
The Center for Satellite and Hybrid Communication Networks is a NASA-sponsored Commercial Space
Center also supported by the Department of Defense (DOD), industry, the State of Maryland, the University

of Maryland and the Institute for Systems Research. This document is a technical report in the CSHCN
series originating at the University of Maryland.

Web site http://www.isr.umd.edu/CSHCN/

TECHNICAL RESEARCH REPORT

Authenticated Key Agreement in Dynamic Groups

by Arvind Mani

CSHCN TR 2002-1
(ISR TR 2002-1)

ABSTRACT

Title of Thesis: AUTHENTICATED KEY AGREEMENT IN DYNAMIC

GROUPS

Degree candidate: Arvind Mani

Degree and year: Master of Science, 2001

Thesis directed by: Professor John S. Baras

Department of Electrical and Computer Engineering

Multicast security poses interesting challenges in the area of key management. Designing a

good protocol for key agreement in dynamic multicast groups involves a thorough

understanding of the trade-o�s that exist among storage, communication and computation

overhead.

The contribution of this thesis is a veri�able protocol for authenticated key agreement based on

a distributed key generation scheme. The underlying key generation scheme has shown promise

in being natural for collaborative group applications. To handle group membership changes in

dynamic groups, an auxiliary key agreement protocol is introduced. The auxiliary protocol

re-uses contributions to the key in the previous round, to form the new key. The key shares of

the members contributing fresh values in the current round are more susceptible to discovery by

colluding group members (not outsiders). The auxiliary protocol does not introduce any other

security weakness. A protocol that starts from the scratch on membership change is going to be

expensive, slow and unsuitable for most applications.

We use auxiliary key agreement protocol in conjunction with the well-known Logical Key Tree

(LKT) to localize the e�ect of membership change. The protocol does not use time-stamps, and

makes minimal use of public-key based computation.

AUTHENTICATED KEY AGREEMENT IN DYNAMIC GROUPS

by Arvind Mani

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park in partial ful�llment

of the requirements for the degree of

Master of Science

2001

Advisory Committee:

Professor John S. Baras, Chair

Professor Virgil Gligor

Professor William Gasarch

c
 Copyright by

Arvind Mani

2001

ACKNOWLEDGEMENTS

I am extremely grateful to professor J. S. Baras for the technical, �nancial and moral support

he provided throughout my study. He has opened my mind to research in the �eld of network

security. I am also very grateful to the other members of the dissertation committee - professors

V. Gligor, and W. Gasarch for their support and feedback. I had the opportunity to work with

them and it has helped my research work immensely.

I would like to acknowledge R. Poovendran for his contribution to the thesis. I would like to

thank A. Khalili for his comments. I would also like to thank V. Bharadwaj, K. Manousakis, H.

Khurana, M. Rabi and S. Parthasarathy. I am also grateful to Ms. D. Hicks and Ms. A. Kirlew.

The research reported in this thesis was supported by the Center for Satellite and Hybrid

Communication Networks (CSHCN), NASA cooperative agreement NCC3528; the Advanced

Telecommunication Information Distribution (ATIRP) cooperative agreement QK9931; and

Lockheed Martin Global Telecommunication (LMGT).

ii

Contents

List of Tables iv

List of Figures v

1 Introduction 1

1.1 Security Goals and De�nitions . 4

1.1.1 Fundamental Security Goals . 6

1.1.2 Desirable Security Attributes . 6

1.1.3 Desirable Performance Attributes . 6

1.1.4 Other Desirable Attributes . 6

1.2 Contributions . 7

1.3 Organization . 7

2 Introduction to Key Agreement and Formal Analysis of Authentication 9

2.1 Factors in
uencing the design of a Key Management Scheme 10

2.2 Desirable Properties of a Multicast Key Management Scheme 10

2.3 DiÆe-Hellman . 11

2.4 Generation of Group Keys . 12

2.4.1 Group DiÆe-Hellman . 12

2.4.2 Generating Group ElGamal Keys . 13

2.4.3 EÆcient Generation of Shared RSA Keys 14

2.5 Authenticated Multi-party Key Agreement Protocols 15

2.5.1 Gene Tsudik, Michael Steiner, et al. 15

2.5.2 Mike Just and Serge Vaudenay . 16

2.6 Formal Analysis of Authentication Protocols . 17

iii

2.6.1 The Formalism . 17

2.6.2 Basic Notation . 18

2.6.3 Delegation . 21

2.6.4 Idealized Protocols . 22

2.6.5 Protocol Analysis . 23

3 Distributed Shared Key Generation Using Fractional Keys 24

3.1 Basic Key Generation Protocol . 24

3.1.1 Assumptions identi�ed in original paper 24

3.1.2 Message Format . 25

3.1.3 Key Management Scheme . 26

3.1.4 Initialization Algorithm . 27

3.1.5 Key Generation Algorithm . 29

3.2 Retrieval of the Fractional Key and Pad of a Failed Node 31

3.3 Improvements to the Key Agreement Protocol . 33

4 Distributed Shared Key Generation Using Fractional Keys 35

4.1 Requirements for Authenticated Key Agreement Protocol 36

4.1.1 Requirements in Initialization Phase . 36

4.1.2 Requirement in Key Generation Phase . 39

4.1.3 Requirements for Auxiliary Key Agreement Protocol 40

4.2 Threat Model . 42

4.2.1 Assumptions . 42

4.2.2 Nature and Type of Threats . 43

4.2.3 Guarantees . 43

4.2.4 Protocol Design Considerations . 43

4.2.5 Summary of Security Attributes of AKA 43

4.3 Protocol AKA . 45

4.3.1 Message Format . 45

4.3.2 Mutual Authentication . 45

4.3.3 Initial Key Agreement . 45

4.3.4 Key Generation Phase . 47

iv

4.3.5 Auxiliary Key Agreement . 48

4.3.6 Some Observations . 51

4.3.7 Key Recovery . 51

4.4 Formal Analysis of Authenticated Key Agreement Protocol 52

4.4.1 Initialization Phase . 52

4.4.2 Key Generation Phase . 55

4.4.3 Unresolved Problems . 55

5 EÆcient Authenticated Key Agreement Protocol 57

5.1 Motivation . 57

5.2 Overview of Optimized AKA protocol (AKA-SAT) 58

5.3 Protocol AKA-SAT . 61

6 Conclusion 64

v

List of Tables

2.1 Notation used in BAN logic . 18

3.1 Notation used in distributed key generation scheme 25

4.1 Additional notation used in AKA protocol . 44

vi

List of Figures

5.1 LKT structure for keys used in symmetric encryption 59

5.2 Star structure for keys used to compute MAC . 60

5.3 Protocol AKA-SAT - initial group . 61

5.4 Protocol AKA-SAT - member join . 61

vii

Chapter 1

Introduction

Group communications have recently become the focal point of research in the area of network

security. Secure group communication is the key to success in diverse applications -
exible

programming in satellite television to wireless sensor networks deployed in hostile

environments. As part of the issues involved with securing multi-party communications, key

management has received particular attention due to the vulnerabilities inherent in group

communications that have no counterpart in the unicast case. Securing group communication,

i.e., ensuring the integrity and con�dentiality of the data communication among group

members requires security services such as authentication of group members for access control,

encryption of the data communication, and source authentication of the data. All these services

require the use of symmetric or public-key encryption, that in turn require keys. In most

existing group communication protocols, key management is carried out by the group

controller. This is a major issue in certain applications, where a group controller cannot be

naturally selected. Another challenging issue is the need for access control. This is a function

that is hard to de-centralize without creating chaos. A trusted third-party is also required to

implement many protocols that require the use of certi�cates. This trusted third party was

required to be online at all times for verifying certi�cates piggybacked with the data. This

thesis presents an authenticated key agreement protocol that takes the �rst step toward a fully

distributed group key management protocol. The protocol requires the presence of a

third-party for access control but it limits the use of certi�cates to the time when a group

member is admitted into the group. This has eÆciency considerations as well.

It is important to realize that important di�erences exist between the two-party and multi

1

party cases. Protocol eÆciency is an important concern due to the number of participants.

Also two-party communication can be viewed as a discrete phenomenon - it starts, lasts for a

while and then ends. Group communication is more complicated - it starts, members join and

leave and there may not be a well-de�ned end. See a discussion of these issues in [Poo99],

[HT99], [JV96] and [BWM98].

This thesis describes an authenticated key agreement protocol suitable for dynamic groups.

Examples include co-operating content providers (television programming), audio and video

conferencing and more generally, collaborative applications of all kinds. Authenticated key

agreement in dynamic groups, where many or all entities contribute to the session key (used

later for data encryption), and do not reveal their contribution to the key is still considered an

open problem. Source authentication for data communication (that occurs after the group key

is established) is not addressed in this thesis. A scheme for source authentication of data

(TESLA system) in group communications, is described in [PCST01]. We also do not deal with

authorization issues, e.g., some applications have restrictions on which group members can send

messages, others can only read messages. Authorization is handled by the Group Controller

using Access Control Lists (ACLs), capability lists or certi�cates with attributes.

Authenticated key establishment protocols are designed to provide two or more parties

communicating over an open network, with a shared secret key that may be subsequently used

to achieve data con�dentiality or data integrity. Key establishment protocols can be roughly

classi�ed into two categories: key transport protocols and key agreement protocols. In key

transport protocols, a key is created by a central entity and securely transmitted to the other

entities, while in key agreement protocols more than one party contributes information

(fractional keys), that is used to derive the shared secret key. An important problem in

certain applications is to �nd a key generation scheme that allows a set of members to jointly

generate keys without having to expose their individual contributions. These issues are clearly

explained in [HT99] and [CGI+99].

Most of the currently available key generation schemes are based on the generalization of the

DiÆe-Hellman (DH) key exchange protocol for group keying. The DH keys are secret keys. The

generalized DiÆe-Hellman scheme, that has been extensively used in recent group

communication protocols, involves several exponentiation, and in the best schemes, the

computations scale linearly as a function of group size. These methods rely on the assumed

2

cryptographic hard problem - performing discrete logarithm in �nite �elds. In contrast, the

scheme proposed by Poovendran in [Poo99] does not depend on the computational diÆculties of

integer factoring or on discrete logarithm, instead it makes use of one-time pads. At the heart

of this novel key agreement scheme is a way for the key generating members to locally

compute one-time pads, and to compute a common group parameter. This group parameter

will be used to remove the e�ect of the pads. Each group member masks his key-share with its

one-time pad, and transmits this combined value to all other group members. This allows

exchange of key-shares without exposing them. The padded shares are combined. The group

parameter (called binding parameter) is a combination of all the pads, and can now be used

to remove the combined padding e�ect and extract the common secret. If the key generation

mechanism can provide uniformly distributed variables over an interval of interest, this scheme

will be resistant to attacks from individual members or up to (N � 2) collaborating members.

In his dissertation, Poovendran [Poo99] explicitly states that his key generation scheme has not

addressed authentication issues. We assume enough trust in group members not to reveal the

common secret. The objective is to prevent one or more group members from learning the

contribution of another group member. Such a threat model is appropriate when we talk of

applications such as delivering television programming, where competing content providers

collaborate to provide common programming. Here, the threat to one content provider is to

prevent a collaborator (also a content provider) from learning its contribution to the key. The

motivation to keep the contribution secret arises from the fact that the content provider may

want to re-use its contribution to form a secret key with another set of collaborators for

delivering a di�erent set of programs. The resulting keys would be di�erent.

In this thesis we focus on key agreement with authentication, based on the key generation

scheme proposed by Poovendran [Poo99]. First, we note the drawbacks of key transport

(mentioned in [AST00]) in the context of group communication:

� The trusted third party that generates and distributes group keys is a single point of

failure and is also a likely performance bottleneck. It also presents an attractive target.

� Group communications spanning multiple and independent administrative domains may

not have a central party that they all trust (or do not want to) to generate group keys.

� Some groups (such as ad hoc networks) are highly dynamic and no group member can be

3

assumed present all the time. There is also no obvious trusted party that can be identi�ed

in ad hoc groups.

� Achieving perfect forward secrecy and resistance to known-key attacks in an eÆcient

manner is diÆcult in a centralized key distribution setting. This is because a lot of keys

have to be generated and distributed.

Although we argue in favor of contributory key agreement for group communications, we

recognize the need for a central point of control for group membership operations such as

adding and deleting members, i.e. centralized access control. This type of a role (group

membership controller) serves only to prevent chaos. Access control is orthogonal to the issue

of key establishment and is largely a matter of policy.

