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Chapter 1: Introduction

1.1 Overview

The subject of analytical uncertainty principles is an important field within

harmonic analysis, quantum physics, and electrical engineering. Graph theory is a

well established field of mathematics and computer science. In the era of so called

“big data” problems, such as searches of social networks and ever growing databases

of digital information, applied science has joined pure mathematics in striving to

understand the theory of graphs. Recent advances in analytic graph theory (namely

the nascent field of Fourier analysis on graphs) have presented the challenge of

determining what uncertainty principles exist, if any, within analytic graph theory.

To determine some of the answers to this query, we turn to a diverse set of subjects

including, but not limited to, linear operator theory, frames, wavelets, quantum

physics, and signal processing. We shall provide a study of some of the existing

results and techniques tied to these theories as they pertain to uncertainty principles.

By doing so, we provide insight into the classical underpinnings of modern Fourier

analysis on graphs in order to motivate the extension (when possible) of classical

results to the analytic graph setting.
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1.2 Outline of Thesis and Results

In chapter 2, we examine the classical uncertainty principle by providing ex-

position on classical Fourier analysis and on general linear operator theory as it

pertains to Hilbert spaces. Both multiplicative and additive versions of the clas-

sical uncertainty are presented, the latter of which will be extended to the graph

theoretical setting. Chapter 3 establishes the tools necessary to examine uncer-

tainty principles in the discrete setting. Namely, we provide an introduction to key

concepts in linear algebra and frame theory necessary for establishing the discrete

Heisenberg uncertainty principle due to Grünbaum [24] and a finite frame uncer-

tainty principle due to Lammers and Maeser [33]. In chapter 4, we define graphs,

the graph Laplacian, and the graph Fourier transform. Chapter 5 motivates the

techniques used in the main results of this study by providing exposition on the

classical wavelet transform, as well as the spectral graph wavelet transform due to

Hammond, Vandergheynst, and Gribonval in [25]. In chapter 6, we prove Theorems

(6.2.1) and (6.2.2) which state (in analogy to the additive classical uncertainty prin-

ciple) that the sum of the norms of a graph differential operator acting on a function

f ∈ l2(G) and its graph Fourier transform are always bounded below by a positive

constant based on the structure of the underlying graph G. We also prove (in anal-

ogy to the finite frame results in [33]) Theorems (6.3.2) and (6.3.3) which state that

the sum of the norms of a graph differential operator acting on a Parseval frame E

for f ∈ l2(G) and the graph Fourier transform of E are always bounded below by a

positive constant based on the structure of the underlying graph G. We present the
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unit weighted complete graph, and compute specific lower and upper bounds whose

existence is established in Theorems (6.2.1) and (6.3.2). In the final chapter, we

provide exposition concerning the feasibility region for graph and spectral spreads

due to Agaskar and Lu [1] and prove analogous results, via Proposition (7.3.1) and

Theorem (7.3.4), for the differential feasibility region for simultaneous values of the

norms of a graph differential operator acting on a function f ∈ l2(G) and its graph

Fourier transform. We conclude chapter 7 by computing the specific values specified

by Proposition (7.3.1) and Theorem (7.3.4) for the unit weighted complete graph.

Lastly, we examine the differential feasibility region for the complete graph, and we

compare the results to the Bell lab uncertainty principles in [35] and [47].
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Chapter 2: The Fourier Transform and the Classical Uncertainty Prin-

ciple

2.1 Introduction

Uncertainty principle inequalities play a fundamental role in Fourier analysis,

as well as in quantum mechanics. The so called Heisenberg uncertainty principle

derived in the works of Heisenberg [26], Pauli [38], Weyl [50], and Wiener has had

great influence on science. Indeed, one of its fundamental consequences (no simulta-

neous exact knowledge of both the position and momentum of a quantum particle)

has bridged the gap between physics and the lexicon of lay knowledge. We shall

introduce the Fourier transform, and examine some of its properties. For in-depth

treatment of the Fourier Transform in abstract settings see [9], [28], [29], or [22]

among others. We shall use these properties to prove the classical uncertainty prin-

ciple inequality, in a similar fashion to [6].

2.2 The Classical Uncertainty Principle

We begin with a Fourier centric version of the classical uncertainty principle

inequality. This is a special case of the classical uncertainty principle for general
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Hilbert spaces, which we shall formulate, and prove at the end of the chapter. Note

that as a convention,
∫
·dt, respectively,

∫
·dγ, will denote an integral over all t ∈ R,

respectively, all γ ∈ R̂ = R. We denote the space of functions f : R → C with

finite Lebesgue integral of its modulus, respectively, modulus squared, as L1(R),

respectively, L2(R). These are normed vector spaces with norms defined by the

Lebesgue integral:

‖f(t)‖L1(R) =

∫
|f(t)| dt

and

‖f(t)‖L2(R) =

(∫
|f(t)|2 dt

)1/2

.

We shall denote the space of Schwartz functions on R as S(R). The Fourier Trans-

form of f ∈ L1(R) is defined as

f̂(γ) =

∫
R
f(t)e−2πitγdt. (2.1)

The formal Fourier inversion formula for f̂ is

f(t) =

∫
R̂=R

f̂(γ)e2πitγdγ. (2.2)

There are several intriguing algebraic properties of the Fourier transform. In what

follows, we examine the effect of the translation and the dilation of a function f on

its Fourier transform, f̂ . Notationally, for a fixed γ, we set

eγ(t) = e2πitγ;

and, for a fixed u and a given function f , we set

(τuf)(t) = f(t− u).

5



τuf is translation of f by u, and eγ(t)f(t) ismodulation of f by γ.

Lemma 2.2.1 For a function f ∈ L1(R) with Fourier transform f̂ , the following

hold.

1. For u ∈ R, we have

(τuf )̂(γ) = e−uf̂(γ). (2.3)

2. For λ ∈ R̂, we have

(e2πitλf(t))̂(γ) = τλf̂(γ). (2.4)

Proof: We shall verify both (2.3) and (2.4) via direct calculation. For translation,

we employ the substitution y = t− u yielding:

(τuf(t))̂(γ) =

∫
f(t− u)e−2πitγdt

=

∫
f(y)e−2πi(y+u)γdy

= e−2πiuγ
∫
f(y)e−2πiyγdy

= e−uf̂(γ).

For the modulation case, we have

(eλf(t))̂(γ) =

∫
f(t)e−2πit(γ−λ)dt

= f̂(γ − λ)

= (τλf̂)(γ).

�

We shall show that the Fourier transform of a Gaussian is also a Gaussian.
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Example 2.2.2 Let f(t) = e−st
2
, s > 0. Upon differentiating f̂(γ) with respect to

γ we have

d

dγ

(
f̂(γ)

)
=

∫
−2πite−st

2

e−2πitγdt. (2.5)

Noting that d
dt
f(t) = −2stf(t), we rewrite (2.5) as

f̂ ′(γ) = −2πi

∫
−1

2s

(
e−st

2
)′
e−2πitγdt

=
πi

s

((
e−st

2

e−2πitγ
)
|∞−∞ − (−2πiγ)f̂(γ)

)
=
−2π2γ

s
f̂(γ).

Hence f̂(γ) satisfies the differential equation f̂ ′(γ) = −2π2γ
s

f̂(γ), which is solved by

f̂(γ) = Ce
−π2γ2
s .

To obtain C we set γ = 0, and we exploit the relationship(∫
e−st

2

dt

)2

=

∫
R2

e−s(t
2+y2)dA.

To calculate integral of the the two dimensional Gaussian we employ polar coordi-

nates:

∫
R2

e−s(t
2+y2)dA =

∫ 2π

0

∫ ∞
0

re−sr
2

drdθ

= 2π

(
−−1

2s
e−s0

2

)
=
π

s
. (2.6)

We conclude C =
∫
e−st

2
dt =

√
π
s
, and that

f̂(γ) =

√
π

s
e
−π2γ2
s .

7



Example 2.2.2 shows us that for any constant C, Ce−πt
2

is an eigenfunction of

the Fourier transform. This leaves us with a soupçon of suspicion that Gaussian

functions have an intimate and important relationship with the Fourier transform.

Indeed, a specific class of Gaussian functions turn out to be the minimizers of the

Classical Uncertainty Principle Inequality.

Theorem 2.2.3 (The Classical Uncertainty Principle Inequality). Let (t0, γ0) ∈

R× R̂. Then

∀f ∈ L∈(R), ‖f‖2L2(R) ≤ 4π ‖(t− t0)f(t)‖L2(R)

∥∥∥(γ − γ0)f̂(γ)
∥∥∥
L2(R̂)

, (2.7)

with equality if f(t) = Ce2πitγ0e−s(t−t0)
2
, for any C ∈ C and s > 0.

Proof: First, consider the case when t0 = 0 = γ0. Integration by parts yields

‖f‖4 =

(
−
∫
t
d

dt
|f(t)|2 dt

)2

=

(∫
t
d

dt
|f(t)|2 dt

)2

≤
(∫
|t|
∣∣∣∣ ddt |f(t)|2

∣∣∣∣ dt)2

.

If f(t) = a(t) + ib(t) for differentiable functions a, b : R→ R, then

∣∣∣∣ ddt |f(t)|2
∣∣∣∣ = 2 |a(t)a′(t) + b(t)b′(t)|

≤ 2
(
(a(t)a′(t) + b(t)b′(t))2 + (a(t)b′(t)− a′(t)b(t))2

)1/2
=
∣∣∣2f(t)f ′(t)

∣∣∣ .

8



Employing this inequality, followed by Hölder’s inequality, and finally Plancherel’s

theorem, we obtain the desired result:

‖f‖4 ≤ 4

(∫ ∣∣∣tf(t)f ′(t)
∣∣∣ dt)2

≤ 4 ‖tf(t)‖2 ‖f ′(t)‖2

≤ 4 ‖tf(t)‖2 ‖f ′(t)̂‖2

= 16π2 ‖tf(t)‖2 ‖γf(γ)̂‖2 (2.8)

with (2.8) due to the fact that f̂ ′(γ) = 2πiγf̂(γ).

For the case of non-zero t0 and γ0, consider the function g(t) = f(t+t0)e
−2πitγ0 .

We then have ∫
|f(s)|2 ds =

∫
1 |f(t+ t0)|2 dt

=

∫ ∣∣e−2πitγ0∣∣2 |f(t+ t0)|2 dt

=

∫
|g(t)|2 dt. (2.9)

Hence, g ∈ L2(R), and it has the same norm as f . Using this fact, and applying

(2.8) to g yields

‖f(t)‖2 = ‖g(t)‖2 ≤ 4π ‖tg(t)‖ ‖γg(γ)̂‖ .

To calculate ĝ(γ) = e2πit0γ f̂(γ + γ0), we note that g(t) = e−γ0(τ−t0f(t)). Hence we

have

ĝ(γ) = [e−γ0(τ−t0f(t))]̂(γ)

= et0(τ−γ0f(t))̂(γ) (2.10)

= e2πit0γ f̂(γ + γ0),

9



where (2.10) is due to lemma 2.2.1. Hence we have

‖γĝ(γ)‖2 =

∫
γ2 |ĝ(γ)|2 dγ

=

∫
γ2
∣∣∣f̂(γ + γ0)

∣∣∣2 dγ
=

∫
(γ − γ0)2

∣∣∣f̂(γ)
∣∣∣2 dγ

=
∥∥∥(γ − γ0)f̂(γ)

∥∥∥2 .
Similarly, we have that ‖tg(t)‖2 = ‖(t− t0)f(t)‖2. Thus we are left with the desired

result:

‖f(t)‖2 ≤ 4π ‖(t− t0)f(t)‖
∥∥∥(γ − γ0)f̂(γ)

∥∥∥ . (2.11)

We shall show equality for f(t) = Ce2πitγ0e−s(t−t0)
2
. For simplicity of calcula-

tion, we assume, without loss of generality, that C = 1. We have that
∫
e−s(t−t0)

2
dt =∫

e−st
2
dt =

√
π
s
, by (2.6), and it follows that ‖f(t)‖2 =

∫
|e2πitγ0|2|e−s(t−t0)2|2dt =∫

e−2s(t−t0)
2
dt =

√
π
2s
. We calculate the time spread of f via the substitution y =

t− t0 followed by integration by parts:

‖(t− t0)f(t)‖2 =

∫
|t− t0|2 e−2s(t−t0)

2

dt

=

∫
yye−2sy

2

dy

=
1

4s

∫
e−2sy

2

dy

=
1

4s

√
π

2s
, (2.12)

10



where the final equality is due to (2.6). For the frequency spread we, again, employ

the substitution y = γ − γ0 followed by integration by parts.

∥∥∥(γ − γ0)f̂(γ)
∥∥∥2 =

π

s

∫
|γ − γ0|2

∣∣e−2πt0γ∣∣2 e−2π(γ−γ0)/sdγ
=

∫
yye−2π

2y2/sdy

=
πs

4π2s

∫
e−2π

2y2/sdy

=
1

4π

√
πs

2π2
=

1

4π

√
s

2π
, (2.13)

where we have employed (2.6) for the final equalities. Combining (2.12) and (2.13),

and multiplying by 16π2 yields the desired result:

‖f(t)‖4 =
π

2s
= 16π2 1

4s

√
π

2s

1

4π

√
s

2π
= 16π2 ‖(t− t0)f(t)‖2

∥∥∥(γ − γ0)f̂(γ)
∥∥∥2 .

�

Applying Cauchy’s inequality to inequality (2.7) yields an additive corollary.

Corollary 2.2.4 The following inequality holds:

∀f ∈ S(R), ‖f‖2 ≤ 2π

(
‖tf(t)‖2 +

∥∥∥γf̂(γ)
∥∥∥2) . (2.14)

Furthermore, the bound is sharp.

Proof: By Cauchy’s inequality, and inequality (2.7) we have

‖f‖2 ≤ 4π ‖tf(t)‖
∥∥∥γf̂(γ)

∥∥∥ ≤ 2π

(
‖tf(t)‖2 +

∥∥∥γf̂(γ)
∥∥∥2) .

If f(t) = e−
√
πt2 , then by Theorem 2.2.3 the left inequality is equality. Further, f is

its own Fourier transform so

2 ‖tf(t)‖
∥∥∥γf̂(γ)

∥∥∥ = ‖tf(t)‖2 +
∥∥∥γf̂(γ)

∥∥∥2
11



as desired. �

An additional corollary is of particular importance to our work, as we shall

prove an analogous case in the graph setting.

Corollary 2.2.5 The following inequality holds:

∀f ∈ S(R), ‖f‖2 ≤
(
‖f ′(t)‖2 +

∥∥∥f̂ ′(γ)
∥∥∥2) . (2.15)

Furthermore, the bound is sharp.

Proof: If f ∈ S(R), then f(t) is differentiable, and

(f ′(t))̂(γ) = 2πiγf̂(γ) and ((−2πit)f(t))̂(γ) = f̂ ′(γ).

Making the appropriate substitutions into inequality (2.14) and simplifying yields

the desired result. �

We shall continue to examine the classical uncertainty principle inequality

using a general Hilbert space formulation. Some definitions will help consolidate

notation.

Definition Let A, B be self-adjoint operators on a complex Hilbert space H with

domains D(A), and D(B) respectively. Define the following:

1. The domain D(AB), of AB, is defined as the set

D(AB) = {f ∈ D(B) ⊂ H : Bf ∈ D(A)} ,

and likewise for the domain of BA.

2. The commutator [A,B], of A and B, is defined as [A,B] = AB −BA.

12



3. The expected value Ef (A), of A at f ∈ D(A) ⊂ H,, is defined as Ef (A) =

〈Af, f〉H .

4. The variance σ2
f (A), of A at f ∈ D(A2) ⊂ D(A)] ⊂ H, is defined as σ2

f (A) =

Ef (A
2)− (Ef (A))2.

We reformulate the classical uncertainty principle inequality in the context of

the general operator notation.

Theorem 2.2.6 Let A, B be self adjoint operators on a complex Hilbert space H.

If f ∈ D = D(A2) ∩D(B2) ∩D([A,B]) with ‖f‖H = 1, we then have

(Ef (i[A,B]))2 ≤ 4σ2
f (A)σ2

f (B).

Proof: The proof is a consequence of a few routine calculations. We have

Ef (i[A,B]) = i(〈ABf, f〉H − 〈BAf, f〉H)

= i(〈Af,Bf〉H − 〈Af,Bf〉H)

= i[(−i)= 〈Af,Bf〉H − i= 〈Af,Bf〉]

= 2= 〈Af,Bf〉H , (2.16)

and

‖(B + iA)f‖2H = 〈(B + iA)f, (B + iA)f〉H

= 〈Bf,Bf〉H + 〈iAf, iAf〉H + 〈iAf,Bf〉H + 〈Bf, iAf〉H

= ‖Bf‖2H + ‖Af‖2H − 2= 〈Af,Bf〉H . (2.17)

13



Note that for any self adjoint operator C, Ef (C) is real. Indeed, we have that

Ef (C) = 〈f, Cf〉H = 〈Cf, f〉H = Ef (C),

and therefore, we have (< 〈iAf, f〉H)2 = 0 and (= 〈iAf, f〉H)2 = (〈Af, f〉H)2 . We

conclude that

|〈(B − iA)f, f〉H |
2 = |〈Bf, f〉H + i 〈Af, f〉H |

2

= (〈Bf, f〉H)2 + (〈Af, f〉H)2 . (2.18)

By the Cauchy-Schwarz Inequality we have

0 ≤ ‖(B + iA)f‖2H − |〈(B + iA)f, f〉H |
2

=
(
‖Af‖2H − 〈Af, f〉

2
H

)
+
(
‖Bf‖2H − 〈Bf, f〉

2
H

)
− 2= 〈Af,Bf〉H , (2.19)

where (2.19) is due to (2.17) and (2.18). Noting that the first two terms in (2.19)

are the variance of A, respectively, B, at f , then rearranging, and applying (2.16)

yields an additive inequality:

σ2
f (A) + σ2

f (B) ≥ 2= 〈Af,Bf〉H

= Ef (i[A,B]). (2.20)

Let r > 0, s > 0 and note that rA and sB are self adjoint operators. Applying

(2.20) to rA and sB yields

r2σ2
f (A) + s2σ2

f (B) ≥ rsEf (i[A,B]).

