bitmaps.

A “holy grail” research problem for the minimal data structure (illustrated
by (c) in Figure 4.7) is defining how to process binding unification in this data
structure without explicitly regenerating the full mapping information. The bits for
a particular mapping association (such as B3) fall in bands within the full bitmap.
The position and size of these bands depend on three factors, the cardinality of the
mappings to the left (such as Ax), the cardinality of the particular mapping itself,

and the cardinality of the mappings to the right (such as Cx).
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Figure 4.9: Sharing of matching symbols list

4.8 Optimizations

Several small optimizations are possible in this algorithm. If an icon is used
more than once in a given query tree, some reuse of already computed data is
possible. The large data structures produced by the negation operation can in some
cases be represented in a compressed form, thus reducing the amount of memory

used during evaluation.

4.8.1 Reuse of Matching Symbols Data

If a particular icon appears more than once in the query tree, the sparse lists
(of matching symbol instances) for each icon instance are generated independently,
involving redundant references to the index file. One fertile area for optimization is
the possible reuse of such lists. The complication in doing so is that the various icon
instances may have differing matching similarity levels, and thus generate different
sparse lists. However, the list for a high matching similarity level is a strict subset

of that for a lower MSL, so a single shared list can be used provided care is taken
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to omit processing of symbol instances for which the confidence factor is less than
the MSL value for that icon instance. Figure 4.9 shows that both mappings A1 and
A2 are generated for query picture (a) while only mapping B1 is generated for query
picture (b). This is because the index (c) contains entries for a 60% confidence for
a campgrounds at relative coordinates 10,10 but for only a 40% confidence for a
campgrounds at relative coordinates 30,30. Mapping B2 is not generated because
the confidence level of 40% for this symbol is less than the 50% confidence required
by the MSL specified for icon instance B.

The suggestion has been made that an entire set of mutually bound icons can
be processed as if they constitute a single entity. That this is not the case can be
shown by considering a variant of this example in which icons A and B are bound. If
two icons with different MSL specifications are mutually bound, a database image
symbol could be encountered with a recognition confidence level that satisfies one
MSL specification but not the other. In such a case, the possible mappings for the
two bound icons will differ. Because they must be treated differently in this case,
the data structure used must be capable of distinguishing one icon from the other.

Therefore, they may not be treated as a single entity.

4.8.2 Compressing Negated Gap Information

To the extent that not every symbol exists in every database image, icon
to symbol matching lists and intermediate results lists from query pictures are

sparse. However, intermediate results lists produced by a negation operator are
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Figure 4.10: Compression of negated gap information

not sparse. An alternative view is that the missing (or gap) images represent an im-
plicit (-=/P-Q-R-. ..) mapping where P, Q, R ...is the complete list of icon instances
in the query subtree described by that intermediate results list, while negation pro-
duces (P-Q-R-.../-) mappings, which must now have an explicit representation.
Some efficiency can be gained by compressing the negated gap information.
In Figure 4.10 query (a) reports only database images 197, 283, and 475. In (b)
it is assumed that database images 198-282 and 284-474 do not contain any camp-
grounds, hotels, or fishing sites. When this query picture is negated (c), all database
images from the gap regions appear in the results. Since in this case the mappings
are the same (the default mapping) some space can be saved by compressing the
partial results for each gap region into one list entry (d). Routines which take these

lists as input must be made aware of this optimization.
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4.9 Summary

This chapter has presented the evidence supporting the argument that map-
ping sets, not merely database images, are the natural basis upon which to report
matches between query images and database images, and has described an algo-
rithm for process queries and reporting the mapping sets (along with the associated

database images) which satisfy them.
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Chapter 5

Indexing Concepts

An indexis a data structure that enables the efficient retrieval of specific items
from a collection of data. After a brief introduction to the history of indexing, this
chapter covers some of the elementary concepts involved in indexing, followed by

some specific observations about indexing for spatial databases.

5.1 History of Indexing

As soon as large collections of data were developed, the problems of effectively
accessing and managing them arose. Given the human propensity for invention, it is
not surprising that structures for dealing with these problems were soon developed.
Patrons of ancient Roman libraries found it difficult to distinguish between partic-
ular papyrus scrolls without unrolling them to read their contents. A letter from
Cicero to Atticus reveals their eventual solution: to attach to each scroll a small
slip of papyrus, upon which was written that scroll’s title (and sometimes author).

These papyrus slips were called indices:

“...ut [librarioli] sumant membranulam, ex qua indices fiant, quos vos

Graeci ... owAAOfovus appelatis” (so that [the copyists] may take some
bits of parchment to make title slips from them, which you Greeks call

sillybus) (Cicero, Atticus, 4.41.1)
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The organized study of religion served to inspire a number of collection man-

agement problems. In her study of ancient religious texts Weinberg observes

... many scientific indexing structures thought to have originated in the
computer era were invented as much as a millennium earlier, in the

domain of religion.

and describes concordances (alphabetical indexes) developed as early as the eighth
century, by Christians for the Latin Bible and by the Masoretes for the Hebrew

Bible [51].

5.2 Philosophy of Indexing

An index is any data structure which improves the performance of lookup.
To index an information collection is to opt for a trade-off of space for time. A
secondary, redundant copy of some or all of the information is kept, in order to
facilitate access to the collection.

A price must be paid in both volume and effort. Not-inexpensive papyrus
must be provided, and scribes must be detailed to write the title slips. If a book is
100 pages, with the addition of an index it may become 110 pages. If a database is
100 gigabytes, with the addition of an index it may become 110 gigabytes. The cost
in additional effort is somewhat less obvious: not only is effort required to create
an index, but if the information in the collection can change over time, extra effort
will be required to update the index whenever the information does change.

What is the payback for this cost? An effective index enables access to the
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pertinent parts of a collection, without the need to access the entire collection. The
specific means of doing so usually involves abstraction or structure (or both).

An index based on abstraction alone must still be exhaustively searched, but
may yet be advantageous, in cases where the abstracted information is much smaller
than the entirety of the information base from which is is drawn. Such an index
might be erected on an information attribute that cannot easily be ordered or oth-
erwise structured.

Structuring is the more powerful of the two techniques, as it offers the possi-
bility of reducing not only the fraction of the information collection that need be
accessed, but also the fraction of the index itself that need be accessed. Ordering
is a particular kind of structuring (specifically, a linear structuring), which can be
done whenever the values of an information attribute can consistently be placed into
a sorted order. For example, access by account number, date, or name falls into this
category.

The familiar “book index” is an example that embodies both abstraction and
an ordered structure. Key words are abstracted from the text of the book itself, and
are then alphabetically ordered. Were the index not sorted, it would still be usable,
but to find any particular item it would be necessary to sequentially read through
the entire index (at least until the desired item is encountered).

When an information collection has an innate structure or order, such as with
a dictionary or an encyclopedia, it may be possible to access it without an explicit
index. This is sometimes referred to as self-indexing. This could be considered an

implicit form of indexing, based on structure but not abstraction.
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When creating an information collection, the ordering of the entries is often
unconstrained, but usually a collection can be maintained in only one order. Once
the preferred order has been determined, accessing the collection in an alternative
order can be accommodated by erecting an additional index, sorted in the desired
order, and abstracting only the information necessary to establish the item’s proper
sequential position within the actual collection order. This scheme is commonly
called an nverted-file index.

A papyrus scroll is a strictly linear storage device; any given location cannot
be accessed without scrolling through (potentially) the entire storage space. Fur-
thermore, a scroll is not divided into pages, making it difficult for any putative index
to refer such locations. In contrast, a book is a storage device that can be randomly
accessed via a linear ordering of its pages; the linkage between an entry in a book
index and the text it refers to is established via those page numbers. Automated
information storage devices such as hard disks are also accessed via a linear ordering
of data bytes. Filesystems, which reside on such devices, structure linear sequences
of such data bytes into higher-level structures, such as database entries, files, and
file directories.

The situation becomes more complicated when the attribute values to be in-
dexed cannot usefully be organized as a linear list. Various techniques have been de-
veloped to address these situations. For example, when a method exists to determine
a “distance” measure between any two attribute values, and when these distances
obey the “triangle inequality” VA, B,C : dist(A4, C) < dist(A, B) + dist(B, C), the
values are said to embed in a metric space, and can be indexed via a structure called
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a metric space tree [37]. This technique has been used to index biological strings,
such as DNA base sequences or the amino acid sequences of protein, with the dis-
tance measure defined as the minimal number of single item deletions and insertions
necessary to make one string into the other.

Another approach often taken is to extract from the attribute values an in-
variant, some signature quantity which will be useful for all types of access desired,
and around which an efficient index can be structured. To access the collection,
the target attribute value is use to derive the corresponding invariant, which is then
used to access the designated item in the collection.

One of the most difficult kinds of access to provide is in situations where the
target value is in some sense a subset of the indexed attribute value. For example,
in an information collection of picture images, with each image containing several
objects, and access is desired based on varying subsets of the objects. If the objects
can be easily discerned, an inverted-file index can be set up for each object individ-
ually; however, selectivity is reduced because the spatial relationships between the
various objects of an image are not captured in the index.

A brute-force approach to this problem is to index all possible subsets of ob-
jects separately, with each index entry containing the spatial arrangement of its
corresponding subset. For example, a collection item with k& objects would gener-
ate k entries in the single-object index (this would essentially be an inverted-file
index), (g) entries in the two-object index, (’;) entries in the three-object index,
etc. While this approach is sound and supports a very quick access, the amount of
space dedicated to index storage grows very quickly with the number of objects in
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an arrangement.

5.2.1 Stability

Many applications require access based not on an exact match, but instead on
similarity. (or equivalently, based on a range of attribute values). For similarity-
based access, a stability property is required. This is similar to the mathematical
concept of continuity; information items whose index attribute values differ only
slightly should be stored “close to” each other in the collection, thus minimizing
the effort required to access a specific range of values. (The sense of the word
stability used here is “stability with respect to small variations in the input data”,
the property falsified in chaotic systems.) Some “hashing” schemes do not possess
this stability property, and are thus inappropriate for similarity-based access.

While any information representable in bits (binary digits) is inherently or-
derable (and any information representable on a computer is represented in bits),
access based on bit pattern ordering may not possess the stability property needed
for similarity-based access. For example, indexing stored pictures in this way is
probably not useful, because a change to a single pixel will in general throw the
picture into an entirely different area of the collection.

Multiple linear dimensions can be folded into a single, ordered dimension us-
ing such techniques as diagonalization, row-ordering, or Morton (also called N, Z,
or digit-folding) ordering. Generally, in these cases, stability cannot be preserved

globally. However, the departure from stability can be statistically quantized [35,
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page 15, exercises 1.13 and 1.14].

5.2.2  Selectivity

Another important property of an indexing scheme is the degree of selectivity
provided. A collection of screw-fasteners could easily be organized into three card-
board boxes marked “small”, “medium”, and “large”. Alternatively, they could be
organized as a much larger, multidimensional array of boxes, along one dimension for
size (“#2” for smallest through “#10” for largest), another dimension for cap style
(“hex cap”, “truss head”, “pan”, et al.), and yet another dimension for application
(“sheet metal”, “wood”, “bolt with nut”, etc.). The greater selectivity provided by
this multidimensional indexing scheme allows access to focus quickly to the desired
items only. Furthermore, accessing strategically-chosen hyperplanes of such a hyper-
cube provides the ability to do access based on subsets of the criteria, for example
size-independent access (“find all flat-head screws”) or function-independent access
(“find all #4 screws”).

This example illustrates an important point: to index a collection so that
it can be accessed based on subsets of item properties, functionally segregate the
properties, then organize the index as a hypercube based on multiple, orthogonal
dimensions corresponding to the separated properties. When this is done, access
based on an arbitrary subset of object properties can be achieved by accessing
the appropriate hyperplane of the index hyperspace. For example, a triangle in

two-dimensional space consists of three independent points, each one of which has
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two degrees of freedom in its  and y coordinates, for a grand total of six degrees
of freedom. Alternatively, these six degrees of freedom can be characterized as a
spatial position (two linear dimensions corresponding to a representative point such
as a centroid), a spatial orientation (one angular dimension), a size (perimeter,
as one linear dimension), and a (size-independent) shape (two angular dimensions,
since the third angle is fully determined). If a set of triangles is organized in a
three-dimensional index space, with two dimensions of shape and one dimension
of size, size-independent access (say, access all 3-4-5 right triangles) corresponds to
accessing a line of this index space parallel to the size dimension, while a partially
shape-independent access (say, all right isosceles triangles with a perimeter of 10

units) corresponds to a line parallel to the shape index plane.

5.3 Considerations for Spatial Indexing

The index structures described in this dissertation follow the attribute-separation
principle. By deriving attribute values for size, shape, and orientation, and structur-

ing the index as a hypervolume, many different modes of search can be supported.

5.3.1 Size

Of all the attributes to be extracted for spatial indexing, size would seem the
least complicated. For example, size could be derived as the maximal point distance
from a center (i.e., the radius of a hypersphere enclosing the points), the maximum

of the distance between any two points, or the sum of all n(n — 1)/2 interpoint
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Points  —2 —1 -1 remain
x,y pos’n scale rot'n “shape”

Pair 4 -2 -1 -1 0
Trio 6 -2 -1 -1 2
Quartet 8 -2 -1 -1 4
Quintet 10 —2 —1 -1 6

Figure 5.1: Shape Degrees of Freedom in Two Dimensions

distances. Once a measure of the size has been determined, the arrangement can
be scaled to a standard size to facilitate the extraction of values for the other index
attributes. Size-independent search can then be supported by projecting away this
attribute axis from the index space (i.e., searching all hash buckets along the rows
of this attribute).

It should also be mentioned that of all the attributes to be extracted, size
is the only attribute value that is theoretically unbounded. Orientation (rotation)
is inherently limited to 360°, and shape can be defined using a set of bounded
measures, particularly if the arrangement is scaled as described above. While the
application domain of the index may impose an independent limit on the maximum
size arrangement to be indexed (and thus the maximum value of the size attribute),

the size attribute is the only one that is inherently unbounded.

5.3.2 Shape

For point arrangements that correspond to plane polygons, the concept of
shape is fairly intuitive. We use the term shape in a somewhat more abstract form,
as essentially that which remains after size and orientation are extracted.