1.1 Security Goals and De�nitions

We now reproduce formal de�nitions of terms taken from [AST00], [BWM98] and [LMQ+98].

These terms will appear in the text of this thesis.

De�nition 1.1.1 A key agreement protocol is a key establishment technique where a

shared secret secret (possibly the key itself) is derived by two or more speci�ed parties as a

function of information contributed by each of these. No party can pre-determine the value of

this secret.

De�nition 1.1.2 A key agreement protocol is contributory if each party equally contributes

to the key and guarantees its freshness.

For example, according to this de�nition, the basic two-part DiÆe-Hellman protocol is

contributory. On the other hand, ElGamel one-pass protocol is not contributory, as only one of

the parties contributes a fresh exponent.

De�nition 1.1.3 Let R be a n� party key agreement protocol, M be the set of protocol parties

and let Sn be a secret key jointly generated as a result of R. We say that R provides implicit

key authentication if each Mi 2M is assured that no party Mq =2M can learn the key Sn

(unless aided by a dishonest Mj 2M). The property of implicit key authentication does not

necessarily mean that Mi is assured that every Mj 2M; i 6= j actually possesses the key.

4

De�nition 1.1.4 A key agreement protocol that provides implicit key authentication to all

parties is called an authenticated key agreement (AK) protocol.

De�nition 1.1.5 A key agreement protocol is said to provide key con�rmation if an entity

is assured that all other parties actually have possession of a particular shared secret key.

De�nition 1.1.6 If a key agreement protocol provides implicit key authentication and key

con�rmation, then it is said to provide explicit key authentication.

De�nition 1.1.7 A key agreement protocol that provides explicit key authentication to all

participating entities, is called a authenticated key agreement with con�rmation (AKC)

protocol.

The authenticated key agreement protocol presented in this thesis does not provide Key

con�rmation.

De�nition 1.1.8 If each run of the key agreement protocol produces a unique secret key, called

a session key, then the protocol is said to have known-key security. Session keys are

desirable in order to limit the amount of data available for cryptanalytic attack, and to limit

exposure in the event of session key compromise.

De�nition 1.1.9 If long-term private keys of one or more participating entities are

compromised, the secrecy of the previous session keys established by honest entities is not

a�ected, then the protocol has perfect forward secrecy.

De�nition 1.1.10 If an entity A's private key is compromised, an adversary that knows this

value can impersonate A, since it is precisely this value that identi�es A. If this does not

however allow the adversary to impersonate other entities to A, then the protocol is immune to

key-compromise impersonation.

De�nition 1.1.11 If an entity B cannot be coerced into sharing a key with entity A without

B0s knowledge (when B believes the key is shared with some entity C 6= A), and A (correctly)

believes the key is shared with B, then the protocol is resistant to unknown key share attack.

De�nition 1.1.12 Let R be a n-party key agreement protocol and M be a set of protocol

parties. We say that R is a complete group key authentication protocol

5

if,8i; j (0 < i 6= j � n) ; Mi and Mj compute the same key Si;j only if Si;j has been contributed

to by every Mp 2 M. (Assuming that Mi and Mj have the same view of the group

membership.

The following security goals and attributes are reproduced from [BWM98].

1.1.1 Fundamental Security Goals

� Implicit key authentication

� Explicit key authentication

1.1.2 Desirable Security Attributes

� Known-key security

� Perfect forward secrecy

� Key-compromise impersonation

� Unknown key share

All of these are necessary to achieve resistance to active attacks.

1.1.3 Desirable Performance Attributes

� Minimal number of passes - the number of messages exchanged

� Low communication overhead - total number of bits transmitted

� Low computation overhead - number and complexity of arithmetical operations required

� Possibility of pre-computation - minimize on-line computational overhead

1.1.4 Other Desirable Attributes

� Anonymity of the entities participating in a run of the protocol

� Role symmetry - the messages transmitted must have the same structure

6

� Non-interactiveness - the messages transmitted between two entities are independent of

each other

� Non-reliance on time-stamping since it is diÆcult to implement securely in practice

� Non-reliance on encryption

1.2 Contributions

This thesis makes the following technical contributions:

1. It provides an authenticated key agreement protocol based on the key generation scheme

proposed by Poovendran [Poo99]. The authentication protocol is then analyzed using

BAN [BAN96] logic to verify the beliefs held by the group members at the end of the

initialization phase and at the end of each re-key. It brings out the assumptions that are

central to the protocol. Using BAN logic helps us avoid unnecessary computation and

components in the protocol messages, thereby reducing computational and message

overhead.

2. The scheme proposed by Poovendran [Poo99] in its original form is unsuitable for the

functioning of dynamic groups. The protocol re-starts from the initialization phase in the

event of a membership change such as a member joining the group. The initialization

phase is expensive in terms of time and computation required, and is feasible only if it is

performed once - during group initialization. Therefore, we add an auxiliary protocol

(used in [AST00] and [STW00]) to be used during member join, leave or revocation. This

protocol lends itself to easy implementation in the presence of an initiator or a Group

Controller (GC). There should be a separate protocol or a standard way to choose the

GC. This is already assumed in all current protocols and is not unreasonable.

3. Finally, the thesis addresses the issue of scalability in large dynamic groups by using the

well-know logical key tree [WGL00] framework. We describe an of the protocol suitable

for satellite networks.

7

1.3 Organization

In the second chapter, we present the basic DiÆe-Hellman (DH) key exchange protocol. Then

we review schemes that extend the basic DH to provide authentication in the multi-party case.

These are collectively called Group DiÆe-Hellman (GDH) protocols. We also present a short

introduction to BAN logic. In the third chapter, the key generation scheme proposed by

Poovendran [Poo99] is described. We study the scheme to understand the advantage over

existing multi-party schemes, and also identify certain shortcomings. We address these issues in

the fourth chapter by listing the requirements for an authenticated key agreement protocol

based on Poovendran's key generation scheme. We then use BAN logic to analyze the complete

protocol. In the �fth chapter, we construct an eÆcient protocol suitable in certain broadcast

mediums (satellite communication, within a single LAN, wireless) that evolved from the

authenticated key agreement protocol presented in the fourth chapter. We present our

conclusions in the sixth chapter and discuss future research directions.

8

Chapter 2

Introduction to Key Agreement and Formal

Analysis of Authentication

In this chapter, we review di�erent key agreement protocols. We �rst describe the

DiÆe-Hellman two-party key exchange protocol that forms the basis for most of the reviewed

work on contributory secret key agreement in group communication. We also review some

group key generation schemes that do not provide key authentication. In this category, we cover

Group DiÆe-Hellman, Group ElGamal and Group RSA. The latter two are used to generate

shared public keys. Then we brie
y describe some authenticated multi-party key agreement

protocols ([STW00] and [JV96]) and their notable features. Finally, we present the basics of

BAN logic [BAN96] used to formally analyze our authenticated key agreement protocol.

First, we highlight the factors that in
uence the design of a key management scheme and the

desirable properties of a multicast key management scheme. This enables us to evaluate the

strengths and weaknesses of the protocols discussed. These factors govern the choice of the key

management scheme for a given scenario. It is important to note that these features have more

to do with performance and suitability of a scheme. The security attributes described in the

�rst chapter are more fundamental and must be satis�ed by all key management schemes. This

list is reproduced from [Poo99].

9

2.1 Factors in
uencing the design of a Key Management

Scheme

1. The nature of the application a�ects the possible type of encryption algorithm to be used,

and the length of the key that can be supported by an end user.

2. The cost of setting up and initializing the entire system, such as selection of a Group

Controller (GC), initial key distribution, membership change and group announcement.

3. Administrative policies, such as those de�ning members that are authorized to generate

keys and key shares.

4. Required level of performance parameters, such as group dynamics, key generation rates

and session sustainability.

5. Required additional external support mechanism, such as the availability of a Certi�cate

Authority (CA) or a server to perform access control.

2.2 Desirable Properties of a Multicast Key Management

Scheme

In additions to the factors mentioned above, a multicast key management scheme needs to

exhibit the following desirable properties:

1. Ability to handle membership changes in a scalable manner. This is important since the

whole group must share a single-session encryption key. The communication integrity in

the presence of membership changes implies the ability of the group to update the session

key and distribute it to the valid members with possible back traÆc protection.

2. Ability to prevent user collusion. This is important since a subset of members or the

deleted members should not be able to collaborate and construct the keys or key shares of

other members or the future group keys.

3. Ability to handle inter-domain issues. This is important since some of the members may

belong to more than one group and may need to communicate across the groups.

10

2.3 DiÆe-Hellman

DiÆe-Hellman gets its security from the diÆculty of calculating discrete logarithms in a �nite

�eld, as compared with the ease of calculating exponentiation in the same �eld. DiÆe-Hellman

can be used for agreeing on a shared secret, that may later be used as a secret key, or the secret

key could be the result of a cryptographic transformation on the shared secret. The protocol

description is taken from [Sch96].

Alice and Bob agree on a large prime n, and g, such that g is primitive mod n. These two

integers do not have to be secret; Alice and Bob can agree to them over some insecure channel.

They can even be common among a group of users.

For example, lets say that Bob and Alice want to agree on a secret key over an insecure channel

(assume passive adversaries only). Then the protocol proceeds as follows:

1. Alice chooses a random large integer x and sends Bob

X = gxmod n

2. Bob chooses a random large integer y and sends Alice

Y = gymod n

3. Alice computes

k = Y xmod n

4. Bob computes

K
0

= Xymod n

Both k and K
0

are equal to gxymod n. No one listening on the channel can compute that value;

they only know n; g;X; and Y , and unless they can compute the discrete logarithm and recover

11

x or y, they do not solve the problem. So, k is the secret key that both Alice and Bob

computed independently.

The choice of n can have a substantial impact on the security of this system. The number

(n� 1)=2 should also be prime. And most important, n should be large: The security of the

system is based on the diÆculty in factoring numbers the same size as n. As far as g is

concerned, any g that is primitive mod n will do. g does not have to be primitive, it just has to

generate a large subgroup of the multiplicative group mod n. Generally g is chosen to be a

single- digit integer.

2.4 Generation of Group Keys

2.4.1 Group DiÆe-Hellman

There are three versions of the multi-party group DH. We will describe the basic Generalized

DH.1 (GDH.1). All three algorithms consists of two stages called up-
ow and down-
ow. In the

up-
ow stage, members collect the contributions from the other members and propagate to the

next highest indexed member with modi�cation in message sequence. The message exchange

for the up-
ow is given by:

Mi !Mi+1 : fg
�(aljl2[1;j])jj2[1;i]g

For example, member M5 receives:

fga1 ; gq1a2 ; ga1a2a3 ; ga1a2a3a4g

and forwards

fga1 ; ga1a2 ; ga1a2a3 ; ga1a2a3a4 ; ga1a2a3a4g

to member M6. In the up-
ow procedure, each member needs to perform one exponentiation.

From the indices of the message, member Mi sends i messages to member Mi+1. The last

member of the group, MN computes the group key K = ga1a2a3:::aN .

At this stage, member MN can broadcast the session key value to all the members. Instead of

broadcasting the K to all the members, in order to provide the authentication part, the key

12

scheme has the down-
ow part as follows:

MN�i !MN�i+1 : fg
�(aljl=2[i;j])jj2[1;i]g

In the down-
ow stage, i exponentiations are performed by Mi. One of these enables Mi to

compute K, and the rest of the exponentiations ensure that the rest of the group members will

eventually receive appropriate shares. In order to illustrate this case, we assume that the group

size N = 6. In this example, the last member M6 sends M5 the message

fga6 ; ga1a6 ; ga1a2a6 ; : : : ; ga1a2a3a4a6g

Using ga1a2a3a4a6 , it computes (ga1a2a3a4a6)a5 = ga1a2a3a4a5a6 . Member M5 raises the rest of the

terms to the power a5 and sends it to M4. This process is carried out by each member

Mi(1 � i � N) with appropriate modi�cations until M1 computes the session key. There are

O(N2) messages and exponentiations for such a process.

2.4.2 Generating Group ElGamal Keys

Each key generating member is associated with an individual ElGamal public key. The private

keys of all the members were added to generate the group private key. The group public key is

then the product of the individual public keys. Computational steps are summarized below.