Setting r2 = σ2
f (B), s2 = σ2

f (A), and squaring both sides yields the desired result:

(
2σ2

f (A)σ2
f (B)

)2
= 4σ4

f (A)σ4
f (B) ≥ σ2

f (A)σ2
f (B) (E(i[A,B]))2

14



if and only if

(Ef (i[A,B]))2 ≤ 4σ2
f (A)σ2

f (B).

�

If we take H = L2(R), A(f(t)) = tf(t), and B(f(t)) = i(2πγf̂(γ))̌(t) then

Theorem 2.2.3 is direct consequence of Theorem 2.2.6. In quantum mechanics, pure

quantum states are typically taken to be unit vectors in a Hilbert space H. If A, B

are self adjoint operators on this space, then their eigenvalues are interpreted as the

observable quantities of certain systems. The variances σf (A), and σf (B) are then

representative of uncertainties in these observables. Interpreting A as the position

operator and B as the momentum operator, Theorem (2.2.6) can be interpreted as

the lay version of the Heisenberg uncertainty principle: no simultaneous knowledge

of both position and momentum. The classical uncertainty inequalities set the

table, so to speak, for the main work of this thesis. Given a space of functions,

and a notion of a Fourier transform on that space, what can be said about the

simultaneous properties of a function and its Fourier transform.
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Chapter 3: Uncertainty Principles of the Discrete Fourier Transform

3.1 Introduction

As we saw in the previous chapter, the Heisenberg uncertainty principle states

∀f ∈ S (R) , ‖f‖2 ≤ 4π ‖tf(t)‖ ‖γf̂(γ)‖.

In order to examine discrete versions of this uncertainty principle, we review key

concepts of linear algebra, and we introduce the discrete Fourier transform (DFT)

and some of its key properties. Having set up the necessary framework, we examine

a discrete Heisenberg uncertainty principle from [24] and a discrete finite frame

uncertainty principle from [33].

3.2 Linear Algebra

Linear algebra is fundamental to our analysis on graphs. We shall provide

the theory necessary for analyzing uncertainty principles associated with the DFT,

and for proving our main graph theoretic results. We shall provide a minimalist

overview of the necessary theory. For more complete and detailed treatments, see

[34], [3], [43], or [30] among multitudes of others. For more abstract linear operator

theory, see [2], [5], [41], or [40].
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We shall restrict our considerations to the finite dimensional spaces l2(CN)

and l2(RN), where we view each element f ∈ l2(CN), respectively, f ∈ l2(RN), as

functions f : Z/(NZ) → CN , respectively, f : Z/(NZ) → RN . Notationally, we

write f [j] to denote fj, the jth element of the vector f . We restrict our attention to

l2(CN) unless otherwise specified.

The set of linear operators, l2(CN)→ l2(Cd), may be represented by all com-

plex valued matrices with d rows and N columns denoted Cd×N . If N = d, then

this set consists of square matrices and it is denoted CN×N . In this case, we may

define several special properties. A square matrix M is said to be diagonal if the

only non-zero entries of M are on the diagonal denoted by Mjj for j = 0, ..., N − 1.

In this case, any function ek of the form

ek[j] =


1 if j = k

0 otherwise,

has the property that

Mek = Mkkek = λkek.

We call the constant values λk for k = 0, ..., N−1 the eigenvalues associated with M ,

and the functions ek the eigenfunctions associated with these values. More generally,

we refer to {ek}N−1k=0 as the canonical basis functions for l2(CN). If we have a square

matrix A which is not diagonal, then eigenvalues λj with associated eigenfunctions

χj satisfying

Aχj = λjχj

still exist, and are of great importance to the discrete results discussed in this work.
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We refer to the set of eigenvalues associated with a matrix A as the spectra of the

operator A. We examine certain special types of square matrices, and the special

properties that their respective spectra possess.

The monic characteristic polynomial p(x) of a square matrix A is defined as

pA(x) = p(x) = det(xI − A) = c0 + c1x+ ...+ cN−1x
N−1 + xN ,

and has the property that λ is an eigenvalue of A, if and only if p(λ) = 0. Since C

is algebraically closed, we may factor p(x) into linear terms:

pA(x) =
N−1∏
j=0

(x− λj). (3.1)

A celebrated theorem of matrix theory is the Cayley-Hamilton Theorem which en-

sures, in this setting, that pA(A) = 0N which is the N×N matrix of all zeros. pA(x)

is a monic polynomial of degree N , and it may possess repeated roots. If this is the

case, there exists a monic minimal polynomial mA(x) of degree less than or equal to

N such that mA(A) = 0N . In our setting, if we let λjl for l = 0, ..., N ′ ≤ N denote

the subset of distinct eigenvalues associated with A, then we have

mA(x) =
N ′∏
l=0

(x− λjl). (3.2)

For a square matrix A, we define the transpose At of A by setting

(
At
)
jk

= Akj.

We define the conjugate transpose A∗ of A by setting

(A∗)jk = Ākj.
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A matrix A for which A∗A = AA∗ is said to be normal. If A∗ = A then A is said

to be Hermitian. If A is real and Hermitian then it is clear that A∗ = At = A, and

we say A is symmetric. All Hermitian matrices are normal. Indeed, if A∗ = A then

A∗A = A2 = AA∗. A key property of normal N×N matrix A (and hence Hermitian

and real symmetric matrices) is that there exist N orthonormal eigenfunctions χj

that diagonalize A. This property is the celebrated spectral theorem which we

formulate in a manner similar to [3].

Theorem 3.2.1 (Spectral Theorem) Let A ∈ CN×N . There exists an orthonormal

eigen basis for CN associated with A if and only if A is normal.

Hence we have that if χ is the N ×N matrix whose columns are given by {χj}, that

is

χ = [χ0, χ1, ..., χN−1],

then

χ∗χ = I = χχ∗, (3.3)

and

D = χ∗Aχ where D = diag(λ0, ..., λN−1).

More generally, a matrix U satisfying equation (3.3), that is U∗U = I = UU∗, is

called unitary.

The spectral values of Hermitian matrices are key to our analysis of uncertainty

principles in the discrete setting. If we let H be an N ×N Hermitian matrix then

all of the eigenvalues of H are real. Indeed, since H must also be normal, we may
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diagonlize H such that H = UDU∗ where D = diag(λ0, ..., λN−1) and H∗ = H

implies

D̄ = D∗ = (U∗HU)∗ = U∗H∗U = U∗HU = D

and hence the eigenvalues are all real. Hence, the spectral values {λj} of H can be

indexed such that

λ0 ≤ λ1 ≤ ... ≤ λN−1.

For any Hermitian matrix H and for any non zero function f , we define the Rayleigh

quotient as

R(H, f) =
〈f,Hf〉
〈f, f〉

=
〈Hf, f〉
〈f, f〉

,

where 〈 , 〉 is the standard inner product for l2(CN). Since H is also normal, it has

an orthonormal set of eigenfunctions {χj} and therefore we can expand f in terms

of this basis:

f =
N−1∑
j=0

〈χj, f〉χj.

Upon applying this expansion, we calculate the Rayleigh quotient:

R(H, f) =

〈∑N−1
j=0 〈χj, f〉χj,

∑N−1
j=0 〈χj, f〉λjχj

〉
〈∑N−1

j=0 〈χj, f〉χj,
∑N−1

j=0 〈χj, f〉χj
〉 =

∑N−1
j=0 |〈χj, f〉|

2 λj∑N−1
j=0 |〈χj, f〉|

2
.

We know that
∑N−1

j=0 |〈χj, f〉|
2 = ‖f‖2, and, hence, the Rayleigh quotient is min-

imized by taking f = χ0 and it is maximized by taking f = χN−1, yielding the

inequality

λ0 ≤ R(H, f) ≤ λN−1. (3.4)

Inequality (3.4) will be used for several proofs in future analysis. If we have 0 ≤ λ0

for an Hermitian matrix H, then we say H is positive semi-definite. If there exists an
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d×N matrix M such that M∗M = H, then for all unit norm functions f ∈ l2(CN)

we have

R(H, f) = 〈f,Hf〉 = 〈f,M∗Mf〉 = ‖Mf‖2 ≥ 0.

Hence any matrix of this form is positive semi-definite. If an Hermitian matrix H

is positive semi-definite, then it has a diagonalization D with non-negative diagonal

values, and a unitary matrix χ such that

H = χDχ∗ = χD1/2D1/2χ∗ = (D1/2χ∗)∗(D1/2χ∗).

Hence, H is positive semi-definite if and only if there exists a matrix M such that

M∗M = H.

Turning to other methods of bounding the effect of linear operators on function

in l2(CN), we define for any N ×N square matrix A, the operator or induced norm

of A:

‖A‖op = sup{‖Af‖
‖f‖

over all non-zero f ∈ l2(CN)}.

If A = (Ajk) for j, k = 0, ..., N − 1 then the Euclidean or Frobenius norm of A is

given by

‖A‖fr =

(
N−1∑
j,k=0

|(Ajk)|2
)1/2

.

We denote the trace of a matrix A by

tr(A) =
N−1∑
j=0

Ajj.

It is straightforward to show that if A is N ×d and B is d×N with complex values,

we have tr(AB) = tr(BA). This implies that the trace is invariant under cyclic
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permutations. We may conclude that the Frobenius norm of a square matrix A may

also be given by

‖A‖2fr = tr(A∗A) = tr(AA∗).

A matrix V if the form Vj,k = αkj for j, k = 0, ..., N − 1 is called Vandermonde

and is named for Alexandre-Theophile Vandermonde. See [31] for a more in depth

treatment of such operators.

3.3 Finite Frames

We shall define a few of the properties of frames in the context Cd and Rd

which are necessary for our analysis. This, however, does injustice to the rich and

much more general theory of frames dating back to their introduction by Duffin and

Schaeffer in 1952 [20], see also the article by Benedetto [7] and the two books by

Christensen on the subject [13] and [14], the former providing a theoretical overview

and the latter a more constructive approach. For a focused introduction to frames

in the finite setting see chapter 1 in [12].

We begin by defining a frame for Hd, where Hd is taken to be either Cd or

Rd. A set of {xj}N−1j=0 functions in l2(Hd) is a frame for l2(Hd) if there exist positive

constants A and B such that for all f ∈ l2(Hd) the following inequality holds:

A ‖f‖2 ≤
N−1∑
j=0

|〈f, xj〉|2 ≤ B ‖f‖2 . (3.5)

The supremum over all such A and the infimum over all such B satisfying (3.5)

are the upper and lower frame bounds, respectively; and we refer to the property

defined by (3.5) as the frame condition. In this finite setting, the existence of an
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upper bound B is trivially true. Hence, the frame condition is equivalent to the {xj}

being a spanning set. Otherwise, {xj} would have a non-trivial orthogonal subspace

contradicting the existence of a positive lower frame bound. If A = B = C then

the set {xj} is a tight frame or C-tight frame. If C = 1 then the frame is a Parseval

frame. If ‖xj‖ is constant for all j = 0, ..., N − 1 then {xj} is an equal norm frame.

Of particular importance to our results is the matrix representation of the synthesis

operator X which is the d×N matrix X whose columns are given by the N vectors

in the frame {xj}, that is,

X =

[
x0, x1, ... , xN−1

]
.

In this work, we abuse notation and refer to the frame {xj} and the matrix repre-

sentation of the synthesis operator as merely the “frame.” An important property of

Parseval frames is that XX∗ = Id×d, which we shall use frequently in our exposition

and in our proofs.

3.4 The Discrete Fourier Transform Matrix

The discrete Fourier transform (DFT) is a fundamental tool in modern signal

processing, solving partial differential equations, and performing convolutions. As

with the linear algebra preliminaries, we shall only introduce some notation and

fundamental properties of the DFT. For in depth treatment, see [9], [48], [51], or [11].
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The N ×N unitary Fourier transform matrix is given by

FT =
1√
N



1 1 · · · 1

1 W
(1)(1)
N · · · W

(1)(N−1)
N

...
...

. . .
...

1 W
(N−1)(1)
N · · · W

(N−1)(N−1)
N


where WN = e−2πi/N . The scaling by 1√

N
ensures FT ∗ = FT −1; and hence it is a

unitary operator. By construction, FT is a Vandermonde matrix. In the ensuing

chapters, we shall establish that the graph Fourier transform is not in general a

Vandermonde matrix, and, as a result, the support theorems of [19] (which rely on

the Vandermonde property of FT ) do not necessarily hold in the graph setting. For

the purposes of this work, we refer to the unitary discrete Fourier transform matrix

FT as the discrete Fourier transform.

3.5 A Discrete Heisenberg Uncertainty Principle

We introduce the discrete Heisenberg uncertainty principle due to Grünbaum

[24]. Define operators Q and P to represent position and momentum operators
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affecting the so called “state” function a ∈ CN . We define

Q =



q0 0 0 ... 0

0 q1 0 ... 0

0 0
. . . 0

0 0 ... qN−2 0

0 0 ... 0 qN−1


and

P =i



0 1 0 0 ... −1

−1 0 1 0 ... 0

0 −1 0 1 ... 0

. . . . . . . . .

0 0 ... −1 0 1

1 0 ... 0 −1 0



,

where the qj are real numbers that we shall choose later. It is clear that P is self

adjoint and that if we define a translation matrix

T =



0 1 0 0 ... 0

0 0 1 0 ... 0

0 0 0 1 ... 0

. . . . . .

0 0 ... 0 0 1

1 0 ... 0 0 0


then P = i(T − T ∗).

Theorem 3.5.1 (Grünbaum [24]) For operator P , for operator Q with qj = sin
(
2πj
N

)
,
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and for a function a ∈ CN , the following inequality holds:

‖Qa‖2 ‖Pa‖2 = 4
N−1∑
j=0

sin2

(
2πj

N

)
|a[j]|2

N−1∑
j=0

sin2

(
2πj

N

)
|â[j]|2

≥ 1

4

(
N−1∑
j=0

(
sin

(
2πj

N

)
+ sin

(
2π(j + 1)

N

))
(ā[j]a[j + 1]− ā[j + 1]a[j])

)2

− 1

4

(
N−1∑
j=0

(
sin

(
2πj

N

)
− sin

(
2π(j + 1)

N

))
(ā[j]a[j + 1] + ā[j + 1]a[j])

)2

.

Proof: Recall that the DFT is unitary, i.e., FT ∗FT = IN×N . Hence, we have

‖Pa‖2 = 〈Pa, Pa〉 = 〈FT ∗FT Pa, Pa〉 = 〈FT Pa,FT Pa〉 = ‖FT Pa‖2 ,

so that ‖FT Pa‖2 or, equivalently, ‖FT (T − T ∗)a‖2 will serve as the analog for

‖γf̂(γ)‖2L2(R). Using the permutation property of T , it is easily shown for FT a =

â = [â0, ..., â(N−1)]
′ that

FT Ta =
1√
N



∑N−1
k=0 W

(k−1)0
N ak∑N−1

k=0 W
(k−1)1
N ak

...∑N−1
k=0 W

(k−1)(N−1)
N ak



=
1√
N



W−0
N

∑N−1
k=0 W

(k)0
N ak

W−1
N

∑N−1
k=0 W

(k)1
N ak

...

W
−(N−1)
N

∑N−1
k=0 W

(k)(N−1)
N ak


=



W−0
N â0

W−1
N â1

...

W
−(N−1)
N âN−1


,
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and similarly we have

FT T ∗a =



W 0
N â0

W 1
N â1

...

WN−1
N âN−1


.

Therefore, the norm ‖Pa‖2 is given by

‖Pa‖2 = ‖FT (T − T ∗)a‖2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



(W−0
N −W 0

N)â0

(W−1
N −W 1

N)â1

...

(W
−(N−1)
N −W (N−1)

N )âN−1



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

=
N−1∑
j=0

∣∣(W−j
N −W

j
N)âj

∣∣2 = 4
N−1∑
j=0

sin2

(
2πj

N

)
|âj|2 . (3.6)

Equation (3.6) motivates our selection qj = sin
(
2πj
N

)
. With this choice, the following

equality holds from direct calculation:

‖Qa‖2 =
N−1∑
j=0

sin2

(
2πj

N

)
|aj|2 .

To establish the desired inequality, we shall use Cauchy’s inequality, and the

properties of the commutator C of Q and P , and of the anticommutator A of Q and
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P . Since QP = 1/2(A+ C), the following holds:

‖Qa‖2 ‖Pa‖2 ≥ |〈Qa, Pa〉|2

= |〈a, 1/2(A+ C)a〉|2

=
1

4
|〈a,Aa〉 − i 〈a, iCa〉|2

=
1

4

(
〈a,Aa〉2 − 〈a, Ca〉2

)
. (3.7)

We shall use inequality (3.7) to establish the desired discrete uncertainty principle.