Figure 5.1 contains an analysis of the degrees of freedom that are involved in
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the characterization of the “shape” of arbitrary planar configurations of n points,
and demonstrates that it is inherently 2n — 4 dimensional. This can be seen by
observing that each of the n points in the configuration introduces two degrees of
freedom, in the form of x and y coordinates. Two degrees of freedom are subsumed
by the absolute spatial position of the configuration as a whole (e.g., the = and y
coordinates of the center of gravity), one degree of freedom is subsumed in uniform
scaling, and one in rotation (e.g., orientation) in the plane. For example, the six
initial degrees of freedom of a trio of points (e.g., a triangle) are reduced to two
inherent shape dimensions. This makes sense, as the “shape” of a triangle is com-
pletely determined by two vertex angles. A similar analysis can be made for spaces
of more than two dimensions; however, special care must be taken to account for all
possible orientational rotations.

The number of dimensions inherent to the shape space determines the number
of vectors necessary to serve as a basis for that space. Any method that extracts
that number of independent values generates a valid basis; however, for any given

database some methods may work more efficiently than others.

5.3.3 Orientation

In the general d-dimensional case, characterization of the spatial orientation
of an object can be accomplished in three steps, as shown in Figure 5.2. First,
a reference direction for the object itself is assigned. This can be visualized as

a unit vector (a) that is rigidly attached to the object. If the object possesses
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Figure 5.2: Orientation in d-dimensional space

any rotational symmetries an unambiguous assignment may not be straightforward.
Second, a direction (b) in the embedding space is identified, in parallel with which
the object’s reference direction will be aligned. Third, the final remaining degrees of
freedom, that of the object rotating (c) around the parallel line, are characterized.
This requires additional reference direction assignments, which may be complicated
by any rotational symmetries around the axis that the object might possess. And
for cases involving more than three dimensions, characterizing this rotation is more
complex than one might intuit. In four-dimensional space, for example, there are
two ways for an object to rotate around a line in the embedding space.

In the general case, d— 1 parameters are required to define (b), the direction in
the embedding space, and d—2 additional parameters are required to characterize the
rotation (c). Thus 2d — 3 parameters suffice to characterize the spatial orientation of
the object. In three dimensions the convention for designating the direction in space
(b) is by specifying two angles 6 and ¢. In two dimensions, however, orientation
simplifies to rotation within a plane, and no further degree of freedom (c) is allowed

(as the object cannot rotate up out of the plane). In this special case, a single
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Figure 5.3: Possible Rotational Symmetries of 6 Points

circular dimension is sufficient to characterize the orientation of an object.

5.3.4 Rotational Symmetry

A set of pointlike objects exhibits rotational symmetry when a rotation of the
set through an angle less than 360° transforms the set into one isomorphic to the
original set, for example, a 60° rotation for the set shown in Figure 5.3(a) or a
120° rotation for the set in Figure 5.3(c). In this section we describe the rotational
symmetries that could possibly be exhibited by a configuration of n points.

The configurations depicted in Figure 5.3 show all rotational symmetries pos-
sible for a configuration of six points. For example, all six points could lie at the
vertices of a regular hexagon (a), resulting in a 6-way rotational symmetry. Alter-
natively, five could lie at the vertices of a regular pentagon, with the sixth at the
center (b), resulting in a 5-way rotational symmetry. No configuration of 6 points
exhibits a 4-way symmetry.

The configurations exhibiting 6-way and 5-way rotational symmetry are unique

(down to rotation and uniform scaling), because the two degrees of freedom exhibited
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by the single point per sector are subsumed within the rotation and scaling of the
configuration as a whole. In configurations exhibiting 3-way (c¢) and 2-way (d)
symmetry, the additional degrees of freedom made possible by multiple points per
sector allow additional variation. In (c), for example, the triangle formed by the
inner three points can scale and rotate independently of the triangle formed by
the outer three, exhibiting two unconstrained degrees of freedom. In (d) there are
four unconstrained degrees of freedom, as each of the outside points is free to move
arbitrarily, provided that the diagonally opposite point moves correspondingly.
The rotational symmetries that can be exhibited by a configuration of n points
fall into into one of two classes. Members of one class are generated on the basis
of the distinct factorizations of n, and do not have points at their centers, as in all
cases in Figure 5.3 except (b). Members of the other class are generated on the
basis of the distinct factorizations of n — 1, and contain center points, as in (b).
There are several possible approaches for handling objects possessing a poten-
tial k-fold rotational symmetry within the orientation dimension of a point-based

index.

1. Each indexed object may result in several index entries, with differing index
values. For example, a triangle could be entered in three different places,
corresponding to directions from the center to each of the three vertices. The
drawback of this technique is that the index must contains three times as many

entries.

2. The search algorithm can search more than one area of the index space. For ex-
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ample, the directions of rays from the center of the target triangle towards each
of its three vertices can be determined, and the index space can be searched
for all three directions. The drawback of this technique is that three times the

area of the index must be accessed.

. The symmetry can be broken by point tagging. If the points that form the
triangle are tagged (say, one represents a hotel, another a railroad station, and
the third a youth hostel), a predefined ordering of the tag values can be used
to identify a distinguished member of the vertex set, and orientation can then
be defined relative to that vertex. However, when a distinguished member
cannot be determined (such as in cases when all points happen to be tagged

identically) this technique fails to determine a reference direction.

. The symmetry can be broken geometrically. Various schemes are possible,
including largest-angle, smallest-angle, and for triangles, schemes based upon
the Euler line (see Section 7.1). However, when the figure to be indexed
actually does possess a k-fold rotational symmetry, this technique fails to

determine a reference direction.

. The orientation dimension itself can be folded by a factor that is a multi-
ple of k, thereby bringing all points at which the object could potentially be
mapped into a single position along the folded dimension. For example, the
set of all possible triangles includes both figures with a 3-fold rotational sym-
metry (equilateral triangles) and figures with a 2-fold rotational symmetry
(symmetric collinear pseudotriangles, see Figure 7.2(d)). Folding the orienta-
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tion dimension six times (that is, reducing the orientation angle modulo 60°)
allows a direction to be defined for equilateral triangles (for example, the di-
rection from the center to any vertex), with the property that regardless of
which vertex is chosen, the triangle will map to the same coordinate in the
orientation dimension. The same is true for symmetric collinear pseudotrian-
gles. No matter which of the two possible senses is chosen, the pseudotriangle
will map to the same coordinate in the orientation dimension. For example,
the directions from the center of an equilateral triangle to its vertices might
be 40°, 160°, and 220°, but when reduced modulo 60° all three values become
40°, providing an unambiguous characterization of the triangle’s orientation.
Similarly, a collinear pseudotriangle with an Euler line at an orientation of 30°
or 210° (depending on the assigned sense) generates an unambiguous value of
30° when reduced modulo 60°. The drawback of this scheme is that only 1/k
of the inherent orientational selectivity is used in the index. Furthermore, this
sacrifice is made not only for the ambiguous triangles, but instead for every
triangle in the index. This technique is called normalization and is discussed

in the next section.

. The orientation dimension can be combined with the other index space dimen-
sions in a structure with the property that objects with ambiguity of reference
direction map to regions of the index space where the orientation dimension
is suppressed. The drawback of this technique is that none of the inherent

orientational selectivity of such objects is used in the index. This technique is
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2 2 180°
3 6 60°
4 12 30°
5 20 18°
6 30 12°
7 42 82°

Figure 5.4: Modulo Reduction Factors

called elimination and will be discussed in a later section.

5.3.5 Normalization

Because of rotational symmetry, any putative value for the orientation at-
tribute of such configuration is plausibly multiple-valued. The multiple values can
be collapsed to a single value by normalizing the value of the orientation attribute,
by reducing it modulo 360° divided by a number that is a multiple of all the possible
symmetry orders. Because the symmetry orders are submultiples of n and n— 1 (as
discussed in Section 5.3.4), the smallest such number is the least common multiple of
n and n — 1, conventionally written as lem(n,n — 1). For example, normalization of
the rotation attribute value for a configuration of 6 points can be done by reduction
of the value modulo 360° <+ 30 = 12°.

Unfortunately, as shown in Figure 5.4, the required degree of reduction rises
quickly with the number of points. For this reason, the normalization technique is
mainly useful for small values of n, such as in a database that is expected to contain
large numbers of square (n = 4) or equilateral triangle (n = 3) configurations.

For the remainder of this dissertation, reduction of the orientation attribute
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(a) Normal Space (b) Transformed Space

Figure 5.5: Normalizing Transform

value modulo 360° = k will be shown by multiplication by a factor of k, as shown
in Figure 5.5. The natural modulo reduction at 360° will then allow diagrams to
illustrate the normalization in a more intuitive way, as well as allowing mathematical
formulas involving trigonometric functions to be simplified to formulas containing
at worst radicals. The numeric values produced by these two methods are always

interrelated by a factor of k.

5.3.6 Capturing Orientation

Orientation within a d dimensional space can be captured as a d—1 dimensional
quantity, so for 2-dimensional (planar) point configurations one can derive a scalar
value by using an orientation-independent extraction of a salient set of features,
followed by the combination of these features into a vector. The “orientation”
component of this vector then supplies the value to be used for indexing. It is not
strictly necessary that the vector represent any particular geometric property of
the configuration, but only that it be a continuous function of the configuration’s
“shape” that rotates along with the configuration, and that it spread the indexed

configurations as evenly as possible across the orientation axis of the index.
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5.3.6.1 Previous Alternatives

In [13], which concentrated on configurations of three points, we relied mainly
upon two techniques for capturing orientation. One technique was use of the Fuler
line of the triangle formed by the points. However, for symmetrical configurations
this feature is somewhat badly behaved, as it is indeterminate for an equilateral
triangle, and approaches infinite length (and therefore undefined polarity) as the
three points approach collinearity. Another technique involved designation of the
single triangle vertex with the largest or smallest interior angle. However, such a
designation is not always stable (in the sense of mathematical continuity). Further-
more, neither of these techniques generalizes well to configurations of more than
three points (see Section 8.1).

Two alternative methods for deriving a rotation value are presented below, one
using the vectors from a suitably-defined “center” to each point in the configuration,
and another using the line segments that interconnect the points themselves. In each
case, selected “features” are normalized (transformed) to generate two-dimensional
vectors, which are then combined via a conventional vector sum. The result is a
two-dimensional eccentricity vector whose direction component is an absolute char-
acterization for the orientation of the point configuration. Because the “features”
used are a continuous function of the shape, and the transformation and vector sum
are both continuous functions, the function defined by this overall process is also
continuous. However, when the vector sum is zero, the process fails to yield an

orientation value.
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Figure 5.6: Center-to-point Vectors

5.3.6.2 Eccentricity Vector

Discovery of the key role played by rotational symmetry in the derivation of
reference direction led to the development of the concept of an eccentricity vector, a
continuous vector function of an arrangement’s shape that measures the deviation of
the arrangement from symmetry. Because it is a vector function, it has a direction,

and that direction can be used as a characterization of the arrangement’s orientation.

5.3.6.3 Center-to-Point Vectors

One method to derive a value for the rotation attribute of a planar point config-
uration is as the direction component of the vector sum of the set of center-to-point
vectors (such as the five dashed lines in Figure 5.6), normalized to accommodate
some set, of rotational symmetries. Any convenient definition of center, such as the
numerical average of x and y coordinates, can be used. If the vectors were not
normalized, configurations in the shape of a regular n-gon would yield a vector sum
of zero, and a value for the orientation attribute would not be determined. How-
ever, normalization of the vectors by n (or any multiple of n) causes the normalized
vectors to all be identical, and hence the vector sum to be n times this value.

Figure 5.7 shows the center-to-point vectors of an equilateral triangle, when

transformed by reduction modulo 120°. All three vectors transform to the same
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vector (as a convention, dashed lines indicate vectors drawn off-origin for clarity).
The vector sum is three times that vector, and therefore nonzero, so a value of 90°
for the orientation attribute (within the 120° space) is determined. Note that as the
triangle rotates through a full 360° range, the orientation attribute value traverses
its full range of 0° to 120° three times.

For configurations that differ slightly from regular n-gons, such as in Figure 5.8,
the vectors begin to diverge, but continue to yield a non-zero sum.

From these examples it can be seen that normalization can be used to accom-
modate a subset of the possible symmetries, if other techniques (such as mapping
to the axis of a hypercylindrical index, as described in Section 5.4) are used to

accommodate the remaining symmetries.
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Figure 5.9: Six Interpoint Vectors

5.3.6.4 Interpoint Line Segments

Another method of deriving a value for the rotation attribute of a planar
point configuration is as the direction component of the vector sum of the set of all
n(n — 1)/2 interpoint line segments. In Figure 5.9 the interpoint vectors are AB,
AC, AD, BC, BD, and CD.

However, unlike the case of center-to-point vectors, the polarity of the inter-
point line segments is not inherent, that is, it is undefined as to which of the two
vertices serves as the head and which one serves as the tail. In fact, each interpoint
line segment possesses a 360° + 2 rotational symmetry. There are two ways to break
this symmetry and allow the interpoint line segments to be treated as vectors.

One way is normalization by 360° = k£ where k is even. It is always the case
that one of the two numbers n— 1 and n is even. Therefore lem(n,n—1) will always
be even, and the normalization will suppress the 2-way ambiguity (i.e., symmetry)
normally involved in defining the direction of a line segment. Because of this, a
value for the orientation attribute can be derived as the direction component of the
vector sum of all of the normalized interpoint line segments. Research is currently
underway on how to use this derivation of a value for the orientation attribute for
the general case of n point configurations.

For the special case of a convex polygon in a two-dimensional space, an alter-
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Figure 5.10: Zero eccentricity maps to hypercylinder axis

native way to break the symmetry is to impose a clockwise (or counterclockwise)
assignment of direction. However, in spaces of more than two dimensions, clockwise
and counterclockwise make no sense, as they are reversed when the configuration is
examined from the opposite direction. Furthermore, when some of the points in the
configuration are interior to the configuration’s convex hull, it is not even possible
to unambiguously define a polygon (see Section 8.1.2). For these reasons, this form
of symmetry breaking has not been investigated further. However, it is used in one
of the examples in the next section, to allow investigation of one case of 360° + 3
normalization.

