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In wireless communications and networks, especially for many real-time ap-

plications, the average delay packets experience is an important quality of service

criterion. Therefore, it is imperative to design advanced transmission schemes to

jointly address the goals of reliability, high rates and low delay. Achieving these

objectives often requires careful allocation of given resources, such as energy, power,

rate, among users. It also requires a close collaboration between physical layer,

medium access control layer, and upper layers, and yields cross-layer solutions.

We first investigate the problem of minimizing the overall transmission delay

of packets in a multiple access wireless communication system, where the transmit-

ters have average power constraints. We formulate the problem as a constrained

optimization problem, and then transform it into a linear programming problem.

We show that the optimal policy has a threshold structure: when the sum of the

queue lengths is larger than a threshold, both users should transmit a packet during

the current slot; when the sum of the queue lengths is smaller than a threshold, only

one of the users, the one with the longer queue, should transmit a packet during the



current slot.

Then, we study the delay-optimal rate allocation in a multiple access wireless

communication system. Our goal is to allocate rates to users, from the multiple

access capacity region, based on their current queue lengths, in order to minimize

the average delay of the system. We formulate the problem as a Markov decision

problem (MDP) with an average cost criterion. We first show that the value function

is increasing, symmetric and convex in the queue length vector. Taking advantage

of these properties, we show that the optimal rate allocation policy is one which

tries to equalize the queue lengths as much as possible in each slot, while working

on the dominant face of the capacity region.

Next, we extend the delay-optimal rate allocation problem to a communication

channel with two transmitters and one receiver, where the underlying rate region is

approximated as a general pentagon. We show that the delay-optimal policy has a

switch curve structure. For the discounted-cost problem, we prove that the switch

curve has a limit along one of the dimensions. The existence of a limit in the switch

curve along one of the dimensions implies that, once the queue state is beyond the

limit, the system always operates at one of the corner points, implying that the

queues can be operated partially distributedly.

Next, we shift our focus from the average delay minimization problem to trans-

mission completion time minimization problem in energy harvesting communication

systems. We first consider the optimal packet scheduling problem in a single-user

energy harvesting wireless communication system. In this system, both the data

packets and the harvested energy are modeled to arrive at the source node ran-



domly. Our goal is to adaptively change the transmission rate according to the

traffic load and available energy, such that the time by which all packets are de-

livered is minimized. Under a deterministic system setting, we develop an optimal

off-line scheduling policy which minimizes the transmission completion time, under

causality constraints on both data and energy arrivals.

Then, we investigate the transmission completion time minimization problem

in a two-user additive white Gaussian noise (AWGN) broadcast channel, where

the transmitter is able to harvest energy from the nature. We first analyze the

structural properties of the optimal transmission policy. We prove that the optimal

total transmit power has the same structure as the optimal single-user transmit

power. We also prove that there exists a cut-off power level for the stronger user.

If the optimal total transmit power is lower than this level, all transmit power is

allocated to the stronger user, and when the optimal total transmit power is larger

than this level, all transmit power above this level is allocated to the weaker user.

Based on these structural properties of the optimal policy, we propose an algorithm

that yields the globally optimal off-line scheduling policy.

Next, we investigate the transmission completion time minimization problem

in a two-user AWGN multiple access channel. We first develop a generalized itera-

tive backward waterfilling algorithm to characterize the maximum departure region

of the transmitters for any given deadline. Then, based on the sequence of maximum

departure regions at energy arrival epochs, we decompose the transmission comple-

tion time minimization problem into a convex optimization problem and solve it

efficiently.



Finally, we investigate the average delay minimization problem in a single-user

communication channel with an energy harvesting transmitter. We consider three

different cases. In the first case, both the data packets and the energy to be used to

transmit them are assumed to be available at the transmitter at the beginning. In

the second case, while the energy is available at the transmitter at the beginning,

packets arrive during the transmissions. In the third case, the packets are available

at the transmitter at the beginning and the energy arrives during the transmissions,

as a result of energy harvesting. In each scenario, we find the structural properties

of the optimal solution, and develop iterative algorithms to obtain the solution.



DELAY MINIMIZATION IN ENERGY CONSTRAINED
WIRELESS COMMUNICATIONS

by

Jing Yang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
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Chapter 1

Introduction

In modern wireless communication systems, especially for many real-time appli-

cations, the delay packets experience is an important quality of service criterion.

Therefore, in such systems, allocating the given resources, such as average power,

energy, etc., to minimize the average delay, becomes an important issue. Since power

and energy are physical layer resources, and the delay is a medium access control

layer issue, such resource allocation problems require close collaboration of physical

and medium access control layers, and yield cross-layer solutions. In addition, in

many circumstances, such problems require treatments that combine information

theory and queueing theory to obtain optimal solutions [1].

References [2–7] analyze the trade-off relationship between power and delay

for a single-user communication system. Random arrivals queue at the transmitter

to wait to be transmitted. In each slot, the transmitter adapts its service rate,

i.e., transmission rate, according to the queue length and the channel state, as well

as the average power constraint, to minimize the average delay. Reference [2] (see

also [3]) formulates the problem as a dynamic programming problem and develops a

delay-power tradeoff curve. References [4] and [5] determine some structural prop-

erties of the optimal power/rate allocation policy. Reference [6] derives bounds on

the average delay in a system with a single queue concatenated with a multi-layer
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encoder. Reference [7] proposes a dynamic programming formulation to find optimal

power, channel coding and source coding policies with a delay constraint. Refer-

ence [8] considers the delay-optimal transmission policy for the secondary user in a

cognitive multiple access system. It formulates the problem as a one-dimensional

Markov chain and derives an analytical result to minimize the average delay of the

secondary user under an average power constraint.

The delay-optimal rate allocation in multiple access channels has been investi-

gated in the literature as well. Reference [9] considers a symmetric Gaussian multiple

access channel (MAC), whose capacity region for two-users is a symmetric pentagon.

Reference [9] proves that in order to minimize the packet delay, the system should

operate at an extreme point of the MAC capacity region, i.e., at one of the two

corner points of the symmetric pentagon. In particular, [9] determines explicitly

the corner point the system should operate at as a function of the queue sizes, by

proving that the larger rate should be given to the user with the larger queue size,

hence the name of the proposed policy: longer-queue-higher-rate (LQHR). Reference

[10] generalizes [9] to a potentially asymmetric setting, and proves that the system

should again operate at one of the two corner points of the capacity region, which in

this case is a potentially asymmetric pentagon. This proves that the delay-optimal

policy has a switch structure, i.e., that the queue state space should be divided into

two, and in each region, the system should operate at one of the two corner points.

However, unlike the symmetric case in [9], the explicit form of the switch curve is

unknown. Reference [11] develops a policy named “modified LQHR” which works at

a corner point of the pentagon when the queue lengths are different, and switches to
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the mid-point of the dominant face of the pentagon when the queue lengths become

equal. The “modified LQHR” algorithm is shown to minimize the average bit delay

in a symmetric system. The third chapter of [12] extends “modified LQHR” to a

symmetric M -user scenario.

The trade-off relationship between delay and energy has been well studied in

traditional battery powered (unrechargeable) systems. References [13–18] investi-

gate energy minimization problems with various deadline constraints. Reference

[13] considers the problem of minimizing the energy in delivering all packets to

the destination by a deadline. It develops a lazy scheduling algorithm, where the

transmission times of all packets are equalized as much as possible, subject to the

deadline and causality constraints, i.e., all packets must be delivered by the deadline

and no packet may be transmitted before it has arrived. This algorithm also elon-

gates the transmission time of each packet as much as possible, hence the name, lazy

scheduling. Under a similar system setting, [14] proposes an interesting novel cal-

culus approach to solve the energy minimization problem with individual deadlines

for each packet. Reference [15] develops dynamic programming formulations and

determines optimality conditions for a situation where channel gain varies stochas-

tically over time. Reference [16] considers energy-efficient packet transmission with

individual packet delay constraints over a fading channel, and develops a recursive

algorithm to find an optimal off-line schedule. This optimal off-line scheduler equal-

izes the energy-rate derivative function as much as possible subject to the deadline

and causality constraints. References [17] and [18] extend the single-user problem

to multi-user scenarios.
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In Chapter 2, we generalize [8] to a two-user multiple access system, where both

users have equal priority. Our goal is to minimize the average delay of the packets

in the system under an average power constraint for each user. Unlike [2, 4, 5],

where the rate per slot is a continuous variable, we restrict the transmission rate for

each user in a slot to be either zero or one packet per slot. Our objective is to find

a set of transmission probabilities according to the queue lengths of both users, so

that the average delay in the system is minimized. Compared to [2, 4, 5], our model

has a more restricted policy space at each stage, however, this model enables us to

construct a two-dimensional discrete-time Markov chain and eventually gives us a

closed-form optimal solution. We show that the optimal transmission policy has a

threshold structure, i.e., if the sum of the queue lengths exceeds a threshold, both

users transmit a packet from their queues, and if the sum of the queue lengths is

smaller than a threshold, only one user, which has the larger queue length, transmits

a packet from its queue, while the other user remains silent (equal queue length case

is resolved by flip of a potentially biased coin).

In Chapter 3, we aim to minimize the average delay through rate allocation in

a symmetric MAC. We consider a time-slotted system. In each slot, bits arrive at

the transmitters randomly according to some general distribution. At the beginning

of each slot, we allocate transmission rates from within the MAC capacity region

to the users, based on their current queue lengths, to minimize the average delay.

We formulate the problem as an average cost Markov decision problem (MDP). We

first analyze the corresponding discounted cost MDP, and obtain some properties of

the value function. Based on these properties, we prove that the delay optimal rate
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allocation policy for this discounted MDP is to equalize the queue lengths in each

slot as much as possible. We then prove that this queue balancing policy is optimal

for the average cost MDP as well.

In Chapter 4, we extend the delay-optimal rate allocation problem into a com-

munication channel with a general pentagon rate region. Different from the Gaussian

MAC capacity region, the pentagon we assume does not have a 45◦ dominant face.

Through value iteration, we prove that a switch curve structure exists in the queue

state space. Next, we prove that for the discounted-cost MDP, the switch curve has

a limit on one of the queue lengths, i.e., when one of the queue lengths exceeds a

threshold, the transmitters always operate at the corner point which has the larger

sum-rate. That is, the delay-optimal policy favors throughput-optimality (i.e., larger

sum-rate) unless the first queue gets close to empty, in which case, the policy favors

balancing queue lengths. Our result has two practical implications: First, it gives

a partial analytical characterization for the delay-optimal switch curve. Secondly, it

implies that we can operate the queues partially distributedly, in that, if the current

queue length of the first user is larger than the limit, then this user does not need

to know the current queue length of the other user in order to decide about the

rate point at which it should operate on the rate region. The optimal policy also

indicates that always operating at the maximum sum-rate point is not optimal. The

optimal rate allocation policy trades some of the instantaneously achievable sum-

rate in favor of balancing the queue lengths, with the goal of minimizing the overall

delay.

In Chapters 5, 6, 7, 8, we consider wireless communication networks where
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nodes are able to harvest energy from nature. In our work, we do not focus on

how energy is harvested, instead, we focus on developing transmission methods that

take into account the randomness both in the arrivals of the data packets as well

as in the arrivals of the harvested energy. Since devising on-line algorithms that

update the instantaneous transmission rate and power in real-time as functions of

the current data and energy queue lengths is an intractable mathematical problem

for now, here, we aim to develop optimal off-line algorithms instead.

In Chapter 5, we consider a single-user communication channel with an energy

harvesting transmitter. We assume that an initial amount of energy is available at

t = 0. As time progresses, certain amounts of energies will be harvested. For the

data arrivals, we consider two different scenarios. In the first scenario, we assume

that packets have already arrived and are ready to be transmitted at the transmitter

before the transmission starts. In the second scenario, we assume that packets arrive

during the transmissions. However, as in the case of energy arrivals, we assume

that we know exactly when and in what amounts data will arrive. Subject to the

energy and data arrival constraints, our purpose is to minimize the time by which

all packets are delivered to the destination through controlling the transmission rate

and power. Since we do not know the exact amount of energy to be used in the

transmissions, we develop an algorithm, which first obtains a good lower bound for

the final total transmission duration at the beginning, and performs rate and power

allocation based on this lower bound. The procedure works iteratively until all of

the transmission rates and powers are determined. We prove that the transmission

policy obtained through this algorithm is globally optimum.
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In Chapter 6, we consider a multi-user extension of the problem studied in

Chapter 5. In particular, we consider a wireless broadcast channel with an energy

harvesting transmitter and two receivers. References [19, 20] investigate two related

problems. The first problem is to maximize the throughput (number of bits trans-

mitted) with a given deadline constraint, and the second problem is to minimize

the transmission completion time with a given number of bits to transmit. These

two problems are “dual” to each other in the sense that, with a given energy arrival

profile, if the maximum number of bits that can be sent by a deadline is B∗ in the

first problem, then the minimum time to transmit B∗ bits in the second problem

must be the deadline in the first problem, and the optimal transmission policies for

these two problems must be identical. In Chapter 6, we will follow this “dual prob-

lems” approach. We will first attack and solve the first problem to determine the

structural properties of the optimal solution. We will then utilize these structural

properties to develop an iterative algorithm for the second problem. Our iterative

approach has the goal of reducing the two-user broadcast problem into a single-user

problem as much as possible, and utilizing the single-user solution in Chapter 5.

In Chapter 7, we consider the transmission completion time minimization prob-

lem in a two-user rechargeable multiple access channel. As in Chapter 6, we first

aim to characterize the maximum number of bits both users can transmit for any

given time T . We propose a generalized iterative backward waterfilling algorithm

to achieve the boundary points of the maximum departure region for any given

deadline T . Then, based on the solution of this “dual” problem, we go back to

the transmission completion time minimization problem, simplify it into standard
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convex optimization problems, and solve it efficiently. In particular, we first char-

acterize the maximum departure region for every energy arrival epoch, and based

on the location of the given (B1, B2) on the maximum departure region, we narrow

down the range of the minimum transmission completion time to be between two

consecutive epochs. Based on this information, we propose to solve the problem

in two steps. In the first step, we solve for the optimal power policy sequences

to achieve the minimum T , so that (B1, B2) is on the maximum departure region

for this T . This step can be formulated as a convex optimization problem. Then,

with the optimal power policy obtained in the first step, we search for the optimal

rate policy sequences from the capacity regions defined by the power sequences to

finish B1, B2 bits. The second step is formulated as a linear programming problem.

In addition, we further simplify the problem by exploiting the optimal structural

properties for two special scenarios.

In Chapter 8, we revisit the average delay minimization problem in an energy

harvesting single-user system. Under a deterministic setting, our aim is to adaptively

allocate the energy over all packets according to the available amount of energy and

number of packet at the transmitter, in a way to minimize the overall delay of the

system. The most general version of the problem is complicated. In Chapter 8, we

will consider three scenarios, starting with the simplest setting and proceeding with

progressively more complicated settings. In the first scenario, we assume that the

transmitter has a fixed number of packets to transmit, and a fixed amount energy

to use in its transmissions. In the second scenario, we assume that the transmitter

has a fixed amount of energy, but the packets arrive during the transmissions. In
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the third scenario, we assume that the transmitter has a fixed number of packets

available at the beginning, but the energy arrives during the transmissions. This

last setting models an energy harvesting transmitter which harvests energy from

the nature by using a rechargeable battery. For each scenario, we develop iterative

algorithms and dynamic programming formulation to obtain the optimal solution.
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Chapter 2

Average Delay Minimization for Average Power Constrained

Multiple Access Communications

2.1 Introduction

In many applications, the average delay packets experience is an important quality

of service criterion. Therefore, it is important to allocate the given resources, e.g.,

average power, energy, etc., in a way to minimize the average delay packets experi-

ence. Since power and energy are physical layer resources, and the delay is a medium

access control layer issue, such resource allocation problems require close collabo-

ration of physical and medium access control layers, and yield cross-layer solutions.

Our goal in this chapter is to combine information theory and queueing theory to

devise a transmission protocol which minimizes the average delay experienced by

packets, subject to an average power constraint at each transmitter.

Similar goals have been undertaken by various authors in recent years. Refer-

ence [21] considers a time-slotted system with N queues and one server. The length

of the slot is equal to the transmission time of a packet in the queue. In each slot,

the controller allocates the server to one of the connected queues, such that the

average delay in the system is minimized. The authors develop an algorithm named

longest connected queue (LCQ), where the server is allocated to the longest of all
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connected queues at any given slot. The authors prove that in a symmetric system,

LCQ algorithm minimizes the average delay. Reference [21] does not consider the

issue of power consumption during transmissions.

Reference [22] combines information theory and queueing theory in a multi-

access communication over an additive Gaussian noise channel. Authors consider

a continuous time system, where the arrival of packets is a Poisson process, and

the service time required for each packet is random. Once a packet arrives, it

is transmitted immediately with a fixed power, i.e., there are no queues at the

transmitters. Each transmitter-receiver pair treats the other active pairs as noise.

Because of the interference from the other transmitters, the service rate for each

packet is a function of the number of active users in the system. Reference [22]

derives a relationship between the average delay and a fixed probability of error

requirement.

References [2–7, 9, 11, 23] consider the data transmission problem from both

information theory and queueing theory perspectives. Reference [9] (see also [23],

[11]) aims to minimize the average delay through rate allocation in a multiple access

scenario in additive Gaussian noise. Unlike [22], in the setting of [9], packets arrive

randomly into the buffers of the transmitters. When the queue at a transmitter

is not empty, it transmits a packet with a fixed power. Simultaneously achievable

rates are characterized by the capacity region of a multiple access channel (MAC),

which, for the non-fading Gaussian case, is a pentagon. The purpose of [9] is to

find an operating point on the capacity region of the corresponding MAC such that

the average delay is minimized. The author develops the longer-queue-higher-rate
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(LQHR) allocation strategy in the symmetric MAC case, which is shown to minimize

the average delay of the packets. The LQHR allocation scheme selects an extreme

point (i.e., a corner point) in the MAC capacity region.

Reference [2] (see also [3]) considers the problem of rate/power control in a

single-user communication over a fading channel. It considers a discrete-time model,

and investigates adapting rate/power in each slot according to the queue length,

source state and channel state. The objective is to minimize the average power

with delay constraints. It discusses two transmission models. In the first model, the

transmission time of a codeword is fixed, while the rate varies from block to block. In

the second model, the transmission time for each codeword varies. It formulates the

problem into a dynamic programming problem and develops a delay-power tradeoff

curve.

References [4–7] have similar formulations. Reference [4] uses dynamic pro-

gramming to numerically calculate the optimal power/rate control policies that min-

imize the average delay in a single-user system under an average power constraint.

Reference [6] derives bounds on the average delay in a system with a single queue

concatenated with a multi-layer encoder. Reference [5] formulates the power con-

strained average delay minimization problem into a Markov decision problem (MDP)

and analyzes the structure of the optimal solution for a single-user fading channel.

Reference [7] proposes a dynamic programming formulation to find optimal power,

channel coding and source coding policies with a delay constraint. As in [2], in these

papers as well, because of the large number of possible rate/power choices at each

stage, it is almost impossible to get analytical optimal solutions.
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Reference [8] considers a cognitive multiple access system. In the model of

[8], the primary user (PU) always transmits a packet during a slot whenever its

queue is not empty. The secondary user (SU) always transmits when the PU is

idle, and it transmits with some probability (which is a function of its own queue

length) when the PU is active. The receiver operates at the corner point of the

MAC capacity region where the SU is decoded first and the PU is decoded next,

so that even though the SU experiences interference from the PU, the PU is always

decoded interference-free. Reference [8] aims to minimize the average delay through

controlling the transmission probability of the SU. It formulates the problem as

a one-dimensional Markov chain and derives an analytical result to minimize the

average delay of the SU under an average power constraint.

In this chapter, we generalize [8] to a two-user multi-access system, where both

users have equal priority. Our goal is to minimize the average delay of the packets

in the system under an average power constraint for each user. As in [2, 4, 5, 8],

we consider a discrete-time model. We divide the transmission time into time slots.

Packets arriving at the transmitters are stored in the queues at each transmitter.

In each slot, each user decides on a transmission rate based on the current lengths

of both queues. Unlike [2, 4, 5], where the rate per slot is a continuous variable, we

restrict the transmission rate for each user in a slot to be either zero or one packet

per slot. We define the probabilities of choosing each transmission rate pair, which

can be (0, 0), (0, 1), (1, 0) or (1, 1), for each given pair of queue lengths.

Our objective is to find a set of transmission probabilities that minimizes the

average delay while satisfying the average power constraints for both users. As
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in [8], there are two main reasons that we introduce transmission probabilities:

First, a randomized policy is more general than a deterministic policy; probability

selections of 0 and 1 correspond to a deterministic policy, which is a special case

of the randomized policy. Secondly, since we cannot choose arbitrary departure

rates in each slot, the use of transmission probabilities enables us to control the

average rate per slot at a finer scale. Compared to [2, 4, 5], our model has a more

restricted policy space at each stage, however, this model enables us to construct a

two-dimensional discrete-time Markov chain and eventually gives us a closed-form

optimal solution.

In the rest of this chapter, we first express the average delay and the average

power consumed for each user as functions of the transmission probabilities and

steady state distribution of the queue lengths. We then transform our problem

into a linear programming problem, and derive the optimal transmission scheme

analytically. We show that the optimal transmission policy has a threshold structure,

i.e., if the sum of the queue lengths exceeds a threshold, both users transmit a

packet from their queues, and if the sum of the queue lengths is smaller than a

threshold, only one user, which has the larger queue length, transmits a packet from

its queue, while the other user remains silent (equal queue length case is resolved by

flip of a potentially biased coin). We provide a rigorous mathematical proof for the

optimality of the solution. We also provide numerical examples for both symmetric

and asymmetric settings.
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2.2 System Model

2.2.1 Physical Layer Model

We consider a discrete-time additive Gaussian noise multiple access system with two

transmitters and one receiver. The received signal is

Y =
√

h1X1 +
√

h2X2 + Z (2.1)

where Xi is the signal of user i,
√

hi is the channel gain of user i, and Z is a

Gaussian noise with zero-mean and variance σ2. Here, h1 and h2 are real constants,

with h1 6= h2 in general.

In this two-user system, since the MAC capacity region is given as [24]

R1 ≤ 1

2
log

(
1 +

h1P1

σ2

)
(2.2)

R2 ≤ 1

2
log

(
1 +

h2P2

σ2

)
(2.3)

R1 + R2 ≤ 1

2
log

(
1 +

h1P1 + h2P2

σ2

)
(2.4)

the region of feasible received powers is given by [18]

h1P1 ≥ σ2(22R1 − 1) (2.5)

h2P2 ≥ σ2(22R2 − 1) (2.6)

h1P1 + h2P2 ≥ σ2(22(R1+R2) − 1) (2.7)
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In each slot, the transmitters adjust their transmitted powers to achieve the

desired transmission rates. We assume that for each user, the average transmitted

power over all of the slots must satisfy a constraint. We denote the average power

constraints for the first and second user as P1avg and P2avg, respectively.

2.2.2 Medium Access Control Layer Model

In the medium access control layer, we assume that packets arrive at the transmitters

at a uniform size of B bits per packet. We partition the time into small slots such

that we have at most one packet arrive and/or depart during each slot. Let a1[n]

and a2[n] denote the number of packets arriving at the first and second transmitters,

respectively, during time slot n; see Figure 2.1. We assume that the packet arrivals

are i.i.d. from slot to slot, and the probabilities of arrivals are

Pr{ai[n] = 1} = θi (2.8)

Pr{ai[n] = 0} = 1− θi (2.9)

where θi is the arrival rate for user i, i = 1, 2.

1

user 2

receiver

user 1

2a

a

Figure 2.1: System model.
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There is a buffer with capacity N at each transmitter to store the packets,

where N is a finite positive integer. Once the buffer is not empty, the transmitters

decide to transmit one packet in the slot with some probability based on the current

lengths of both queues. Let d1[n] and d2[n] denote the number of packets transmitted

in time slot n. The queue length in each buffer evolves according to

q1[n + 1] = (q1[n]− d1[n])+ + a1[n] (2.10)

q2[n + 1] = (q2[n]− d2[n])+ + a2[n] (2.11)

where (x)+ denotes max(0, x).

The departure rate for each queue in each slot is either zero or one packet per

slot, and the decision whether it should be zero or one packet per slot depends on the

current queue lengths. When both queues are empty, the departure rates for both

queues should be zero packet per slot. In all other situations where there is at least

one packet in at least one of the queues, the departure rates for both queues should

not be zero packet per slot simultaneously. This is because, keeping both trans-

mitters idle does not save any power, but causes unnecessary delay. Therefore, in

these situations, there are three possible departure rate pairs: (d1, d2) = (1, 0), (0, 1)

or (1, 1), i.e., one packet is transmitted from queue 1 and no packet is transmitted

from queue 2; no packet is transmitted from queue 1 and one packet is transmit-

ted from queue 2; or, one packet is transmitted from each queue. We enumerate

them as d1, d2, d3. When the first queue length is i and the second queue length is

j, we define the probabilities of choosing each pair of these departure rates as g1
ij,
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g2
ij, g3

ij, respectively. Note that g1
ij + g2

ij + g3
ij = 1. We also note that g1

ij, g2
ij, g3

ij,

for i = 0, 1, . . . , N and j = 0, 1, . . . , N are the main parameters we aim to choose

optimally in this chapter.

The state space of the Markov chain consists of all possible pairs of queue

lengths. We denote the state as q , (q1, q2). When both of the queues are empty,

i.e., q[n] = (0, 0), transmitters have no packet to send, and from (2.10)-(2.11),

q[n + 1] = a[n]. The corresponding transition probabilities in this case are:

Pr{q[n + 1] = (0, 0)|q[n] = (0, 0)} = (1− θ1)(1− θ2)

Pr{q[n + 1] = (1, 0)|q[n] = (0, 0)} = θ1(1− θ2)

Pr{q[n + 1] = (0, 1)|q[n] = (0, 0)} = θ2(1− θ1)

Pr{q[n + 1] = (1, 1)|q[n] = (0, 0)} = θ1θ2 (2.12)

When one of the queues is empty, there is only one possible departure rate

pair, which is either (0, 1) or (1, 0), depending on which queue is empty. Therefore,

from our argument above, the departure probabilities should not be free parameters,

but must be chosen as g1
i0 = g2

0j = 1. The corresponding transition probabilities are:

Pr{q[n + 1] = (i− 1, 0)|q[n] = (i, 0)} = (1− θ1)(1− θ2)

Pr{q[n + 1] = (i− 1, 1)|q[n] = (i, 0)} = θ2(1− θ1)

Pr{q[n + 1] = (i, 0)|q[n] = (i, 0)} = θ1(1− θ2)

Pr{q[n + 1] = (i, 1)|q[n] = (i, 0)} = θ1θ2 (2.13)
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A similar argument is valid when the first queue is empty, i.e., q[n] = (0, j). Tran-

sition probabilities in this case can be written similar to (2.13).

When neither of the queues is empty, i.e., for q[n] = (i, j), where 1 ≤ i, j ≤ N ,

the transition probabilities are:

Pr{(i− 1, j − 1)|(i, j)} = g3
ij(1− θ1)(1− θ2)

Pr{(i− 1, j + 1)|(i, j)} = g1
ijθ2(1− θ1)

Pr{(i + 1, j − 1)|(i, j)} = g2
ijθ1(1− θ2)

Pr{(i, j + 1)|(i, j)} = g1
ijθ1θ2 (2.14)

Pr{(i + 1, j)|(i, j)} = g2
ijθ1θ2

Pr{(i− 1, j)|(i, j)} = g3
ijθ2(1− θ1)+g1

ij(1− θ1)(1− θ2)

Pr{(i, j − 1)|(i, j)} = g3
ijθ1(1− θ2)+g2

ij(1− θ1)(1− θ2)

Pr{(i, j)|(i, j)} = g1
ijθ1(1− θ2)+g2

ijθ2(1−θ1)+g3
ijθ1θ2

For example, the first equation in (2.14) is obtained by noting that, for the

next queue state to be (i−1, j−1), we need to transmit one packet from each queue

and we should have no arrivals to either of the queues. The probability of this event

is g3
ij, probability of transmitting one packet from each queue, multiplied by (1−θ1),

probability of having no arrivals to queue 1, and (1 − θ2), probability of having no

arrivals to queue 2.