1. Mi randomly chooses 1 � ai � q � 1 (private key) and computes the public key gai .

2. Mi sends ai to other members as

Mi !Mj(1 � j � N ; j 6= i) : ai:

3. Each Mi computes the group private key as

a =

NX

i=1

ai mod p

13

4. The group key is the product of the individual public keys modulo p. If we denote the

group public key by K, it is given by

K = �Ni=1g
ai = g

PN
i=1

ai

Although this method has less computation, it exposes the individual private keys of the

generating members.

2.4.3 EÆcient Generation of Shared RSA Keys

This section describes eÆcient protocols for a number of parties to generate an RSA modulus

N = pq where p; q are prime. At the end of the computation the parties are convinced that N

is indeed a product of two large primes. However, none of the parties know the factorization of

N . The parties can then proceed to compute a public exponent e and shares of the

corresponding private exponent. The techniques include a distributed primality test. The test

enables two (or more) parties to verify that a random integer N is a product of two large

primes without revealing the primes themselves. Threshold cryptography is a concrete example

where shared generation of RSA keys is very useful.

We present a high-level overview of the protocol. For details refer to [BF97]. Let k parties wish

to generate a shared RSA key. In other words, they want to generate an RSA modulus N = pq

and a public/private key pair of exponents e; d where e � d = 1 mod '(N). The factors p and q

should be at least n bits each. At the end of the computation N and e are public, and d is

shared between the k parties in a way that enables threshold decryption. All parties should be

convinced that N is indeed a product of two primes, but no coalition of at most t = bk�1
2 c

parties should have any information about the factors of N .

1. pick candidates. The following two steps are repeated twice.

(a) secret choice: Each party i picks a secret n�bit integer pi and keeps it secret.

(b) trial division: Using a private distributed computation the k parties determine

that p = p1 + : : :+ pk is not divisible by any prime less than some bound B1. If this

fails repeat previous step.

14

Denote the secret values picked at the �rst iteration by p1; : : : ; pk, and at the second

iteration by q1; : : : ; qk.

2. compute N: Using a private distributed computation the k parties compute

N = (p1 + : : :+ pk) � (q1 + : : :+ qk)

Other than the value of N , this steps reveals no further information about the secret

values p1; : : : ; pk and q1; : : : ; qk. Now that N is public, the k parties can perform further

trial divisions and test that N is not divisible by small primes in the range [B1; B2] for

some bound B2.

3. primality test: The k parties engage in private distributed computation to test that N

is indeed the product of two primes. If the test fails, then the protocol is restarted from

step 1. The primality test protocol is k � 1 private and applies whenever two (or more)

parties are involved.

4. key generation Given a public encryption exponent e, the parties engage in a private

distributed computation to generate a shared secret decryption exponent d.

2.5 Authenticated Multi-party Key Agreement Protocols

2.5.1 Gene Tsudik, Michael Steiner, et al.

The authors develop a multi-party extension to the basic two-party DiÆe-Hellman key

agreement protocol that provides key authentication. They do not use additional cryptographic

tools (e.g., symmetric encryption or signatures) other than those necessary for plain DH key

agreement. The key concept is that it should be possible to base all the security properties of a

given protocol on a single hard problem such as the Discrete DiÆe-Hellman (DDH) problem in

prime-order subgroups. Please refer to the actual protocol description in [STW00] and [AST00].

Let fM1; : : : ;Mng be the set of group members that wish to share a key S. The protocol

proceeds in two stages like all Group DiÆe Hellman protocols. In the �rst stage (n - 1 rounds),

contributions are collected from individual group members, and, then in the last round, group

15

keying material is broadcast. For example, in the above case, in the �rst stage, each Mi selects

a random number ri; it sends to the next member in the group Mi+1, a set of i+ 1 values -

f�
r1:::ri
rj jj 2 [1; i]g; �r1:::ri . In the last round, Mn selects its random number rn, and

broadcasts, f�
r1:::rn
ri ji 2 [1; n[g. The shared secret key S = �r1:::rn . The reason why S is not

broadcast in the last round, is to prevent outsiders from learning the key.

This basic protocol can be easily amended to provide implicit key authentication in an eÆcient

manner. This variation called A-GDH.2 di�ers from GDH.2 only in the last round. A basic

assumption is that Mn shares or is able to share with each Mi a distinct secret Kin. For

example, Kin = F (�xi�xnmod p) with i 2 [1; n� 1], where xi is a secret long term exponent

selected by every Mi (1 � xi � q � 1) and �ximod p is the corresponding long-term public key

of Mi.

The authors consider the above authentication as relatively weak since the key is not directly

authenticated between an arbitrary Mi and Mj (i 6= j). Also no one can be sure of another

member's participation. They go on to describe variants of the protocol that provide strong

authentication and another that minimizes communication overhead.

The authors further make another important observation. We require key independence and

therefore need to compute a new (authenticated and contributory) key in the face of

membership changes. This problem can be solved in two ways - start from the scratch or use

previous information to save computation. They note that the �rst approach is expensive,

unscalable and utterly unsuitable for environments with frequent membership changes. We

have this observation in mind, when we design our auxiliary protocol.

2.5.2 Mike Just and Serge Vaudenay

This paper deals with key agreement protocols based on DiÆe-Hellman that use public key

techniques. It does not require the presence of an on-line trusted third-party. They �rst present

a DiÆe-Hellman based three-pass protocol that provides key authentication, key con�rmation

and forward secrecy. Then they extend the two party case to obtain a multi-party key

agreement model. The multi-party protocol created by using this model and their speci�c

two-party protocol reduces the amount of communication required between participants. For

details refer to [JV96].

Below is their construction of a multi-party key agreement protocol MP from two-party key

16

agreement protocol P. Assume all users u1; u2; : : : ; ut are arranged on a ring and we will

consider indices of ui to be taken between 1 to t modulo t. Each pair (ui; ui+1) processes

protocol P to obtain a session key Ki. Each ui computes Wi �
Ki

Ki�1
. Upon receiving the

broadcast from other users, ui computes the key K � Kt
i�1W

t�1
i W t�2

i+1 : : :Wi�2 � K1K2 : : :Kt.

Equivalently, we can use Wi = Ki �Ki�1 and K = K1 + : : :+Kt. This is much cheaper than

multiplication and has some practical value. We do not show the three-pass two-party

DiÆe-Hellman protocol for space considerations.

2.6 Formal Analysis of Authentication Protocols

We present a section on BAN logic taken from [BAN96]. Formalism enables us to express

protocol assumptions and the steps with a precision, not otherwise possible. Authentication

would be straight- forward in a suÆciently benign environment. Such cannot usually be

assumed, and it is particularly necessary to take precautions against confusion caused by

re-issue of old messages. Speci�cally, one must ensure that a replay cannot force the use of an

old and possibly compromised secret. The logic helps us to explain the protocol step by step,

with all initial assumptions made explicit and with �nal states clearly set out.

Using BAN we can analyze our protocol formally to see if it meets our objectives, the

assumptions it makes, and if we are including components that are not necessary to strengthen

the protocol, or if we are encrypting] components that could be sent in the clear without

weakening the protocol.

In a later section, we show how the logic is able to help us validate the authenticated key

agreement protocol. It is important to note that certain aspects of authentication protocols are

ignored in this treatment. It does not consider errors introduced by concrete implementations

of a protocol, such as deadlocks or inappropriate use of cryptosystems. Furthermore, while it

allows the possibility of hostile intruders, there is no attempt to deal with the authentication of

an untrustworthy principal, nor to detect weaknesses of encryption schemes or unauthorized

release of secrets. The study concentrates on the beliefs of trustworthy parties involved in the

protocols and on the evolution these beliefs as a consequence of communication.

17

2.6.1 The Formalism

Authentication protocols are typically described by listing the messages sent between the

principals, and by symbolically showing the source, the destination, and the contents of each

message. This conventional notation is not convenient for manipulation in a logic, since we wish

to attach exact meanings to each part of each message and these meanings are not always

apparent from the data contained in the messages. In order to introduce a more useful notation

whilst preserving correspondence with the original description of the protocols, we transform

each message into a logical formula according to the notation explained in [BAN96]. Then we

annotate the idealized protocol with assertions as illustrated in the paper. An assertion usually

describes beliefs held by the principals at the point in the protocol where the assertion is

inserted.

2.6.2 Basic Notation

A brief overview of the notation used in the original paper, is presented. Typically, the symbols

A;B, and S denote speci�c principals; Ka;Kb, and Ks denote speci�c public keys, and

K�1
a ;K�1

b , and K�1
s denote the corresponding secret keys; Na; Nb, and Nc denote speci�c

statements. The symbols P;Q, and R range over principals; X and Y range over statements; K

ranges over encryption keys. The following constructs are used:

Table 2.1: Notation used in BAN logic

P j� X P believes X , or P would be entitled to believe X . Principal P may act as though

X is true.

P / X P sees X . Someone has sent a message containing X to P , who can read and repeat

X .

P j� X P once saidX . The principal P at some time sent a message including the statement

X . It is not known whether the message was sent long ago or during the current

run of the protocol, but it is known that P believed X when he sent the message.

18

P j) X P has jurisdiction over X . The principal P is an authority on X and should be

trusted on this matter. This construct is used when a principal has delegated

authority over some statement. For example, encryption keys need to be generated

with care, and in some protocols certain servers are trusted to do this properly. This

may be expressed by the assumption that the principals believe that the server has

jurisdiction over the statements about the quality of keys.

#X The formula X is fresh, that is X has not been sent in a message at any time before

the current run of the protocol. This is usually true for nonces, that is expressions

generated for the purpose of being fresh. Nonces commonly include a time-stamp

or a number that is used only once, such as a sequence number.

P
K
 ! Q P and Q may use the shared key K to communicate. The key K is good, in that it

will never be discovered by any principal except P or Q, or a principal trusted by

either P or Q.

K
7! P P has K as a public key. The matching secret key (the inverse of K, denoted K�1)

will never be discovered by any principal except P , or a principal trusted by P .

P
 Q The formulaX is a secret known only to P and Q, and possibly to principals trusted

by them. Only P and Q may use X to prove their identities to one another. Often,

X is fresh as well as secret. An example of a shared secret is a password.

fXgK This represents the formula X encrypted under the key K. Formally, fXgK is an

abbreviation for an expression of the form fXgK from P . We make the realistic

assumption that each principal is able to recognize and ignore his own messages;

the originator of each message is mentioned for this purpose.

hXiY This represents X combined with the formula Y ; it is intended that Y be a secret,

and that its presence prove the identity of whoever utters < X >Y . In implemen-

tations, X is simply concatenated with the password Y ; our notation highlights

that Y plays a special role, as proof of origin for X . The notation is intentionally

reminiscent of that for encryption, which also guarantees the identity of the source

of a message through knowledge of a certain kind of a secret.

Logical postulates are presented below:

19

� The message-meaning rules concern the interpretation of messages. Two of the three

concern the interpretation of messages with secrets. They all explain how to derive beliefs

about the origin of messages.

For shared keys:

P j� Q
K
 ! P; P / fXgK

P j� Q j� X

That is, if P believes that the key K is shared with Q and sees a message X encrypted

under K, then P believes that Q once said X .

Similarly for public keys,

P j�
K
7! Q; P / fXgK�1

P j� Q j� X

That is, if P believes that the secret Y is shared with Q and sees fXgK�1 , then P

believes that Q once said X .

In real life the decryption of a message to yield a content says, only that the content was

produced at some time in the past; we have no idea whether it is new or the result of a

replay.

� The nonce-veri�cation rule expresses the check that a message is recent, and hence that

the sender still believes in it:

P j� #X; P j� Q j� X

P j� Q j� X

That is, if P believes that X could have been uttered only recently and that Q once said

X , then P believes that Q believes X . For the sake of simplicity, X must be "clear text."

that is, it should not include any sub-formula of the form fY gK . (When this restriction is

not met, we can conclude only that Q has recently said X .)

� The jurisdiction rule states that if P believes that Q has jurisdiction over X then P trusts

Q on the truth of X :

P j� Q j) X; P j� Q j� X

P j� X

� A necessary property of the belief operator is that P believes a set of statements if and

20

only if P believes each individual statement separately.

P j� X;P j� Y

P j� (X;Y)

P j� (X;Y)

P j� X

P j� Q j� (X;Y)

P j� Q j� X

� A similar rule applies to the operator j�:

P j� Q j� (X;Y)

P j� Q j� X

Note that if P j� Q j� X and P j� Q j� Y , it does not follow that P j� Q

j� (X;Y), since this would imply that the two parts X and Y were uttered at the same

time.