The major drawback of the interpoint method, other than the need to break
the polarity-assignment symmetry, is that the number of computations required
rises as the square of the number of points in the configuration (as opposed to the
center-to-point method, in which the number of computations rises only linearly).
However, these are simple computations, so this is not expected to be important in

practical terms.
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5.4 Elimination

An index space can be organized as a hypercylinder, with the magnitude of
the eccentricity vector for each arrangement specifying the distance of that arrange-
ment’s index point from the hypercylinder axis. Figure 5.10 shows an arrangement
of points (a), the variation in the eccentricity vector as one vertex moves up and
down (b), and organization of an index space where the magnitude of the eccentric-
ity vector determines the distance of the index point from the hypercylinder axis.
Note that the magnitude of the eccentricity vector does not really become negative
(dotted line in (b)), but instead maps to points on the “other side” of the index.
Note that arrangements with a zero value for the eccentricity vector map onto the
axis, and therefore the orientation of such figures does not play a role in the index.
In other words, all such arrangements, no matter what their actual orientation, map
to the same point in the index space, resulting in a loss of index selectivity. However,
this penalty is paid only for the problematic arrangements, unlike the situation with
normalization, where the penalty is paid for every arrangement in the index.

It is possible to use both normalization and elimination in the same index
structure. Various examples of doing so, in the case of point triples, are given in

Section 7.4.

5.5 Summary of Indexing Concepts

An index is a data structure to make retrieval more efficient, using a process

involving abstraction, ordering, or both. In order to support similarity search, an
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index must possess the property of stability (continuity). One objective for an
efficient index is to maximize selectivity, an even distribution of the indexed objects
across the index space.

Arrangements of point objects can be characterized by size, orientation, and
“shape” (defined as “that which remains after size and orientation are removed”).
For applications that involve only orientation-independent retrieval, an index space
can be constructed on the basis of size and shape alone.

For indexes designed to support both orientation-dependent and orientation-
independent retrieval, the fact that orientation dimensions are closed and circular
requires index spaces involving orientation to typically be hypercylinders.

While ad-hoc data structures can be designed for particular situations, the
eccentricity-vector approach is valid across all point arrangements. Unless specif-
ically addressed by the technique of normalization, arrangements that possess a
rotational symmetry yield a zero eccentricity vector, and thus map to the axis of a
hypercylindrical index space. For particular situations in which a large number of
symmetric arrangements are expected, normalization can be used, but at a signifi-

cant cost to the selectivity of the resulting index.
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Chapter 6

Indexing of Pairs of Point Objects

In this chapter we describe a scheme for indexing pairs of point objects, in-
cluding an optional method of compressing or pruning the resulting index structure
to reduce its storage requirements.

One approach to the indexing of arrangements of point objects is to decom-
pose the arrangement into a number of object pairs. The search algorithms to be
described here use an index created by examining every image in the database, and
mapping each pairing of icons into a single point in an abstract space consisting of
the Cartesian product of separation (inter-icon distance) and relative orientation.
We call this an - space. The absolute positions of the icons are abstracted away,
the icon separation of the pair determines the r coordinate, and the relative orien-
tation determines the # coordinate. All pairs with the same separation and relative
orientation (regardless of absolute position) map to the same point in this space. All
pairs with the same separation but different relative orientations map to points on
a line parallel to the # axis, while all pairs with different separations but the same
relative orientation map to points on a line parallel to the r axis. This r-f index can
be organized using well-known spatial database techniques, such as quadtrees [35]
or R-trees [23]. In the general model used for this dissertation, the icon-separation

r corresponds to the attribute of size, and because every point pair has the same
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shape, the basis for the index space is only size and orientation.

Because an image of n icons contains n(n — 1)/2 pairs, the size of such an
index grows quadratically with the number of icons in an image (although only
linearly with the number of images in the database). For databases with only a
sparse population of icons this may not be a severe problem. Another approach is
to prune some of the pairs from the index, at the cost of requiring some additional
work while searching the index.

The remainder of this chapter is organized as follows: Section 6.1 shows the
structure and construction of an unpruned version of an index. Section 6.2 discusses
various kinds of queries and the spatial constraints they imply, and how these con-
straints determine the part of the area spanned by the index to access. Section 6.3
provides a method of pruning the index to reduce its size. Section 6.4 outlines
modifications to the search algorithm required to support such pruning. Section 6.5
gives the results of Monte-Carlo simulation experiments designed to determine the
efficacy of index pruning. Section 6.6 describes a variant where separate indexes are
kept for each pair of icon types. Section 6.7 discusses considerations for updating an
index when the database is modified. Section 6.8 discusses how such an index can
be used for non-position-independent search. Section 6.9 briefly shows how such an
index can be used for purely existential searches, which do not invoke any spatial

constraints. Section 6.10 contains concluding remarks.
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6.1 Non-pruned Index Construction

The relative spatial orientation of two icons can be characterized by the slope
of the line connecting them, or alternatively it can be characterized by an angle.
Because the slope of a vertical line is mathematically infinite, it is more tractable
to characterize this orientation as an angle. Therefore, the 6 axis of the -6 space is
most, conveniently calibrated in some angular measure.

Pairs of icons possess a reflection symmetry: if, with respect to icon A, there
exists an icon B at a particular distance and relative orientation, there also exists,
with respect to icon B, an icon A at the same distance and the “opposite” orientation.
This symmetry can be used to halve the number of entries in the index, if it is
possible to determine, when searching for an icon pair of classes A and B, whether
to search for an A with a particular orientation towards a B or instead for a B with
the “opposite” orientation towards an A. One way to address this (except for the
special case of searching for an A with respect to another A) would be to impose
a total order on the icon classes. However, in the work described here, the spatial
orientation of two icons is limited to the range 0° to 180° by exchanging the icons
if their orientation lies outside this range.

The choice between these two methods of halving the size of the index is
another trade-off between index size and search time. Roughly speaking, throwing
the same number of points into a smaller space results in an increased density of
points, so in the pruning algorithm of Section 6.3 this higher density increases the

probability that evidence to enable pruning will be found, thereby decreasing the
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Figure 6.1: Mapping of icon pairs into r-f space
size of the resulting index. However, when searching with such an index, twice the
number of entries must be examined.

The r-0 space that we use is not a traditional Euclidean space because it
is a two-dimensional space that is half-open in one dimension (r) but circularly
closed in the other () dimension. More precisely, the r dimension starts at zero
and theoretically runs to infinity, although in any particular database there will
be a maximally separated icon pair, which will then determine the maximum r
coordinate value for that database. The # dimension is topologically closed, that is,
0° and 180° are logically identical. Thus the space is a half-cylinder running from
zero to infinity.

Figure 6.1 illustrates the mapping of two icon pairs from database images 123
and 456 into -0 space. The relative orientation of icons A to B from database image

123 is 20°, which is less than 180°. Since icons A and B are 15 units apart, the pair
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maps into the point r = 15, # = 20. In database image 456, icons C and D are 20
units apart, but because the relative orientation of C toward D of 350° is greater
than 180° the two icons are exchanged and the pair maps into the point r = 20,
6 = 170.

Construction of the non-pruned index is not complicated. For each symbolic
image in turn, each pairing of icons is considered, and an index entry for that pairing
is added. This entry must explicitly contain identifiers for the two icons (perhaps
including icon class), and an identifier for the particular symbolic image, which is
used to indicate the images found by a successful query. In addition, given the index
entry, it must be possible to recover both the separation and relative orientation of
the pair, although this data may be implicit in the spatial data structure that is
used. One possibility is to explicitly keep separate A, and A, (relative distance in
x and y) for the pair, as computation and comparison of separation can be done in
the r2 domain and relative orientation can be recovered by using a four-quadrant

arctangent function such as Fortran’s ATAN2.

6.2 Non-pruned Index Search

When searching the index, the set of applicable spatial constraints determines
an area of the r-f index that must be examined. The 9 nontrivial boxes in Figure 6.2
represent different combinations of separational and orientational constraints. The
boxes labeled A represent distance constraint, while the boxes labeled B represent

a combination of both distance and orientational constraints. For the orientational

81



Distance
Constraint

None

Closer
thanr

Farther
thanr

Within
rrandr,

Not
Within
randr,

Orientational Constraint

None 0-wto O+
1A 1B
-0 6 6+ 6-w 0 6+w
0+w I L
.0 : b ]
% 0-w : ]
B-w— O++p
2A 2B
0+m 0-0 6 0+ 6-w 0 6+w
f-0
r ; ol
0 (€] 0-0—¢ O+w+¢
3A
0-0w 6 0+ 6-w 0 6+w
0 (€] 0-w-¢ B+w+¢
4A
0-0 0 6+0 6-w 0 6+w
() |
N it
0 6 0-0—¢ O+w+¢
5A 5B
0-w 0 60+w
"h
( i\( Ul
[ T
0 0 0-0-¢ O+0+d

Figure 6.2: Areas of -6 index space to be searched

82



E (900,900) Pair T Raw 68 Effective 6
AB 425  48.8°

AC 509  11.3°

AD 895  16.2°

AE | 1131  45.0°

BC 311  315.0° 135.0°
BD 584 353.1° 173.1°
BE 707 42.7°

CD 390 22.6°

CE 761  66.8°

DE 553  96.2°

Figure 6.3: AB and BE constitute evidence for AB

constraints described in this figure, w represents the range of orientations desired,
that is, icon pairs with orientations between § — w and 6 4+ w are sought. In each
box, the left image shows a representation in normal 2-D space of the target of such
a query, and the middle image shows the area of r-6 space examined. (The right
image shows the search area for a pruned index, described below). For example, in
case HA, the search is for icon pairs either closer together than r; or farther apart
than r,. In this case, the area of r-f space examined is the band below r; and the
band above r,. In case 4B, where separation and orientation are both constrained,
the examined area is a rectangle (or window), and various well-known methods can

be used for such a window query.

6.3 Pruned Index Construction

The intuition for index pruning is the observation that some entries, if included
in the index, can act as proxies or evidence for others, allowing the latter to be

omitted from the index. However, upon search within such a pruned index, the area
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of r-0 space that must be examined is generally larger than the area required for an
unpruned index. Postprocessing of the retrieved index data is also required.

Figure 6.3 shows an example database image containing five icons, and the ten
corresponding icon pairs along with their » and 6 values. The 6 values of pairs BC
and BD are above 180°, so both pairs will be reversed, yielding effective 6 values of
135.0° and 173.1°.

The two gray cones at points A and E are both 8° wide, corresponding to a
¢ value of 4°. In an index pruned to such a ¢ value, pairs AB and BE constitute
evidence for pair AE, because their orientations (6 values) of 48.8° and 42.7° differ
from the 45° orientation of pair AE by less than this value of the pruning parameter
¢. Neither pairs AD and DE nor pairs AC and CE constitute evidence for AE. Pairs
AC and CD do not constitute evidence for AD. However, for an index pruned to a
¢ value of 10° (open cone), AC and CD do constitute evidence for AD.

In the general case, determining the minimal subset of pairs providing complete
evidence for all pairs (and thus comprising the smallest possible index for that ¢
value) may be of high-order time and space complexity, and therefore best addressed
by the techniques of dynamic programming.

Alternatively, there are a wide range of heuristic evidence strategies that could
be employed. Because the search algorithm itself is used during index pruning,
soundness of this class of indexing schemes is guaranteed if the evidence examined
at search time is a superset of the evidence considered at the time the index is
pruned.

The strategy used to build and search the indexes described in this chapter
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is based on two design choices. First, evidence for an entry with a larger » value
(representing an icon pair that is farther apart) will be sought only among entries
with smaller r values (pairs that are closer together). Second, evidence for an entry
with a given 6 value will be sought only among entries whose 6 values (relative
orientation) differ from it by at most a search width parameter ¢. For an index
pruned to larger values of ¢, evidence is sought among a larger number of entries,
(in general) more entries can be pruned, and eventually a smaller index is generated.

The intuition for these design choices is as follows. For any given icon pair
that a particular query might accept, that pair may or may not have been pruned
from the index. The area of the index space where it would (if not pruned) be
present comprises the minimal area that must be accessed. One way to reduce the
total area of the index space accessed is to limit the area examined for evidence to
as small an extension of this minimal space as possible. Under these design choices,
the area accessed is extended down to the r = 0 axis and (as we shall see) widened
by the pruning parameter ¢. Other choices are possible. For example, if evidence
for pairs with a separation of r is sought only within pairs with separations from r
to r/3 then the search area need only be extended down to r/3. However, in this
case less pruning may be possible.

An index entry for a particular icon pair may be pruned if and only if implicit
evidence for that pair can be found by the search algorithm. In Figure 6.4 the
evidence for an icon pair AB is shown. This evidence consists of a set of explicit
pairs in the index comprising a sequence A— Py, P, — P,, ..., P, — B that connects A
and B; and that the relative orientation (angle) of each of these pairs is within ¢ of
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Figure 6.4: Evidence for pair AB. Note all slopes lie between 6 — ¢ and 0 + ¢.

Unpruned Pruned Pruned

r 0 Index p=4° ¢ =10°
311 135.0° CB CB CB
390  22.6° CD CD CD
425  48.8° AB AB AB
509  11.3° AC AC AC
553  96.2° DE DE DE
584 173.1° DB DB DB
707 42.7° BE BE BE
761 66.8° CE CE CE
895  16.2° AD AD
1131 45.0° AE

Figure 6.5: Unpruned and Pruned Indexes

that of the original pair AB (this relative orientation constraint limits the extent in
the # dimension of index space that must be accessed). The Union-Find algorithm,
operating on the pairs found in the index, is used to make the association between
A and B in slightly more than linear time.