In this chapter, we assume that the average power constraints are large enough

to prevent any packet losses. In order to prevent overflows, we always choose to
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transmit one packet from a queue whenever its length reaches N . Therefore, we

have g1
iN = g2

Nj = g3
NN = 1. The two-dimensional Markov chain is shown in Figure

2.2.
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i−1, Ni−1,j−1 i−1,j+1
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 0 , 0  0 , 1
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Figure 2.2: Two-dimensional Markov chain.

In [25], it is proven that, for all irreducible, positive recurrent discrete-time

Markov chains with state space S, there exists a stationary distribution {πs, s ∈ S},

which is given by the unique solution to

∑
s∈S

πspsr = πr,
∑
s∈S

πs = 1 (2.15)

It is also stated that for a reducible Markov chain with a single closed positive
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recurrent aperiodic class and a nonempty set T , where for any i ∈ T , the probability

of getting absorbed in the closed class starting from state i is 1, and the steady state

distribution exists. In our problem, we first assume that the stationary distribution

exists for the optimal solution. Once we determine the solution, we verify that the

corresponding Markov chain has a unique stationary distribution.

Let us define the steady state distribution of this Markov chain as π =

[π00, π01, · · · , π0N , π10, · · · , πNN ]. Then, the steady state distribution must satisfy

πP = π, π1 = 1 (2.16)

where P is the transition matrix defined by the transition probabilities (2.12)-(2.14).

We can express the average number of packets in the system as
∑

i,j πij(i + j).

According to Little’s law [25], for a fixed sample path in a queueing system, if the

limits of average waiting time W and average arrival rate λ exist as time goes to

infinity, then the limit of average queue length L exists and they are related as

L = λW . For our problem, in a system without overflow, these limits exist and the

average delay D is equal to

D =
1

θ1 + θ2

∑
i,j

πij(i + j) (2.17)

where θ1 + θ2 is the average arrival rate for the system.
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2.3 Problem Formulation

The transmission rate for both transmitters during a slot is either one packet per slot

or zero packet per slot. Equivalently, the transmission rate is either B/τ bits/channel

use or 0 bits/channel use, where τ is the number of channel uses in each slot.

We assume that in each slot we can use codewords with finite block length to get

arbitrarily close to the boundary of feasible powers and achieve a satisfactory level

of reliability.

Next, let us consider the power consumptions during each slot. When only

one user transmits, since there is no interference from the other transmitter, the

transmitted power for the active user needs to satisfy

hiPi ≥ σ2(22R − 1) , α (2.18)

where R = B/τ . In order to minimize the power, the transmitted power for the

active user should be α/hi, depending on which user is transmitting. When both

users transmit simultaneously, the received powers should additionally satisfy

h1P1 + h2P2 ≥ σ2(24R − 1) , β (2.19)

The feasible transmitted power region is shown in Figure 2.3. Let us denote the

received power pair as (β1, β2). In order to minimize the transmit power, this pair

should be on the dominant face of the feasible power region, i.e., β1 + β2 = β.

Then, the corresponding transmit power pair is (β1/h1, β2/h2). Note that different
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operating points need different sum of transmit powers.

β2/h2

β1/h1

β/h2

β/h1

P1

P2α/h2

α/h1

Figure 2.3: Feasible power region.

Thus, for any state (i, j) 6= (0, 0), the average power consumed for the first

queue is 1
h1

(g1
ijα + g3

ijβ1), while the average power consumed for the second queue is

1
h2

(g2
ijα+g3

ijβ2). Our goal is to find the transmission policy, i.e., the probabilities gk
ij,

k = 1, 2, 3, i = 0, 1, . . . , N , j = 0, 1, . . . , N along with the operating point (β1, β2),

such that the average delay is minimized, subject to an average power constraint
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for each user. Therefore, our problem can be expressed as:

min
g,β1,β2

1

θ1 + θ2

∑
i,j

πij(i + j) (2.20)

s.t.
1

h1

∑
i,j

πij(g
1
ijα + g3

ijβ1) ≤ P1avg (2.21)

1

h2

∑
i,j

πij(g
2
ijα + g3

ijβ2) ≤ P2avg (2.22)

πP = π, π1 = 1 (2.23)

g1
ij + g2

ij + g3
ij = 1, i, j = 0, 1, . . . , N (2.24)

gk
ij ≥ 0, i, j = 0, 1, . . . , N, k = 1, 2, 3 (2.25)

We note that the state transition matrix P is filled with variables in (2.12)-(2.14)

which depend on gk
ijs. Also, through (2.23), πijs depend on gk

ijs, as well. Unlike

[8], we have a two-dimensional Markov chain, and it does not admit closed-form

expressions for the steady state distribution πijs in terms of gk
ijs. Therefore, solving

the above optimization problem becomes rather difficult. Our methodology will

be to transform our optimization problem into a linear programming problem, and

exploit its special structure to obtain the globally optimal solution analytically.

2.4 Analysis of the Problem

Note that g1
ij + g2

ij + g3
ij = 1 for any (i, j) 6= (0, 0), therefore πij = πij(g

1
ij + g2

ij + g3
ij).

Define x00 = π00, xk
ij = πijg

k
ij, k = 1, 2, 3, i = 0, 1, . . . , N , j = 0, 1, . . . , N . Since gk

ij

is the conditional probability of choosing policy k when the system is in state (i, j),

xk
ij can be interpreted as the unconditional probability of staying in state (i, j) and
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choosing policy k. Our aim is to find optimal gk
ijs. However, as we will see, our

analysis will be more tractable with variables xk
ijs. Once we find optimal xk

ijs, we

can obtain optimal gk
ijs through

gk
ij =

xk
ij∑3

k=1 xk
ij

(2.26)

Let us construct a vector of all of our unknowns x = [x00, x
1
01, x

2
01, x

3
01, . . . , x

3
NN ]T .

First, we consider the average power consumption when average power con-

straints for both users are large enough such that each user is able to transmit a

packet during a slot whenever its queue is not empty. In this scenario, the corre-

sponding Markov chain has four non-transient states, (0,0), (0,1), (1,0), (1,1), and

the stationary distribution is

π01 = θ2(1− θ1), π00 = (1− θ1)(1− θ2),

π10 = θ1(1− θ2), π11 = θ1θ2 (2.27)

The average power consumption for each queue is

P1csmp =
1

h1

(π10α + π11β1) =
1

h1

(θ1(1− θ2)α + θ1θ2β1) (2.28)

P2csmp =
1

h2

(π01α + π11β2) =
1

h2

(θ2(1− θ1)α + θ1θ2β2) (2.29)
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We note that

P1csmph1 + P2csmph2 = (θ1 + θ2 − 2θ1θ2)α + θ1θ2β (2.30)

From Figure 2.3, we note that β1, β2 ≥ α, therefore, each individual term in (2.30)

must additionally satisfy

P1csmp ≥ 1

h1

θ1α (2.31)

P2csmp ≥ 1

h2

θ2α (2.32)

Therefore, if the average power constraints P1avg and P2avg satisfy the following

inequalities

P1avgh1 + P2avgh2 ≥ (θ1 + θ2 − 2θ1θ2)α + θ1θ2β (2.33)

P1avg ≥ 1

h1

θ1α (2.34)

P2avg ≥ 1

h2

θ2α (2.35)

then we can always find an operating point (β1, β2) such that P1csmp ≤ P1avg and

P2csmp ≤ P2avg, and we achieve the minimal possible delay in the system, which is

one slot. The available power in this case is so large that the solution is trivial. If

P1avgh1 + P2avgh2 < (θ1 + θ2 − 2θ1θ2)α + θ1θ2β (2.36)
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and P1avg and P2avg are large enough to prevent any overflows, both power con-

straints should be tight. Therefore, from (2.21)-(2.22), we have two equality power

constraints,

1

h1

∑
i,j

(x1
ijα + x3

ijβ1) = P1avg (2.37)

1

h2

∑
i,j

(x2
ijα + x3

ijβ2) = P2avg (2.38)

Because the average arrival rate must be equal to the average departure rate when

there is no overflow, we also have

∑
i,j

(x1
ij + x3

ij) = θ1 (2.39)

∑
i,j

(x2
ij + x3

ij) = θ2 (2.40)

Solving (2.37)-(2.40), we obtain

β1 = α +
(β − 2α)(P1avgh1 − θ1α)

P1avgh1 + P2avgh2 − (θ1 + θ2)α
(2.41)

β2 = α +
(β − 2α)(P2avgh2 − θ2α)

P1avgh1 + P2avgh2 − (θ1 + θ2)α
(2.42)

∑
i,j

x1
ij = θ1 − P1avgh1 + P2avgh2 − (θ1 + θ2)α

β − 2α
(2.43)

∑
i,j

x2
ij = θ2 − P1avgh1 + P2avgh2 − (θ1 + θ2)α

β − 2α
(2.44)

∑
i,j

x3
ij =

P1avgh1 + P2avgh2 − (θ1 + θ2)α

β − 2α
(2.45)
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By jointly considering the normalization equation in (2.23), we also have

x00 = 1− (θ1 + θ2)(β − α)− (P1avgh1 + P2avgh2)

β − 2α
(2.46)

Thus, we transform our optimization problem in (2.20)-(2.24) into

min
x

∑
i,j

(
3∑

k=1

xk
ij(i + j)

)
(2.47)

s.t. x00 = 1− (θ1 + θ2)(β−α)−(P1avgh1 + P2avgh2)

β−2α
(2.48)

∑
i,j

x1
ij = θ1 − P1avgh1 + P2avgh2 − (θ1 + θ2)α

β − 2α
(2.49)

∑
i,j

x2
ij = θ2 − P1avgh1 + P2avgh2 − (θ1 + θ2)α

β − 2α
(2.50)

∑
i,j

x3
ij =

P1avgh1 + P2avgh2 − (θ1 + θ2)α

β − 2α
(2.51)

Qx = 0, xk
ij ≥ 0, i,j = 0, 1, . . . , N, k =1, 2, 3 (2.52)

which is in terms of xk
ijs. Here, Q is a (N + 1)2× (4(N + 1)2− 3) matrix defined by

matrix P. We get the equations in (2.52) from (2.23) by substituting πijg
k
ij for xk

ij.

The optimization problem in (2.47)-(2.52) is a linear programming problem.

In addition, we observe that, in the objective function, all of the xk
ijs with the same

sum of indices share the same weight i + j. If we look into the two-dimensional

Markov chain, this corresponds to the states on the diagonals running from the

upper right corner to the lower left corner. This motivates us to group the xk
ijs

along the diagonals of the two-dimensional Markov chain in Figure 2.2 and define
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their sum, for the nth diagonal, as

yn =
n∑

i=0

(x1
i,n−i + x2

i,n−i) (2.53)

tn =
n∑

i=0

x3
i,n−i (2.54)

Then, yn ≥ 0, tn ≥ 0, and the objective function in (2.47) is equivalent to

2N∑
n=1

(yn + tn)n (2.55)

We also get 2N flow-in-flow-out equations between the diagonal groups. For n = 0, 1,

we have

x00 (θ1 + θ2 − θ1θ2) = (y1 + t2)(1− θ1)(1− θ2) (2.56)

(x00 + y1)θ1θ2 = (y2 + t3)(1− θ1)(1− θ2) + t2 (1− θ1θ2) (2.57)

and for n = 2, 3, . . . , 2N − 2, we have

ynθ1θ2 = (yn+1 +tn+2)(1−θ1)(1−θ2) + tn+1 (1−θ1θ2) (2.58)

y2N−1θ1θ2 = t2N (1− θ1θ2) (2.59)

Figure 2.4 shows the transitions between diagonal groups for a system with N = 3;

we use different colors to distinguish the transitions caused by different departure

rate pairs.
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0 , 30 , 0

2 , 0

3 , 0

1 , 0 1 , 2 1 , 31 , 1

2 , 2 2 , 32 , 1

3 , 1 3 , 2 3 , 3

0 , 1 0 , 2

Figure 2.4: The transitions between diagonal groups when N = 3.

We multiply both sides of the nth equation in (2.56)-(2.59) with zn and sum

with respect to n to obtain

x00(θ1 + θ2 − θ1θ2 + θ1θ2z) +
(
θ1θ2 − (1− θ1)(1− θ2)z

−1
) 2N∑

n=1

ynzn

− (
(1− θ1θ2)z

−1 + (1− θ1)(1− θ2)z
−2

) 2N∑
n=1

tnzn = 0 (2.60)

Taking the derivative of (2.60) with respect to z and letting z = 1, we have

2N∑
n=1

tnn =
1

2− θ1 − θ2

(
(θ1 + θ2 − 1)

(
2N∑
n=1

ynn

)

+ (1− θ1)(1− θ2)

(
2N∑
n=1

yn

)
(2.61)

+
(
1− θ1θ2 + 2(1− θ1)(1− θ2)

)
(

2N∑
n=1

tn

)
+ x00θ1θ2

)
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From the definition of yn and tn in (2.53) and (2.54), we note

2N∑
n=1

yn =
2N∑
n=1

n∑
i=0

(x1
i,n−i + x2

i,n−i) =
∑
i,j

(x1
ij + x2

ij) (2.62)

2N∑
n=1

tn =
2N∑
n=1

n∑
i=0

x3
i,n−i =

∑
i,j

x3
ij (2.63)

From (2.62) and (2.63), and using (2.49)-(2.51), we conclude that
∑2N

n=1 yn and

∑2N
n=1 tn are constants that depend on system parameters α, β, θ1, θ2 and P1avg,

P2avg. Using (2.62) and (2.49)-(2.50), for future reference, let us define

2N∑
n=1

yn =
∑
i,j

x1
ij +

∑
i,j

x2
ij

= θ1 + θ2 − 2(P1avgh1 + P2avgh2 − (θ1 + θ2)α)

β − 2α
, Ψ (2.64)

Using the definition of yn, tn and (2.61), the objective function in (2.47) be-

comes

2N∑
n=1

(yn + tn)n =
1

2− θ1 − θ2

(
2N∑
n=1

ynn

)
+ C (2.65)

where C is a constant, and 1
2−θ1−θ2

is positive. Therefore, minimizing the original

objective function in (2.47) is equivalent to minimizing
∑2N

n=1 ynn. Since from (2.64)

the sum of yns is fixed, and yns are positive, intuitively, the optimization problem

requires us to assign larger values to yns with smaller indices n, without conflicting

with the transition equation constraints.
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2.5 The Modified Optimization Problem and a Two-Step Solution

In this section, we will prove the following main result of this chapter: If the average

power constraints P1avg, P2avg are large enough to prevent any packet losses, the

delay-optimal policy has a threshold structure. When the sum of the queue lengths

is larger than the threshold, both users should transmit; when the sum of the queue

lengths is smaller than the threshold, only the user with the longer queue should

transmit; the equal queue length case can be resolved through flip of a potentially

biased coin.

We propose to solve our original optimization problem in two steps. In the first

step, we will consider the optimization problem in terms of yns and tns, where the

objective function is
∑2N

n=1 ynn, and the constraints are (2.64), (2.48), (2.56)-(2.59),

and positivity constraints on yns and tns. The objective function of this optimiza-

tion problem is exactly the same as that of our original optimization problem in

(2.47)-(2.52), however, our constraints are more lenient than those of (2.47)-(2.52).

First, (2.64) is weaker than (2.49)-(2.51), as it imposes a constraint on the sum while

(2.49)-(2.51) impose constraints on individual terms. Secondly, the transition equa-

tions in (2.52) are between all of the states in the two-dimensional Markov chain,

while the transition equations in (2.56)-(2.59) are only between the diagonal groups

in the Markov chain. Finally, we do not explicitly impose the sum constraint on

tn on the new problem. These imply that, the result we obtain in the first step, in

principle, may not be feasible for the original problem.

Therefore, in the second step we allocate yns and tns we obtain from the first
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step to xk
ijs in such a way that the remaining independent transition equations in

(2.52) are satisfied. We note that (2.39) and (2.40) can be derived from (2.52),

therefore, once (2.52) is satisfied, (2.39) and (2.40) will be satisfied. Together with

(2.64), we can make sure that (2.49)-(2.51) are all satisfied. Therefore, if we can

find a valid allocation in the second step, we will conclude that the solution found

in the first step is a feasible solution to our original problem. Since the problem

we solve in the first step has the cost function of our problem, but is subject to

more lenient constraints, its solution, in principle, may be better than the solution

of our original problem. However, when we prove that the solution we obtain in our

first step is within the feasible set of our original problem, we will have solved our

original problem. In addition, once we prove the optimality of the solution in the

first step, it will be globally optimal for the original problem.

First, we will minimize
∑2N

n=1 ynn subject to (2.64), (2.48), (2.56)-(2.59), and

yn, tn ≥ 0. This means that we will allocate Ψ to yns in a way to minimize
∑2N

n=1 ynn.

This will require us to allocate larger values to yns with smaller n, while making

sure that (2.64), (2.48), and (2.56)-(2.59) are satisfied. We state the result of our

first step in the following theorem.

Theorem 2.1 The optimal solution of the problem

min
2N∑
n=1

ynn

s. t. (2.64), (2.48), (2.56)− (2.59), and yn ≥ 0, tn ≥ 0,∀n (2.66)

has a threshold structure. In particular, there exists a threshold n̄ such that for
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n < n̄, tn = 0 and for n > n̄, yn = 0.

The proof of this theorem is given in Appendix 2.8.1.

In the following, we consider the transition equations within groups for each

state. Since adding more constraints cannot improve the optimization result, if we

can find a way to allocate yns and tns to xk
ijs, such that all of the remaining transition

equations are satisfied, then we will conclude that the assignments we obtained in

the first step are actually feasible for the original problem. Therefore, next, in our

second step, we focus on the assignment of the yns and tns found in the first step to

xk
ijs.

First, we use a simple example to illustrate the procedure of allocation within

each group, then, we generalize the procedure to arbitrary cases. In this simple

example, we assume that N = 4.

Assume that after the group allocation, we obtained y1, . . . , y5 and t5, t6 6= 0,

and the rest of the yns and tns are equal to zero. In order to keep the alloca-

tion simple, when we assign y3, y5, t5 in each group, we assign them only to two

states: (1, 2), (2, 1) and (2, 3), (3, 2), respectively; while we assign y4 to three states:

(1, 3), (2, 2), (3, 1), and we assign t6 to a single state (3, 3). Figure 2.5 illustrates the

allocation pattern within groups. We do not assign any values to the states with dot-

ted circles. The dotted states will be transient states after the allocation. We need to

guarantee that the nonzero-valued states only transit to other nonzero-valued states.

This requires us to set x1
12 = x2

21 = x1
23 = x2

32 = 0, and x1
13 = x3

13 = x2
31 = x3

31 = 0.

The valid transitions are represented as arrows in Figure 2.5. We can see that the
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transitions are within the positive recurrent class.

4 , 1

0 , 0 0 , 1 0 , 2 0 , 4

1 , 41 , 31 , 21 , 11 , 0

2 , 0 2 , 1 2 , 2 2 , 3 2 , 4

3 , 43 , 33 , 23 , 13 , 0

4 , 0 4 , 2 4 , 3 4 , 4

0 , 3

Figure 2.5: Example: allocation within groups when N = 4.

Then, let us examine each group and find transition equations to be satisfied

for each state. For states (0, 1), (0, 2), (1, 2), (1, 3), (2, 3), the transition equations to

be satisfied are

x2
01(1− θ2(1− θ1)) =(x00 + x1

10)θ2(1− θ1)

+ (x2
02 + x1

11)(1− θ1)(1− θ2)

x2
02(1− θ2(1− θ1)) =x1

11θ2(1− θ1)

x2
12(1− θ2(1− θ1)) =(x2

02 + x1
11)θ1θ2 + x1

21θ2(1− θ1)

+ (x2
13 + x1

22 + x3
23)(1− θ1)(1− θ2)

x2
13(1− θ2(1− θ1)) =(x1

11 + x3
23)θ2(1− θ1)

x2
23(1− θ2(1− θ1)) + x3

23(1− θ1θ2) =(x2
13 + x1

22)θ1θ2 + (x1
32 + x3

33)θ2(1− θ1) (2.67)
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We have five more similar transition equations for states (0, 1), (0, 2), (1, 2), (1, 3),

(2, 3). All the unknown variables are interacting with each other through these

equations. How to find an allocation satisfying all of these equations simultaneously

becomes rather difficult. After simple manipulations, equations in (2.67) become

equivalent to

x2
01 =(x00 +x1

10 +x2
01)θ2(1− θ1)+(x2

02 + x1
11)(1− θ1)(1− θ2)

x2
02 =(x1

11 + x2
02)θ2(1− θ1)

x2
12 =(x2

02 + x1
11)θ1θ2 + (x2

12 + x1
21)θ2(1− θ1) + (x2

13 + x1
22 + x3

23)(1− θ1)(1− θ2)

x2
13 =(x1

22 + x2
13 + x3

23)θ2(1− θ1)

x2
23 =(x2

13 + x1
22)θ1θ2 + (x1

32 + x2
23 + x3

33)θ2(1− θ1)− x3
23(1− θ1θ2) (2.68)

Observing the right hand sides of (2.68), we note that, x00, x1
10 +x2

10, x2
12 +x1

21,

x1
32 +x2

23, x3
33 are known, therefore, the allocation for states (0, 1), (0, 2), (1, 2), (1, 3),

(2, 3) depends only on the values of x2
02 + x1

11, x1
22 + x2

13, and x3
23. Similarly, the

allocation for states (1, 0), (2, 0), (2, 1), (3, 1), (3, 2) also depends on the values of

x1
20 + x2

11, x2
22 + x1

31, and x3
32 only. Since

y2 = (x2
02 + x1

11) + (x1
20 + x2

11) (2.69)

y4 = (x1
22 + x2

13) + (x2
22 + x1

31) (2.70)

t5 = x3
23 + x3

32 (2.71)

the allocation actually depends on how we split y2, y4 and t5 between (x2
02 + x1

11)
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and (x1
20 + x2

11), (x1
22 + x2

13) and (x2
22 + x1

31), x3
23 and x3

32, respectively. Once we fix

the values of x2
02 + x1

11, x1
22 + x2

13, and x3
23, we obtain the values of all of the states,

completing the allocation. We note that there is more than one feasible allocation

within groups, and for each feasible allocation, all of the transition equations are

satisfied, and the power constraints are satisfied as well. In order to keep the solution

simple, we let

x2
02 + x1

11 = y2/2 (2.72)

x1
22 + x2

13 = y4/2 (2.73)

x3
23 = t5/2 (2.74)

Plugging these into (2.68), we get

x2
01 =(x00 + y1)θ2(1− θ1) +

1

2
y2(1− θ1)(1− θ2)

x2
02 =

1

2
y2θ2(1− θ1)

x2
12 =

1

2
y2θ1θ2 + y3θ2(1− θ1) +

1

2
(y4 + t5)(1− θ1)(1− θ2)

x2
13 =

1

2
(y4 + t5)θ2(1− θ1)

x2
23 =

1

2
y4θ1θ2 + (y5 + t6)θ2(1− θ1)− 1

2
t5(1− θ1θ2) (2.75)
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Going back to (2.72)-(2.73), we obtain

x1
11 =

1

2
y2(1− θ2(1− θ1))

x1
22 =

1

2
y4 − 1

2
(y4 + t5)θ2(1− θ1) (2.76)

Since yn ≥ tn+1ρ/δ, we can easily verify that x2
23 ≥ 0, x1

22 ≥ 0. The allocation

for the remaining half of the states has a similar structure. Thus, each state has a

positive value, and the allocation is feasible.

Once we obtain the values of xk
ijs, we can compute the transmission probabil-

ities using gk
ij =

xk
ij∑3

k=1 xk
ij

. Here, we have

g1
11 =

1− θ2(1− θ1)

2− θ2(1− θ1)− θ1(1− θ2)
(2.77)

g2
11 =

1− θ1(1− θ2)

2− θ2(1− θ1)− θ1(1− θ2)
(2.78)

g1
22 =

y4 − (y4 + t5)θ2(1− θ1)

2y4 − (y4 + t5)(θ2(1− θ1) + θ1(1− θ2))
(2.79)

g2
22 =

y4 − (y4 + t5)θ1(1− θ2)

2y4 − (y4 + t5)(θ2(1− θ1) + θ1(1− θ2))
(2.80)

We observe that a threshold structure exists. In this example, the threshold is 5.

When the sum of the two queue lengths is greater than 5, both users transmit during

a slot. When the sum of the two queue lengths is less than 5, only one user with

longer queue transmits during a slot; in this case, if both queue lengths are the

same, users transmit according to probabilities in (2.77)-(2.80).

Following steps similar to those in the example above, we can assign yns and tns
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to xk
ijs and obtain a feasible allocation for general settings. The following theorem

states this fact formally.

Theorem 2.2 For the yns and tns obtained in the first step, there always exists a

feasible xk
ij assignment, such that xk

ijs are positive and satisfy all of the transition

equations.

The proof of this theorem is given in Appendix 2.8.2. Since this is a constructive

proof, it also gives the exact method by which yns and tns are assigned to xk
ijs.

Therefore, in order to prove the optimality of the xk
ij assignment, it suffices to

prove the optimality of the solution of the first step. The following theorem proves

the optimality of the first step.

Theorem 2.3 The allocation scheme in Theorem 2.1 minimizes the average delay

in the system.

The proof of this theorem is given in Appendix 2.8.3.

In summary, the two-step allocation scheme is feasible and optimal for our

original problem. The transition probabilities can be computed once we determine

the allocation for each sate. From our allocation, we note that there exists a thresh-

old n̄, where n̄ is the largest group index n such that yn 6= 0. We have tn > 0 only

when n ≥ n̄. Since gk
ij =

xk
ij∑3

k=1 xk
ij

, we have g3
ij = 1 when n > n̄. When n < n̄, we
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have g1
ij = 1 if i > j and g2

ij = 1 if i < j. Then, for n ≤ n̄, and n is even, we have

g1
n/2,n/2 =

yn − (yn + tn+1)θ2(1− θ1)

2yn−(yn +tn+1)(θ2(1−θ1)+θ1(1−θ2))+tn
(2.81)

g2
n/2,n/2 =

yn − (yn + tn+1)θ1(1− θ2)

2yn−(yn +tn+1)(θ2(1−θ1)+θ1(1−θ2))+tn
(2.82)

g3
n/2,n/2 =

tn
2yn−(yn +tn+1)(θ2(1−θ1)+θ1(1−θ2))+tn

(2.83)

If tn, tn+1 = 0, which happens when n < n̄− 1, (2.81)-(2.83) reduce to

g1
n/2,n/2 =

1− θ2(1− θ1)

2− θ2(1− θ1)− θ1(1− θ2)
(2.84)

g2
n/2,n/2 =

1− θ1(1− θ2)

2− θ2(1− θ1)− θ1(1− θ2)
(2.85)

Therefore, if the sum of the two queue lengths is greater than n̄, both users should

transmit one packet during the slot. If the sum of the two queue lengths is less

than n̄, only the user with the longer queue transmits one packet in the slot and

the other user remains silent; if in this case both queues have the same length, then

the probability that the first user transmits one packet while the second user keeps

silent is 1−θ2(1−θ1)
2−θ2(1−θ1)−θ1(1−θ2)

, and the probability that the second user transmits one

packet while the first user keeps silent is 1−θ1(1−θ2)
2−θ2(1−θ1)−θ1(1−θ2)

. When the system is

symmetric, i.e., θ1 = θ2, these probabilities become 1/2 and 1/2.
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2.6 Numerical Results

Here we give simple examples to show how our allocation scheme works. We choose

N = 10, i.e., each queue has a buffer of size 10 packets. Therefore, the joint queue

sates is represented by an 11× 11 Markov chain.