� If a principal sees a formula then he also sees its components, provided he knows the

necessary keys:

P / (X;Y)

P / X

P / hXiY
P / X

P j� Q
K
 ! P; P / fXgK
P / X

P j�
K
7! P; P / fXgK�1

P / X

� If one part of a formula is known to be fresh, then the entire formula must also be fresh:

P j� #X

P j� #X;Y

Similar rules can be written, for instance to show that if X is fresh, then fXgK is fresh.

� The same key is used between a pair of principals in either direction.

P j� R
K
 ! R

0

P j� R0 K
 ! R

� Similarly, a secret can be used between a pair of principals in either direction.

P j� R
X

 R

0

P j� R0
X

 R

21

2.6.3 Delegation

Delegation statements typically mention one or more variables. For example, principal A may

let server S generate an arbitrary key for A and B. We can express this as

A j� S j) A
K

 B

Here the key K is universally quanti�ed, and we can make explicit this quanti�cation by writing

A j� 8K: (S j) A
K

 B)

2.6.4 Idealized Protocols

Each protocol step is typically written in the form

P ! Q : message

This denotes that the principal P sends the message and that the principal Q receives it. The

message is presented in an informal notation designed to suggest the bit-string that a strong

implementation would use. Unfortunately, this presentation is often ambiguous and obscure in

its meaning, and is not an appropriate basis for formal analysis.

Therefore, we transform each protocol step into an idealized form. A message in the idealized

protocol is a formula. For instance, in the literature we may �nd the protocol step

A! B : fA;KabgKbs

This may tell B, who knows the key Kbs that Kab is a key to communicate with A. This step

should then be idealized as

A! B : fA
Kab

 BgKbs

When the message is sent to B, we may deduce that the formula

B / fA
Kab

 BgKbs

22

holds, indicating that the receiving principal becomes aware of the message and can act upon

it.

In this idealized form, we omit parts of the message that do not contribute to the beliefs of the

recipient. In particular, we remove hints that are added to an implementation to allow it to

proceed in a timely fashion, but whose presence would not a�ect the result of the protocol if

each host were to act spontaneously. For instance, we may omit a message used as a hint that

communication is to be initiated.

The idealized protocol does not include the clear-text message parts; idealized messages of the

form fX1gK1
; : : : ; fXngKn

, where each encrypted part is treated separately. We have omitted

clear-text communication simply because it can be forged, and so its contribution to an

authentication protocol is mostly one of providing hints as to what it might be placed in

encrypted messages.

2.6.5 Protocol Analysis

From a practical viewpoint, the analysis of a protocol is performed as follows:

� The idealized protocol is derived from the original one.

� Assumptions about the initial state are written.

� Logical formulas are attached to the statements of the protocol, as assertions about the

state of the system after each statement.

� The logical postulates are applied to the assumptions and the assertions, in order to

discover beliefs held by the parties in the protocol.

This procedure may be repeated as new assumptions are found to be necessary and the

idealized protocol is de�ned.

23

Chapter 3

Distributed Shared Key Generation Using

Fractional Keys

In this chapter we describe a distributed key generation and recovery algorithm suitable for

group communication systems, where the group membership must be tightly controlled. The

key generation scheme was proposed by Poovendran in [Poo99]. The key generation approach

allows entities that may have only partial trust in each other to jointly generate a shared key,

without exposing their contribution to the key. The group collectively generates and maintains

a dynamic group parameter and the shared key could be generated using a pseudo-random

function using this parameter as the seed. These requirements are realized through the use of

fractional keys - a distributed technique recently developed to enhance the security of

distributed systems in a non-cryptographic manner.

3.1 Basic Key Generation Protocol

3.1.1 Assumptions identi�ed in original paper

The following is a list of the underlying assumptions of the above scheme:

� There exists binary operation on the set S of elements generating the secret such that

S � S :! S.

� The shared keys are generated by a �xed number of participants n.

� A mechanism exists for certifying the members participating in the key generation

24

Table 3.1: Notation used in distributed key generation scheme
�i;j The one-time pad of the ith member at the jth key update iteration.

Mi uses �i;j to hide its contribution to the key.
�j The binding parameter at the jth key update iteration. This is the

shared secret that each Mi computes at the end of each round.
fKi;K

�1
i g Public/Private key pair of the member i. This pair is assumed to

be updated appropriately to key the integrity and con�dentiality
of any communication transaction by and with member i.

FKi;j The Fractional Key (FK) of the ith member at the jth key update
iteration. This is the contribution of Mi in the jth round.

HFKi;j The hidden FK (HFK) of the ith member at the jth key update
iteration

SKj The group session key (SK) at the jth key update instance. It is
a function of �j .

A! B : X : Principal A sends principal B a message X
� � is the binary operation over the set of valid keys. In the sections

below, � is addition modulo p, where p is a power of two. This
simpli�es calculation on computers.

procedure, for securely exchanging the quantities required in the algorithm and for

authenticating the source of these quantities.

� Every member can generate uniformly distributed, independent random numbers in the

given range.

3.1.2 Message Format

The message format is ffTi;M; j;MsggK�1
s
gKR, where:

� T i: a real-valued, wall clock time stamp nonce generated by member i.

� M : denotes the mode of operation with "I" for Initialization mode, "G" for key

Generation mode and "R" for key Recovery mode.

� j: integer-valued, denotes current iteration number.

� Msg: the message to be sent.

� K�1
s : Denotes the private key of the sender S.

� KR: Public key of the receiver.

The following properties are desirable for a multi-party key generation scheme:

25

� A FK contributed by a participating member should have the same level security as the

group SK.

� A single participating member, without valid permissions, should not be able to obtain

the FK of another member.

� If a FK-generating member has physically failed, been compromised or removed, the

remaining FK-generating members should be able to jointly recover the FK of the failed

member (this requires not majority voting but total participation).

The �rst property states that the distributed key generation scheme has to be such that each

FK space has at least the same size as the �nal SK space. Hence, each member may generate

FK of di�erent size but, when combined, they lead to a �xed length SK.

The second property has to do with the need for protection of individual FKs that is desired

due to the absence of a centralized key generation scheme. In the current scheme, every

member performs an operation to hide its FK such that, when all the hidden FKs (HFK) and

the group parameter are combined, the net result is a new SK. Note that even if a HFK is

known, the problem of obtaining the actual FK or the SK needs further computation.

If a contributing member fails, becomes compromised, or has to leave the multicast group, then

it becomes necessary to replace the existing member with a new member. Hence the

newly-elected member should be able to securely recover the FK generated by the replaced

member. However, to ensure the integrity of the scheme, this recovery is possible only if all the

remaining contributing members cooperate.

3.1.3 Key Management Scheme

The key management scheme consists of three major parts:

1. Initialization - consisting of member selection, secure initial pad and binding parameter

generation and distribution

2. Key Generation - an iterative process consisting of fractional, hidden and shared-key

generation

3. Key Retrieval - required only in the case of a member node failure or compromise

26

3.1.4 Initialization Algorithm

A Group Initiator (GI) �rst selects a set of n FK generating members, and the GI may be one

of these members. The GI then does one of the following:

� Contacts a Security Manager (SM) - a third party who is not a FK-generating member -

who generates the initial pads and the binding parameter and distributes them to the

members

� Initiates a distributed procedure among the group members to create these quantities

without the aid of a third party.

SM-Based Initialization

At the time of initialization, n members are selected and the initial pads and binding parameter

are distributed to each member i, for i = 1; : : : ; n, as

SM !Mi : ffTSM ; I; 1; �i;1; �1gK
�1
SMgKi

where �i;1 - its initial one time pad - is computed such that

�1;1 � �2;1 � : : :� �n;1 = �1

Distributed Initialization

The GI (assumed to be a member usually M1) can perform the following steps to generate the

initial parameters of the group:

1. Generate two uniformly-distributed random quantities
 and �1;1 of bit length L, operate

on these two quantities as

 � �1;1 = Æ1

and send the result to M2 (the next number in the group).

M1 !M2 : ffT1; I; 1; Æ1gK�1

1

gK2

27

2. The following steps are repeated for i = 2; : : : ; n� 1:

(a) Mi generates a uniform random variable �i;1 of bit length L

(b) Mi then operates on the quantity received from Mi�1 as

Æi�1 � �i;1 = Æi

(c) Mi then sends the result to Mi+1 as

Mi !Mi+1 : ffTi; I; 1; ÆigKi
�1gKi+1

3. Eventually, Mn receives Æn�1 and then generates a uniformly-distributed random quantity

�n;1 of bit length L, performs

Æn�1 � �n;1

and then securely sends it the initiating M1 as

Mn !M1 : ffTn; I; 1; ÆngK
�1
n gK1

4. The initiator (M1) decrypts it and performs

 � Æn = �1

and then sends �1 to each Mi, for i = 2; : : : ; n as

M1 !Mi : ffT1; I; 1; �1gK
�1
1 gKi

5. Each Mi privately computes

�i;1 = �1 � �i;1

28

and uses �i;1 as its initial pad.

The distributed initialization approach assumes that members are indexed and all members

know the left or right neighbor. If there is no member collaboration, this approach prevents a

member from knowing the individual secret of any other member. The computations scale as

O(N) with N being the group size.

Note that the two approaches of initialization - security manager-controlled and distributed -

are not equivalent unless additional security assumptions are made. For example, in the case of

distributed initialization within the group, we point out that using the following attack is

feasible - assume that Mi�1 and Mi+1 conspire to obtain the secret of Mi, where the numerical

ordering corresponds to the order of message passing in the distributed algorithm.

1. Mi�1 sends Æi�1 to Mi as per algorithm, and also to Mi+1 without M
0
is knowledge.

2. Mi, who is unaware of the conspiracy between Mi�1 and Mi+1, computes Æi = Æi�1 � �i;1

and sends it to Mi+1 securely.

3. Mi+1 can now compute

�i;1 = Æi�1 � Æi

and obtain the secret �i;1 of Mi.

However the secret �i;1 generated by Mi becomes part of the pads (i.e. the �
0s) of Mi�1 and

Mi+1. Hence, application of this initialization assumes that the parties are benign.

Finally, in both the distributed and the SM-based initialization scheme, the n members who

contribute to the key can be a subset of the group members with special privileges. The

resulting shared secret key has to be distributed to the remaining members using other

cryptographic mechanisms.

3.1.5 Key Generation Algorithm

The key generation algorithm is an iterative process. Each iteration j requires as input a set of

one-time pads

�i;j ; i = 1; : : : ; n

and the binding parameter �j , which are obtained from the initialization algorithm for iteration

j = 1, and from the preceding iteration for j > 1.

29

The key generation algorithm consists of the following steps:

1. For i = 1; : : : ; n, Mi generates an L bit cryptographically-secure random number FKi;j .

2. For i = 1; : : : ; n, Mi generates a quantity

HFKi;j = �i;j � FKi;j ;

and all members securely exchange the HFK 0s as

81 � l;m � n; l 6= m;Ml !Mm : ffTl; G; j;HFKl;jgK�1

l
gKm

3. Once the exchange is complete, Mi locally computes

Pn
i=1�HFKi;j =

Pn
i=1�(�i;j � FKi;j)

= �j�j �
Pn

i=1�FKi;j

4. Every member then computes the new value of the group shared secret �j+1 by removing

the e�ect of the initial shared secret value

�j+1 = �j�j �
nX

i=1

�FK1;j ���j�j

where �j is the appropriate inverse of �j . In this case, �j = p� �j . If the resulting group

parameter �j+1 is cryptographically-insecure for a particular application, all members can

repeat the above steps, creating a new high quality group parameter �j+1

5. Mi locally computes its new pad as

�i;j+1 = �j+1 � FKi;j+1

essentially removing the e�ect of its own share.

6. The shared key SKj = f(�j+1) where f(�) is a pseudo-random function.

This summarizes the computational steps for generating the keys at each update. Note that the

quantity �i;j+1 is computed such that, for an outsider, obtaining �i;J+1 is very hard even if the

30

actual key SKj is compromised at any key update time interval (j; j + 1). Knowing the group

key does not reveal the group parameter and, hence, the tight binding of the members will not

be broken by the loss of the shared key.

Note the following additional features

� Although all members have each HFKi;j , obtaining the FKi;j or �i;j+1 of another

member involves search in the L�dimensional space, and obtaining their correct

combination involves search in the (n� 2) of L dimensional (Key length) space. Hence,

even if a fellow member becomes an attacker, that rogue member faces nearly the same

computational burden in obtaining the set of n FKs as an outside cryptoanalyst; i.e.

trust is not unconditional.

