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Real-time identification and quantitative analysis of volatile and semi-volatile 

chemical vapors are critical for environmental monitoring. Currently available portable 

instruments lack the sensitivity for routine air quality monitoring, so preconcentrators are 

employed as front-ends for miniaturized chemical sensors. However, commonly used 

techniques for sensitivity enhancement have a time constant associated with 

adsorption/desorption or permeation of gas molecules being concentrated. Little work has 

been reported on fast-response concentrating techniques for gas sensing applications. 

 This research is devoted to the development of a fast-response microfluidic gas 

concentrating device with appropriate flow dynamic shapes and pressure gradients based 



 

 

 

 
 

 
 

on the separation nozzle method. It is capable of concentrating heavy gas molecules 

diluted in light ones when they are flowing at high speeds, thus maintaining the 

measurement system response time. This is promising for developing real-time 

preconcentrators to improve the sensitivity of miniature chemical sensors. 

 In the initial phase of this work, linear test structures were used to characterize 

viscous effects in microfluidic devices. Unit processes were developed to fabricate 

encapsulated micronozzles with through-hole inlets and outlets. The mass flow efficiency 

of the test structures was measured to be in the range of 0.36-0.81, increasing with rising 

Reynolds number as a result of the decreasing influence of boundary layers.  

  Single-stage gas concentration devices were designed and fabricated on the basis 

of the test structures. A gas separation experimental setup and a mass spectrometric 

analysis apparatus were developed to evaluate the performance of the devices. Analytical 

and finite element analyses were conducted to better understand and verify the 

experimental results. 

As a proof-of-concept, gas separation experiments with two different inert gas 

mixtures were carried out in conjunction with mass spectrometric analysis. More than 

two-fold enrichment of SF6 molecules with a response time on the order of 0.01 ms was 

demonstrated through the device. The effects of design parameters and operating 

conditions on the separation factor were determined experimentally and compared to the 

numerical simulation results. This study forms the basis for developing a cascade of 

single-stage elements envisioned as a preconcentrator for miniature chemical sensors to 

realize real-time environmental monitoring.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Microelectromechanical Systems (MEMS) have evolved from the fabrication 

technology used for microelectronic devices to the enabling technology to integrate 

mechanical elements, sensors, actuators, and electronics to realize system-on-a-chip 

(SOC). Microfluidics, one of the major application areas in MEMS technology, is a 

collection of processes for moving fluid (gas or liquid) or controlling the paths of selected 

particles, cells or molecules, in flows [1]. Microfluidic devices allow us to process and 

analyze minuscule amounts of samples and reagents in the nano or pico liter range [2]. 

Furthermore, microfluidics has the potential to revolutionize the processes and products 

that manipulate fluids by scaling down their dimensions and introducing high-level 

integration, the impact of which can be as profound as that of integrated circuit (IC) 

technology. Therefore length scale matching between the fluid flow and the device is the 

key for realizing efficient momentum and energy transfer for specific applications. The 

most important advantages of miniaturizing fluidic system are increased assay speed, 

reduced reagent and power consumption, and integration of different functions on a 

single chip. With properly designed and engineered microfluidic devices, molecules can 

be precisely manipulated by the flow patterns inside the device, which provides a 

pathway to explore the micro and nano world [1]. 

Microfluidics can be applied to miniaturization of chemical and biochemical 

instrumentation, which has made enormous progress over the past years since the 
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pioneering work of Manz et al. and Harrison et al. [3, 4]. Nowadays many technologies 

known to work in the macroscopic world in these fields have been successfully 

miniaturized. The development of microfluidic devices that miniaturize the conventional, 

general-purpose chemistry laboratory onto a single chip (lab-on-a-chip) has become 

widespread in the chemical, biochemical and biological research field. For example, 

micro total analysis systems (µTAS) have served to run chemical microreactors 

(Srinivasan et al. 1997) [5], to perform capillary electrophoresis assays (Simpson et al. 

1998) [6], and to probe red blood cell rigidity (Brody et al. 1995) [7].  

 

1.2 Motivation and Background 

 On-site identification and quantitative analysis of volatile and semi-volatile 

chemical vapors are critical for environmental monitoring. Currently, detecting chemical 

vapors relies on labor-intensive and costly sample collection and laboratory analytical 

methods, which limits the quality, quantity, and frequency of data to be analyzed [8]. 

This situation therefore demands the development of portable and/or handheld 

instruments that can be used for real-time or near real-time detection and analysis of air 

pollutants, toxic releases or even chemical warfare agents. 

Chemical sensors have been downsized over the past years due to advances in 

MEMS technology and microelectronics. Miniaturized chemical sensors have such 

advantages as fast response, low power consumption and measurement of small flows. 

However, many of the sensors are for single gases and are applied for niche applications. 

Universal chemical sensing systems have either consisted of banks of the individual gas 
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sensors or are large laboratory based units, such as mass spectrometers and gas 

chromatographs.  

Taylor et al. [9] and Freidhoff et al. [10] developed a miniature quadrupole mass 

spectrometer (QMS) in which the conventional rod arrangement has been replaced with a 

microengineered version. The structure is made in silicon, using MEMS fabrication 

techniques, with metallized specially drawn glass fibers to act as the quadrupole rods. 

This is about one order of magnitude smaller than most conventional QMS filters, with 

the potential for further reduction in size. It achieves parts per million (ppm) single scan 

sensitivities with a high scan speed (i.e., a few seconds). The performance is better than 

that of some large commercial laboratory based mass spectrometers. However, the 

sensitivity is still recognized to be too low for many applications such as cargo and 

personnel monitoring at commercial airports and seaports. The sensitivity enhancement 

required for such applications is about 100 to 1000 times greater than ppm level, so that 

gas sensors can detect traces of volatile and semi-volatile chemical vapors at the parts per 

billion (ppb) levels in air during a short time period. With improvements in gas 

concentration techniques and detector electronics, ppb and sub-ppb levels of sensitivity 

should be achievable.  

 

1.3  Literature Review 

1.3.1  Common Sensitivity Enhancement Techniques 

  There are a number of approaches used to increase the sensitivity of chemical 

sensors: gas chromatography, preconcentration through thermally cycled, absorbent 

materials, cryogenic accretion of materials on a surface, or the use of selectively 
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permeable polymer diaphragms [11-14]. All of these techniques achieve the increase of 

sensitivity, but significantly increase the time between measurements or the response 

time of the system. Gas chromatography uses differences in surface affinity and mass to 

separate mixtures entrained in a carrier gas and typically takes from 2 to 20 minutes per 

sample. Both the thermally cycled absorbents and the cryogenics require time to 

accumulate the amount of material from the air passing through the system before 

desorbing the collected material into the sensor. Therefore, time is needed to pass enough 

of the material through the system. The selectively permeable polymers work by allowing 

selective chemicals to dissolve into them, pass through and be desorbed on the sensor 

side due to a vacuum pump. The polymer has a time constant for absorption and 

desorption that slows the system down and can possess a memory of chemicals even after 

they have dissipated. In addition, these front-ends involve the use of additional power or 

consumable materials, such as cryogens. These concentration techniques are briefly 

discussed below. 

 

A.  Gas Chromatography 

 Gas chromatography acts as a chemical separator. Figure 1.1 shows a schematic 

diagram of gas chromatograph with a photograph of the separation column [15]. A gas 

sample is transported through the column via a carrier gas such as helium. The column is 

a stainless steel coil (typically 1-5 m total length and 5 mm inner diameter) that is filled 

with the high-surface-area inorganic or polymer packing such as polysiloxane. The 

gaseous species are separated by their size, and retention due to adsorption on the 

packing material. Detection is accomplished at the end of the tube as each constituent 
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passes by, usually by measuring the gas’s thermal conductivity. Gas chromatographs 

have been miniaturized using micromachining techniques [8, 16]. Pressure-tuned 

separations of vapor mixtures have been demonstrated in a few minutes.  

 

B. Sorbent Beds 

 Conventional sorbent bed preconcentrators normally consist of a long glass 

capillary tube packed with one or more adsorbent materials [17]. They adsorb in one 

direction and desorb in the other. A current is passed through a metal wire coiled around 

the glass tube to heat the preconcentrator to 200 °C for desorption. The thermal desorbers 

used for preconcentrator are large, cumbersome and require several watts of power. Tian 

et al [18, 19] developed single-stage and multiple-stage microfabricated preconcentrator-

focusers for the microscale gas chromatograph mentioned above. As shown in Figure 1.2, 

it consists of a thick micromachined silicon heater packed with a small quantity of a 

Figure 1.1: Schematic of a gas chromatograph along with a photograph of the 
separation column (adapted from [15]). 
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granular adsorbent material (i.e., roughly spherical granules of a high-surface-area, 

graphitized carbon). Upon thermal desorption efficient separation has been achieved.  

 

C. Selectively Permeable Membranes 

 Selectively permeable membranes are also used to improve sensitivity as front-

ends for chemical sensing systems. The concept is shown schematically in Figure 1.3. 

There are polymeric films that allow the passage of different gases due to the differences 

in the solubility and diffusion of chemicals into the films themselves [20, 21]. The use of 

polymeric membranes as a selective barrier does not increase the power needed by the 

system, but does affect the response time of the sensing due to the “reservoir” effect of 

the polymer film (i.e., adsorption and desorption of gas molecules). 

 There are a number of polymers in commercial use for different families of gases. 

The polymers consist of polyvinylchloride, polystyrene, polyethylene, 

polydimethylsiloxane and polytrimethylsilylpropyne, as well as others. These polymers 

Figure 1.2: Scanning Electron Micrograph (SEM) of a preconcentrator consisting of a 
thick micromachined Si heater and graphitized carbon beads as adsorbents [17].  
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restrict the passage of oxygen and nitrogen. The propynes show a permeation of organic 

molecules while being able to exclude nitrogen and oxygen. The permeation of vapors 

depends on the solubility of the vapor into the material and the diffusion constant of the 

vapor within the material; so polymers that do not dissolve oxygen or nitrogen will be 

effective barriers to these gases. The disadvantage is that the time constant of the polymer 

membrane will determine the amount of time that the sensor needs to be in the area 

before a true determination of the quantity of a vapor can be determined. 

1.3.2 Separation Nozzle Method for Isotope Separation 

 To maintain the system time constant, a preconcentrator that can separate the 

minor constituents of the gas mixture from the major ones while the gas is flowing at a 

high speed would be ideal. There is such a technique, referred to as the separation nozzle 

method, which can concentrate heavier molecules from lighter molecules as long as the 

heavier ones make up a small fraction of the gas molecules in the vapor mixture.  

Figure 1.3: The selectively permeable membrane is strong enough to hold the differential 
pressure and allows selected gases to travel through it faster than others. 

To chemical 
sensor 

Permeable membrane 
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 The separation nozzle method was developed as an alternative method to the 

gaseous diffusion and centrifuge processes to enrich the light uranium isotope 235U for 

production of light water reactor fuel [22-25]. This method was characterized by simple 

technology and the possibility of economic operation. In the separation nozzle process, 

the pressure gradients and inertial forces in a curved gas flow containing uranium as UF6 

are utilized for separating the uranium isotopes.  

This separation principle was first proposed by Dirac for enriching 235U [24] in 

the early forties. Nevertheless, the results from initial tentative experiments performed on 

model gas mixtures like pure UF6 were not very promising: The elementary effect of 

isotope separation was only very little above of the gaseous diffusion method, which 

made technique application of such arrangements hardly practical. It was until the early 

sixties that Becker et al achieved the breakthrough in the technology development of the 

separation nozzle. In their work, a mixture of UF6 and a light auxiliary gas in a high 

molar excess, instead of pure UF6, was used [26] and free expansion was replaced by a 

guided deflection of the flow along a curved wall [27]. Through these measures, a much 

higher flow velocity and greater deflection of the flow than in the free expansion of pure 

UF6 were achieved. Consequently, the elementary effect of uranium isotope separation 

was enhanced significantly above that of the gaseous diffusion process, while 

simultaneously reducing the pressure ratio required for economic operation of the 

separation nozzles. This revolutionary technology innovation helped reduce the technical 

expenditure for industrial uranium enrichment by the separation nozzle method to an 

economically attractive levels [28, 29]. Practical implementation of the separation nozzle 

method has been fulfilled successfully to enrich the light uranium isotope. 
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 Figure 1.4 is a cross section of a slit-type separation nozzle. A gas jet containing 2 

to 5 mole % of UF6 and 98 to 95 mole % of H2 or He is deflected at a fixed curved wall 

and expanded to roughly half the value of the nozzle inlet pressure, the heavy 

components of the mixture being concentrated at the deflection wall and the light ones in 

the inner regions of the flow. At the end of the deflection, the partly separated gaseous 

mixture is split by a skimmer into a heavy fraction depleted in 235UF6 and the auxiliary 

gas, and a light fraction enriched in 235UF6 and the auxiliary gas.  

 Small size gas separation nozzles were fabricated with stacking of photo-etched 

metal foils, diamond tool machining, or the LIGA (LIthographic generation in polymer 

layers that serves as molds for GAlvanoplastic metal deposition) process at the Karlsruhe 

facility [22]. The work demonstrated that the separation nozzle could operate very 

efficiently at sub-atmospheric pressures, which is ideal for the miniature chemical sensors 

such as mass-spectrograph-on-a-chip [10], since no compressor stage would be required. 

However, the high cost operation and access to specialized equipment X-ray synchrotron 

Skimmer 

Input 
nozzle Deflection 

wall 

Light 
fraction 
(enriched 
in 235UF6 
and He or 
H2) 
 

Heavy 
fraction 
(depleted in 
235UF6 and 
He or H2) 
 

Feed gas  
(2-5 mole% UF6 
and 98-95 mole % 
He or H2) 

Figure 1.4: Schematic diagram of a slit-type separation nozzle (adapted from [24]). 
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source limit the availability of the LIGA process. A lot of work has been done on 

developing alternatives to the LIGA process [30-34]. Among these techniques more 

advances have been achieved in thick photoresist process and deep silicon etching. Figure 

1.5 [34] shows a silicon chip with through holes created by deep reactive ion etching 

(DRIE). MEMS-based devices and microsystems with high-aspect-ratio microstructures 

have been developed using these techniques for various applications. However, these 

microfabrication methods have not been explored extensively to develop gaseous 

microfluidic devices, especially miniature separation nozzle systems.  

 In the past, nozzle performance at small scale was studied on a few occasions. 

Rothe et al. reported E-beam measurements of temperature and velocity profiles in a 

nozzle with a 5 mm throat [35]. Grisnik et al. investigated nozzles with throat diameters 

on the order of 650 µm [36]. Each of these test cases was machined through conventional 

macro-scale fabrication methods and was orders of magnitude larger than what is now 

200�m 

Figure 1.5: SEM micrograph of a 390µm thick silicon chip perforated by DRIE [33]. 
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available through MEMS. In addition, Bayt et al. studied viscous effects in supersonic 

MEMS-fabricated micronozzles, but their research was targeting micropropulsion 

applications [37]. In this work, we are exploring the separation nozzle method for gas 

sensing applications. 

 

1.4  Objectives 

The primary objective of this thesis research is to develop a fast-response 

microfluidic gas separation device for environmental sensing applications. Initial studies 

are performed to analyze the trade-offs with scaling down devices, and assess the 

limitations associated with microfabrication. These limits are used as a guide to the 

design of single-stage separation device, serving as the elementary unit of a real-time 

MEMS-based preconcentrator. This research studies the separation process in the 

microfluidic gas separation device theoretically through analytical models and 

computational fluid dynamics (CFD) simulations and experimentally through the gas 

separation experiments and mass spectrometric gas analysis. The measurement results 

along with theoretical studies not only form the basis of developing a real-time 

preconcentrator but also provide important guidelines for designing, fabricating and 

testing other microfluidic devices for chemical sensing applications. 

 

1.5  Contributions 

The analysis and results described herein make the following contribution to the 

field of MEMS-based concentration techniques: 
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• A fast-response (i.e., less than 0.1 ms compared to several minutes or more 

for other commonly used techniques) gas concentration concept has been 

demonstrated with conventional MEMS techniques and mass spectrometric 

gas analysis. 

• Fundamental fluid dynamics of gas flows in micro-scale converging-

diverging nozzles is studied to examine the viscous effect of the microfluidic 

devices. Mass flow efficiency (i.e., the ratio of the actual mass flow to the 

theoretical frictionless mass flow) of these ultra shallow microfluidic devices 

has been found in the range of 0.36 to 0.81, exhibiting strong viscous effects. 

• Finite element analysis combined with experimental testing has confirmed 

that sonic gas flows can be realized in microscale nozzles. 

• A straightforward two-mask process flow has been developed for fabricating 

encapsulated microfluidic devices with through-hole inlets and outlets. 

• A reliable packaging technique using micro O-rings and capillaries has been 

developed for micro-to-macro fluidic interconnection. 

• The effects of design parameters such as nozzle width and skimmer distance 

and the operating condition (i.e., inlet-to-outlet pressure ratio) on the 

performance of gas separation devices have been characterized with CFD 

simulation, gas separation experiments, and mass spectrometric analysis. 