The pruned index is constructed by the following greedy algorithm. Indepen-
dently for each image in the database, all icon pairings are generated and sorted on
ascending r (closer to farther). For each pairing AB considered in this order, the
entries already included in the index are filtered according to the ¢ constraint and
the Union-Find algorithm is run on the result. If evidence for AB is not found, an
entry for AB is added to the growing index. In Figure 6.5, the entries of pruned

indices for the icons of Figure 6.3 are shown for pruning factors of ¢ = 4° and
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r 0 Indexed Selected
311 135.0° CB
390 22.6° CD CD
425  48.8° AB AB
509  11.3° AC
553  96.2° DE
584 173.1° DB
707 42.7° BE BE
761  66.8° CE
895  16.2° AD

Figure 6.6: Search of a 4° index for pairs at 34° 4+ 12°

¢ = 10°. In either case, when pair AE is considered by the algorithm, evidence for
AE (consisting of pairs AB and BE) is found, consequently AE is not added to the
index. Similarly, when the ¢ = 10° index is built, AD is not added to the index, as
AC and CD serve as evidence.

Generating the full set of pairings and sorting them in ascending order of
separation requires O(n?) storage space and O(n?logn) execution time. As each of
the O(n?) pairs is considered, the subset of pairs already in the index and within
the orientational constraint must be examined. As there will be between O(n) and

O(n?) of them, construction of the index requires between O(n?®) and O(n*) time,

6.4 Pruned Index Search

When searching the index, all pairs in an appropriately expanded area of the
index are retrieved. In order to ensure that a pruned pairing can always be found,
the pairs retrieved by the search algorithm must include all evidence that might
have been considered by the original pruning decision. This requires accessing a

somewhat larger area of -6 space, relative to that examined by the same search on

87



-w—¢p 6-0 O B+m B+w+d

Figure 6.7: Search in # dimension broadened by ¢

an unpruned index.

In the index of Figure 6.6, pair AE should be found by a search for pairs with
orientations between 22° and 46°(6 = 34° w = 12°), even though it has been pruned,
and therefore no longer appears explicitly in the index. Because the evidence for
AE includes AB at 48.8°, the area of the index retrieved must be expanded in the
¢ dimension to the range 18° (f —w — ¢) to 50° (# + w + ¢). (Note that CB is not
selected. Although its 135.0° orientation appears to be a variant of 45.0°, it is in
reality directly opposite.)

In Figure 6.7 (I) the evidence considered by the original pruning decision for
pair A, — By includes pairs whose relative orientations lie between 0, — ¢ and ) + ¢.
This is shown in the 6 dimension of -6 space (II). When searching for a pair with

relative orientation within w of # (III) the evidence for pairs close to the edge of the
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search criterion may protrude as far as ¢ beyond that space, so the area accessed
in r-6 space must be widened by the index pruning factor ¢ in order to include
this evidence. This is shown in r-6 space in (IV). The additional area that must be
accessed is shown in dark gray.

In each of the five boxes 1B through 5B on the right half of Figure 6.2, the
rightmost illustration shows widening of the accessed space in the 6 dimension by
¢, the pruning factor of the index being searched.

In addition, because closer pairs act as evidence for farther pairs, the area of
r-0 space accessed must be extended down to the r = 0 axis. In cases 1B, 2A, 2B,
5A, and 5B in Figure 6.2 this area down to the r = 0 axis is already accessed, so
the extension of search in the r dimension imposes no additional cost, while in cases
3A, 3B, 4A, and 4B some additional cost is incurred. In all boxes of this figure the
additional area that must be accessed due to considerations of index pruning are
shown in dark gray.

The evidence retrieved from the implicated area of r-0 space is processed by
the Union-Find algorithm. Each icon pair retrieved is interpreted as signifying an
equivalence relation between its two constituent icons, thus a set of equivalence
classes of icons (or clusters) is the final result.

If, at index creation time, an icon pair A-B was pruned from the index, the
evidence examined at that time must have contained the chain of pairs A — P, P, —
P, ..., P, — B, all within the constraints on relative orientation. Because of the
extension of the accessed space in both the r and # axes, the retrieved entries are

guaranteed to contain all this evidence, and the chain of pairs will cause the Union-
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Find algorithm to place icons A and B together in the same output cluster.

Each cluster generated by the Union-Find algorithm is examined separately
for pairs satisfying the search constraints. After filtering the icons in a particular
cluster by icon class, each pairing of the remaining icons is examined. In the example
of Figure 6.6 clusters (ABE) and (CD) are generated, and the final results AE, BE,
and CD are found.

The time complexity for this phase rises quadratically with cluster size, but
is somewhat mitigated by two factors. First, the algorithm is actually quadratic
on the cluster size; thus processing of a large number of small clusters will require
less time than processing a small number of large clusters. Second, each cluster is
filtered based on icon class, so the size of the data is greatly reduced before the
quadratic phase of the algorithm.

Note that if a distance constraint » < 400 had been specified, pairs AB and
BE would not have been retrieved, and only pair CD would be present in the result.
If a distance constraint » < 1000 had been specified, pairs AB and BE would still
have been retrieved, but AE would have been filtered out by the final pass, and

again, only pair CD would be present in the result.

6.5 Simulation Results

Monte Carlo simulation is a methodology that uses a random number generator
to construct a set of test cases, along with a statistical analysis of the results of

those tests. A Monte Carlo simulation was undertaken in order to investigate the
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Pruning Parameter ¢
e 2 4 6 8
10 45 40 38 35 35
20 190 160 142 126 105
30 435 328 277 234 194
40 780 552 428 347 286
50 | 1225 776 588 464 385
60 | 1770 1036 749 573 477
70 | 2415 1299 907 688 578
80 | 3160 1567 1068 809 666

90 | 4005 1844 1244 937 758

Figure 6.8: Sizes of Unpruned and Pruned Indexes

effectiveness of pruning in reducing index size, and the degree to which clustering
reduces the execution time of the search algorithm.

If the full circle is divided into n units (such as 360°), then modulo-n arithmetic
can be used for computation on this axis. Furthermore, if n is chosen to be a power
of two, a bitwise AND can be used to implement the modulo division operation. In
the simulations that we ran, the circle was divided into 256 (2%) units.

The version of the Union Find algorithm implemented for this simulation was
extended to preserve the offsets A, and A, between each icon and the representative
chosen by the algorithm for each equivalence class (cluster) it produces. The offsets
between two icons in the same equivalence class can then be determined from their
offsets with respect to their shared cluster representative. The relative orientation
of the two icons can then be determined from these offsets by table lookup, while
separation comparisons can be done in the r? domain, by comparing A2 +A12/ to the
square of the separation constraint.

Test images were generated, consisting of 10 to 90 icons apiece, randomly
located on a 1024 by 1024 grid. For each test image, indexes were generated with
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values of the pruning parameter ¢ of 2, 4, 6, and 8. (Angular unit values from 0 to
255 represent angles from 0° to 360°. Thus, one angular unit represents slightly more
than 1.4 degrees. Values of the pruning factor investigated correspond to beam half-
widths of approximately 2.8°, 5.6°, 85.°, and 11.2°, respectively.) Figure 6.8 shows
the (computed) size of an unpruned index, compared to the sizes of the resulting
pruned indexes. The same information is shown graphically in Figure 6.9 using a
logarithmic scale.

As the pruning factor ¢ is increased, the size of the index is reduced. The
trade-off for this size reduction is that the area of the index space that must be
examined is broadened in the # dimension.

Simulations of search were performed for each index produced. A search was
run for every icon pair in the image (no simulations of unsuccessful searches were
conducted), and the structure of the clusters produced by the Union-Find algorithm
was examined.

The simulation showed that for small values of r, small values of ¢, and sparse
data loading, a larger number of smaller clusters were formed. However, as the
values of r and ¢ increased, or as the data became more dense, the Union-Find
algorithm trended toward production of a singular large cluster.

In a real world implementation, the index would be disk resident, and thus
query costs would be dominated by disk access. For this reason the size of the index
and the size of the r-f space search area were used as a proxy for estimating query

costs.
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Figure 6.9: Pruning Efficiency

6.6 Separate Class Pair Indices and Wildcard Searching

While so far the discussion has been limited to the use of a single, unified
index, databases storing only a small and limited number £ of icon classes might
advantageously maintain a separate r-6 index for each of the k(k+1)/2 combinations
of classes. (This number includes the & homogeneous class pairs A-A, B-B, etc. To
achieve the factor of two reduction in the number of indexes, a total order would
be induced on the icon classes, as discussed in Section 6.1.) Either unpruned or
pruned indexes might be used, depending on the expected density of icons in that
particular database. However, introduction of a single instance of a novel icon class
would require immediate instantiation of a relatively large number of new indexes.

In such a multiple-index system, a wildcard query (searching for icons belonging
to any one of a specific set of icon classes) will generally require more than one of

the indexes to be accessed.
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6.7 Database Update

Adding a completely new database image is straightforward. The pairs for the
new image are generated, pruned by the value of ¢ used by that database, and added
to the index. Similarly, deletion of an entire image consists simply of removing all
the pairs of that image from the index.

Adding an icon to an existing database image can be done easily by generating
all the pairs composed of the new icon and the existing icons, then adding into
the index only those new pairs for which evidence does not already exist in the
index. This is somewhat suboptimal in that one or more of these new pairs may
constitute crucial evidence for some of the other pre-existing pairs, allowing them
to theoretically be pruned from the index. However, these benefits can be regained
by periodically regenerating the index.

Removing an icon cannot be done by simply removing all pairs containing it,
as a removed pair may be a crucial part of the evidence for other pairs. Instead,
marking the pairs as “logically deleted” without physically deleting them allows
their continued participation in the search algorithm but also allows for the final
filtering pass to remove them from the results. Again, periodically regenerating the

index allows for the eventual physical deletion of such pairs.

6.8 Position-dependent Queries

Although the algorithms described above were developed to perform position-

independent search, position-dependent queries can be accommodated by adding
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Xe

Figure 6.10: Absolute-position search relative to X

to the index one artificial icon for each database image, at a point determined by
a convention of that particular database (such as “the center” or “the lower-left
corner”). Query for an icon A in a given area of any image is then performed by
determining a set of r-f constraints, relative to the known conventional position of
the artificial icon X, that subsumes the given search area. The search is performed
for an X-A pair with the determined spatial relationship, and the result is filtered
to satisfy the original position-dependent query.

In Figure 6.10, a rectangular search window in normal space can be subsumed
into an -0 query (of type 4B in Figure 6.2) with respect to artificial icon X. Images
found by the algorithms described above can then be filtered to remove any “false

positives” generated by this subsumption.

6.9 Non-spatial Queries

An existential query attempts to find database images containing a particular
icon A, with no constraint on that icon’s position. Such a query could also be satis-

fied using the artificial X point, by searching for an X-A pair with an unconstrained
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spatial relationship, but doing so would require that the entire index be retrieved. If
a database must frequently support such queries, a separate but parallel inverted-file

index might be added.

6.10 Concluding Remarks

We have shown how to use a spatially organized index of icon pairs to accelerate
search of an image database for icon pairs possessing a desired spatial relationship.
The quadratic growth in the storage space required for such an index can be con-
trolled by using an algorithm that prunes pairs from the index when their existence
can be inferred from remaining unpruned pairs. The trade-off for this pruning is
that search must access a larger fraction of the spatially organized index, and may
require execution time at worst quadratic in the number of icons per image.

In the two-dimensional work described above, the spatial relationship between
two icons is characterized as separation (r) plus a single angle (). The straightfor-
ward extension to three dimensions adds a second angle, characterizing the spatial
relationship as a separation plus two angles. The closest familiar analogue might
be the “Az-El” (azimuth-elevation) measurement of surveying, in which a direction
is characterized as an azimuth (angular bearing in the horizontal plane) and an
angular elevation above the horizon, with the range (e.g., distance or separation)
supplying the required third coordinate value.

In this case, the shape of the index space would be analogous to a 2% D map

of the earth’s surface, or the skin of an orange, with two angular axes, both closed
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(i.e., a sphere), and with the r dimension extending outward, along the orange skin’s
thickness. The general pattern for an n dimensional database space would be an
index space consisting of a single linear r axis directed “outward” from the surface of
a n — 1 dimensional hypersphere, which would embody the n — 1 remaining angular
dimensions.

It is easier to envision the structure of such an index space than to imagine
any real-world application for this technology. Human beings are surprisingly adept
at correlating two dimensional maps with physical terrain, given that we did not
evolve in an environment where looking down on a terrain from above is an everyday
experience. Sadly, this ability does not extend to higher dimensionalities. The only
three-dimensional analogy that comes to mind is using a database of positions in the
solar system (such as space ships, space stations and planets) to find feasible links
for an interplanetary relay network, while avoiding radio noise from the galactic
core. Higher-order analogs would be even more opaque.

At first glance there are some similarities between the methods described here
and the two-dimensional version of the ©-graph class of spanner networks discovered
independently by Clarkson and Keil [18]. However, in the ©-graph algorithm the
cones (in two dimensions, sectors) emanating from any given point are generated
only once, and with orientation independent of the other points in the set. In our
method a different cone is used for each pairing of points, and the orientation of
that cone is directed towards that other point.

Future research includes extending the analysis from synthetic to real-world
datasets, the investigation of algorithms to construct optimal pruned indexes, and
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algorithms to construct useful pruned indexes in less than O(n?) time. One area for

investigation would be use of the well-separated pair decomposition, described in [6]

and [37, pages 582-583], to construct a bottom-up index generation algorithm.
The space-time tradeoff involved in the employment of a 180° space versus a

360° space is also worthy of investigation.
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Chapter 7

Indexing Arrangements of Three Points

This chapter describes a scheme for indexing triples of point objects, using
a point-based index based on the geometric properties of the associated triangle.
There is no variation to the “shape” of a pair of points; every pair has essentially
the same shape. Thus the new concepts introduced in this chapter include the
characterization of shape, and the definition of “orientation” for point triples.

Any three distinct points uniquely determine a triangle. For the special case
of three collinear points, a collinear pseudotriangle with overlapping sides (and with
“angles” of 0°, 180°, and 0°) is determined. As such figures are not included in
the classical definition of a triangle, this special case must be carefully considered
when invoking any of the classical triangle properties. Because of this one-to-one
correspondence between point triples and triangles, point triples may be indexed
using methods that effectively index these associated triangles.

Indexing of the spatial position and size of a triangle is straightforward and
will not be discussed in the remainder of this chapter, except to note that spatial
position must be referenced to some specific point in the triangle, and that multiple
candidates exist for the “center” of a triangle. This will be discussed further in
Section 7.1.