� For such an outside attacker, breaking the system requires, either a search in the L

dimensional space to get �, or n dimensional searches to break individual secrets of all the

members. Access to all n HFKs is alone insuÆcient to permit an attacker to determine

the SK; for that, the attacker must also possess the current binding parameter � which is

time-varying and never transmitted. If a SK is known to be compromised (perhaps due

to traÆc analysis), since f(�) is a pseudo-random function, information regarding � is not

obtained.

3.2 Retrieval of the Fractional Key and Pad of a Failed

Node

The following steps are involved in recovery of the FKi;j and �î;j of the node failed î, where j

represents the iteration number in which the node was compromised or failed.

1. Any one FK�generating member - called the Recovery Initiator (RI) - must initiate

recovery and give the HFK of the failed node î to the newly-elected Mi as

RI !Mi : ffTRI ; R; j; SKjgK�1

RI
gKi

:

31

2. The RI must also give the newly-elected Mi the current �j as

RI !Mi : ffTRI ; R; j; �jgFK�1

RI;j
gFKi;j

:

3. Using the same algorithm as is used for distributed initialization, with the following

replacements:

(a) � by �

(b) �l;j by �l;j .

Except for the changes in the notation and the number of members participating, the

algorithm for pad generation is same as for distributed initialization. Hence, at the end of

this distributed pad generation, each member l has �l;j as its pad for key recovery

process, and all these pads are bound with the parameter �.

4. For l = 1; : : : ; n� 1, each Ml then computes a modi�ed hidden fractional key

\HFKl;j = �l;j � FKl;j

and hands it to the newly-elected Mi as

Ml !Mi : ffTl; R; j;\HFKl;jgK�1

l
gKi

5. Mi then combines all of the modi�ed HFKs and recovers the fractional key

FKî;j = �� �\HFK1;j � : : :�\HFKn�1;j � �j+1

6. Mi then extracts the pad �î;j using the operation

�î;j = HFKî;j � FKî;j :

32

Note that the recovered values of FKî;j and �î;j are unique. Once the new node recovers the

fractional key of the compromised node, it can inform the other contributing members to

update the iteration number j to j + 1, and then all members can execute the key generation

algorithm. Note that even though the newly-elected member recovers the compromised

fractional key and pad, the next key generation operation of the new node does not use the

compromised key or pad. Hence, even if the attacker possesses the fractional key or pad at

iteration j, it does not allow the attacker to obtain the future fractional keys or pads without

computation.

3.3 Improvements to the Key Agreement Protocol

We analyze the protocol to simplify certain steps and this reduces message size and number of

computations without a�ecting the security of the scheme. We also describe an Auxiliary Key

Agreement (AKA) protocol.

� As indicated earlier, the HFKs need not be encrypted because con�dentiality of the

hidden fractional keys is not required for the key agreement protocol to be secure.

However integrity of the HFKs must be ensured. Therefore the HFKs can be

transmitted in the clear. A signature or a Message Authentication Code (MAC) will cover

the whole message, thereby ensuring the integrity of the whole message, and trivially,

each of its components.

� We do not use time-stamps to indicate freshness. Using time-stamps pose well-known

security risks. Not using time-stamps requires additional per member storage at the SM

or GI.

� In case of key recovery, the RI need not send SK to the replacement node. Only the

current binding parameter needs to be transmitted. Moreover failure can be treated more

simply as a group leave by the compromised member, and a group join by the

replacement node.

� Most important of all, the key agreement scheme does not handle membership change

well. We therefore develop an Auxiliary Key Agreement (AKA) Protocol to handle these

two cases. The AKA is only partially contributory. This reduces computation and

33

message overhead, resulting in faster response times without weakening the security of the

scheme.

� We do not base the security of the authentication scheme on the diÆculty of factoring

large numbers or discrete logarithms in a �nite �eld. Consequently, we do not need a

prime number p to perform modular arithmetic. However all computation when

performed on a computer is based on �nite number of bits. All our computation is

modulo p, where p is a power of two.

� Finally, we present an authenticated key agreement protocol. A key observation while

comparing this scheme to others, is that we do not use exponentiation. Our scheme

involves less computation. The previously discussed schemes need to use some MAC to

provide message integrity. Those that don't use a MAC can't provide key integrity and

that was explicitly stated by Tsudik [STW00] in his work. By using a signature scheme,

we provide both Key Integrity (KI) and Key Authentication (KA).

34

Chapter 4

Distributed Shared Key Generation Using

Fractional Keys

In this chapter we describe a distributed authenticated key agreement protocol suitable for

group communication, where the group membership must be tightly controlled. The key

generation scheme was described in the previous chapter. Our protocol requires the presence of

a public key infrastructure. We can reduce the message overhead and computation overhead by

using message authentication codes and secret key encryption. First, we formally discuss our

threat model and the requirements of such an authenticated key agreement protocol. To

address concerns raised at the end of the chapter, we also list the requirements for an auxiliary

key agreement scheme that can be used when group membership changes. As we list the

requirements for the auxiliary key agreement scheme, it will become evident that the protocol

becomes more susceptible to user collusion in the SM based scheme when the auxiliary scheme

is incorporated. This is because the auxiliary key agreement scheme reduces overhead by

making the key agreement partially contributory and re-using the contributions of the other

members. However, the distributed initialization scheme is already vulnerable to user collusion,

and incorporating the auxiliary protocol does not introduce a new vulnerability. It must be

stressed that the only risk is knowledge of contribution of a member by colluding members, and

not of non-members, not even users whose membership has been revoked. Then we describe a

concrete protocol that satis�es these requirements and incorporates the auxiliary key agreement

protocol. Finally we analyze this protocol using BAN logic.

35

4.1 Requirements for Authenticated Key Agreement

Protocol

4.1.1 Requirements in Initialization Phase

Requirements in SM-Based Initialization

� SM and all the members have a common CA or have a certi�cation path to a common

CA.

� SM authenticates itself with every other member. SM authenticates all the members in

the group.

� For every Mi, SM generates a sequence of random numbers -

CKYi;k = Ri; : : : ; CKYi;0 = fk(Ri), where f is a strong one-way hash function similar to

the SKEY scheme described in [Sch96].

SM sends CKYi;0 = fk(Ri) to Mi as part of the protocol for mutual authentication. The

cookie can be sent in clear text form. The rest of the values are stored at the SM for use

in subsequent messages from SM to Mi.

� SM generates n L bit random numbers - �i;1; : : : ; �n;1 - to act as initial one-time pads for

each member Mi of the group. It also computes the binding parameter �1 as:

�i;1 � : : :� �n;1 = �1

SM does not store any of these values, except for re-transmission on communication

errors.

� For every member Mi, SM encrypts the binding parameter �1 and the initial one-time pad

�i;1. It appends the cookie CKYi;1 = fk�1(Ri) (in clear-text form) to the message. SM

signs the whole message and sends it to Mi. Mi deletes CKYi;1 from its storage.

� Every Mi checks that f(CKYi;1) equals CKYi;0, to verify that the message is fresh.

Mi veri�es the signature of SM on the message. Mi decrypts and extracts the binding

parameter �1 and its initial one-time pad �i;1.

36

� Every Mi then updates its secret to CKYi;1.

Requirements in Distributed Initialization

� All members have a common CA or a certi�cation path to a common CA.

� One of the members, say M1 acts as the Group Initiator (GI).

� The members are indexed from 1; : : : ; n, and every Mi (except M1 and Mn) authenticates

itself with Mi+1 and Mi�1. M1 authenticates itself with M2 and Mn. Mn authenticates

itself with M1 and Mn�1.

� Every member Mi (except Mn), establishes a secret - CKYi;i+1 - with member Mi+1. Mn

establishes a secret with M1. This will take place as part of mutual authentication of

neighbors.

� The GI (M1) authenticates itself to every member Mi (except Mn and M2 who have

already authenticated M1). Every Mi, (except M2 and Mn) is authenticated by GI.

� To establish a secret with each member Mi, the GI generates a sequence of Random

numbers for each member Mi, CKY
0

i;k = Ri; : : : ; CKY
0

i;0 = fk(Ri).

The GI sends CKY
0

i;0 to Mi as part of the mutual authentication protocol. The cookie

can be sent in clear-text form.

� Every member Mi generates its own L bit secret random integer,
i.

� M1 (GI) generates a random number � and operates on it as:

Æ1 = ��
1

where,
1 is its secret. It encrypts Æ1, and includes the cookie it shares with M2, CKY2.

M1 signs the whole message and sends this to M2.

� For i = 2; : : : ; n� 1, every member Mi, receives the message from member Mi�1. Member

Mi, checks the cookie CKYi�1;i to verify the freshness of the message from Mi�1. Mi

then veri�es the signature on the message as belonging to Mi�1. Mi decrypts the message

to get Æi�1.

37

� Member Mi adds its secret
i to Æi�1 as:

Æi = Æi�1 �
i

= ��
Pi

j=1
j

Mi encrypts Æi, appends the secret it shares with Mi+1, CKYi+1 to the message. Mi signs

the whole message and sends it to Mi+1.

Mi stores Æi�1 it receives from Mi�1 till the next time a new value is received.

� Member Mn receives the message from Mn�1. Mn veri�es that CKYn�1;n is part of the

message. Mn veri�es the signature on the message as belonging to Mn�1. Mn decrypts

Æn�1. It computes Æn as:

Æn�1 �
n = Æn

Mn encrypts Æn, it appends the secret it shares with M1, CKYn;1, to the message. It

then signs the message and sends it to M1.

� The GI (M1) receives the message from Mn. It checks the message is fresh by verifying

the presence of CKYn. M1 veri�es the signature on the message as belonging to Mn. M1

then decrypts the message to obtain Æn.

Member M1 then computes the common secret �1 as:

� =

nX

j=1

j

� For every member Mi, M1 encrypts �1. It includes CKYi;1 = fk�1(Ri) to guarantee the

freshness of the message. M1 signs the message and sends it to every other member Mi.

It also deletes CKYi;1 from its storage.

� Every member Mi receives the message and checks that f(CKY
0

i;1 = CKY
0

i;0. Mi veri�es

the signature on the message and decrypts the message to obtain �1.

� Every member Mi updates its secret to the cookie from the message. It then computes:

�i;1 = �1 � �i;1

38

4.1.2 Requirement in Key Generation Phase

1. Every member Mi, generates its contribution to the shared key - a random number

FKi;1, and hides its contribution by performing the following computation with its

one-time pad �i;1 as:

FKi;1 � �i;1 = HFKi;1

Every member stores its contribution to the key till the next re-key.

2. Every member, Mi creates a message with its hidden fractional key HFKi;1 in clear-text.

Mi signs the message and the current binding parameter �1 of the group, and sends it to

all other members. Note that the binding parameter �1 does not appear in the message

itself. It is part of the signature and is used to guarantee freshness of the message (instead

of creating a whole new set of shared secret values between members of the group.

3. Every member Mi receives the hidden fractional key HFKj;1, from all other members

Mj ; j 6= i. Mi veri�es the signature of Mj .

4. Once, Mi receives the hidden fractional keys from all other members, it computes:

Pn
i=1�HFKi;1 =

Pn
i=1�(�i;1 � FKi;1)

= �1�1 � �2

with �2 =
Pn

i=1�FKi;1 and �1�1 is the result of operation � performed on �1, � times.

5. Every member then locally computes the new value of the group shared secret �2 by

removing the e�ect of the initial shared secret value:

�2 = �1�1 � �2 � �1�1

6. Every member i locally computes its new pad as:

�i;2 = �2 �
2FKi;2

essentially removing the e�ect of its own share.

7. At the share update step j, the procedure is:

39

� generate new individual shares FKi;j

� combine it with the individual dynamic pad �i;j to generate HFKi;j

� exchange HFK's of all members securely

� compute the new shared secret �j+1 = �j�j � �j+1 � �j�j .

� compute the new shared individual pad �i;j+1 = �j+1 �
j+1FKi;j+1.

4.1.3 Requirements for Auxiliary Key Agreement Protocol

Requirements in SM-Based scheme

Member Join

Let the new member be denoted as Mn+1.

1. SM and Mn+1 should have a common CA or a certi�cation path to a common CA.

2. SM must authenticate Mn+1. Mn+1 must authenticate SM.

3. SM generates a sequence of random numbers

CKYn+1;k = Rn+1; : : : ; CKY n+ 1; 0 = fK(Rn+1). SM sends fk(Rn+1) securely to Mn+1

during the mutual authentication protocol.