• Experimental results have demonstrated more than two-fold enrichment of 

SF6 molecules diluted in N2 with a response time on the order of 0.01 ms for 

a single-stage element. 
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1.6 Thesis Organization 

This chapter has introduced background and motivation of this research. Relevant 

gas concentration techniques have been reviewed. The objectives of this research have 

been outlined, followed by a summary of the contributions of this work. The remaining 

chapters of this thesis are organized as follows.  

Chapter 2 presents design, fabrication and testing of linear test structures.  A one-

dimensional isentropic model and an ANSYS finite element analysis of gas flows in 

micronozzle are introduced, followed by the details on the device packaging and gas flow 

tests.  

Chapter 3 discusses the design considerations of single-stage separation nozzle 

systems based on the results from the linear structures. Analysis of the separation process 

is discussed along with a derivation of an equilibrium model. CFD modeling of the 

separation process is then introduced along with a discussion of simulation results. 

In Chapter 4, fabrication of separation devices is detailed, after which device 

packaging and mounting is presented. 

Chapter 5 is devoted to the device characterization with gas separation 

experiments and mass spectrometric gas analysis. Details about the setup and mass 

spectrum evaluation are presented. Measurement results are discussed in comparison to 

modeling results. 

Finally, in chapter 6, the accomplishments of this thesis research are summarized, 

and some recommendations are made for future work. 
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CHAPTER 2 

LINEAR TEST STRUCTURES 

2.1 Introduction 

In this chapter, linear test structures designed to characterize the viscous effects in 

microfluidic devices are presented. First, an isentropic model and an ANSYS finite 

element analysis of gas flows in micronozzles are introduced to describe the behavior of 

gas flows in linear micronozzles. Next, device fabrication and packaging are discussed. 

Finally, gas flow tests are presented along with the comparison between the 

measurements and model calculations.  

As with most commonly used separation/concentration techniques, the separation 

nozzle method is a continuous process in which the mixture to be separated is injected 

Feed gas 
(e.g., diluted 
SF6 in N2) 

Light fraction  
depleted in SF6 

Heavy fraction 
enriched in SF6 

Deflection 
wall 

Input 
nozzle 

Skimmer  

Figure 2.1: Principle of single-stage separation nozzle element. The gas mixture is 
divided into a light fraction stream depleted in SF6 and a heavy fraction stream enriched 
in SF6 after the separation process. 
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into a system containing separating elements and then divided into fractions of different 

compositions [24]. A diagram of a single-stage separation nozzle system is shown in 

Figure 2.1. The system consists of a curved converging-diverging nozzle, a deflection 

wall, and a skimmer. When a gas mixture (e.g., SF6 diluted in N2) is fed to the device, the 

components of the mixture are accelerated by expansion in the nozzle and then deflected 

by the curved channel. The centripetal acceleration associated with the deflection causes 

a radial pressure gradient and a partial separation of N2 and SF6 based on the difference in 

molecular weight.  The heavier SF6 molecules become concentrated at the periphery of 

the flow field and a skimmer is used to mechanically separate the stratified gas mixture 

exiting the curved channel into a heavy fraction, enriched in SF6, and a light fraction, 

depleted in SF6. If the elementary separation process is repeated many times in a cascade 

arrangement, most nitrogen can be separated from the gas mixture, and SF6 is 

concentrated.  

 

2.2  Design of Linear Nozzles 

 Since the input nozzle is the main component of the gas separation system, it 

would be useful to study gas dynamics of micronozzles, the fundamentals of which are 

reviewed in Appendix A. In the first phase of this research, we have designed linear test 

structures (i.e., linear micronozzles of different dimensions) because their characteristics 

can be described with sufficient accuracy by analytical models and finite element 

analysis. Figure 2.2 shows a typical linear micronozzle with pressure measurement 

chambers. In order to achieve high device performance, the gas must be injected into the 

nozzle with as low an entrance velocity as possible [37]. To accomplish this, a settling 
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chamber (or plenum chamber) is designed in parallel with and upstream of the nozzle. In 

addition, a chamber is designed in parallel with and downstream of the nozzle while 

another is connected to the throat area. These chambers are regions of large volume 

compared to the nozzle and remain at constant pressures (i.e., P0, Pd and Pt, respectively) 

during the operation of the nozzle.  

 Figure 2.3 shows the design parameters of the linear nozzle, which are based on 

the designed mass flow input of some miniaturized chemical sensors [9, 10]. Table 2.1 

shows the dimensions of two designed nozzles that are examined to determine the sizing 

of the devices to generate fast gas flows for achieving efficient gas separation. These test 

structures are also used to measure pressure distributions and mass flow variations to 

characterize viscous effects in the microfabricated devices. The results of this phase can 

be used to design single-stage separation nozzle systems. 

   P0 

 Pt 

                 
Pb 

Upstream Downstream Nozzle 

Throat 

Figure 2.2: Schematic of a linear nozzle with upstream, downstream and throat pressure 
measurement chambers. 
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L1 

L3 
3.5º 

L4 
3.5º 

 45º 

  45º L2 

D1  D3 D2 

Figure 2.3: Design parameters of the linear nozzle. The exit gas flow speed is   
determined primarily by the expansion ratio of D2/D1 of the contoured nozzle. 

Table 2.1: Design parameters of two different linear nozzles. 

Design             D1                D2              D3              L1/L2            L3/L4           Expansion 
                       (µm)             (µm)          (µm)           (µm)            (µm)            ratio (D2/D1) 
 

   1                  10.9              18.5           30               6                  61.7             1.69 

   2                  36.4              61.6           100             20                205.6           1.69 

 

 

2.2.1 One-dimensional Isentropic Model 

Many of the compressible flows that occur in engineering practice can be 

adequately modeled by assuming them to be steady and one-dimensional (1-D). Strictly 

speaking, the equations of 1-D flow are only applicable to flow in a straight pipe or 

stream tube of constant area. However, in many practical situations, those equations can 

be applied with acceptable accuracy to flows with a variable area provided that the rate of 

change of area and the curvature are small enough for one component of the velocity 

vector to remain dominant over the other two components. For example, although the 

flow through a converging-diverging nozzle of the type shown in Figure 2.3 is not strictly 
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one-dimensional, the flow can be calculated with sufficient accuracy in many cases by 

only considering the variation of the component of the velocity along the nozzle. Such 

flows in which the flow area is changing but in which the flow at any section can be 

treated as 1-D, are commonly referred to as “quasi-one-dimensional” flow [38].  

An isentropic flow is adiabatic (no heat exchange) and reversible (viscous and 

other dissipative processes are negligible). Although no real flow is entirely isentropic, 

there are many flows of great practical importance in which the major portion of the flow 

can be assumed to be isentropic. In the nozzle flows, the effects of viscosity and heat 

transfer are restricted to thin layers adjacent to the walls, i.e., are only important in the 

wall boundary layers, and the rest of the flow can be assumed to be isentropic as 

indicated in Figure 2.4. Using the 1-D isentropic flow model and applying principles of 

conservation of mass, momentum and energy, a relationship between the expansion ratio 

of D2/D1 and the Mach number M at the exit of the nozzle with a uniform depth can be 

derived (the procedure is presented in Appendix A): 

Figure 2.4: Isentropic and non-isentropic flow regions in a 
converging-diverging nozzle (adapted from [37]). 

 

Isentropic 
core flow 

Non-isentropic  
boundary layers 
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where D1 and D2 are, respectively, the throat width and exit width of the nozzle, and � is 

the ratio of specific heats of gas. Similarly, there is a relationship between the inlet-to-

outlet pressure ratio and M [38] 
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where P0 is the inlet pressure (i.e., inlet is assumed to be at stagnation conditions) and Pd 

is the outlet or downstream pressure. Figure 2.5 shows the variation of the expansion 

ratio and inlet-to-outlet pressure ratio as a function of M. As indicated in this figure, the 

Figure 2.5: Variation of expansion ratio and pressure ratio with Mach number. 
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expansion ratio of the nozzle should be designed to be about 1.69 with a pressure ratio of 

around 8 applied across the nozzle if an exit Mach number of 2 needs to be achieved for 

the gas flow. 

 

2.2.2 Finite Element Analysis 

 ANSYS/FLOTRAN finite element analysis (FEA) was performed to correct and 

verify the analytical results (i.e., the 1-D isentropic modeling results). In FEA, a nozzle 

geometrical flow model is meshed into smaller blocks, or elements. The vertices where 

these elements meet are termed “nodes”. The element chosen to model the compressible 

flow in a converging-diverging nozzle was ANSYS/FLOTRAN FLUID 141. The 4-node 

quadrilateral element can be used to solve for two-dimensional (2-D) flow, pressure, and 

temperature distributions in a single-phase viscous fluid. For this element, the ANSYS 

program calculates velocity components, and pressure from the conservation of three 

properties: mass, momentum, and energy [39]. Figure 2.6 shows an FEA model based on 

the design 1 in Table 2.1 with an expansion ratio of 1.69. This model is used to calculate 

the pressure and velocity distributions of compressible fluid flow in a nozzle. Figure 2.7 

shows the Mach number contour in the nozzle with an inlet-to-outlet pressure ratio of 8 

and a reference pressure (i.e., the outlet pressure) of one atmosphere. It is shown that an 

exit Mach number of 1.929 is achieved, which agrees with the results (i.e., M = 2) from 

the 1-D isentropic model. The Mach number at nozzle throat is about 1, which is 

characteristic of a supersonic gas flow in a nozzle. In other words, it follows that if a 

subsonic flow is to be accelerated to a supersonic velocity it must be passed through a 

convergent-divergent passage or nozzle. The convergent portion accelerates the flow up 
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to Mach number of 1 and the divergent portion accelerates the flow to supersonic 

velocity. The supersonic flow region is normally terminated by a normal shock wave. 

The shock wave increases the pressure and reduces the velocity to a subsonic value. 

However, if the inlet-to-outlet pressure ratio is above a critical value (i.e., about 8.0 in 

this case), the shock wave moves outside the nozzle and the extent of the supersonic flow 

region increases to the whole divergent region of the converging-diverging nozzle [38]. 

Figure 2.8 shows the pressure distribution using the same boundary conditions. 

The throat pressure is evaluated to be around 385.0 kPa above the reference pressure (i.e., 

Fixed boundary 

Fixed boundary 
Inlet pressure 

Outlet pressure 

Figure 2.6: ANSYS/FLOTRAN meshed FEA model with applied boundary conditions. 
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101.325 kPa). According to the 1-D isentropic model, the throat pressure is 0.528 P0 [38], 

which is about 327.0 kPa above the reference. Therefore, FEA results are within 18 % of 

the 1-D isentropic modeling results. The discrepancy is mainly due to the influence of the 

device sidewall boundary layers accounted in the FEA. 

 

2.3  Device Fabrication and Packaging 

 In order to fabricate completely sealed micronozzles for characterizing viscous 

effects, two different processes with different wafer-level bonding techniques are 

explored. The first bonding technique is categorized as intermediate-layer bonding. SU-8, 

Figure 2.7: Mach number contour of gas flow in the designed C-V nozzle with an 
inlet-to-outlet pressure ratio of 8. 
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an epoxy based photo-definable polymer, is used as the intermediate bonding layer. SU-8 

is selected because it shows low volume shrinkage and high resistance to most wet 

chemicals after being exposed to ultraviolet (UV) light and a post-exposure bake [40]. 

The second technique is anodic bonding, which is relatively mature and commonly used 

in MEMS. The two bonding processes are introduced in the following two sub-sections 

along with the discussion of the advantages and drawbacks associated with these two 

methods. 

 

Figure 2.8: Pressure distribution of gas flow in the designed nozzle with an inlet-to-
outlet pressure ratio of about 8. 
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2.3.1 SU-8 Bonding Process 

The process flow is shown in Figure 2.9. The starting material is a silicon wafer 

with 2 �m thick oxide deposited on both sides (step a). Photoresist layers are spun on 

both SiO2 layers (step b). The backside (unpolished) resist layer is patterned and 

developed, followed by etching the oxide layer with buffered HF (30-36% Ammonium 

Fluoride, 4-8% Hydrofluoric acid, and 56-66% distilled water). The combination of resist 

and oxide is used as the mask for deep reactive ion etching inlet and outlet ports in the 

silicon substrate (step c). After the etch, the resist was stripped, and SiO2 membranes 

were formed on the bottom of the ports. Subsequently, a 5-�m thick SU-8 

#2 SiO2 

#1 SiO2 
Si 

Resist 

Resist 
Si 

Resist 

Resist 
Si 

#1 SiO2 

#1 SU-8  
Si 

#2 SU-8 
Pyrex 

#2 SU-8 Pyrex 
#1 SU-8 

Si 

Si 

Si 

Si 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 2.9: Process flow for the fabrication of linear micronozzle using SU-8 bonding. 
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(Microlithography Chemical Corporation) layer is deposited and patterned on the 

membranes and other oxide areas to create micronozzle structures (step d). The SiO2 

membranes are etched away with reactive ion etching (RIE). An SU-8 bonding layer is 

spun and partially baked on a pyrex wafer (step e). The silicon and pyrex wafers are then 

brought into contact with SU-8 facing SU-8. A blanket exposure through the pyrex wafer 

followed by a post-bake serve to crosslink and solidify the SU-8 bonding layer (step f). 

Thus, wafer-level bonding is realized to produce sealed micronozzles [41, 42].  

 Fabricating fully encapsulated micronozzles requireed a selection of wafer-level 

bonding tests with SU-8 as the intermediate bonding material. The influence of different 

parameters on the bond quality were investigated. Two methods, direct inspection and 

crack opening [43], were used to determine the presence of voids and to evaluate the 

bond strength. The bond interface was first inspected through the transparent pyrex glass 

wafer to identify the status of sealed nozzles and unbonded areas (including macroscopic 

and microscopic voids). The crack-opening method consists of splitting two bonded 

wafers with a razor blade and measuring the equilibrium crack length. This technique is 

based on the equilibrium of elastic forces of the bent separated part of a pair and bonding 

forces at the crack tip. The surface energy of the bonded wafers is also evaluated using 

the crack opening method [43], [44].  

Table 2.2 lists the tests performed using different bonding parameters, the 

resulting unbonded areas, and quantitative evaluations of the bond strength. Figure 2.10 

shows sealed linear nozzle structures bonded under three different bonding temperatures 

(i.e., 48 °C, 55 °C and 75 °C) with 10 µm thick SU-8 bonding layer. The channels were 

very clear when bonded at 48 °C. Under 55 °C a small amount of SU-8 was found in the 
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channels while at 75 °C the channels were totally blocked by SU-8. Similar results were 

found in the experiments using 50 µm thick SU-8 bonding layer. Therefore, it was 

concluded that SU-8 bonding should be conducted slightly below the glass transition 

temperature (Tg) of uncrosslinked SU-8 (i.e., 50~55 °C) to prevent SU-8 from obstructing 

the microchannels. It was also found that introducing an air escape path and applying 

pressure during bonding could counteract void formation due to outgassing substances 

and trapped air. In addition, it was observed that the bonding process maintained the 

dimensions and integrity of the converging–diverging nozzle structures [45]. One 

potential drawback of SU-8 bonding technique is the relatively low yield of bonded 

microscale structures. This is mainly due to the voids formed at the bonding interface if 

bonding is not performed in vacuum. However, this bonding method is relatively simple 

to implement and less susceptible to particles at the bonding interface than other bonding 

techniques such as direct bonding. It therefore extends the flexibility of fabricating and 

packaging microfluidic devices, as evidenced by the published results of developing 

embedded microchannels which cite this bonding process [46-49]. 

 
Table 2.2: Typical examples and evaluation results of SU-8 bonding tests. 
 

a Wafers failed to bond together 
b Without applying pressure using tweezers 

                            Layer        Pre-bake        Pre-bake    Bonding        Post-bake      Post-bake  Bond       Amount of           Status 
                            thickness   temperature   time           temperature  temperature   time           strength   unbonded            of sealed 
No   Material       (�m)         (°C)               (min)          (°C)              (°C)               (min)          (J/m2)     device area (%)   channels 

 1     SU-8-50a     50              95                  30              75                 95                  20                           90                         

 2     SU-8-50      50              95                  20              75                 95                  20               0.55         30                        partly blocked 

 3     SU-8-50      50              95                  10              75                 95                  20               0.56         20                        totally blocked 
 4     SU-8-50b     50              95                  20              75                 95                  20               0.42         70                        partly blocked 
 5     SU-8-50      50              95                  20              48                 95                  20               0.51         30                        clear 
 6     SU-8-5        10              95                  12              75                 95                  10               0.55         20                        partly blocked 
 7     SU-8-5        10              95                  12              48                 95                  10               0.43         30                        clear 
 8     SU-8-5        10              95                  12              55                 95                  10               0.44         30                        almost clear 
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2.3.2  Anodic Bonding Process 

Anodic bonding, a field assisted bonding method, is also used to fabricate 

micronozzles. Figure 2.11 shows schematically the silicon-to-glass anodic bonding 

apparatus.  The glass wafer is biased as the cathode, and the silicon wafer is the anode. 