First, we consider the symmetric scenario, where θ1 = θ2 = θ, h1 = h2 = h

and P1avg = P2avg = Pavg. We assume the arrival rate θ = 1/2, and the power levels

α = 1, β = 3. Therefore, we have η = 3, δ = 1, ρ = 3. From the analysis, we know

that if Pavg ≥ 5/8, the average delay is one slot, which is the minimal possible delay

in the system.

If Pavg = 9/16, we have x00 = 1/8,
∑

i,j x1
ij =

∑
i,j x2

ij = 3/8,
∑

i,j x3
ij = 1/8.

Therefore, Ψ = 3/4. Following our allocation scheme, we have y1 = 3/8, y2 = 3/8,

t3 = 1/8. Then, we need to allocate these within groups.

We start with y1. Because of the symmetry of the setting, we simply let

x1
10 = x2

01 = y1/2 = 3/16, x3
12 = x3

21 = t3/2 = 1/16. Then, we consider y2. We

also let x1
20 = x2

02, x1
11 = x2

11. This symmetric allocation guarantees that the flow

equations for states (0, 1) and (1, 0) are satisfied. The values of x1
20 and x1

11 also

depend on the allocation of t3. The state (2, 0) must satisfy the transition equation

x1
20

(
θ(1− θ) + θ2 + (1− θ)2

)
= (x2

11 + x3
21)θ(1− θ)
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Together with the symmetric allocation, we have

x1
20 + x2

11 = y2/2 = 3/16

Solving these equations, we get the allocation for the second group as

x1
20 = x2

02 = 1/16, x2
11 = x1

11 = 1/8

We see that the two values are positive, thus feasible. Then, the transmission

probabilities are g1
11 = g2

11 = 1/2, g3
12 = g3

21 = 1. The threshold of the sum of the

queue lengths is 2 in this case. If the sum of the queue lengths is greater than 2,

both users transmit, if the sum of the queue lengths is less than or equal to 2, only

the user with the longer queue transmits and the other user remains silent; if both

queues have one packet in their queues, each queue transmits with probability 1/2

while the other queue remains silent.

If Pavg = 17/32, we have x00 = 1/16,
∑

i,j x1
ij =

∑
i,j x2

ij = 7/16,
∑

i,j x3
ij =

1/16. Therefore, Ψ = 7/8. Following our allocation scheme, we have y1 = 3/16,

y2 = y3 = 1/4, y4 = 3/16, t5 = 1/16. Then, we assign these within groups. For

y1, we simply let x1
10 = x2

01 = y1/2 = 1/32. Then, considering to allocate y2, we

have x1
20 = x2

02 = 1/32, x2
11 = x1

11 = 3/32. After completing the allocation, we

have x1
21 = x2

12 = 1/8, x1
31 = x2

13 = 1/32, x2
22 = x1

22 = 1/16, x3
23 = x3

32 = 1/32.

The transmission probabilities are g1
11 = g2

11 = g1
22 = g2

22 = 1/2, g1
10 = g2

01 = g1
20 =

g2
02 = g1

21 = g2
12 = g1

13 = g2
31 = g3

32 = g3
23 = 1. The threshold of the sum of the
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queue lengths is 4 in this case. If the sum of the queue lengths is greater than 4,

both users transmit, if the sum of the queue lengths is less than or equal to 4, only

the user with the longer queue transmits and the other user remains silent; if both

queues have equal length, which is either 1 or 2 in this case, each queue transmits

with probability 1/2 while the other queue remains silent.

We compute the average delay as a function of average power for θ = 0.5,

θ = 0.48 and θ = 0.46, and plot them in Figure 2.6. We observe that it is a piecewise

linear function, and each linear segment corresponds to the same threshold value.

This is because based on our optimal allocation scheme, for a fixed threshold value,

the objective function is a linear function in x00, thus it is linear in Pavg. If Pavg

increases, Davg decreases, and the threshold decreases as well. The minimum value

of Pavg on each curve corresponds to the maximum threshold, which is 19 in this

example. This is also the minimum amount of average power required to prevent

any overflows. We also observe that the delay-power tradeoff curve is convex, which

is consistent with the result in [2]. We note that although these three values of θ

are close to each other, the average delay varies significantly. This is because the

average delay is not a linear function of θ.

For the asymmetric scenario, we assume θ1 = 1/2, θ2 = 1/3, then η = 2,

δ = 1/2, ρ = 5/2. We assume h1 = 1, h2 = 2. From (2.33), we know that if

P1avgh1 +P2avgh2 ≥ 1, P1avg ≥ 1/2, P2avg ≥ 2/3, then each user can always transmit

a packet whenever its queue is not empty, and the average delay is one slot.

If P1avg = 19/36, P2avg = 13/18, then P1avgh1 + P2avgh2 = 8/9. Plugging these

into (2.41)-(2.48), we have β1 = 1/2, β2 = 1/2,
∑1

i,j x1
ij = 4/9,

∑2
i,j x1

ij = 5/18,
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Figure 2.6: The average delay versus average power in the symmetric scenario.

∑3
i,j x1

ij = 1/18, x00 = 2/9. Then, Ψ = 13/18. Following the group allocation

scheme, we have y1 = 4/9, y2 = 5/18, t3 = 1/18. Then, we need to assign them

within groups. From (2.118)-(2.124), we get x2
01 = 1/6, x1

10 = 5/18, x2
02 = 1/36,

x1
11 = 4/36, x2

11 = 3/36, x1
20 = 2/36, and x3

12 = x3
21 = 1/18. The transmission

probabilities are g1
11 = 4/7, g2

11 = 3/7, g1
10 = g2

01 = g1
20 = g2

02 = g3
12 = g3

21 = 1.

The threshold is 2. If the sum of the queue lengths is greater than 2, both users

transmit, if the sum of the queue lengths is less than or equal to 2, only the user

with the longer queue transmits and the other user remains silent; if both queues

have one packet in their queues, the first queue transmits with probability 4/7, and

the second queue transmits with probability 3/7.

44



2.7 Conclusions

We investigated the average delay minimization problem for a two-user multiple

access system with average power constraints for the general asymmetric scenario,

where users have arbitrary powers, channel gains, and arrival rates. We considered a

discrete-time model. In each slot, the arrivals at each queue follow a Bernoulli distri-

bution, and we transmit at most one packet from each queue with some probability.

Our objective is to find the optimal set of departure probabilities. We modeled

the problem as a two-dimensional Markov chain, and minimized the average delay

through controlling the departure probabilities in each time slot. We transformed

the problem into a linear programming problem and found the optimal solution an-

alytically. The optimal policy has a threshold structure. Whenever the sum of the

queue lengths exceeds a threshold, both queues transmit one packet during the slot,

otherwise, only one of the queues, which is longer, transmits one packet during the

slot and the other queue remains silent; if both queues have the same length, only

one of the queues transmits with a probability which depends on the arrival rates

to both queues while the other queue remains silent.
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2.8 Appendix

2.8.1 The Proof of Theorem 2.1

Let us define

η =
θ1 + θ2 − θ1θ2

(1− θ1)(1− θ2)
(2.86)

δ =
θ1θ2

(1− θ1)(1− θ2)
(2.87)

ρ =
1− θ1θ2

(1− θ1)(1− θ2)
(2.88)

Then, (2.56)-(2.59) are equivalent to

x00η = y1 + t2 (2.89)

(x00 + y1)δ = (y2 + t3) + t2ρ (2.90)

and for n = 2, 3, . . . , 2N − 2,

ynδ = (yn+1 + tn+2) + tn+1ρ (2.91)

y2N−1δ = t2Nρ (2.92)

The optimization requires us to assign larger values to yns with smaller in-

dices n as much as possible. Examining (2.89)-(2.92), we note that for fixed x00,
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maximizing y1, y2, . . . requires us to set t2, t3, . . . to zero. Therefore, we choose

y1 = x00η (2.93)

y2 = (x00 + y1)δ (2.94)

yn = yn−1δ, tn = 0, n = 1, 2, . . . , n∗ (2.95)

where n∗ is the largest integer satisfying
∑n∗

n=1 yn < Ψ.

Let ∆ = Ψ − ∑n∗
n=1 yn. We need to check that all of the group transition

equations are satisfied.

Assume that n∗ > 2. If ∆ = yn∗δρ/(δ + ρ), then let

yn∗+1 = ∆, and yn = 0, n = n∗ + 2, . . . , N − 1 (2.96)

tn∗+2 = yn∗+1δ/ρ, and tn = 0, n 6= n∗ + 2 (2.97)

We can verify that after this allocation, group transition equations (2.56)-(2.59)

are satisfied. We also note that Ψ is allocated to {yn}n∗+1
n=1 , among which, {yn}n∗

n=1

attain their maximum possible values. Therefore, the objective function achieves its

minimal possible value for the first step.

If ∆ 6= yn∗δρ/(δ + ρ), if we assign it to yn∗+1 directly, the group transition

equations are not satisfied automatically. In order to satisfy the group transition

equations, we need to do some adjustments.

If ∆ > yn∗δρ/(δ + ρ), we assign ∆ to yn∗+1 and yn∗+2 proportionally. Specifi-
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cally, we let

yn∗+1 =
∆(ρ + δ) + yn∗δρ

2

ρ2 + δρ + δ + ρ
(2.98)

yn∗+2 =
∆(ρ + δ)ρ− yn∗δρ

2

ρ2 + δρ + δ + ρ
(2.99)

tn∗+2 =
yn∗δ(δρ + δ + ρ)−∆(ρ + δ)

ρ2 + δρ + δ + ρ
(2.100)

tn∗+3 =
∆(ρ + δ)δ − yn∗δ

2ρ

ρ2 + δρ + δ + ρ
(2.101)

Since yn∗δ > ∆ > yn∗δρ/(δ +ρ), we can verify that each value above is positive, and

the sum constraint and the group transition equations are satisfied. Among the non-

zero {yn}n∗+2
n=1 , although {yn}n∗

n=1 attain their maximum, yn∗+1 does not. Therefore,

different from the first scenario, in this case, we cannot immediately claim that the

result is optimal. We will give the mathematical proof for the optimality of this

assignment later.

If ∆ < yn∗δρ/(δ + ρ), we need to remove some value from yn∗ and assign it to

yn∗+1 to satisfy the equations. Define ∆′ = ∆ + yn∗ and assign ∆′ to yn∗ and yn∗+1

as follows

yn∗ =
∆′(ρ + δ) + yn∗−1δρ

2

ρ2 + δρ + δ + ρ
(2.102)

yn∗+1 =
∆′(ρ + δ)ρ− yn∗−1δρ

2

ρ2 + δρ + δ + ρ
(2.103)

tn∗+1 =
yn∗−1δ(δρ + δ + ρ)−∆′(ρ + δ)

ρ2 + δρ + δ + ρ
(2.104)

tn∗+2 =
∆′(ρ + δ)δ − yn∗−1δ

2ρ

ρ2 + δρ + δ + ρ
(2.105)
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Since yn∗−1δ < ∆′ < yn∗−1δ(δρ/(δ +ρ)+1), we can also verify that each value above

is positive, and the sum constraint and the group transition equations are satisfied.

Similar to the second case, we cannot immediately claim that this result is optimal

because after the adjustment, yn∗ does not achieve its maximum value. We will give

the proof of optimality later.

When n∗ = 1, the allocation will be in a different form. If ∆ ≥ (x00 +

y1)δρ/(δ + ρ), then we need to use (x00 + y1) instead of yn∗ in (2.96)-(2.101). If

∆ < (x00 + y1)δρ/(δ + ρ), then

yn∗ =
Ψ(ρ + δ) + x00(η − δ)ρ

ρ2 + δρ + δ + ρ
(2.106)

yn∗+1 =
Ψ(ρ + δ)ρ− x00(η − δ)ρ

ρ2 + δρ + δ + ρ
(2.107)

tn∗+1 =
x00(ηδρ + ηδ + ηρ2 + δρ)−Ψ(ρ + δ)

ρ2 + δρ + δ + ρ
(2.108)

tn∗+2 =
Ψ(ρ + δ)δ − x00(η − δ)δ

ρ2 + δρ + δ + ρ
(2.109)

When n∗ = 2, if ∆ ≥ yn∗δρ/(δ + ρ), the allocation of Ψ has the same form as

in (2.96)-(2.101). If ∆ < yn∗δρ/(δ + ρ), then we need to use (x00 + y1) instead of

yn∗−1 in (2.102)-(2.105).

2.8.2 The Proof of Theorem 2.2

While we generalize the simple example to an arbitrary setting, we follow the same

basic allocation pattern. If n is odd, we assign yn and tn only to two states
(

n+1
2

, n−1
2

)

and
(

n−1
2

, n+1
2

)
; if n is even, we assign yn to three states:

(
n
2

+ 1, n
2
− 1

)
,

(
n
2
, n

2

)
,
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(
n
2
− 1, n

2
+ 1

)
, and we assign tn to a single state

(
n
2
, n

2

)
. We illustrate the allocation

pattern in Figure 2.7.

N+2

n= 21 3 N-1

. .
 .

N-2. . .

. .
 .

2N

n*

N+1

N40

2N-1

Figure 2.7: Allocation pattern within groups.

We need to make sure that the transitions only happen within the positive

recurrent class. Therefore, when n is odd, we let x1
n−1

2
, n+1

2

= x2
n+1

2
, n−1

2

= 0; when

n is even, we let x1
n
2
−1, n

2
+1 = x2

n
2
+1, n

2
−1 = 0. Then, let us examine the transition

equations for the states. For n = 1, we have

x2
01(1− θ2(1− θ1)) =(x00 + x1

10 + x3
11)θ2(1− θ1)

+ (x2
02 + x1

11 + x3
12)(1− θ1)(1− θ2) (2.110)

For n = 2, 3, . . ., if n is even, the transitions between states are illustrated in Fig-

ure 2.8. The transition equation for state
(

n
2
− 1, n

2
+ 1

)
is

x2
n
2
−1, n

2
+1 − θ2(1− θ1)) =(x1

n
2

, n
2

+ x3
n
2

, n
2
+1)θ2(1− θ1) (2.111)

50



. . .

. . .

. . .. . .

. . .

. . .

n
2
, n

2
n
2
, n

2
+1

n
2
+1,n

2
-1

n
2
-1,n

2
+1

n
2

+ 1, n
2

n
2
,n
2
-1

n
2
-1,n

2

Figure 2.8: The transitions between states when n is even.

If n is odd, the transitions between states are illustrated in Figure 2.9. The

transition equation for state
(

n−1
2

, n+1
2

)
is

x2
n−1

2
, n+1

2
(1− θ2(1− θ1)) + x3

n−1
2

, n+1
2

(1− θ1θ2)

=(x2
n−3

2
, n+1

2
+ x1

n−1
2

, n−1
2

)θ1θ2 + (x1
n+1

2
, n−1

2
+ x3

n+1
2

, n+1
2

)θ2(1− θ1)

+ (x1
n+1

2
, n+1

2
+ x2

n−1
2

, n+3
2

+ x3
n+1

2
, n+3

2
)(1− θ1)(1− θ2) (2.112)

After a transformation, (2.110) is equivalent to

x2
01 =(x00 + x1

10 + x2
01 + x3

11)θ2(1− θ1) + (x2
02 + x1

11 + x3
12)(1− θ1)(1− θ2) (2.113)

where x00 is known, x1
10 + x2

01 = y1, x3
11 = t2.
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Figure 2.9: The transitions between states when n is odd.

For n = 2, 3, . . ., when n is even, (2.111) is equivalent to

x2
n
2
−1, n

2
+1 =(x1

n
2

, n
2

+ x2
n
2
−1, n

2
+1 + x3

n
2

, n
2
+1)θ2(1− θ1) (2.114)

and when n is odd, (2.112) is equivalent to

x2
n−1

2
, n+1

2
=(x2

n−3
2

, n+1
2

+ x1
n−1

2
, n−1

2
)θ1θ2 − x3

n−1
2

, n+1
2

(1− θ1θ2)

+ (x1
n+1

2
, n+1

2
+ x2

n−1
2

, n+3
2

+ x3
n+1

2
, n+3

2
)(1− θ1)(1− θ2)

+ (x1
n+1

2
, n−1

2
+ x2

n−1
2

, n+1
2

+ x3
n+1

2
, n+1

2
)θ2(1− θ1) (2.115)

where x1
n+1

2
, n−1

2

+ x2
n−1

2
, n+1

2

= yn, x3
n+1

2
, n+1

2

= tn+1.

The transition equations for the remaining half of the recurrent states can be

expressed in a similar form. Therefore, the values of xk
ijs are determined only by
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the allocation of yn between x1
n
2
+1, n

2
−1 + x2

n
2

, n
2

and x2
n
2
−1, n

2
+1 + x1

n
2

, n
2

when n is even,

and the allocation of tn to x3
n+1

2
, n−1

2

and x3
n−1

2
, n+1

2

when n is odd. If we let

x1
n
2

, n
2

+ x2
n
2
−1, n

2
+1 = yn/2, when n is even (2.116)

x3
n−1

2
, n+1

2
= tn/2, when n is odd (2.117)

and solve equations (2.113)-(2.115), then, for n = 1, we obtain

x2
01 =(x00 + y1 + t2)θ2(1− θ1) +

1

2
(y2 + t3)(1− θ1)(1− θ2)

x1
10 =(x00 + y1 + t2)θ1(1− θ2) +

1

2
(y2 + t3)(1− θ1)(1− θ2) (2.118)

For n = 2, 3, . . ., if n is even, we get

x2
n
2
−1, n

2
+1 =

1

2
(yn + tn+1)θ2(1− θ1) (2.119)

x1
n
2
+1, n

2
−1 =

1

2
(yn + tn+1)θ1(1− θ2) (2.120)

x1
n
2

, n
2

=
1

2
yn − 1

2
(yn + tn+1)θ2(1− θ1) (2.121)

x2
n
2

, n
2

=
1

2
yn − 1

2
(yn + tn+1)θ1(1− θ2) (2.122)
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and if n is odd, we have

x2
n−1

2
, n+1

2
=

1

2
yn−1θ1θ2 + (yn + tn+1)θ2(1− θ1)

+
1

2
(yn+1 + tn+2)(1− θ1)(1− θ2)− 1

2
tn(1− θ1θ2) (2.123)

x1
n+1

2
, n−1

2
=

1

2
yn−1θ1θ2 + (yn + tn+1)θ1(1− θ2)

+
1

2
(yn+1 + tn+2)(1− θ1)(1− θ2)− 1

2
tn(1− θ1θ2) (2.124)

This completes the allocation. Note that tn 6= 0 only when n is equal to n∗ + 1,

n∗+2, and/or n∗+3, depending on the value of ∆. When tn+1 = 0, it automatically

disappears from the right hand sides of (2.118)-(2.124). From the group transition

equations, we have yn ≥ tn+1ρ
′/δ′, and it is easy to verify that all states have

nonnegative assignments and the transition equations are also satisfied in this case.

Therefore, there always exists a feasible allocation to satisfy all of the transition

equations with yns defined through this allocation scheme.

2.8.3 The Proof of Theorem 2.3

In a convex optimization problem, where the inequality constraints are convex and

the equality constraints are affine, if x∗ is such that there exists a set of Lagrange

multipliers which together with x∗ satisfy the KKT conditions, then x∗ is a global

minimizer for the problem [26][27]. In the first step, we have a linear objective

function and linear constraints. Therefore, if we prove that the point achieved by

the assignment satisfies the KKT conditions, then we can say that it is the global
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minimizer for our problem.

In the allocation scheme, if ∆ = yn∗δρ/(δ + ρ), then it is easy to prove

that the resulting allocation is optimal, since every yn, n < n∗ achieves its max-

imum possible value. However, this is not the case when ∆ 6= yn∗δρ/(δ + ρ),

because the second to last nonzero yn does not achieve its maximum. In the

following, we prove that our allocation is optimal for this case as well. Define

y = [y1, y2, . . . , y2N−1, t2, . . . , tN−1, t2N ]. Then, the linear equality constraints, in-

cluding the 2N group transition equations and the sum constraint can be written

as a (2N + 1)× 2(2N − 1) matrix form as follows




1 0 0 · · · 0 1 0 0 · · · 0

−δ 1 0 · · · 0 ρ 1 0 · · · 0

0 −δ 1 · · · 0 0 ρ 1 · · · 0

...
. . .

...
. . .

0 0 0 · · · 1 0 0 0 · · · 1

0 0 0 · · · −δ 0 0 0 · · · ρ

1 1 1 · · · 1 0 0 0 · · · 0




yT=




x00η

x00δ

0

...

0

0

Ψ




which we write equivalently as,

AyT = b (2.125)

by defining

bT =

(
x00η x00δ(1 + η) x00δ

2(1 + η) · · · x00δ
2N−1(1 + η) Ψ

)T

(2.126)
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and

A =




1 0 0 · · · 0 1 0 0 · · · 0

0 1 0 · · · 0 ρ + δ 1 0 · · · 0

0 0 1 · · · 0 (ρ + δ)δ ρ + δ 1 · · · 0

...
. . .

...
. . .

0 0 0 · · · 1 (ρ + δ)δ2N−3 (ρ + δ)δ2N−4 (ρ + δ)δ2N−5 · · · 1

0 0 0 · · · 0 (ρ + δ)δ2N−2 (ρ + δ)δ2N−3 (ρ + δ)δ2N−4 · · · ρ + δ

1 1 1 · · · 1 0 0 0 · · · 0




(2.127)

The Lagrangian is expressed as

L(y,λ,µ) = cTy − λT (Ay − b)− µTy (2.128)

where c = [1, 2, · · · , 2N − 1, 0, 0, · · · , 0], λ ∈ R2N+1 and µ ∈ R4N−2.

We need to prove that there exists a set of λ∗, µ∗ associated with our allocation

y∗, such that they satisfy

µ∗ ≥ 0, µ∗Ty∗ = 0 (2.129)

y∗ ≥ 0, Ay∗T = b (2.130)

c = AT λ∗ + µ∗ (2.131)

Consider the y we obtained with the algorithm. Let us consider the case

when ∆ < yn∗δρ/(δ + ρ) first. The allocation indicates that yn > 0 only when
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n = 1, 2, . . . , n∗ + 1, and tn > 0 only when n = n∗ + 1, n∗ + 2. Because of the

complementary slackness in (2.129), we obtain

µn = 0, n = 1, 2, . . . , n∗ + 1, n∗ + 2N − 1, n∗ + 2N (2.132)

Plugging this into (2.131), and solving the equations, we have

λn =
1

ρ + 1
+ n− n∗ − 1, n = 1, 2, . . . , n∗ + 1

λ2N+1 =
ρ

ρ + 1
+ n∗

µn+2N−2 = −
(

λn−1 + (ρ + δ)
n∗−1∑
i=n

λiδ
i−n + ρδn∗−nλn∗

)
,

n = 2, 3, . . . , n∗ (2.133)

Thus, we have λn < 0 when n ≤ n∗, which guarantees the positiveness of {µn}n∗+2N−2
n=2N .

We also have

2N∑
i=n∗+2

λiδ
i−n∗−2 = − 1

(ρ + δ)(ρ + 1)
(2.134)

and

µn =
1

ρ + 1
+ n− n∗ − 1− λn, n = n∗ + 2, . . . , 2N − 1

µn = −
(

λn−1 + (ρ + δ)
2N∑
i=n

λiδ
i−n

)
, n = n∗ + 2N + 1, . . . , 4N − 2 (2.135)

We can always find a set of negative {λi}2N
i=n∗+2 to satisfy (2.134). Since they are all
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negative, this guarantees that {µn}2N−1
n=n∗+2 and {µn}4N−2

n=n∗+2N+1 are positive. There-

fore, at the point y∗, we can always find a set of multipliers satisfying all of the

KKT constraints. This proves that the allocation our algorithm gives is a global

minimizer.
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Chapter 3

Delay Minimization in a Symmetric Multiple Access Channel

3.1 Introduction

Traditional information theory investigates transmission problems from a physical

layer perspective. In the simplified source-channel-destination model, information-

theoretic approaches assume the availability of an infinite number of bits at the

transmitter before the transmission starts. The burstiness of the arrivals and the

associated issue of delay are mostly ignored. In contrast, network theory gives so-

phisticated analysis of network layer issues, such as random arrivals and network de-

lay. However, in network-theoretic approaches, the underlying physical layer model

is usually very simplified, e.g., in most approaches simultaneous transmissions are

not allowed, and even when they are allowed, a collision channel model is used,

which is too simplistic to capture what can be achieved in the physical layer from

an information-theoretic perspective.

In recent years, many authors have taken efforts to bridge the gap between

information theory and network theory [1]. Reference [22] addresses the delay issue

for an additive Gaussian noise multiple access channel (MAC). Packets with random

sizes arrive according to a Poisson process, and are transmitted out immediately

with a fixed power. At the physical layer, the receiver decodes a packet while

treating other transmissions as noise. Consequently, the service rate becomes a
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function of the number of active users in the system. Reference [22] derives the

relationship between the average delay and a fixed probability of error requirement.

References [2], [4] and [5] consider a discrete-time model for a power-constrained

single-user communication channel. Random arrivals queue at the transmitter to

wait to be transmitted. In each slot, the transmitter adapts its service rate, i.e.,

transmission rate, according to the queue length and the channel state, as well as the

average power constraint, to minimize the average delay. Reference [2] formulates

the problem as a dynamic programming problem and develops a delay-power tradeoff

curve. References [4] and [5] determine some structural properties of the optimal

power/rate allocation policy.

Reference [9] uses a continuous-time queueing model to model the network

layer behavior of a multiple access system. The packets arrive at the transmitters

according to independent Poisson processes, and the packet lengths are exponen-

tially distributed. The physical layer is modeled as an additive Gaussian noise

channel, whose capacity region is a pentagon for the two-user case. The goal of [9]

is to select an operating rate point inside the MAC capacity region, as a function

of the current queue lengths, in order to minimize the average packet delay. The

transmission rates selected from the capacity region serve as the current service

rates of the queues. Reference [9] develops the longer-queue-higher-rate (LQHR) al-

location strategy, which selects an extreme point in the capacity region of the MAC

(i.e., a corner point of the pentagon). Reference [9] shows that LQHR minimizes

the average delay of a symmetric system. Reference [10] extends [9] to a poten-

tially asymmetric setting, and proves that the delay-optimal policy has a threshold
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(switch) structure. Reference [11] develops a policy named “modified LQHR” which

works at a corner point of the pentagon when the queue lengths are different, and

switches to the mid-point of the dominant face of the pentagon when the queue

lengths become equal. The “modified LQHR” algorithm is shown to minimize the

average bit delay in the system. The third chapter of [12] extends “modified LQHR”

to an M -user scenario.

In this chapter, we consider a similar delay minimization problem. In or-

der to track the relationship between the average delay and the transmission rates

more accurately and also to consider more general arrivals, we adopt a discrete-

time queueing model and consider the problem from a bit perspective rather than a

packet perspective. We partition the time into small slots. In each slot, bits arrive

at the transmitters randomly according to some general distribution. At the be-

ginning of each slot, we allocate transmission rates from within the MAC capacity

region to the users, based on their current queue lengths, to minimize the average

delay. In our model, the number of bits transmitted in each slot is equal to the

product of the transmission rate and the number of channel uses in each slot. We

formulate the problem as an average cost Markov decision problem (MDP). We first

analyze the corresponding discounted cost MDP, and obtain some properties of the

value function. Based on these properties, we prove that the delay optimal rate

allocation policy for this discounted MDP is to equalize the queue lengths in each

slot as much as possible. We then prove that this queue balancing policy is optimal

for the average cost MDP as well.

Essentially, both the “modified LQHR” and our policy aim to balance the
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queue lengths as well as to maximize the throughput at any time. However, the

continuous model in [11, 12] allows the rates to be changed at any time, while our

model allows us to make decisions only at the beginning of each slot. Consequently,

the resulting optimal policies are different: The operating point of the “modified

LQHR” algorithm is either one of the corner points or the mid-point of the dominant

face of the pentagon, while the queue balancing policy here may operate at any point

on the dominant face of the pentagon.