A and C are given by:

A =i



0 q0 + q1 0 ... −q0 − qN−1

−q0 − q1 0 q1 + q2 ... 0

0 −q1 − q2 0
. . .

...

...
. . . . . . qN−2 + qN−1

q0 + qN−1 0 ... −qN−2 − qN−1 0


and

C =i



0 q0 − q1 0 ... qN−1 − q0

q0 − q1 0 q1 − q2 ... 0

0 q1 − q2 0
. . .

...

...
. . . . . . qN−2 − qN−1

qN−1 − q0 0 ... qN−2 − qN−1 0


.

Direct calculation now yields:

(〈a,Aa〉)2 =

(
N−1∑
j=0

(qj + qj+1)(ājaj+1 − āj+1aj)

)2

and

(〈a, Ca〉)2 =

(
N−1∑
j=0

(qj − qj+1)(ājaj+1 + āj+1aj)

)2

.
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Setting qj = sin
(
2πj
N

)
for j = 0, ..., N − 1 and substituting into (3.7) yields the

desired inequality:

4
N−1∑
j=0

sin2

(
2πj

N

)
|aj|2

N−1∑
j=0

sin2

(
2πj

N

)
|âj|2

≥ 1

4

(
N−1∑
j=0

(
sin

(
2πj

N

)
+ sin

(
2π(j + 1)

N

))
(ājaj+1 − āj+1aj)

)2

− 1

4

(
N−1∑
j=0

(
sin

(
2πj

N

)
− sin

(
2π(j + 1)

N

))
(ājaj+1 + āj+1aj)

)2

.

�

This inequality is stated in terms of two linear operator’s relationship with

an arbitrary function. There is the question of what types of functions generate

equality between

4
N−1∑
j=0

sin2

(
2πj

N

)
|aj|2

N−1∑
j=0

sin2

(
2πj

N

)
|âj|2

and

1

4

(
N−1∑
j=0

(
sin

(
2πj

N

)
+ sin

(
2π(j + 1)

N

))
(ājaj+1 − āj+1aj)

)2

−1

4

(
N−1∑
j=0

(
sin

(
2πj

N

)
− sin

(
2π(j + 1)

N

))
(ājaj+1 + āj+1aj)

)2

.

As it turns out, if N is odd then there is a one dimensional subspace that generates

equality, and if N is even there is a two dimensional space that generates equality.

There is some work regarding these solutions in [23]. There are also similar results

involving the DFT and frames due to Lammers and Maeser [33]. These are discussed

throughout the rest of this chapter.
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3.6 Finite time-frequency measures

Motivated by the additive classical uncertainty principle for f ∈ S(R), we

introduce a discrete analog for l2(Z/NZ) and justify the analog’s use. For f :

Z/NZ→ C, define the N ×N difference operator D = I − T , the N ×N circulant

difference operator by ∆ = D∗D, and the N×N modulation matrix M as a diagonal
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matrix where Mjj = W−j
N , i.e.

D =



1 −1 0 0 ... 0

0 1 −1 0 ... 0

0 0 1 −1 ... 0

. . . . . .

0 0 ... 0 1 −1

−1 0 ... 0 0 1



,

∆ =



2 −1 0 0 ... −1

−1 2 −1 0 ... 0

0 −1 2 −1 ... 0

. . . . . . . . .

0 0 ... −1 2 −1

−1 0 ... 0 −1 2



and

M =



W 0
N 0 ... 0

0 W−1
N ... 0

0 0
. . . 0

0 0 ... W 1−N
N


.

It is straightforward to show that the following properties hold:

1. ‖Df‖2 = 〈∆f, f〉 ,

2. M−1 = M∗,

3. TFT ∗ = FT ∗M , and
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4. FT ∗T ∗ = MFT ∗.

We define the N × N matrix X = FT ∗∆FT . Using the aforementioned

properties, it is straightforward to show that X is diagonal with real entries. In

fact, we have ∆ = D∗D is positive semidefinite, so it has real positive eigenvalues.

Further, since ∆ = 2I − T − TN−1, the Fourier transform matrix is a matrix of

the orthonormal eigenfunctions of ∆. Hence, the diagonal entries of X, for j =

0, ..., N − 1, are

λj2−W j
N −W

−j
N = −2 cos(2πj/N) + 2 = 4 sin2(πj/N) ∈ R.

We shall use

〈Xf, f〉 = 〈FT ∗∆FT f, f〉 = 〈FT ∗D∗DFT f, f〉 = 〈DFT f,DFT f〉 = ‖DFT f‖2

for f ∈ l2(Z/NZ) as a discrete analog of
∥∥∥ d
dγ
f̂(γ)

∥∥∥2 on L2 functions.

In an attempt to further motivate using ‖Df‖2 + ‖DFT f‖2 as our discrete

analog for the continuous case, let us consider g ∈ l2(Z/NZ) for N = n2 and n ∈ Z.

Given such a g and 1 >> ε > 0, we can construct a smooth function h ∈ L2(R) so

that

∣∣∣‖g‖2l2(Z/NZ) − ‖h‖
2
L2(R)

∣∣∣ ≤ ε ‖g‖2l2(Z/NZ) .

In fact, let bxc be the floor function of x, fix j ∈ {b−N/2c, ..., b(N − 1)/2c}, and,

for x ∈ Ij = [2j−1
2n

, 2j+1
2n

], define h(x) as follows:

h(x) =
√
ng(j)χ[ 2j−1+ε

2n
, 2j+1−ε

2n
] ∗ φε/n(x),

32



where φε/n is a C∞ mollifier with support in [−ε
2n
, ε
2n

] and where ∗ denotes convolution.

Then we have

(1− ε) |g(j)|2 ≤ ‖h(x)‖2L2(Ij)
≤ |g(j)|2 .

If we define h(x) = 0 for x ≥ b(N − 1)/2c + 1/n and for x ≤ −bN/2c − 1/n, then

summing over j yields

(1− ε) ‖g‖2l2(Z/NZ) ≤ ‖h‖
2
L2(R) ≤ ‖g‖

2
l2(Z/NZ)

and hence

∣∣∣‖g‖2l2(Z/NZ) − ‖h‖
2
L2(R)

∣∣∣ ≤ ε ‖g‖2l2(Z/NZ) ,

the desired estimate.

Note that

‖Dg‖2 = 〈∆g, g〉

= 〈FT XFT ∗g, g〉

= 〈XFT ∗g,FT ∗g〉

= 4
N−1∑
j=0

sin2(
πj

N
) |(FT ∗g)(j)|2

= 4
N−1∑
j=0

sin2(
πj

N
) |(FT g)(j)|2 ,
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and that

‖DFT g‖2 = 〈DFT g,D∗FT ∗g〉

= 〈FT ∗∆FT g, g〉

= 〈Xg, g〉

= 4
N−1∑
j=0

sin2(
πj

N
) |(g)(j)|2 .

Using these facts, and the approximations sin(x) ≈ x for −π/2 ≤ x ≤ π/2 and

‖g‖l2(ZN ) ≈ ‖h‖
2
L2(R) , we have the following:

N(‖Dg‖2 + ‖DFT g‖2) = 4N

(
N−1∑
j=0

sin2(
πj

N
) |(FT g)(j)|2 +

N−1∑
j=0

sin2(
πj

N
) |(g)(j)|2

)

≈ 4N

(
N−1∑
j=0

(
πj

N
)2 |(FT g)(j)|2 +

N−1∑
j=0

(
πj

N
)2 |(g)(j)|2

)

≈ 4N

b(N−1)/2c∑
j=−bN/2c

(
πj

N
)2

∣∣∣∣∣ ĥ(j/n)√
n

∣∣∣∣∣
2

+

b(N−1)/2c∑
j=−bN/2c

(
πj

N
)2
∣∣∣∣h(j/n)√

n

∣∣∣∣2


= 4N
π2

N

b(N−1)/2c∑
j=−bN/2c

(
j

n
)2
∣∣∣ĥ(j/n)

∣∣∣2 1

n
+

b(N−1)/2c∑
j=−bN/2c

(
j

n
)2 |h(j/n)|2 1

n


≈ (4/π2)

(∫
γ2
∣∣∣ĥ(γ)

∣∣∣2 dγ +

∫
x2 |h(x)|2 dx

)
= (4/π2)

(∥∥∥γĥ(γ)
∥∥∥2 + ‖xh(x)‖2

)
≥ C ‖h‖4L2(R)

≈ C ‖g‖4l2(Z/NZ) .

Thus, it seems reasonable to assume this choice for measurement of l2(Z/ZN) will

lead to interesting uncertainty principles.
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3.7 Uncertainty Principles for Parseval frames

Define the matrix E = [E0, E1, ..., EN−1] to be a d × N matrix where the set

of N d−vectors {Ek} forms a Parseval frame for Cd, i.e., EE∗ = Id×d. We want to

perform analysis on E using the the difference operator D as define in the previous

section. Using the Frobenius norm for matrices, we have the following:

‖DFT E‖2 + ‖DE‖2 = tr(DFT EE∗FT ∗D∗) + tr(DEE∗D∗)

= 2tr∆

= 4d.

Hence, analysis on E with the difference operator D is not interesting as the Frobe-

nius norms solely depend on the dimension d. Instead we shall analyze E∗. In this

case, we have

‖DFT E∗‖2 + ‖DE∗‖2 = tr(DFT E∗EFT ∗D∗) + tr(DEE∗D∗)

= tr(FT ∗D∗DFT E∗E) + tr(D∗DE∗E)

= tr(XE∗E) + tr(∆E∗E).

If N = d, then E is square and unitary. Hence, the frame is an orthonormal basis for

l2(Cd). The following lemma establishes a starting point for bounding the Frobenius

norm of D acting on E∗.

Lemma 3.7.1 For all equal normed Parseval frames E for Cd, the following holds:

‖DFT E∗‖2 = 2d.
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Proof: Since EE∗ = Id×d we know tr(EE∗) = d. Hence we have

d = tr(E∗E)

=
N−1∑
j=0

‖Ej‖2

= N ‖E0‖2

where the last equality is due to E being an equal norm Parseval frame. Hence, the

jth diagonal element of E∗E is given by (E∗E)jj = ‖Ej‖2 = d
N

. Noting that

‖DFT E∗‖2 = tr(DFT E∗EFT ∗D∗) = tr(FT ∗∆FT E∗E) = tr(XE∗E)

and that 2N = tr(∆) = tr(X), we can conclude that

‖DFT E∗‖2 =
d

N
tr(X) = 2N

d

N
= 2d,

as desired. �

Corollary 3.7.2 If E is a Unitary matrix, that is, if d = N and E is a Parseval

frame, then ‖DFT E∗‖2 + ‖DE∗‖2 = 4d.

Proof: By assumption E∗ = E−1, hence we have ‖DE∗‖2 = tr(DE∗ED∗) =

tr(DD∗) = 2d. �

We establish a minimization lemma that will be used to determine bounds for

‖DE∗‖2 .

Lemma 3.7.3 Let {αj} be a set of N real numbers 0 ≤ αj ≤ 1 with
∑N−1

j=1 αj = d,

and let {λj} be the N eigenvalues of ∆ (i.e., the diagonal values of X) ordered from

smallest to largest. Then the sum
∑N−1

j=0 αjλj is minimized, respectively, maximized,
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by setting α0, ..., αd−1 = 1, respectively, α0, ..., αd−1 = 0, and αd, ..., αN−1 = 0,

respectively, αd, ..., αN−1 = 1.

Proof: In the case of N = d the lemma is trivially true, so assume N > d. Suppose

α0, ..., αd−1 = 1 and αd, ..., αN−1 = 0 so that
∑N−1

j=0 αjλj =
∑d−1

j=0 αjλj. Let m >

d − 1. Then, for all 0 ≤ k ≤ d − 1, λm ≥ λk, and thus for any 1 ≥ ε > 0 we have

ε(λm − λk) ≥ 0. Adding the sum
∑N−1

j=0 αjλj to both sides of this inequality yields:

d−1∑
j=0

αjλj − ελk + ελm ≥
d−1∑
j=0

αjλj.

Pulling the λk term out of the summation formula shows the desired inequality:

∑
j≤d−1,j 6=k

αjλj + (1− ε)λk + ελm ≥
d−1∑
j=0

αjλj.

Hence, any sum where αj > 0 for j ≥ d is greater than or equal to
∑d−1

j=0 λj.

Similarly, setting the last d coefficients to 1 maximizes the sum. �

Theorem 3.7.4 (Lammers and Maeser [33]) For fixed dimension d and N ≥ d ≥ 2,

there exist constants C(N, d) > 0 and B(N, d) > 0 so that for any equal norm

Parseval frame E for Cd, we have

2d+ C(N, d) ≤ ‖DFT E∗‖2 + ‖DE∗‖2

≤ 2d+B(N, d)

≤ 6d.

Furthermore, the minimum, respectively, the maximum, occurs when E∗ is the d

columns of the Fourier matrix corresponding to the d smallest, respectively, the d

largest, eigenvalues of ∆. The constant C(N, d) is the sum of those d smallest

eigenvalues and B(N, d) is the sum of those d largest eigenvalues.
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Proof: Due to Lemma 3.7.1, it suffices to find the minimizer of ‖DE∗‖2frin order

to find the lower limit. Expanding ‖DE∗‖2fr we have:

‖DE∗‖2fr = tr(DE∗ED∗)

= tr(∆E∗E)

= tr(FT ∗XFT E∗E)

= tr(XFT E∗EFT ∗).

We have tr(FT E∗EFT ∗) = tr(EFT ∗FT E∗) = tr(Id×d) = d. Since EFT ∗ is an

equal norm Parseval frame, the diagonal elements of FT E∗EFT ∗ are the norm

squared of the columns of EFT ∗ and hence greater than or equal to zero. Further,

we have ‖E∗‖op = ‖FT ‖op = 1. Therefore, each diagonal element of FT E∗EFT ∗ is

bounded between zero and one. By Lemma 3.7.3, we minimize tr(XFT E∗EFT ∗)

if there exists a frame E such that FT E∗EFT ∗ has canonical basis functions ej for

Cd in the d columns corresponding to the d smallest diagonals of X. Choosing the

d rows of FT corresponding to those d values accomplishes this. Hence, C(N, d) is

the sum of the d smallest eigenvalues of ∆. Similarly, we want to maximize ‖DE∗‖2

in order to find the upper limit. Via the same style argument we conclude that

B(N, d) is the sum of the d largest eigenvalues of ∆. �

If we drop the assumption that we have an equal norm Parseval frame, and we

only assume that E is Parseval, then we have a similar result also due to Lammers

and Maeser.

Theorem 3.7.5 (Lammers and Maeser [33]) For fixed dimension d and N ≥ d ≥ 2,

there exist constants L(N, d) > 0 and U(N, d) > 0 so that for any Parseval frame
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E of Cd,

L(N, d) ≤ ‖DFT E∗‖2 + ‖DE∗‖2

≤ U(N, d)

≤ 8d.

L(N, d) is the sum of the d smallest eigenvalues of ∆ + X and U(N, d) is the sum

of the d largest eigenvalues of ∆ +X.

Proof: Recall from the proof of Theorem 3.7.4 that

‖DE∗‖2 = tr(DE∗ED∗)

= tr(∆E∗E)

= tr(FT ∗XFT E∗E)

= tr(XFT E∗EFT ∗).

We also have that

‖DFT E∗‖2 = tr(DFT E∗EFT ∗D∗)

= tr(∆FT E∗EFT ∗).

Noting that since ∆+X is real and symmetric, there exists a unitary matrix U such

that

U∗(∆ +X)U = diag(λ̃0, ..., λ̃N−1) = Λ,

39



i.e., it diagonalizes ∆ +X. Combining these with the previous two equalities yields

‖DFT E∗‖2 + ‖DE∗‖2 = tr(∆FT E∗EFT ∗) + tr(XFT E∗EFT ∗)

= tr((∆ +X)FT E∗EFT ∗)

= tr(ΛU∗FT E∗EFT ∗U)

=
N−1∑
j=0

λ̃j (U∗FT E∗EFT ∗Uj,j) .

The operator ∆ + X is also positive semidefinite as the linear combination of

such operators is always positive semidefinite. Without loss of generality, assume

0 ≤ λ̃0 ≤ ... ≤ λ̃N−1. By the same minimizing arguments as in Theorem 3.7.4,

choosing the first d rows of U∗FT for E yields a Parseval frame that minimizes∑N−1
j=0 λ̃j (U∗FT E∗EFT ∗Uj,j) . Similarly, choosing E to be the last d rows of U∗FT

maximizes
∑N−1

j=0 λ̃j (U∗FT E∗EFT ∗Uj,j). �
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Chapter 4: Graph Theory

4.1 Introduction

Graph theory is a well established branch of mathematics with several com-

prehensive overviews of the material including [16], and [18]. The analysis of graphs

is used in many applications in modern computing and information theory. [15] is

a brief literature review of recent advances in graph theory. The Fourier trans-

form on a graph has been defined using the spectrum of the graph Laplacian, see,

e.g., [25], [46], [45], [44], [42], [39], [21], [17], and [1]. In this chapter, we introduce

general graph theory definitions, establish notation, and define the graph Fourier

transform and graph normalized Fourier transform.

4.2 Definitions

A graph G = {V,E ⊆ V × V,w} consists of a set V of vertices, a set E of

edges consisting of pairs of elements of V, and a weight function w : V × V → R+.