The contacted wafers are heated to 300-500°C while a voltage of approximately 300-

700V is applied. Under such a high field and elevated temperature, the mobile sodium 

ions in the glass migrate away from the bonded interface, leaving behind fixed charge in 

(a) (b) 

(c)  

Figure 2.10: Optical micrographs of sealed nozzle structure using SU-8-5 intermediate 
layers at different bonding temperatures: (a) 48 °C; (b) 55 °C and 75 °C. 
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the glass that creates a high electric field across the bond interface with image charges in 

the silicon. The force of attraction between the positively charged silicon wafer and the 

negatively charged glass surface brings the two surfaces into intimate contact. At the 

elevated temperature, they can fuse together. Contact is typically initiated at a single 

point by applying a load, and, as contact is established, it spreads out to cover the rest of 

the wafer. Bonding time ranges from seconds to minutes and can be monitored by 

measuring the current in the circuit. When bonding is completed, this current drops to 

zero. As with silicon-to-silicon direct bonding, this bonding method is very susceptible to 

interface particulate contaminants [50, 51].  

Figure 2.12 shows the process flow for fabricating linear nozzle structures with 

anodic bonding. The process starts with a silicon wafer with 2 �m thick oxide coated on 

the backside (step a). Reactive ion etching is used to generate linear micronozzle 

structures on the front side of the silicon substrate (step b). Then, a backside (unpolished) 

resist layer is patterned and developed, followed by etching the oxide layer with buffered 

HF (step c). As in the SU-8 bonding process, the combination of resist and oxide is used 

V 

Heater 

Silicon 
Glass 

  Heater 

Figure 2.11: Schematic of silicon-to-glass anodic bonding 
apparatus (adapted from [46]). 
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as the mask for deep reactive ion etching inlet and outlet ports in the silicon substrate 

(step d). Finally, the micronozzle structures are sealed using silicon-to-glass anodic 

bonding (step e). This process was done through the collaboration with the Army 

Research Lab (ARL).  

Figure 2.12: Process flow for the fabrication of linear nozzles 
using silicon-to-glass anodic bonding. 
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Figure 2.13 shows a microfabricated chip after the anodic bonding. The dark 

holes shown in the photograph are pressure measurement ports etched through in the 

silicon substrate using DRIE. The device yield of this process is higher than that of SU-8 

bonding as expected. However, this process requires a relatively expensive commercial 

bonder and is very sensitive to presence of particulates on the surfaces of wafers to be 

bonded. 

 

2.3  Fluidic Interconnection 

 Once a linear micronozzle was fabricated, it was packaged to interface with 

instruments for gas flow test. As shown in Figure 2.14, this is accomplished by using 

capillary needles (400 µm in outer diameter (OD) and 200 µm in inner diameter (ID)) 

Figure 2.13: Photograph of a microfabricated chip using 
silicon-to-glass anodic bonding. The holes are the pressure 
measurement ports etched through in silicon using DRIE.  
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and ethylene propylene O-rings (Apple Rubber). The ID of the O-ring is 250 µm, so a 

snug fit can be obtained after inserting the needle through the O-ring. The penetration 

depth of the assembly was adjusted, by manually controlling the position of the O-ring, 

such that the capillary needle did not touch the bottom of the micronozzle. The O-ring 

can also prevent leakage at the contact points. Since the length of the needle (13.45 mm) 

was much larger than the penetration depth (i.e., the thickness of the silicon wafer, 500 

µm), a probe station was used to hold the needle and to keep it as upright as possible. 

Following these steps, a droplet of room temperature curing epoxy glue (Devcon) was 

applied around the interconnection holes to enhance the holding force. As shown in 

Figure 2.15, the packaged device was then connected with instruments (e.g., flow meters 

and manometers) through Tygon flexible tubing (2.31 mm in OD and 380 µm in ID, 

Cole-Parmer Instrument) to conduct gas flow tests. Epoxy glue was also applied in the 

connection areas between the needle and tubing to improve sealing [41].  

 

     Figure 2.14: Schematic diagram of micro-to-macro interconnection. 
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2.4  Gas Flow Test 

A gas flow test setup, as shown schematically in Figure 2.16, was designed and 

implemented to study gas dynamics in micronozzles. In the experiments, working gas 

(N2) flows from a regulated high-pressure cylinder (ranging from 13.8 kPa to 413.7 kPa), 

through a 0.5-�m filter, past a flow controller, into the nozzle and finally through a flow 

meter. The filter can prevent contamination from entering the nozzle. Upstream and 

downstream gas flow rates are read from the flow controller and flow meter (Hastings), 

respectively. Upstream, throat and downstream pressures are monitored using 

manometers (MKS Instruments). The manometer consists of a variable capacitance 

sensor and a signal conditioner producing a DC output signal in pressure units. The exit 

of the device is vented through the flow meter to a vacuum pump or atmosphere. 

 

Figure 2.15:  Photograph of a packaged nozzle connected with Tygon 
flexible tubing. 
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2.5  Results and Discussion 

Gas flow tests were performed to study the fluid dynamics of gas flows in linear 

contoured micronozzles. First, leakage tests were performed to characterize the bonded 

wafers with the two different techniques and the seal of device packaging with the micro-

to-macro interconnection method. In the tests, the upstream and downstream flow rates of 

N2 flowing through the linear nozzle were measured by changing the regulator pressure 

with a certain increment. As shown in Figure 2.17, the upstream gas flow rate is 

consistent with the downstream flow rate with increasing regulator pressures up to about 

300 kPa for both SU-8 bonding device and anodic bonding device. As indicated by the 

same mass flow variations, both devices exhibit very similar viscous effects. When the 

regulator pressure increases further, leaking begins to occur in both devices, which is 

Figure 2.16: Gas flow test setup for testing linear micronozzles. It consists of 
manometers, a flow controller and flow meters connected with the MEMS device 
through flexible tubing and fittings. 
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indicated by the discrepancy between the upstream and downstream gas flow rates. The 

leak was observed in the contact area between the needle and Tygon tubing where air 

bubbles appear after soapy water was applied there. This was due to the deformation of 

the flexible tubing when the pressure inside the tubing was too high. The test results 

demonstrate that the interconnection method using flexible tubing and epoxy glue can 

only be used for pressure differentials less than about 300 kPa. 

In the following test, the upstream pressure of the nozzle was increased from 

atmosphere to 300.0 kPa while the downstream pressure was held below 1.35 kPa. Figure 

2.18 (a) compares the mass flow measurements with the predictions with the isentropic 

model and ANSYS numerical simulation for design 1. The discrepancy in the mass flow 

variation is due to the influence of the sidewall and endwall (i.e., top and bottom) 

boundary layers. The difference between the numerical calculations with no-slip 

boundary conditions and the measurements can be attributed to the endwall boundary 

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350

Regulator Pressure (kPa)

G
as

 F
lo

w
 R

at
e 

(s
cc

m
) Ups tream

Downs tream

(b) 

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350

Regulator Pressure (kPa)

G
as

 F
lo

w
 R

at
e 

(s
cc

m
) Upstream

Downstream

(a) 

Figure 2.17: A comparison between SU-8 bonding and anodic bonding devices for 
gas flow rates with increasing regulator pressures: (a) SU-8 bonding nozzle; (b) 
anodic bonding nozzle. 
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growth, which is not modeled in the 2-D simulation. Figure 2.18 (b) shows the variation 

of coefficient of discharge as a function of the Reynolds number of the gas flow. The 

coefficient of discharge, or mass flow efficiency, is the ratio of the actual mass flow to 

the theoretical mass flow. This quantifies the blockage associated with the boundary 

layers [37]. As the inlet pressure of the nozzle is reduced, and hence the Reynolds 

Figure 2.18: (a) Comparison of mass flow rate between the model 
predictions and measurements for design 1; (b) effects of the Reynolds 
number on the coefficient of discharge of the gas flow.  
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number is reduced, the mass flow efficiency becomes lower due to the increase in viscous 

losses, which is caused by increased influence of the boundary layers developed on the 

internal surfaces of nozzle [45].  

Figure 2.19 shows variations of coefficient of discharge versus inlet pressure for 

the two designs in Table 2.1. As shown from this figure, design 2 exhibits slightly 

stronger viscous effects than design 1. This is probably due to the slightly stronger 

influence of the endwalls of design 2, though design 2 has the very similar length-to-

width ratio and depth as design 1, leading to identical theoretical flow resistances [50].  

Figure 2.20 compares measured throat pressures with theoretical predictions using 

the isentropic model for design 1; both of them increase with rising inlet pressure. The 

disparity is due to the viscous effects in the nozzle: the gas velocity near the throat wall is 

Figure 2.19: Effects of inlet pressure on the coefficient of discharge for 
the two designs. 
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very slow, leading to the increase in pressure. Figure 2.21 shows the effects of 

downstream pressure (Pd) on the mass flow rate for design 1. The upstream of the nozzle 

is kept at one atmosphere (P0) and the downstream of the nozzle is connected to a 

Figure 2.20: Comparison of measured and calculated throat pressure as a 
function of inlet pressure. 

Figure 2.21: Effects of downstream pressure Pd on the mass flow rate. The 
inlet pressure P0 is kept at one atmosphere while the downstream pressure 
Pd varied. 
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vacuum pump that can alter Pd via a valve. When Pd is nearly the same as P0, the flow 

remains subsonic throughout and the mass flow rate increases with decreasing Pd/P0. 

However, when the downstream pressure is decreased to a critical value, mass flow rate 

is unaffected by changes in Pd/P0. Under these circumstances, when changes in the 

downstream pressure cannot effect conditions upstream of the throat, and therefore have 

no effect on the mass flow rate through the nozzle, the nozzle is said to be “choked.” 

Therefore, a Mach number of 1 has been reached at the throat of nozzle [38].  

 

2.6 Summary 

The design, fabrication and testing of linear test structures were addressed in this 

chapter. A 1-D isentropic model was introduced to describe the behavior of gas flows in 

linear micronozzles. This analytical model can be used conveniently to calculate the 

Mach number and pressure distribution for given device geometric parameters with 

certain accuracy. ANSYS FEA was conducted to validate the analytical model, and a 

relatively good agreement was observed for the Mach number distribution in the nozzle. 

With respect to the pressure distribution, FEA results are within 18 % of the isentropic 

modeling results. The discrepancy is obviously due to the viscous effects of the device 

accounted in the FEA while the isentropic model is frictionless in nature.  

Two processes were explored to fabricate the micronozzles, and their respective 

advantages and disadvantages have been identified. Following the device fabrication, 

details about the device packaging and testing were presented. The experimental results 

demonstrated that a sonic flow was reached at the throat area of the nozzle. It is also 

noted that the throat pressure measurements agree roughly with the model predictions. 
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The viscous effects in the micronozzles were characterized by comparing the measured 

mass flow rates to the theoretical predictions using the isentropic model. The nozzle mass 

flow efficiency was measured to be in the range of 0.36-0.81, increasing with rising 

Reynolds number as a result of the decreasing influence of boundary layer.  
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CHAPTER 3 

DEVICE DESIGN AND MODELING 

3.1 Introduction 

The previous chapter on the linear test structures has laid the foundation for 

developing gas separation nozzles. In this chapter, the diffusion and flow processes in the 

separation nozzle are described, followed by the discussion of design considerations of a 

single-stage separation nozzle system. Finite element analysis is then conducted to 

predict the separation efficiency of the design device. 

 

3.2 Theory: Separation Nozzle Method 

 The basic principles of separation nozzle were reviewed in Section 2.1. This 

section is devoted to the description of separation flow processes. In a physical analysis 

of the separation process of separation nozzle systems, certain parameters are used in 

analogy with those employed in other enrichment techniques. These parameters, in a 

general way, take into account the fact that the results obtained from analyzing the 

elementary separation process can be applied to a multi-stage system [23-26]. They 

describe the concentration change achieved in a single separation element and the 

splitting of mass streams. The shift in concentrations between the light and the heavy 

fractions is characterized by the separation factor A. For a simple binary gas mixture, A is 

defined as 

)1(
)1(
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hlA
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θθ
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where θl and θh are the light component and heavy component partial cuts, respectively. 

The partial cut θi of a component i is defined below in (3.2) as the percentage of its 

throughput in the separation element, which is withdrawn in the light fraction stream 

                                                                                                                                        

(3.2) 

 

where lightim ,�  and heavyim ,� are the mass flow rates of component i in the light fraction and 

heavy fraction, respectively. 

 

3.2.1 Equilibrium Separation 

In the microscale separation nozzle, a gas mixture passes through a centrifugal 

field with a high speed. Because of the extremely short period of flow time of the mixture 

through the device, no equilibrium distribution of the components of the mixture can be 

established. As a consequence, the diffusion streams caused by pressure and 

concentration gradients cannot fully compensate each other at each point. Nevertheless, 

some fundamental aspects of the separation process can be described by the limit case of 

equilibrium separation such as the distribution of molecular species in a steady-state 

cylindrical flow.  

 For a simplified cylindrical flow with concentric stream lines which is split into 

two partial streams at a point r, θi can be calculated directly by radial integration over the 

flux profile [24]. At thermal equilibrium, θi is shown to be 
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where r0 is the radius of the deflection wall, � is the ratio of specific heats of the mixture, 

Mi is the molecular mass of the component, M  is the average molecular mass of the 

mixture, and Mam is the peripheral Mach number of the mixture (i.e., the ratio of the gas 

velocity to the speed of sound in the gas). The derivation of this equation is detailed in 

Appendix B. This simplified equilibrium model can be used to describe some 

fundamental aspects of the separation process. For example, the separation factor of the 

mixture A (as obtained from evaluating θi for both the light and heavy components) is 

predicted to increase with Mam as a result of the increasing separating pressure diffusion 

stream.  

 Because of the limited flow time of the mixture in the centrifugal field, and the 

spatial change of the centrifugal forces, the resultant non-equilibrium effects become so 

significant that the standard diffusion equations and the Navier-Stokes equations cannot 

accurately describe the diffusion and flow processes in the gas separation device. Monte-

Carlo calculations have been used to derive some qualitative information about the 

different behavior of the components of a mixture [52, 53]. However, more research 

efforts are needed to study the non-equilibrium effects quantitatively by solving the 

Boltzmann equation for a strongly perturbed velocity distribution in a gas mixture flow 

[24]. In this work, the concentration effects of micro separation nozzles are examined 

with finite element analysis (FEA) and experimental means such as gas separation 

experiments and mass spectrometric gas analysis. 
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3.2.2 Diffusion Processes 

 The process of mixture component separation in the separation nozzle is 

determined by the diffusion of the components, which permeate the stream surfaces of 

the mixture, when the flow is deflected. As a result of the curvature of the stream 

surfaces, a component of the pressure gradient is developed which is normal to the 

direction of flow, and pressure diffusion causes the light component to be transported to 

the concave side and the heavy component to the convex side of a mixture stream 

surface. In the course of deflection, an increasing concentration gradient is also 

established at the stream surface, which increases the concentration diffusion streams 

directed opposite to the pressure diffusion streams. While the heavy component is 

concentrated increasingly at the periphery of the centrifugal field with the increasing 

angle of deflection, the molar fraction gradients of the heavy component can become so 

high in this region that the remixing concentration diffusion streams may exceed the 

separating pressure diffusion streams [24].  

 The differential equation for the spatial development of the partial cut �i is 

obtained by regarding the transport of the component i through an elementary area of a 

stream surface of the gas mixture. If it is assumed for simplification that the molar stream 

surfaces of the mixture correspond to concentric cylinders in the separation nozzle, it 

holds that where Li is the throughput of the component i per unit length of the nozzle, ji 

the radial component of the flux, and r∂φ the elementary area. The flux ji results from the 

motion of the heavy component relative to the stream surface of the mixture. 

  

φθ ∂=∂ rj
L ii

1
(3.4) 
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The calculation of ji is based on the binary diffusion equation  

 

where ν is the total number density, D the diffusion coefficient, �M the mass difference, 

Ni the molar fraction of the component, and p the static pressure. This equation contains 

only the term describing concentration and pressure diffusions. The influence of thermal 

diffusion can be neglected because of the low temperature gradients in the separation 

nozzle and because of the small thermal diffusion factor [24]. The diffusion processes can 

be described quantitatively by solving the diffusion equation numerically, which is the 

focus of Section 3.4.  

  

3.3 Design of Separation Element 

 A single-stage separation nozzle system is designed on the basis of the results 

from the linear test structures presented in Chapter 2. Figure 3.1 shows the schematic of 

the designed separation system with inlet and outlet ports for gas sample injection and 

collection. As illustrated in the close-up view of the separation element, the flow is 

confined by a curved nozzle formed by the deflection wall and the inner wall, then 

deflected by the curved wall, and finally splits into two fractions by the skimmer. Also 

shown in Figure 3.1 are some critical design parameters such as the nozzle throat width a, 

exit width w, radius of curvature of the deflection wall r0, and skimmer distance f (i.e., 

the width of the channel formed by the skimmer and the deflection wall). 

])/1)(1()/([ ppNNMMNDj iiii ∇−∆−∇−= ν (3.5) 
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 Previous studies [22, 23] on the uranium isotope separation proved that finite 

values for mixture separation were only found in the transition flow regime between the 

continuum flow and free molecular flow. Normally, the Knudsen number Kn is used to 

characterize the gas flow regime 

 

where � is the mean free path of gas flow and the characteristic dimension used as a basis 

below is the nozzle depth d.  

(3.6) 
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Figure 3.1: Schematic of the single-stage separation nozzle 
system and close-up of the separation element with the critical 
design parameters. 
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The mean free path � can be estimated from the following equation [38]: 

where µ  is the coefficient of viscosity of the gas mixture, R is the gas constant, T is the 

gas temperature, and Pt is the throat pressure that can be estimated from Figure 2.19 for 

inlet pressure ranging from 1 to 3 atm. Consequently, the nozzle depth d is designed to be 

5 µm, so Kn can be controlled between 0.005 and 0.05, which is located in the slip flow 

regime [54]. 