3.2 System Model and Problem Formulation

3.2.1 Physical Layer Model

We consider a two-user AWGN multiple access system

Y = X1 + X2 + Z (3.1)

where Xi is the signal of user i, and Z is a Gaussian noise with zero-mean and

variance σ2. In this multiple access system, the capacity region is given by [24]

R1 ≤ 1

2
log

(
1 +

P1

σ2

)
, C1 (3.2)

R2 ≤ 1

2
log

(
1 +

P2

σ2

)
, C2 (3.3)

R1 + R2 ≤ 1

2
log

(
1 +

P1 + P2

σ2

)
, Cs (3.4)
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The capacity region is a pentagon, as shown in Figure 3.1. In this chapter we

consider a symmetric two-user system, where P1 = P2 = P . Our results can be

generalized to the symmetric K-user case.

Cs

Cs

R2

C2

R1C1

Figure 3.1: The capacity region for a two-user multiple access system.

3.2.2 Medium Access Control Layer Model

In the medium access control layer, we assume that the bits arrive at the transmitters

in random numbers in each slot, see Figure 3.2. Let a1[n] and a2[n] denote the

number of bits arriving at the first and the second transmitter, respectively, during

time slot n. Here, a1[n] and a2[n] are two independent random variables with a

common distribution Fa. We assume that the arrivals are i.i.d. in n.

There is an infinite capacity buffer at each transmitter to store the bits. Let

q1[n] and q2[n] denote the number of bits in the first and the second buffer, re-

spectively, at the beginning of the nth slot. At the beginning of each slot, the

transmitters decide on how many bits to transmit in this slot based on the current

lengths of the two queues. Let d1[n] and d2[n] denote the number of bits to be
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receiver

a1[n]

a2[n]

user 2

user 1

Figure 3.2: System model.

transmitted from the first and the second queue, respectively, in the nth time slot.

Let us define q[n] , (q1[n], q2[n]), d[n] , (d1[n], d2[n]), and a[n] , (a1[n], a2[n]).

Then, the queue lengths evolve according to

q[n + 1] = (q[n]− d[n])+ + a[n] (3.5)

where (x)+ denotes max(0, x).

If the number of channel uses in a slot is τ , the transmission rate of user i

becomes Ri[n] = di[n]/τ . Consequently, the actual rates of the users that need to be

selected from the capacity region described by (3.2)-(3.4), are proportional to d1[n]

and d2[n], and therefore, (d1[n], d2[n]) can be viewed as (scaled) rates. In order to

simplify the notation, we will call di[n] = Ri[n]τ as the rate of user i for slot n. The

corresponding scaled capacity region that (d1, d2) should reside in is described by

(3.2)-(3.4) by multiplying right hand sides by τ .

3.2.3 Formulation as an MDP

According to Little’s law [25], minimizing the average delay in the system is equiv-

alent to minimizing the average number of bits in the system, which is the average
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sum of queue lengths. If the system starts from state q[1], the delay minimization

problem is to obtain optimal policy d[n], n = 1, 2, . . . to minimize

lim sup
N→∞

1

N
E

[
N∑

n=1

(q1[n] + q2[n])

]
(3.6)

Therefore, this problem can be formulated as a standard average cost MDP. The

state space consists of all possible queue length vectors, while the policy space is the

set of operating points within the multiple access capacity region. In principle, the

values of qi[n], di[n] can only be integers, however, for practical applications, one bit

is a fine enough precision that we can use a fluid model to reasonably approximate

the original discrete-state system.

3.3 The Discounted Cost Problem

Instead of considering the minimization problem with the average cost criterion in

(3.6) directly, we first consider the following minimization problem with a total

discounted cost criterion

E

[ ∞∑
n=1

βn(q1[n] + q2[n])

]
(3.7)

where 0 < β < 1 is the discount factor. We will return to the average cost criterion

in (3.6) by letting β go to 1.

Let us define V β(q) to be the total discounted cost starting from an initial

state q. Then, for the optimization problem with criterion (3.7), V β(q) must satisfy
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the following optimality condition [28]

V β(q) = min
d∈C

{
q1 + q2 + βE

[
V β((q− d)+ + a)

]}
(3.8)

We will first start with a discounted cost problem over finite horizon N . For

this problem with an initial state q, the dynamic programming formulation is

V β
N (q) = min

d∈C

{
q1 + q2 + βE

[
V β

N−1((q− d)+ + a)
]}

(3.9)

with V β
0 (·) = 0. Since the instantaneous cost q1[n] + q2[n] is positive, and the policy

space is finite [28]

V β
N (q) → V β(q) as N →∞ (3.10)

where V β(·) is the unique bounded solution of (3.8).

In the following, we will analyze the discounted cost problem and obtain struc-

tural properties of the value function V β(q). We will find these structural properties

of V β(q) by examining the structural properties of the finite-horizon discounted cost

problem V β
N (q).

Lemma 3.1 V β(q) is increasing in q1 and q2.

Proof: From (3.10), we know that proving V β(q) is increasing in q1 and q2

is equivalent to proving V β
N (q) is increasing in q1 and q2 for every N . We prove this

through induction. First, when N = 0, 1, this is trivially true. Next, we assume

66



that it is true for N − 1. We will prove that V β
N (q1 + 1, q2) > V β

N (q1, q2) for any

positive (q1, q2).

V β
N (q1 + 1, q2)

= q1 + q2 + 1 + βE
[
V β

N−1((q1 + 1− d∗1)
+ + a1, (q2 − d∗2)

+ + a2)
]

(3.11)

≥ q1 + q2 + 1 + βE
[
V β

N−1((q1 − d∗1)
+ + a1, (q2 − d∗2)

+ + a2)
]

(3.12)

> min
d∈C

{
(q1 + q2) + βE

[
V β

N−1

(
(q1 − d1)

+ + a1, (q2 − d2)
+ + a2)

]}
(3.13)

= V β
N (q1, q2) (3.14)

where (d∗1, d
∗
2) in (3.11) is the point within the capacity region that minimizes V β

N (q1+

1, q2), and (3.12) follows from the assumption that V β
N−1(q1, q2) is increasing for every

q1. Therefore, V β
N (q) is increasing in q1 for every N . Using (3.10), this implies that

V β(q) is increasing in q1. Now, following the same procedure for q2, we can prove

that V β(q) is increasing in q2 as well. 2

Lemma 3.2 In (3.8), the optimal operating point d must be on the boundary of the

capacity region C.

Proof: For an initial state q, if the optimal operating point d = (d1, d2) is

not on the boundary of the capacity region but on the interior of the capacity region,

then, we can always find points d̄ = (d′1, d2), d̃ = (d1, d
′
2) that are on the boundary

of the capacity region with d′1 > d1, d′2 > d2. Note that d̄ ≥ d and d̃ ≥ d. Then,
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by Lemma 3.1, we have

E
[
V β((q− d̄)+ + a)

] ≤ E
[
V β((q− d)+ + a)

]
(3.15)

and

E
[
V β((q− d̃)+ + a)

]
≤ E

[
V β((q− d)+ + a)

]
(3.16)

This contradicts the optimality of d. Thus, d must be on the boundary of the

capacity region. 2

Lemma 3.3 V β(q) is symmetric and jointly convex in q.

Proof: The symmetry property can be proved by induction. Note that V β
N (q)

is symmetric for N = 0, 1. Assuming that V β
N−1(q) is symmetric, it is easy to see

that V β
N (q) would be symmetric. Now, taking the limit N → ∞, it follows that

V β(q) is symmetric.

We prove the convexity of V β(q) through induction as well. When N = 0, 1, it

is trivial to see that V β
N (q) is convex in q. Next, we assume that V β

N−1(q) is convex

in q. Given two different queue length vectors x , (x1, x2) and y , (y1, y2), we

68



have

λV β
N (x) + (1− λ)V β

N (y)

= λ(x1 + x2) + (1− λ)(y1 + y2) + λβE
[
V β

N−1((x− b∗)+ + a)
]

+ (1− λ)βE
[
V β

N−1((y − d∗)+ + a)
]

(3.17)

≥ λ(x1 + x2) + (1− λ)(y1 + y2)+

βE
[
V β

N−1

(
λ(x− b∗)+ + (1− λ)(y − d∗)+ + a

)]
(3.18)

≥ λ(x1 + x2) + (1− λ)(y1 + y2)+

βE
[
V β

N−1

((
λ(x− b∗) + (1− λ)(y − d∗)

)+
+ a

)]
(3.19)

≥ min
d∈C

{
λ(x1 + x2) + (1− λ)(y1 + y2)+

βE
[
V β

N−1

((
λx + (1− λ)y − d

)+
+ a

)]}
(3.20)

= V β
N (λx + (1− λ)y) (3.21)

where b∗ and d∗ are the minimizers for V β
N (x) and V β

N (y), respectively. Here, (3.18)

follows from the assumption of the convexity of V β
N−1(·), (3.19) follows from the

convexity of the function (·)+, and (3.20) is valid because b∗,d∗ ∈ C, and C is a

convex set, implying λb∗ + (1− λ)d∗ ∈ C. 2

Before we move on to the next structural property of the function V β(q), we

need to introduce the concepts of majorization and Schur-convexity.

Definition 3.1 ([29]) Given x,y ∈ Rd, we say that x majorizes y, and we write
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x º y, if

k∑
i=1

xi ≥
k∑

i=1

yi, k ∈ {1, . . . , d− 1} (3.22)

d∑
i=1

xi =
d∑

i=1

yi (3.23)

where xi and yi are the ith largest elements of x and y, respectively.

Definition 3.2 ([29]) A function f : Rd → R is said to be Schur-convex when

x º y implies f(x) ≥ f(y).

A function is Schur-convex if it is symmetric and convex [29]. Using Lemma 3.3,

we conclude that V β(q) is Schur-convex. However, given that x º y, we cannot di-

rectly claim that V β(x+a) ≥ V β(y+a) for every a. This is because the randomness

of a may reverse the majorization relationship between x + a and y + a. However,

provided that V β(q) is symmetric and convex, and a has i.i.d. components, we can

prove that E[V β(x + a)] ≥ E[V β(y + a)] if x º y.

Lemma 3.4 For i.i.d. ais x º y implies E[V β(x + a)] ≥ E[V β(y + a)].

Proof: When a1 = a2, clearly, x + a º y + a, and V β(x + a) ≥ V β(y + a).

When a1 6= a2, we evaluate the functions V β(x+a) and V β(y+a) at two symmetric

points (c1, c2) and (c2, c1). In order to simply the notation, for any vector v =

(v1, v2), we define v̌ = (v2, v1). Because ais are i.i.d., the two points c, č have the

same probability mass. Without loss of generality, we assume c1 > c2, x1 ≥ x2,

y1 ≥ y2. Since x º y, we have x1 ≥ y1 ≥ y2 ≥ x2.
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Consider four vectors (x + c), (x̌ + c), (y + c), (y̌ + c). We see that they are

four points on the line q1 +q2 = x1 +x2 +c1 +c2. Moreover, since x1 ≥ y1 ≥ y2 ≥ x2,

(x+c) and (x̌+c) are the two outer points, and the mid-point of these two points is

the same as the mid-point of the other two points. Since V β(q) is convex, we have

V β(x + c) + V β(x̌ + c) ≥ V β(y + c) + V β(y̌ + c) (3.24)

We also note that because of the symmetry property of V β(q) we have V β(x̌+ c) =

V β(x+ č). Similarly, we have V β(y̌+c) = V β(y+ č). Therefore, (3.24) is equivalent

to

V β(x + c) + V β(x + č) ≥ V β(y + c) + V β(y + č) (3.25)

Integrating over a1, a2, we get

E[V β(x + a)] =

∫

a1>a2

V β(x + a)+

∫

a1<a2

V β(x + a)+

∫

a1=a2

V β(x + a) (3.26)

=

∫

a1<a2

(V β(x + a) + V β(x + ǎ)) +

∫

a1=a2

V β(x + a) (3.27)

≥
∫

a1<a2

(V β(y + a) + V β(y + ǎ)) +

∫

a1=a2

V β(y + a) (3.28)

= E
[
V β(y + a)

]
(3.29)

where the inequality follows from (3.25). 2

We now combine Lemmas 3.1 through 3.4 to obtain the main result of this

chapter which is given in Theorem 3.1.
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Theorem 3.1 To minimize the average delay, in each slot, the transmitters should

choose an operating point on the dominant face of the capacity region that equalizes

the queue lengths. If no such operating point exists, the transmitters should operate

at a corner point which minimizes the queue length difference.

Proof: We know from Lemma 3.2 that, in each slot, the transmitters must

operate on the dominant face (sum-rate constrained face) of the multiple access

capacity region.

First, we prove that if there exists a point on the dominant face that equalizes

the queue lengths, then this point must be the optimal operating point. Given queue

lengths q = (q1, q2), let d = (d1, d2) be such a point, i.e., (q1 − d1)
+ = (q2 − d2)

+.

If (q1 − d1)
+ = (q2 − d2)

+ = 0, then, clearly, d is the optimal operating point. We

consider the case when q1 − d1 = q2 − d2 > 0. To prove the claim by contradiction,

let us assume that d is not optimal, but b = (b1, b2) is the optimal point on the

dominant face. Since both d and b are on the dominant face of the capacity region:

d1 + d2 = b1 + b2. Since with a fixed sum, the vector with identical components is

majorized by any other vector [29], we have (q1 − b1, q2 − b2) º (q1 − d1, q2 − d2).

Without loss of generality, we assume q1 − b1 > q2 − b2, i.e., q1 − b1 > q1 − d1 =

q2−d2 > q2−b2. If q2−b2 ≥ 0, we have ((q1−b1)
+, (q2−b2)

+) º ((q1−d1)
+, (q2−d2)

+),

and using Lemma 3.4, this implies

E[V β((q− b)+ + a)] ≥ E[V β((q− d)+ + a)] (3.30)
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On the other hand, if q2 − b2 < 0, we have

E[V β((q− b)+ + a)] = E[V β((q1 − b1) + a1, a2)] (3.31)

≥ E[V β(q1 − d1 + a1, d1 − b1 + a2)] (3.32)

= E[V β(q1 − d1 + a1, b2 − d2 + a2)] (3.33)

> E[V β(q1 − d1 + a1, q2 − d2 + a2)] (3.34)

= E[V β((q− d)+ + a)] (3.35)

where (3.32) follows from (q1 − b1, 0) º (q1 − d1, d1 − b1) and Lemma 3.4, (3.33)

follows from the fact that d1 + d2 = b1 + b2, and (3.34) is valid because we assumed

that q2 − b2 < 0, thus q2 − d2 > b2 − d2, and we apply Lemma 3.1. The results

in (3.30) and (3.35) contradict the optimality of b, and therefore, d must be the

optimal operating point.

Next, we prove that if there does not exist a point on the dominant face of the

capacity region which equalizes the queue lengths, then the optimal operating point

must be one of the corner points. Let us assume that the optimal operating point

d = (d1, d2) is not a corner point, and without loss of generality, let us assume that

(q1− d1)
+ > (q2− d2)

+. If q1− d1 > q2− d2 ≥ 0, we can always find a small enough

δ > 0, such that the operating point (d1 +δ, d2−δ) is also on the dominant face, and

q1−(d1 +δ) > q2−(d2−δ) > 0. Since (q1−d1, q2−d2) º (q1−(d1 +δ), q2−(d2−δ)),

based on Lemma 3.4, we have E[V β((q− d)+ + a)] ≥ E[V β(q1 − (d1 + δ) + a1, q2 −

(d2 − δ) + a2)], and this contradicts the optimality of d. On the other hand, if
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q1−d1 > 0 > q2−d2, we can also find a small enough δ > 0, such that q1−(d1+δ) >

0 ≥ q2− (d2− δ), and (d1 + δ, d2− δ) is on the dominant face as well. Therefore, we

have 0 < q1 − (d1 + δ) < q1 − d1, and (q2 − d2)
+ = (q2 − d2 + δ)+ = 0. According to

Lemma 3.1, we have V β(q1−d1 +a1, a2) > V β(q1− (d1 + δ)+a1, a2) for any value of

a1 and a2. Therefore, E[V β(q1−d1 +a1, a2)] > E[V β(q1− (d1 +δ)+a1, a2)], and this

contradicts the optimality of d. Hence, the optimal operating point, in this case,

must be one of the corner points. 2

Using Theorem 3.1, we express the optimal operating point d∗ = (d∗1, d
∗
2) as a

function of the queue lengths q = (q1, q2)

d∗ =





(
q1−q2+Cs

2
, q2−q1+Cs

2

)
, |q1 − q2| < 2C1 − Cs

(C1, Cs − C1), q1 − q2 > 2C1 − Cs

(Cs − C2, C2), q1 − q2 < Cs − 2C1

This optimal rate allocation scheme works on the dominant face of the capacity

region and therefore maximizes the number of bits transmitted in each slot; and,

at the same time, it tries to balance the queue lengths as much as possible, which,

in turn, minimizes the probability that any one of the queues becomes empty in

the upcoming slots. When a queue becomes empty, the system resources cannot be

utilized most efficiently, as even though the user with an empty queue has power to

transmit, it does not have any bits to transmit.

Finally, while we developed Theorem 3.1 for the discounted cost criterion,

we can find a sub-sequence of discount factors βn such that βn → 1 as n → ∞.
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Therefore, the policy we developed is optimal for the average cost problem as well.

3.4 Numerical Results

We consider a two-user AWGN multiple access channel, with C1 = C2 = 20 bits/slot

and Cs = 30 bits/slot. The number of bits arriving at the transmitters in each slot

follows a Poisson distribution with parameter λ. We compare two policies: the

optimal policy developed in this chapter which tries to balance the queue lengths in

each slot and the LQHR algorithm developed in [9] which chooses a corner point of

the capacity region and allocates the larger rate to the longer queue. We plot the

average delay versus λ in Figure 3.3.
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Figure 3.3: Average delay versus arrival arrival rate.

We observe that when λ is small, both the LQHR policy and the queue balanc-

ing policy yield delay close to one slot, and the difference between these two policies
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is insignificant. This is because, the system has a light traffic, and both policies

empty both queues in almost all slots. When λ becomes very close to the boundary

of the capacity region, the average delay grows rapidly under both policies, and

again the difference between the two policies becomes insignificant. This is because,

the system has a heavy traffic, and the probability that the queues become empty is

very small under both policies, and the actual number of departures in each slot is

almost the same for both policies. When λ is neither very small nor very large, the

queue balancing policy outperforms the LQHR policy significantly. This is because,

equalizing the queue lengths minimizes the probability that one queue is large while

the other queue is empty or close to empty, and consequently utilizes the system

resources more efficiently.

3.5 Conclusions

In this chapter, we investigated the delay-optimal rate allocation problem in a sym-

metric MAC. We formulated the problem as a discrete-time MDP, and analyzed the

properties of the value function for the corresponding discounted cost MDP. Based

on these properties, we proved that the delay optimal rate allocation policy is to

equalize the queue lengths in each slot as much as possible.
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Chapter 4

Delay Minimization with a General Pentagon Rate Region

4.1 Introduction

In Chapter 3, we investigate the delay-optimal rate allocation in a symmetric AWGN

multiple access channel (MAC), where the underlying capacity region is a symmetric

pentagon. We prove that the queue length balancing policy, which minimizes the

queue length difference while working on the dominant face of the capacity region

in each slot, minimizes the average bit delay in the system. The goal of this chapter

is to use a general pentagon shaped underlying rate region (hence, non-time-divided

transmissions) and determine the optimal rate allocation policy from this available

rate region, as a function of the current queue sizes of the users, to minimize the

delay.

Delay minimization for a single-user communication channel has been inves-

tigated in [2, 4, 5], where the structural properties of the optimum power/rate

allocation policies, and relationships between average power and delay have been

determined for fading channels, using dynamic programming and Markov decision

process (MDP) formulations. In these works, due to the large number of possible

rate/power choices at each channel state, it has been almost impossible to get ana-

lytical closed-form optimal solutions. For multi-user systems, even the properties of

the optimum rate allocation have been impossible to obtain, except for special rate
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regions.

Reference [9] considers a symmetric Gaussian MAC, and proves that in order

to minimize the packet delay, the system should operate at an extreme point of

the MAC capacity region, and the larger rate should be given to the user with

the larger queue size, hence the name of the proposed policy: longer-queue-higher-

rate (LQHR). Reference [10] generalizes [9] to a potentially asymmetric setting, and

proves that the delay-optimal policy has a switch structure, i.e., the queue state

space should be divided into two, and in each region, the system should operate

at one of the two corner points. However, unlike the symmetric case in [9], the

explicit form of the switch curve is unknown. Reference [11] develops a policy

named “modified LQHR” which works at a corner point of the pentagon when the

queue lengths are different, and switches to the mid-point of the dominant face of the

pentagon when the queue lengths become equal. The “modified LQHR” algorithm

is shown to minimize the average bit delay in a symmetric system. The third chapter

of [12] extends “modified LQHR” to a symmetric M -user scenario.

From the literature above, we observe that the explicit solution of the queue-

length based delay-minimization problem is known only for the symmetric Gaussian

MAC, where the underlying rate region is a symmetric pentagon. Even for the

asymmetric pentagon, the delay-minimizing policy is not known. The reason for

this is that delay-minimization requires maximizing the throughput at the current

time as well as maximizing the throughput in the future. These are often conflicting

objectives. The first objective requires maximizing the sum-rate while the second

objective requires balancing the queue lengths. Unbalanced queue lengths increases
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the likelihood of one of the queues becoming empty, which results in inefficiency

of transmission, as it decreases the future achievable sum-rates. Thanks to the

special properties of the capacity region of the symmetric Gaussian MAC, these two

objectives can be achieved simultaneously.

However, having a symmetric pentagon as a capacity region is a peculiarity

of the symmetric Gaussian MAC. The capacity region of a general (non-Gaussian)

MAC is not a pentagon, it is a union of pentagons [24]. Likewise, the capacity regions

of the fading Gaussian MAC [30], the Gaussian MAC with multiple antennas [31], or

the Gaussian MAC with user cooperation [32, 33] are not pentagons. In this chapter,

we will consider a two-user communication channel with a general pentagon rate

region. Different from the Gaussian MAC capacity region, the pentagon we assume

does not have a 45◦ dominant face. The motivation to study such a rate region is

two-fold: First, it is the simplest extension of the rate regions studied so far, that

changes a characteristic of the rate region in a fundamental way. This characteristic

is that the two corner points on the dominant face do not have equal sum-rates.

Therefore, in this example rate region, we are able to observe the tension between

throughput optimality, i.e., the desire to work at the point that yields the largest

sum-rate, and balancing the queue lengths, i.e., the desire to favor the longer queue

over the shorter one, more explicitly. Secondly, this asymmetric pentagon with a

non-45◦ dominant face can be seen as a crude approximation of a general rate region,

as shown in Figure 4.1. That is, we can imagine this asymmetric pentagon to be

the largest such shape fitting in a general rate region, which may belong to a MAC

with fading, multiple antennas, or cooperation.
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Figure 4.1: The asymmetric pentagon rate region with a non-45◦ dominant face.
Corner point 2 has larger sum-rate, i.e., a2 + b2 > a1 + b1.

Our goal in this chapter is to assign rate pairs to users from the underlying rate

region based on their current queue lengths in order to minimize the average delay in

the system. We formulate the problem as an MDP and prove that the delay-optimal

policy should operate at one of the two corner points of the rate region. Through

value iteration, we prove that a switch curve structure exists in the queue state space.

Next, we prove that for the discounted-cost MDP, the switch curve has a limit on

one of the queue lengths, i.e., when one of the queue lengths exceeds a threshold,

the transmitters always operate at the corner point which has the larger sum-rate

(see Figure 4.5). That is, the delay-optimal policy favors throughput-optimality

(i.e., larger sum-rate) unless the first queue gets close to empty, in which case, the

policy favors balancing queue lengths. Our result has two practical implications:

First, it gives a partial analytical characterization for the delay-optimal switch curve.

Secondly, it implies that we can operate the queues partially distributedly, in that,

if the current queue length of the first user is larger than the limit, then this user

does not need to know the current queue length of the other user in order to decide
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about the rate point at which it should operate on the rate region.

Finally, we note that, according to the optimal policy, always operating at

the maximum sum-rate point is not optimal. With the goal of maximizing the

current sum-rate as well as the sum-rate in the future, depending on the current

queue lengths, the optimal policy may switch from the maximum sum-rate point

to the rate point that favors balancing the queue lengths. This action minimizes

the probability that any one of the queues becomes empty in the future, hence

maximizes the overall transmission rates, and consequently, minimizes the overall

delay. Therefore, we observe that, the optimal rate allocation policy trades some

of the instantaneously achievable sum-rate in favor of balancing the queue lengths,

with the goal of minimizing the overall delay.

4.2 System Model and Problem Formulation

We consider a communication system with two transmitters, and one receiver, as in

Figure 4.2. The underlying rate region is a general pentagon as shown in Figure 4.1.

We denote the two corner points of the rate region as points 1 and 2, with rate

pairs (a1, b1) and (a2, b2), respectively. Without loss of generality, we assume that

a2 + b2 > a1 + b1, i.e., that point 2 has a larger sum-rate. We denote the difference

between the two sum-rates by δ = a2 + b2 − (a1 + b1).

In the medium access control layer, we assume that packets arrive at the

source nodes according to independent Poisson processes with parameters λ1 and

λ2, see Figure 4.2. We also assume that the packet lengths are independent and
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identically distributed exponential random variables with unit mean. Therefore, for

a given transmission rate r, the transmission time for a packet is an exponential

random variable with parameter r. There is a buffer with infinite capacity at each

transmitter, storing the packets until they are transmitted. Let q1(t), q2(t) denote

the number of packets in the two buffers at time t. The transmitters determine

their transmission rates, which are the components of the rate vector r, where r is

in the rate region, based on the current queue length vector q(t) = (q1(t), q2(t)).

Therefore, on the medium access control layer, the queue lengths evolve according

to a continuous-time Markov chain, whose transition rates are determined by the

arrival and transmission rates.

λ2

user 1
receiver

q1(t)

q2(t)

λ1

user 2

Figure 4.2: The system model.

According to Little’s law [25], minimizing the average delay in the system is

equivalent to minimizing the average number of packets in the system. Assuming

that the system starts from state q(0), the delay minimization problem is to obtain

an optimal policy u, to minimize the long-term average cost:

lim sup
t→∞

1

t
E

[∫ t

0

q(s)Teds|q(0)

]
(4.1)
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where e is the vector of all ones.

Sampling the system at certain epoches, we can convert the original continuous-

time problem into a discrete-time problem [28]. Intuitively, we intend to sample the

system at any epoch when an arrival or departure occurs. However, because the

transition rates are different at different operating points, the sampling frequency

may be different for different states. In order to sample the system at a uniform

frequency, we adopt the normalization method in [34]. Since a2 + b2 is the maxi-

mum sum of transmission rates, the maximum total transition rate of the system

is λ1 + λ2 + a2 + b2, which we define as γ. Let us denote the transmission rates

of the users as r1 and r2. If r1 + r2 < a2 + b2, we assume that there is a third

transmitter transmitting a dummy packet with rate a2 + b2 − (r1 + r2). Then, we

sample at the epoches when either a packet arrives, or a packet (dummy or real)

departs. Therefore, the sampling frequency for all of the states will be the same, and

the corresponding discrete-time Markov chain will precisely represent the original

system.