The remainder of this chapter is organized as follows: Section 7.1 briefly out-
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lines some elementary and classical triangle properties. Section 7.2 describes an in-
herently two-dimensional abstract space of triangle “shapes”, and examines methods
for defining a basis for this space, including methods based on interior angles and
methods based on normalized side lengths. Section 7.3 discusses the definition of
the spatial orientation of a triangle, including the special problems posed by trian-
gles possessing k-fold rotational symmetry. Section 7.4 presents several alternative
schemes for construction of a point-based index, showing how the problems intro-
duced by k-fold rotational symmetry can be addressed by innovative methods of
integrating the shape and orientation dimensions. Section 7.5 contains concluding

remarks.

7.1 Triangle Properties

Various standard terms are used to describe the shapes of triangles. When no
two triangle sides have the same length (and thus by the Law of Sines no two angles
are equal) a triangle is termed scalene. A triangle with three equal sides (and thus
three equal 60° angles) is called equilateral. In the remaining case two sides of the
triangle are equal; such triangles are called isosceles.

In this chapter it will be useful to distinguish between two subclasses of isosce-
les triangles: tall isosceles, in which the third side is shorter than the other two, and
wide isosceles, possessing a longer third side.

Classical triangle literature describes a large number of special points, some of

which seem likely candidates for the “center” of a triangle. Figure 7.1 shows three
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Figure 7.1: Euler line of a triangle

such special points. The centroid (center of gravity, barycenter), by convention la-
beled G, lies at the intersection of the three medians (lines from each vertex to the
midpoint of the opposite side), which are shown as dotted lines. The orthocenter,
labeled H, lies at the intersection of the altitudes (lines from each vertex perpen-
dicular to the opposite side), which are shown as dashed lines. The circumcenter,
labeled O, lies at the intersection of the three side perpendicular bisectors, which
are shown as solid lines. These three points are always collinear, and define the
Euler line of the triangle [9, page 17].

Figure 7.2 shows the Euler line of both tall (a) and wide (b) isosceles triangles.
Note that the spatial order of the special points is reversed. While the Euler line
will prove useful for defining the spatial orientation of a triangle, two anomalous
cases must be considered. In an equilateral triangle (c) the three points coincide,
so the classical Euler line is indeterminate. And in the degenerate pseudotriangle
defined by three collinear points (d), both H and O lie at the point at infinity, so

the polarity of the Euler line analogue becomes indeterminate.
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Figure 7.2: Euler lines of other triangles

Because it is always spatially enclosed within the triangle, the centroid seems
the most logical candidate for being designated as the “center” of a triangle. This

definition of “center” will be used in the remainder of this chapter.

7.2 Indexing on Abstract Shape

As described in Section 5.3.2 (see Figure 5.1) the shape space of a point triple
is inherently two-dimensional. The following sections describe schemes based on

both vertex angles and on (normalized) side lengths.

7.2.1 Shape Indexing Based on Angles

The three internal vertex angles of a (planar) triangle completely determine
its shape: all triangles with the same three angles are similar (mathematically, all

corresponding sides are in the same proportion). However, because the angles always
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Figure 7.3: Shape space based on angles

sum to 180°, specifying any two of the angles completely determines the third. For
this reason, the space in which each distinct triangle shape maps to a distinct point
is inherently two-dimensional. A basis for such a space can be defined in many ways.

Figure 7.3 shows one possible basis, that of the largest angle X (maX) plotted
against the next-largest angle R (otheR). The smallest angle will later be referred
to as N (miN). The shaded area indicates where feasible triangles lie.

The largest angle in a triangle cannot be less than 60° (if it were, the other
two angles would sum to more than 120°, one of the other two angles would then
necessarily be greater than 60°, and the first angle would not then be the largest).
When the largest angle is 80°, the other two angles must total 100°, but by a similar
argument the next-largest angle cannot be less than 50° (if it were, the remaining
angle would be greater than 50°). In general, the size of the second-largest angle is

bounded from above by either the largest angle itself (line A-B) or the remainder
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left by the largest angle from 180° (line A-D), and is bounded from below by half
this remainder (line B-D).

All equilateral triangles map to point B, and all right triangles map to points
along line A-C, with the 45°-45°-90° triangle at point C and the 30°-60°-90° triangle
at point E. Wide isosceles triangles map to points along line B-D, while tall isosce-
les triangles map to points along line A-B. Points actually on line A-D represent
infeasible triangles (two angles summing to 180° leaving no remainder for the third
angle). All pseudo-triangles formed by three collinear points map to point D.

Mapping of triangles into this index space depends only on vertex angles, so
it is position-independent, orientation-independent, and scale-independent. It is
also invariant to a mirror reflection, as the largest and second-largest angles are
selected for classification regardless of their clockwise or counterclockwise order in
the triangle.

As this mapping is continuous (in the mathematical sense) the shape stability
can only fail for the “corner cases” where a slight variation in triangle shape (for
example, the situation in Figure 7.7) could cause shape ambiguity, a sudden shift in
which angle is considered “largest”. For a scalene triangle, where the three angles
materially differ, designation of angles as largest, smallest, and “other” is unam-
biguous. In the case of near-equilateral triangles, where the three angles are almost
equal, such triangles will map to the general vicinity of point B, thus expanding the
search to an appropriate neighborhood of point B will ensure that all such triangles
are found.

In Figure 7.3, for near-wide-isosceles triangles (when two angles are almost
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equal and the third angle is larger), choice of the largest angle will be unambiguous.
Slight variations in the relative sizes of the other two angles will result in a set of
index space points that approaches line B-D and then “bounces back” from it. As
an example, if the largest angle is 90°, the other two angles will vary in the vicinity
of 45°. The trajectory of points in the index space will be the small segment of line
E-C in the vicinity of point C. All such triangles will map to the vicinity of point
C, and expanding the search to an appropriate neighborhood of point C will ensure
that all such triangles are found.

In near-tall-isosceles triangles (two angles are almost equal and the third is
smaller), one of the two large angles will be chosen as largest, and the other will be
chosen as second largest. Slight variations in the relative sizes of these two angles
will result in a set of index space points that approaches line A-B and then “bounces
back” from it. Expanding the search to an appropriate neighborhood of the contact
point with line A-B will ensure that all such triangles are found.

In both the tall and wide isosceles triangles, the invariance of the index to
mirror reflection ensures stability in the mapping from triangles to the shape space.
However, because the selection of which angles to index is based solely on largest
vs. next-largest angle (regardless of their clockwise or counterclockwise order), no
distinction is made between the left-handed and right-handed versions of a given
triangle. Thus only half the inherent shape selectivity is used in the index. Other
examples of the sacrifice of selectivity in order to secure stability will be presented
later in this chapter.

Because the space of triangle shapes is inherently two-dimensional, any pair
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Figure 7.4: Shape space based on angle differences

of linearly independent axes that spans the space may be used as a basis. One such
alternative basis, constructed using differences between pairs of angles, is shown in
Figure 7.4. Coordinate « is the difference between the largest and smallest angles
(maX - miN), and coordinate § is the difference between the other and smallest

angles (otherR - miN). The original angles can be recovered from « and 3 as:

180° —a—f3
3

miN =
otherR = 3+ miN (7.1)

maX = o+ nmiN

Using this basis, triangles with equal largest angles map to points along the
lines shown as dashed. For example, all right triangles map to points along line
A-C. Note that wide isosceles triangles map to points along line B-D,

The advantage to using this shape space is that when the reference orientation
is defined as the direction from the center to the vertex with the smallest angle,
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all triangles with ambiguous reference orientations (equilateral, wide isosceles, and
collinear) lie along line B-D. As will be seen in Section 7.4, this enables one strategy
for integrating the shape space and orientation dimension into the combined index

space.

7.2.2 Shape Indexing Based on Normalized Side Lengths

While angle-based methods for characterizing triangle shape are inherently
size-independent, side-length-based methods can be made size-independent by bas-
ing them on appropriately normalized side lengths. For the remainder of this section
it is assumed that triangle side lengths are scaled such that the total triangle perime-
ter length is 180 units. To compute values based on a perimeter scaled to 1.0, the
numbers given should be divided by 180.

When the total perimeter is known, the triangle is completely determined by
two side lengths (as the length of the third side can be directly computed). The
space shapes generated by a side-based approach are similar to those generated by
an angle-based approach.

Figure 7.5 shows a shape space based on normalized side lengths. The largest
side of a triangle cannot be more than half the perimeter, nor can it be less than
one third the perimeter. The next largest side is bounded from above by the largest
side (line A-B) and from below by half the remaining perimeter (line B-D). In this
space, tall isosceles triangles map to points along line A-B, wide isosceles triangles

map to points along line B-D, and right triangles map to points along the dashed
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Figure 7.6: Characterization of shape for collinear point triples (triangle perimeters
normalized to 180).

curve C-E-A.

There are two small advantages to using a side-length-based method over using
an angle-based method. When point positions are given as x and y coordinates,
side length computation is somewhat less expensive than angle computation, since
evaluation of the computationally expensive arctangent function is not required.

The second advantage of side-length-based methods is that pseudotriangles
corresponding to collinear point triples map to points spread out along a line in the
shape space, rather than all mapping to a single point. Figure 7.6 shows charac-

terizations of three instances of point triples. An angle-based approach does not
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distinguish between these cases, while an approach based on normalized side length
is capable of discriminating between them. In Figure 7.5 collinear pseudotriangles
map to points spread out along line A-D, while in Figure 7.3 they all map to point
D. Avoiding the sacrifice of the shape information of these pseudotriangles results
in a slight selectivity advantage for side-length-based methods.

As in the angle-based method, because the selection of which sides to index
is based solely on largest and second-largest sides (regardless of their clockwise or
counterclockwise order), only half of the shape selectivity inherent in the indexed

triangles will be used in the shape index.

7.3 Indexing on Spatial Orientation

Based on the general model of reference direction (see Section 5.3.3), and
noting that in a two-dimensional space a triangle cannot rotate up out of the plane,
a single circular dimension is sufficient to characterize the orientation of a triangle.
The following sections discuss various ways to define the reference direction for a

triangle.

7.3.1 Reference Direction Based on Distinguished Vertex

The direction from the triangle center toward a distinguished member of the
vertex set (such as the vertex with the smallest or largest interior angle) could be
a candidate for a geometrically-based definition for a triangle’s reference direction.

However, instability in the designation of this vertex results in the loss of orienta-
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Figure 7.7: Stability of reference direction

tional stability in the index. Figure 7.7(a) shows the loss of orientational stability
for triangles in the near-tall-isosceles region when the vertex with the largest angle
is used as the distinguished member (In the case of designating the vertex with the
smallest angle, an analogous situation arises with triangles in the near-wide-isosceles
region.) As the triangle varies from near-isosceles-left to near-isosceles-right, the ref-
erence orientation snaps discontinuously from one vertex to another, and when the

triangle is truly isosceles it is indeterminate.

7.3.2 Reference Direction Based on Euler Line

An alternative for defining the orientation of a triangle is to use the triangle’s
Euler line. As can be seen from Figure 7.7(b), the Euler line provides a definition
of orientation that is stable for triangles in the near-tall-isosceles region.

As noted in Section 7.1, in the case of the collinear pseudotriangle the sense
of the Euler line is indeterminate. While the definition of reference direction as the
direction from the center to the vertex with the smallest angle suffers from insta-

bility in the near-wide-isosceles region, it does allow stable assignment of reference
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Figure 7.8: Reference direction for collinear pseudotriangles

direction for asymmetric collinear pseudotriangles. Figure 7.8 shows the behavior
of a triangle in the limit (a,b) as it approaches becoming an asymmetric collinear
pseudotriangle (¢). When the interior point is on the other side (d) the direction
is reversed. However, when the interior point is exactly equidistant from the other
two (the symmetric collinear pseudotriangle), the smallest angle method does not

assign a stable reference direction.

7.3.3 Eccentricity Vector: Center To Point

Consider the following construction, which is illustrated in Figure 7.9. For an
arbitrary triangle, without loss of generality, let the midpoint of one of the triangle
edges be chosen as the origin, let the x axis be aligned with that edge, let the axes be
scaled such that the vertices of that edge lie at (—1,0) and (1,0), and let x and y be
the coordinates of the remaining vertex. (This “without loss of generality” argument
is only valid because we are not concerned with the triangle’s size or orientation,
but only with its “shape”.) Briefly, every triangle is “similar” to a triangle with one

vertex at (—1,0) and another vertex at (1,0).
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Figure 7.9: Triangle Shape

This construction clearly demonstrates that the shape space of triangles is in-
herently two-dimensional, by showing an explicit one-to-one correspondence between
any triangle shape and the coordinates of the remaining triangle vertex. Further-
more, this analysis extends naturally to the general case of n points, which further
illustrates that the configuration space for a set of n points has an innate dimen-
sionality of 2n — 4, as described in Section 5.3.2.

For the construction of Figure 7.9 the triangle center V lies at (3, 4) which are

wlg

the x and y averages of the point coordinates. The three center-to-point vectors are

then

r+3 y

A = -=
r—3 y
B = (- -= 2
VB = (-22=-4) (72)
2 2y
ve = (5,2

For many configurations, including but not limited to those with 2-way or 3-way
rotational symmetry, the sum of these raw center-to-point vectors is zero, and thus
would not be useful for deriving a value for the orientation attribute; therefore,
the vectors will generally be normalized before summing to form the value for the

orientational attribute that will be used to enter the point triple into the index.
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7.3.4 Eccentricity Vector: Interpoint

For a point triple, the n(n—1)/2 interpoint line segments are exactly the edges

of the triangle determined by the points:

AB = (2,0)
BC = (z—1,y) (7.3)

AC = (z+1,y)

As discussed in Section 5.3.6.4, the ambiguity in the definition of polarity for these
line segments must be addressed before they can be used as vectors. This can be
accomplished by normalization by an even subfraction of 360°, or by other methods.
Generally the vectors will be normalized before summing to form the value for the
orientation attribute that will be used to enter the point triple into the index.
Section 7.4 discusses various normalization methods, and how they accommodate

the different orders of rotational symmetry.