 There is a relationship between the nozzle throat width a and theoretical mass 

flow rate      using an isentropic flow model (i.e., a frictionless adiabatic model) [38]: 

where � is the gas density. By changing the inlet pressure P0 from 1 to 3 atmospheres, 

while keeping the outlet pressure at one atmosphere, the mass flow rate is controlled in 

the range from 0 to 2 standard cubic centimeters per minute (sccm), which is comparable 

to that of some existing miniature chemical sensors [9, 10]. Also, the viscous effects in 

the microscale device need to be taken into account. Based on the measurements of the 

mass flow efficiency of the linear structures, which ranges from 0.36 to 0.81 for different 

dimensions (Figure 2.18), two different nozzle widths, 3.6 µm and 18.0 µm, are designed. 

The expansion ratio (i.e., the ratio of exit width w to throat width a) of the input nozzle is 

still designed to be 1.69 as linear nozzles, so an ideal exit Mach number as high as 2 can 

be obtained for the gas flow in the nozzle.  
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 In general, the skimmer distance f is influenced by the operating conditions such 

as the inlet pressure and the pressure expansion ratio (i.e., inlet-to-outlet pressure ratio) if 

a certain percentage of throughput of heavy gas molecules is withdrawn in the heavy 

fraction after the separation process. Two skimmer distances, 1/3 r0 and 1/6 r0, are 

designed to examine their effect on the separation efficiency and distribution of gas flow 

between the light fraction and heavy fraction. Table 3.1 lists the characteristic parameters 

of the three designed devices. 

 

Table 3.1: Geometric parameters of the three designed separation nozzles. 

 

 

3.4      Computational Fluid Dynamics Modeling  

A computational fluid dynamics (CFD) model was developed to assess the 

performance of the designed device and verify the experimental results presented in 

Chapter 5. The CFD model was based on solving the Euler equations and Maxwell-

Stefan diffusion equation numerically. The bulk of this work was carried out by Mr. 

Jonathan Day for his M.S. thesis research under the guidance of Prof. Christopher Cadou 

and in direct collaboration with Prof. Reza Ghodssi and myself. Because of the 

importance of this numerical simulation for better understanding the underlying physics 

Device          Radius of deflection wall          Nozzle throat width           Skimmer distance 
                                      (µm)                                      (µm)                                    (µm)  
 

   1                                 120                                        18.0                                     20.0 

   2                                 120                                        18.0                                     40.0 

   3                                 120                                          3.6                                     20.0 
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of the device operation, this section reviews its key aspects such as the governing 

equations, boundary conditions, solution method, and key modeling results. The reader 

can refer to [55] for a more comprehensive and in-depth description of this numerical 

study. 

 

3.4.1 Governing Equations  

The flow field in the device is determined by the device geometry and boundary 

conditions. As discussed in Section 3.3, the gas flow in the device should be controlled in 

the slip flow regime, thus effects of the small dimensions (i.e., velocity slip at the walls) 

on the development of the boundary layer are of particular interest. As discussed in 

Section 3.2.2, it is the radial pressure gradient that drives the pressure diffusion process 

responsible for stratifying the mixture flow. And it is known that the radial pressure 

gradient is proportional to the square of the gas velocity [24]. Therefore, examining the 

effects of the device dimensions on the boundary layer growth is very important [55]. 

The flow processes in the device are described by the 2-D time-invariant, 

compressible Euler equations [52] plus the equation of state for an ideal gas [57].  

                  ( ) 0=⋅∇+∇⋅ uu ���� ρρ                                                          (3.9) 

                   ( ) Fuu
����� ρρρ 11 =∇+∇⋅                                                  (3.10) 

( ) ( )( )FuQuppu
������ ⋅−−=⋅∇+∇⋅ 1γγ                              (3.11) 

                                               RTp ρ=                       (3.12) 

where u
�

 is the velocity vector, γ is the ratio of specific heats (Cp/Cv) for the gas mixture, 

Q is a net heat generation per unit volume (equal to zero here) and F
�

 is a body force 
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vector (also equal to zero here). Equation (3.9) corresponds to conservation of mass, 

(3.10) represents conservation of momentum, (3.11) stands for conservation of energy, 

and (3.12) represents the ideal gas law. 

As discussed before, the diffusion of heavier particles to the outer wall and lighter 

particles to the inner wall of the device is driven by the radial pressure gradient 

associated with the turning of the gas flow. However, there is also a reverse diffusion 

process opposing separation which is driven by the concentration gradient. The balance 

between pressure, concentration, and thermal diffusion is given by the generalized 

Maxwell-Stefan diffusion equation [57] for a two-component mixture 

( ) ( )[ ] )13.3(ln
1

ln*
��

�
��

� ∇+−−∇−+∇−= Tkggp
cRT

axcDJ TBABAAAAAABA ωρωωφ  

where *
AJ  is the diffusive flux, c is the concentration, DAB is the diffusion coefficient, x is 

the mole fraction, aA is the activity of component A, T is the temperature, φ A is the 

volume fraction of A, �A is the mass fraction of A, g is the body force per unit mass, and 

kT is the conductive heat transfer. The activity of the species is defined by the following 

equation [58]: 

αα aRTdGd ln=      (3.14) 

where αG is the partial molar Gibbs free energy, and d is the differential operator. 

By converting the flux into a time derivative and making the assumptions that it is 

a binary mixture of N2 and SF6 and that the external force and temperature diffusion 

terms are negligibly small relative to the pressure and concentration diffusion terms, the 

diffusion equation (3.13) can be simplified as: 
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Finally, the requirement that all of the gas samples within the device be either SF6 

or N2 yields 

12 1 ww −=                    (3.16) 

The above equations (3.9-3.12, 3.15, 3.16) completely define the flow field within the 

computational domain set by the separation nozzle geometry. 

 

3.4.2 Boundary Conditions 

Figure 3.2 demonstrates schematically the computational domain used for the 

numerical model. The localities of the boundary conditions are the inlet, the light and 

heavy fraction outlets, and all of the other walls including the deflection wall and the 

skimmer.    

Figure 3.2: Computational domain used for the numerical model. 
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The boundary conditions for the device were set as no material flux through the 

wall (3.17) and velocity at the wall (3.18).  Perfect slip is assumed (i.e., there is no shear 

stress at the wall).  

( )( ) uwTTDppwxxDwNNn T
kkk

kk

����
1

1

2

1
1;0 ρρ +∇+∇−+∇−==⋅ 


=

 (3.17) 

 ( )( )( ) 0,0 =∇+∇+−⋅=⋅ nuuIptun
T ��������� η    (3.18) 

where n�  is a unit vector normal to the surface and pointing into the enclosed volume, t
�

 

is a unit vector that is tangent to the surface, and I
�

 is the identity vector.  

Conditions at the inlet were set as follows:  the mass fractions of SF6 and N2 were 

5% and 95% (corresponding to 1 mole% SF6 of and 99 mole% N2), respectively. The 

Mach number at the inlet was 0.2 in the x-direction and 0 in the y-direction.  The non-

dimensional fluid density was 1 and the non-dimensional inlet pressure varied from 1 to 3 

atm. The outlet boundary conditions were set as follows: the convective mass flux is 

normal to the exit area (3.19), and the non-dimensional pressure is equal to 1 atm along 

the exit plane. 

( )( ) TTDppwxxDwNNn T
kkk

kk

∇+∇−+∇−==⋅ 

= 1

2

1
1;0 ρ

��  (3.19) 

3.4.3 Solution Method 

A commercially available software FEMLAB was utilized to solve the governing 

equations using a finite element method. The software is especially suitable for this 

application because it allows the user to input any governing equations in symbolic form 
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and therefore control exactly which parts of the governing physics are included and 

excluded. 

Like some other CFD simulation tools, FEMLAB allows the user to describe the 

computational domain, generate the finite element mesh, and apply boundary conditions. 

Figure 3.3 shows the finite element mesh for the model with an unstructured grid of 

triangular elements. FEMLAB uses adaptive gridding so the meshes for each set of flow 

conditions are different. One major benefit of the adaptive meshing method is the 

increased ability to converge to a solution as the initial conditions at each mesh update 

are more accurate. Also fewer grid points are required as they are judiciously located, 

which reduces the memory requirements for the model. Furthermore, the adaptive 

meshing algorithm [59] regenerates the mesh by increasing the number of grid points at 

the locations of the highest error values.   

Figure 3.3: Finite element mesh for the model geometry. 



 

 

 

53 

The software also allows the user to specify different types of boundary 

conditions at each location which is either external or internal to the model geometry. 

The available boundary conditions are dependent upon the equations being solved. For 

the Euler equations, the boundary conditions can be inflow/outflow, slip/symmetry, and 

no conditions. For the Maxwell-Stefan diffusion equation, the available boundary 

conditions are no flux, convective flux, and fixed mass fraction. In this study, only the 

external boundary conditions are imposed. The specific boundary conditions utilized 

were previously discussed in Section 3.4.2. 

The software provides a variety of solvers such as linear and non-linear, direct 

and iterative, steady-state and time-dependent, and parametric solvers. FEMLAB also 

offers the capability to solve for the weak, general, or coefficient solution form [60]. 

Since the problem under consideration is a highly non-linear steady-state problem, an 

iterative, steady state non-linear solver is used. This solver uses an affine invariant form 

of the damped Newton method to solve a linearized form of the governing equations. 

 

3.4.4 Results 

The device geometry has an impact on the specific flow field generated by 

creating several key features within the flow field regardless of the applied boundary 

conditions. As shown in Figure 3. 4, the device geometry can be broken into three main 

sections: the converging/diverging section, the expansion/deflection wall section, and the 

skimmer section.  
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The converging segment on the left is where the gas sample enters the device and 

is compressed into the diverging portion. A key feature of the flow is the recirculation 

region along the straight wall; it is generated as the straight wall can be considered as a 

forward step in the flow field. The second flow feature within the converging/diverging 

section is the shock wave generated at the nozzle throat; the location of the shock wave is 

correctly determined by the computational model.   

The expansion/deflection wall section is regarded as a backward step in the flow 

field. The nature of a backward step generates a recirculation region along the curved 

wall behind the step. This recirculation region can be demonstrated by the streamlines in 

Figure 3.4.   

The skimmer section is conceptually comprised of two flow features: a wedge-

shaped tip (i.e., the skimmer itself) and a backward step (the heavy fraction outlet). The 

Figure 3.4: Simulated flow field in the device at a pressure ratio of 1.75. 
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interaction of these two features generates a unique situation in which there are two 

possible flow modes. The first mode has the flow hitting the skimmer straight on as 

shown in Figure 3.4. In this mode, there is little interaction between the two flow features 

and therefore they can be treated as two separate entities.  

In the second flow mode, there is a significant interaction between the two flow 

features as shown in Figure 3.5. The flow in this case is dominated by the redirection of 

the flow prior to hitting the skimmer and therefore the angle of attack is no longer zero. 

The change in the angle of attack between the flow direction and the skimmer creates two 

significant changes in the flow pattern. The first feature is the splitting of the 

recirculation zone created within the expansion region into two separate counterflowing 

vortices. The second feature is the lack of the redirection of the flow within the heavy 

fraction. Instead, the flow continues along the curved wall to the exit. This relocates the 

Figure 3.5: Second flow mode in the device at a pressure ratio of 2. 
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recirculation region within this area to the flat wall. The effects of these changes in the 

flow structure are higher flow velocities within both exit regions and an increase in the 

separation efficiency. 

The two flow modes were achieved within the computational model through the 

use of two solution methods. The first mode is achieved through the use of the weak 

solution mode for the governing partial differential equations (PDEs). The second mode 

is obtained through the use of the general solution mode for the governing PDEs. The 

difference between the two modes is the weak solution guarantees the use of an exact 

Jacobian [55].   

 

A. Pressure Distribution 

The pressure distributions in the flow field are shown in Figure 3.6 (a)-(c) for 

three different pressure ratios. For relatively low pressure ratios (less than 1.75), the 

pressure wave remains intact throughout the expansion region. However, the pressure 

gradients are low and therefore do not generate as high of a diffusive flux, as illustrated 

in Figure 3. 6 (a). At high pressure ratios (larger than 2.5), the pressure wave becomes 

wider than the skimmer distance and therefore the separation effects are not fully realized 

due to the spreading out of the high pressure region as depicted in Figure 3.6 (c). At a 

pressure ratio of approximately 2, an optimum combination of high pressure gradient and 

a contained pressure wave matching the skimmer width is achieved, as shown in Figure 

3.6 (b).     
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Figure 3.6: Pressure distributions in the flow field for three different 
pressure ratios: (a) 1.75, (b) 2.0, and (c) 2.5. 

 (a)  

 (b)  

 (c)  
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B. Mass Flux Distribution 

 The SF6 and N2 mass flux distributions, shown in Figure 3.7 (a)-(b), demonstrate 

the key features in providing a separated flow.  As shown in all three curved sections, SF6 

Figure 3.7: Mass flux distribution of SF6 (a) and N2 (b) for the pressure ratio of 2.0. 

 (a)  

 (b)  
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flux moves steadily to the outer wall while N2 is pushed into the center of the flows field. 

High SF6 diffusive flux also occurs at the nozzle throat, as shown in Figure 3.7 (a). The 

switching of radial directions at the nozzle throat requires SF6 to jump across the nozzle 

throat. The deformation of the shock is due to this high flux region which could be 

manipulated to increase the overall separation efficiency of the device. 

 

C. Separation Factor 

The separation factor A is the key parameter in characterizing the performance of 

the device. A was defined previously in Equation (3.1). In this numerical study, A is 

computed from the computational results by taking a cut along the flow path at the heavy 

and light fraction exits, respectively, and recording the mass fraction fluxes of N2 and SF6 

along this cut at 2000 equally spaced locations. This data was then used to calculate the 

total mass flow rates of SF6 and N2 through the light and heavy fraction streams by 

integrating the flow data with a MATLAB script.  

Figure 3.8 shows the computational analysis of separation factor for device 1 

(Table 3.1). The two model curves shown are the separation factor that is calculated 

depending upon the flow mode achieved. As shown in Figure 3.8, the second flow mode 

creates significantly higher separation factors. It is believed that this flow mode is only 

achieved under specific inlet conditions. Combining the two flow modes shows the 

potential maximum separation factor if a jump in flow modes is achieved around a 

pressure ratio of 2.0. The pressure profiles shown in Figure 3.6 (a)-(c) reveal that the 

cause of the peak in the separation factor is the movement of the competing effects of the 

dispersion of the pressure wave towards the inner wall and the increasing pressure 
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gradient causing higher diffusion rates. At the pressure ratio of approximately 2, an 

optimum combination of high pressure gradient and a contained pressure wave matching 

the skimmer width provide the peak in the separation factor. 

 

D. Residence Time 

 As aforementioned, the most notable advantage of the separation nozzle method is 

its fast response when compare to other commonly used concentration approaches. The 

time required for transit of a gas sample through the separation nozzle is governed by the 

residence time. As shown in Figure 3.9, the calculated residence time decreases as a 

result of the increase in the mean flow velocity through the device when the pressure 

ratio is increased. The desirable device response time should be less than 1 ms which is 

easily met by even the maximum simulated residence time of about 12 µs. 

Figure 3.8: Variation of separation factor with pressure ratio for the two flow modes. 
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3.5  Summary 

In this chapter,  the basic theory of separation nozzle method has been reviewed, 

and separation and diffusion processes in the device were discussed. Design 

considerations of the single-stage separation nozzle systems based on the results from the 

linear test structures have been addressed, and three different designs with varying throat 

widths of input nozzle and skimmer distances were presented. A numerical model based 

on the compressible Euler equations and Maxwell-Stefan diffusion equations has been 

introduced to study the separation nozzle flows. The CFD analysis reveals the 

dependence of the separation factor on the inlet-to-outlet pressure ratio, and predicts the 

response time of the designed device. These simulation results can be used to verify the 

experimental data from device testing (presented in Chapter 5) and provide insight into 

the understanding of the diffusion and flow processes in the gas separation device. 

Figure 3.9: Residence time of gas flow in the device as a function of pressure ratio. 
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CHAPTER 4 

DEVICE FABRICATION 

4.1 Introduction 

Fabrication of MEMS devices is based on the technology originated from the 

microelectronics industry and enhanced with specialized techniques generally called 

micromachining [46]. Commonly used MEMS fabrication techniques include bulk 

micromachining, surface micromachining, wafer-level bonding, LIGA, and micro-

electro-discharge machining (EDM). A typical MEMS device can be realized by using 

any of these processes or some combined processes. In this research work, bulk 

micromachining and wafer-level bonding are utilized to fabricate the gas separation 

devices, and therefore are discussed in detail below. 

Bulk micromachining has been broadly applied in the fabrication of MEMS 

sensors, actuators, and structures. Bulk micromachining is used to selectively remove 

silicon or other materials from substrates to form membranes on one side of a wafer; or to 

make a variety of trenches, holes, or other structures [61]. The etching approaches used in 

bulk micromachining can be categorized as wet etching and dry etching.  