After sampling and discretizing the continuous-time system, our goal will be

to choose r at every transition epoch to minimize the average delay. Let us denote

the indices of the transition epoches as n, n = 1, 2, . . .. Given the initial queue

lengths q0, the delay minimization problem is to determine the optimal policy that

minimizes:

lim sup
N→∞

1

N
E

[
N−1∑
n=0

q[n]Te|q[0] = q0

]
(4.2)
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Let us define Ai and Di to be an arrival or (potential) departure at the ith

queue, i = 1, 2. For example, A1q = (q1+1, q2), D1q = ((q1−1)+, q2). We first define

the corresponding discounted-cost problem with a discount factor β, and obtain the

dynamic programming formulation:

V β
N (q) = qTe+βγ−1

[
λ1V

β
N−1(A1q) + λ2V

β
N−1(A2q) (4.3)

+ min
r∈C

{
r1V

β
N−1(D1q) + r2V

β
N−1(D2q) + (a2 + b2 − r1 − r2)V

β
N−1(q)

}]

where C is the rate region from which rates r1 and r2 are chosen. As N → +∞,

V β
N (q) → V β(q), which is the unique solution of the optimality equation:

V β(q) = qTe + βγ−1

[
λ1V

β(A1q) + λ2V
β(A2q) (4.4)

+ min
r∈C

{
r1V

β(D1q) + r2V
β(D2q) + (a2 + b2 − r1 − r2)V

β(q)
}]

This is a two-dimensional MDP, which is difficult to solve in general. We first

determine some structural properties of the optimal policy.

Lemma 4.1 V β(q) is monotonically increasing in qi, i = 1, 2.

Proof: We prove this lemma using induction. First, since V β
0 (q) = 0, V β

N (q)

increases monotonically in q1 and q2 for N = 0. Then, we assume that this lemma
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holds for V β
N (q), N > 0, and prove it for N + 1. Since

V β
N+1(q) = qTe+βγ−1

[
λ1V

β
N (A1q) + λ2V

β
N (A2q) (4.5)

+ min
r∈C

{
r1V

β
N (D1q) + r2V

β
N (D2q) + (a2 + b2 − r1 − r2)V

β
N (q)

}]

Using the assumption that V β
N (q) is monotonically increasing in q1 and q2 and the

fact that qTe is also monotonically increasing in q1 and q2, in order to prove the

monotonicity of V β
N+1(q) in q1 and q2, we only need to show that

min
r∈C

{
r1V

β
N (D1q) + r2V

β
N (D2q) + (a2 + b2 − r1 − r2)V

β
N (q)

}
(4.6)

is monotonically increasing in q1 and q2. We compare the values of this expression

at two states A1q and q as follows

min
r∈C

{
r1V

β
N (D1A1q) + r2V

β
N (D2A1q) + (a2 + b2 − r1 − r2)V

β
N (A1q)

}
(4.7)

= r∗1V
β
N (D1A1q) + r∗2V

β
N (D2A1q) + (a2 + b2 − r∗1 − r∗2)V

β
N (A1q) (4.8)

≥ r∗1V
β
N (D1q) + r∗2V

β
N (D2q) + (a2 + b2 − r∗1 − r∗2)V

β
N (q) (4.9)

≥ min
r∈C

{
r1V

β
N (D1q) + r2V

β
N (D2q) + (a2 + b2 − r1 − r2)V

β
N (q)

}
(4.10)

where (r∗1, r
∗
2) minimizes the value of (4.6) at state A1q. Here the first inequality

follows from the assumption that V β
N (q) is monotonically increasing in q1 and q2, and

the second inequality follows from the fact that (r∗1, r
∗
2) may not be the minimizer

of the function in (4.10).
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Comparing (4.7) and (4.10), we conclude that the function in (4.6) is mono-

tonically increasing in q1 and q2 for N . Then, since this is true for any N , by taking

the limit V β(q) = limN→∞ V β
N (q) is monotonically increasing in q1 and q2. 2

Lemma 4.2 The optimal operating point must lie on the boundary of the rate re-

gion. In addition, it must be one of the two corner points.

Proof: The first half of Lemma 4.2 can be proved using Lemma 4.1. If the

optimal operating point (r1, r2) is not on the boundary but is in the interior of

the rate region, then, we can always find another operating point (r′1, r
′
2) on the

boundary, where r′1 ≥ r1, and r′2 ≥ r2. Then, based on Lemma 4.1, the resulting

value of (4.6) will be strictly smaller when operating at (r′1, r
′
2) compared to the

value when operating at (r1, r2). This contradicts with the optimality of (r1, r2).

Thus, the optimal operating point must lie on the boundary of the rate region.

Therefore, we only need to focus on the dominant face of the capacity region. Any

point (r1, r2) on the dominant face can be expressed as a linear combination of the

two corner points. Thus, we have

min
r∈C

{
r1V

β
N−1(D1q) + r2V

β
N−1(D2q) + (a2 + b2 − r1 − r2)V

β
N−1(q)

}

= min
ρ∈(0,1)

{
ρ

(
a1V

β
N−1(D1q) + b1V

β
N−1(D2q) + δV β

N−1(q)
)

+ (1− ρ)
(
a2V

β
N−1(D1q) + b2V

β
N−1(D2q)

)}
(4.11)

= a2V
β
N−1(D1q) + b2V

β
N−1(D2q)

+ min
{

(a1 − a2)V
β
N−1(D1q) + (b1 − b2)V

β
N−1(D2q) + δV β

N−1(q), 0
}

(4.12)
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where the last equality follows from the fact that the minimizer for a linear function

must be one of the end points. 2

Let T be an operator defined on real-valued functions as:

Tf(q) = qTe+βγ−1

[
λ1f(A1q) + λ2f(A2q) + a2V

β
N−1(D1q) + b2V

β
N−1(D2q)

+ min
{

(a1 − a2)f(D1q) + (b1 − b2)f(D2q) + δf(q), 0
}]

(4.13)

Therefore, the dynamic programming optimality equation can be written as

V β
N+1(q) = TV β

N (q) (4.14)

4.3 An Inductive Proof of the Switch Structure

In this section, we prove that the delay-optimal policy has a switch structure. In

order to prove that, we first define a set of functions with properties which are

sufficient to have a switch structure. We show that these properties are preserved

under the operator T . Since V β
0 = 0 is within this set, using induction, we will show

that V β will be within this set.

Let us define F to be the set of real-valued functions such that:

1. f(q) is increasing in q1 and q2.

2. f(q + x)− f(q) is increasing in q1 and q2 for any fixed x.

3. (a1 − a2)f(D1q) + (b1 − b2)f(D2q) + δf(q) is increasing in q1.

87



4. (a1 − a2)f(D1q) + (b1 − b2)f(D2q) + δf(q) is decreasing in q2.

Then, we have the following lemma.

Lemma 4.3 If f ∈ F , then Tf ∈ F .

The proof of Lemma 4.3, when δ = 0, can be found in [35]. When δ 6= 0, the

proof is different, and is provided in Appendix 4.7.

Lemma 4.4 V β
n (q) ∈ F for all n.

This lemma can be verified as follows. Since V β
0 = 0, V β

0 is in F . Using Lemma 4.3

recursively, we have V β
n (q) ∈ F for n = 0, 1, 2, . . ..

We now define the switch function:

sn(q1) = min
{
q2 :(a1 − a2)f(D1q) + (b1 − b2)f(D2q) + δf(q) ≤ 0

}
(4.15)

A generic switch function is shown in Figure 4.3. As we state in the following

theorem, the optimal rate assignment problem has a switch structure.

Theorem 4.1 The optimal policy for the discounted-cost MDP has a switch struc-

ture, i.e., sn(q1) is increasing for every n.

This theorem can be proved using properties 3) and 4) of V β
n (q). The switch curve

partitions the queue state space into two parts, each corresponding to one of the

two operating points (corner points of the pentagon). Following the arguments in

[10, 35], we can prove that the switch structure still exists when β → 1, i.e., for the

average cost problem.
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Figure 4.3: The switch structure of the optimal policy.

While we have proved that the optimal policy has a switch structure, i.e., that

the queue state space is divided into two, where in each region the optimal policy

operates the system at one of the two corner points, a closed form solution for this

switch curve is not known in general. The switch curve is explicitly known only for

one special case, which is the symmetric Gaussian MAC case, where the rate region

is a symmetric pentagon with a 45◦ dominant face. In that case the switch curve is a

45◦ straight line emanating from the origin, i.e., sn(q1) = q1, as shown in Figure 4.4.

This implies that the system operates at one of the corner points when q1 > q2,

and at the other corner point when q1 < q2. This results in the LQHR policy in

[9]. In the asymmetric Gaussian MAC case, where the rate region is an asymmetric

pentagon, but with still a 45◦ dominant face, even though it is known that a switch

curve structure exists, the explicit form of the switch curve is not known [10]. In

the next section, we will show that, in this more general case where we have an

asymmetric pentagon rate region with a non-45◦ dominant face, even though we do

not have an explicit formula for the switch curve, we show that we have a limit on
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the switch curve along one of the dimensions.

q2

q1

1

2

Figure 4.4: The switch structure for a symmetric Gaussian MAC.

4.4 The Limit on the Switch Curve

Although we have shown that the delay optimal policy has a switch structure, it is

difficult to obtain the exact switch curve analytically. In this section, we will show

that the switch curve is bounded in the q1-dimension. In other words, we can find a

threshold N , such that, for all q1 greater than this threshold, the optimal operating

point is the second corner point of the pentagon. In order to prove this, we start

from an initial function f0, which is linear in q1 + q2. We will use f0 to approximate

V β over a large portion of the state space. Specifically, this region includes states q

with q1, q2 > N , where N is a large enough number. Let us define:

f0(q) =
1

1− β
(q1 + q2) +

β

(1− β)2

λ1 + λ2 − a2 − b2

λ1 + λ2 + a2 + b2

(4.16)
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Clearly, f0 ∈ F . It is easy to verify that

Tf0(q)− f0(q) =





0 q1, q2 6= 0

β(a2+b2)
γ(1−β)

q = 0

β(a1+δ)
γ(1−β)

q1 = 0

βb2
γ(1−β)

q2 = 0

(4.17)

that is, Tf0 and f0 differ only on the boundary, and for all states away from the

boundary, these two functions have the same value. This is a key property that will

be essential in this section. Note that under the operator T , the difference caused

by the boundary only propagates into the interior region of the state space by one

layer in each iteration; rest of the states are not affected by the operator.

Let us define:

|f |k = max{f(q) : q1, q2 ≥ 0, q1 + q2 ≤ k} (4.18)

which is the maximum value of the function f in the region where the sum of the

queue lengths is less than k. Similarly, let us define

|f |∞ = sup{f(q) : q1, q2 ≥ 0} (4.19)

which is allowed to be infinity. Then, we have the following property.

Lemma 4.5 For ∀f, g ∈ F , |Tf − Tg|k ≤ β|f − g|k+1.
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Proof:

Tf(q)−Tg(q)

=βγ−1

[
λ1f(A1q) + λ2f(A2q)− λ1g(A1q)− λ2g(A2q)

+ min
{

a1f(D1q) + b1f(D2q) + δf(q), a2f(D1q) + b2f(D2q)
}

−min
{

a1g(D1q) + b1g(D2q) + δf(q), a2g(D1q) + b2g(D2q)
}]

(4.20)

Since |min{a, b} −min{c, d}| ≤ max{|a− c|, |b− d|}, we have

|Tf − Tg|k

≤ βγ−1

[
λ1|f − g|k+1 + λ2|f − g|k+1 (4.21)

+ max
{

a1|f − g|k−1 + b1|f − g|k−1 + δ|f − g|k, a2|f − g|k−1 + b2|f − g|k−1

}]

≤ βγ−1(λ1 + λ2 + a2 + b2)|f − g|k+1 (4.22)

= β|f − g|k+1 (4.23)

completing the proof. 2

Lemma 4.6 T nf0 converges to a function f as n → +∞, and Tf = f .
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Proof: Since f0 ∈ F , T nf0 ∈ F for any n > 0.

|T n+1f0 − T nf0|k ≤ β|T nf0 − T n−1f0|k+1 (4.24)

≤ βn|Tf0 − f0|k+n (4.25)

≤ βn+1(a2 + b2)

γ(1− β)
(4.26)

where (4.26) follows from (4.17). We observe that (4.26) does not depend on k,

thus, |T n+1f0−T nf0|∞ is uniformly bounded by (4.26). Since β < 1, the right hand

side of (4.26) forms a Cauchy sequence, therefore, T nf0 converges to a function f

pointwise. In other words, for any ε, we can find an N1(ε) such that when n ≥ N1(ε),

we have |f − T n−1f0|∞ ≤ ε. Thus, for such n, we have

|Tf − f |∞ ≤ |Tf − T nf0|∞ + |T nf0 − f |∞ (4.27)

≤ β|f − T n−1f0|∞ + |T nf0 − f |∞ (4.28)

≤ (β + 1)ε = ε′ (4.29)

Therefore, for any ε′, we can find a n > N1(
ε′

β+1
), such that |Tf −f |∞ ≤ ε′. In other

words, Tf and f are arbitrarily close. Thus, Tf = f . 2

Lemma 4.7 Let V β
0 (q) = 0, then, V β

n (q) = T nV β
0 (q) converges to V β(q), and

f(q) = V β(q).

Proof: In order to prove that f(q) = V β(q) pointwise, we start from the
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following:

|f − V β|k ≤ |f − T nf0|k + |T nf0 − V β
n |k + |V β

n − V β|k (4.30)

≤ |f − T nf0|k + β|T n−1f0 − V β
n−1|k+1 + |V β

n − V β|k (4.31)

≤ |f − T nf0|k + |V β
n − V β|k + βn|f0 − V β

0 |k+n (4.32)

= |f − T nf0|k + |V β
n − V β|k

+ βn

(
n + k

1− β
+

β

(1− β)2

λ1 + λ2 − a2 − b2

λ1 + λ2 + a2 + b2

)
(4.33)

≤ ε1 + ε2 + ε3 (4.34)

where (4.31) follows from Lemma 4.5, (4.33) follows from the definition of f0, and

(4.34) follows from the fact that T nf0 converges to f0, V β
n converges to V β, and

βnn → 0. Therefore, when n is large enough, we have the difference bounded by

(4.34). We note that (4.34) does not depend on k, thus f(q) = V β(q) for any point

q. 2

Lemma 4.5 means that starting from f0 and performing the iterations, V β

converges to the same function if we started from V β
0 = 0. The convergence point is

the unique solution of the optimality equation (4.4). Next, we will prove that f(q)

gets arbitrarily close to f0(q) when q1, q2 → +∞.

Lemma 4.8 |f − T nf0|∞ ≤ βn+1(a2+b2)
γ(1−β)2

.
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Proof:

|T n+pf0 − T nf0|k ≤ |T n+pf0 − T n+p−1f0|k + |T n+p−1f0 − T n+p−2f0|k + · · ·

+ |T n+1f0 − T nf0|k (4.35)

≤ (
βn+p−1 + βn+p−2 + · · ·+ βn

) |Tf0 − f0|k+n+p (4.36)

≤ βn(1− βp)

1− β

β(a2 + b2)

γ(1− β)
(4.37)

Note that (4.37) does not depend on k, therefore, |T n+pf0 − T nf0|∞ is uniformly

bounded, and we have

|f − T nf0|∞ = lim
p→∞

|T n+pf0 − T nf0|∞ (4.38)

=
βn+1(a2 + b2)

γ(1− β)2
(4.39)

2

Theorem 4.2 f(q) gets arbitrarily close to f0(q) when q1, q2 → +∞. Therefore,

the switch curve has a limit on q1.

Proof: For any fixed state q, we have

|f(q)− f0(q)| ≤ |f(q)− T nf0(q)|+ |T nf0(q)− f0(q)| (4.40)

Based on Lemma 4.8, we can see that for ∀ε, there exists N(ε), such that |f −
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TN(ε)f0|∞ ≤ ε. From the definition in (4.19),

|f(q)− TN(ε)f0(q)| ≤ |f − TN(ε)f0|∞ ≤ ε (4.41)

At the same time, from (4.17), we know that TN(ε)f0(q) only differs from f0(q)

over the states which are within N(ε) layers away from the boundary. Thus, for all

q1 > N(ε), q2 > N(ε),

TN(ε)f0(q)− f0(q) = 0 (4.42)

Therefore, combining (4.40)-(4.42), for any q, q1 > N(ε), q2 > N(ε), (4.40) is

bounded by

|f(q)− f0(q)| ≤ |f − f0|∞ + 0 = ε (4.43)

i.e., −ε ≤ f(q)− f0(q) ≤ ε. Thus, in this region, as shown in Figure 4.5, we have

a1f(D1q) + b1f(D2q) + δf(q)− a2f(D1q)− b2f(D2q)

= (b1 − b2)f(D2q) + δf(q)− (a2 − a1)f(D1q) (4.44)

≥ (b1 − b2) (f0(D2q)− ε) + δ(f0(q)− ε)− (a2 − a1) (f0(D1q) + ε) (4.45)

=
δ

1− β
− 2(a2 − a1)ε (4.46)
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where the inequality follows from (4.43). Therefore, when

ε ≤ δ

2(a2 − a1)(1− β)
(4.47)

(4.46) is always greater than zero, thus point 2 is always better than point 1. From

Lemma 4.8, let

ε =
βn+1(a2 + b2)

γ(1− β)2
=

δ

2(a2 − a1)(1− β)
(4.48)

from which, we have

N(ε) =

⌈
logβ

δγ(1− β)

2(a2 + b2)(a2 − a1)

⌉
− 1 (4.49)

Since we have proved in the previous section that the optimal policy must have a

switch curve structure, for any q, such that q1 ≥ N(ε), the optimal policy is always

to operate the system at point 2. Thus, the switch curve has a limit. 2

The result implies that when both q1, q2 are large, the objective of maximiz-

ing the sum-rate is more important than balancing the queue lengths in order to

minimize the average delay. Thus, in this scenario, operating at point 2 is optimal.

When one queue (q1 in this chapter) becomes close to empty, the objective of bal-

ancing the queue lengths becomes more important, and the operating point must

be switched from point 2 to point 1.
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q2

q1

(q1, q2)

Figure 4.5: The switch curve of the discounted-cost MDP.

4.5 Numerical Results

We consider a system where the arrival rates for the first and second user are λ1 =

0.4 packets/unit time, λ2 = 0.3 packets/unit time, respectively. We assume that

the packet sizes are exponentially distributed i.i.d. random variables with unit

mean. We assume that the underlying rate region is a general pentagon, where

the normalized coordinates of the first corner point is (0.3, 0.5), and the normalized

coordinates of the second corner point is (0.7, 0.3). We first obtain the optimal

policy with β = 1, which corresponds to the average delay minimization policy. We

observe that the optimal policy has a switch structure. Then, we vary the value

of β, and obtain the optimal policy for the corresponding discounted-cost problem.

These curves are shown in Figure 4.6. We observe that for each curve, there is

a limit on the dimension of q1, and all of these curves are lower bounded by the

curve with β = 1. This can be explained in this way: as β increases, the weight

of future cost increases. Thus, balancing the queue lengths becomes progressively
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more important, and for some states, it overweighs maximizing the sum-rate at the

current stage. Therefore, in this case, the set of states which operate at the first

corner point enlarges.
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Figure 4.6: The switch curves for the discounted-cost MDP.

4.6 Conclusions

In this chapter, we investigated the delay minimization problem in a two-user com-

munication channel, where the underlying rate region is approximated as a general

pentagon. We assumed that the corner points of this pentagon have different sum-

rates. We formulated the problem as an MDP, and proved that the delay-optimal

policy always operates at one of the two corner points, and has a switch structure.

This implies that for some states, the optimal policy requires trading a portion of

the sum-rate for balancing the queue lengths in order to minimize the average delay.
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We also proved that for the discounted-cost problem, the switch curve is bounded

in one of the dimensions. This implies that the queues can be operated partially

distributedly.

4.7 Appendix

We prove the properties 1) through 4) of Tf by induction. If f ∈ F , then obviously,

qTe, f(A1q), f(A2q), f(D1q), f(D2q) are in F . Then, it suffices to show that

min{(b1 − b2)f(D2q) + δf(q), (a2 − a1)f(D1q)} is also in F . In order to simply the

notation, we define

g(q) = min{(b1 − b2)f(D2q) + δf(q), (a2 − a1)f(D1q)} (4.50)

If (b1− b2)f(D2q)+ δf(q) < (a2− a1)f(D1q), then, the optimal operating point for

state q is corner point 1; otherwise, the optimal operating point is corner point 2.

We will show that g(q) also possesses the properties 1) through 4) of f(q).

4.7.1 g(q) is increasing in q1 and q2.

It is straight forward to prove this property. Hence, we omit its proof.
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4.7.2 g(q + x)− g(q) is increasing in q1 and q2 for any fixed x.

For this property, we will prove that

g(A2
1q)− g(A1q) ≥ g(A1q)− g(q) (4.51)

g(A2
2q)− g(A2q) ≥ g(A2q)− g(q) (4.52)

g(A1A2q)− g(A2q) ≥ g(A1q)− g(q) (4.53)

First, we evaluate function g at points q, A1q, A2
1q, as shown in Figure 4.7.

q1

(q1, q2)

q2

Figure 4.7: We compare the values of g(q) at different states.

If the optimal operating point for state q, A1q, A2
1q is corner point 1, then,

we have

g(q) = (b1 − b2)f(D2q) + δf(q) (4.54)

g(A1q) = (b1 − b2)f(D2A1q) + δf(A1q) (4.55)

g(A2
1q) = (b1 − b2)f(D2A

2
1q) + δf(A2

1q) (4.56)
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Comparing the difference of values between two adjacent states, we have

g(A2
1q)− g(A1q)

= (b1 − b2)
(
f(D2A

2
1q)− f(D2A1q)

)
+ δ

(
f(A2

1q)− f(A1q)
)

(4.57)

≥ (b1 − b2) (f(D2A1q)− f(D2q)) + δ (f(A1q)− f(A1q)) (4.58)

= g(A1q)− g(q) (4.59)

where the inequality follows from the assumption that f(q) is in F . Similarly, if the

optimal operating point for state q, A1q, A2
1q is corner point 2, i.e.,

g(q) = (a2 − a1)f(D1q) (4.60)

g(A1q) = (a2 − a1)f(D1A1q) (4.61)

g(A2
1q) = (a2 − a1)f(D1A

2
1q) (4.62)

we still have g(A2
1q)− g(A1q) ≥ g(A1q)− g(q).

If the optimal operating points for state q, A1q, A2
1q are corner points 1, 2, 2,

respectively, then, we have

g(q) = (b1 − b2)f(D2q) + δf(q) (4.63)

g(A1q) = (a2 − a1)f(D1A1q) (4.64)

g(A2
1q) = (a2 − a1)f(D1A

2
1q) (4.65)
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and,

g(A1q)− g(q) = (a2 − a1)f(D1A1q)− (b1 − b2)f(D2q)− δf(q) (4.66)

= (b1 − b2) (f(q)− f(D2q)) (4.67)

g(A2
1q)− g(A1q) ≥ (a2 − a1)f(A1q)− (b1 − b2)f(D2A1q)− δf(A1q) (4.68)

= (b1 − b2) (f(A1q)− f(D2A1q)) (4.69)

Therefore, based on the second property of function f , g(A2
1q)−g(A1q) ≥ g(A1q)−

g(q) still holds.

Similarly, if the optimal operating points for state q, A1q, A2
1q are corner

points 1, 1, 2, respectively,

g(q) = (b1 − b2)f(D2q) + δf(q) (4.70)

g(A1q) = (b1 − b2)f(D2A1q) + δf(A1q) (4.71)

g(A2
1q) = (a2 − a1)f(D1A

2
1q) (4.72)

Since the operating point at state A1q is corner point 1, it implies that we have

g(A1q)− g(q) ≤ (a2 − a1)f(D1A1q)− ((b1 − b2)f(D2q) + δf(q)) (4.73)

= (b1 − b2) (f(D1A1q)− f(D2q)) (4.74)

103



On the other hand, we have

g(A2
1q)− g(A1q) = (b1 − b2) (f(A1q)− f(D2A1q)) (4.75)

≥ (b1 − b2) (f(q)− f(D2q)) (4.76)

≥ g(A1q)− g(q) (4.77)

where the first inequality follows from the second property of function f .

Based on the assumption that f ∈ F , if the optimal policy for any state q is

to operate at corner point 2, then, because of the third property of f , all the states

on its right should operate on point 2 also. In the analysis above, we discuss every

possible policy at states q, A1q, A2
1q. For all possible cases, we have shown that

g(A2
1q)− g(A1q) ≥ g(A1q)− g(q). Following similar procedure, we can prove that

g(A2
2q) − g(A2q) ≥ g(A2q) − g(q), and g(A1A2q) − g(A2q) ≥ g(A1q) − g(q). In

summary, we conclude that the property 2) holds for g(q).

4.7.3 (a1 − a2)g(D1q) + (b1 − b2)g(D2q) + δg(q) is increasing in q1.

We need to show that

(a1 − a2)g(A1A2q) + (b1 − b2)g(A2
1q) + δg(A2

1A2q)

≥ (a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q) (4.78)

We evaluate function g at points A1A2q, A2
1q, A2

1A2q, A2q, A1q.

First, we note that if the optimal operating points for states A1A2q, A2
1q,
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A2
1A2q are corner points 1, 2, 2, respectively, as shown in Figure 4.8(a),

g(A1A2q) = (b1 − b2)f(D2A1A2q) + δf(A1A2q) (4.79)

g(A2
1q) = (a2 − a1)f(D1A

2
1q) (4.80)

g(A2
1A2q) = (a2 − a1)f(D1A

2
1A2q) (4.81)

we have

(a1 − a2)g(A1A2q) + (b1 − b2)g(A2
1q) + δg(A2

1A2q)

= (a1 − a2)
(
(b1 − b2)f(D2A1A2q) + δf(A1A2q)

)

+ (b1 − b2)(a2 − a1)f(D1A
2
1q) + δ(a2 − a1)f(D1A

2
1A2q) (4.82)

= 0 (4.83)

This is an important policy pattern, and we will use it often in the proof afterwards.

Another important policy patten is to operate at corner point 1, 2, 1, for state

A1A2q, A2
1q, A2

1A2q, respectively, as shown in Figure 4.8(b). In this scenario, we
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observe that

(a1 − a2)g(A1A2q) + (b1 − b2)g(A2
1q) + δg(A2

1A2q) (4.84)

= (a1 − a2)
(
(b1 − b2)f(D2A1A2q) + δf(A1A2q)

)

+ (b1 − b2)(a2 − a1)f(D1A
2
1q)

+ δ
(
(b1 − b2)f(D2A

2
1A2q) + δf(A2

1A2q)
)

(4.85)

= δ
(
(a1 − a2)f(A1A2q) + (b1 − b2)f(A2

1q) + δf(A2
1A2q)

)
(4.86)

2

(q1, q2)

q2

q1

1

2

(a) Pattern 1

1

(q1, q2)

q2

q1

1

2

(b) Pattern 2

Figure 4.8: Two special policy patterns.

If the optimal operating points at A2
1q, A1q, A2

1A2q, A1A2q, A2q are 2, 1, 2, 1, 1,

respectively, as shown in Figure 4.9. Then , if we switch the operating point at state

A1A2q from corner point 1 to 2, the policy at point A2q, A1q, and A1A2q becomes

106



the policy pattern discussed above, and we have

(a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q)

≤ (a1 − a2)
(
(b1 − b2)f(D2A2q) + δ(a2 − a1)f(D1A1A2q)

+ δf(A2q)
)

+ (b1 − b2)(a2 − a1)f(D1A1q) (4.87)

= 0 (4.88)

= (a1 − a2)g(A1A2q) + (b1 − b2)g(A2
1q) + δg(A2

1A2q) (4.89)

2

(q1, q2)

q2

q1

1 1

2

1

Figure 4.9: The optimal operating points at A2
1q, A1q, A2

1A2q, A1A2q, A2q are
2, 1, 2, 1, 1, respectively.

Similarly, if the optimal operating points at A2
1q, A1q, A2

1A2q, A1A2q, A2q

are 2, 2, 2, 1, 1, or 2, 2, 2, 2, 1, respectively, we can show that property 3) still holds.