For u, v ∈ V , w(u, v) > 0 if (u, v) ∈ E and is zero otherwise. If w(u, v) = 1 for all

(u, v) ∈ E, then we say G is “unit weighted.” There is no restriction on the size of

the set V , but we shall restrict our attention to |V | = N <∞. We also assume that
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the set {vj}N−1j=0 = V has an arbitrary, but fixed ordering.

For all graphs, we define the N ×N adjacency matrix A = (Am,n) component-

wise as (Am,n) = w(vm, vn). If A is symmetric, that is, if w(vn, vm) = (An,m) =

(Am,n) = w(vm, vn), then we say G is undirected. If a graph has loops, that is

w(vj, vj) > 0 for some vj ∈ V , then A has nonzero diagonal entries. Unless otherwise

specified, we shall assume that our graphs are undirected and have no loops. The

degree d of a vertex vj is defined by deg(vj) =
∑N−1

n=0 w(vj, vn) =
∑N−1

n=0 (Aj,n). We

can then define a diagonal degree matrix D = diag (deg(v0), deg(v1), ..., deg(vN−1)).

(a) (b)

Figure 4.1: The unit weighted graph Ga is shown in (a), and the graph Gb is shown

in (b)

Example 4.2.1 The graph Ga shown in Figure 4.1a has the set of vertices Va =

{0, 1}, the edge set Ea = {(0, 1) = (1, 0)}, and wa(u, v) defined by w(0, 1) = w(1, 0) =
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1. The associated adjacency matrix is Aa =

0 1

1 0

 . The graph Gb with weight func-

tion wb in Figure 4.1b is given by

Gb = {Vb = {0, 1, 2, 3} , Eb = {(0, 1), (0, 2), (0, 3), (1, 2), (2, 3)} , wb}

with the adjacency matrix

Ab =



0 1 2 3

1 0 1 0

2 1 0 1

3 0 1 0


.

The degree matrix Db for the graph in Figure 4.1b is given by

Db =



6 0 0 0

0 2 0 0

0 0 4 0

0 0 0 4


.

4.3 The Graph Laplacian

There are two common choices for the graph Laplacian:

L = D − A

L = I −D−1/2AD−1/2,

where I is the N × N identity. L is defined as the unnormalized graph Laplacian,

while L is defined as the normalized graph Laplacian. We shall refer to the unnor-

malized Laplacian L as the Laplacian, and to the normalized Laplacian L as the
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normalized Laplacian. Define the |E| × |V | incidence matrix M = (Mk,j) with

element (Mk,j) for edge ek and vertex vj by:

(Mk,j) =


1, if ek = (vj, vl) and j < l

−1, if ek = (vj, vl) and j > l

0, otherwise.

Define the diagonal |E| × |E| weight matrix W = diag(w(e0), w(e1), ..., w(e|E|−1)).

Hence, if G is unit weighted, then W = I|E|×|E|. For any connected graph, the size

of the edge set E is bounded as follows:

N − 1 ≤ |E| ≤ N(N − 1)

2
,

where the lower bound is attained by the path graph and the upper bound is attained

by the complete graph.

Noting that L = M∗WM =
(
W

1
2M
)∗ (

W
1
2M
)

, where ·∗ denotes the conju-

gate transpose of an operator ·, we conclude that L is real, symmetric, and pos-

itive semidefinite. By the spectral theorem (Theorem 3.2.1), L must have an or-

thonormal eigenbasis {χl} of eigenvectors with associated eigenvalues {λl} ordered

as 0 = λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λN−1. The kernel has dimension equal to the number of

connected components of G. Indeed, any function that is constant and nonzero on

connected vertices while zero on all other vertices is in the kernel of L. Hence, if G is

connected, λ0 = 0 has multiplicity 1. Let χ be the matrix whose lth column is given

by χl. Let ∆ be the diagonalization of L, that is, χ∗Lχ = ∆ = diag(λ0, ..., λN−1).

We shall use this set of eigenfunctions to define the graph Fourier transform.
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Alternatively, after noting that

L = D1/2LD1/2 =
(
W

1
2MD1/2

)∗ (
W

1
2MD1/2

)
,

we may apply the spectral theorem to L. Hence, L must have an orthonormal

eigenbasis {Fl} with associated eigenvalues {µl} ordered as 0 = µ0 < µ1 ≤ µ2 ≤

... ≤ µN−1. Let F be the matrix whose lth column is given by Fl such that F

diagonalizes L. We shall use this set of eigenfunctions to define the normalized

graph Fourier transform.

4.4 The Graph Fourier Transform

Functions f̃ : V → R will be written notationally as vectors f ∈ RN with

f̃(vj) = f [j] for j = 0, ..., N − 1. We say f̃ ∈ l2(V ), or, equivalently, f ∈ l2(V ), if∑N−1
j=0

∣∣∣f̃(vj)
∣∣∣2 =

∑N−1
j=0 |f [j]|2. Given this space l2(V ) of real-valued functions on

the set V of vertices of the graph G, it is natural to define a Fourier transform based

on the structure of G.

To motivate this definition, we recall from Equation (2.1), the Fourier trans-

form on L1(R), viz.,

f̂(γ) =

∫
R
f(t)e−2πitγdγ,

and from (2.2), the formal inverse Fourier transform, viz.,

f(t) =

∫
R̂
f̂(γ)e2πitγ dγ,

where R̂ = R is considered the frequency domain. The functions, e2πitγ, on R

where γ ∈ R̂, are the eigenfunctions of the Laplacian operator d2

dt2
since we have
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d2

dt2
e2πitγ = −4π2γ2e2πitγ. If f̂ ∈ L1(R̂), then the inverse Fourier transform is an

expansion of the function f in terms of the eigenfunctions with coefficients f̂(γ).

With this in mind, we use the eigenvectors of the graph Laplacian to define the

graph Fourier transform f̂ of f ∈ l2(V ) as follows:

∀l = 0, 1, ..., N − 1, f̂ [l] = 〈χl, f〉 ,

or, equivalently, f̂ = χ∗f . It is clear from the orthonormality of the basis, {χl},

that χ∗ = χ−1. Thus, the inverse graph Fourier transform is given by

χf̂ = χχ∗f = If = f,

or, equivalently, f [j] =
∑N−1

l=0 〈χl, f〉χl[j].

Similarly, we define the normalized graph Fourier transform
∗
f of f ∈ l2(V ) as

follows:

∀l = 0, 1, ..., N − 1,
∗
f [l] = 〈Fl, f〉 ,

or, equivalently,
∗
f = F∗f . It is clear from the orthonormality of the basis, {Fl},

that F∗ = F−1. Thus, the inverse normalized graph Fourier transform is given by

F
∗
f = FF∗f = If = f,

or, equivalently, f [j] =
∑N−1

l=0 〈Fl, f〉Fl[j].

Example 4.4.1 An interesting special case of the graph Fourier transform occurs

when the graph is an unit weighted circulant graph as in Figure 4.2. The matrix for

46



0

1

2

3

4

5

6

7

Figure 4.2: A unit weighted cir-

culant graph with 8 vertices. The

graph Laplacian associated with

this graph is the circulant differ-

ence operator ∆.

the Laplacian is given by

L =



2 −1 0 · · · 0 −1

−1 2 −1 0

0
. . . . . . . . .

...

...
. . . . . . . . .

...

...
. . . . . . . . .

...

...
. . . . . . . . . 0

0 −1 2 −1

−1 0 · · · · · · · · · 0 −1 2



.

47



The normalized graph Laplacian has the form

L =



1 −1/2 0 · · · 0 −1/2

−1/2 1 −1/2 0

0
. . . . . . . . .

...

...
. . . . . . . . .

...

...
. . . . . . . . .

...

...
. . . . . . . . . 0

0 −1/2 1 −1/2

−1/2 0 · · · · · · · · · 0 −1/2 1



.

Recall from Section 3.5, the N ×N translation matrix T is defined by

(Ti,j) =



1 i = j − 1

1 i = N − 1, j = 0

0 otherwise.

The Laplacian is given by

L = 2T 0 − T − TN−1,

where T 0 = I is the N ×N identity. Similarly, we have that

L = D−1/22T 0D−1/2 −D−1/2TD−1/2 −D−1/2TN−1D−1/2 = T 0 − 1

2
T − 1

2
TN−1.

If 0 ≤ j ≤ N − 1, then an orthonormal eigenbasis for T j is given by

χl =
(

1/
√
N
)

[W 0l,W 1l, ...,W (N−1)l]∗,

for W = e−2πi/N and l = 0, 1, ..., N−1. Indeed, we have T jχl = W−jlχl, and so χl is

an eigenvector with the associated eigenvalue W−jl. Therefore, L has the set {χl} of
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orthonormal eigenvectors, with eigenvalues λl = −2 cos(2πl/N) + 2 = 4 sin2(πl/N)

for l = 0, ..., N − 1.

Recall from Section 3.4, the unitary N ×N discrete Fourier transform (DFT)

matrix is

FT =
1√
N



1 1 · · · 1

1 W
(1)(1)
N · · · W

(1)(N−1)
N

...
...

. . .
...

1 W
(N−1)(1)
N · · · W

(N−1)(N−1)
N


.

Therefore Λ = (FT )∗PM is the matrix whose columns are formed by the set {χl}

reordered as
{
χlj
}

for j = 0, ..., N − 1 such that the columns are arranged in as-

cending order of their eigenvalues, and where PM is the permutation matrix that

achieves this reordering. Hence, the graph Fourier transform associated with the

circulant graph is given by

Λ∗f =


〈χl0 , f〉

...〈
χlN−1

, f
〉

 = PM∗(FT )f.

Hence, we may view the graph Fourier transform as a permutation of the discrete

Fourier transform. Since the normalized Laplacian has the same eigenvectors as the

Laplacian for the circulant graph, the normalized graph Fourier transform F can be

viewed as a permutation of classical DFT as well.

Graphs, similar to those in Example 4.4.1, provide an additional motivation

for defining the graph Fourier transform by way of eigenvectors of the graph Lapla-

cian. In fact, the DFT is essentially a special case of the graph Fourier transform.
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Motivated by this example, we shall examine general uncertainty principles that

arise from the graph setting in Chapter 6.
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Chapter 5: The Spectral Graph Wavelet Transform

5.1 Introduction

Based on the work in [25], we define the classical Continuous Wavelet Trans-

form (CWT) for functions f ∈ L2(R), and show how scaling can be accomplished

in the Fourier domain. The motivation being that scaling the vertices of a graph is

an ill defined operation, while scaling in the Fourier domain of the Graph Fourier

transform can be defined in a fashion analogous to scaling elements of the spectrum

of the CWT. The results from [25] serve as a motivation for the main results of this

thesis. Specifically, manipulations in the Fourier domain will be a vital tool in the

analysis in this chapter, and ensuing chapters.

5.2 Classical Wavelet Transforms

We introduce the classical wavelet transform. Wavelets have an interesting and

varied history with origins in pure mathematics as well as many areas of physics and

petroleum engineering. For history, the introduction to [8] has excellent insights.

For a general overview see [27] or for a signal processing oriented analysis see [36]

or [37].
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Let ψ(t) be a wavelet, that is a function such that the set of translations and

dilations,

{
ψs,a(t) =

1

s
ψ

(
t− a
s

)}

for s > 0 and a, s ∈ R forms a spanning set for the set of L2 functions on R. For a

given function f ∈ L2(R), the wavelet coefficient Wf (s, a) at scale s, and location a

for f is given by:

Wf (s, a) =

∫
R

1

s
ψ

(
t− a
s

)
f(t)dt.

These are the coefficients for representing f as an expansion of the wavelet set. If

the Fourier transform of ψ, given by

ψ̂(γ) =

∫
R
ψ(t)e−2πiγtdt,

satisfies the admissibility condition

∫
R+

|ψ̂(γ)|2

γ
dγ = Cψ <∞,

then we can recover f from the following relation:

f(t) =
1

Cψ

∫
R+

∫
R
Wf (s, a)ψs,a(t)

1

s
dads.

The aforementioned scaling problem for graphs makes it clear that we cannot use

an analogous approach to wavelet transforms in the spatial vertex domain. Instead,

we show how the wavelet coefficients can be recovered from scaling, and translating

in the Fourier domain. We shall then define a graph wavelet transform based on

this process.
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Consider the case where the scale parameter s is discretized, and the transla-

tion parameter a is continuous. For a fixed scale s, the operator T s is defined to be

T sf(a) = Wf (s, a). For the wavelet ψ, define

ψ̃s(t) =
1

s
ψ

(
−t
s

)
.

T s can be represented as a convolution:

T sf(a) =

∫
R

1

s
ψ

(
t− a
s

)
f(t)dt =

∫
R
ψ̃s(a− t)f(t)dt = (ψ̃s ∗ f)(a).

Further, using the multiplicative property of the Fourier transform of convolutions,

the fact that

̂̃ψs(γ) =
∫
R

1
s
ψ
(−t
s

)
e−2πiγtdt

=
∫
R ψ(u)e2πisγudu

=
∫
R ψ(u)e−2πisγudu

= ψ̂(sγ),

and the Fourier inversion formula we have:

(T sf)(x) = ((̂T sf)(γ))∨ =

∫
R

̂̃ψs(γ)f̂(γ)e2πiγtdγ =

∫
R

(
ψ̂(sγ)

)
f̂(γ)e2πiγtdγ.

Hence, we can define the spatial translation operator via a scaling in the

Fourier domain followed by inversion. We now use this property to define the anal-

ogous “translation” operator in the graph setting by scaling in the graph Fourier

domain and inverting using the invertibility of the graph Fourier transform.
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5.3 Spectral Graph Wavelet Transform

Let g : R+ → R+ be defined such that g(0) = 0 and limt→∞ g(t) = 0. We

define the wavelet operator Tg on a given function f as follows:

Tg(f) =




g(λ0)

. . .

g(λN−1)

 f̂


∨

= χ


g(λ0)

. . .

g(λN−1)

χ
∗f.

In this setting, our translation in the Fourier domain is accomplished via the function

g acting on the eigenvalues of the graph Laplacian which we denote

g(L) =


g(λ0)

. . .

g(λN−1)

 .

The wavelet operators, at scale t, are defined as T tg = g(tL) for t > 0. We define the

spectral graph wavelets {ψt,n}N−1n=0 by applying T tg to the canonical basis elements

54



{en}N−1n=0 :

ψt,n = χg(tL)ên

= χ


g(tλ0)

. . .

g(tλN−1)

χ
∗en

= χ


g(tλ0)

. . .

g(tλN−1)




χ̄0[n]

...

χ̄N−1[n]



= χ


g(tλ0)χ̄0[n]

...

g(tλN−1)χ̄N−1[n]



=


∑N−1

l=0 g(tλl)χl[0]χ̄l[n]

...∑N−1
l=0 g(tλl)χl[N − 1]χ̄l[n]

 .

This yields the summation formula ψt,n[m] =
∑N−1

l=0 g(tλl)χl[m]χ̄l[n]. The graph

wavelet coefficients Wf (t, n) are then found by taking the inner product with the
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function f :

Wf (t, n) = 〈ψt,n, f〉

=

χ

g(tλ0)

. . .

g(tλN−1)

χ
∗en



∗

f

=
N−1∑
k=0

f [k]
N−1∑
l=0

g(tλl)χ̄l[k]χl[n]

=
N−1∑
l=0

g(tλl)χl[n]
N−1∑
k=0

f [k]χ̄l[k]

=
N−1∑
l=0

g(tλl)χl[n]f̂ [l].

Having established the notion of wavelets on graphs, we may now apply the

methods to applications such as signal processing. However, this presents a com-

putationally cumbersome challenge as the graph Laplacian, while sparse in many

cases, scales with N2. Nonetheless, we introduce an invertibility theorem from [25].

Theorem 5.3.1 (Hammond, Vandergheynst, Gribonal [25]) If the spectral graph

wavelet transform kernel g satisfies the admissibility condition∫
R+

g2(t)

t
dt = Cg <∞,

and if g(0) = 0, then

f [m]− 〈χ0, f〉
1√
N

=
1

Cg

N−1∑
n=0

∫
R+

Wf (t, n)ψt,n[m]
dt

t
.

.

By construction, the wavelets ψt,n are orthogonal to the first eigenvector χ0

(the n × 1 constant column vector with value 1/
√
N). Thus, for the complete re-
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construction, the 〈χ0, f〉 1/
√
N term must be somewhat artificially added back into

the formula. Another note concerning the reconstruction formula is that it requires

a continuous integral, despite the fact that the original space was entirely discrete.

This leads to numerical concerns that must be addressed (see [25]). Theorem (5.3.1)

demonstrates the motivation for our main results: it illuminates some of the impor-

tant harmonic analysis properties of the classical DFT that still exist in the graph

setting.
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Chapter 6: Graph Theoretic Uncertainty Principles

6.1 Introduction

We extend the notion of discrete uncertainty principles such as those intro-

duced in [24], and [19]. We show that for the graph setting, the cyclic structure of

the discrete Fourier transform is no longer present for the graph Fourier transform.

As a result, the support theorems (such as in [19] and [49]) are no longer guaran-

teed. Finally, we extend the frame uncertainty principle introduced by Lammers

and Maeser in [33] to the graph Fourier transform and to the normalized graph

Fourier transform.