4. If we denote the set of group members asM, the SM chooses a random subgroup of

members denoted by Msub, with Msub �M. Let the members of this subgroup be

denoted as M1; : : : ;Mr with the indices having no particular signi�cance.

The SM generates r + 1 L bit random numbers �1;1; : : : �r;1 and �n+1;1, to serve as the

initial one-time pads of the members in the sub-group and the new member. The SM

computes the new binding parameter �
0

1 using these values in addition to the contribution

of other Mi, Mi =2Mr in the previous round.

5. For every member Mi, Mi =2Mr, SM encrypts �
0

1. SM appends the cookie

CKYi;l (= fk�l(Ri)) (assume l
th round) to the message. SM computes the signature on

the whole message.

6. For the the members Mi; Mi �Mr, SM encrypts �
0

1 and the initial one-time pad �i;1. It

adds the cookie CKYi;l (l
th round) and signs the whole message. The SM sends a signed

message containing CKYn+1;1 and �n+1;1 to Mn+1.

40

7. Each Mi receives the message from SM. It checks that the message is fresh based on the

cookie. It then veri�es the signature on the message as belonging to SM. It decrypts the

new binding parameter.

8. The remaining steps are the same as in the key generation phase.

Member Leave

Let the revoked or leaving member be denoted as Ml. The requirement are simpler in this case.

SM picks a random subset of members denoted as M1; : : : ;Mr to distribute their new

initial-one time pads. SM calculates the new binding parameter by using these new values, in

addition to the old values. It need not remove the one-time pad of member l from the binding

parameter. The remaining steps are same as above.

Requirements in Distributed Initialization scheme

Member Join

1. Mn+1 should have a common CA with all other members or a certi�cation path to a

common CA.

2. Mn+1 authenticates itself with the GI. GI authenticates itself with Mn+1. The GI

generates a sequence of random numbers CKY
0

n+1;k = Rn+1: : : : ; CKY
0

n+1;0 = fk(Rn+1.

It sends CKY
0

n+1;0 securely to Mn+1 during mutual authentication.

3. Mn authenticates itself to Mn+1. Mn+1 authenticates itself with Mn. They establish a

new shared secret CKYn;n+1 during mutual authentication.

4. Mn+1 and the GI establish a secret CKYn+1;1.

5. The GI sends a request to Mn to restart initialization.

6. Mn receives the message. It veri�es that the message is fresh by the presence of the

cookie. It veri�es the signature on the request as belonging to the GI. Mn generates a

new random secret number

0

n. It computes Æ
0

n as:

Æn�1 �

0

n = Æ
0

n

41

7. Mn encrypts Æ
0

n. It adds CKYn to the message and signs the while message. It sends the

message to Mn+1.

8. Mn+1 generates a its random secret
n+1. It computes Æn+1 and encrypts this. It adds

the cookie it shares with the GI CKYn+1 to the message. Mn+1 signs the message and

sends it to M1.

9. The remaining steps are similar.

Member Leave

Member leave is simpler. Let Mi be the member who is leaving or whose membership has been

revoked.

1. GI requests Mi�1 to restart initialization and informs the group that Mi has left.

2. Mi�1 has to authenticate itself with Mi+1 and vice-versa. The establish a new shared

secret between themselves.

3. The remaining steps are similar.

4.2 Threat Model

4.2.1 Assumptions

� Public Key Infrastructure (PKI) is present.

� Group members follow the protocol correctly.

� Group members do not disclose the binding parameter or the shared key.

� Collusion among group members is limited. In particular if there are n members, n� 1

members can collude and obtain the fractional key of the other member. Using the

auxiliary key agreement protocol makes the scheme more vulnerable to collusion among

group members while improving performance.

� External attackers have substantial resources but cannot invert one-way hash functions,

break public key algorithms or compromise the public key infrastructure.

42

4.2.2 Nature and Type of Threats

� External attackers can listen to messages, drop, re-send, modify or even concoct protocol

messages.

4.2.3 Guarantees

Under these two assumptions, we can make the following statements:

� External attacker cannot lead group members into forming an incorrect key.In other

words the protocol provides key authentication.

� External attackers cannot cause denial of service in a broadcast medium assuming that he

can't control the link layer.

4.2.4 Protocol Design Considerations

� No time-stamps.

� Minimize possibility of using Denial of Service (DoS) attacks.

� Avoid unnecessary encryptions.

� Minimize use of Public-key based computation.

4.2.5 Summary of Security Attributes of AKA

� External Attackers

{ The external attacker(s) can drop, re-send or modify messages. The protocol is

secure in the sense that such actions cannot lead the group members into forming a

key that is known to the attacker.

{ The initialization phase of the protocol uses shared secrets that are sent in clear

text, as part of the message. This helps a member decide whether a message is fresh

without any computation, thus providing resistance to denial of service attacks.

However, the key generation phase incorporates the shared secret (binding

parameter) in signature, forcing members to verify the signature before they can

43

Table 4.1: Additional notation used in AKA protocol
R Round number. Helps to synchronize events among group members
H(M) Cryptographic hash of M using a basic algorithm such as MD4
SigK(M) Signature of M . M is �rst hashed and the signature is calculated

on the hash EK�1fH(M)g
CKYi;R random number incorporated in the message by SM or GI to indi-

cate freshness of message. Prevents replay attacks
Mi Member index. Helps to index into Certi�cate store to recover

public key
G=I G indicates Key generation phase and I indicates Initialization

phase. MA indicates re-key and the member index in this case
gives the identity of the new member.

X jY Y is concatenated with X
Msg The message - one of HFK, or the encrypted �j or Æi

verify the freshness of the message. This makes it more susceptible to denial of

service attacks.

{ An external attacker cannot guess the binding parameter or obtain it without being

able to invert a strong one-way strong function or break a public key. This is not

transmitted in any other form during the key generation phase. Knowing all the

HFKs does not allow an attacker to guess the FKs. Knowledge of a few of the FKs

does not allow the attacker knowledge of the shared key. Even if the session key is

compromised, after the next re-key, the attacker has to start from the scratch.

Finally, if the binding parameter is compromised, when the new binding parameter is

computed, the attacker compute it.

� User Collusion: The SM-based protocol prevents less than n� 1 members from

colluding and obtaining the secret contribution of the other member. The Distributed

initialization scheme is susceptible to user collusion. The Auxiliary key agreement

protocol introduces the collusion problem in the SM-Based scheme. We can however,

make it more collusion-secure by using a k out of n scheme to distribute the new initial

one-time pads.

44

4.3 Protocol AKA

4.3.1 Message Format

The general message format is:

Mi !Mi+1 : fCKYi;R; G=I;R;Mi;Msg; SigKi
(CKYi;RjG=I jRjMijMsg)g

The �j 's have to be protected by encryption against non-members. The HFK's can be sent in

the clear. Æi should be seen only by member i+1 and is encrypted using the public key of i+1.

In all the cases integrity is provided by the use of a signature.

4.3.2 Mutual Authentication

Mutual authentication and shared secret establishment that happens as part of the protocol use

the following well-known scheme:

MA = fRA; IAg

A! B : CertA; SigKA
(MA)

MB = fRB ; RA; IB ; dg

B ! A : CertB ; SigKB
(MB)

4.3.3 Initial Key Agreement

SM-Based Initialization

As above, at the time of initialization, n members are selected and the initial pads and binding

parameter are distributed to each member i, for i = 1; : : : ; n, as

SM ! i : fCKYi;1; I; 1; SM;EKi
(�i;1j�1); SigKsm

(CKYi;1jI j1jSM jEKi
(�i;1j�1))g

Note that the initial one-time pad �i;1 and �1 are both encrypted with the public key of ith

member. This is not strictly necessary. Only the initial-one time pad must remain secret from

45

other members. Here, �i;1 - its initial one time pad - is computed such that

�1;1 � �2;1 � : : :� �n;1 = �1

Distributed Initialization

1. Generate two uniformly-distributed random quantities
 and �1;1 of bit length L, operate

on these two quantities as

 � �1;1 = Æ1;

and send the result to member 2 (the next member in the group) as

M1 !M2 : fCKY1; I; 1; GI; EK2
(Æ1); SIGK1

(CKY1jI j1jGI jEK2
(Æ1))g

2. The following steps are repeated for i = 2; : : : ; n� 1:

(a) Mi generates uniform random variable �i;1 of bit length L.

(b) Mi then operates on the quantity it received from Mi�1 as Æi�1 � �i;1 = Æi

(c) Mi then sends the result to Mi+1 as

Mi !Mi+1 : fCKYi; I; 1; i; EKi+1
(Æi); SigKi

(CKYijI j1jijEKi+1
(Æ1))g

3. Eventually, the group Mn receives Æn�1 and then generates a uniformly-distributed

random quantity �n;1 of bit length L, performs

Æn�1 � �n;1

and then securely sends it the M1 (GI) as

Mn !M1 : fCKY
0

i;1; I; 1; n; EKi
(Æn); SigKn

(CKY
0

i;1jI j1jnjEKi
(Æn)g

4. M1 (GI) decrypts it and performs

 � Æn = �1

46

and then sends �1 to each Mi, for i = 2; : : : ; n as

M1 !Mi : fCKYi; I; 1; 1; EKi
(�1); SigK1

(CKYi; I; 1; 1; EKi
(�1)g

5. Each Mi privately computes

�i;1 = �1 � �i;1

and uses �i;1 as its initial pad.

The use of SKEY-based nonces (CKYs) eliminates the storage problems associated with nonces

(alternative to time-stamps). Moreover, since the CKYs are sent in the clear, the possibility of

DoS attacks by sending spurious messages is eliminated. To successfully disrupt group

operation, an attacker must be able to intercept the original message before being delivered,

and then modify it (Note that signature prevents him from a�ecting protocol correctness but

such an adversary can disrupt protocol operation). In some environments such threats can be

discounted.

Note that in the message the GI communicates to every other member, if there were another

shared secret key, then computations at the GI are reduced - the signature needs to be

computed only once, because the �1 is encrypted with the same key. The number of messages

in a broadcast scenario will reduce from n� 1 to 1.

4.3.4 Key Generation Phase

The iterative key generation phase remains the same. Only the format of the messages

exchanging the HFKs changes.

81 � l;m � n; l 6= m; l ! m : fG; j; l;HFKl;j; SigKl
(�ljGjjjljHFKl;j)g

First note that the HFKs can be sent in the clear. The FKs are masked with a random

quantity to produce the HFKs. Also note that the binding parameter � in the signature proves

the message is fresh. We do not need time-stamps or nonces.

47

4.3.5 Auxiliary Key Agreement

This protocol helps the group recover quickly from membership changes and establish the new

shared secret key.

Let the key contributing members be numbered 1; : : : ; n. After a series of membership changes,

let the set of key contributing members be numbered 1; : : : ; k. A new binding parameter needs

to be established among the members.

Note that it is advantageous to aggregate membership changes, however this is not possible in

all applications. This a�ects only performance and not the correctness of the protocol. Also

note that there is always centralized access control. This role can be assumed by the GI in the

distributed initialization case or by the third-party SM in case of the centralized initialization.

In the former case, there has to be a standard way of choosing the GI from a set of key

contributing members and this protocol should take into account that the GI may leave the

group. These are secondary to our level abstraction. We assume that such a protocol and

access control mechanism exist.

It is clear that this entity needs to keep track of the members joining the group and leaving the

group, whenever a re-key has to be performed.

Let us �rst illustrate the cases of single member join and single member leave and make the

protocol concrete. We require that each Mi store the last message they received in the

initialization phase (The message from Mi�1 in distributed initialization phase or the

initial-one time pad from the SM in case of SM-based initialization).

Member Join

In this case let the set of old members is 1; : : : ; n, and let the new member be n+ 1.