If if the optimal operating points at A2
1q, A1q, A2

1A2q, A1A2q, A2q are
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2, 2, 1, 1, 1, as shown in Figure 4.10, we have

(a1 − a2)g(A1A2q) + (b1 − b2)g(A2
1q) + δg(A2

1A2q)

= δ
(
(a1 − a2)f(A1A2q) + (b1 − b2)f(A2

1q) + δf(A2
1A2q)

)
(4.90)

≥ δ ((a1 − a2)f(A2q) + (b1 − b2)f(A1q) + δf(A1A2q)) (4.91)

= (a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q) (4.92)

where the inequality follows from the property 3) of function f , and the last in-

equality follows from the assumption that the policy at state A2q, A1q, A1A2q falls

into the second policy pattern discussed above.

2

(q1, q2)

q2

q1

1 1

2

1

Figure 4.10: The optimal operating points at A2
1q, A1q, A2

1A2q, A1A2q, A2q are
2, 2, 1, 1, 1, respectively.

Similarly, if the optimal operating points at A2
1q, A1q, A2

1A2q, A1A2q, A2q

are 2, 1, 1, 1, 1, we have

(a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q)

≤ δ ((a1 − a2)f(A2q) + (b1 − b2)f(A1q) + δf(A1A2q)) (4.93)
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This is because g(A1q) = (b1 − b2)f(D2A1q) + δf(A1q) ≤ (a2 − a1)f(q), and if we

switch the policy from corner point 2 to corner point 1, it forms the second special

policy pattern. Thus, the inequality still holds. In summary, for all possible cases,

the function g preserves the property 3) of function f .

4.7.4 (a1 − a2)g(D1q) + (b1 − b2)g(D2q) + δg(q) is decreasing in q2.

We will evaluate g at points A1q, A1A2q, A1A
2
2q, A2q, A2

2q. If the optimal operating

points are 2, 2, 2, 2, 2, or 1, 1, 1, 1, 1, respectively, it is straightforward to show that

the property still holds. If the optimal operating points are 2, 2, 2, 1, 1, respectively,

as shown in Figure 4.11, we note that the policy at these points is the first special

policy patten discussed before, and

(a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q)

= (a1 − a2)g(A2
2q) + (b1 − b2)g(A1A2q) + δg(A1A

2
2q) (4.94)

= 0 (4.95)

If the optimal operating points are 2, 2, 1, 1, 1, we have

(a1 − a2)g(A2
2q) + (b1 − b2)g(A1A2q) + δg(A1A

2
2q)

= δ
(
(a1 − a2)f(A2

2q) + (b1 − b2)f(A1A2q) + δf(A1A
2
2q)

)
(4.96)

≤ 0 (4.97)

= (a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q) (4.98)
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Figure 4.11: The optimal operating points at A1q, A1A2q, A1A
2
2q, A2q, A2

2q are
2, 2, 2, 1, 1, respectively.

where the inequality follows from the assumption that at point A1A
2
2q, the optimal

policy is to operate at corner point 1.

Similarly, for cases where the optimal operating points are 2, 2, 2, 2, 1, or

2, 2, 1, 2, 1, the property 4) still holds for g, this is because

(a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q) ≥ 0 (4.99)

(a1 − a2)g(A2
2q) + (b1 − b2)g(A1A2q) + δg(A1A

2
2q) ≤ 0 (4.100)

If the optimal operating points are 2, 2, 1, 1, 1, we have

(a1 − a2)g(A2
2q) + (b1 − b2)g(A1A2q) + δg(A1A

2
2q) (4.101)

≤ δ
(
(a1 − a2)f(A2

2q) + (b1 − b2)f(A1A2q) + δf(A1A
2
2q)

)
(4.102)

≤ δ ((a1 − a2)f(A2q) + (b1 − b2)f(A1q) + δf(A1A2q)) (4.103)

≤ (a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q) (4.104)
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where the first inequality follows from the assumption that the optimal policy for

point A1A2q is corner point 1, thus the sum is smaller than operating at corner

point 2. The second inequality follows from the property 4) of function f , and the

last inequality follows from the assumption that the optimal policy for point A2q is

the corner point 2.

In summary, for all possible cases, we have proven that properties 1) through

4) hold for g, thus, if f is in F , then Tf is in F .
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Chapter 5

Optimal Packet Scheduling in a Single-User Energy Harvesting

System

5.1 Introduction

We consider wireless communication networks where nodes are able to harvest en-

ergy from the nature. The nodes may harvest energy through solar cells, vibration

absorption devices, water mills, thermoelectric generators, microbial fuel cells, etc.

In this work, we do not focus on how energy is harvested, instead, we focus on

developing transmission methods that take into account the randomness both in

the arrivals of the data packets as well as in the arrivals of the harvested energy.

As shown in Figure 5.1, the transmitter node has two queues. The data queue

stores the data arrivals, while the energy queue stores the energy harvested from

the environment. In general, the data arrivals and the harvested energy can be rep-

resented as two independent random processes. Then, the optimal scheduling policy

becomes that of adaptively changing the transmission rate and power according to

the instantaneous data and energy queue lengths.

While one ideally should study the case where both data packets and energy

arrive randomly in time as two stochastic processes, and devise an on-line algorithm

that updates the instantaneous transmission rate and power in real-time as functions
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data queue

energy queue

Ei

Bi

receivertransmitter

Figure 5.1: An energy harvesting communication system model.

of the current data and energy queue lengths, this, for now, is an intractable math-

ematical problem. Instead, in order to have progress in this difficult problem, we

consider an idealized version of the problem, where we assume that we know exactly

when and in what amounts the data packets and energy will arrive, and develop an

optimal off-line algorithm. We leave the development of the corresponding on-line

algorithm for future work.

Specifically, we consider a single node shown in Figure 5.2. We assume that

packets arrive at times marked with × and energy arrives (is harvested) at points in

time marked with ◦. In Figure 5.2, Bi denotes the number of bits in the ith arriving

data packet, and Ei denotes the amount of energy in the ith energy arrival (energy

harvesting). Our goal then is to develop methods of transmission to minimize the

time, T , by which all of the data packets are delivered to the destination. The

most challenging aspect of our optimization problem is the causality constraints

introduced by the packet and energy arrival times, i.e., a packet may not be delivered

before it has arrived and energy may not be used before it is harvested.

The trade-off relationship between delay and energy has been well investigated

in traditional battery powered (unrechargeable) systems. References [13–18] inves-
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· · ·

E1

B0 B1 B2 BM

t0 t1 t2 tMsK Ts1

· · ·

E0 EK

Figure 5.2: System model with random packet and energy arrivals. Data packets
arrive at points denoted by × and energies arrive (are harvested) at points denoted
by ◦.

tigate energy minimization problems with various deadline constraints. References

[2, 4, 5, 9–12] investigate delay optimal resource allocation problems under various

different settings. References [2, 4, 5] consider average power constrained delay min-

imization problem for a single-user system, while [9–12] minimize the average delay

through rate allocation in a multiple access channel.

In this chapter, we consider a single-user communication channel with an en-

ergy harvesting transmitter. We assume that an initial amount of energy is avail-

able at t = 0. As time progresses, certain amounts of energies will be harvested.

While energy arrivals should be modeled as a random process, for the mathematical

tractability of the problem, in this chapter, we assume that the energy harvesting

procedure can be precisely predicted, i.e., that, at the beginning, we know exactly

when and how much energy will be harvested. For the data arrivals, we consider

two different scenarios. In the first scenario, we assume that packets have already

arrived and are ready to be transmitted at the transmitter before the transmission

starts. In the second scenario, we assume that packets arrive during the transmis-

sions. However, as in the case of energy arrivals, we assume that we know exactly

when and in what amounts data will arrive. Subject to the energy and data arrival

114



constraints, our purpose is to minimize the time by which all packets are delivered

to the destination through controlling the transmission rate and power.

This is similar to the energy minimization problem in [13], where the objective

is to minimize the energy consumption with a given deadline constraint. In this

chapter, minimizing the transmission completion time is akin to minimizing the

deadline in [13]. However, the problems are different, because, we do not know

the exact amount of energy to be used in the transmissions, even though we know

the times and amounts of harvested energy. This is because, intuitively, using more

energy reduces the transmission time, however, using more energy entails waiting for

energy arrivals, which increases the total transmission time. Therefore, minimizing

the transmission completion time in the system requires a sophisticated utilization

of the harvested energy. To that end, we develop an algorithm, which first obtains

a good lower bound for the final total transmission duration at the beginning, and

performs rate and power allocation based on this lower bound. The procedure works

progressively until all of the transmission rates and powers are determined. We prove

that the transmission policy obtained through this algorithm is globally optimum.

5.2 Scenario I: Packets Ready Before Transmission Starts

We assume that there are a total of B0 bits available at the transmitter at time

t = 0. We also assume that there is E0 amount of energy available at time t = 0,

and at times s1, s2, . . ., sK , we have energies harvested with amounts E1, E2, . . . ,

EK , respectively. This system model is shown in Figure 5.3. Our objective is to
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minimize the transmission completion time, T .

sK T

E1

· · ·

t

B0

s1 s2

E0 EKE2

0

Figure 5.3: System model with all bits available at the beginning. Energies arrive
at points denoted by ◦.

We assume that the transmitter can adaptively change its transmission power

and rate according to the available energy and the remaining number of bits. We

assume that the transmission rate and transmit power are related through a function,

f(p), i.e., r = f(p). We assume that f(p) satisfies the following properties: i)

f(0) = 0 and f(p) → ∞ as p → ∞, ii) f(p) increases monotonically in p, iii)

f(p) is strictly concave in p, iv) f(p) is continuously differentiable, and v) f(p)/p

decreases monotonically in p. Properties i)-iii) guarantee that f−1(r) exists and is

strictly convex. Property v) implies that for a fixed amount of energy, the number

of bits that can be transmitted increases as the transmission duration increases. It

can be verified that these properties are satisfied in many systems with realistic

encoding/decoding schemes, such as optimal random coding in single-user additive

white Gaussian noise channel, where f(p) = 1
2
log(1 + p).

Assuming the transmitter changes its transmission power N times before it

finishes the transmission, let us denote the sequence of transmission powers as p1,

p2, . . ., pN , and the corresponding transmission durations of each rate as l1, l2, . . .,

lN , respectively; see Figure 5.4. Then, the energy consumed up to time t, denoted

as E(t), and the total number of bits departed up to time t, denoted as B(t), can
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be related through the function g as follows:

E(t) =
ī∑

i=1

pili + pī+1

(
t−

ī∑
i=1

li

)
(5.1)

B(t) =
ī∑

i=1

f(pi)li + f(pī+1)

(
t−

ī∑
i=1

li

)
(5.2)

where ī = max{i :
∑i

j=1 lj ≤ t}.

B0

E1

· · ·

· · ·

sK t

p1 pNp2 p3

s2

l1 l2 l3 lN

s1

E0 EKE2

0 T

Figure 5.4: The sequence of transmission powers and durations.

Then, the transmission completion time minimization problem can be formu-

lated as:

min
p,l

T

s.t. E(t) ≤
∑
i:si<t

Ei, 0 ≤ t ≤ T

B(T ) = B0 (5.3)

First, we determine the properties of the optimum solution in the following three

lemmas.

Lemma 5.1 Under the optimal solution, the transmit powers increase monotoni-

cally, i.e., p1 ≤ p2 ≤ · · · ≤ pN .

Proof: Assume that the powers do not increase monotonically, i.e., that we
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can find two powers such that pi > pi+1. The total energy consumed over this

duration is pili + pi+1li+1. Let

p′i = p′i+1 =
pili + pi+1li+1

li + li+1

(5.4)

r′i = r′i+1 = f

(
pili + pi+1li+1

li + li+1

)
(5.5)

Then, we have p′i ≤ pi, p′i+1 ≥ pi+1. Since p′ili ≤ pili, the energy constraint is still

satisfied, and thus, the new energy allocation is feasible. We use r′i, r
′
i+1 to replace

ri, ri+1 in the transmission policy, and keep the rest of the rates the same. Then,

the total number of bits transmitted over the duration li + li+1 becomes

r′ili + r′i+1li+1 = f

(
pili + pi+1li+1

li + li+1

)
(li + li+1)

≥ f (pi)
li

li + li+1

(li + li+1) + f (pi+1)
li+1

li + li+1

(li + li+1)

= rili + ri+1li+1 (5.6)

where the inequality follows from the fact that f(p) is concave in p. Therefore, the

new policy departs more bits by time
∑i+1

j=1 lj. Keeping the remaining transmission

rates the same, the new policy will finish the entire transmission over a shorter

duration. Thus, the original policy could not be optimal. Therefore, the optimal

policy must have monotonically increasing powers (and rates). 2

Lemma 5.2 The transmission power/rate remains constant between energy har-

vests, i.e., the power/rate only potentially changes when new energy arrives.
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Proof: Assume that the transmitter changes its transmission rate between

two energy harvesting instances si, si+1. Denote the rates as rn, rn+1, and the

instant when the rate changes as s′i, as shown in Figure 5.5. Now, consider the

duration [si, si+1). The total energy consumed during the duration is pn(s′i − si) +

pn+1(si+1 − s′i). Let

p′ =
pn(s′i − si) + pn+1(si+1 − s′i)

si+1 − si

(5.7)

r′ = f

(
pn(s′i − si) + pn+1(si+1 − s′i)

si+1 − si

)
(5.8)

Now let us use r′ as the new transmission rate over [si, si+1), and keep the rest

of the rates the same. It is easy to check that the energy constraints are satisfied

under this new policy, thus this new policy is feasible. On the other hand, the total

number of bits departed over this duration under this new policy is

r′(si+1 − si) = f

(
pn(s′i − si) + pn+1(si+1 − s′i)

si+1 − si

)
(si+1 − si)

≥
(

f(pn)
s′i − si

si+1 − si

+ f(pn+1)
si+1 − s′i
si+1 − si

)
(si+1 − si)

= rn(s′i − si) + rn+1(si+1 − s′i) (5.9)

where the inequality follows from the fact that f(p) is concave in p. Therefore, the

total number of bits departed under the new policy is larger than that under the

original policy. If we keep all of the remaining rates the same, the transmission will

be completed at an earlier time. This conflicts with the optimality of the original

policy. 2
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Figure 5.5: The rate must remain constant between energy harvests.

Lemma 5.3 Under the optimal policy, whenever the transmission rate changes, the

energy consumed up to that instant equals the energy harvested up to that instant.

Proof: From Lemma 5.2, we know that the transmission rate can change only

at certain energy harvesting instances. Assume that the transmission rate changes

at si, however, the energy consumed by si, which is denoted by E(si), is less than

∑i−1
j=0 Ej. We denote the energy gap by ∆. Let us denote the rates before and after

si by rn, rn+1. Now, we can always have two small amounts of perturbations δn,

δn+1 on the corresponding transmit powers, such that

p′n = pn + δn (5.10)

p′n+1 = pn+1 − δn+1 (5.11)

δnln = δn+1ln+1 (5.12)

We also make sure that δn and δn+1 are small enough such that δnln < ∆, and

p′n ≤ p′n+1. If we keep the transmission rates over the rest of the duration the same,

under the new transmission policy, the energy allocation will still be feasible. The
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total number of bits departed over the duration (
∑n−1

i=1 li,
∑n+1

i=1 li) is

f(p′n)ln + f(p′n+1)ln+1 ≥ f(pn)ln + f(pn+1)ln+1 (5.13)

where the inequality follows from the concavity of f(p) in p, and the fact that

pnln + pn+1ln+1 = p′nln + p′n+1ln+1, pn ≤ p′n ≤ p′n+1 ≤ pn+1, as shown in Figure 5.6.

This conflicts with the optimality of the original allocation. 2

p
′

n
pn p

′

n+1 pn+1 p

r

Figure 5.6: f(p) is concave in p.

We are now ready to characterize the optimum transmission policy. In order

to simplify the expressions, we let i0 = 0, and let sm+1 = T if the transmission

completion time T lies between sm and sm+1.

Based on Lemmas 5.1, 5.2 and 5.3, we can characterize the optimal policy in

the following way. For given energy arrivals, we plot the total amount of harvested

energy as a function of t, which is a staircase curve as shown in Figure 5.7. The

total energy consumed up to time t can also be represented as a continuous curve,

as shown in Figure 5.7. In order to satisfy the feasibility constraints on the energy,

energy consumption curve must lie below the energy harvesting curve at all times.

Based on Lemma 5.2, we know that the optimal energy consumption curve must be
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linear between any two consecutive energy harvesting instants, and the slope of the

segment corresponds to the transmit power level during that segment. Lemma 5.3

implies that whenever the slope changes, the energy consumption curve must touch

the energy harvesting curve at that energy harvesting instant. Therefore, the first

linear segment of the energy consumption curve must be one of the lines connecting

the origin and any corner point on the energy harvesting curve before t = T . Because

of the monotonicity property of the power given in Lemma 5.1, among those lines,

we should always pick the one with the minimal slope, as shown in Figure 5.7.

p2

B0

p1 p3

t0

p3

s1

E1 E2 E3

s2 s3

p2

s4

E4

∑
Ei

E0

sK

· · ·

· · ·

EK

p1

si1
Tsi2

Figure 5.7: An interpretation of transmission policies satisfying Lemmas 5.1, 5.2,
5.3.

Otherwise, either the feasibility constraints on the energy will not be satisfied,

or the monotonicity property given in Lemma 5.1 will be violated. For example, if

we choose the line ending at the corner point at s3, this will violate the feasibility

constraint, as the energy consumption curve will surpass the energy arrival curve.

On the other hand, if we choose the line ending at the corner point at s1, then the

monotonicity property in Lemma 5.1 will be violated, because in that case, the slope
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of the following segment would be smaller. These properties must hold similarly for

p2, p3, . . ., pN . We also observe that, for given T , the optimal transmission policy is

the tightest string below the energy harvesting curve connecting the origin and the

total harvested energy by time T . This is similar to the structure in [14].

We state the structure of the optimal policy formally in the following theorem.

Theorem 5.1 For a given B0, consider a transmission policy with power vector

p = [p1, p2, . . . , pN ] and corresponding duration vector l = [l1, l2, . . . , lN ]. This policy

is optimal if and only if it has the following structure:

N∑
n=1

f(pn)ln = B0 (5.14)

and for n = 1, 2, . . . , N ,

in = arg min
i:si≤T

si>sin−1

{∑i−1
j=in−1

Ej

si − sin−1

}
(5.15)

pn =

∑in−1
j=in−1

Ej

sin − sin−1

(5.16)

ln = sin − sin−1 (5.17)

where in is the index of the energy arrival epoch when the power pn switches to pn+1,

i.e., at t = sin, pn switches to pn+1.

The proof of this theorem is given in Appendix 5.6.1.

Therefore, we conclude that if the overall transmission duration T is known,

then the optimal transmission policy is known via Theorem 5.1. In particular,
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optimal transmission policy is the one that yields the tightest piecewise linear energy

consumption curve that lies under the energy harvesting curve at all times and

touches the energy harvesting curve at t = T . On the other hand, the overall

transmission time T is what we want to minimize, and we do not know its optimal

value up front. Consequently, we do not know up front which energy harvests will

be utilized. For example, if the number of bits is small, and E0 is large, then, we can

empty the data queue before the arrival of E1, thus, the rest of the energy arrivals

are not necessary. Therefore, as a first step, we first obtain a good lower bound on

the optimal transmission duration.

We first illustrate our algorithm through an example in Figure 5.8. We first

compute the minimal energy required to finish the transmission before s1. We denote

it as A1, and it equals

A1 = f−1

(
B0

s1

)
s1 (5.18)

Then, we compare it with E0. If A1 < E0, it implies that we can complete the

transmission before the arrival of the first energy harvest, thus E1 is not necessary

for the transmission. We allocate E0 evenly to B0 bits, and the duration A1 is the

minimum transmission duration. On the other hand, if A1 > E0, which is the case in

the example, the final transmission completion time should be longer than s1. Thus,

we move on and compute A2, A3, A4, and find that A2 >
∑1

i=0 Ei, A3 >
∑2

i=0 Ei

and A4 <
∑3

i=0 Ei. This means that the total transmission completion time will be

larger than s3 and energies E0, . . ., E3 will surely be utilized. Then, we allocate
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∑3
i=0 Ei evenly to B0 bits and obtain a constant transmission power p̃1, which is

the dotted line in the figure. The corresponding transmission duration is T1. Based

on our allocation, we know that the final optimal transmission duration T must be

greater than T1. This is because, this allocation assumes that all E0, . . ., E3 are

available at the beginning, i.e., at time t = 0, which, in fact, are not. Therefore, the

actual transmission time will only be larger. Thus, T1 is a lower bound for T .

Next, we need to check the feasibility of p̃1. Observing the figure, we find that

p̃1 is not feasible since it is above the staircase energy harvesting curve for some

duration. Therefore, we connect all the corner points on the staircase curve before

t = T1 with the origin, and find the line with the minimum slope among those lines.

This corresponds to the red solid line in the figure. Then, we update p̃1 with the

slope p1, and the duration for p1 is l1 = si1 . We repeat this procedure at t = si1 and

obtain p2, and continue the procedure until all of the bits are finished.

∑
Ei

si1
T

t0

E1 E2 E3

s2 s3 s4

E4

T ′

1
T1

p̃1

B0

A4

A3

A2

A1

s1

E0

sK

· · ·

· · ·

EK

p1

Figure 5.8: An illustration of the algorithm.

We state our algorithm for the general scenario as follows: First, we compute
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the amounts of energy required to finish the entire transmission before s1, s2, . . .,

sK , respectively, at a constant rate. We denote these as Ai:

Ai = f−1

(
B0

si

)
si, i = 1, 2, . . . , K (5.19)

Then, we compare Ai with
∑i−1

j=0 Ej, and find the smallest i such that Ai ≤
∑i−1

j=0 Ej.

We denote this i as ĩ1. If no such ĩ1 exists, we let ĩ1 = K + 1.

Now, we assume that we can use
∑ĩ1−1

j=0 Ej to transmit all B0 bits at a constant

rate. We allocate the energy evenly to these bits, and the overall transmission time

T1 is the solution of

f

(∑ĩ1−1
j=0 Ej

T1

)
T1 = B0 (5.20)

and the corresponding constant transmit power is

p1 =

∑ĩ1−1
j=0 Ej

T1

(5.21)

Next, we compare p1 with
∑i−1

j=0 Ej

si
for every i < ĩ1. If p1 is smaller than every

term, then, maintaining p1 is feasible, and the optimal policy is to transmit at a

constant transmission rate f(p1) with duration T1, which gives the smallest possible

transmission completion time, si1 = sĩ1
. Otherwise, maintaining p1 is infeasible
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under the given energy arrival realization. Thus, we update

i1 = arg min
i<ĩ1

{∑i−1
j=0 Ej

si

}
(5.22)

p1 =

∑i1−1
j=0 Ej

si1

(5.23)

i.e., over the duration [0, si1), we choose to transmit with power p1 to make sure

that the energy consumption is feasible. Then, at time t = si1 , the total number

of bits departed is f(p1)si1 , and the remaining number of bits is B0 − f(p1)si1 .

Subsequently, with initial number of bits B0 − f(p1)si1 , we start from si1 , and get

another lower bound on the overall transmission duration T2, and repeat the proce-

dure above. Through this procedure, we obtain p2, p3, . . . , pN , and the corresponding

i2, i3, . . . , iN , until we finish transmitting all of the bits.

Based on our allocation algorithm, we know that p1 is optimum up to time

T1, since it corresponds to the minimal slope line passing through the origin and

any corner point before t = T1. However, the algorithm also implies that the final

transmission duration T will be larger than T1. The question then is, whether p1

is still the minimum slope line up to time T . If we can prove that p1 is lower than

the slopes of the lines passing through the origin and any corner point in [T1, T ],

then, using Theorem 5.1, we will claim that p1 is the optimal transmission policy,

not only between [0, T1], but also between [0, T ].

The fact that this will be the case can be illustrated through the example in

Figure 5.8. We note that, clearly, T1 is a lower bound on the eventual T . If we
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keep transmitting at power p1, if no additional energy arrives, the energy harvested

up until sĩ1
, i.e.,

∑ĩ1−1
i=0 Ei, will be depleted by time T ′

1. We will next prove that

T ′
1 is an upper bound on T . Because of the assumption that f(p)/p is decreasing

in p, we can prove that under this policy, the number of bits departed up to time

T ′
1 is greater than B0. Therefore, since potentially additional energy will arrive, T ′

1

provides an upper bound. Thus, we know that the optimal T lies between T1 and

T ′
1. We next note that if we connect the origin with any corner point of the staircase

curve between T1 and T ′
1, the slope of the resulting line will be larger than p1, thus,

p1 will be the smallest slope not only up to time T1, which is a lower bound, but

also up to time T ′
1, which is an upper bound. This proves that while we do not

know the optimal T , if we run the algorithm with respect to the lower bound on T ,

i.e., T1, it will still yield an optimal policy, in that the resulting policy will satisfy

Theorem 5.1.

We prove the optimality of the algorithm formally in the following theorem.

Theorem 5.2 The allocation procedure described above gives the optimal transmis-

sion policy.

The proof of this theorem is given in Appendix 5.6.2.

5.3 Scenario II: Packets Arrive During Transmissions

In this section, we consider the situation where packets arrive during transmissions.

We assume that there is an E0 amount of energy available at time t = 0, and at

times s1, s2, . . ., sK , energy is harvested in amounts E1, E2, . . . , EK , respectively,
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as in the previous section. We also assume that at t = 0, we have B0 bits available,

and at times t1, t2, . . ., tM , bits arrive in amounts B1, B2, . . . , BM , respectively.

This system model is shown in Figure 5.2. Our objective is again to minimize the

transmission completion time, T , which again is the time by which the last bit is

delivered to the destination.

Let us denote the sequence of transmission powers by p1, p2, . . ., pN , and

the corresponding transmission durations by l1, l2, . . ., lN . Then, the optimization

problem becomes:

min
p,l

T

s.t. E(t) ≤
∑
i:si<t

Ei, 0 ≤ t ≤ T

B(t) ≤
∑
i:ti<t

Bi, 0 ≤ t ≤ T

B(T ) =
M∑
i=0

Bi (5.24)

where E(t), B(t) are defined in (5.1) and (5.2). We again determine the properties

of the optimal transmission policy in the following three lemmas.

Lemma 5.4 Under the optimal solution, the transmission rates increase in time,

i.e., r1 ≤ r2 ≤ · · · ≤ rN .

Proof: First, note that since the relationship between power and rate, r =

f(p), is monotone, stating that the rates increase monotonically is equivalent to

stating that the powers increase monotonically. We follow steps similar to those in

the proof of Lemma 5.1 to prove this lemma. Assume that the rates do not increase
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monotonically, i.e., that we can find two rates such that ri > ri+1, with duration li,

li+1, respectively. If i + 1 6= N , then, let

r′i = r′i+1 =
rili + ri+1li+1

li + li+1

(5.25)

p′i = p′i+1 = f−1

(
rili + ri+1li+1

li + li+1

)
(5.26)

Since ri > r′i = r′i+1 > ri+1, pi > p′i = p′i+1 > pi+1, it is easy to verify that the

new policy is feasible up to the end of li+1, from both the data and energy arrival

points of view. On the other hand, based on the convexity of f−1, the energy spent

over the duration li + li+1 is smaller than pili + pi+1li+1. If we allocate the saved

energy over to the last transmission duration, without conflicting any energy or data

constraints, the transmission will be completed in a shorter duration. If i + 1 = N ,

then, we let

p′i = p′i+1 =
pili + pi+1li+1

li + li+1

(5.27)

r′i = r′i+1 = f

(
pili + pi+1li+1

li + li+1

)
(5.28)

Then, from (5.6), under the new policy, the last bit will depart before the end of li+1.

The energy and data arrival constraints are satisfied over the whole transmission

duration. Consequently, the original policy could not be optimal. Therefore, the

optimal policy must have monotonically increasing rates (and powers). 2

Lemma 5.5 Under the optimal policy, the transmission power/rate remains con-

stant between two event epoches, i.e., the rate only potentially changes when new
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energy is harvested or a new packet arrives.