6.2 A Graph Differential Uncertainty Principle

Recall from Corollary 2.2.4, the additive Heisenberg uncertainty principle:

‖f(t)‖2 ≤ 2π
(
‖tf(t)‖2 + ‖γf(γ)‖2

)
. (6.1)

For a function f ∈ S(R), the space of Schwartz functions on R, Corallary 2.2.5

states that inequality (6.1) is equivalent to:

‖f(t)‖2 ≤
(∥∥∥f̂ ′(γ)

∥∥∥2 + ‖f ′(t)‖2
)
. (6.2)
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To achieve a graph analog of inequality (6.2), we must define the notion of a differ-

ence operator in the graph setting. To do this, we examine the following product:

g = W 1/2Mf = Drf, where Dr = W 1/2M . The function g is a function on the edges

of the graph, where each value is the difference of the function f at the endpoints

of the edge. Because of this property, it is common to define the function g as the

derivative of f (see [1]). With this in mind, we establish a differential graph Fourier

transform inequality of the form of (6.2).

Theorem 6.2.1 Let G be a simple, connected, and undirected graph. Then, for any

non-zero function f ∈ l2(V ), the following inequalities hold:

0 < ‖f‖2 λ̃0 ≤ ‖Drf‖2 +
∥∥∥Drf̂

∥∥∥2 ≤ ‖f‖2 λ̃N−1, (6.3)

where 0 < λ̃0 ≤ λ̃1 ≤ ... ≤ λ̃N−1 are the ordered real eigenvalues of L+ ∆. Further-

more, the bounds are sharp.

Proof: Noting that

‖Drf‖2 = 〈Drf,Drf〉

= 〈f, χ∆χ∗f〉

=
〈
f̂ ,∆f̂

〉
and, similarly, that

∥∥∥Drf̂
∥∥∥2 =

〈
f̂ , Lf̂

〉
, we have

‖Drf‖2 +
∥∥∥Drf̂

∥∥∥2 =
〈
f̂ , (L+ ∆)f̂

〉
.

Assuming λ̃0 > 0, Inequality (3) follows directly from L + ∆ being symmetric and

positive semidefinite. Indeed, we have

0 < ‖f‖2 λ̃0 ≤
〈
f̂ , (L+ ∆)f̂

〉
= ‖Drf‖2 +

∥∥∥Drf̂
∥∥∥2 ≤ ‖f‖2 λ̃N−1
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following directly from the properties of the Rayleigh quotient. To prove positivity

of λ̃0, note that for
〈
f̂ , (L+ ∆)f̂

〉
= 0 we must have 〈h,∆h〉 = 0 = 〈h, Lh〉 for

some h 6= 0. This is impossible as we have, for non-zero h, 〈h,∆h〉 = 0 if and only

if h = c[1, 0, ...., 0]∗ for some c 6= 0. This implies 〈h, Lh〉 = deg(v0)c
2 > 0 due to the

connectivity of the graph. �

A direct consequence of Theorem 6.2.1 is that for a constant function f = cχ0

(c 6= 0) we have ‖Drcχ̂0‖ > 0. Hence, zero derivative in the graph domain implies

a non-constant function in the graph Fourier domain.

Alternatively, if we consider the normalized Laplacian L we define a slightly

different notion of the derivative in order to reflect the slightly different structure

when using the normalized Laplacian. For a function f ∈ l2(G), define the normal-

ized graph derivative as

Dnr = D1/2Dr = D1/2W 1/2M.

Let D be the diagonalization of L. We establish a graph differential normalized

Fourier transform inequality of the form of Theorem 6.2.1.

Theorem 6.2.2 Let G be a simple, connected, and undirected graph. Then, for any

non-zero function f ∈ l2(V ), the following inequalities hold:

0 < ‖f‖2 µ̃0 ≤ ‖Dnrf‖2 +

∥∥∥∥Dnr

∗
f

∥∥∥∥2 ≤ ‖f‖2 µ̃N−1, (6.4)

where 0 < µ̃0 ≤ µ̃1 ≤ ... ≤ µ̃N−1 are the ordered real eigenvalues of L+D. Further-

more, the bounds are sharp.
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Proof: Noting that

‖Dnrf‖2 = 〈Dnrf,Dnrf〉

= 〈f,FDF∗f〉

=

〈
∗
f,D

∗
f

〉

and, similarly, that

∥∥∥∥Dnr

∗
f

∥∥∥∥2 =

〈
∗
f,L

∗
f

〉
, we have

‖Dnrf‖2 +

∥∥∥∥Dnr

∗
f

∥∥∥∥2 =

〈
∗
f, (L+D)

∗
f

〉
.

Assuming µ̃0 > 0, Inequality (3) follows directly from L + D being symmetric and

positive semidefinite. Indeed, we have

0 < ‖f‖2 µ̃0 ≤
〈
∗
f, (L+D)

∗
f

〉
= ‖Dnrf‖2 +

∥∥∥∥Dnr

∗
f

∥∥∥∥2 ≤ ‖f‖2 µ̃N−1
following directly from the properties of the Rayleigh quotient. To prove positivity

of µ̃0, note that for

〈
∗
f, (L+D)

∗
f

〉
= 0 we must have 〈h,Dh〉 = 0 = 〈h,Lh〉 for

some h 6= 0. This is impossible as we have, for non-zero h, 〈h,Dh〉 = 0 if and only

if h = c[1, 0, ...., 0]∗ for some c 6= 0. This implies 〈h,Lh〉 = L00c
2 = c2 > 0 due to

the connectivity of the graph. �

Theorems 6.2.1 and 6.2.2 establish a positive lower bound for the norms of

differential operators acting on functions in l2(G) and their graph Fourier trans-

form. The results do not address exactly what values are simultaneously possible in

general. We examine the space of all feasible values in Chapter 7. The remainder of

this chapter is dedicated to finding lower bounds for the differential operators acting

on frames for l2(G), and calculating specific bound values for the class of complete

graphs.
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6.3 A Graph Frame Differential Uncertainty Principle

As a generalization of the work by Lammers and Maeser in [33], we show that

the modified Laplacian operator L+∆ will dictate an additive uncertainty principle

for frames. Let

E =

E0 E1 ... EN−1


be a d×N matrix whose columns form a Parseval frame for Cd, i.e. EE∗ = Id×d. If

we let S = T 0−T , then S∗ = T 0−TN−1, and the classical Laplacian in the discrete

setting is given by Lc = S∗S = 2T 0 − T − TN−1. Let ‖·‖fr denote the Frobenius

norm. Recall from chapter 3 that the following result holds.

Theorem 6.3.1 (Lammers and Maeser [33]) For fixed dimension d and N ≥ d ≥ 2,

the following inequalities hold for all d×N Parseval frames:

0 < G(N, d) ≤ ‖SFT E∗‖2fr + ‖SE∗‖2fr

≤ H(N, d) (6.5)

≤ 8d.

Furthermore, the minimum (maximum) occurs when columns of E∗ the d orthonor-

mal eigenfunctions corresponding to the d smallest (largest) eigenvalues of Lc + ∆c

where Lc is the classical Laplacian and ∆c is its diagonalization. The constant

G(N, d) is the sum of those d smallest eigenvalues, and H(N, d) is the sum of those

d largest eigenvalues.
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To extend the inequalities in Theorem 6.3.1 to the graph Fourier transform

setting, we apply Dr to the frame’s conjugate transpose E∗ and to the graph Fourier

transform χ∗E∗, and then find bounds for the Frobenius norms.

Theorem 6.3.2 For any graph G as in Theorem 6.2.1, the following inequalities

hold for all d×N Parseval frames E:

d−1∑
j=0

λ̃j ≤ ‖Drχ
∗E∗‖2fr + ‖DrE

∗‖2fr ≤
N−1∑
j=N−d

λ̃j, (6.6)

where
{
λ̃j

}
is the ordered set of real, non-negative eigenvalues of L + ∆. Further-

more, these bounds are sharp.

Proof: Writing out the Frobenius norms as trace operators yield:

‖Drχ
∗E∗‖2fr + ‖DrE

∗‖2fr = tr(EχD∗rDrχ
∗E∗) (6.7)

+ tr(DrE
∗ED∗r).

Using the invariance of the trace when reordering products, we have ‖Drχ
∗E∗‖2fr +

‖DrE
∗‖2fr

= tr(Lχ∗E∗Eχ) + tr(LE∗E)

= tr(Lχ∗E∗Eχ) + tr(χ∆χ∗E∗E)

= tr((L+ ∆)χ∗E∗Eχ).

The operator ∆ + L is real, symmetric, and positive semidefinite. By the spectral

theorem, it has an orthonormal eigenbasis P that, upon conjugation, diagonalizes

∆ + L:

P ∗(∆ + L)P = ∆̃ = diag(λ̃0, λ̃1, ..., λ̃N−1).
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Hence, we have

‖DrχE
∗‖2fr + ‖DrE

∗‖2fr = tr((∆ + L)χ∗E∗Eχ)

= tr(P ∆̃P ∗χ∗E∗Eχ)

= tr(∆̃P ∗χ∗E∗EχP )

=
N−1∑
j=0

(K∗Kj,j) λ̃j,

whereK = EχP . The matrixK is a Parseval frame because unitary transformations

of Parseval frames are Parseval frames . Therefore, tr(K∗K) = tr(KK∗) = d. K∗K

is also the product of matrices with operator norm ≤ 1. Therefore, each of the

entries, (K∗Kj,j) , satisfies 0 ≤ (K∗Kj,j) ≤ 1. Hence, minimizing (maximizing)∑N−1
j=0 (K∗Kjj) λ̃j is achieved if

(K∗Kj,j) =


1 j < d (j ≥ N − d)

0 j ≥ d (j < N − d).

Choosing E to be the first (last) d rows of (χP )∗ accomplishes this. The positivity

of the bounds follows from the proof of Theorem 6.2.1 �

A similar result holds for the normalized graph Laplacian.

Theorem 6.3.3 For any graph G as in Theorem 6.2.1, the following inequalities

hold for all d×N Parseval frames E:

d−1∑
j=0

µ̃j ≤ ‖DnrF∗E∗‖2fr + ‖DnrE
∗‖2fr ≤

N−1∑
j=N−d

µ̃j, (6.8)

where {µ̃j} is the ordered set of real, non-negative eigenvalues of L+D. Furthermore,

these bounds are sharp.
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Proof: Writing out the Frobenius norms as trace operators yield:

‖DnrF∗E∗‖2fr + ‖DnrE
∗‖2fr = tr(EFD∗nrDnrF∗E∗) (6.9)

+ tr(DnrE
∗ED∗nr).

Using the invariance of the trace when reordering products, we have ‖DnrF∗E∗‖2fr+

‖DnrE
∗‖2fr

= tr(LF∗E∗EF) + tr(LE∗E)

= tr(LF∗E∗EF) + tr(FDF∗E∗E)

= tr((L+D)F∗E∗EF).

The operator D + L is real, symmetric, and positive semidefinite. By the spectral

theorem, it has an orthonormal eigenbasis Pn that, upon conjugation, diagonalizes

D + L:

P ∗n(D + L)Pn = D̃ = diag(µ̃0, µ̃1, ..., µ̃N−1).

Hence, we have

‖DnrFE∗‖2fr + ‖DnrE
∗‖2fr = tr((D + L)F∗E∗EF)

= tr(PnD̃P ∗nF∗E∗EF)

= tr(D̃P ∗nF∗E∗EFPn)

=
N−1∑
j=0

(
(K∗nKn)j,j

)
µ̃j,

where Kn = EFPn. The matrix Kn is a Parseval frame because unitary transforma-

tions of Parseval frames are Parseval frames . Therefore, tr(K∗nKn) = tr(KnK
∗) = d.

K∗nKn is also the product of matrices with operator norm ≤ 1. Therefore, each of
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the entries,
(

(K∗nKn)j,j

)
, satisfies 0 ≤

(
(K∗nKn)j,j

)
≤ 1. Hence, minimizing (max-

imizing)
∑N−1

j=0

(
(K∗nKn)j,j

)
µ̃j is achieved if

(
(K∗nKn)j,j

)
=


1 j < d (j ≥ N − d)

0 j ≥ d (j < N − d).

Choosing E to be the first (last) d rows of (FPn)∗ accomplishes this. The positivity

of the bounds follows from the proof of Theorem 6.2.1 �

6.4 The Complete Graph

Figure 6.1: A

unit weighted

complete graph

with 16 vertices.

Unit weighted graphs for which every vertex is connected directly to every

other vertex, as in Figure 6.1, are referred to as complete graphs. A complete graph
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with N vertices has graph Laplacian

L =



N − 1 −1 −1 · · · −1 −1

−1 N − 1 −1 −1

−1
. . . . . . . . .

...

...
. . . . . . . . .

...

...
. . . . . . . . .

...

...
. . . . . . . . . 0

−1 −1 N − 1 −1

−1 −1 · · · · · · · · · −1 −1 N − 1



= NI −O

where O is an N ×N matrix each of whose elements is 1. Noting that

L2 = (NI −O)2 = N2I − 2NO +O2 = N2I − 2NO +NO = N2I −NO,

and that

LNI = N2I −NO,

we have

L(L−NI) = L2 −NL = N2I −NO −N2I +NO = 0.

Hence, the minimal polynomial m(x) for L is given by m(x) = x(x − N). Since

the zero eigenvalue has multiplicity one, the characteristic polynomial is c(x) =

x(x − N)N−1. As is the case with all connected graphs, the eigenspace associated

with the null eigenvalue is the span of the constant vector χ0 =
(

1/
√
N
)

[1, ..., 1]∗.

Let χ1 =
(
1/
√

2
)

[1,−1, 0, ..., 0]. Then 〈χ0, χ1〉 = 0 and Lχ1 = Nχ1. Upon solving

for the N −2 remaining orthonormal eigenfunctions χl for l = 2, ..., N −1, we define
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the complete graph Fourier transform matrix χ∗c = [χ0, χ1, χ2, ..., χN−1]
∗. We then

have χ̂1 = [0, 1, 0, ..., 0]∗, and

|supp(χ1)| |supp(χ̂1)| = 2 < N

for N ≥ 3; and we see that the support theorems in [19] do not hold for graphs. The

cyclic structure of the FT matrix is not necessarily present in the graph setting.

Namely, the FT matrix is a Vandermonde matrix, while the graph Fourier transform

matrix is merely unitary.

For N > 2, the eigenvalues associated with L+ ∆ are given by λ̃0 = N −
√
N ,

λ̃1 = N +
√
N , and λ̃j = 2N for d ≤ j ≤ N − 1. Let

v0 =



√
N + 1

1

...

1


=
√
Ne0 + C

where e0 is the canonical first basis vector, and C is the N vector whose elements

are all 1. Using the fact that LC = 0, and that ∆e0 = 0, it is straightforward to
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show

(L+ ∆)v0 =
√
N



N − 1

−1

...

−1


+ n



0

1

...

1



=



√
N(N − 1)

N −
√
N

...

N −
√
N



= (N −
√
N)



√
N + 1

1

...

1


= (N −

√
N)v0.

Hence, v0 is associated with the eigenvalue N −
√
N . If we let

v1 =



1−
√
N

1

...

1


= C −

√
Ne0,

then

(L+ ∆)v1 = (N +
√
N)v1,

and we associate v1 with the eigenvalue N +
√
N . Suppose some vj is orthogonal to
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both v0 and v1, that is 〈v, v0〉 = 0 = 〈v, v0〉. These conditions imply

N−1∑
k=0

v[k] = −
√
Nv[0]

and

N−1∑
k=0

v[k] =
√
Nv[0]

which is only satisfied by

N−1∑
k=0

v[k] = 0 = v[0]. (6.10)

Applying the modified Laplacian (L+ ∆) to v yields

(L+ ∆)v = (L+ ∆)



0

v[1]

...

v[N − 1]



=



−
∑N−1

k=1 v[k]

Nv[1]−
∑N−1

k=1 v[k]

...

Nv[N − 1]−
∑N−1

k=1 v[k]


+Nv

= 2Nv,

where the final equality is due to (6.10). Since the orthogonal compliment of the

closed linear span of v0 and v1 has dimension N − 2, we conclude that 2N is the

largest eigenvalue of L+ ∆ with multiplicity N − 2. Due to these calculations and

the results of Theorem 6.2.1, we have, for N > 2, that

‖f‖2 (N −
√
N) ≤ ‖Drf‖2 +

∥∥∥Drf̂
∥∥∥2 ≤ ‖f‖2 2N.
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If we note that

d−1∑
k=0

λ̃k = (N−
√
N)+(N+

√
N)+

d−1∑
k=2

2N = 2N+
√
N−
√
N+2N(d−2) = 2N(d−1),

and apply Theorem 6.3.2, then we have, for all d×N Parseval frames E, that

2N(d− 1) ≤ ‖Drχ
∗E∗‖2fr + ‖DrE

∗‖2fr ≤


2Nd if N > d+ 1

2Nd−N N=d+1

.
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Chapter 7: Feasibility Results

7.1 Introduction

In [1], the authors define the notion of spread in the spectral and graph domains

using the analytic properties of the graph Fourier transform. The eigenvalues and

eigenfunctions of the graph Laplacian play a central role in determining what values

of spread are feasible. We shall examine this result in great detail and note its

similarity to the results in [47].

7.2 A Spectral Graph Uncertainty Principle

In this section, we shall give a spectral graph analogy to the classical uncer-

tainty principle due to Heisenberg, Pauli, Weyl, and Wiener due to Agaskar, and

Lu in [1]. Further, we shall explore the intriguing apparent connection between

diffusion processes on graphs and the uncertainty bounds.