7.3.5 Rotational Symmetry

No matter which method for assigning a reference direction is employed, two
special cases remain a significant challenge. Equilateral triangles have an inherent 3-
fold rotational symmetry. For these triangles it is not possible to geometrically define
an unambiguous reference direction. Similarly, symmetric collinear pseudotriangles
possess a 2-fold rotational symmetry. The common factor in these two special cases
is that they possess a k-fold rotational symmetry. The inability to define a reference
direction is not simply a result of a particular choice of definition. In these two cases,
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the figures possess an innate rotational symmetry, and do not admit an unambiguous
geometric definition of reference direction.

The approach taken in this chapter is to assign the value 360° as the inherent
orientational selectivity of a scalene triangle. Triangles with a k-fold rotational
symmetry are considered as possessing a k-fold orientational ambiguity, and 360°+k
is assigned for their inherent orientational selectivity. Thus 120° of orientational
selectivity is retained by an equilateral triangle, and 180° for a symmetric collinear
pseudotriangle.

The following sections give a number of examples of the use of the normaliza-
tion techniques from Section 5.3.4 to address the problem of orientation ambiguity

in a point-based index space.

7.4 Index Space Construction

A point-based index for triangles can be constructed by mapping any chosen
subset of the separable attributes of position, size, orientation, and shape onto or-
thogonal axes of a hyperdimensional index space. Index dimensions for position and
size are straightforward. Several alternate methods of structuring the orientation

and shape dimensions are presented here.

7.4.1 Structures Based on a 360° Space

Figure 7.10 shows an index space (designated A360) formed by rotating the

angle-based shape space of Figure 7.4 around the B-D axis. With this structure,
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Figure 7.11: S360: Side-based, not normalized

all triangles whose reference direction (as defined by the smallest-angle method)
is ambiguous lie along line B-D and thus their orientational index information is
suppressed. That is, no matter what their original spatial orientation, they map
along line B-D in this index space.

Figure 7.11 shows a similar figure formed by rotating the side-based shape
space of Figure 7.5 around the B-D axis.

These index space structures correspond to using technique 6 from Section 5.3.4
to address both the £ = 2 and k = 3 cases of orientational ambiguity. The disadvan-
tage of doing so is that none of the inherent orientational selectivity of equilateral

triangles, wide-isosceles triangles, and collinear pseudo-triangles is used in the index
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Figure 7.12: A180: Angle-based, folded at 180°
(because they all map to points along the line B-D, where the index structure does
not capture orientation). However, the orientation need not be normalized, so there
is no sacrifice of orientational selectivity for other triangles (which constitute the

vast majority of the triangles indexed).

7.4.2 Structures Based on a 180° Space

A mixed approach would preserve some of the orientational selectivity of wide
isosceles triangles and of collinear pseudo-triangles, while sacrificing less of the ori-
entational selectivity of the vast majority of triangles that possess no ambiguity.

Figure 7.12 shows an index space (designated A180) formed by rotating the
angle-based shape space of Figure 7.3 around the equilateral triangle index point
(B). Mapping all equilateral triangles, regardless of orientation, to this single point
in the index space suppresses the orientational ambiguity due to 3-fold rotational
symmetry. The rotation is normalized at 180° so the ambiguity in collinear pseu-
dotriangles is suppressed, and such figures map to points along circle D-D’ at the

bottom of the space. Wide isosceles triangles map to the cone D-B-D’ and right
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Figure 7.13: S180: Side-based, folded at 180°

triangles map to the cylinder A-A’-C’-C. Because the rotational orientation is sup-
pressed for equilateral triangles and accommodated for collinear pseudotriangles,
the Euler line method can be used to define the reference orientation.

A similar structure could be generated by rotating Figure 7.4 around point
B. In fact, any formulation of triangle shape space could be rotated around the
equilateral triangle point to generate an analogous index space.

This index structure corresponds to using technique 5 from Section 5.3.4 to
address k = 2 ambiguity and technique 6 to address £ = 3 ambiguity. The disadvan-
tage of doing so is that the inherent orientational selectivity of equilateral triangles
is not used in the index. In addition, because the orientation space is folded at
180°, only half the inherent orientation selectivity of all other triangles is used in
the index.

Figure 7.13 shows an index space (designated S180) formed by rotating the
normalized-side-based shape space of Figure 7.5 around point B. In this index space
all equilateral triangles map to point B, thus the 3-fold orientational ambiguity

inherent in these equilateral triangles is accommodated, at the cost of sacrificing
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all their orientational selectivity. Right triangles map to points along the vase-
shaped figure A-C-C'-A’. Tall isosceles triangles map to the cone A-B-A’ and wide
isosceles triangles map to the cone D-B-D’. Collinear pseudotriangles map to the
cylinder A-D-D’-A’. The 2-fold orientational ambiguity of these pseudotriangles is
accommodated by normalizing the orientation axis at 180°.

In common with the A180 structure, this index space corresponds to using
technique 5 from Section 5.3.4 to address & = 2 ambiguity and technique 6 to
address k = 3 ambiguity. The disadvantage of doing so is that only half of the
inherent orientational selectivity of all triangles is used in the index. However, the
orientational selectivity of asymmetric collinear pseudotriangles is used in the index.
This is the advantage of using the side-based shape space.

Alternatively, the center-to-point eccentricity vector method can be used to
define similar index spaces. The following analysis employs an analytic geome-
try approach. Starting with the double-angle formulas sin 2o = 2sinacosa and

cos 2a = cos? o — sin? @ and simplifying yields:

, Az? — Ay?
VAT F A2
(7.4)
;o 2AzAy
VT VAE AP

Applying this transform to each of the three center-to-point vectors from Equa-

tion 7.2 and summing yields:

@432y | @=3 -y Pty

1
Ya -
Sl @+3)2+y2  Jw-32+2 VP
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The only point triple with a 3-way rotational symmetry is the equilateral triangle,

which corresponds to the point (0,v/3). Substitution of these values into Equa-
tion 7.5 yields zero. So this normalization does not accommodate the 3-way rota-
tional symmetry.

The only point triple with a 2-way rotational symmetry is the symmetric
version of the collinear pseudotriangle of section 7.1, which is generated by the
three coordinate values (+3,0) and (0,0). Although these appear to be poles for
Equation 7.5, the values in the numerators dominate the values in the denominators,
so at these critical points the affected terms vanish (become zero). The geometric
interpretation of this situation is that for these values the center and one of the
points coincide, and so one center-to-point distance becomes zero.

Substitution shows that coordinate values (£3,0) yield (4,0) and coordinate
value (0, 0) yields (2,0), which are all nonzero. Thus the 2-way rotational symmetries
are accommodated.

Because the 180° normalization accommodates the 2-way rotational symmetry
inherent in the interpoint line segments, the interpoint method could also be used
for this index scheme. Transforming each of the three raw vectors of Equation 7.3

with the double-angle transform of Equation 7.4 and summing yields:

@+1P-y | @17y

Y = 2+
Ja+12+2 Jr—1)2+y2

(7.6)
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The only point triple with a 3-way rotational symmetry is the equilateral triangle,
which corresponds to the point (0,1/3). Substitution of this value into Equation 7.6
yields zero, so this normalization does not accommodate the 3-way rotational sym-
metry.

The only point triple with a 2-way rotational symmetry is the symmetric ver-
sion of the collinear pseudotriangle of section 7.1. There are three point coordinates
that generate this figure. Substitution shows that coordinate values (+3,0) yield
(8,0) and coordinate value (0,0) yields (4,0). Thus the 2-way rotational symmetries
are accommodated.

Under the assumption that = 0 (the triangle is isosceles) the Xz’ part of
Equation 7.6 is solvable, and its zeroes are y = £+v/3. So the vector is only zero at
(z,y) = (0,4++/3), which is the case for the equilateral triangle.

As both the center to point and interpoint methods accommodate the 2-way
rotational symmetry, either eccentricity vector method is appropriate for a 180°

index structure.

7.4.3 Structures Based on a 120° Space

Figure 7.14 shows an index space (designated S120) formed by rotating the
normalized-side-length based shape space of Figure 7.5 around line A-D along which
all the collinear pseudotriangles map. This index structure corresponds to using

technique 5 from Section 5.3.4 to address k& = 3 ambiguity and technique 6 to
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Figure 7.14: S120: Side-based, folded at 120°

address k = 2 ambiguity. The disadvantage of doing this is that none of the inherent
orientational selectivity of collinear pseudotriangles is used in the index. Because the
orientational index is wrapped at 120°, all the orientational selectivity of equilateral
triangles is used in the index. However, only one third of the inherent orientational
selectivity of scalene and isosceles triangles is used in the index.

The center-to-point eccentricity vector method can be used to define reference
directions in this structure. Starting with the triple-angle formulas sin 3 = 3 sin a—

4sin® o and cos 3o = 4 cos® o — 3 cos a and simplifying yields:

4A 73
!/
= ———— —3A
o Az? 4+ Ay? AT
(7.7)
3y VANTA
v Y Az? + Ay?

Applying this transform to each of the three center-to-point vectors of Equa-

tion 7.2 and summing yields:

S 41 223 (z +3)? (x —3)3
€T = — — —
3la2+y? (v+3)2+y? (v —3)2+y?

(7.8)
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The only point triple with a 3-way rotational symmetry is the equilateral tri-
angle (shown in Figure 5.7), which corresponds to the point (0,v/3). Substitution
of these values into Equation 7.8 yields (0, —2+/3). Thus the 3-way rotational sym-
metry is accommodated.

The only point triple with a 2-way rotational symmetry is the symmetric ver-
sion of the collinear pseudotriangle of section 7.1, and is generated by the three
coordinate values (+3,0) and (0,0). Although these appear to be poles for Equa-
tion 7.8, the cubic terms in the numerators dominate the quadratic terms in the
denominators. So at these critical points the affected terms actually vanish (become
zero). The geometric interpretation of this situation is that for these values, the
center and one of the points coincide, and so one center-to-point distance becomes
Zero.

When this is taken into account, Equation 7.8 yields a zero vector for these
configurations. Thus the normalization at 360° <+ 3 does not accommodate the 2-
way rotational symmetry. In fact, this method yields a zero sum for all collinear
configurations, instead of just the symmetric ones.

The interpoint method could also be used for this index structure. As discussed
in Section 5.3.6.4, normalization of the orientations of the interpoint line segments
by an even subfraction of 360° obviates the necessity for definition of their polarity.
In a two-dimensional space, and in the special case that the line segments form a

convex polygon, an alternate method is to use the clockwise/counterclockwise sense
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to define the polarities.
Three points always form a two-dimensional convex triangle. Directions for

the segments may be assigned in a clockwise manner:

BA = (=2,0)
AC = (z+41,y) (7.9)

Substituting Equation 7.9 into Equation 7.7 and summing yields:

;L (r+1)3 (x —1)3
= 4l(x+1)2+y2_(x—1)2+y2_2]
(7.10)
;o 3 1 1
R l<x+1>2+y2+<x—1>2+y2]

The only point triple with a 3-way rotational symmetry is the equilateral
triangle, which corresponds to the point (0,1/3). Substitution of these values into
Equation 7.10 yields (=6, 0). Thus the 3-way rotational symmetry is accommodated.

The only point triple with a 2-way rotation symmetry is the symmetric version
of the collinear pseudotriangle of section 7.1, and is generated by the three coordinate
values (£3,0) and (0,0). Substitution of the values (0, 0) yields a zero vector. Thus
the 2-way rotational symmetry is not accommodated.

Under the assumption that = 0 (the triangle is isosceles) the Xz’ part of
Equation 7.10 is solvable, and its zero is when y = 0. So the vector is only zero
at (z,y) = (0,0), which is a case of three collinear points. As both the center to
point and interpoint methods accommodate the 3-way rotational symmetry, either
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Figure 7.15: A60: Angle-based, folded at 60°

eccentricity vector method is appropriate for a 120° index structure.

7.4.4 Structures Based on a 60° Space

Figure 7.15 shows an index space (designated A60) formed by extending the
angle-based shape space of Figure 7.3 along an orientational dimension with a 6-way
folding (that is, the modulo 60° residue of the triangle’s orientation determines the
orientation component of the index space coordinates). Thus, for an equilateral
triangle with possible orientations of 40°, 160°, or 280°, the triangle will be indexed
at 40° up on the B-B’ line. Similarly, a collinear pseudotriangle with orientation of
30° or 210° will be indexed at 30° up on the D-D' line. As the orientation of wide
isosceles triangles is not suppressed, the Euler line method should be used to define
their reference direction.

It should be noted that the orientational dimension is wrapped at 60°, that is,

the top plane A’-B’-D' is actually identical to the bottom plane A-B-D. If this figure
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Figure 7.16: Center-to-Point Normalized for Both 2-way and 3-way Symmetries

were redrawn to be analogous to the other figures in this section, it would resemble
Figure 7.12, with the exception that the locus of point B during the rotation would
be a small circle instead of a point.

This index space structure corresponds to using technique 5 from Section 5.3.4
to address both the £ = 2 and k = 3 cases of orientational ambiguity. Their least
common multiple value of 6 is used to fold the orientational index dimension. The
disadvantage of doing so is that the orientational selectivity of the index for all
triangles is reduced by the same factor, resulting in the generation of a large number
of false positives that must eventually be filtered out of the result set. However, the
question still remains as to how to determine the reference direction when using this
index.

Figure 7.16 shows that for both the equilateral triangle (with a 3-way rotational
symmetry) and the symmetric collinear pseudotriangle (with a 2-way rotational
symmetry) the center-to-point method with normalization to 60° yields a nonzero

vector. So both the 2-way and 3-way rotational symmetries are accommodated.
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Figure 7.17: Interpoint Normalized for Both 2-way and 3-way Symmetries

However, because the x value changes sign while the y value is zero, the Inter-
mediate Value Theorem dictates the existence of at least one intermediate shape at
which the value must be zero. This result was not expected, and a search using nu-
merical techniques identified (0,0.6847+) and (0,4.12914) as shapes which yield a
zero vector sum. Because of these zeroes, this normalization method is not suitable
for implementation of the A60 and S60 indexes.