Proof: This lemma can be proved through a procedure similar to that in

Lemma 5.2. If power/rate is not constant between two event epoches, then, by

equalizing the rate over the duration while keeping the total departures fixed, we

can save energy. Allocating this saved energy to the last transmission duration, we

can shorten the whole transmission duration. Thus, if power/rate is not constant

between two event epoches, the policy cannot be optimal. 2

Lemma 5.6 If the transmission rate changes at an energy harvesting epoch, then

the energy consumed up to that epoch equals the energy harvested up to that epoch; if

the transmission rate changes at a packet arrival epoch, then, the number of packets

departed up to that epoch equals the number of packets arrived up to that epoch; if

the event epoch has both energy and data arrivals at the same time, then, one of the

causality constraints must be met with equality.

Proof: This lemma can be proved through contradiction using techniques

similar to those used in the proof of Lemma 5.3. When the transmission rate

changes at an energy harvesting epoch, if the energy consumed up to that time

is not equal to the total amount harvested, then, without conflicting the energy

causality constraint, we can always increase the rate before that epoch a little and

decrease the rate after that epoch a little while keeping the total departures fixed.

This policy would save some energy which can be used to shorten the transmission

durations afterwards. Thus, the energy constraint at that epoch must be satisfied

as an equality. The remaining situations can be proved similarly. 2
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Based on Lemmas 5.4, 5.5 and 5.6, we can identify the structure of the unique

optimal transmission policy as stated in the following theorem. In order to simplify

the notation, we define ui to be the time epoch when the ith arrival (energy or data)

happens, i.e.,

u1 = min{s1, t1} (5.29)

u2 = min{si, tj : si > u1, tj > u1} (5.30)

and so on, until the last arrival epoch.

Theorem 5.3 For a given energy harvesting and packet arrival profile, the trans-

mission policy with a transmission rate vector r = [r1, r2, . . . , rN ] and the correspond-

ing duration vector l = [l1, l2, . . . , lN ] is optimal, if and only if it has the following

structure:

N∑
i=1

rili =
M∑
i=0

Bi (5.31)

r1 = min
i:ui≤T

{
f

(∑
j:sj<ui

Ej

ui

)
,

∑
j:tj<ui

Bj

ui

}
(5.32)

Let i1 be the index of u associated with r1. Then, with updated amount of bits and

energy remaining in the system at t = ui1, r2 is the smallest feasible rate starting

from ui1, and so on.

The proof of this theorem is given in Appendix 5.6.3.

For a given optimal transmission duration, T , the optimal policy which has

132



the structure in Theorem 5.3 is unique. However, since we do not know the exact

transmission duration up front, we obtain a lower bound on T first, as in the pre-

vious section. In this case also, we develop a similar procedure to find the optimal

transmission policy. The basic idea is to keep the transmit power/rate as constant

as possible throughout the entire transmission duration. Because of the additional

casuality constraints due to data arrivals, we need to consider both the average data

arrival rate as well as the average power the system can support for feasibility.

If sK ≤ tM , i.e., bits have arrived after the last energy harvest, then, all of the

harvested energy will be used. First, we assume that we can use these energies to

maintain a constant rate, and the transmission duration will be the solution of

f

(∑K
j=0 Ej

T

)
T =

M∑
j=0

Bj (5.33)

Then, we check whether this constant power/rate is feasible. We check the avail-

ability of the energy, as well as the available number of bits. Let

i1e = arg min
ui<T

{∑i−1
j=0 Ej

ui

}
, p1 =

∑i1e−1
j=0 Ej

ui

(5.34)

i1b = arg min
ui<T

{∑i−1
j=0 Bj

ui

}
, r1 =

∑i1b−1
j=0 Bj

ui

(5.35)

We compare min(p1, f
−1(r1)) with

∑K
j=0 Ej

T
. If the former is greater than the latter,

then the constant transmit power
∑K

j=0 Ej

T
is feasible. Thus, we achieve the minimum

possible transmission completion time T . Otherwise, constant-power transmission

is not feasible. We choose the transmit power to be the smaller of p1 and f−1(r1),
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and the duration to be the one associated with the smaller transmit power. We

repeat this procedure until all of the bits are transmitted.

If sK > tM , then, as in the first scenario where packets have arrived and

are ready before the transmission starts, some of the harvested energy may not

be utilized to transmit the bits. In this case also, we need to get a lower bound

for the final transmission completion time. Let un be the energy harvesting epoch

right after tM . Then, starting from un, we compute the energy required to transmit

∑M
j=0 Bj bits at a constant rate by ui, un ≤ ui ≤ uK+M , and compare them with the

total energy harvested up to that epoch, i.e.,
∑

j:sj<ui
Ej. We identify the smallest i

such that the required energy is smaller than the total harvested energy, and denote

it by ĩ1. If no such ĩ1 exists, we let ĩ1 = M + K + 1.

Now, we assume that we can use
∑

j:sj<uĩ1

Ej to transmit
∑M

j=0 Bj bits at a

constant rate. We allocate the energy evenly to these bits, and the overall trans-

mission time T1 is the solution of

f

(∑
j:sj<uĩ1

Ej

T1

)
T1 =

M∑
j=0

Bj (5.36)

and the corresponding constant transmit power is

p1 =

∑
j:sj<uĩ1

Ej

T1

(5.37)

Next, we compare p1 with

∑
j:sj<ui

Ej

ui
and f−1

(∑
j:tj<ui

Bj

ui

)
for every i < ĩ1. If p1

is smaller than all of these terms, then, maintaining p1 is feasible from both energy
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and data arrival points of view. The optimal policy is to keep a constant transmis-

sion rate at f(p1) with duration T1, which yields the smallest possible transmission

completion time, i1 = ĩ1. Otherwise, maintaining p1 is not feasible under the given

energy and data arrival realizations. This infeasibility is due to the causality con-

straints on either the energy or the data arrival, or both. Next, we identify the

tightest constraint, and update the transmit power to be the power associated with

that constraint. We repeat this procedure until all of the bits are delivered.

Theorem 5.4 The transmission policy obtained through the algorithm described

above is optimal.

The proof of this theorem is given in Appendix 5.6.4.

5.4 Numerical Results

We consider a band-limited additive white Gaussian noise channel, with band-

width W = 1 MHz and the noise power spectral density N0 = 10−19 W/Hz.

We assume that the distance between the transmitter and the receiver is 1 Km,

and the path loss is about 110 dB. Then, we have f(p) = W log2

(
1 + ph

N0W

)
=

log2

(
1 + p

10−2

)
Mbps. It is easy to verify that this function has the properties

assumed at the beginning of Section 5.2. For the energy harvesting process, we as-

sume that at times t = [0, 2, 5, 6, 8, 9, 11] s, we have energy harvested with amounts

E = [10, 5, 10, 5, 10, 10, 10] mJ, as shown in Figure 5.9. We assume that at t = 0,

we have 5.44 Mbits to transmit. We choose the numbers in such a way that the

solution is expressable in simple numbers, and can be potted conveniently. Then,
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using our algorithm, we obtain the optimal transmission policy, which is shown in

Figure 5.9. We note that the powers change only potentially at instances when

energy arrives (Lemma 5.2); when the power changes, energy consumed up to that

point equals energy harvested (Lemma 5.3); and power sequence is monotonically

increasing (Lemma 5.1). We also note that, for this case, the active transmission is

completed by time T = 9.5 s, and the last energy harvest at time t = 11 s is not

used.

Next, we consider the scenario where data packets arrive during the trans-

missions. We consider a smaller time scale, where each unit consists of 10 ms.

We assume that at times t = [0, 5, 6, 8, 9], energies arrive with amounts E =

[5, 5, 5, 5, 5]×10−2 mJ, while at times t = [0, 4, 10], packets arrive with equal size 10

Kbits, as shown in Figure 5.10. We observe that the transmitter changes its trans-

mission power during the transmissions. The first change happens at t = 5 when

energy arrives, and the energy constraint at that instant is satisfied with equality,

while the second change happens at t = 10 when new bits arrive, and the traffic

constraint at that time is satisfied with equality.

5.44

1055

6 9 11

10

85

r2 r3 r4r1

p

T = 9.5

10

5
3

T

t

20

10

0 2 t

10 10

Figure 5.9: Optimal transmit powers p = [3, 5, 10, 20] mW, with durations l =
[5, 3, 1, 0.5] s.
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Figure 5.10: Optimal transmit powers p = [1, 2, 10] mW, with durations l =
[5, 5, 1]× 10−2 s.

5.5 Conclusions

In this chapter, we investigated the transmission completion time minimization prob-

lem in an energy harvesting communication system. We considered two different sce-

narios, where in the first scenario, we assume that packets have already arrived and

are ready to be transmitted at the transmitter before the transmission starts, and

in the second scenario, we assume that packets may arrive during the transmissions.

We first analyzed the structural properties of the optimal transmission policy, and

then developed an algorithm to obtain a globally optimal off-line scheduling policy,

in each scenario.

5.6 Appendix

5.6.1 The Proof of Theorem 5.1

We will prove the necessariness and the sufficiency of the stated structure separately.

First, we prove that the optimal policy must have the structure given above. We

prove this through contradiction. Assume that the optimal policy, which satisfies
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Lemmas 5.1, 5.2 and 5.3, does not have the structure given above. Specifically,

assume that the optimal policy over the duration [0, sin−1) is the same as the policy

described in Theorem 1, however, the transmit power right after sin−1 , which is pn, is

not the smallest average power possible starting from sin−1 , i.e., we can find another

si′ ≤ siN , such that

pn >

∑i′−1
j=in−1

Ej

si′ − sin−1

, p′ (5.38)

Based on Lemma 5.3, the energy consumed up to sin−1 is equal to
∑in−1−1

j=0 Ej, i.e.,

there is no energy remaining at t = s−in−1
.

We consider two possible cases here. The first case is that si′ < sin , as shown

in Figure 5.11(a). Under the optimal policy, the energy required to maintain a

transmit power pn over the duration [sin−1 , si′) is pn(si′ − sin−1). Based on (5.38),

this is greater than the total amount of energy harvested during [sin−1 , si′), which is

∑i′−1
j=in−1

Ej. Therefore, this energy allocation under this policy is infeasible.

On the other hand, if si′ > sin , as shown in Figure 5.11(b), then the total

amount of energy harvested over [sin , si′) is
∑i′−1

j=in
Ej. From (5.38), we know

pn =

∑in−1
j=in−1

Ej

sin − sin−1

>

∑i′−1
j=in−1

Ej

si′ − sin−1

>

∑i′−1
j=in

Ej

si′ − sin

(5.39)

Thus, under any feasible policy, there must exist a duration l ⊆ [sin , si′), such

that the transmit power over this duration is less than pn. This contradicts with

Lemma 5.1. Therefore, this policy cannot be optimal.
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(b) si′ > sin

Figure 5.11: Two different cases in the proof of Theorem 5.1.

Next, we prove that if a policy with power vector p and duration vector l

has the structure given above, then, it must be optimal. We prove this through

contradiction. We assume that there exists another policy with power vector p′

and duration vector l′, and the transmission completion time T ′ under this policy

is smaller.

We assume both of the policies are the same over the duration [0, sin−1), how-

ever, the transmit policies right after sin−1 , which are pn and p′n, with durations ln

and l′n, respectively, are different. Based on the assumption, we must have pn < p′n.

If ln < l′n, from Lemma 5.3, we know that the total energy available over

[sin−1 , sin) is equal to pnln. Since pn < p′n, p′n is infeasible over [sin−1 , sin). Thus,

policy p′ cannot be optimal. Then, we consider the case when ln > l′n. If T ′ ≥ sin ,

then, the total energy spent over [sin−1 , sin) under p′ is greater than pnln, since

p′n > pn, and p′n+1 > p′n based on Lemma 5.1. If T ′ < sin , since the power-rate

function f is concave, the total number of bits departed over [sin−1 , sin) under p is

greater than that under p′. Thus, policy p′ cannot depart B0 bits over T ′, and it

cannot be optimal.

In summary, a policy is optimal if and only if it has the structure given above,
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completing the proof.

5.6.2 The Proof of Theorem 5.2

Let T be the final transmission duration given by the allocation procedure. Then,

we have B(T ) = B0. In order to prove that the allocation is optimal, we need to

show that the final transmission policy has the structure given in Theorem 5.1. We

first prove that p1 satisfies (5.16). Then, we can similarly prove that p2, p3, . . .

satisfy (5.16).

We know that if T = T1, then it is the minimum possible transmission comple-

tion time. We know that this transmit policy will satisfy the structural properties

in Theorem 5.1. Otherwise, the final optimal transmission time T is greater than

T1, and more harvested energy may need to be utilized to transmit the remaining

bits. From the allocation procedure, we know that

p1 ≤
∑i−1

j=0 Ej

si

, ∀i < ĩ1 (5.40)

In order to prove that p1 satisfies (5.16), we need to show that

p1 ≤
∑i−1

j=0 Ej

si

, ∀i : sĩ1
≤ si ≤ T (5.41)

If we keep transmitting with power p1, then at T ′
1 =

∑ĩ1−1
j=0 Ej

p1
, the total number
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of bits departed will be

f(p1)T
′
1 ≥ f

(∑ĩ1−1
j=0 Ej

T1

)
T1 = B0 (5.42)

where the inequality follows from the assumption that f(p)/p decreases in p. Then,

(5.40) guarantees that this is a feasible policy. Thus, under the optimal policy, the

transmission duration T will be upper bounded by T ′
1, i.e.,

T ≤
∑ĩ1−1

j=0 Ej

p1

(5.43)

which implies

p1 ≤
∑ĩ1−1

j=0 Ej

T
(5.44)

If T ≤ sĩ1
, as shown in Figure 5.12(a), no future harvested energy is utilized for the

transmissions. Then, (5.44) guarantees that (5.41) is satisfied.

If T > sĩ1
, as shown in Figure 5.12(b), additional energy harvested after sĩ1

should be utilized to transmit the data. We next prove that (5.41) still holds through

contradiction. Assume that there exists i′ with sĩ1
≤ si′ ≤ T , such that (5.41) is not

satisfied, i.e.,

p1 >

∑i′−1
j=0 Ej

si′
, p′ (5.45)
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Then,

∑i′−1
j=0 Ej

p1

< si′ (5.46)

Combining this with (5.43), we have T < si′ , which contradicts with the assumption

that si′ ≤ T . Thus, (5.41) holds, p1 satisfies the requirement of the optimal structure

in (5.40).

We can then prove using similar arguments that p2, p3, . . . also satisfy the

properties of the optimal solution. Based on Lemma 5.1, this procedure gives us the

unique optimal policy.

s
ĩ1

T1

p1

· · · · · ·

si1
T

· · ·

· · ·

s
ĩ1−1

t

E0 E
ĩ1−1

Ei1
E

ĩ1

(a) T ≤ sĩ1

t

Ei′

si1
T

p′

s
ĩ1

si′

E
ĩ1

T1

· · ·· · · · · · · · ·

E0 Ei1

p1

(b) T > sĩ1

Figure 5.12: Two different cases in the proof of Theorem 5.2.

5.6.3 The Proof of Theorem 5.3

First, we prove that for the optimal transmission policy, r1 must satisfy (5.32). We

prove this through contradiction. If r1 does not satisfy (5.32), then, we can always

find another ui′ , such that

r1 > min

{
f

(∑
j:sj<ui′

Ej

ui′

)
,

∑
j:tj<ui′

Bj

ui′

}
(5.47)
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First, we assume that f

(∑
j:sj<ui′

Ej

ui′

)
<

∑
j:tj<ui′

Bj

ui′
. Then, if ui′ < ui1 , clearly

r1 is not feasible over the duration [0, ui′), because of the energy constraint. If

ui′ > ui1 , then, the transmitter cannot maintain a transmission rate that is always

greater than r1 over [ui, ui′), from the energy point of view. This contradicts with

Lemma 5.4. Similarly, if f

(∑
j:sj<ui′

Ej

ui′

)
>

∑
j:tj<ui′

Bj

ui′
, the “bottleneck” is the data

constraint. We can prove that r1 is not feasible. Thus, r1 must be the smallest

feasible rate starting from t = 0, as in (5.32). We can also prove that r2, r3, . . .

must have the same structure, in the same way. Next, we can prove that any

policy has the structure described above is optimal. We can prove this through

contradiction. Assume that there exists another policy with a shorter transmission

completion time. Based on Lemmas 5.4 and 5.6, we can prove that this policy could

not be feasible.

5.6.4 The Proof of Theorem 5.4

First we prove that r1 obtained through this procedure satisfies (5.32). If T = T1, i.e.,

the constant rate is achievable throughout the transmission, then it is the shortest

transmission duration we can get, thus, it is optimal. If T 6= T1, from the procedure,

we have

r1 ≤ min
1≤i≤ĩ1

{
f

(∑
j:sj<ui

Ej

ui

)
,

∑
j:tj<ui

Bj

ui

}
(5.48)
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We need to prove that

r1 ≤ min

{
f

(∑
j:sj<ui

Ej

ui

)
,

∑
j:tj<ui

Bj

ui

}
for uĩ1

< ui ≤ T. (5.49)

Considering the policy with a constant power p1 = g−1(r1), then, at T ′
1 =

∑ĩ1−1
j=0 Ej

p1
,

the total number of bits departed will be

f(p1)T
′
1 ≥ f

(∑ĩ1−1
j=0 Ej

T1

)
T1 =

M∑
j=0

Bj (5.50)

while at T ′′
1 =

∑ĩ1−1
j=0 Bj

r1
, the total energy required will be

p1T
′′
1 ≤

∑ĩ1−1
j=0 Ej

T1

∑ĩ1−1
j=0 Bj

f

(∑ĩ1−1
j=0 Ej

T1

) =

ĩ1−1∑
j=0

Ej (5.51)

where the inequality follows from the assumption that f(p)/p decreases in p. There-

fore, maintaining a transmission rate r1 until the last bit departs the system is

feasible from both the energy and data arrival points of view. Thus, under the

optimal policy, the transmission duration T will be upper bounded by T ′
1 and T ′′

1 ,

i.e.,

T ≤
∑ĩ1−1

j=0 Ej

p1

, T ≤
∑ĩ1−1

j=0 Bj

r1

(5.52)
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which implies

p1 ≤
∑ĩ1−1

j=0 Ej

T
, r1 ≤

∑ĩ1−1
j=0 Bj

T
(5.53)

If no future harvested energy is utilized for the transmissions, (5.53) guarantees that

(5.32) is satisfied.

If T > uĩ1
, additional energy harvested after uĩ1

should be utilized to transmit

the data. We next prove that (5.49) still holds through contradiction. Assume that

there exists i′ with uĩ1
≤ ui′ ≤ T , such that (5.49) is not satisfied, i.e.,

p1 >

∑i′−1
j=0 Ej

ui′
or r1 >

∑i′−1
j=0 Bj

ui′
(5.54)

Then, we have

∑i′−1
j=0 Ej

p1

< ui′ or

∑i′−1
j=0 Bj

r1

< ui′ (5.55)

Combining this with (5.52), we have T < ui′ , which contradicts with the assumption

that ui′ ≤ T . Thus, (5.49) holds, r1 satisfies the requirement of the optimal structure

in (5.32). We can then prove using a similar argument that r2, r3, . . . also satisfy

the structure of the optimal solution. Based on Theorem 5.3, this procedure gives

us the unique optimal transmission policy.
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Chapter 6

Optimal Packet Scheduling in a Broadcast Channel with an Energy

Harvesting Transmitter

6.1 Introduction

We consider a wireless communication network where users are able to harvest en-

ergy from the nature. Such energy harvesting capabilities make sustainable and

environmentally friendly deployment of wireless communication networks possible.

While energy-efficient scheduling policies have been well-investigated in traditional

battery powered (un-rechargeable) systems [13–18], energy-efficient scheduling in

energy harvesting networks with nodes that have rechargeable batteries has only

recently been considered in Chapter 5. Chapter 5 considers a single-user communi-

cation system with an energy harvesting transmitter, and develop a packet schedul-

ing scheme that minimizes the time by which all of the packets are delivered to the

receiver.

In this chapter, we consider a multi-user extension of the work in Chapter 5.

In particular, we consider a wireless broadcast channel with an energy harvesting

transmitter. As shown in Figure 6.1, we consider a broadcast channel with one

transmitter and two receivers, where the transmitter node has three queues. The

data queues store the data arrivals intended for the individual receivers, while the
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energy queue stores the energy harvested from the environment. Our objective

is to adaptively change the transmission rates that go to both users according to

the instantaneous data and energy queue sizes, such that the total transmission

completion time is minimized.

TX
B2

data queues
RX 2

B1

energy queue

E

RX 1

Figure 6.1: An energy harvesting two-user broadcast channel.

In this chapter, we focus on finding the optimum off-line schedule, by assuming

that the energy arrival profile at the transmitter is known ahead of time in an off-line

manner, i.e., the energy harvesting times and the corresponding harvested energy

amounts are known at time t = 0. We assume that there are a total of B1 bits that

need to be delivered to receiver 1 and B2 bits that need to be delivered to receiver

2, available at the transmitter at time t = 0. As shown in Figure 6.2, energy arrives

(is harvested) at points in time marked with ◦; in particular, Ek denotes the amount

of energy harvested at time sk. Our goal is to develop a method of transmission

to minimize the time, T , by which all of the data packets are delivered to their

respective receivers.

The optimal packet scheduling problem in a single-user energy harvesting com-

munication system is investigated in Chapter 5. In Chapter 5, we prove that the op-

timal scheduling policy has a “majorization” structure, in that, the transmit power
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Figure 6.2: System model. (B1, B2) bits to be transmitted to users are available at
the transmitter at the beginning. Energies arrive (are harvested) at points denoted
by ◦. T denotes the transmission completion time by which all of the bits are
delivered to their respective destinations.

is kept constant between energy harvests, the sequence of transmit powers increases

monotonically, and only changes at some of the energy harvesting instances; when

the transmit power changes, the energy constraint is tight, i.e., the total consumed

energy equals the total harvested energy. In Chapter 5, we develop an algorithm to

obtain the optimal off-line scheduling policy based on these properties. Reference

[19] extends Chapter 5 to the case where rechargeable batteries have finite sizes. We

extend Chapter 5 in [20] to a fading channel.

References [19, 20] investigate two related problems. The first problem is

to maximize the throughput (number of bits transmitted) with a given deadline

constraint, and the second problem is to minimize the transmission completion time

with a given number of bits to transmit. These two problems are “dual” to each

other in the sense that, with a given energy arrival profile, if the maximum number of

bits that can be sent by a deadline is B∗ in the first problem, then the minimum time

to transmit B∗ bits in the second problem must be the deadline in the first problem,

and the optimal transmission policies for these two problems must be identical. In

this chapter, we will follow this “dual problems” approach. We will first attack

and solve the first problem to determine the structural properties of the optimal
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solution. We will then utilize these structural properties to develop an iterative

algorithm for the second problem. Our iterative approach has the goal of reducing

the two-user broadcast problem into a single-user problem as much as possible, and

utilizing the single-user solution in Chapter 5. The second problem is also considered

in the independent work [36] which uses convex optimization techniques to reduce

the problem into local sub-problems that consider only two energy arrival epochs at

a time.

We first analyze the structural properties of the optimal policy for the first

problem where our goal is to maximize the number of bits delivered to both users

under a given deadline constraint. To that end, we first determine the maximum

departure region with a given deadline constraint T . The maximum departure region

is defined as the set of all (B1, B2) that can be transmitted to users reliably with a

given deadline. In order to do that, we consider the problem of maximizing µ1B1 +

µ2B2 under the energy causality constraints for the transmitter, for all µ1, µ2 ≥ 0.

Varying µ1, µ2 traces the boundary of the maximum departure region. We prove

that the optimal total transmit power policy is independent of the values of µ1, µ2,

and it has the same “majorization” structure as the single-user non-fading solution.

As for the way of splitting the total transmit power between the two users, we prove

that there exists a cut-off power level for the stronger user, i.e., only the power above

this cut-off power level is allocated to the weaker user.

We then consider the second problem, where our goal is to minimize the time,

T , by which a given (B1, B2) number of bits are delivered to their intended receivers.

As discussed, since the second problem is “dual” to the first problem, the optimal
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transmission policy in this problem has the same structural properties as in the

first problem. Therefore, in the second problem as well, there exists a cut-off power

level. The problem then becomes that of finding an optimal cut-off power such

that the transmission times for both users become identical and minimized. With

these optimal structural properties, we develop an iterative algorithm that finds the

optimal schedule efficiently. In particular, we first use the fact that the optimum

transmit power has the same structural properties as the single-user problem, to

obtain the first optimal total power, P1. Then, given the fact that there exists a

cut-off power level, Pc, for the first user, the optimal transmit strategy depends on

whether P1 is smaller or larger than Pc, which, at this point, is unknown. Therefore,

we have two cases to consider. If Pc is smaller than P1, then the stronger user will

always have a constant, Pc, portion of the total transmit power. This reduces the

problem to a single-user problem for the second user, together with a fixed-point

equation in a single variable (Pc) to be solved to ensure that the transmissions to

both users end at the same time. On the other hand, if Pc is larger than P1, this

means that all of P1 must be spent to transmit to the first user. In this case, the

number of bits delivered to the first user in this time duration can be subtracted

from the total number of bits to be delivered to the first user, and the problem

can be started anew with the updated number of bits (B′
1, B2) after the first epoch.

Therefore, in both cases, the broadcast channel problem is essentially reduced to

single-user problems, and the approach in Chapter 5 is utilized recursively to solve

the overall problem.
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6.2 System Model and Problem Formulation

The system model is as shown in Figures 6.1 and 6.2. The transmitter has an energy

queue and two data queues (Figure 6.1). The physical layer is modeled as an AWGN

broadcast channel, where the received signals at the first and second receivers are

Y1 = X + Z1 (6.1)

Y2 = X + Z2 (6.2)

where X is the transmit signal, and Z1 is a Gaussian noise with zero-mean and unit-

variance, and Z2 is a Gaussian noise with zero-mean and variance σ2, where σ2 > 1.

Therefore, the second user is the degraded (weaker) user in our broadcast channel.

Assuming that the transmitter transmits with power P , the capacity region for this

two-user AWGN broadcast channel is [24]

r1 ≤ 1

2
log2 (1 + αP ) (6.3)

r2 ≤ 1

2
log2

(
1 +

(1− α)P

αP + σ2

)
(6.4)

where α is the fraction of power spent for the message transmitted to the first user.

Let us denote f(p) , 1
2
log2 (1 + p) for future use. Then, the capacity region is

r1 ≤ f(αP ), r2 ≤ f
(

(1−α)P
αP+σ2

)
. This capacity region is shown in Figure 6.3.
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Figure 6.3: The capacity region of the two-user AWGN broadcast channel.

Working on the boundary of the capacity region, we have

P = 22(r1+r2) + (σ2 − 1)22r2 − σ2 (6.5)

, g(r1, r2) (6.6)

As shown in Figure 6.1, the transmitter has B1 bits to transmit to the first user, and

B2 bits to transmit to the second user. Energy is harvested at times sk with amounts

Ek. Our goal is to select a transmission policy that minimizes the time, T , by which

all of the bits are delivered to their intended receivers. The transmitter adapts its

transmit power and the portions of the total transmit power used to transmit signals

to the two users according to the available energy level and the remaining number of

bits. The energy consumed must satisfy the causality constraints, i.e., at any given

time, the total amount of energy consumed up to time t must be less than or equal

to the total amount of energy harvested up to time t.

Before we proceed to give a formal definition of the optimization problem

and propose the solution, we start with the “dual” problem of this transmission
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completion time minimization problem, i.e, instead of trying to find the minimal

T , we aim to identify the maximum number of bits the transmitter can deliver to

both users by any fixed time T . As we will observe in the next section, solving

the “dual” problem enables us to identify the optimal structural properties for both

problems, and these properties eventually help us reduce the original problem into

simple scenarios, which can be solved efficiently.