Recall that the normalized Laplacian L = I −D−1/2AD−1/2 has non-negative

eigenvalues 0 = µ0 < µ1 ≤ µ2 ≤ ... ≤ µN−1 with the associated orthonormal

eigenbasis {Fj}. Recalling that for a connected graph that the eigenspace of µ0 has
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dimension 1, we have (up to a choice of sign) that

F0 =

[√
deg(v0)∑N−1
l=0 deg(vl)

,

√
deg(v1)∑N−1
l=0 deg(vl)

, ...,

√
deg(vN−1)∑N−1
l=0 deg(vl)

]′
.

Indeed, for

LF0 = F0 −D−1/2AD−1/2F0

we have that D−1/2F0 = 1/
√∑N−1

j=0 deg(vj)[1, 1, ..., 1]′ and that

D−1/2A[1, 1, ..., 1]′ =



∑N−1
j=0 deg(v0)

−1/2a0[j]∑N−1
j=0 deg(v1)

−1/2a1[j]

...∑N−1
j=0 deg(vN−1)

−1/2aN−1[j]


=



deg(v0)
1/2

deg(v1)
1/2

...

deg(vN−1)
1/2,


.

Hence, LF0 = F0−F0 = 0F0 so F0 is (up to sign change) a unit norm eigenfunction

for µ0 = 0.

In the classical setting, we define the time spread of a nonzero function f ∈

L2(R) about a point t0 ∈ R as

∆2
t,t0

:=
1

‖f‖2
∫
R
(t− t0)2 |f(t)|2 dt.

To generalize the notion of time spread to the graph setting we introduce the fol-

lowing definition.

Let u0 ∈ V for a graph G. Define the distance to u0, d(u0, v) as the shortest

length of a path connecting v and u0. Let Pu0 := diag(d(u0, v0), d(u0, v1), ..., d(u0, vN−1)).
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For a non zero function f : G→ R, the graph spread of f about u0 is

∆2
g,u0

(f) =
1

‖f‖2
N−1∑
j=0

d(u0, vj)
2f(vj)

2

=
1

‖f‖2
〈
f, P 2f

〉
(7.1)

The analogy between the time spread and the graph spread is straight forward: they

normalize the function and then measure the distance from a central node multiplied

by the value of the function. In order to define the spectral spread for a graph, a

less direct approach is necessary. In the classical setting the spectral or frequency

spread is given by

∆2
γ(f) :=

1

‖f‖2
∫
γ2
∣∣∣f̂(γ)

∣∣∣2 dγ. (7.2)

We have chosen γ0 = 0 due to the symmetry of the Fourier transform of real valued

functions. We have by integration by parts

(
− d2

dt2
f(t)

)
(̂γ) = 4π2γ2f̂(γ).

Hence, we can replace (7.2) with

∆2
γ(f) =

C

‖f(t)‖2
∫
f(t)
−d2

dt2
f(t)dt

where C = 4π2. It is with this formulation that we now form a graph theoretic

analog.

For a nonzero function f ∈ l2(G), we define its spectral spread of f as

∆2
s(f) =

1

‖f‖2
〈f,Lf〉 =

1

‖f‖2
N−1∑
j=0

λj

∣∣∣f̂ [j]
∣∣∣2
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where the second equality is due to the fact that L = FΛF∗ and the definition of

the normalized graph Fourier transform.

In the classical setting, not all pairs of (∆2
t ,∆

2
γ) are achievable: we must have

∀f ∈ L2(R) ∆2
t (f)∆2

γ(f) ≥ 1

4
.

We shall show that in the graph setting the allowable pairs of graph and spectral

spread are confined to a bounded, convex region in the first quadrant of R2. Define

the feasibility region Du0 as follows:

Du0 =
{

(s, g) : ∆2
s(f) = s and ∆2

g,u0
(f) = g for some f 6= 0 ∈ l2(G)

}
.

We shall prove the some key properties of the feasibility region.

Proposition 7.2.1 (Agaskar and Lu [1]) Let Du0 be the feasibility region for a

connected graph G with N vertices. Then, the following properties hold.

a) Du0 is a closed subset subset of [0, µN−1]×[0, E2G(u0)] where E2G(u0) := maxv∈V dist(u0, v)

is called the eccentricity of u0.

b) g = 0 and s = 1 is the only point on the horizontal axis in Du0. s = 0 and

g =
〈
F0, P

2
u0
F0

〉
is the only point on the vertical axis in Du0.

c) The points (1, E2G(u0)), and (µN−1,
〈
FN−1P

2
u0
FN−1

〉
) belong to Du0.

d) If N ≥ 3 then Du0 is a convex region.

Proof:

a) Let (s, g) ∈ Du0 for some f . Then for f̃ = f
‖f‖ , ∆2

s(f) = s = ∆2
s(f̃) and

similarly for ∆2
g,uo(f) so Du0 is in the image of the unit sphere. By definition,
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the image of the unit sphere is in Du0 . Therefore Du0 is a closed compact set

as it is the image of a closed compact set under a continuous transformation.

WLOG we shall assume f is on the unit sphere. We have that µ0 ≤ 〈f,Lf〉 ≤

µN−1, and that 0 ≤
〈
f, P 2

u0
f
〉
≤ E2G(u0) by the Rayleigh inequalities.

b) If g = 0 then
〈
f, P 2

u0
f
〉

= 0 =
∑N−1

j=0 dist2(u0, vj) |f [j]|2 . For a connected

graph, dist2(u0, vj) = 0 if and only if vj = u0. Such an f must be the canonical

jth basis vector or its negative. Regardless of this choice of sign, we must then

have s = 〈f,Lf〉 = Ljj = 1. If s = 0 for some f , then f is in the eigenspace of

µ0 = 0. Hence, we have g =
〈
F0, P

2
u0
F0

〉
.

c) Let dist(u0, vj) = EG(u0), then setting f equal to the canonical jth basis vector

yields the coordinates
(
1,
〈
f, P 2

u0
f
〉)

=
(

1,
(
P 2
u0

)
jj

)
= (1, E2G(u0)) . If g =〈

FN−1, P
2
u0
FN−1

〉
, then s = 〈FN−1,LFN−1〉 = µN−1.

d) Showing that the feasibility region is convex is equivalent to showing the fol-

lowing proposition.

Proposition 7.2.2 (Agaskar and Lu [1]) Let f1 and f2 be functions on a

graph G with N ≥ 3 vertices such that

〈fi, fi〉 = 1, 〈fi,Lfi〉 = si, and
〈
fi, P

2
u0
fi
〉

= gi for i = 1, 2. (7.3)

Then for any β ∈ [0, 1], we can always find a function f on the graph satisfying

〈f, f〉 = 1, 〈f,Lf〉 = s, and
〈
f, P 2

u0
f
〉

= g (7.4)

where s := βs1 + (1− β)s2 and g := βg1 + (1− β)g2. That is to say, any line

segment in R2 connecting (s1, g1) with (s2, g2) is in Du0.
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In order to prove the proposition, we shall formulate this as a problem in

SymN , the space of N × N symmetric matrices. Every function f on l2(G)

can be mapped onto a symmetric, rank one N × N matrix M by setting

M = ff ∗ (i.e. M is the grammian of f). Further, if the following properties

hold for a rank one matrix M (which can be decomposed as M = ff ∗), then

7.4 holds for f :

1. 1 = 〈f, f〉 = tr(f ∗f) = tr(ff ∗) = tr(M),

2. s = 〈f,Lf〉 = tr(f ∗Lf) = tr(Lff ∗) = tr(LM), and

3. g =
〈
f, P 2

u0
f
〉

= tr(f ∗P 2
u0
f) = tr(P 2

u0
ff ∗) = tr(P 2

u0
M) = gi.

In general, finding a rank one matrix satisfying these conditions is not nec-

essarily an easy problem, but the following theorem shall help us find such a

matrix.

Theorem 7.2.3 (Barvinok [4]) Suppose that R ≥ 0 and M ≥ R + 2. Let

H ⊂ SymN be an affine subspace such that codim(H) ≤
(
R+2
2

)
. If SN+ ∩ H is

nonempty and bounded (where SN+ is the set of N × N positive semidefinite

symmetric matrices), then there exists a matrix M ∈ SN+ ∩H of rank less than

or equal to R.

Proof of proposition: Let f1 and f2 satisfy equation 7.3. Under the mapping

Mi = fif
∗
i for i = 1, 2, each Mi satisfies

tr(Mi) = 1, tr(Mi) = si, and tr(P 2
u0

).
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By construction, each Mi is symmetric positive definite. For any β ∈ [0, 1], let

M ′ = βM1 + (1 − β)M2. Clearly, M ′ ∈ SN+ by the convexity of SN+ and if we

let s = βs1 + (1− β)s2 and g = βg1 + (1− β)g2 then

M ′ ∈ H =
{
M ∈ SymN : tr(M) = 1, tr(LM) = s, and tr(P 2

u0
M) = g

}
.

By the linear independence of I, L, and P 2
u0

, we have that H is an affine

subspace of SymN with codimension 3. Hence, we have that SN+ ∩ H 6= ∅.

Noting that any element of SN+ ∩ H has nonnegative eigenvalues which must

sum to 1, the boundedness of this subspace is straightforward to show:

∀M ∈ SN+ ∩H, ‖M‖fr = tr(M2) ≤ tr(M) = 1.

By theorem 7.2.3, we conclude that there exists a matrix M of rank one that

can be decomposed as M = ff ∗ with f satisfying equation 7.4 as desired. �

The boundedness and convexity of the feasibility region suggests that it can be

characterized by its lower and upper boundary. We shall explore the lower boundary

of the region, however, we could do the same analysis on the upper boundary. We

refer to the lower boundary as the uncertainty curve, and define it as follows:

∀s ∈ [0, µN−1], γu0(s) = min
f

∆2
g,u0

(f) subject to ∆2
s(f) = s

= min
f

〈
f, P 2

u0
f
〉

subject to ‖f‖2 = 1 and 〈f,Lf〉 = s.

For fixed s ∈ [0, µN−1], we say that a function f ′ with ∆2
s(f
′) = s attains the

uncertainty curve if ∀f with ∆2
s(f) = s we have

∆G,u0(f
′) ≤ ∆G,u0(f).
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Figure 7.1: The uncertainty curve (red) for a graph G about the vertex u0

See Figure 7.1 for a graphical representation of the uncertainty curve. Finding a unit

norm f ′ that becomes an N dimensional constrained optimization problem which is

solved by Lagrange multipliers [32]. Upon differentiating

Λ =
〈
f, P 2

u0
f
〉

+ α (〈f,Lf〉 − s) + β
(
‖f‖2 − 1

)
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with respect the the N variables in f we have for an optimal solution f ′ that

2P 2
u0
f ′ = 2αLf ′ + 2βf ′

⇐⇒
(
P 2
u0
− αL

)
f ′ = βf ′.

If we fix α ∈ R and define the linear operator M(α) = P 2
u0
−αL then we see that any

optimal solution must be an eigenfunction for M(α). Define q(α) to be the minimal

eigenvalue associated with M(α), and let S(α) be its associated eigenspace. We

shall show that any unit norm eigenfunction g ∈ S(α) lies on γu0 .

Proposition 7.2.4 (Agaskar and Lu [1]) For all α ∈ R and for any unit norm

eigenfunction τ ∈ S(α), we have
(
〈τ,Lτ〉 ,

〈
τ, P 2

uoτ
〉)

lies on γu0.

Proof: Fix α ∈ R, then for any arbitrary unit norm f we have

〈f,M(α)f〉 =
〈
f, (P 2

u0
− αL)f

〉
=
〈
f, P 2

u0
f
〉
− α 〈f,Lf〉 .

The Rayleigh quotient for M(α) is bounded sharply below by q(α), hence we con-

clude for any unit normed τ ∈ S(α) that

〈
τ, P 2

u0
τ
〉
− α 〈τ,Lτ〉 = q(α)

≤
〈
f, P 2

u0
f
〉
− α 〈f,Lf〉 .

Upon restricting f to 〈f,Lf〉 = s we have

〈
f, P 2

u0
f
〉
− s ≥

〈
τ, P 2

u0
τ
〉
− s ⇐⇒

〈
f, P 2

u0
f
〉
≥
〈
τ, P 2

u0
τ
〉
.

Therefore
(
〈τ,Lτ〉 ,

〈
τ, P 2

uoτ
〉)

lies on γu0 as desired. �
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Proposition 7.2.4 guarantees that unit norm eigenfunctions associated with

q(α) lie on the uncertainty curve. We shall show the converse is true: for all (s, g)

lying on γu0 there exists an α ∈ (−∞,∞) and a unit normed eigenfunction τ ∈ S(α)

such that
(
〈τ,Lτ〉 ,

〈
τ, P 2

uoτ
〉)

= (s, g). To establish this result, we shall rely on the

following two functions:

h+(α) := max
τ∈S(α):‖τ‖=1

〈τ,Lτ〉 (7.5)

h−(α) := min
τ∈S(α):‖τ‖=1

〈τ,Lτ〉

which measure the maximal and, respectively, the minimal spectral spread that can

be achieved by eigenfunctions in S(α).

Lemma 7.2.5 (Agaskar and Lu [1]) The following properties hold for h+(α) and

h−(α).

a) h±(α) are increasing functions.

b) As α tends to infinity, h±(α) limit to µN−1, and as α tends to negative infinity

h±(α) limit to 0.

c) On any finite interval [a, b], the functions differ on at most a finite number of

points denoted by B = {b1, ..., bk} for some k ≥ 0. For all α 6∈ B, the following

holds: h+(α) = h−(α) = −q′(α).

Proof:

a) For α1 < α2, we take any g1 ∈ S(α1) and g2 ∈ S(α2), and we, again, em-

ploy the Rayleigh quotient for symmetric matrices: 〈g2,M(α1)g2〉 ≥ q(α1) =
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〈g1,M(α1)g1〉. Similarly, we have−〈g2,M(α2)g2〉 = −q(α2) ≥ −〈g1,M(α2)g1〉 .

Combining the inequalities yields

〈g2, (M(α1)−M(α2))g2〉 ≥ 〈g1, (M(α1)−M(α2))g1〉 . (7.6)

Noting that M(α1)−M(α2) = (α2 − α1)L, and plugging into (7.6) yields

〈g2,Lg2〉 ≥ 〈g1,Lg1〉

Upon specializing to the unit norm eigenfunctions that attain the maximiza-

tion in (7.5) we have

h+(α2) = 〈g2,Lg2〉 ≥ 〈g1,Lg1〉 = h+(α1)

Similarly, we have that h−(α2) ≥ h−(α1).

b) Let α ∈ R, then we clearly have

h+(α) ≥ h−(α) ≥ 0

by the positive semidefinite property of L. Let v ∈ S(α) be unit normed. Re-

call that the eigenfunction F0 is associated with µ0 = 0 and hence 〈F0,LF0〉 =

0. The following inequality holds by Rayleigh’s inequality:

〈v,M(α)v〉 ≤ 〈F0,M(α)F0〉 =
〈
F0, P

2
u0
F0

〉
+ 0 =

〈
F0, P

2
u0
F0

〉
. (7.7)

For α < 0, subtracting
〈
v, P 2

u0
v
〉

from both sides of 7.7 and multiplying by − 1
α

yields

〈v,Lv〉 ≤ − 1

α

(〈
F0, P

2
u0
F0

〉
−
〈
v, P 2

u0
v
〉)

= − 1

α

〈
(F0 − v) , P 2

u0
(F0 − v)

〉
≤ −E

2
G(u0)

α
,
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where the final inequality is due to the eccentricity E2G(u0) being a global bound

for the graph spread. As α→ −∞ we squeeze h±(α) to zero:

0 ≤ h−(α) ≤ h+(α) ≤ −E
2(u0)

α
→ 0,

which proves limα→−∞ h±(α) = 0.

For the limit as α→∞, recall that 〈FN−1,LFN−1〉 = µN−1 and hence we have

〈v,M(α)v〉 ≤ 〈FN−1,M(α)FN−1〉

=
〈
FN−1, P

2
u0
FN−1

〉
− αµN−1

≤ E2G(u0)− αµN−1.

Dividing both sides by −α, and solving for 〈v,Lv〉 yields:

〈v,L, v〉 ≥ µN−1 −
1

α

(
E2G(u0)−

〈
v, P 2

u0
v
〉)
.

Noting that µN−1 ≥ 〈v,Lv〉 by the Rayleigh inequality and taking α → ∞

yields the desired result:

µN−1 ≥ lim
α→∞

h+(α) ≥ lim
α→∞

h−(α) ≥ µN−1.

c) We use eigenvalue perturbation results such as those in [34] to establish that

q(α) is analytic for [a, b]∩(A)c where A is a finite subset of [a, b]. M(α) is real,

it is linear in α, hence analytic, and it is symmetric. By Theorem 2 on page

404 of [34], there exist N analytic functions µ0(·), ..., µN−1(·) and N analytic

vector valued functions ω0(·), ..., ωN−1(·) such that

∀α ∈ R M(α)ωj(α) = µj(α)ωj(α) (7.8)
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and

〈ωj(α), ωk(α)〉 =


0 if j 6= k

1 if j = k

.

Let [a, b] be an arbitrary finite interval in R, and fix α0 ∈ (a, b). If S(α0) is

one dimensional, then exactly one eigenvalue function µj(α0) equals q(α0). By

the analycity of all the eigenvalue functions, there exists some δ ball about α0,

such that if |α− α0| < δ then µj(α) < µk(α) for k 6= j. Hence, q(α) = µj(α)

for α ∈ (α0 − δ, α0 + δ) and therefore q(α) is analytic on the δ ball.