In wet bulk micromachining, features are sculpted in the bulk of materials by 

isotropic or anisotropic wet etchants [62]. Commonly used wet etchants are potassium 

hydroxide (KOH), ethylenediaminepyrochatechol (EDP), tetramethylammonium-

hydroxide (TMAH) for silicon etch, buffered HF for silicon dioxide etch, phosphoric acid 

for silicon nitride etch, etc. Wet etching offers advantages of low cost, high selectivity, 

fast etch rate, and smooth etched surface. However, it is relatively hard to control etch 
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rate and achieve submicron features using wet etching. The need for better critical 

dimension (CD) control and environmental issues drive a switch from wet to dry etching. 

Dry etching covers a family of methods by which a substrate is etched in the 

plasma or vapor phase, physically by ion bombardment, chemically by chemical 

reactions through reactive species at the surface, or by combined physical and chemical 

mechanisms [62]. Besides the better CD control, dry etching can be highly directional 

and realize good production-line automation. Most common dry etching methods include 

reactive ion etching (RIE), plasma etching (PE), ion beam etching (IBE), etc. Frequently 

used etch gases are xenon difluoride (XeF2) for isotropic silicon etch, carbon tetrafluoride 

(CF4) for silicon dioxide etch, and sulfur hexafluoride (SF6) plus oxygen (O2) for silicon 

and silicon nitride etch. Recently developed DRIE technique presents an attractive 

solution to the fabrication of high-aspect-ratio microstructures [63], realization of 

through-wafer interconnections [34], and post-CMOS processes [64]. In this work, RIE is 

used to etch separation nozzle structures in silicon, and DRIE is employed to realize 

through wafer fluidic interconnections. 

Another important MEMS fabrication technique is wafer-to-wafer bonding, which 

has been extensively used to fabricated microstructures such as microchannels [65] and to 

package MEMS devices such as pressure sensors [66]. Wafer-to-wafer bonding is an 

additive approach, complimentary to bulk and surface micromachining techniques. The 

bonding processes often involve alignment of the substrates.  

Three types of wafer bonding are commonly used in MEMS device fabrication: 

direct bonding, intermediate-layer bonding and anodic bonding. The direct bonding 

method relies on forces that naturally attract surfaces together when they are very smooth 
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and flat. Direct bonding offers advantages of ease of operation and less thermal 

expansion mismatch problems using the same or similar substrate materials. However, in 

direct bonding, voids are easy to form at the bond interface due to particles, protrusions 

on the wafer surface, or trapped air. In addition, high-temperature anneal (i.e., 800-

1200°C) employed in direct bonding precludes its use with wafers having sensitive 

structures such as integrated circuits. 

Intermediate-layer bonding involves the application of bonding materials between 

the two substrates to be bonded. A wide range of intermediate layers have been used for 

wafer-lever bonding in microstructure fabrication. These approaches include: eutectic, 

solder, low melting temperature glasses (including glass frits), and thermal compression 

(using soft metal thin films or polymers) [66]. The SU-8 bonding process described in 

Section 2.3.1 falls into this category. Advantages of this type of bonding include low 

temperature, flexible choice of substrates, tolerance to contaminants, low cost, etc. 

However, intermediate-layer bonding has potential disadvantages of limited temperature 

stability and long-term stability as well as relatively low bond strength and yield [67]. 

Anodic bonding, as introduced in Section 2.3.2, is a field-assisted method, 

eliminating the high-temperature steps employed in direct bonding. This approach is less 

susceptible to the presence of particles and structures on the wafers than direct bonding. 

On the other hand, it has a higher bond strength and yield than intermediate-layer 

bonding since chemical bonding is presumed to occur at the interface that fuses the 

wafers together [66]. Therefore anodic bonding is adopted in this work to fabricate sealed 

gas separation devices.  
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4.2 Processing 

Fabrication of gas separation devices is relatively straightforward, including two 

lithographic steps and two dry etches. As shown schematically in Figure 4.1, the process 

begins with a silicon wafer having a 2-µm layer of oxide on the backside. The first step 

involves spinning and patterning a 1.5-µm layer of photoresist on the front side of the 

wafer, followed by etching 5 µm deep separation nozzle patterns in silicon with RIE. A 

6-µm masking layer of photoresist is then spun and patterned to define the inlet and outlet 

ports, after which the exposed backside oxide is etched with buffered HF. The 

combination of the patterned photoresist and oxide serves as the etch mask for generating 

through holes in the silicon substrate with DRIE. Following this step, the resist and oxide 

are stripped, and the silicon wafer is anodically bonded to a pyrex wafer to seal the 

microfluidic channels. Finally, metal capillaries are inserted into the inlet/outlet ports to 

realize fluidic interconnection. Details of each process step are described in subsequent 

sections below. 

 

4.2.1 Wafer Cleaning 

A standard clean consists of rinsing the wafer with acetone, methanol, 

isopropanol alcohol (IPA) successively. This sequential rinse is repeated two or three 

times followed by drying with compressed nitrogen. Moisture adsorbed on the wafer 

surface is removed by baking the wafer on a hotplate at 120°C for 10 minutes. The 

standard clean process is performed before every lithographic step. 

If a wafer is to be subjected to a high temperature process such as chemical vapor 

deposition (CVD) and anodic bonding, it must be cleaned with RCA cleaning procedures. 
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The first step is to remove all organic coatings in a strong oxidant, like a 7:3 mixture of 

concentrated sulfuric acid and hydrogen peroxide (generally called “piranha”). Then a 

5:1:1 mixture of water, hydrogen peroxide, and ammonium hydroxide is used to remove 

organic residues. Because this step can grow a thin oxide on silicon, it is necessary to 

insert the wafer to dilute hydrofluoric acid to remove this oxide. The HF dip is omitted 

(b) Etch separation nozzle patterns in silicon 

(e) Silicon-glass anodic bonding 

Sealed 
channel 

Pyrex 

    

         Inlet and outlet ports 

(d) Create inlet and outlet ports using DRIE 

   Metal capillaries 

(f) Capillary bonding for fluidic interconnection 

Patterned resist 

 

   SiO2 
Silicon 

(a) Si wafer with 2 �m oxide on the backside 

(c) Pattern backside resist and oxide 

Patterned 
resist and 
oxide 

Figure 4.1: Fabrication process for single-stage separation 
nozzle including microfluidic interfacing. 
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when cleaning wafers with intentional oxide on them. Finally, ionic contaminants are 

removed with a 6:1:1 mixture of water, hydrochloric acid, and hydrogen peroxide.  

 

4.2.2 Photolithography 

Photolithography is used to transfer patterns from masks to photoresist layers. As 

shown in Figure 4.1, the whole fabrication process requires two photoresist patterning 

steps: 1) definition of the separation nozzle structures on the front side of the wafer, and 

2) definition of inlet and outlet ports on the backside of the wafer.  

The photoresist patterning is performed on a contact aligner (model: EV620 by 

Electronic Visions Co.). The front side photolithography is as follows. The wafer is 

cleaned using the standard clean process. Next, the wafer is baked on a hotplate at 120°C 

for 10 minutes. Then hexamethyldisilazane (HMDS) (MicroSi, Inc.), an adhesion 

promoter, is dispensed onto the wafer. After wetting the wafer surface for 60 seconds, 

HMDS is spun at 3000 rpm for 60 seconds followed by spin-coating Shipley 1813 

(Shipley Co., Marlborough, MA) at 3000 rpm for 60 seconds. A 60 second softbake at 

100°C on a hotplate is performed to remove solvents in the resist and promote adhesion 

of the resist layer to the wafer. After softbake, the resist is exposed using an exposure 

dose 187 mJ/cm2. The exposure is followed by development in Shipley 352 developer 

(Shipley Co., Marlborough, MA) for 30 seconds. After checking the resolved patterns 

under a microscope, the wafer is hard baked on a hotplate at 120°C for 10 minutes to 

remove residual solvents and anneal the resist film for improving the hardness of the 

film. Finally the thickness of the resist was measured to be 1.62 ± 0.02  µm with a stylus 

profilometer (model: Tencor P1 by KLA-Tencor Co.). 
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The backside photolithography is very similar to the front side one except that a 

thicker photoresist layer is used to serve as an etch mask for DRIE in the following step. 

The backside lithography is as follows. After wafer clean and application of HMDS, AZ 

9245 (Clariant Co., Somerville, NJ) is spun on the wafer at 2500 rpm for 60 seconds. 

After a 120 second softbake at 110°C on a hotplate, the resist is exposed using an 

exposure dose 250 mJ/cm2. In this step, a double-sided alignment scheme is used to align 

the inlet and outlet ports to the reservoirs of the separation devices patterned on the front 

side [62]. Figure 4.2 illustrates the double-sided alignment scheme including the 

following key steps: 

1) The image of alignment marks of the mask is stored electronically; 

2) The alignment marks on the backside of the wafer are brought in focus; 

3) The position of the wafer is adjusted by translation and rotation to align the 

marks to the stored image. 

The exposure is followed by development in AZ 400K developer (Clariant Co., 

Somerville, NJ) for 30 seconds. This resist does not need hard bake. Thickness of the 

resist was measured to be 6.28 ± 0.07 µm.  It is important to note that for this second 

mask, which defines the inlet and outlet ports, it is critical to align the ports with the 

reservoir patterns defined by the first mask in order to realize the fluidic interconnection, 

as will be discussed later on in Section 4.2.6. 

 

4.2.3 Reactive Ion Etching 

After the separation nozzle patterns are obtained in the front side photoresist using 

photolithography, this resist layer is used as an mask to transferred the patter into silicon. 
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This patter transfer was accomplished by reactive ion etching (RIE) using SF6 and O2 

plasma. The process parameters were pressure of 50 mTorr, flow rates of 40 sccm and 20 

sccm for SF6 and O2, respectively, and radio frequency (RF) power of 100 W. Test 

wafers were used to characterized the etch rate and selectivity of silicon to photoresist 

(hard baked Shipley 1813). Figure 4.3 shows the measured depth of etched structures on 

(1) 
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Wafer 

Wafer alignment marks 

Microscope objective 

Wafer is inserted between the 
mask and the microscope 
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The position of the wafer is 
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Figure 4.2: Double-sided alignment scheme (adapted from [62]). 
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a test wafer before stripping the resist. Subsequently, the resist layer was stripped with 

acetone and the depth of the etched structure was measured again to be 4.27 µm. 

Therefore, the silicon etch rate and the selectivity to photoresist were estimated to be 0.95 

µm/min and 5.5, respectively.  

Based on the characterization results, 5 µm deep separation nozzle structures were 

etched onto a silicon substrate, as shown in Figure 4.4. Using an optical profilometer 

(model: Veeco WYKO NT1100 Optical Profilometer), the average surface roughness of 

the etched structure was measured to be less than 20 nm, which is desirable for reducing 

the viscous effect of gas flow in the device. 
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Figure 4.3: Depth measurements of etched structures as a function of time. 
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4.2.4 Deep Reactive Ion Etching 

After the backside lithography as introduced in section 4.2.2, the patterns formed 

in the photoresist AZ9245 was transferred into the underlying SiO2 layer to obtain a 

hardmask suitable for deep reactive ion etching (DRIE). The pattern transfer of the 

photoresist mask into SiO2 was accomplished by wet etching using buffered HF (5:1 ratio 

of 40 wt% ammonium fluoride to 49 wt% hydrofluoric acid). The combination of the 

patterned photoresist and oxide serves as the etch mask for generating through holes in 

the silicon substrate using a DRIE system (model: Surface Technology Systems (STS) 

Advanced Silicon Etch ICP DRIE System).  

Figure 4.4: Optical micrograph of an etched separation nozzle before stripping 
the photoresist mask. 
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This DRIE system can provide high aspect ratio etching of single crystal silicon 

using inductively coupled plasma (ICP) RIE. ICP RIE uses the magnetic field arising 

from the RF voltage to further excite electron cloud and reactive ions and to increase 

density of ions and neutrals which increases etch rate. By using the licensed “Bosch 

process” (i.e., a combination of alternate SF6 etch and C4F8 protection process cycles), 

high etch rate and high directionality silicon etch is realized [62]. Furthermore, by 

cooling the wafer chuck to liquid nitrogen temperatures (77K) and using a helium gas 

flow under the wafer for efficient heat transfer, wafer temperature can be maintained at 

cryogenic temperatures during etching [61]. The cooling mechanism results in 

condensation of reactant gases and protects the sidewalls from etching which renders a 

more anisotropic process [62]. Characteristic parameters of the DRIE Process in the STS 

system are listed in Table 4.1.  

 

  Table 4.1: Process parameters of the STS DRIE system (adapted from [62] and [68]). 

 

SF6 flow                                                                                                              130 sccm 

O2 flow                                                                                                                13 sccm 

C4F8 flow                                                                                                             85 sccm 

Etch cycle                                                                                                            10 s 

Passivation cycle                                                                                                 6.5 s 

Pressure                                                                                                               3-30 mTorr 

Process chamber temperature                                                                             45 ± 1°C   

Etch rate                                                                                                              3-4 �m/min                                                                                           

Selectivity to photoresist                                                                                    ~100 to 1 

Selectivity to SiO2                                                                                              ~100 to 1  
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A handle wafer was used in DRIE to prevent the leak of helium flow. After 

dispensing several drops of Shipley 1813 on the silicon handle wafer, the device wafer 

was put on the top of the handle wafer followed by a 5 minute bake on a hotplate at 

120°C. Then the bonded assembly was put in the DRIE system, and etching holes (500 

�m in diameter) through a 500 �m thick silicon wafer took about 200 minutes. Finally the 

handle wafer was separated from the device wafer by soaking them in acetone for about 

30 minutes.  

 

4.2.5 Anodic Bonding 

After DRIE, the device wafer was anodically bonded to a pyrex wafer to seal the 

etched separation nozzle structures. Before bonding, both wafers were cleaned using 

RCA cleaning procedures without HF dip to remove organic and ionic contaminants. The 

pyrex wafer has a nominal mean surface roughness less than 1.5 nm. The surface of the 

silicon wafer to be bonded with the pyrex wafer was inspected with a atomic force 

microscope (model: Veeco Dimension 3000 AFM). Figure 4.5 shows the measured 

surface roughness of the wafer. The mean roughness Ra is 0.214 nm, which is desirable 

for anodic bonding. The anodic bonding was performed on EVG501 Bonder (Electronic 

Visions Co.), as shown in Figure 4.6. The process parameters used were bonding 

temperature T= 400 °C, bias voltage 500 V, contact force 500 N, and bonding time 60 

minutes. After anodic bonding, the bonded wafers were diced with a dicing saw into 

several dies. Figure 4.7 shows a microfabricated chip with a close-up view of the curved 

nozzle structure. The dark holes shown in the photograph are inlet and outlet ports etched 

through in the silicon substrate using DRIE.  
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Figure 4.5: AFM micrograph of a device wafer surface before anodic bonding. 
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Figure 4.6: EVG501Bonder used for silicon-to-glass anodic bonding. 
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4.2.6  Packaging and Mounting 

Once the devices are fabricated, they are packaged to realize microfluidic 

interfacing and prevent leak and contaminants. As shown schematically in Figure 4.1(f), 

metal capillaries are inserted into the inlet/outlet ports of device and fixed with O-rings 

and epoxy (not shown) by following the same procedures used for linear test structures as 

mentioned in Section 2.3. After packaging, the devices are mounted onto a test setup for 

conducting gas separation experiments. As shown in Figure 4.8, Tygon flexible tubing 

and fittings are used to connect the device with testing instruments such as flow meter, 

flow controller, and manometer. The test setup and testing procedures will be discussed 

in detail in Chapter 5. 

 

40µm 

Figure 4.7: Optical micrograph of a microfabricated chip after silicon-to-glass anodic 
bonding with a close-up view of a single-stage separation nozzle. 
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4.3 Summary 

 After reviewing some commonly used MEMS fabrication techniques, this chapter 

presents the process for fabricating the gas separation devices with nozzle throat width as 

small as 3.6 �m. Device processing consists of a front side photolithography step and a 

dry-etch step using SF6 and O2 plasma to define the separation nozzle structures in 

silicon. During these steps, test wafers are used to characterize the etch rate of RIE and 

selectivity of silicon to photoresist; therefore the depth of the etched patterns can be 

control with precision. A double-sided alignment mechanism is employed to align the 

inlet and outlet patterns on the backside of the wafer to the reservoirs of the separation 

devices etched on the front side of the wafer, followed by a DRIE step to generate the 

ports through the wafer. The microfluidic nozzle structures are then sealed by silicon-to-

glass anodic bonding. Finally, the fluidic interconnection techniques developed for the 

linear test structures are used to interface the gas separation devices with the testing 

instruments for conducting gas separation experiments.  

Mounted chip Flexible tubing 

Figure 4.8: View of mounted chip on the test setup. 
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CHAPTER 5 

DEVICE CHARACTERIZATION 

5.1 Introduction 

In this chapter, the experimental characterization of gas separation devices is 

presented. First, apparatus and procedures for gas separation experiments are described 

and mass flow measurements are discussed. Next, the basic principle of mass 

spectrometry and the corresponding setup for gas analysis are presented. Characterization 

results using different operating conditions are discussed for various designs. The 

experimental results are compared to finite-element simulations, and the performance of 

these devices is evaluated. 