Figure 7.17 shows that for both the equilateral triangle (with a 3-way rotational
symmetry) and the symmetric collinear pseudotriangle (with a 2-way rotational
symmetry) the interpoint method with normalization to 60° yields a nonzero vector.
So both the 2-way and 3-way rotational symmetries are accommodated.

However, the same numerical search technique identifies (0, 0.4815+), (0,0.7265+)
and (0,4.3812+) as shapes that yield a zero vector sum (the sign of the x compo-
nent changes twice as the shape flattens from an equilateral triangle to a symmetrical
pseudotriangle). Thus this normalization method is not suitable for implementation

of the A60 and S60 indexes.
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A60 | A120 | A180 | A360
S60 | S120 | S180 | S360
Scalene /6 | 1/3 | 1/2 | Al
Triangle /6 | 1/3 | 1/2 | Al
Tall 1/6 | 1/3 | 1/2 | All
Isosceles /6 | 1/3 | 1/2 | Al
Wide 1/6 | 1/3 | 1/2 | None
Isosceles 1/6 | 1/3 | 1/2 | None
Asymmetric | 1/6 | None | None | None
Collinear | 1/6 | None | 1/2 | All
Symmetric | 1/3 | None | All | None
Collinear | 1/3 | None | All | None
Equilateral | 1/2 | All | None | None
Triangle 1/2 | All | None | None

Figure 7.18: Orientational selectivity used

At this time no method is known to always generate a nonzero eccentricity
vector. However, the elegance of the eccentricity vector method is that zero values
do not cause the indexing method to fail, but merely map the problematic triangle

to the central axis of a hypercylindrical index space, as described in Section 5.4.

7.4.5 Index Structure Summary

Figure 7.18 tabulates the fraction of the inherent orientational selectivity (bro-
ken down for various classes of triangles) actually used for each of the index struc-

tures described in this section.

7.5 Concluding Remarks

In an iconic image database, point triples can be indexed based on geometric
attributes of their associated triangles. A size and orientation independent charac-

terization of the triangle “shape” attribute can be based either on interior angles
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or normalized side lengths; in both cases the induced shape space is inherently
two-dimensional.

In the general case of an object embedded in an n-dimensional space, charac-
terization of spatial orientation requires n parameters, but in the special case of a
planar (two-dimensional) space, orientation degenerates into simple rotation about
an axis, and a single parameter suffices. Objects with rotational symmetry inher-
ently possess ambiguity in the assignment of reference direction. No geometrical
method is know to exists that resolves this ambiguity.

In integrating the shape space and the orientation dimension into a combined
index space, two techniques are available for addressing the orientational ambiguity

of objects possessing k-fold rotational symmetry.

1. The points in the shape space to which the problematic objects map can be
located at points in the combined index space where the coordinate value of
the orientation dimension is suppressed (for example, at the zero point of a
polar plot). The disadvantage of doing so is that the inherent orientational

selectivity of such objects will not be used in the resulting index.

2. The orientation dimension itself can be folded at an angle less than 360°, such
that all ambiguous orientation values map to the same point in the index
space. The disadvantage of doing so is that only some fraction of the inherent
orientational selectivity for every object will be used in the index, even for

those objects that do not possess any orientational ambiguity.

The A60 index addresses both ambiguous cases, equilateral triangles (3-fold ro-
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tational symmetry) and symmetric collinear pseudotriangles (2-fold rotational sym-
metry) by folding the orientation dimension at 360° + 6 = 60°. The A360 index
addresses both ambiguous cases by mapping them (and all wide isosceles triangles)
to the zero point of a polar plot. The other example index spaces utilize combina-
tions of these techniques, one technique to address each ambiguous case. Absent
an application-specific knowledge of the distribution of triangles, the S360 index
would appear to be optimal, as it uses all the available orientational selectivity of
the majority of the expected triangles.

The methods described in this chapter can be used to construct a point-based
index for triples, with which any combination of position-independent, orientation-

independent, and size-independent search can efficiently be accomplished.
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Chapter 8

Indexing Arrangements of Four or More Points

Prior chapters have dealt with configurations of two and three points. In
this chapter, we focus on configurations of four or more points. Although finding a
general solution to cope with configurations of arbitrary numbers n of points is desir-
able, in practice, configurations of more than 4 points are rare in the application for
which this work has been applied (e.g., [39, 48]). In particular, the query processing
engine used therein requires that the specified spatial relationships must hold for all
of the objects in the query image rather than just a subset of them. When the spa-
tial relationship only involves a subset of the objects, the query is decomposed into
several subqueries and the necessary result is obtained by making use of a Boolean
combination of them. One of the motivations for investigating configurations of four
points is that, unlike configurations of three points, the configurations of four points
do not map directly to traditional convex quadrilaterals.

However, four points always define six interpoint line segments (which may in
some cases be partitioned into a set of 4 “edges” and a set of 2 “diagonals”). The
possibility that either all four points or a set of three points may be collinear must
also be considered.

The remainder of this chapter is organized as follows: Section 8.1 describes

the emergent properties when the number of objects n goes from 3 to 4. Section 8.3
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describes an inherently four-dimensional abstract space of point quartet “shapes”,
and examines methods for defining a basis for this space. Section 8.4 presents meth-
ods of deriving a value for the spatial orientation of a point quartet, and discusses
the special problems posed by rotational symmetry. Section 8.5 presents a method
for constructing a point-based index, showing how the problems introduced by ro-
tational symmetry can be addressed by using innovative methods of integrating the

shape and orientation dimensions. Section 8.6 contains concluding remarks.

8.1 Emergent Properties

It is well known that when attempts are made to generalize based on a known
case, complications (termed emergent properties) not previously present sometimes
arise. An example of such a complication is the emergence of non-Abelian properties
in the group of rotations in k-dimensional space when k increases from 2 to 3. Thus
it is not surprising that several such complications arise when generalizing from
point triples to point quartets. For example, the four points may be non-coplanar,
or may fail to unambiguously determine a convex quadrilateral. Moreover, even
if a quadrilateral is determined, it will generally be non-rigid, and in some cases
may scale in non-isotropic ways. In the rest of this section, we explore some of the
properties which complicate the task of deriving from the quadrilateral shape a set

of attribute values that can be used as components of a point-based index.
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Figure 8.1: Non-convexity

8.1.1 Non-Planarity

In a Euclidean space three non-collinear points always determine a plane.
Thus it is not possible for a point triple to fail to be planar. However, in a space of
three or more dimensions, a point quartet may fail to be planar. Such a situation is
sometimes termed a skew quadrilateral. In the rest of this chapter a two-dimensional

space will be assumed.

8.1.2 Non-Convexity

With the exception of the one special case of collinear points (which has been
suitably handled in Chapter 7), configurations of three points uniquely determine
triangles, which are always convex. However, configurations of four points fall into
two distinct classes. In particular, the convex hull of the four points may contain
all four points, as in Figure 8.1(a), in which case a convex quadrilateral is uniquely
determined. Alternatively, as in Figure 8.1(b), it may be the case that the convex
hull contains only three of the points, with the fourth point being interior to the

triangle formed by the other three points.
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Figure 8.2: Non-rigidity

In this case, it is not possible to define a traditional quadrilateral unambigu-
ously, as there are three equally valid possibilities, shown in Figure 8.1(d), (e),
and (f). Furthermore, regardless of which of the three possibilities is selected, the
resulting quadrilateral will fail to be convex.

In all cases, a set of six inter-point line segments (as shown in Figure 8.1(c)) is
determined. However, in the case where the fourth point is interior to the triangle,
it is not possible to partition these six line segments into a set of four “sides” and

a set of two “diagonals”.

8.1.3 Non-Rigidity

A triangle is always rigid; its shape is unambiguously determined by three
vertex angles, or alternatively by the mutual ratios of the three side lengths (which
can be shown using the relation between angles and sides described by the Law of
Sines). In contrast, a quadrilateral (or other higher-order polygon) is in general
not rigid. Even if the side lengths are completely determined, there remain uncon-
strained degrees of freedom. Loosely, the quadrilateral can be said to “flop around”.
For example, Figure 8.2 shows that in general the set of four side lengths does not

completely determine the shape of a quadrilateral.
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Figure 8.3: Non-isotropic Scaling

8.1.4 Non-Isotropic Scaling

Another interesting emergent property is that in many cases the shape of a
quadrilateral is not completely determined by the set of vertex angles. In particular,
whenever two (necessarily opposite) sides of a quadrilateral are parallel, the set of
side lengths is not constrained by the vertex angles, but can vary anisotropically.
Such behavior could be called “tromboning”.

For example, Figure 8.3 shows three figures with identical vertex angles but
with different shapes. The equivalence of the corresponding angles can be seen
by observing that each figure consists of an inner rectangle flanked by a pair of

congruent 3-4-5 right triangles (the dotted-line altitude delimits the boundary of one

4
3

such triangle). Thus the doubly-slashed angle is arctan 5 or approximately 53.13°.
Note that this example has been constructed so that the perimeters of the three
figures are equal (at 52 units). While this will not generally be true, the example
does demonstrate that there are cases in which the perimeter fails to distinguish
between the varying shapes.

The effect of this analogy is similar to that of an ellipse, which can be defined

by the length of its principal axis and whose shape depends on the positions of its
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foci.

8.2 Size

Earlier definitions of size were based upon polygon perimeters. Although in the
general case it is not possible to unambiguously map point quartets to quadrilaterals,
the sum of the lengths of the six interpoint line segments is an acceptable proxy for
the size of the arrangement. This measure easily generalizes to arrangements of

more than four points.

8.3 Shape

In this section we analyze the concept of “shape” as it is applicable to a
configuration of four points. We first examine the case of a traditional convex
quadrilateral, which is followed by the extension of the analysis to the more general
case.

As we have seen, the abstract shape of a traditional quadrilateral cannot (due
to non-rigidity) be unambiguously characterized by a set of side lengths, nor (due to
tromboning) can it always be unambiguously characterized by a set of vertex angles.
Therefore, the values for a shape attribute must be derived from a combination of
both side lengths and vertex angles.

To accommodate uniform scaling, the perimeter of the quadrilateral can be
normalized (say to 1), with the normalization factor becoming one of the index

attributes. Put another way, the “size” of the quadrilateral becomes one axis of
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Figure 8.4: Discontinuity in side length characterization
the index space. After this normalization, any three side lengths unambiguously
determine the length of the fourth side.

The method of organizing the set of side lengths also affects the continuity of
the index (recall the definition of continuity in Section 5.2.1). Figure 8.4 shows the
results of an attempt to characterize the side lengths starting with the longest side
and proceeding clockwise (note that in spaces of more than 2 dimensions even the
notion of “clockwise” breaks down). When the longest side is unambiguous (cases
(a) and (c)), the ordering of the lengths is well defined, but at the seam (b) where
two sides are nearly the same length, continuity from both directions cannot be
obtained.

One way to avoid this discontinuity is to construct the index based on the
sorted set of side lengths, irrespective of their relative position in the quadrilateral, as
shown in Figure 8.5. While this method avoids the discontinuity described above, it
does introduce the possibility for additional hash collisions. In particular, Figure 8.5
demonstrates that two very different shapes can generate the same sorted set of side

lengths, and so would collide on this coordinate of a point-based index.
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Figure 8.5: Ambiguity in side length histogram

One vertex angle is also required to complete the shape characterization. This
can be the largest (or the smallest) of the vertex angles. Although choosing the
largest angle, regardless of its geometric relationship to the sides, generates the same
kind of ambiguity as does a histogram of the side lengths, it does assure continuity
of the index function at seams where the geometric position of the largest angle
suddenly shifts.

As discussed in Section 8.1.2, when the four points do not all lie on their
mutual convex hull (as in Figure 8.1(b)), it is not possible to unambiguously define a
traditional quadrilateral. But for any arbitrary configuration of four distinct points,
the six interpoint distances (Figure 8.1(c)) are well defined (and nonzero), and thus
could be used to construct an alternative shape component of an index. Shape
changes that for a traditional quadrilateral would be described as “flopping” also
change the lengths of the diagonals, thereby allowing a shape index to be defined
based on lengths only, without requiring the consideration of vertex angles.

Figure 5.1 contains an analysis of the degrees of freedom that are involved in

the characterization of the “shape” of arbitrary planar configurations of n points (in
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two dimensions), and demonstrates that it is inherently 2n — 4 dimensional. This
can be seen by observing that each of the n points in the configuration introduces
two degrees of freedom, in the form of  and y coordinates. Two degrees of freedom
are subsumed by the absolute spatial position of the configuration as a whole (e.g.,
the x and y coordinates of the center of gravity), one degree of freedom is subsumed
in uniform scaling, and one in rotation (e.g., orientation) in the plane. For example,
the six initial degrees of freedom of a trio of points (e.g., a triangle), are reduced to
two inherent shape dimensions. This makes sense, as the “shape” of a triangle is
completely determined by two vertex angles, or (given a normalized perimeter) by
two side lengths (rigidity was discussed in Section 8.1.3).

From this analysis, as the shape space for configurations of four points is
inherently four-dimensional, the shape component of a point-based index could be
based on any of a number of schemes such as the largest four of the six interpoint
distances, the largest two and the smallest two, etc. Monte Carlo experiments could
be performed to investigate the performance of these schemes under differing data
distribution statistics.

Note that for a collinear configuration, the length of the longest segment (be-
tween the two extremal points) remains unchanged as the positions of the interior
points vary. Thus, in order to fully utilize the shape variety of such configurations,
the technique chosen to derive the shape attribute should ensure that segments other
than the longest segment are included.

As we shall see in the next section, use of an “orientation” attribute can also

contribute a component to the set of “shape” attributes.
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8.4 Orientation

While rotation in a plane involves only a single degree of freedom, determining
a reference direction for an arbitrary point quartet is not straightforward. The
classical literature on the properties of quadrilaterals does not contain any useful
analog to the concept of the “Euler line” of a triangle, as was discussed in Chapters 5
and 7. Moreover, point quartets exist that do not correspond to any classically
studied quadrilateral. Nevertheless, it is always the case that the four points in a
quartet can be paired in six distinct ways, thereby determining six interpoint line
segments. In cases where the four points do form a classic convex quadrilateral,
four of these lines are termed sides or edges, while the remaining two are termed
diagonals. However, in all cases, six lines are determined. In the rest of this section
we make some observations using the terminology of classic quadrilaterals, after
which we present a representation of orientation that is based solely on the six
interpoint lines.