If S(α0) has dimension greater than one, then more than one eigenvalue func-

tion from µl(α0) for l = 0, ..., N − 1 attains the value q(α0). In this case, q(α)

may not be analytic in any neighborhood of α0. For instance, if two of the

eigenvalue functions cross at exactly α0, then there is no derivative for q(α) at

α0. Define pj(α) for j = 0, ..., d ≤ N − 1 as the distinct eigenvalue functions

of M(α), and let nj be the multiplicity of each function. For [a, b] ⊂ R, define

A =
⋃

0≤i<j≤d

{α ∈ [a, b] : pi(α) = pj(α)} .

As defined, A has finite order. Indeed, if |A| = ∞ then at least two of the

pj’s would be equal on an infinite set of points on the interval, and therefore

would be equal on the interval because both are analytic.

To conclude the proof, we shall relate q(α) to H±(α). For fixed α0 ∈ [a, b], we

without loss of generality, assume the first k + 1 distinct eigenvalue functions

pi for i = 0, ..., k intersect at α0, and are minimal. That is to say, pi(α0) =

q(α0). The associate eigenfunction functions are denoted by ωi,j(α) for i =
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0, ..., k, and j = 1, ..., ni. Hence, ωij(α0) form an orthonormal basis for S(α0).

Therefore, if τ ∈ S(α0) is unit normed, we have

τ =
k∑
i=0

ni∑
j=1

cijωij(α0).

The coefficients cij = 〈τ, ωij(α)〉 and therefore
∑k

i=0

∑ni
j=1 c

2
ij = ‖τ‖2 = 1. We

define the analytic function τ(α) such that τ(α0) = τ as follows:

τ(α) =
k∑
i=0

ni∑
j=1

cijωij(α).

Applying M(α) to τ(α) yields

M(α)τ(α) =
k∑
i=0

ni∑
j=1

cijM(α)ωij(α)

=
k∑
i=0

ni∑
j=1

cijpi(α)ωij(α). (7.9)

We apply the product rule to differentiate equation (7.9) which yields

M ′(α)τ(α) +M(α)τ ′(α) =
k∑
i=0

ni∑
j=1

cijp
′
i(α)ωij(α) +

k∑
i=0

ni∑
j=1

cijpi(α)w′ij(α).

(7.10)

Evaluating equation (7.10) at α0 yields

M ′(α0)τ(α0) +M(α0)τ
′(α0) =

k∑
i=0

ni∑
j=1

cijp
′
i(α0)ωij(α0) +

k∑
i=0

ni∑
j=1

cijpi(α0)w
′
ij(α0).

(7.11)

Noting that M ′(α) = −L, pi(α0) = q(α0),

〈τ(α0),M(α0)τ
′(α0)〉 = 〈M(α0)τ(α0), τ

′(α0)〉 = q(α0) 〈τ(α0), τ
′(α0)〉 ,

and that 〈
τ(α0),

k∑
i=0

ni∑
j=1

cijp
′
i(α0)ωij(α0)

〉
=

k∑
i=0

ni∑
j=1

c2ijp
′
i,
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we have that the inner product of τ(α0) with the left and right hand sides of

equation (7.11) yields

−〈τ(α0),Lτ(α0)〉+ q(α0) 〈τ(α0), τ
′(α0)〉 =

k∑
i=0

ni∑
j=1

c2ijp
′
i

+ q(α0)
k∑
i=0

ni∑
j=1

cij 〈τ(α0)ωij(α0)〉 .

(7.12)

The second summands on the LHS and RHS of equation (7.12) are equal,

hence we have

〈τ(α0),Lτ(α0)〉 = −
k∑
i=0

ni∑
j=1

c2ijp
′
i.

Since τ(α0) = τ ∈ S(α0) was arbitrary and unit normed, and since the dimen-

sion of S(α0) is finite, maximizing (respectively minimizing) 〈τ,Lτ〉 is achieved

by maximizing (respectively minimizing) over the pi(α0)’s. Hence we have

H+(α0) = max
0≤i≤k

−p′i(α0),

and

H−(α0) = min
0≤i≤k

−p′i(α0).

Since all of the pi(α) are distinct (except at α0) in some neighborhood N

covering α0 and small enough thatN∩A = α0 or ∅, there exist l,m ∈ {0, ..., k}

such that

q(α) =


pl(α) α ≤ α0

pm(α) α ≥ α0.

If for some j 6= m, p′j(α0) < p′m(α0) then pj(α) < pm(α) for some α ∈ N ∩

[α0,∞). This contradicts the fact that q(α) = pq(α) on this interval. Similarly,
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if there exists some j 6= l, with p′j(α0) > ρ′l(α0) there is a contradiction on

N ∩ (−∞, α0]. Hence, we have

H+(α) = −ρ′q(α) = −m′(α) for α ∈ N ∩ [α0,∞),

and

H−(α) = −ρ′l(α) = −m′(α) for α ∈ N ∩ (−∞, α0].

Right and left continuity follow from pm and pl having continuous derivatives.

If k = 0, that is, if only one of the pi functions aligns with m at α0, then q(α)

is analytic on N and we have H−(α) = H+(α) = −m′(α) on N . If we denote

B as the set of α ∈ [a, b] for which H−(α) 6= H+(α), we must have B ⊆ A and

therefore B is a finite set. �

Having established lemma 7.2.5, we shall use it to prove that the eigenspace S(α)

associated with the minimal eigenvalue q(α) of M(α) precisely characterizes the

uncertainty curve γ(s) for s ∈ (0, µn−1).

Theorem 7.2.6 (Agaskar and Lu [1]) A function f ∈ l2(G) with ∆2
s(f) ∈ (0, µN−1)

achieves the uncertainty curve if and only if it is a nonzero eigenfunction in S(α)

for some α ∈ R.

Proof: The “if” direction was established in proposition 7.2.4. To show the other

direction, we shall establish that for any function f ∈ l2(G) that achieves the un-

certainty curve, there is an α and a unit norm v ∈ S(α) such that 〈v,Lv〉 = ∆2
s(f).

As before, we assume f has unit norm (as we can normalize any function without

affecting its spreads). Having also assumed f lies on the uncertainty curve, and
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being guaranteed that v lies on the curve by Proposition 7.2.4, we have ∆2
G,u0

=〈
f, P 2

u0
f
〉

=
〈
v, P 2

u0

〉
, and hence

〈f,M(α)f〉∆2
G,u0

(f)− α∆2
s(f)

= ∆2
G,u0

(v)− α∆2
s(v)

= 〈v,M(α)v〉

= q(α).

Therefore, f must also be a unit vector in S(α). In order to complete that proof, we

shall show that for any s ∈ (0, µN−1) there is an α and a unit norm eigenfunction

v ∈ S(α) such that 〈v,Lv〉 = s.

Given s ∈ (0, µN−1), parts (b) and (c) of Lemma 7.2.5 ensure that there exist

a < b such that h−(a) < s < h+(b) and that on the interval [a, b] there exists at

most one point β ∈ [a, b] at which h−(β) < h+(β). The interval [h−(a), h+(b)] can

be written as the union of three subintervals:

[h−(a), h+(b)] = [h−(a), h−(β)) ∪ [h−(β), h+(β)] ∪ (h+(β), h+(b)].

Thus s must belong to one of these three intervals. If s is in the first or third subin-

terval, the continuity of h−(α) and h+(α), respectively, on these intervals guarantees

some α hits the value s on one of these intervals. By the construction of the h±,

this also guarantees a v achieving the uncertainty curve exists. This leaves the

less straight forward case of s ∈ [h−(β), h+(β)]. In order to show that there exists
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τ ∈ S(β), we introduce

τ+ = argmaxz∈S(β),‖z‖=1 〈z,Lz〉

and

τ− = argmaxz∈S(β),‖z‖=1 〈z,Lz〉 ,

and define for θ ∈ [0, π/2] the vector valued function

y(θ) =
cos θτ+ + sin θτ−

(1 + sin(2θ) 〈τ+, τ−〉)1/2
.

The assumption that h−(β) 6= h+(β) ensure that the denominator is nonzero. The

denominator has norm squared given by

‖cos θτ+ + sin θτ−‖2 = 1 + 2 cos θ sin θ 〈τ+, τ−〉

= 1 + sin(2θ) 〈τ+, τ−〉

so ‖y(θ)‖ = 1. Further, as the composition of continuous functions, y(θ) is continu-

ous, and, as the linear combination of elements of S(β), y(θ) ∈ S(β). By continu-

ity, the intermediate value theorem, and the fact that 〈y(π/2),Ly(π/2)〉 = h−(β)

and 〈y(0),Ly(0)〉 = h+(β), we have that there exists θ0 ∈ [0, π/2] such that

〈y(θ0),Ly(θ0)〉 = s. This completes the characterization of the uncertainty curve. �

7.3 Vertex Frequency Difference Operator Feasibility Region

We extend the concept of the feasibility region for graph and spectral spreads

from [1], and the feasible regions discussed in the Bell labs uncertainty papers ( [47],

[35]). Define the difference operator feasibility region FR as follows:

FR =

{
(x, y) : ‖Drf‖2 = x and

∥∥∥Drf̂
∥∥∥2 = y for some unit normed f 6= 0 ∈ l2(G)

}
.
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We shall prove the some key properties of the difference operator feasibility region.

Proposition 7.3.1 Let FR be the difference operator feasibility region for a simple,

and connected graph G with N vertices. Then, the following properties hold.

a) FR is a closed subset subset of [0, λN−1]× [0, λN−1] where λN−1 is the maximal

eigenvalue of the Laplacian L

b) y = 0 and x = 1
N

∑N−1
j=0 λj is the only point on the horizontal axis in FR.

x = 0 and y = L0,0 is the only point on the vertical axis in FR.

c) FR is in the half plane defined by x + y ≥ λ̃0 > 0 with equality if and only if

f̂ is in the eigenspace associated with λ̃0.

d) If N ≥ 3 then FR is a convex region.

Proof: Recall that

‖Drf‖2 = 〈f, Lf〉 =
〈
f̂ ,∆f̂

〉
,

and that ∥∥∥Drf̂
∥∥∥2 =

〈
f̂ , Lf̂

〉
.

Note that the operation f → f̂ is an isomorphism of the unit ball in l2(G). Hence,

for the entirety of this proof we rely on the fact that if a unit normed g ∈ l2(G)

(respectively a unique unit normed g ∈ l2(G)) achieves a value in the feasibility

region for 〈g,∆g〉, and for 〈g, Lg〉 then there exists a unique unit normed f ∈ l2(G)

(respectively a unique unit normed f ∈ l2(G)) that achieves the same values for

‖Drf‖2 and
∥∥∥Drf̂

∥∥∥2 respectively. Namely, f = χg achieves the values.
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a) By the properties of the Rayleigh quotient, we have any unit normed g ∈ l2(G)

0 = λ0 ≤ 〈g,∆g〉 ≤ λN−1

with maximal equality if g = [0, ..., 0, 1]′, and that

0 = λ0 ≤ 〈g, Lg〉 ≤ λN−1

with maximal equality if g is in the eigenspace associated with λN−1 for L.

Hence, FR ⊂ [0, λN−1] × [0, λN−1]. It is closed because FR is the image of a

continuous mapping from the closed unit ball of l2(G) into R2.

b) 〈g, Lg〉 = 0 if and only if g = ± 1√
N

[1, ..., 1]′. Hence, we have

x = 〈g,∆g〉 =
1

N
[1, ..., 1]



λ0

λ1

...

λN−1


=

1

N

N−1∑
j=0

λj.

x = 0 if and only if g = ±[1, 0, ..., 0]′. Hence, we have y = L0,0, which is the

degree of the first vertex of G.

c) This follows directly from Theorem 6.2.1.

d) To show that FR is convex we prove the following equivalent property in a

similar fashion to Proposition 7.2.2 originally shown in [1].

Proposition 7.3.2 Let g1 and g2 be functions on a graph G with N ≥ 3

vertices such that

〈gi, gi〉 = 1, 〈gi,∆gi〉 = xi, and 〈gi, Lgi〉 = yi for i = 1, 2. (7.13)
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Then for any β ∈ [0, 1], we can always find a function g on the graph satisfying

〈g, g〉 = 1, 〈g,∆g〉 = x, and 〈g, Lg〉 = y (7.14)

where x = βx1 + (1− β)x2 and y = βx1 + (1− β)x2. That is to say, any line

segment in R2 connecting (x1, y1) with (x2, y2) is in FR.

In order to prove the proposition, we shall formulate this as a problem in

SymN , the space of N ×N symmetric matrices. Every function g ∈ l2(G) can

be mapped onto a symmetric, rank one N ×N matrix M by setting M = gg∗.

Further, if the following properties hold for a rank one matrix M (which can

be decomposed as M = gg∗), then (7.14) holds for g:

1. 1 = 〈g, g〉 = tr(g∗g) = tr(gg∗) = tr(M),

2. x = 〈g,∆g〉 = tr(g∗∆g) = tr(∆gg∗) = tr(∆M), and

3. y = 〈g, Lg〉 = tr(g∗Lg) = tr(Lgg∗) = tr(LM).

Again, we refer to Theorem (7.2.3) from [4] in order to show that such a rank

one symmetric positive semi-definite exists.

Proof of proposition: Let g1 and g2 satisfy equation (7.13). Under the mapping

Mi = gig
∗
i for i = 1, 2, each Mi satisfies

tr(Mi) = 1, tr(∆Mi) = xi, and tr(LMi) = yi.

By construction, each Mi is symmetric positive semi-definite. For any β ∈

[0, 1], let M ′ = βM1 + (1 − β)M2. Clearly, M ′ ∈ SN+ by the convexity of SN+
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and if we let x = βx1 + (1− β)x2 and y = βy1 + (1− β)y2 then

M ′ ∈ H = {M ∈ SymN : tr(M) = 1, tr(∆M) = x, and tr(LM) = y} .

By the linear independence of I, L, and ∆, we have thatH is an affine subspace

of SymN with codimension 3. Hence, we have that SN+ ∩ H 6= ∅. Noting that

any element of SN+ ∩H has nonnegative eigenvalues which must sum to 1, the

boundedness of this subspace is straightforward to show:

∀M ∈ SN+ ∩H, ‖M‖fr = tr(M2) ≤ tr(M) = 1.

By Theorem (7.2.3), we conclude that there exists a matrix M of rank one that

can be decomposed as M = gg∗ with g satisfying equation (7.13) as desired.

�

We now turn our attention the lower boundary of FR: the differential uncer-

tainty curve (DUC) (see Figure (7.2)) ω(x) is defined as

∀x ∈ [0, λN−1], ω(x) = inf
g∈l2(G)

〈g, Lg〉 subject to 〈g,∆g〉 = x.

Given a fixed x ∈ [0, λN−1], we say g′ attains the DUC if for all g with 〈g,∆〉 = x

we have

〈g′, Lg′〉 ≤ 〈g, Lg〉 .

We shall show that for all x ∈ [0, λN−1], there exists a function attaining the DUC.

In fact, we shall show that certain eigenfunctions of the matrix valued function

K(α) = L−α∆ will attain the DUC for every value of x. Hence, we shall show that

ω(α) = min
g∈l2(G)

〈g, Lg〉 subject to 〈g, λg〉 = x and 〈g, g〉 = 1.
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Figure 7.2: The differential uncertainty curve (red) for a connected graph G

We begin classifying ω(x) by motivating the use of the operator K(α). Finding

values that attain the differential uncertainty curve amounts to solving a quadrat-

ically contrained convex optimization problem. We achieve this by defining the

following Lagrangian function, and setting its gradient equal to zero. Define the

DUC Lagrangian as

Γ(g, α, β) = 〈g, Lg〉 − α(〈g,∆g〉)− β(〈g, g〉 − 1).
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Upon taking the gradient with respect to g and setting the gradient equal to zero,

we have for some optimal g′ that

∇g(Γ(g, α, β))(g′) = 2Lg′ − 2α∆g′ − 2βg′ = 0

and

K(α)g′ = (L− α∆)g′ = βg′.

Thus the minimizer of the quadratically constrained problem is an eigenfunction of

the operator K(α). Define m(α) to be the minimal eigenvalue of K(α), and define

σ(α) to be its associated eigenspace. We shall prove that a function g attains the

DUC if and only if it is σ(α). In order to prove this, we shall set up some tools for

proving this.

We shall rely heavily on analysis of the following two functions:

H+(α) = max
g∈σ(α):‖g‖=1

〈g,∆g〉 (7.15)

H−(α) = min
g∈σ(α):‖g‖=1

〈g,∆g〉

which measure the maximal and, respectively, the minimal spectral spread that can

be achieved by eigenfunctions in S(α).

Lemma 7.3.3 The following properties hold for H+(α) and H−(α).

a) For all α ∈ R) H+(α), and H−(α) are increasing functions increasing func-

tions.

b) As α tends to infinity, H±(α) limit to λN−1, and as α tends to negative infinity

H±(α) limit to 0.
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c) On any finite interval [a, b], the functions differ on at most a finite number of

points denoted by Σ = {b1, ..., bk} for some k ≥ 0. For all α 6∈ Σ, the following

holds: H+(α) = H−(α) = −m′(α).

Proof:

a) For α1 < α2, we take any ν1 ∈ σ(α1) and ν2 ∈ σ(α2), and we have, by the

Rayleigh quotient for symmetric matrices:

〈ν2, K(α1)ν2〉 ≥ m(α1) = 〈ν1, K(α1)ν1〉 .