 

5.2 Gas Separation Experiment 

Gas separation experiments were conducted to examine the effect of operating 

conditions (e.g., pressure ratio and gas species) and geometric parameters (i.e., the nozzle 

width w and the skimmer distance f) on the separation factor of the fabricated devices. As 

a proof-of-concept, two different inert gas mixtures, 1 mole% SF6/99 mole% N2 and 1 

mole % SF6/99 mole % Ar, were used in the experiments. The mean molecular weigh 

(MW) of the first mixture is very close to that of air while MW of SF6 is close to that of 

some organic contaminants such as trichloroethylene and naphthalene [8], which mimics 

the working environment of generic miniature chemical sensors. The second mixture was 

used to study the influence of the mass difference between the heavy component and light 

component of the mixture on the concentration effect. 
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5.2.1 Experimental Setup 

As shown schematically in Figure 5.1, the setup for conducting gas separation 

experiments was implemented by modifying the gas flow test setup used for testing linear 

structures (Figure 2.16). Two 10-cm3 sample cylinders (SS-4CD-TW-10, Swagelok, 

Solon, OH), were connected downstream of the device to collect separated gas samples 

[69]. Figures 5.2 (a) and (b) show the sample cylinder and the gas separation setup, 

respectively. The inlet pressure P0 is changed from 1 to 3 atm while the outlet pressures 

(including the heavy fraction and light fraction ones) are kept at 1 atm, all of which are 

monitored using manometers (MKS Instruments Baratron 722A and 622A, respectively). 

The pressure measurements are read simultaneously by a LabVIEW program that is 

interfaced with a data acquisition device (DAQ) connecting the manometers with a 

computer. This data acquisition scheme is detailed in Appendix C. Following the 

separation experiments, the composition of the separated gas samples collected in the 

cylinders was determined using mass spectrometry. The details of the mass spectrometric 

setup and gas analysis will be discussed in Section 5.3. 
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Figure 5.1: Schematic of setup for gas separation experiments. 
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5.2.2 Mass Flow Test  

 As mentioned in Chapter 3, in a separation nozzle system, the total gas stream 

passing through the centrifugal field is split into a heavy fraction and a light fraction. The 

gas flow distribution between the heavy and light fractions can be estimated by 

calculating the partial cuts of the light and heavy components using Equation (3.3), which 

is repeated below as Equation (5.1).  

Figure 5.3 compares the measured mass flow percentage of the heavy fraction 

stream with the model calculations for devices 1 and 2, which have different f/r0 ratios as 

shown in Table 3.1, which is repeated here as Table 5.1 for the purpose of convenient 
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Figure 5.2: (a) Photograph of a stainless miniature sample cylinder with two stainless 
bellow valves connected at both ends; (b) the assembly is attached to the setup for gas 
separation experiments. 
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reference. It is seen that the measurements initially agree well with the equilibrium 

model, and then deviate slightly from the theoretical predictions as the inlet-to-outlet 

pressure ratio increases. This is attributed to the increasing width of pressure wave 

relative to the skimmer distance with rising pressure ratio, as discussed in Section 3.4.  

Figure 5.4 compares the estimated residence time from the mass flow 

measurements with the numerical simulations (Figure 3.10). In the test, the total mass 

flow rate of device 1 was measured to be from 0.05 to 0.52 sccm, which corresponds 

approximately to an nozzle exit velocity ranging from 5.9 to 45.4 m/s without 

considering the thickness of boundary layer of gas flow in the device. With the known 

Figure 5.3: Measured mass flow percentage of heavy fraction compared with 
model calculations for devices 1 and 2 with different f/r0 ratios, 1/6 and 1/3, 
respectively. 
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device dimensions, the residence/flow time of the mixture in the centrifugal field is 

estimated to be less than 0.1 ms. As shown in Figure 5.4, the estimates become gradually 

close to the numerical predictions with the increasing pressure ratio. This is probably due 

to the weakening influence of boundary layer with the increasing Reynolds number as the 

pressure ratio is increased. From both the measurements and simulations, it is 

demonstrated that high-speed gas separation can be realized through the device.  

 

Table 5.1: Geometric parameters of the three designed separation nozzles. 

 

Device          Radius of deflection wall          Nozzle throat width           Skimmer distance 
                                      (µm)                                      (µm)                                    (µm)  
 

   1                                 120                                        18.0                                     20.0 

   2                                 120                                        18.0                                     40.0 

   3                                 120                                          3.6                                     20.0 
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Figure 5.4: Simulated residence time versus pressure ratio in comparison 
with the estimate from the mass flow measurements. 
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(5.2) 

5.3 Mass Spectrometric Gas Analysis 

5.3.1   Principle of Mass Spectrometry 

Mass spectrometry is used to analyze separated gas samples. The operating 

principle of a quadrupole mass spectrometer is shown in Figure 5.5 [70]. It is composed 

of an ion source, a separation system, and an ion detector. First, injected gas molecules 

are ionized by impact electrons (an electron energy level of 70-110 eV). The ion beam 

extracted from the ion source is diverted into the quadrupole separation system 

containing four rod-shaped electrodes. The cross sections of the four rods form the circle 

of curvature for a hyperbola so that the surrounding electrical field is nearly hyperbolic. 

Each of the two opposing rods exhibits equal potential, this being a DC voltage and a 

superimposed high-frequency AC voltage (i.e., V0+Vcos�t). The voltages applied induce 

transverse oscillations in the ions traversing the center, between the rods. The electrical 

field � inside the separation system is  

  

 

where x and y are the coordinates of the ion traveling in the field, r0 is the radius of the 

cylinder which can be inscribed inside the system of rods. It is demonstrated that there 

are stable and unstable ion paths. With the stable paths, the distance of the ions from the 

separation system center line always remains less than r0 (passage condition). With 

unstable paths, the distance from the axis will grow until the ion ultimately collides with 

a rod surface; the ion will be neutralized, thus becoming unavailable to the detector [74]. 

In other words, only the ions with a certain mass to charge ratio (m/q) can pass through 

the separation system and then be detected.  

2
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After leaving the separation system, the ions will meet the ion trap or detector, 

which, in the simplest instance, will be in the form of a Faraday cup [74]. Figure 5.6 (a) 

illustrates schematically the basic configuration of a Faraday ion trap connected with the 

output of the separation system and an electrical amplifier while Figure 5.6 (b) shows a 

flanged-mounted Faraday cup. The ions that impinge on the detector will be neutralized 

by electrons from the ion trap. After electrical amplification, the measurement signal is 

ion current, corresponding to the “ion emission stream”. To achieve greater sensitivity, a 

secondary electron multiplier pickup (SEMP) can be employed in place of the Faraday 

cup [74]. 

RF and +DC 

RF and -DC 

DC and RF 
voltage 

Resonant ion 

Nonresonant ion 

Figure 5.5: Operating principle of a quadrupole mass 
spectrometer (adapted from [70]). 
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5.3.2 Evaluation of Mass Spectra 

In the mass spectrometric gas analysis, an electron energy of 70-110 eV was used 

to ionize gas molecules. At this energy level, in a high vacuum, the interaction between 

electrons and molecules leaves some ions with so much extra energy that they break up to 

give ions of smaller mass. This fragmentation is characteristic for a given substance [72]. 

For example, SF6 molecules are often broken down into 13 different fragment patterns, 

some of which are of negligible intensity compared to the highest fragment peak, in this 

case, at mass 127, as illustrated in Figure 5.7 [73]. Consequently, in the experiments, the 

six strongest fragments (i.e., masses 127, 89, 108, 129, 51, and 70) are counted to 

evaluate the concentration of SF6 in the mixture.  

Amplifier 

Faraday cup 

Separation system output 

Electron suppressor 

Figure 5.6: (a) Principle of the Faraday cup; (b) Photograph of a flanged-mounted 
Faraday cup [71]. 
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5.3.3   Experimental Setup  

A mass spectrometric gas analysis setup was implemented to characterize the 

separation effect of the developed single-stage devices. As shown in Figure 5.8, the setup 

consists of a mass spectrometer (Transpector CIS TS200, Inficon, East Syracuse, NY) 

with a mass range of 200 atomic mass units (amu), a vacuum chamber, a turbomolecular 

pump, and a mechanical pump (not shown in the figure). The sample cylinder is 

connected to the vacuum chamber through a 1-�m orifice to control the gas flow, so the 

vacuum can be maintained at a desirable level for effective electron ionization.  

Before measuring the separated gas samples, the mass spectrometer was 

calibrated for using pure SF6. Figure 5.9 displays the six strongest SF6 fragment peaks 

after calibration. Before calibration, these peaks were either of irregular shape or off their  

51 70 

89 
108 

127 

129 

Figure 5.7: Standard mass spectrum of SF6 (adapted from [66]). Six fragments 
(i.e., masses 127, 89, 108, 129, 51, and 70) are of significant intensity and 
counted to evaluate the ion abundance of SF6. 
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Mass spectrometer 
ion source (inserted 
into the chamber) 

Mass spectrometer 
electronic box 

Sample 
cylinder 

High vacuum 
chamber 

Valve 

Turbomolecular 
pump 

1-�m orifice 
inside the 

fitting 

Figure 5.8: Setup for mass spectrometric gas analysis. The sample 
cylinder is connected to the vacuum chamber through a 1-�m orifice to 
control the gas flow, so the vacuum can be maintained on a desirable 
level for effective electron ionization. 

Figure 5.9: The six strongest fragment peaks of SF6 are shown properly after 
manually calibrating the mass spectrometer. 
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proper mass positions. In practice, differing ionization rates for individual gases need to 

be taken into account by standardization against nitrogen. In the next calibration step, the 

relative ionization probability (RIP) of SF6 in relationship to nitrogen is measured with a 

known mixture of SF6/N2 (i.e., 1 mole% SF6 and 99 mole% N2). The RIP of SF6 was 

determined to be 2.33, which was quite close to the value of 2.30 published in [74]. Once 

the mass spectrometer was calibrated, it was employed to analyze the separated gas 

samples to characterize the performance of the fabricated devices.  

 

5.4 Results and Discussion 

5.4.1 Characterization of Separation Effect 

 Figure 5.10 compares the mass spectra of (a) SF6 and (b) N2 between the heavy 

fraction and light fraction streams [75]. Device 2 in Table 5.1 was used in the gas 

separation experiment with an inlet-to-outlet pressure ratio of 2. The molar fraction of 

SF6 in the heavy fraction stream is increased by about 33 % relative to the gas mixture 

before separation, as seen from the increased total ion abundance of the SF6 fragments 

while the ion abundance of main N2 fragments (i.e., masses 14, and 28) remains relatively 

unchanged with deduction of fragmentation patterns of N2 contributed by the residual air 

trapped in the sample cylinder. 

 The separation factor was obtained by evaluating the partial cuts of SF6 and N2, as 

defined in Equation (3.1), which is repeated here as Equation (5.3): 
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 The partial cut of SF6 or N2 as defined in Equation (3.2) is evaluated by comparing the 

ion abundance of SF6 or N2 between the heavy fraction and light fractions streams. Figure 

5.11 compares measured separation factor (A) to the finite element simulations and 

analytical predictions using (5.1) and (5.3) for design 1 as listed in Table 5.1. The 
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Figure 5.10: Comparison of mass spectra of (a) SF6 and (b) N2 between the 
heavy fraction stream and light fraction stream. Noticeable enrichment of SF6 

is achieved in the heavy fraction, as seen from the increased total ion 
abundance of the SF6 fragments while N2 is kept the same as indicated by the 
ion abundance of main N2 fragments (i.e., masses 14 and 28).  
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experimental and numerical curves show that A initially rises with increasing pressure 

ratio, passes through a maximum, and then drops. The peak separation factor occurs at a 

pressure ratio of approximately 2.0, which is attributed to the optimum combination of 

high pressure gradient and a contained pressure wave matching the skimmer, as 

explained in Section 3.4. The analytical model shows the monotonic increase of A with 

pressure ratio because the equilibrium separation is proportional to the Mach number and 

in turn the pressure ratio for the isentropic mixture flow. The measurement uncertainties 

primarily originate from two sources: the first one is the fluctuation of the ion abundance 

measurement of gas molecule; the second source is the interference of the trapped air in 

the sample cylinder to the analysis of the mass spectra of the separated gas samples. 
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Figure 5.11: Comparison of the experimental determinations of the separation 
factor with the predictions of the analytical and numerical models. 
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Figure 5.12 shows the measured A of the N2/SF6 mixture versus pressure ratio for 

all of the three designs in Table 5.1. It is seen that all curves exhibit a peak. Besides the 

explanation above, another way to explicate the variation of A with pressure ratio is the 

competition between the separating pressure diffusion and remixing concentration 

diffusion. The dependence of A on the pressure ratio, on the one hand, is determined by 

the increasing separating pressure diffusion as a result of the increasing pressure ratio. On 

the other hand, the remixing azimuthal transport increases as a result of higher molar 

fraction gradients of SF6 molecules associated with increasing inlet pressure. When the 

remixing concentration diffusion streams exceed the separating pressure diffusion 

streams at high inlet pressures, A begins to drop. It is evident from the data that 

controlling the inlet pressure is critical for efficient separation of gas mixtures if the 

Figure 5.12: Separation factor A of the mixture of 99 mole % N2 and 
1 mole % SF6 versus pressure ratio for the three designed devices. 
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outlet pressure is kept constant. This observation is consistent with the results from the 

separation experiments using the gas mixture of H2/C7F14 [24], as illustrated in Figure 

5.13. 

  Also worth noting from Figure 5.12 is that device 1 shows strongest 

concentration effect among the three designs. At the inlet pressure of two atmospheres, 

corresponding to the highest A, SF6 molar fraction of the heavy fraction stream is 

evaluated to be 2.14 ± 0.15 mole%. In comparison to device 3, the increased a/r0 ratio of 

device 1 leads to a relatively long radial transport path for gas molecules and therefore 

stronger separation effect. It should be noted that a/r0 ratio cannot not be designed 

arbitrarily big as the geometry and dimension of the input converging-diverging nozzle 
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Figure 5.13: Separation factor A of an H2/C7F14 mixture (95 mole% H2 
and 5 mole% C7F14) versus Reynolds number Re for various normalized 
widths a/ro of the standard separation nozzle (adapted from [24]).  
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must be maintained to accelerate the gas flow efficiently. The lowest concentration 

efficiency shown by device 2 is mainly due to its increased skimmer distance. Since 

heavy molecules are pushed more closely towards the deflection wall than light ones, a 

smaller skimmer distance f is preferred to obtain enriched heavy molecules in the heavy 

fraction stream. However, considering the trade-off between the separation factor and 

mass flow percentage of the heavy fraction stream, f should be designed carefully, 

especially for a multi-stage gas concentration device (i.e., a cascade of single-stage 

separation elements). 

 As indicated in Equation (5.1), the separation effect of the separation nozzle is 

dependent on the mass difference between the heavy and light components of a gas 

mixture. In order to characterize the influence of the mass difference on the separation 

factor, another gas mixture of 1 mole% SF6 and 99 mole% Ar was used for the gas 

separation experiments. Figure 5.14 compares the mass spectra of (a) SF6 and (b) Ar 

between the heavy fraction and light fraction streams. It is shown that in the heavy 

fraction stream the total ion abundance of SF6 fragments is increased while that of Ar 

fragments is decreased, demonstrating the enrichment of SF6 molecules diluted in Ar. It 

should be noted that one of the main SF6 fragments, Mass 129, is not shown in Figure 

5.14 (a) due to its negligible abundance. 

 Figure 5.15 compares the separation effects of device 1 and device 3 at different 

pressure ratios for the two gas mixtures N2/SF6 and Ar/SF6. As shown in Figure 5.15, 

both devices exhibit weaker separation effect for the mixture Ar/SF6 than for N2/SF6. 

This is attributed to the smaller mass difference between Ar (MW of 40 amu) and SF6 

(146 amu) than that between N2 (28 amu) and SF6 that results in weaker pressure 
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gradients established in the flow field. In addition, the mean MW of the Ar/SF6 mixture is 

larger than that of N2/SF6, therefore the gas velocity of Ar/SF6 is relatively small with the 

same pressure ratio. This observation is consistent with the theoretical prediction by 
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Figure 5.14: Comparison of mass spectra of (a) SF6 and (b) Ar between 
the heavy fraction stream and light fraction stream using the gas 
mixture SF6/Ar. SF6 is enriched in the heavy fraction, as indicated from 
the increased total ion abundance of the main SF6 fragments and 
decreased abundance of the main Ar fragments (i.e., masses 20 and 40). 
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Equation (5.1). Also worth noting from Figure 5.15 are the shorter error bars for Ar/SF6 

curves than those for N2/SF6 ones. This is because of the very small concentration of Ar 

in air. The contribution of Ar from residual air trapped inside the sample cylinder is 

negligible as compared to that from the separated gas sample, which improves the 

measurement accuracy. 

 

5.4.2 Evaluation of Device Performance 

 While the results above demonstrate fast concentration of heavy gas molecules, 

the concentration effect indicated by the separation factor of the single-stage separation 

elements is much lower than that of the commonly used chemical affinity methods such 

Figure 5.15: Variation of separation factor A of mixtures N2/SF6 and Ar/SF6 as a 
function of pressure ratio for device 1 and device 3. 
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as sorbent beds or permeable membranes (i.e., concentration factor is in the range of 10-

10000) [17, 18]. However, the single-stage elements can be cascaded to form a multi-

stage preconcentrator whose concentration efficiency is ideally enhanced exponentially 

with the number of the cascading stages. Therefore, the concentration effect of the 

cascaded system can be controlled by adjusting the number of single-stage elements. 