Note that all of the methods described in this section for deriving a value for the
orientation attribute are based on the concept of an eccentricity vector. Intuitively,
our aim is to capture a measure of the deviation of a given configuration from a
symmetric one. When the vector is nonzero, its direction component provides an

absolute value for the “orientation” of the configuration.
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(a) Bimedians (b) Diagonals (c) Inter—center Vector

Figure 8.6: Bimedial and Diagonal Centers

8.4.1 The Intercenter Vector

In the classic quadrilateral, the two lines that connect the midpoints of oppo-
site sides are called bimedians (Figure 8.6(a)). We use the term bimedial center to
denote the intersection of these bimedians, and the term diagonal center to denote
the intersection of the quadrilateral’s diagonals (Figure 8.6(b)). When these two cen-
ters do not coincide, a vector directed from one center to the other (Figure 8.6(c))
provides a reference direction for deriving the value for the quadrilateral’s orien-
tation attribute. Because this vector is fixed to the frame of the quadrilateral, it
rotates directly with it, and as the quadrilateral rotates through a full circle of 27
radians, the intercenter vector does the same. Thus the direction component of the
intercenter vector will be referred to as a 2 measure of rotation.

However, a number of important quadrilaterals (such as the rectangle, the
rhombus, and the rhomboid) possess a 2-fold rotational symmetry, and for such
quadrilaterals the two centers coincide. In this case the direction component of the
vector becomes indeterminate, and does not effectively characterize the orientation
of the quadrilateral. Furthermore, this scheme is not useful for quartets that do not

unambiguously determine a classic convex quadrilateral.
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8.4.2 Pi-Space Characterization

The orientation of a classic quadrilateral can also be captured as a function
of its two diagonals. The diagonals are line segments and we know that whenever
we have a line segment in space, it can be parameterized in terms of its length and
direction. The ambiguity associated with defining the direction of a line segment
can be removed by mapping the length and direction of the line onto a space in
which a rotation through 180° leaves the direction invariant. (This is equivalent to
normalization by 360° + 2 as described in Section 5.3.5.) Mapping a line segment
as a vector in such a m-space is equivalent to moving one endpoint to the origin
and doubling the angle corresponding to its slope. The mathematics involved follow
directly from the classical double-angle formulas. This can be seen with the aid
of Figure 8.7. Substituting the double-angle formulas sin2a = 2sinacosa and
cos 2a = cos® o — sin? & and simplifying yields:

Ax? — Ay?
VAzZ? + Ay?

x =

(8.1)

,  2AzAy
v VAZ? + Ay?

Note that reversal of the direction of the line segment (corresponding to the negation
of both Az and Ay) leaves Equation 8.1 unchanged, as the two negations cancel
out in the numerator of the 3’ term and all other appearances of Az and Ay are
squared.

In this method, angles were multiplied by two in order to accommodate a
two-way rotational symmetry. The general technique of multiplication of the angle
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Figure 8.7: Mapping a line segment in m-space

by k to accommodate a k-way rotational symmetry is called normalization, and is
discussed more extensively in Chapter 5.

In the case of a classic convex quadrilateral, we can try to capture its ori-
entation by one parameter instead of two as in the case where the diagonals are
considered independently. This parameter can be formed by taking the vector sum
of the diagonals once they have been mapped into 7-space, which serves as a refer-
ence direction for the rotation of the quadrilateral. The advantage of this approach
is that although ambiguity exists in assigning a direction to each of the diagonals
(segment (a) in Figure 8.8), both alternatives map to the same vector in m-space,
and thus the process of mapping to m-space resolves the ambiguity in the assign-
ment of direction. As the quadrilateral rotates through a half-circle of 7 radians,
the m-space vector sum rotates through a full circle of 27 radians. In contrast with
the 27 measure of rotation of Section 8.4.1 this will be referred to as a m measure
of rotation.

Unfortunately, in cases where this vector sum is zero, this scheme will fail to

yield a reference direction. The vector sum is zero only when the m-space vectors
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Figure 8.9: Kite-like figures

have equal length and opposite direction, i.e., the diagonals have equal length and
are perpendicular to each other (as 90° in real space corresponds to 180° in m-space).
This is the case not only for the square but also for a number of other kite-like figures.
Figure 8.9 shows (a) a square with diagonals sharing a common midpoint; (b) a kite
with the midpoint of one diagonal displaced along the other; and (c) a “bi-kite” with
the midpoints of both diagonals displaced (note that (c¢) is actually a symmetrical
bi-kite which is a special form of a trapezoid in which two equal diagonals intersect
at right angles). In all of these cases, the m-space vector sum will be zero, and no
reference direction will be determined. It is important to note also that this scheme

is not applicable to point quartets that do not form a classic convex quadrilateral.
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Figure 8.10: Vector sum of pi and 2 pi can be zero

8.4.3 Combined Intercenter Diagonal

The only quadrilateral for which both the 27 and 7 measures described in
Sections 8.4.1 and 8.4.2, respectively, are both zero is the square (which is also the
only quadrilateral possessing a 4-fold rotational symmetry). Given that the square
represents the same kind of special case as the equilateral triangle presented for
earlier work on point triples in Chapter 7, it is tempting to attempt to characterize
orientation by combining the 7 and 27 measures into a single coordinate, as is the
case, for example, when taking their vector sum. However, attempts to do so may
result in the introduction of additional cases in which a reference direction cannot
be determined.

This situation is demonstrated by the example in Figure 8.10 where the angle

4

= or approximately 38.66°. In particular, the right half

of diagonal (a) is arctan
of the figure shows the result of combining the two measures by computing the
vector sum in 7 space of the diagonal vectors (a) and (b) and the intercenter (or
27) measure (¢). No matter what relative weight is given to vector (c), cases will

always occur in which the vector sum is zero (even though none of the component

vectors of the sum is zero), and in such cases the direction of the vector sum again
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becomes indeterminate.

Alternatively, instead of attempting to capture orientation by combining the
two measures (i.e., the 27 and 7) into a single dimension, a point-based index can
be constructed with two independent dimensions for orientation, one to represent
each of these two rotation measures. As five dimensions are already being proposed
(one for absolute scale and four for shape), this solution has the effect of expanding
the proposed index space from six to seven dimensions, which is not expected to

cause a significant performance degradation.

8.4.4 Interpoint Vector Sum

It is important to note that none of the schemes described in Sections 8.4.1—
8.4.3 is applicable to cases in which the point quartet does not correspond to a
classic convex quadrilateral. In order to accommodate such cases, the six interpoint
lines can be mapped into m-space and summed, to yield a m-measure for the rotation
of the quartet. As a concrete example, Figure 8.11 shows a quartet of points that
actually does form a classic quadrilateral, with the six interpoint lines mapped into
m-space, and the resulting sum computed using Equation 8.1.

The use of this approach to define a reference direction may fail when the quar-
tet possesses a k-fold rotational symmetry. For example, consider Figure 8.12(a),
where three points are arranged at the vertices of an equilateral triangle and a fourth
point is located at the center. This figure possesses a 3-fold rotational symmetry.

Figure 8.12(b) shows the result of mapping the six interpoint lines in 7 space and
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C(7,5)

D(1,4)
A(0.0) B
Seg Az Ay x! Y’

AB 5.000 0.000 5.000  0.000
AC 7.000 5.000 27790 8.137
AD 1.000 4.000 —3.368 1.940
BC 2.000 5.000 —3.900 3.714
BD —4.000 4.000 0.000 —5.657
CD —6.000 —1.000 5.754 1.973

Vector Sum 6.006 10.107
45°

135°

Figure 8.11: Point Quartet with Six Lines
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Figure 8.12: Three-fold rotational symmetry

we see that the vector sum in this space is zero, which means that in this case no
reference direction is determined.

As another example, consider Figure 8.13(a) where four points are arranged
at the corners of a square. This figure possesses a 4-fold rotational symmetry. In
Figure 8.13(b) the six interpoint lines are mapped into 7 space, and again, the
vector sum is zero (as a convention, dashed lines indicate vectors drawn off-origin
for clarity). However, in the case of a figure with two-fold rotational symmetry (e.g.,
Figure 8.13(c)) the 7 space vector sum (d) is non-zero. Thus this scheme does allow

the definition of reference direction for figures with a two-fold rotational symmetry.

8.4.5 Orientation Summary

In general, we recall from Figure 5.1 that the configuration space of point
quartets is inherently four-dimensional, and that these methods map it to a two-
dimensional (polar coordinate) space. Those shapes which map to the polar origin
constitute the kernel of this mapping, and the Rank-nullity Theorem can be used to

show that the dimensionality of this kernel is two. Thus the shapes which result in a
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Figure 8.13: Four and two-fold rotational symmetry

zero eccentricity vector form some two-dimensional subspace of the four-dimensional
shape space.

The choice of eccentricity vector used in any particular index should be influ-
enced by the statistical properties of the expected data. Symmetric configurations
have the potential of generating a zero eccentricity vector. We want to to make sure
that whatever eccentricity vector method that we use generates a zero vector only
for configurations (symmetric and non-symmetric) that are not frequently expected.
The reason for doing so is to avoid the loss of orientational selectivity for frequently
encountered configurations that is a consequence of mapping such configurations to

the axis of a cylindrical index space. This is illustrated in the next section.

148



Four additional axes:
Size (unlimited)
Three other "shape" axes (0-1)

)

N
N

Eccentricity Vector
(Orientation and one "shape" axis

Figure 8.14: Integrated Index

8.5 Index Construction

After determining the shape and orientation methods to be used, the attribute
axes must be integrated into an index space. As the orientation attribute is inher-
ently circular, it is natural to use some form of polar coordinates, as in the index
spaces described in Chapter 7, which are structured as the projection of a set of
polar coordinates into a four-dimensional hypercylinder, with the polar coordinate
origin projecting to the hypercylinder axis. This scheme can be extended quite
naturally to configurations of four or more points, as shown in Figure 8.14.

For each indexed configuration, the value of the eccentricity vector determines
both the angular and radial polar coordinates. The magnitude of the eccentricity
vector is used as one component of a basis for the shape space. Therefore 2n — 5
other basis components (to be selected as described in Section 8.3), in addition to
one size component, become the linear axes of the hypercylindrical index space.

The drawback of this scheme is that all configurations for which the eccen-
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tricity vector is zero will be mapped to points along the hypercylinder axis, and
hence no information on the orientation of these configurations will be represented
in the index. This includes not only the configurations with symmetries not accom-
modated by the normalization scheme chosen, but also a set of other configurations

determined by the particular eccentricity vector method that is used.

8.6 Concluding Remarks

A point-based index for configurations of four points can be constructed with
attributes axes for size, “shape”, and orientation. Although orientation-independent
search for point configurations can be supported by an index based only on size and
shape, extending the index structure to support orientation-dependent search, by
augmentation with a closed (e.g., circular) orientation axis, requires use of some
algorithm to determine for each point configuration an absolute value for the orien-
tation attribute, under which that configuration will be indexed.

Various methods were presented for deriving an “eccentricity vector” which
captures the deviation of the configuration from a symmetrical one. Using the
eccentricity vector’s direction as the orientation attribute value and its magnitude as
one component of the “shape” attribute value enables configurations to be mapped
into a hypercylindrical index space.

However, for each of the methods described, there exists a set of pathologi-
cal configurations which result in computation of a zero-length eccentricity vector.

These configurations include rotationally-symmetric ones, such as the square and
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the equilateral triangle plus center point, but for some methods include additional
non-symmetric configurations. Such configurations map to the central axis of the
cylindrical hyperspace, and their inherent orientational selectivity will not be used
in the index.

For applications that expect to index large numbers of such figures, the tech-
nique of rotation attribute normalization described in Chapter 5 can be used, at the

cost of a severe reduction in orientational selectivity for all indexed configurations.
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Chapter 9

Concluding Remarks

Position-independent similarity search of an image database can be supported
by a retrieval-by-content query system, of which MARCO is one example. The
existential part of an iconic image database query (i.e., determining the images that
contain particular icons, regardless of their spatial arrangement) can be satisfied by
a traditional inverted-file index containing icon instances and the images in which
they are present. The degree of improvement in real-world iconic image database
access efficiency made possible by processing some of a query’s spatio-orientational
constraints directly in the index is an area open for future quantitative study.

We have shown now to construct an efficient index for configurations of point
objects by deriving separable attribute values for size, orientation, and “shape”
(that which remains after factoring out size and orientation). Such an index can
efficiently support a variety of search modes, including both size-dependent and
size-independent, and orientation-dependent and orientation-independent searches.
The size and shape of a point arrangement is easily derived and indexed; however,
characterizing the orientation of a configuration of points is sometimes complicated
by the issue of rotational symmetry.

Orientation is not an issue for a point pair, once the inherent 360°+2 symmetry

is accommodated by normalization. All point pairs have the same shape, and size is
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easily derived. A method of index pruning that greatly reduces the index size was
presented.

Point triples introduce the concept of shape, and one ad-hoc solution for the
shape of a point triple is to use the inherent geometric properties of their associated
triangles, such as the Euler line. Solutions based on the “eccentricity vector” are
also possible.

Several ad-hoc solutions were presented for collections of four points. In ad-
dition, the eccentricity vector approach provides a general solution to the problem
of deriving a reference orientation for an arrangement. However, arrangements that
possess a rotational symmetry generate a zero value for the eccentricity vector.
While this does not prevent the index from operating correctly, it does impact ef-
ficiency, as configurations with zero eccentricity vectors map to the central axis of
the hypercylindrical index space, and thus the orientation does not participate in
generating selectivity in the index.

Normalization, or reducing the value of the orientation modulo 360° = k, is
useful for point configurations in two-dimensional space, by enabling the “inter-
point” eccentricity vector technique, and removing some rotational symmetries in
databases where figures with those symmetries are expected to be encountered fre-
quently. However, this technique reduces the selectivity of the index by a factor of
k for all figures stored.

Extending the MARCO visual language to allow user control over the new
search capabilities is easily accomplished by introducing new visual language ele-

ments. One area for future research is to evaluate such elements in a real-world
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setting.
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