Similarly, we have

−〈ν2, K(α2)ν2〉 = −m(α2) ≥ −〈ν1, K(α2)ν1〉 .

Combining the inequalities yields

〈ν2, (K(α1)−K(α2))ν2〉 ≥ 〈ν1, (K(α1)−K(α2))ν1〉 . (7.16)

Noting that K(α1)−K(α2) = (α2 − α1) ∆, and plugging into (7.16) yields

〈ν2,∆ν2〉 ≥ 〈ν1,∆ν1〉

Upon specializing to the unit norm eigenfunctions that attain the maximiza-

tion in (7.15) we have

H+(α2) = 〈ν2,∆ν2〉 ≥ 〈ν1,∆ν1〉 = H+(α1)

Similarly, upon specializing to the unit norm eigenfunctions that attain the

minimum in (7.15) we have that H−(α2) = 〈ν2,∆ν2〉 ≥ 〈ν1,∆ν1〉 = H−(α1).
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b) Let α ∈ R, then we clearly have

H+(α) ≥ H−(α) ≥ 0

by the positive semidefinite property of ∆. Let ν ∈ σ(α) be unit normed.

Recall that the canonical first basis vector e0 spans the null space of ∆ and

hence 〈e0,∆e0〉 = 0. For any unit norm ν ∈ σ(α), we have 〈ν, Lν〉 ≥ 0, and if

α < 0, we have −α 〈ν,∆ν〉 ≥ 0. Thus by the properties the Rayleigh quotient

we have

0 ≤ −α 〈ν,∆ν〉 ≤ 〈ν,K(α)ν〉 ≤ 〈e0, K(α)e0〉 = Lo,o + 0 = Lo,o. (7.17)

Multiplying (7.17) by − 1
α

yields

0 ≤ 〈ν,∆ν〉 ≤ − 1

α
L0,0.

Since this is valid for all ν ∈ σ(α) we have

0 ≤ H−(α) ≤ H+(α) ≤ −L0,0

α

As α→ −∞, we squeeze H±(α) to zero as desired.

For the limit as α → ∞, recall that the last canonical eigenfunction eN−1 is

in the eigenspace of λN−1 for ∆. Hence, 〈eN−1,∆eN−1〉 = λN−1, and we have

〈ν,K(α)ν〉 ≤ 〈eN−1, K(α)eN−1〉

= 〈eN−1, LeN−1〉 − αλN−1

= LN−1,N−1 − αλN−1.
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Adding (α 〈ν,∆ν〉 − LN−1,N−1) to both sides yields

〈ν, Lν〉 − LN−1,N−1 ≤ α (〈ν,∆ν〉 − λN−1) ≤ 0 (7.18)

where the last inequality in (7.18) is due to α > 0 and the properties of the

Rayleigh quotient. Taking the absolute value of both sides, and dividing by α

yields ∣∣∣∣〈ν, Lν〉 − LN,Nα

∣∣∣∣ ≥ |〈ν,∆ν〉 − λN−1| ≥ 0.

The desired result follow from taking α→∞.

c) We use eigenvalue perturbation results such as those in [34] to establish that

m(α) is analytic for [a, b]∩(Υ)c where Υ is a finite subset of [a, b]. K(α) is real,

it is linear in α, hence analytic, and it is symmetric. By Theorem 2 on page

404 of [34], there exist N analytic functions ξ0(·), ..., ξN−1(·) and N analytic

vector valued functions w0(·), ..., wN−1(·) such that

∀α ∈ R K(α)wj(α) = ξj(α)wj(α) (7.19)

and

〈wj(α), wk(α)〉 =


0 if j 6= k

1 if j = k

.

Let [a, b] be an arbitrary finite interval in R, and fix α0 ∈ (a, b). If σ(α0) is one

dimensional, then exactly one eigenvalue function ξj(α0) equals m(α0). By

the analycity of all the eigenvalue functions, there exists some δ ball about α0,

such that if |α− α0| < δ then ξj(α) < ξk(α) for k 6= j. Hence, m(α) = ξj(α)

for α ∈ (α0 − δ, α0 + δ) and therefore m(α) is analytic on the δ ball.
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In σ(α0) has dimension greater than one, then more than one eigenvalue func-

tion from ξl(α0) for l = 0, ..., N − 1 attains the value m(α0). In this case, q(α)

may not be analytic in any neighborhood of α0. For instance, if two of the

eigenvalue functions cross at exactly α0, then there is no derivative for q(α) at

α0. Define ρj(α) for j = 0, ..., d ≤ N − 1 as the distinct eigenvalue functions

of K(α), and let nj be the multiplicity of each function. For [a, b] ⊂ R, define

Υ =
⋃

0≤i<j≤d

{α ∈ [a, b] : ρi(α) = ρj(α)} .

As defined, Υ has finite order. Indeed, if |Υ| = ∞ then at least two of the

ρj’s would be equal on an infinite set of points on the interval, and therefore

would be equal on the interval because both are analytic.

To conclude the proof, we shall relate m(α) to H±(α). For fixed α0 ∈ [a, b], we

without loss of generality, assume the first k + 1 distinct eigenvalue functions

ρi for i = 0, ..., k intersect at α0, and are minimal. That is to say, ρi(α0) =

m(α0). The associate eigenfunction functions are denoted by wi,j(α) for i =

0, ..., k, and j = 1, ..., ni. Hence, wij(α0) form an orthonormal basis for σ(α0).

Therefore, if ν ∈ σ(α0) is unit normed, we have

ν =
k∑
i=0

ni∑
j=1

cijwij(α0).

The coefficients cij = 〈ν, wij(α)〉 and therefore
∑k

i=0

∑ni
j=1 c

2
ij = ‖ν‖2 = 1. We

define the analytic function ν(α) such that ν(α0) = ν as follows:

ν(α) =
k∑
i=0

ni∑
j=1

cijwij(α).
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Applying K(α) to ν(α) yields

K(α)ν(α) =
k∑
i=0

ni∑
j=1

cijK(α)wij(α)

=
k∑
i=0

ni∑
j=1

cijρi(α)wij(α). (7.20)

We apply the product rule to differentiate equation (7.20) which yields

K ′(α)ν(α) +K(α)ν ′(α) =
k∑
i=0

ni∑
j=1

cijρ
′
i(α)wij(α) +

k∑
i=0

ni∑
j=1

cijρi(α)w′ij(α).

(7.21)

Evaluating equation (7.21) at α0 yields

K ′(α0)ν(α0) +K(α0)ν
′(α0) =

k∑
i=0

ni∑
j=1

cijρ
′
i(α0)wij(α0) +

k∑
i=0

ni∑
j=1

cijρi(α0)w
′
ij(α0).

(7.22)

Noting that K ′(α) = −∆, ρi(α0) = m(α0),

〈ν(α0), K(α0)ν
′(α0)〉 = 〈K(α0)ν(α0), ν

′(α0)〉 = m(α0) 〈ν(α0), ν
′(α0)〉 ,

and that 〈
ν(α0),

k∑
i=0

ni∑
j=1

cijρ
′
i(α0)wij(α0)

〉
=

k∑
i=0

ni∑
j=1

c2ijρ
′
i,

we have that the inner product of ν(α0) with the left and right hand sides of

equation (7.22) yields

−〈ν(α0),∆ν(α0)〉+m(α0) 〈ν(α0), ν
′(α0)〉 =

k∑
i=0

ni∑
j=1

c2ijρ
′
i

+m(α0)
k∑
i=0

ni∑
j=1

cij 〈ν(α0)wij(α0)〉 .

(7.23)
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The second summands on the LHS and RHS of equation (7.23) are equal,

hence we have

〈ν(α0),∆ν(α0)〉 = −
k∑
i=0

ni∑
j=1

c2ijρ
′
i.

Since ν(α0) = ν ∈ σ(α0) was arbitrary and unit normed, and since the di-

mension of σ(α0) is finite, maximizing (respectively minimizing) 〈ν,∆ν〉 is

achieved by maximizing (respectively minimizing) over the ρi(α0)’s. Hence we

have

H+(α0) = max
0≤i≤k

−ρ′i(α0),

and

H−(α0) = min
0≤i≤k

−ρ′i(α0).

Since all of the ρi(α) are distinct (except at α0) in some neighborhood N

covering α0 and small enough thatN∩Υ = α0 or ∅, there exist l,m ∈ {0, ..., k}

such that

m(α) =


ρl(α) α ≤ α0

ρm(α) α ≥ α0.

If for some j 6= m, ρ′j(α0) < ρ′m(α0) then ρj(α) < ρm(α) for some α ∈

N ∩ [α0,∞). This contradicts the fact that m(α) = ρm(α) on this interval.

Similarly, if there exists some j 6= l, with ρ′j(α0) > ρ′l(α0) there is a contradic-

tion on N ∩ (−∞, α0]. Hence, we have

H+(α) = −ρ′m(α) = −m′(α) for α ∈ N ∩ [α0,∞),

and

H−(α) = −ρ′l(α) = −m′(α) for α ∈ N ∩ (−∞, α0].
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Right and left continuity follow from ρm and ρl having continuous derivatives.

If k = 0, that is, if only one of the ρi functions aligns with m at α0, then m(α)

is analytic on N and we have H−(α) = H+(α) = −m′(α) on N . If we denote

Σ as the set of α ∈ [a, b] for which H−(α) 6= H+(α), we must have Σ ⊆ Υ and

therefore Σ is a finite set. �

We now show that vectors in σ(α) characterize the DUC.

Theorem 7.3.4 A unit normed function f ∈ l2(G) with ‖Drf‖2 = x ∈ (0, λN−1)

achieves the uncertainty curve if and only if f̂ is a nonzero eigenfunction in σ(α)

for some α ∈ R.

Proof: As before, it suffices to show that if a unit normed η ∈ l2(G) satisfying

〈η,∆η〉 = x ∈ (0, λN−1) achieves the DUC if and only if η ∈ σ(α) for some α ∈ R.

For this “if” direction, fix α ∈ R. Then for any arbitrary unit norm η ∈ l2(G)

we have

〈η,K(α)η〉 = 〈η, Lη〉 − α 〈η,∆η〉 .

The Rayleigh quotient for K(α) is bounded sharply below by m(α), hence we con-

clude that for any unit normed ν ∈ σ(α) that

〈ν, Lν〉 − α 〈ν,∆ν〉 = m(α)

≤ 〈η, Lη〉 − α 〈η,∆η〉 .

Upon restricting η to 〈η,∆η〉 = x we have

〈η, Lη〉 − x ≥ 〈ν, Lν〉 − x ⇐⇒ 〈η, Lη〉 ≥ 〈ν, Lν〉 .
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Hence, any unit normed ν ∈ σ(α) achieves the DUC.

To prove the “only if” direction, it suffices to show that for any function

η ∈ l2(G) that achieves the DUC, there is an α and a unit norm v ∈ σ(α) such that

〈ν,∆ν〉 = 〈η,∆η〉 = x. Indeed, having also assumed η lies on the uncertainty curve,

and being guaranteed that such a ν lies on the curve by the “if” direction of this

proof, we have 〈η, Lη〉 = 〈ν, Lν〉, and hence

〈η,K(α)η〉 = 〈η, Lη〉 − αx

= 〈ν, Lν〉 − αx

= 〈ν,K(α)ν〉

= q(α).

Therefore, η must also be a unit vector in σ(α).

We complete the proof by showing that for any x ∈ (0, µN−1) there is an α

and a unit norm eigenfunction ν ∈ σ(α) such that 〈ν,∆ν〉 = s.

Given x ∈ (0, µN−1), parts (b) and (c) of Lemma 7.3.3 ensure that there exist

a′ < b′ such that H−(a′) < s < H+(b′) and that there are a < b with a′ ≤ a < b ≤ b′

such that on the interval [a, b] there exists at most one point β ∈ [a, b] at which

H−(β) < H+(β). The interval [H−(a), H+(b)] can be written as the union of three

subintervals:

[H−(a), H+(b)] = [H−(a), H−(β)) ∪ [H−(β), H+(β)] ∪ (H+(β), H+(b)].

Thus x must belong to one of these three intervals. If x is in the first or third

subinterval, the continuity of H−(α) and H+(α), respectively, on these intervals
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guarantees for some α−, respectively, α+ that H(α) = x, respectively, H+(α+) =

x, on one of these intervals. By the construction of the H± functions, this also

guarantees a ν achieving the uncertainty curve exists.

It remains to be shown that such an α and ν exist for x ∈ [H−(β), H+(β)].

We introduce

ν+ = argmaxz∈σ(β),‖z‖=1 〈z,∆z〉

and

ν− = argminz∈σ(β),‖z‖=1 〈z,∆z〉 ,

and define for θ ∈ [0, π/2] the vector valued function

υ(θ) =
cos θν+ + sin θν−

(1 + sin(2θ) 〈ν+, ν−〉)1/2
.

The assumption that H−(β) 6= H+(β) ensure that the denominator is nonzero. The

numerator has norm squared given by

‖cos θν+ + sin θν−‖2 = 1 + 2 cos θ sin θ 〈ν+, ν−〉

= 1 + sin(2θ) 〈ν+, ν−〉

so ‖υ(θ)‖ = 1. Further, as the composition of continuous functions, υ(θ) is contin-

uous, and, as the linear combination of elements of σ(β), υ(θ) ∈ σ(β). By continu-

ity, the intermediate value theorem, and the fact that 〈υ(π/2),∆υ(π/2)〉 = H−(β)

and 〈υ(0),∆υ(0)〉 = H+(β), we have that there exists θ0 ∈ [0, π/2] such that

〈υ(θ0),∆υ(θ0)〉 = x. �
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7.4 The Complete Graph Revisited

We shall compute the differential feasibility region for the complete graph, and

compare it to the analogous feasibility results in the Bell labs paper [35]. We begin

our analysis by analyzing the eigenspace of K(α).

Proposition 7.4.1 Let G be the unit weighted complete graph with N vertices. For

all α 6= 0 ∈ R, if K(α) = L − α∆ where L is the graph Laplacian for G and ∆ is

its diagonalization, then K(α) has an N − 2 degree eigenspace associated with the

eigenvalue N(1− α).

Proof: K(α) is a block matrix of the form

K(α) =


N − 1 −1tN−1

−1N−1 C(α)

 ,
where 1N−1 is the (N−1)×1 constant function of all ones, and C(α) is the circulant

matrix with N − 1−Nα on the diagonal and −1 at every other coordinate, i.e.,

C(α) = N(1− α)IN−1×N−1 −ON−1×N−1.

Let V ⊂ RN−1 be the orthogonal compliment of span(1N−1) in RN−1. Then for all

f ∈ V we have that

C(α)f = N(1− α)f −ON−1×N−1f = N(1− α)f.

V has dimension N − 2 and may be embedded in l2(G) via the mapping

f 7→

0

f

 .
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and we denote this space as Ṽ . Hence, we have that

K(α)

0

f

 = N(1− α)

0

f


and the eigenspace ES(α) associated with N(1 − α) has at least dimension N − 2

as it properly contains Ṽ . Let a and b denote the remaining two eigenvalues. Let

va be an eigenvector associated with a and orthogonal to all v ∈ Ṽ . Then va is of

the form

va = c[x1...1]′

for some real constant c. Without loss of generality, we set c = 1 and we have

K(α)va =



(N − 1)x− (N − 1)

−x+ (1− αN)

...

−x+ (1− αN)


= ava.

Therefore, we must have a = −x+ (1− αN). Solving the quadratic resulting from

equality in the first coordinate

x2 − (2−N(α + 1))x− (N − 1) = 0

yields

x =
2−N(α + 1)±

√
(N(α + 1)− 2)2 + 4(N − 1)

2
.

We conclude that

a = 1− αN −
2−N(α + 1) +

√
(N(α + 1)− 2)2 + 4(N − 1)

2
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and

b = 1− αN −
2−N(α + 1)−

√
(N(α + 1)− 2)2 + 4(N − 1)

2
.

We conclude that ES(α) has dimension N − 2 as desired. �

From the proof of Proposition 7.4.1 we find that the minimal eigenvalue of

K(α) is

λmin(α) = −
−N(α + 1) +

√
(N(α + 1)− 2)2 + 4(N − 1)

2
− α(N), (7.24)

for all α 6= 0. When α = 0 the minimum eigenvalue is zero, so we may conclude

that equation (7.24) holds for all α ∈ R.

Let [x(α), 1, ..., 1]′ with

x(α) =
2−N(α + 1)±

√
(N(α + 1)− 2)2 + 4(N − 1)

2

be vector valued eigenfunction associated with λmin(α) for all α ∈ R. Upon apply

the Rayleigh quotient to this vector we find that the DUC is the lower boundary of

the ellipse with coordinates

(
N(N − 1)

x(α)2 + (N − 1)
,
(x(α)− 1)2(N − 1)

x(α)2 + (N − 1)

)
.

The differential feasibility regions for various values of N are displayed in Figure 7.3.

There is an intriguing connection between these regions and the feasibility regions

in [35] and [47]. Figure 7.4 displays the feasibility region for time and band limited

functions. We see that the region is convex, and is a similar but rotated shape to

the differential uncertainty region for complete graphs. We leave further rigorous

study of this apparent relationship to future work.
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(a) (b)

(c) (d)

Figure 7.3: The complete graph differential feasibility regions for various values

of N . The red curve is the differential uncertainty curve, the blue is the remaining

differential feasibility region boundary, and the green line is the line x+y = N−
√
N
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Figure 7.4: The feasibility region in [35]. α and β are the norms of possible time

limited and band limited functions derived from f ∈ L2(R).
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