Centralized Initialization: The SM chooses two members at random - let the selected members

be j and k - generates initial pads for j, k and n+ 1, and distributes the new binding

parameter to each member as:

SM ! i; i = 1; : : : ; n; i 6= j; kfCKYi;l+1; I; l+1; EKi
(�

0

l+1); SigKsm
(CKYi;l+1jI jl+1jEKi

(�
0

l+1))g

SM ! i; i = j; k; n+1fCKYi;l+1; I; l+1; EKi
(�

0

l+1j�
0

i;l+1); SigKsm
(CKYi;l+1jI jl+1jEKi

(�
0

l+1j�
0

i;l+1))g

48

where �0s - initial one time pads - are computed such that

�1;l+1 � : : :� �
0

j;l+1 � : : :� �
0

k;l+1 : : :� �n;l+1 � �n+1;l+1 = �
0

1+1

�i;l+1 = �i;l; i 6== j; k; n+ 1:

Note that we have chosen to change the one-time pad of two members - j, and k -apart from

assigning an initial one-time pad to member n+1. This is important. If we had only assigned a

new one-time pad to n+ 1, all other members would be able to calculate member n+ 1's

one-time pad once they know the new binding parameter. If we changed the one-time pad of

just one member, say j, then n+ 1 and j would be able to compute each other's one-time pad.

By sending it to two other members, we make it impossible to compute the one-time pad of

other members without collusion. The centralized initialization scheme was resistant to

collusion of less than n� 1 members. By introducing this scheme, we have made it less

collusion-free. We can make it more secure by choosing k out of n members. This is a trade-o�

with performance. Knowing the one-time pad of another member, helps us to compute his

contribution to the key, i.e., his fractional key. This does not help us calculate the fractional

key of other members unless the membership is trivial - i.e., two members, etc. For such small

groups, re-key is not a big challenge.

Distributed Initialization: Let M1 be the GI. The GI must involve Mn in the membership join

using a explicit message. Mn has Æn�1, where l is the previous initialization round. Mn

generates a uniform random variable �
0

n;l+1 of bit length L. Mn then operates on this quantity

as:

Æn�1 � �
0

n;1+1 = Æ
0

n

Mn then sends the result to Mn+1 as

Mn !Mn+1 : fCKYn; I; l + 1; n; EKn+1
(Æ

0

n); SigKn
(CKYnjI jl + 1jnjEKn+1

(Æ
0

n))g

Mn+1 obtains Æ
0

n from Mn. Mn+1 then generates a uniform random variable �n+1;l+1 of bit

length L.

49

Mn+1 then operates on this quantity as

Æ
0

n � �N+1;l+1 = Æn+1

Mn+1 then sends the result to M1 as

Mn+1 !M1 : fCKYn+1; I; l + 1; n+ 1; EK1
(Æn+1); SigKn+1

(CKYn+1jI jl + 1jn+ 1jEK1
(Æn+1))g

The GI decrypts it and performs

Æn+1 �
 = �
0

1

and then sends �
0

1 to each Mi, for i = 2; : : : ; n+ 1 as

M1 !Mi : fCKY
0

i;l+1; I; 1 + 1; 1; EKi
(�

0

1); SigK1
(CKY

0

i;l+1; I; l + 1; 1; EKi
(�

0

1))g

Each Mi privately computes

i = 1; : : : ; n� 1; n+ 1 : �i;l+1 = �
0

1 � �i;1+1i = n : �n:l+1 = �
0

1 � �
0

n;l+1

and uses �i; 1 as its initial pad.

Member Leave/Revocation

Centralized Initialization: The procedure is same as above, with the following modi�cations:

� The SM must choose at least three members at random, to distribute their new one-time

pad. This is done to avoid the security pitfalls highlighted in the previous case.

� We can remove the contribution of revoked member (or leaving member). This does not

appear to be necessary.

Distributed Initialization: Member revocation is not as eÆcient, except when the highest-index

member leaves, assuming GI is member 1.

Let Mi leave, or his membership revoked. Then the GI has to initiate re-key by sending a

message to Mi�1.

50

More message are required because, in e�ect, the initialization phase starts from Mi�1, and not

Mn as in the previous case. However, on an average, it is still better than starting from M1.

The format of the message is the same as above.

4.3.6 Some Observations

Once the new binding parameter is established, the new members go into key generation phase

to compute the shared secret key.

It is clear that total participation in the auxiliary key agreement protocol is impractical. The

distributed scheme and the SM-based scheme try to minimize the computation required and

the message overhead by re-using contributions to the key in the previous iterations. This does

not weaken the security of the protocol, as can be seen by the formal analysis of the Initial Key

Agreement and the Auxiliary Key Agreement protocols. It is to be noted that this protocol is a

not a Contributory Key Agreement protocol (according to de�nitions presented in chapter 1.)

While aggregating membership changes, it is necessary to track members who want to leave or

who would like to join, and make a decision as to how many members need to participate in the

initialization phase, distributed or otherwise. This is not diÆcult to perform and is not an

unreasonable demand. The procedure followed would be a combination of the above two

instances.

4.3.7 Key Recovery

Unless the nature of the application is such, a failed node replaced with a new node can be

treated as membership revocation of the failed node followed by membership join by the

replacement node. The whole process should be clear from our discussion above. This is

extremely eÆcient especially in the centralized approach.

In case this does not suÆce, we follow the same procedure as highlighted in the original scheme.

The Recovery Initiator (assume M1 is the RI, let the failed node be denoted as Mi, and let

round number be j) should send the following message to the replacement member

RI !Mi : fCKY
0

i;l; R; j; 1; HFKi;j ; EKi
(�j); SigK1

(CKY
0

i;l; R; j; 1; HFKi;j; EKi
(�j))g

51

Follow the remaining steps to recover the compromised fractional key and one time pad. The

message format to exchange the new HFKs is di�erent from the one presented in previous

section. The recovered values are not used, and the initialization phase starts again to establish

the new binding parameter. Since the recovered values are not used, it is not clear why they

should be recovered.

4.4 Formal Analysis of Authenticated Key Agreement

Protocol

We analyze the Initial Key Agreement and Key Generation phase. Analysis of the Key recovery

and Auxiliary Key Agreement Protocols is similar.

4.4.1 Initialization Phase

SM-Based Initialization

Assumptions

8i, SM j�
Ki7! Mi

8i, Mi j�
KSM7! SM

8i, Mi j� SM j) �i;1

8i, Mi j� SM j) #�i;1

8i, Mi j� SM j) �1

8i, Mi j� SM j) #�1

8i; j, Mi j� SM j) #CKYi;j = fk�j(Ri)

R is a random number. At this stage only SM knows CKYi;k = Ri; : : : ; CKYi;1 = fk�1(Ri).

Mi knows f
k(Ri). This in conjunction with the belief that Ri is fresh, will help Mi verify that

the source of the message is the SM.

Protocol Message

SM !Mi : fCKYi;1; I; 1; SM;EKi
(�i;1j�1); SigK1

(CKYi;1; I; 1; SM;EKi
(�i;1j�1))g

52

Idealized Message

SM !Mi : ff�i;1j8i; j ;Mi
�1

 MjgKi

; fhHf�ij�1giCKYi;1=fk�1(R)gK�1

SM
g

Analysis

Mi / fhHff�i;j j�1gKi
giCKYi;1gK�1

SM

Mi j�
KSM7! SM

Mi j� SM j� fhHff�i;j j�1gKi
giCKYi;1g

Only SM could have said CKYi;1 and since this takes place soon after mutual authentication,

the message must be fresh as well.

Mi j� #CKYi;1

Mi j� #Hff�i;j j�1gKi
g

Mi j� SM j� Hff�i;j j�1gKi
g

Mi / f�i;1j�1gKi

Mi j� SM j�f�i;1j�1g

Mi j� SM j� �i;1

Mi j� SM j� �1

Distributed Initialization

Assumptions

8i, Mi j�
K17! M1

8i, Mi j�
Ki�1

7! Mi�1

8i, Mi j�Mi

CKYi;i+1

 Mi+1

8i, Mi j�Mi�1 j) CKYi�1

8i, Mi j�Mi�1 j) #CKYi�1;i

8i, Mi j�Mi�1 j) Æi�1

8i, Mi j�Mi�1 j) #Æi�1

R is a random number. At this stage only GI (M1) knows R; : : : ; CKY
0

i = fk�1(R). Mi knows

fk(R). This in conjunction with the belief that R is fresh, will help the member verify that the

source of the message is the GI.

53

Protocol Message

Mi !Mi+1 : fCKYi; I; 1; i; EKi+1
(Æi); SigKi

(CKYijI j1jijEKi+1
(Æ1))g

M1 !Mi : fCKYi; I; 1; 1; EKi
(�1); SigK1

(CKYi; I; 1; 1; EKi
(�1)g

Idealized Message

1.

Mi !Mi+1 : ffÆigKi+1
; fhHfÆigiCKYigK�1

i
g

2.

M1 !Mi : ff8i; j Mi
�1

 MjgKi

; fhHf�1giCKYigK�1

1

g

Analysis

1. Mi+1 / fhHfÆigiCKYi;i+1gK�1

1

Mi+1 j�
Ki7! Mi

Mi+1 j�M1 j� hHfÆigiCKYi;i+1

Mi+1 j�Mi+1
CKYi

 Mi

Mi+1 j� #CKYi

Mi+1 j� #HfÆig

Mi+1 j�Mi j� HfÆig

Mi+1 / fÆigKi+1

Mi+1 / Æi

Mi+1 j�Mi j� Æi

2. Mi / fhHf�1giCKY
0

i
gK�1

1

Mi j�
K17! M1

Mi j�M1 j� hHf�1giCKY
0

i

Only GI could have said CKY
0

i and since this takes place soon after mutual

authentication, the message must be fresh as well. Mi j� #CKY
0

i

Mi j� #Hf�1g

Mi j�M1 j� Hf�1g

Mi / f�1gKi

54

Mi / �1

Mi j�M1 j� �1

4.4.2 Key Generation Phase

Assumptions

8i; j, Mi j�
Kj

7! Mj

8i; j, Mi j�Mi
�

 Mj

8l;m :, Ml j�Mm j) HFKm;j

8l;m :, Ml j�Mm j) #HFKm;j

Mm j� #�1

Protocol Message

81 � l;m � n; l 6= m;Ml !Mm : fG; j; l;HFKl;j; SigKl
(�ljGjjjljHFKl;j)g

Idealized Message

Ml !Mm : ffhHfHFKl;jgi�jgK�1

l
g

Analysis

Mm / fhHfHFKl;jgi�jgK�1

l
g

Mm j�
Kl7! Ml

Mm j� GI j� hHfHFKl;jgi�j

Mm / hHfHFKl;jgi�j

Mm j�Mm
�1

 Ml

Mm j� #�1

Mm j�Mm j� HfHFKl;jg Mm / HFKl;j

Mm j�Ml j� HFKl;j

4.4.3 Unresolved Problems

� Extensive use of public key based computation. Increases number of messages and

precludes pre-computation savings.

55

� A way to localize group membership changes.

This completes the formal analysis of the Authenticated Key Agreement protocol. In the next

chapter we will present an optimized version (in terms of computation and messages) of the key

agreement protocol that is suitable for broadcast mediums with no storage constraints.

56

Chapter 5

EÆcient Authenticated Key Agreement Protocol

5.1 Motivation

As pointed out in the �rst chapter, all authentication protocols must satisfy the required

security attributes. However the needs of a particular application will dictate the choice of the

authentication scheme. The trade-o�s are discussed in [CMN99] and [CGI+99]. As far as the

protocol presented in the previous chapter is concerned, it satis�es the required and desired

security attributes. We can tailor the protocol to individual applications. We have listed some

of the overheads:

� Number and size of protocol messages.

� Number of computations - encryptions, signatures, MACs, etc.

� Nature of computation - symmetric vs public key encryption, signature vs MACs, etc

� Storage requirements. Using MAC for source authentication and using secret keys instead

of public keys requires more storage.

In the next section we will present a protocol that has been optimized for satellite

communication (no storage constraints; and also in a single LAN segment, or wireless). We

therefore minimize the number of messages sent and the computation. This makes the protocol

well suited for large dynamic groups. We note that the storage requirement at the SM for this

optimized protocol is less than the base version of the AKA because we do not have to

maintain a hash sequence of nonces per member. This is explained below.

57

5.2 Overview of Optimized AKA protocol (AKA-SAT)

It is clear that the protocol presented in the previous chapter su�ers from signi�cant message

and computation overhead. The computation overhead is due to the use of signatures and

public key encryption in the protocol messages. The message overhead follows as a

consequence. The protocol messages in the SM-based initialization and in the key generation

phase are shown below to highlight this -

Initialization Phase

SM !Mi : fCKYi;1; I; 1; SM;EKi
(�i;1j�1)g

The initial one time pad has to be securely sent each member. The binding parameter has to be

protected only from non-group members. Using the public key to encrypt both solves the

problem albeit ineÆciently. To reduce the computation overhead, symmetric encryption can be

used in place of a public key encryption. The binding parameter can be encrypted with a

common key-encrypting key, while the one-time pads have to individually encrypted.