Further investigation is needed to characterize the influence of operating conditions such 

as pressure ratio on the concentration effect since larger pressure losses and more 

complicated non-equilibrium effects are anticipated in the multi-stage device. 

It should also be noted that the gas separation device has a potential drawback of 

poor selectivity when applied to separating a gas mixture of multiple components with 

similar molecular weights. Therefore, the gas separation device developed in this 

research is best suited to serve as a real-time preconcentrator for a miniaturized sensor 

with a good selectivity (e.g., a mass-spectrometer-on-a-chip) to detect/analyze trace 

amounts of volatile chemical compounds in air, which is very common in environmental 

monitoring.  

 

5.5 Summary 

This chapter first presented the mass flow measurements compared with 

theoretical predictions. Then the basic principle of mass spectrometry, the configuration 

of the developed mass spectrometric system as well as the analysis of separated samples 

were discussed. The operation of the three designed devices was characterized using two 

different gas mixtures. The experimental results demonstrated more than two-fold 

enrichment of SF6 in the heavy fraction stream by a single-stage separation device. The 
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effects of the design parameters (i.e., the nozzle width and skimmer distance) and the 

operating condition (i.e., the inlet-to-outlet pressure ratio and mass difference of the 

heavy and light components of the gas mixture) on the device performance were 

examined experimentally and compared to the simulation results. Finally, issues related 

to cascading the single-stage separation elements into a real-time preconcentrator were 

discussed for environmental sensing applications. 
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CHAPTER 6 

CONCLUSION 

6.1 Introduction 

This chapter summarizes the accomplishments of this PhD dissertation research 

by reviewing the contributions of each chapter. Future work on developing a multistage 

separation nozzle based preconcentrator is discussed. Finally, an outlook for developing a 

on-chip chemical detection microsystem is given along with a brief description of its 

pumping and sensing modules. 

 

6.2 Summary of Current Research  

This PhD research is devoted to the design, fabrication and characterization of 

micronozzles for gas sensing applications. The feasibility of separation nozzle based 

preconcentration has been demonstrated. Compared to the chemical affinity methods, this 

approach overcomes the limitations associated with the absorption/desorption or 

permeation of molecules being concentrated. Therefore, system response time can be 

enhanced greatly. Although the separation nozzle method was originally developed to 

enrich uranium isotopes for production of light water reactor fuel, none have utilized it 

for chemical sensing applications. This dissertation research is summarized below by 

highlighting the significant contributions of each chapter. 

After a brief introduction of MEMS technology and microfluidic devices, Chapter 

1 presents a comprehensive review of existing gas concentration techniques as well as 

their advantages and drawbacks. Based on the information provided by the literature, the 
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separation nozzle method is proposed to concentrate gas molecules of interest for 

environmental sensing applications where the objectives of this research are outlined. 

Linear test structures, which are designed to characterized viscous effects in 

microfluidic devices, are discussed in Chapter 2.  A 1-D isentropic model and an ANSYS 

CFD model are introduced to describe the behavior of gas flows in linear micronozzles. 

Two processes are explored to fabricate the micronozzles, and their respective advantages 

and disadvantages are identified. Following the device fabrication, details about the 

device packaging and testing are presented. The experimental results demonstrate that a 

sonic flow is reached at the throat area of the nozzle. The viscous effects in the 

micronozzles are characterized by comparing the measured mass flow rates with the 

theoretical predictions using the isentropic model.  

Chapter 3 reviews the basic theory of separation nozzle method. An equilibrium 

model is derived to describe the separation and diffusion processes in the separation 

nozzle system. Design considerations of single-stage separation nozzle systems based on 

the results from the linear structures are addressed. CFD modeling based on the 

compressible Euler equations and Maxwell-Stefan diffusion equation is conducted to 

study the separation nozzle flows. The simulation results reveal the relationships between  

the separation factor and the pressure ratio, and enhance the physical understanding of 

device operation. 

In Chapter 4, commonly used MEMS fabrication techniques are reviewed. The 

fabrication process for the gas separation devices is presented with emphasis on the 

characterization of each step. Specifically, during RIE etch step, test wafers are used to 

characterize the etch rate of RIE and selectivity of silicon to photoresist; therefore the 



 

 

 

99 

depth of the etched patterns can be control with precision. After fabrication, device 

packaging and mounting is presented. These developed fabrication and packaging 

techniques for the linear test structures and micro separation nozzles can be easily 

extended to produce other microfluidic devices and realize fluidic interconnection. 

Chapter 5 presents the apparatus for gas separation experiments and mass 

spectrometric gas analysis. The effects of the design parameters and the operating 

conditions on the performance of gas separation devices are characterized experimentally 

and compared to the numerical simulation results. Both demonstrate more than two-fold 

enrichment of SF6 in the heavy fraction stream with a response time on the scale of 0.01 

ms for a single stage separation device. 

Base on the research results summarized above, it is demonstrated that micro 

separation nozzles are suitable for fast gas concentration. This PhD dissertation research 

has laid the groundwork for developing separation nozzle based real-time 

preconcentrators to enhance the sensitivity of miniature chemical sensors. The presented 

experimental techniques and theoretical models in this dissertation can be extended to 

develop other microfluidic devices. 

 

6.3 Future Work 

 The current study focuses on the design, fabrication and testing of linear 

micronozzles and single-stage separation nozzle systems. Future work will include the 

development of multi-stage versions for real-time concentration applications, as shown 

schematically in Figure 6.1. The feed gas, entering on the left, flows through the 

separation nozzle stages and finally to the outlet on the right. The light fraction streams 
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leave the separation elements at the top and bottom exits while the heavy fraction stream, 

passing through the whole length of the separation system with concentrated species, 

exits the system through the outlet. Further investigations on cascading the separation 

elements to minimize pressure losses due to the curved flows and viscous effects are 

required to understand their influence on the concentration efficiency. Another 

worthwhile investigation is a study of the experimental apparatus to determine if the two 

simulated flow modes discussed in Section 3.4.4 are actually realized within the device. 

Moreover, research effort can be made to explore the feasibility of developing a 

on-chip chemical detection scheme that incorporates gas sampling, preconcentrating and 

sensing into a system for real-time and quantitative determination of chemical vapors. 

The microsystem mainly consists of a sampling pump, a separation nozzle-based 

preconcentrator, and an array of conducting polymer chemically sensitive resistors as an 

electronic nose, as illustrated conceptually in Figure 6.2 (not showing the encapsulating 

glass cover with an inlet for injection of gas samples and circuits for the micropump and 

sensor array). The sampling and sensing modules of the microsystem will be described 

briefly below.  

Intermediate light fraction exits 

Inlet 
Outlet 

Stage 1 

Stage 2 

Stage 3 

Stage 4 Stage 6 Stage 8 Stage 10 Stage 12 

Stage 5 Stage 7 Stage 9 Stage 11 

Figure 6.1: Schematic of a multi-stage separation nozzle system.  
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 The sampling micropump consists of a rotor supported by microball bearings and 

driven by an integrated variable capacitance micro motor with power electronics.  Flow is 

produced by a pressure difference between the input and output of the pump by spinning 

the rotor at high speeds up to 100,000 rpm.  One of the key parameters to consider in 

designing such a pump is the geometry of the rotor.  Current designs are limited by planar 

silicon fabrication causing low mass flow efficiencies.  Researchers at MSAL have 

developed a fabrication technology over the past five years that allows for arbitrary 3-D 

shaping of the silicon [76].  This will be utilized in the design of the rotor geometry for 

highly increasing the performance of the micropump. Researchers at MSAL have also 

investigated the microball bearing technology and low-k polymer-based dielectrics that 

enable the development of the integrated variable-capacitance micromotor [77]. 

Currently, the micropump is being investigated by Mr. Mike Waits at MSAL and the 

Army Research Lab for his PhD research. 

Figure 6.2: Conceptual schematic of the main modules of the proposed 
on-chip chemical detection system.  
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 The so-called electronic nose sensing mechanism is comprised of an array of 

sensors that individually respond to vapors, producing a distinguishable response pattern 

for each analyte [78-81]. Specifically, when a conducting polymer film is exposed to a 

gaseous vapor, some vapor molecules enter the film and cause the film to swell. This 

vapor-induced film swelling increases the electrical resistance of the film by decreasing 

the number of connected pathways of the conducting component in the film [92]. 

Compared to other chemical detection techniques such as microcantilevers, surface 

acoustic wave (SAW) microsensors and metal-oxide thick films [8, 62], this proposed 

module is relatively simple and readily fabricated and operated. The electronic nose 

technology is discussed more in Appendix D.  

 This proposed integrated chemical detection microsystem is inherently 

miniaturized and mass-producible, hence it can serve as a reliable template for 

developing a portable or handheld instrument for trace detection of volatile and semi-

volatile chemical vapors, and is expected to form the basis for developing integrated, 

massively distributed sensor networks that would provide enhanced surveillance 

capabilities and human protection. 
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APPENDIX A 

BASIC THEORY OF COMPRESSIBLE FLUID FLOW 

A.1 Introduction 

 In this appendix, the basic theory of compressible fluid flow is reviewed. First, the 

compressibility of a fluid is introduced. Next, the fundamental assumptions of gas 

dynamics are discussed. Finally, gas flow behavior in converging-diverging nozzles is 

discussed with emphasis on the Mach number distribution. 

 

A.2 Compressibility 

 The compressibility of a fluid is defined as the measure of the change in density 

of the fluid caused by a specified change in pressure. Specifically, gases are highly 

compressible whereas most liquids have a very low compressibility [38]. In a 

compressible fluid flow, there are usually changes in pressure associated with changes in 

the velocity in the flow. These pressure changes will induce density changes that will 

have an influence on the flow. If these density changes are important, the temperature 

changes in the flow associated with the velocity changes also influence the flow. In other 

words, when compressibility is important, the temperature changes in the flow are usually 

significant. Classical incompressible fluid mechanics deals with the situations in which 

the effects of the changes in density and temperature are negligible. In some cases, 

however, those density and temperature changes have a very significant influence on the 

flow. The study of fluid flows where compressibility effects are important is known as 

gas dynamics [38].  
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A.3 Fundamental Principles and Aspects of Compressible Flow 

 The flow field is basically described by knowing the values of the following 

variables at all points in the flow field: velocity (V), pressure (P), density (�), and 

temperature (T). Therefore, in order to describe the flow field, four equations involving 

these four variables must be obtained [38]. These equations are derived by applying the 

following principles [82]: 

• Conservation of mass (continuity equation) 

• Conservation of momentum (Newton’s second law of motion) 

• Conservation of energy (first law of thermodynamics) 

• Equation of state 

 The principle of conservation of mass requires that the rate at which mass enters 

through the left hand of the control volume be equal to the rate at which mass leaves 

through the right hand face of the control volume, as shown in Figure A.1. Therefore, 

 

                                                     �1V1A1= �2V2A2                                                                                    (A.1) 

where A is the cross-sectional area of the duct at the section considered. 

A1 

A2 

Figure A.1: A converging-diverging nozzle with two cross sections A1 and A2. 
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The equation of state gives 

                                               P1/( �1T1) = P2/( �2T2 ) = R = ℜ /m                                 (A.2) 

where ℜ is the universal gas constant that has a value of 8314.3 J kg-1 mole-1 K-1, m is the 

molar mass, and R is the gas constant for a particular gas. The universal gas constant ℜ is  

defined in terms of Boltzmann’s constant k (1.3807×10-23 J K-1) as  

                                                                ℜ = k NA                                                                                     (A.3)                

where NA is Avogadro’s number (i.e., 6.0220×1023 mole-1), the number of atoms needed 

such that the number of grams of a substance equals the atomic mass of the substance.  

 Another assumption is also adopted in the study of compressible fluid flow. That 

is, the specific heats at constant pressure and constant volume, cp and cv, are both 

constants. In this case, the gas is calorically perfect. The specific heat is the amount of 

heat per unit mass required to raise the temperature by one degree Celsius. The ratio of 

the two specific heats is 

                                                                γ = cp / cv                                                                                     (A.4)       

It should also be recalled that: 

                                                               R = cp - cv                                                                                     (A.5)       

While a calorically perfect gas has specific heats that are constant, a thermally perfect gas 

has specific heats that depend only on temperature and are thus nor necessarily constant. 

In addition, the gravitational, magnetic and electrical effects on the flow field are 

negligible. This assumption is quite justified for neutral gas flows [38]. 

 The compressibility effects become important in a gas flow when the velocity in 

the flow is high. The ratio of the gas velocity to the speed of sound in the gas determines 

when compressibility is important. This ratio is termed the Mach number, M, i.e., 
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 M = V / a                                                        (A.6)       

where a is the speed of sound. If M <1 the flow is said to be subsonic, whereas if M >1 

the flow is said to be supersonic. If the Mach number is near 1 and there are regions of 

both subsonic and supersonic flow, the flow is said to be transonic. If the Mach number is 

very much greater than 1, the flow is said to be hypersonic. Hypersonic flow is normally 

associated with flows in which M > 5. The speed of sound in a perfect gas is given by 

                                                             TRa γ=                                                      (A.7)       

The speed of sound in a gas depends, therefore, only on the absolute temperature of the 

gas. 

 

A.4 Convergent-Divergent Nozzle 

 The nature of the flow that exists in the convergent-divergent nozzle can be 

explained by considering how the flow changes as the back pressure Pb is decreased 

while the upstream pressure P0 is kept at one atmosphere. When Pb is nearly the same as 

P0, the flow remains subsonic throughout and the mass flow rate increases with 

decreasing Pb/P0. However, when the downstream pressure is decreased to a critical 

value, mass flow rate is unaffected by changes in Pb. Under these circumstances, when 

changes in the downstream pressure cannot effect conditions upstream of the throat, and 

therefore have no effect on the mass flow rate through the nozzle, the nozzle is said to be 

“choked.” In this case, a Mach number of 1 has been reached at the throat.  
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 As the back pressure is reduced below the critical value, a region of supersonic 

flow develops just downstream of the throat. This region of supersonic flow is terminated 

by a normal shock wave. The shock wave increases the pressure and reduces the velocity 

to a subsonic value. The flow in the nozzle under these circumstances is as shown in 

Figure A. 2. In real flows, if the nozzle of relatively small size and the boundary layer 

consequently relatively thick, a complex wave system can actually occur near the end of 

the supersonic flow region as a result of the interaction of the shock wave with the 

boundary layer. However, even in such cases, the characteristics of the flow can often be 

adequately modeled by assuming a normal shock wave. As the back pressure is further 

reduced, the extent of the supersonic flow region increases, the shock wave moving 

further down the divergent portion of the nozzle until outside the nozzle [38]. 

 Consider a gas flow through the converging-diverging nozzle as shown in Figure 

A.1.  The governing equations include the continuity equation (obtained by applying the 

principle of conservation of mass to the flow through the nozzle) as shown in Equation 

(A.1) and the energy equation (assuming that the flow is adiabatic, i.e., if there is no heat 

transfer to or from the flow): 

Convergent  Divergent  

Figure A.2: Flow in a convergent-divergent nozzle (adapted from [38]). 
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 Substituting (A.4), (A.5) and (A.7) into (A.8) yields: 
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 Using (A.6) and (A.9), the energy equation gives: 
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 In isentropic flow, the momentum equation (obtained by applying the principle of 

conservation of momentum to the flow through the nozzle) leads to the same results as 

the energy equation [38]. In addition to the above two equations, the isentropic relation 

(as discussed in Section 2.2.1) apply at all points, that is 
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Using (A.10) and (A.11) gives 
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 Considering (A.10) and (A.12) and the mass flow rate  

                                                               VAm ρ=�                                                       (A.13) 

it follows that: 
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 Applying this equation between the throat and the exit of the nozzle and assuming 

M at the throat is 1, M at the exit is then given by: 

(A.14) 
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So, when the nozzle has a uniform depth d, (A.15) yields 

 

 

This is Equation (2.1), defining the relationship between the expansion ratio 

D2/D1 of the converging-diverging nozzle and the Mach number M at the exit of the 

nozzle. 

 

A.5 Summary 

 This appendix has presented the fundamentals of compressible fluid flow. First, 

the compressibility of a fluid was described with the interactions between the gas 

velocity, pressure, density and temperature. Next, fundamental principles and aspects of 

compressible flows such as the continuity equation, Newton’s second law of motion, and 

the first law of thermodynamics were briefly discussed. Finally, gas flows in converging-

diverging nozzles were presented. 
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APPENDIX B 

EQUILIBRIUM SEPARATION NOZZLE FLOW  

B.1 Introduction 

In this appendix, an analytical model for predicting separation factors at thermal 

equilibrium is presented on the basis of the theoretical model developed in [24] for 

isotope separation. This model can be used to predict the relationship between the 

separation factor and the Mach number of the flow. It should be noted that this first-order 

model does not taken into account the non-equilibrium effects in the separation nozzle 

flows caused by the limited flow time of the mixture in the centrifugal field, and the 

spatial change of the centrifugal forces. 