Note that we no longer need a signature. Since we assume that a message cannot be modi�ed

while in transit, the SKEY-based nonce provides authentication. A signature to ensure message

integrity is no longer needed.

Key Generation Phase

81 � l;m � n; l 6= m;Ml !Mm : fG; j; l;HFKl;j; SigKl
(�ljGjjjljHFKl;j)g

The HFKs can be sent in the clear. A signature computed over the HFK and the binding

parameter, ensures message freshness and provides source authentication. There is only one

message sent. There is only computation overhead. To preserve message integrity, a signature is

applied to the message. Message Authentication Codes (MACs), i.e., key based hash functions

can be used instead of signatures. Another solution is to use the SKEY based nonces as in the

initialization phase. However we will pursue the use of MACs.

There are two problems - MACs and encryption need keys and while MACs can be used for

message integrity, MACs do not without modi�cation to the scheme provide source

authentication. For more on this subject please refer to [BCK97] and [PCST01].

58

SM

K123 K456

K0

K789

M1

K1

M2

K2

M3

K3

M4

K4

M5

K5

M6

K6

M7

K7

M8

K8

Figure 5.1: LKT structure for keys used in symmetric encryption

To solve the problem of maintaining keys eÆciently for use in symmetric encryption we use a

Logical Key Tree (LKT) structure (describe in [WGL00]). The keys that form the nodes of the

logical key tree can be mathematically related resulting in more eÆcient schemes. These are

beyond the scope of the thesis. Please refer to [MS98] and [MP00] for such schemes.

We need a tree structure to eÆciently update these message encrypting keys (KMEKs).

The binding parameter can be encrypted with KMEK0
because it is known to all members.

The KMEKs corresponding to the leaf nodes are shared between the SM and that member.

The SM uses these keys during the auxiliary key agreement protocol to encrypt the initial

one-time pad. SM also uses these keys in all cases when a member leaves the group, to encrypt

the new key values for key-oriented-rekey in that sub-tree. We need only a star structure for

the MAC keys. One key that the SM uses to compute the MAC on the protocol messages it

broadcasts during the initialization phase, and is known to all group members. The other keys

are used by each member to compute the MAC over its hidden contribution to the shared

session key. Now these KMACs should be distributed to other members. At the same time they

should be revealed only at the time of sending the message, to provide source authentication.

Therefore each member computes a chain of hashes to be used as keys in the MAC, in order,

starting from the last. Since the keys used to compute the MAC are in a chain, it enables each

group member to verify that the message received apparently from another member is in fact

from that member. The hashed values of the KMACs for all members - h1; : : : ; hn - are stored

at the SM for distribution to new members.

The keys used for computing MACs can be used for just one message, after which both sender

59

SM

KSM h1; : : : ; h8

M1

K1

M2

K2

M3

K3

M4

K4

M5

K5

M6

K6

M7

K7

M8

K8

Figure 5.2: Star structure for keys used to compute MAC

and receiver know the key and hence the MAC based on this key can't be used to distinguish

between the two. To account for this, the keys in the MAC-tree belong to a hash sequence

similar to the one used to guarantee freshness in the protocol described in the previous chapter.

We shall present the complete protocol right from the mutual authentication stage. This is

because the mutual authentication step will also involve the transfer of the one-time pad, the

relevant keys in the MEK-tree, the set of hashed keys from the MAC-tree and the nonce that

will guarantee the freshness of messages sent by the SM during later protocol runs. The new

user will also send his hashed KMAC to the SM. We have made a small change to the protocol

in that the SM does not maintain one nonce sequence per user but just one for the whole

group. We could not do this in the previous case because there were n messages sent by the

SM, one for each member. If we shared the nonce among members, the �rst member to receive

the message could use this nonce to send messages to other members, thereby attempting to

spoof the SM. The other members would not be able to verify the signature of the SM on the

message and would reject his message but this has created a wonderful opportunity for a denial

of service. It is precisely to prevent his attack that the nonce was sent in the clear. Then a

group member has to just compute a hash to verify the freshness of the message. The argument

against denial of service in such a scenario is possible only in a broadcast scenario where it is

diÆcult to modify/drop messages sent by other buts easier to re-send or attempt to spoof

another member.

60

SM

K123 K456

K0 K
0

0

K789 K
0

789

M1

K1

M2

K2

M3

K3

M4

K4

M5

K5

M6

K6

M7

K7

M8

K8

M9

K9 K
0

9

Figure 5.3: Protocol AKA-SAT - initial group

SM

KSM h1; : : : ; h9

M1

K1

M2

K2

M3

K3

M4

K4

M5

K5

M6

K6

M7

K7

M8

K8

M9

K9

Figure 5.4: Protocol AKA-SAT - member join

5.3 Protocol AKA-SAT

We describe the protocol by listing protocol messages when a new member joins the group.

Protocol messages for other scenarios are easy to extrapolate. We show below a group

originally consisting of eight members M1; : : : ;M8. The new member is M9.

The shaded nodes represent the pair of key that have to be changed when M9 joins the group.

The list of messages now are:

1. Mutual Authentication

Assume that the SM has participated in m rounds.

M = fR9; I9g

M9 ! SM : fM;Cert9; SigK9
(M)g

M
0

= fRSM ; R9; ISM ; CKY =

61

fk�m(R); EK9
(�9;1;K

0

MEK0
;K

0

MEK789
;KMEK9

); hSM ; h1; : : : ; h8g

SM !M9 : fM
0

; CertSM ; SigKSM
(M

0

)g

M = fRSM ; EKSM
(h9)g

M9 ! SM: M;SigK9
(M)

We make the following observations:

� The binding parameter �1 could have been sent to the new member during mutual

authentication but this is ineÆcient in a broadcast medium where message can be

encrypted with a shared secret key, when the new binding parameter has to be

anyway sent to other members.

� The SM has to store all the KMEKs and the current value of the KMACs of each

member. The SM can pick the KMACs values from the protocol messages exchanged

among the group members.

� The SM does not maintain a per member nonce chain.

� Only the Message Encrypting Keys (KMEKs) need to be changed.

2. Initialization

Note that we are using the auxiliary key agreement protocol during membership change.

This means that except for a random and small subset of members, the rest do not receive

new initial one-time pads. We show the broadcast message to these members below:

M = fCKY = fk�m�1(R); EK
0

MEK0

(�1jKMACSM); EKMEK0
(K

0

MEK0
;

EKMEK789
(K

0

MEK789
); h9g

SM broadcasts: fM;MACKMACSM
(M)g

The presence of CKY helps the member verify the freshness of the message. Members

M1; : : :M6 will be able to decode only some parts of the message. Appropriate headers in

the packet or a �xed packet format is needed.

3. Key Generation

M = fG; i; j;HFKi;j ; EKMAC0
(KMACi)g Mi broadcasts: fM;MACKMACi

(M)g

If we assume that an active attacker cannot modify messages in transit in a broadcast medium,

then we need not encrypt the key used to compute the MAC, in the message.

62

Thus we have developed a protocol suitable for large dynamic groups in a broadcast medium.

The gain comes at the cost of extra storage at each member node and a tremendous increase in

complexity.

63

Chapter 6

Conclusion

This thesis addresses authenticated key agreement in dynamic multicast groups. The protocol

enables group members to compute a joint secret key that can subsequently be used for securing

data communication. The protocol provides key authenticity and the underlying key generation

scheme provides perfect forward secrecy. The key generation scheme is quite general and is

suitable for single sender-multiple receiver as well as multiple sender-multiple receiver models.

We however are not able to remove the dependence on the assumption of a public key

infrastructure and the presence of centralized access control. However the use of public keys

can be restricted to the initialization phase by using symmetric keys for encrypting the protocol

messages. The keys used for encrypting the protocol messages and ensuring the integrity of the

communication during the protocol run are quite distinct from the shared secret key the

protocol helps the group members compute. Public key encryption naturally provides source

authentication. In order to provide source authentication for protocol messages (a very

necessary requirement), we need to use a di�erent key for each protocol run. Also the source

must commit to the key that he is going to use to encrypt a particular message without

revealing it, apriori. Since we use these schemes only during the initialization phase, we do not

expect serious synchronization problems. We have not addressed the issue of source

authentication for data communication. This is an orthogonal issue and we can �t in a suitable

scheme in future. This leads to a more a complex protocol. We have not analyzed it formally

for weaknesses. It is also clear from this section that we can �ne-tune the protocol for di�erent

networks and di�erent applications.

EÆciency of multicast re-keying schemes is measured by several parameters - communication

64

complexity, computation, user storage, center storage and time complexity. In this paper we

have developed a general protocol and then traded user and center storage for lesser

computation and time complexity. This is suitable for the application we have in mind but will

no longer hold, when we change the network or application. We believe that one direction for

future research is to investigate these issues deeper and develop optimal schemes for di�erent

networks and di�erent applications. Source authentication for data communication is still an

open issue and to deal with it in a heterogeneous network is another interesting line to pursue.

Also measures need to be incorporated in the protocol to make it robust in the presence of

network failures and communication errors.

Multicast security is an interesting and challenging area that is gaining prominence because of

killer applications. We have attempted to provide a solution for one speci�c problem. The

matter is not closed an there is scope for a lot if interesting work.

65

Bibliography

[AST00] Giuseppe Ateniese, Michael Steiner, and Gene Tsudik. New multiparty

authentication services and key agreement protocols. IEEE Journal on Selected

Areas in Communications, 18(4), 2000.

[BAN96] Burrows, Abadi, and Needham. A logic of authentication, from proceedings of the

royal society, volume 426, number 1871, 1989. In William Stallings, Practical

Cryptography for Data Internetworks, IEEE Computer Society Press, 1996. 1996.

[BCK97] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. HMAC: Keyed-hashing for

message authentication. Technical Report 2104, 1997.

[BF97] D. Boneh and M. Franklin. EÆcient generation of shared RSA keys. Lecture Notes

in Computer Science, 1294:425{439, 1997.

[BWM98] Simon Blake-Wilson and Alfred Menezes. Authenticated diÆe-hellman key

agreement protocols. In Selected Areas in Cryptography, pages 339{361, 1998.

[CGI+99] Canetti, Garay, Itkis, Micciancio, Naor, and Pinkas. Multicast security: A

taxonomy and some eÆcient constructions. In INFOCOM: The Conference on

Computer Communications, joint conference of the IEEE Computer and

Communications Societies, 1999.

[CMN99] Ran Canetti, Tal Malkin, and Kobbi Nissim. EÆcient communication-storage

tradeo�s for multicast encryption. In Theory and Application of Cryptographic

Techniques, pages 459{474, 1999.

[HT99] T. Hardjono and G. Tsudik. Ip multicast security: Issues and directions, 1999.

66

[JV96] Just and Vaudenay. Authenticated multi-party key agreement. In ASIACRYPT:

Advances in Cryptology { ASIACRYPT: International Conference on the Theory

and Application of Cryptology. LNCS, Springer-Verlag, 1996.

[LMQ+98] Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Vanstone. An

eÆcient protocol for authenticated key agreement. Technical Report CORR 98-05,

1998.

[MP00] Re�k Molva and Alain Pannetrat. Scalable multicast security with dynamic

recipient groups. ACM Transactions on Information and System Security, 3(3):3,

2000.

[MS98] David A. McGrew and Alan T. Sherman. Key establishment in large dynamic

groups using one-way function trees. Manuscript, 1998.

[PCST01] Adrian Perrig, Ran Canetti, Dawn Song, and J.D. Tygar. EÆcient and secure

source authentication for multicast. In Network and Distributed System Security

Symposium, 2001.

[Poo99] Radha Poovendran. Key Management for Secure Multicast Communication. PhD

thesis, University of Maryland, College Park, 1999.

[Sch96] Bruce Scheneir. Applied Cryptography. John Wiley and Sons, New York, second

edition, 1996.

[STW00] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups.

IEEE Transactions on Parallel and Distributed Systems, 11(8):769{783, 2000.

[WGL00] Wong, Gouda, and Lam. Secure group communications using key graphs.

IEEETNWKG: IEEE/ACM Transactions on NetworkingIEEE Communications

Society, IEEE Computer Society and the ACM with its Special Interest Group on

Data Communication (SIGCOMM), ACM Press, 8, 2000.

67