 

B.2 Equilibrium Separation Process 

In the separation nozzle, a mass element of the process gas mixture passes 

through a centrifugal field of a complicated spatial structure within a short period of time. 

Because of the limited flow time of the mixture in the centrifugal field and the spatial 

change of the centrifugal forces, no equilibrium distribution of the components of the 

mixture can be established at which the diffusion streams caused by pressure and 

concentration gradients would fully compensate each other at each point. Nevertheless, 

some fundamental aspects of the separation process can be described by the limit case of 

equilibrium separation such as the distribution of molecular species in a steady-state 

cylindrical flow [24]. For simplification, an enclosed gas volume (e.g., a mixture of SF6 



 

 

 

111 

and N2) is assumed to circulate in a cylindrical flow at a constant angular velocity ω; it is 

well known that for each component i of the mixture a partial pressure pi is 

 

 

where r is the radial coordinate, Mi is the mass of the molecule, k is Boltzmann’s 

constant, and T is the absolute temperature. The quotient of the molar fraction ratios N/(1-

N), in the center r=0, and at the periphery r=r0 of the cylindrical flow, which follows 

from the partial pressures, is identical with the equilibrium separation factor A* of a gas 

centrifuge : 

 

 

 

where Na and Nh = 1-Na are the molar fractions of the auxiliary gas (N2) and heavy gas 

(SF6), respectively. Ma and Mh are the respective molecular masses; and ωr0 is the 

peripheral velocity of the cylindrical flow. In order to facilitate the derivation, the flow 

parameter of speed ratio Si is introduced below: 

 

 

 which is the ratio between the flow velocity v and the most probable thermal velocity ci 

of the component i of the mixture. Therefore, the equilibrium separation factor is derived 

to be 

)]2/(exp[)0()( 22 kTrMprp iii ω= (B.1) 

)]2/()exp[(
)())0(1(

))(1)(0(
* 2

0
2

0

0 kTrMM
rNN

rNN
A ah

aa

aa ω−=
−

−
= (B.2) 

2/1)/2/(/ iii MkTrcvS ω== (B.3) 

]/)()exp[( 0
2

aaah MrSMMA −=∗
(B.4) 



 

 

 

112 

 At thermodynamic equilibrium, the peripheral Mach number of the mixture Mam, 

which characterizes the flow behavior of the mixture, is related to Sa by the relationship 

below 

 

where � is the ratio of specific heats of the mixture, and Mm is the average molecular mass 

of the mixture [24]. Substituting equation (B.5) into equation (B.4) gives  

 

 

Figure B.1 shows the elementary effect of the separation process (i.e., A*-1) for 

the model case of a cylindrical flow with constant angular velocity as a function of the 

SF6 molar fraction Nh for various Mach numbers Mam of an N2/SF6 mixture. The increase 

in the relative difference A*-1 is obviously due to the fact that the SF6 speed ratio 

increases correspondingly with a reduction in mean molecular weight of the mixture at a 

given Mach number Mam of the mixture.  

 

B.3 Equilibrium Bifractional Splitting 

 For a simplified cylindrical flow with concentric stream lines which is split into 

two partial streams at a point r, the partial cut θi of the mixture component i can be 

calculated directly by radial integration over the flux profile [24]:  
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It is known that for a cylindrical flow in a state of diffusion equilibrium (i.e., with 

constant angular velocity � and spatially constant temperature) 

                                                             kTp ii ν=                                                          (B.8) 

where �i is the number density. With (B.1) and (B.8) the radial development of the flux ji 

of the component i is derived as:  

                             )]2/(exp[)0()( 22 kTrMwrrj iii ων=                                   (B.9)                              
 

where Mi is the molecular mass. Substituting (B.9) and (B.5) into (B.7) yields (B.10) or 

(3.2) mentioned in Section 3.2.1: 

Figure B.1: Influence of the peripheral Mach number Mam (r0) and the SF6 molar 
fraction Nh (r0) upon the elementary effect of the mixture separation (A*-1) for an 
isothermal cylindrical flow of N2/SF6 mixture. 
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Using (B.10) and (3.1) defined in Section 3.2, the separation factor can be calculated for 

different operating conditions. 

 

B.4 Summary 

 In this appendix, an analytical model was derived to quantitatively describe the 

equilibrium separation processes in the separation nozzles. The influence of the molar 

fraction of the component and Mach number of the flow on the separation efficiency was 

discussed. Finally, an analytical equation for the separation factor was derived for the 

case of equilibrium bifractional splitting. 
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APPENDIX C 

AUTOMATED PRESSURE MEASUREMENT SETUP 

C.1 Introduction 

In this appendix, an automated pressure measurement setup is presented. In this 

setup, LabVIEW programming and data collection on a computer provides real-time 

monitoring of the different manometers utilized in the gas separation experimental setup 

as discussed in Section 5.2. The bulk of this work was conducted by Mr. Yiu Au through 

his senior project studies. 

 

C.2 Computer Setup 

 The MKS PDR-5D power supply/readout used in the gas separation experiments 

powers and reads up to 5 manometers for measurement. Its front panel contains a 4-digit 

display. The user needs to switch between different channels using the knob to read 

different channels by hand, thus channels cannot be read simultaneously or continuously. 

A computer interface with the power supply/readout will allow for continuous and 

simultaneous measurement automatically through an on-board interface device. 

 The power supply/readout includes on the back panel a 37-pin BCD (i.e., binary 

coded decimal) output. This output is included with an external digital display for 

displaying simultaneously up to 3 channels of input. Although the BCD output provides 

already digitalized signal, sending the signal directly to the computer is difficult due to 

non-standardized port (i.e. the pins are not standard to input to a 25-pin parallel port), 

thus extra specialty hardware is required to connect the port to the computer. Plus, 
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converting BCD to ordinary number requires complex programming. Since the power 

supply also has 5 analog DC signal outputs for each manometer, another approach is to 

digitize the signal from the analog output to the PC. The advantage of this method is that 

the signal can be more easily imported to LabVIEW for data gathering and processing 

with LabVIEW specific equipment, the extra hardware required by BCD output. 

 The analog DC signal outputs of the power supply/readout outputs a signal from 

0V to +10V, proportional to the range of the manometer, which is either from 0 to 1000 

Torr or 0 to 10,000 Torr. Since the digital display on the power supply/readout provides 4 

digit of accuracy, with the last digit being uncertain according to the manual, the analog 

outputs would need 1mV of precision to utilize the full range of the power 

supply/readout. Since the manometers are relatively slow mechanical devices, any 

sampling rate faster than that on the order of seconds should be fine for this application. 

 Given the requirements, the NI-PCI6034E data acquisition (DAQ) device card 

was found to be the optimal solution that would be able to interface the power 

supply/readout to the computer. The DAQ card samples at maximum 200k samples/s and 

provides 16-bit of accuracy. However, the range of data input is limited to certain ranges. 

 Since the input of the power supply/readout is from 0V to +10V, the input range 

will have to be the largest input range for the DAQ card at -10V to +10V at a precision of 

305.2�V. This precision is still enough to read the 4-digit power supply/readout correctly. 

The DAQ card can also support up to 16 inputs (using non-differential input channels 

with a common ground, or 8 differential signals with individual grounds). The power 

supply/readout only requires up to 5 input channels. Thus, in the future, there is room for 
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expansion to read output signals from the voltmeters measuring the outputs of the gas 

flow of the flowmeters, thus automating the entire measurement process. 

 Figure C.1 shows the block diagram for the NI-PCI6034E data acquisition device 

card [83]. The card includes 8 digital input and output channels. Automatic valves in 

controlling the flow of different input holes of the device could be set up and controlled 

by the computer through a digital signal output. Thus, the experimental environment 

could be automated in the future as well with simple addition to the current experimental 

setup. 

 

   

 
Figure C.1: Block diagram for the NI-PCI6034E data acquisition device card [83]. 
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The NI-PCI6034E DAQ card is a 68-pin device, as shown in Figure C.2, that has 

a special ribbon cable and adapter to collect input signal and send output signal [83]. 

Since the power supply/readout will only require the use of up to 5 input channels and the 

ground input, the ribbon cable would not be necessary; it would be more cost effective to 

make a 6-wire cable out of shielded pre-cut cable soldered to special connectors to 

connect with pins on the DAQ card that are spaced at small distances apart and are 

required to be electrically isolated. Insulating Teflon tapes are wrapped to the connectors 

to ensure electrical isolation and safety from floating voltages. 

 
 

Figure C.2: Pin assignment on the NI-PCI6034E DAQ card [83]. 
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The power supply/readout would use analog input channel 0 to 4 (ACH#) 

corresponding to manometers 1 to 5, respectively. Manometers 1 to 4 are the 1000 Torr 

ranged instruments, while manometer 5 is a 10000 Torr ranged instrument for measuring 

the inlet pressure. Color-coded wires from the cable are used in the connection from the 

power supply/readout to the DAQ card, and the black wire connects the ground of the 

power supply/readout to the analog ground (AIGND) of the DAQ card to use for non-

differential input. 

In the software Measurement and Automation provided by the DAQ card, each 

channel can be set to its smallest and largest input limits to ensure that the best precision 

range be used. Another function of the software is to specify the real range and unit of the 

input represented by voltages from the input proportionally. The manometer’s input in 

Torr can be specified to automatically display in LabVIEW discussed below. 

 
C.3 LabVIEW 

LabVIEW is initially set as a viewer for the data gathered from the DAQ. In the 

“DAQ Solutions” from the main menu, the default DAQ measurement programs can be 

chosen for data gatherings [83]. The setup requires a “Voltage and Current 

Measurement” from the “Common Solution Gallery”, and “Continuous Voltage 

Measurement” is needed since the pressure change over time needs to be recorded. 

Modifications were made to the LabVIEW program including changing the range of the 

graph to reflect the range of the manometers, especially for M5 since it’s up to 10,000 

Torr. Because virtual channels created in the Measurement and Automation can be 
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referenced directly in LabVIEW, M1 to M5 can be inputted directly into the program and 

the measurement range for the manometer is correctly displayed, as shown in Figure C.3. 

 
 

 
 

Figure C.3:  The data logger after modifying the data viewer program. 
 

  

LabVIEW has limited data plotting and printing capabilities for further data 

analysis and recording. Therefore, an important functionality of the data gathering 

program is to be able to log the manometer data and process the data gathered over time 

as a batch. One way to implement this function is to do the calculations to the 

measurements in LabVIEW continuous as they are being read. Although LabVIEW is 
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capable of doing the calculations through programming the VI (virtual instrument), it 

may be better to log the outputs and do the calculations later. The reason for this setup is 

that while LabVIEW is running, every point gathered is plotted to the graph. Since the 

nature of the device and of the experiment requires a relatively long time for stabilization 

(from tens of minutes to hours), the points from the time the experiment starts till it has 

completely stabilized should be plotted to the screen so that during the experiment, 

mistakes can be checked and changed quickly, and quick judgments and mental 

calculations can be made to the data. All points would use up 16-bit since that’s the 

precision of the DAQ and it would be important to maintain that precision so we can 

measure the full range of the power supply/readout. Thus theoretically, memory needed 

for data gathering of all 5 channels will only be 10 bytes per second, with data values 

measured once every second. This corresponds to around 36 kilobytes per hour of 

measurement, which is not much. 

However, one observed behavior of LabVIEW is that it seems to require 100 

times the memory it theoretically needs to gather the data and to output them to the graph 

on the display. This behavior is directly linked to the number of points LabVIEW 

displays since reducing or increasing the number of points it is asked to display roughly 

affects the memory used by LabVIEW proportionally. One explanation for this behavior 

might be that LabVIEW, besides representing the data as the required number of 

precision, also stores extra precision internally (perhaps to 32-bit or 64-bit numbers). The 

extra bits for padding would help in internal calculations that LabVIEW does to avoid 

loss of precision. Also, Windows might need to duplicate the data to a separate memory 
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pool in order to display them. External data storage and calculation were carried out to 

compensate for the behavior. 

 The logged data can be easily imported to other applications (e.g., Excel) for 

calculations. Specifically, in Excel, the logged data can be imported using the tool that 

parses tab delimited file formats to their respective column in the spreadsheet. Data can 

then be plotted or used in the isentropic model as described in Section 2.2.1, which was 

already set up in an Excel spreadsheet. 

 

C.4 Summary 

In this appendix, the automated pressure measurement setup using DAQ and 

LabVIEW programming has been presented. The DAQ card was selected and color-

coded wire interconnection was made in accordance with the specifications of the power 

supply/readout for the manometers. Modifications have been made to the built-in 

LabVIEW program to correctly display the measurements of the manometers used in the 

gas separation experiments. This automated measurement setup can also be easily 

tailored for other applications. 
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APPENDIX D 

ELECTRONIC NOSE TECHNOLOGY 

D.1  Introduction 

Electronic noses are devices that functionally mimic the sense of olfaction to 

analyze gaseous mixtures and/or quantify the concentration of their constituents [84]. 

This technology is rapidly evolving, driven by the practical demand for objective analysis 

of odors as well as by the intellectual challenge of mimicking the mammalian sense of 

olfaction [85-87]. Electronic noses are generally composed of a sampling system, an 

array of chemical sensors, readout circuits, and data analysis software [88]. So far, 

electronic noses have already found two main application areas: food-quality control and 

environmental monitoring [84].  

It is believed that humans and other mammals rely on a pattern generated from the 

response of many broadly tuned olfactory receptor sites, instead of employing lock-and-

key type specificity to individual analytes in the broadly responsive portion of their 

olfactory systems [89]. Similarly, individual polymer types in an electronic nose are 

swollen by many chemically diverse analytes. Humans are thought to have ~1000 

different olfactory genes that presumably encode for ~1000 olfactory receptor proteins. A 

major goal of developing an artificial nose is therefore to produce a highly diverse array 

of differentially responsive vapor detectors [79]. 

In the past years, numerous implementations of artificial noses have emerged, 

most of which are based on detecting a physical or chemical change in a polymer film 

upon exposure to a gaseous analyte [90]. The measured quantity in an individual detector 
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can be the frequency shift of a resonating crystal in a quartz crystal microbalance (QCM) 

[84] or a surface acoustic wave configuration (SAW) [92, 93] changes in the optical 

absorption or emission properties of a dye that has been impregnated into a polymer [94-

96] or changes in the electrical resistance of a conductive polymer (CP) [97] or of a 

carbon black/polymer composite (CB/PC) film [98]. Any individual detector does not 

respond highly specifically toward an individual analyte, but the pattern of responses in 

an array of differentially responsive detectors can be used to identify, classify, and in 

some cases quantify, the analyte of interest [79]. In the following section, a specific 

electronic nose developed at Caltech is discussed. 

 

D.2 Caltech Electronic Nose 

The so-called Caltech electronic nose is based on the chemically sensitive 

conducting polymer films. The underlying principle is simple: when a polymer film is 

exposed to a gaseous vapor, some of the vapor enters the film and causes the film to swell 

(Figure D.1). In the electronic nose, this swelling is probed electrically because the sensor 

films each consist of a composite that contains regions of a conductor that have been 

dispersed into the swellable organic insulator. The vapor-induced film swelling produces 

an increase in the electrical resistance of the film because the swelling decreases the 

number of connected pathways of the conducting component of the composite material 

[99].  

The detector films can be formed from conducting polymer composites, in which 

the electronically conductive phase is a conducting organic polymer and the insulating 

phase is an organic polymer, or from polymer-conductor composites in which the 
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conductive phase is an inorganic conductor such as carbon black, Au, Ag, etc and the 

insulating phase is a swellable organic material. The electrical resistance of the device is 

then read using simple, low power electronics [99].  

Specifically, in the implementation of Caltech electronic noses, arrays of carbon 

black/polymer composites comprised of 10-20 compositionally different detectors have 

been shown to differentiate efficiently between many organic vapors when assessed 

under controlled conditions in the laboratory [79]. Distinctive patterns have allowed 

pairwise differentiation between species that differ in structure and polarity as well as 

between members of homologous series of, for example, alcohols or alkanes [100]. 

Figure D.1: Swelling occurs as vapor molecules enter the polymer. 
An increase in the electrical resistance of the film is caused by the 
vapor-induced film swelling (adapted from [99]). 
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Furthermore, as shown in Figure D.2 [99], the response of the carbon black/polymer 

composite sensors is a linear function of analyte concentration [98-101]. An array of 

sensors, containing different polymers, yields a distinct fingerprint for each vapor 

because the swelling properties over the entire array are different for different vapors. 

The pattern of resistance changes on the array is a diagnostic of the vapor, while the 

amplitude of the patterns indicates the concentration of the vapor. A database, consisting 

of response patterns for different analytes, has been built as a reference source [80, 81]. 

 

Figure D.2: A linear response of an individual sensor signal as a function of 
concentration is observed for a variety of analytes (adapted from [92]). 
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D.3 Comments and Summary 

 In this appendix, the basics of electronic nose technology have been reviewed 

with emphasis on the artificial nose developed at Caltech. The reader can refer to the 

cited references for more details regarding this technology. The next-generation 

electronic noses are envisioned to be hand-held devices for trace detection of pollutants 

and/or warfare agents. Despite the challenges facing the field (e.g., reliability of sensing 

materials and complex algorithms for signal discrimination [102]), the opportunities for 

developing on-chip biochemical detection systems are abundant in the light of the 

advances in nanotechnology and MEMS. 
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