6.3 Characterizing D(T ): Largest (B1, B2) Region for a Given Dead-

line T

In this section, our goal is to characterize the maximum departure region for a given

deadline T . We define it in the following way.

Definition 6.1 For any fixed transmission duration T , the maximum departure re-

gion, denoted as D(T ), is the union of (B1, B2) under any feasible rate allocation

policy over duration [0, T ), i.e., D(T ) =
⋃

r1(t),r2(t)(B1, B2)(r1(t), r2(t)), subject to

the energy constraint
∫ t

0
g(r1, r2)(τ)dτ ≤ ∑

i:si<t Ei, for 0 ≤ t ≤ T .

We call any policy which achieves the boundary of D(T ) to be optimal. In

the single-user scenario in Chapter 5, we first examined the structural properties of

the optimal policy. Based on these properties, we developed an algorithm to find

the optimal scheduling policy. In this broadcast scenario, we will first analyze the

structural properties of the optimal policy, and then obtain the optimal solution

based on these structural properties. The following lemma which was proved for a

single-user problem in Chapter 5 was also proved for the broadcast problem in [36].
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Lemma 6.1 Under the optimal policy, the transmission rate remains constant be-

tween energy harvests, i.e., the rate only potentially changes at an energy harvesting

epoch.

Proof: We prove this using the strict convexity of g(r1, r2). If the trans-

mission rate for any user changes between two energy harvesting epochs, then, we

can always equalize the transmission rate over that duration without contradicting

with the energy constraints. Based on the convexity of g(r1, r2), after equalization

of rates, the energy consumed over that duration decreases, and the saved energy

can be allocated to both users to increase the departures. Therefore, changing rates

between energy harvests is sub-optimal. 2

Therefore, in the following, we only consider policies where the rates are con-

stant between any two consecutive energy arrivals. We denote the rates that go to

both users as (r1n, r2n) over the duration [sn−1, sn). With this property, an illustra-

tion of the maximum departure region is shown in Figure 6.4.

(B1,B2)

B1

B2

Figure 6.4: The maximum departure region and possible trajectories to reach the
boundary.
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Lemma 6.2 D(T ) is a convex region.

Proof: Proving the convexity of D(T ) is equivalent to proving that, given any

two achievable points (B1, B2) and (B′
1, B

′
2) in D(T ), any point on the line between

these two points is also achievable, i.e., in D(T ). Assume that (B1, B2) and (B′
1, B

′
2)

can be achieved with rate allocation policies (r1, r2) and (r′1, r
′
2), respectively. Con-

sider the policy (λr1 + λ̄r′1, λr2 + λ̄r′2), where λ̄ = 1−λ. Then, the energy consumed

up to sn is

n∑
i=1

g(λr1i + λ̄r′1i, λr2i + λ̄r′2i)li ≤ λ

n∑
i=1

g(r1i, r2i)li + λ̄

n∑
i=1

g(r′1i, r
′
2i)li (6.7)

≤ λ

n−1∑
i=0

Ei + λ̄

n−1∑
i=0

Ei (6.8)

=
n−1∑
i=0

Ei (6.9)

Therefore, the energy causality constraint is satisfied for any λ ∈ [0, 1], and the new

policy is energy-feasible. Any point on the line between (B1, B2) and (B′
1, B

′
2) can

be achieved. When λ 6= 0, 1, the inequality in (6.7) is strict. Therefore, we save

some amount of energy under the new policy, which can be used to increase the

throughput for both users. This implies that D(T ) is strictly convex. 2

In order to simplify the notation, in this section, for any given T , we assume

that there are N − 1 energy arrival epochs (excluding t = 0) over (0, T ). We denote

the last energy arrival epoch before T as sN−1, and sN = T , with lN = T − sN−1,

as shown in Figure 6.5.
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Figure 6.5: Rates (r1n, r2n) and corresponding durations ln with a given deadline T .

Since D(T ) is a strictly convex region, its boundary can be characterized by

solving the following optimization problem for all µ1, µ2 ≥ 0,

max
r1,r2

µ1

N∑
n=1

r1nln + µ2

N∑
n=1

r2nln

s.t.

j∑
n=1

g(r1n, r2n)ln ≤
j−1∑
n=0

En, ∀j : 0 < j ≤ N (6.10)

where ln is the length of the duration between two consecutive energy arrival in-

stances sn and sn−1, i.e., ln = sn − sn−1, and r1 and r2 denote the rate sequences

r1n and r2n for users 1 and 2, respectively. The problem in (6.10) is a convex op-

timization problem with convex cost function and linear constraints, therefore, the

unique global solution should satisfy the extended KKT conditions.

The Lagrangian is

L(r1, r2, λ, γ) =µ1

N∑
n=1

r1nln + µ2

N∑
n=1

r2nln −
N∑

j=1

λj

(
j∑

n=1

g(r1n, r2n)ln −
j−1∑
n=0

En

)

+
N∑

n=1

γ1nr1n +
N∑

n=1

γ2nr2n (6.11)
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Taking the derivatives with respective to r1n and r2n, and setting them to zero, we

have

µ1 + γ1n −
(

N∑
j=n

λj

)
22(r1n+r2n) = 0, n = 1, 2, . . . , N (6.12)

µ2 + γ2n −
(

N∑
j=n

λj

) (
22(r1n+r2n) + (σ2 − 1)22r2n

)
= 0, n = 1, 2, . . . , N (6.13)

where γ1n = 0 if r1n > 0, and γ2n = 0 if r2n > 0. Based on these KKT optimality

conditions, we first prove an important property of the optimal policy.

Lemma 6.3 The optimal total transmit power of the transmitter is independent of

the value of µ1, µ2, and it is the same as the single-user optimal transmit power.

Specifically,

in = arg min
in−1<i≤N

{∑i−1
j=in−1

Ej

si − sin−1

}
(6.14)

Pn =

∑in−1
j=in−1

Ej

sin − sin−1

(6.15)

i.e., at t = sin, Pn switches to Pn+1.
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Proof: Based on the expression of g(r1n, r2n) in (6.6) and the KKT conditions

in (6.12)-(6.13), we have

g(r1n, r2n) =
µ2 + γ2n∑N

j=n λj

− σ2 (6.16)

≥ 22(r1n+r2n) − 1 (6.17)

=
µ1 + γ1n∑N

j=n λj

− 1 (6.18)

≥ µ1∑N
j=n λj

− 1 (6.19)

where (6.17) becomes an equality when r2n = 0. Therefore, when r2n > 0, (6.16)-

(6.19) imply

g(r1n, r2n) =
µ2∑N
j=n λj

− σ2 >
µ1∑N
j=n λj

− 1 (6.20)

When r2n = 0, we must have r1n > 0. Otherwise, if r1n = 0, we can always let

the weaker user transmit with some power over this duration without contradicting

with any energy constraints. Since there is no interference from the stronger user,

the departure from the weaker user can be improved, thus it contradicts with the

optimality of the policy. Therefore, when r2n = 0, γ1n = 0, (6.16)-(6.19) imply

g(r1n, r2n) =
µ1∑N
j=n λj

− 1 >
µ2∑N
j=n λj

− σ2 (6.21)
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Therefore, we can express g(r1n, r2n) in the following way:

g(r1n, r2n) = max

{
µ1∑N
j=n λj

− 1,
µ2∑N
j=n λj

− σ2

}
(6.22)

Plotting these two curves in Figure 6.6, we note that the optimal transmit

power is always the curve on the top. If µ2∑N
j=n λj

−σ2 > µ1∑N
j=n λj

− 1 for some n̄, then,

we have

µ2 − µ1∑N
j=n λj

≥ µ2 − µ1∑N
j=n̄ λj

> σ2 − 1, ∀n > n̄ (6.23)

where the first inequality follows from the KKT condition that λj ≥ 0 for j =

1, 2, . . . N . Therefore, we conclude that there exists an integer n̄, 0 ≤ n̄ ≤ N , such

that, when n ≤ n̄, r2n = 0; and when n > n̄, r2n > 0.

Furthermore, (6.20)-(6.21) imply that, the energy constraint at t = sn̄ must

be tight. Otherwise, λn̄ = 0, and (6.21) implies

g(r1n̄, r2n̄) =
µ1∑N

j=n̄+1 λj

− 1 >
µ2∑N

j=n̄+1 λj

− σ2 = g(r1,n̄+1, r2,n̄+1) (6.24)

which contradicts with (6.20). Therefore, in the following, when we consider the

energy constraints, we only need to consider two segments [0, sn̄) and [sn̄+1, sN)

separately.

When n < sn̄, based on (6.20), if λn = 0, we have g(r1n, r2n) = g(r1,n+1, r2,n+1).

Starting from n = 1, g(r1n, r2n) remains a constant until an energy constraint be-

comes tight. Therefore, between any two consecutive epochs, when the energy con-
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straints are tight, the power level remains constant. Similar arguments hold when

n ≥ sn̄. Therefore, the corresponding power level is

Pn =

∑in−1
j=in−1

Ej

sin − sin−1

(6.25)

where sin−1 and sin are two consecutive epochs with tight energy constraint.

Finally, we need to determine the epochs when the energy constraint becomes

tight. Another observation is that g(r1n̄, r2n̄) must monotonically increase in n,

as shown in Figure 6.6. This is because both of these two curves monotonically

increase, and the maximum value of these two curves should monotonically increase

also. Therefore, based on the monotonicity of the transmit power, we conclude that

in = arg min
in−1<i≤N

{∑i−1
j=in−1

Ej

si − sin−1

}
(6.26)

This completes the proof. 2

sn̄s1 s2

· · · · · ·

sN

P

µ2∑N
j=n λj

− σ
2

µ1∑N
j=n λj

− 1

0 t

Figure 6.6: The value of the optimal transmit power is always equal to the curve on
top.
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Since the power can be obtained directly irrespective of the values of µ1, µ2,

the optimization problem in (6.10) is separable over each duration [sn−1, sn). Specif-

ically, for 0 < n ≤ N , the local optimization becomes

max
r1n,r2n

µ1r1n + µ2r2n

s.t. g(r1n, r2n) ≤ Pn (6.27)

We relax the power constraint to be an inequality to make the constraint set to be

convex. Thus this becomes a convex optimization problem. This does not affect

the solution since the objective function is always maximized on the boundary of

its constraint set, i.e., the capacity region defined by the transmit power Pn.

When µ2

µ1
≤ Pn+1

Pn+σ2 , the solution to (6.27) can be expressed as

r1n =
1

2
log2(1 + Pn) (6.28)

r2n = 0 (6.29)

In this scenario, all of the power Pn is allocated to the first user.

When 1+Pn

σ2+Pn
≤ µ2

µ1
≤ σ2, we have

r1n =
1

2
log2

(
µ1(σ

2 − 1)

µ2 − µ1

)
(6.30)

r2n =
1

2
log2

(
(µ2 − µ1)(Pn + σ2)

µ2(σ2 − 1)

)
(6.31)
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In this scenario, a constant amount of power, µ1(σ2−1)
µ2−µ1

− 1, is allocated to the first

user, and the remaining power is allocated to the second user.

When µ2

µ1
> σ2, we have

r1n = 0 (6.32)

r2n =
1

2
log2

(
1 +

Pn

σ2

)
(6.33)

In this scenario, all of the Pn is allocated to the second user.

Let us define a constant power level as

Pc =

(
µ1(σ

2 − 1)

µ2 − µ1

− 1

)+

(6.34)

Based on the solution of the local optimization problem (6.27), we establish another

important property of the optimal policy as follows.

Lemma 6.4 For fixed µ1, µ2, under the optimal power policy, there exists a constant

cut-off power level, Pc, for the first user. If the total power level is below this cut-off

power level, then, all the power is allocated to the first user; if the power level is

higher than this level, then, all the power above this cut-off level is allocated to the

second user.

In the proof of Lemma 6.3, we note that the optimal power Pn monotonically

increases in n. Combining Lemma 6.3 and Lemma 6.4, we illustrate the structure of

the optimal policy in Figure 6.7. Moreover, the optimal way of splitting the power

in each epoch is such that both user’s share of the power monotonically increases.
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In particular, the second user’s share is monotonically increasing in time. Hence,

the path followed in the (B1, B2) plane is such that it changes direction to get closer

to the second user’s departure axis as shown in Figure 6.4. The dotted trajectory

cannot be optimal, since the path does not get closer to the second user’s departure

axis in the middle (second) power epoch.

E0

sK

· · ·

· · ·

EK

t0

E1 E2 E3

s2 s3 s4

E4

s1

(B1, B2)

T

P

Pc

P3

P1

P2

si1
si2

Figure 6.7: Optimally splitting total power between the signals that go to the two
users.

Corollary 6.1 Under the optimal policy, the transmission rate for the first user,

{r1n}N
n=1, is either a constant sequence (zero or a positive constant), or an increasing

sequence. Moreover, before r1n achieves its final constant value, r2n = 0; and when

r1n becomes a constant, r2n monotonically increases in n.

Based on Lemma 6.3, we observe that for fixed T , µ1 and µ2, the optimal

power allocation is unique, i.e., does not depend on µ1 and µ2. However, the way

the total power is split between the two users depends on µ1, µ2. In fact, the cut-off

power level Pc varies depending on the value of µ2/µ1. Therefore, for different values
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of µ2/µ1, the optimal policy achieves different boundary points on the maximum

departure region, and varying the value of µ2/µ1 traces the boundary of this region.

In this section, we characterized the maximum departure region for any given

time T . We proved that the optimal total transmit power is the same as in the

single-user case, and there exists a cut-off power for splitting the total transmit

power to both users. In the next section, we will use these structural properties to

solve the original transmission completion minimization problem.

6.4 Minimizing the Transmission Completion Time T for a Given

(B1, B2)

In this section, our goal is to minimize the transmission completion time of both

users for a given (B1, B2). The optimization problem can be formulated as

min
r1,r2

T

s.t.

j∑
n=1

g(r1n, r2n)ln ≤
j−1∑
n=1

En, ∀j : 0 < j ≤ N(T )

N(T )∑
n=1

r1nln = B1,

N(T )∑
n=1

r1nln = B2 (6.35)

where N(T )−1 is the number of energy arrival epochs (excluding t = 0) over (0, T ),

and lN(T ) = T − sN(T )−1. Since N(T ) depends on T , the optimization problem in

(6.35) is not a convex optimization problem in general. Therefore, we cannot solve

it using standard convex optimization tools.

We first note that this is exactly the “dual” problem of maximizing the de-
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parture region for fixed T . They are “dual” in the sense that, if the minimal trans-

mission completion time for (B1, B2) is T , then (B1, B2) must lie on the boundary

of D(T ), and the transmission policy should be exactly the same for some (µ1, µ2).

This is based on the fact the D(T ) ⊂ D(T ′) for any T < T ′. Assume (B1, B2) does

not lie on the boundary of D(T ). Then, either (B1, B2) cannot be achieved by T

or (B1, B2) is strictly inside D(T ) and hence (B1, B2) can be achieved by T ′ < T .

Therefore, if (B1, B2) does not lie on the boundary of D(T ), then T cannot be the

minimum transmission completion time.

We have the following lemma.

Lemma 6.5 When B1, B2 6= 0, under the optimal policy, the transmissions to both

users must be finished at the same time.

Proof: This lemma can be proved based on Corollary 6.1. If the transmission

completion time for both users is not the same, then over the last duration, we

transmit only to one of the users, while the transmission rate to the other user

is zero. This contradicts with the monotonicity of the transmission rates for both

users. Therefore, under the optimal policy, the transmitter must finish transmitting

to both users at the same time. 2

This lemma is proved in [36] also, by using a different approach. The authors

prove it in [36] mainly based on the convexity of the capacity region of the broadcast

channel.

For fixed (B1, B2), let us denote the transmission completion time for the first

and second user, by T1, T2, respectively. We note that T1 and T2 depend on the
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selection of the cut-off power level, Pc. In particular, T1 is monotonically decreasing

in Pc, and T2 is monotonically increasing in Pc. Based on Lemma 6.5, the problem

of optimal selection of Pc, can be viewed as solving a fixed point equation. In

particular, Pc must be chosen such that, the resulting T1 equals T2. Therefore,

we propose the following algorithm to solve the transmission completion time, T ,

minimization problem. Our basic idea is to try to identify the cut-off power level Pc

in an efficient way.

Since the power allocation is similar to the single-user case (c.f. Lemma 6.3),

our approach to find T will be similar to the method in Chapter 5. First, we aim to

identify P1, the first total transmit power starting from t = 0 in the system. This

is exactly the same as identification of P1 in the corresponding single-user problem.

For this, as in Chapter 5, we treat the energy arrivals as if they have arrived at

time t = 0, and obtain a lower bound for the transmission completion time as in

Chapter 5. In order to do that, first, we compute the amount of energy required

to finish (B1, B2) by s1. This is equal to g
(

B1

s1
, B2

s1

)
s1, denoted as A1. Then, we

compare A1 with E0. If E0 is greater than A1, this implies that the transmitter

can finish the transmission before s1 with E0, and future energy arrivals are not

needed. In this case, the minimum transmission completion time is the solution of

the following equation

g

(
B1

T
,
B2

T

)
T = E0 (6.36)

If A1 is greater than E0, this implies that the final transmission completion time
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is greater than s1, and some of the future energy arrivals must be utilized to

complete the transmission. We calculate the amount of energy required to fin-

ish (B1, B2) by s2, s3, . . . , and denote them as A2, A3, . . . , and compare these

with E0 + E1,
∑2

j=0 Ej,
∑3

j=0 Ej, . . . , until the first Ai that becomes smaller than

∑i−1
j=0 Ej. We denote the corresponding time index as ĩ1. Then, we assume that we

can use
∑ĩ1−1

i=0 Ei to transmit (B1, B2) at a constant rate. And, the corresponding

transmission completion time is the solution of the following equation

g

(
B1

T
,
B2

T

)
T =

ĩ1−1∑
i=0

Ei (6.37)

We denote the solution to this equation as T̃ , and the corresponding power as

P̃1. From our analysis, we know that the solution to this equation is the minimum

possible transmission completion time we can achieve. Then, we check whether this

constant power P̃1 is feasible, when the actual energy arrival times are imposed. If

it is feasible, it gives us the minimal transmission completion time; otherwise, we

get P1 by selecting the minimal slope according to (6.15). That is to say, we draw

all of the lines from t = 0 to the corner points of the energy arrival instances before

T̃ , and choose the line with the smallest slope. We denote si1 as the corresponding

duration associated with P1. This is shown in Figure 6.8.

Once P1 is selected, we know that it is the optimal total transmit power in

our broadcast channel problem. Next, we need to divide this total power between

the signals transmitted to the two users. Based on Lemma 6.4 and Corollary 6.1, if

the cut-off power level Pc is higher than P1, then, the transmitter spends all P1 for
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Figure 6.8: Determining the optimal total power level of the first epoch.

the stronger user; otherwise, the first user finishes its transmission with a constant

power Pc.

We will first determine whether Pc lies in [0, P1] or it is higher than P1. Assume

Pc = P1. Therefore, the transmission completion time for the first (stronger) user is

T1 =
B1

f(P1)
(6.38)

Once Pc is fixed, we can obtain the minimum transmission completion time for the

second user, T2, by subtracting the energy consumed by the first user, and treating

P1 as an interference for the second user. This reduces the problem to the single-user

problem for the second user with fading, where the fading level is P1+σ2 over [0, T1),

and σ2 afterwards. The single-user problem with fading is discussed in [20]. Since

obtaining the minimal transmission completion time is not as straightforward for

the fading channel, a more approachable way is to calculate the maximum number

of bits departed from the second user by T1, denoted as D2(T1, Pc). In order to
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do that, we first identify the optimal power allocation policy with fixed deadline

T1. This can be done according to Lemma 6.3. Assume that the optimal power

allocation gives us P1, P2, . . . , PN(T1). Then, we allocate P1 to the first user over

the whole duration, and allocate the remaining power to the second user. Based on

(6.4), we calculate the transmission rate for the second user over each duration, and

obtain D2(T1, Pc) according to

D2(T1, Pc) =

N(T1)∑
i=1

1

2
log

(
1 +

Pn − Pc

Pc + σ2

)
(sin − sin−1) (6.39)

We observe that, given Pc, D2(T1, Pc) is a monotonically increasing function of T1.

Moreover, given T1, D2(T1, Pc) is a monotonically decreasing function of Pc.

If D2(T1, Pc) is smaller than B2, it implies that T1 < T2, and we need to

decrease the rate for the first user to make T1 and T2 equal. Based on Lemma 6.4,

this also implies that the transmission power for the first user is a constant Pc < P1.

In particular, Pc is the unique solution of the following equation.

B2 = D2

(
B1

f(Pc)
, Pc

)
(6.40)

Note that D2

(
B1

f(Pc)
, Pc

)
is a continuous, strictly monotonically decreasing function

of Pc, hence the solution for Pc in (6.40) is unique. Since T1 is a decreasing function

of Pc and D2

(
B1

f(Pc)
, Pc

)
is a decreasing function of Pc, we can use the bisection

method to solve (6.40). In this case, the minimum transmission completion time is

T = B1

f(Pc)
.
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If D2(T1, Pc) is larger than B2, that implies T2 < T1, and we need to increase

the power allocated for the first user to make T1 = T2, i.e., Pc > P1. Therefore, from

Lemma 6.4, over the duration [0, si1), the optimal policy is to allocate the entire

P1 to the first user only. We allocate P1 to the first user, calculate the number of

bits departed for the first user, and remove them from B1. This simply reduces

the problem to that of transmitting (B′
1, B2) bits starting at time t = si1 , where

B′
1 = B1 − f(P1)si1 . The process is illustrated in Figure 6.9. Then, the minimum

transmission completion time is

T = siK +
B1 −

∑K
i=1 f(Pk)(sik − sik−1

)

f(Pc)
(6.41)

where K is the number of recursions needed to get Pc.

sK

· · ·

· · ·

EK

t0

E1 E2 E3

s2 s3 s4

E4

s1

(B1, B2)

T

P

P3

P1

P2

si1
si2

Pc

E0

Figure 6.9: Search for the cutoff power level Pc iteratively.

In both scenarios, we reduce the problem into a simple form, and obtain the

final optimal policy. Before we proceed to prove the optimality of the algorithm, we

introduce the following lemma first, which is useful in the proof of the optimality of
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the algorithm.

Lemma 6.6 f(E/T )T monotonically increases in T ; f
(

αE/T
(1−αE/t)+σ2

)
T monotoni-

cally increases in T also.

Proof: The monotonicity of both functions can be verified by taking deriva-

tives,

(f(E/T )T )′ = f(E/T )− E

(2 ln 2)(T + E)
(6.42)

(f(E/T )T )′′ =
E

2 ln 2

(
1

(T + E)2
− 1

T (T + E)

)
< 0 (6.43)

where the last inequality follows since E > 0. Therefore, f(E/T )T is a strictly

concave function, and its first derivative monotonically decreases when T increases.

Since when limT→∞(f(E/T )T )′ = 0, when T < ∞, we have (f(E/T )T )′ > 0,

therefore, the monotonicity follows.

Similarly, we have

(
f

(
αE/T

(1− αE/t) + σ2

)
T

)′
=

1

2
log2

(
σ2 + E/T

)− 1

2
log2

(
σ2 + (1− α)E/T

)

− E

2 ln 2

E

E + σ2T
+

E

2 ln 2

(1− α)E

(1− α)E + σ2T
(6.44)

(
f

(
αE/T

(1− αE/t) + σ2

)
T

)′′
=

E2

2T ln 2

(
1

(σ2T/(1− α) + E)2
− 1

(σ2T + E)2

)

<0 (6.45)

Again, the concavity implies the first derivative is positive when T < ∞, and the

monotonicity follows. 2
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Theorem 6.1 The algorithm is feasible and optimal.

Proof: We first prove the optimality. In order to prove that the algorithm is

optimal, we need to prove that P1 is optimal. Once we prove the optimality of P1, the

optimality of P2, P3, . . . follows. Since the solution obtained using our algorithm

always has the optimal structure described in Lemma 6.4, the optimality of the

power allocation also implies the optimality of rate selection, thus, the optimality

of the algorithm follows. Therefore, in the following, we prove that P1 is optimal.

First, we note that P1 is the minimal slope up to T̃ . We need to prove that

P1 is also the minimal slope up to the final transmission completion time, T . Let

us define T ′ as follows

T ′ =

∑ĩ1
n=0 En

P1

(6.46)

Assume that with P̃1, we allocate αP̃1 to the first user, and finish (B1, B2) using

constant rates. Then, we allocate αP1 to the first user, and the rest to the second

user. Based on Lemma 6.6, we have

f(αP1)T
′ ≥ f(αP̃1)T̃ = B1 (6.47)

f

(
αP1

(1− α)P1 + σ2

)
T ′ ≥ f

(
αP̃1

(1− α)P̃1 + σ2

)
T̂ = B2 (6.48)

Therefore, T ′ is an upper bound for the optimal transmission completion time. Since

P1 is the minimal slope up to T ′, we conclude that P1 is optimal throughout the

transmission. Following similar arguments, we can prove the optimality of the rest
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of the power allocations. This completes the proof of optimality.

In order to prove that the allocation is feasible, we need to show that the

power allocation for the first user is always feasible in each step. Therefore, in the

following, we first prove that P1 is feasible when we assume that Pc = P1. The

feasibility of P1 also implies the feasibility of the rest of the power allocation. With

the assumption that Pc = P1, the final transmission time for the first user is

T1 =
B1

f(P1)
≤ B1

f(αP1)
(6.49)

Based on (6.47) and (6.48), we know that T1 < T ′. Since P1 is feasible up to T ′,

therefore, P1 is feasible when we assume that Pc = P1. The feasibility of the rest of

the power allocations follows in a similar way. This completes the feasibility part of

the proof. 2

6.5 Numerical Results

We consider a band-limited AWGN broadcast channel, with bandwidth W = 1 MHz

and the noise power spectral density N0 = 10−19 W/Hz. We assume that the path

loss between the transmitter and the first receiver is about 100 dB, and the path

loss between the transmitter and the second user is about 105 dB. Then, we have

r1 = W log2

(
1 +

αPh1

N0W

)
= log2

(
1 +

αP

10−3

)
Mbps (6.50)

r2 = W log2

(
1 +

(1− α)Ph2

αPh2 + N0W

)
= log2

(
1 +

(1− α)P

αP + 10−2.5

)
Mbps (6.51)
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Therefore,

g(r1, r2) = 10−32r1+r2 + (10−2.5 − 10−3)2r2 − 10−2.5 W (6.52)

For the energy harvesting process, we assume that at times t = [0, 2, 5, 6, 8, 9, 11] s,

we have energy harvested with amounts E = [10, 5, 10, 5, 10, 10, 10] mJ. We find the

maximum departure region D(T ) for T = 6, 8, 9, 10 s, and plot them in Figure 6.10.

We observe that the maximum departure region is convex for each value of T , and

as T increases, the maximum departure region monotonically expands.
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Figure 6.10: The maximum departure region of the broadcast channel for various
T .

Then, we aim to minimize the transmission completion time with (B1, B2) =

(15, 6) Mbits. Following our algorithm, we obtain the optimal transmission policy,

which is shown in Figure 6.11. We note that the powers change only potentially

at instances when energy arrives (Lemma 6.1); power sequence is monotonically
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increasing and “majorized” over the whole transmission duration (Lemma 6.3). We

also note that, for this case, the first user transmits at a constant rate, and the rate

for the second user monotonically increases. The transmitter finishes its transmis-

sions to both users by time T = 9.66 s, and the last energy harvest at time t = 11

s is not used.

(B1, B2) = (15, 6)

10

0 2 t

10 10 1055

6 9 11

10

85

10

5
3

T

15

T = 9.66 t

P

Figure 6.11: Cut-off power Pc = 1.933 mW. Optimal transmit rates are r1 = 1.552
Mbps, r2 = [0.274, 0.680, 1.369, 1.834] Mbps, with durations l = [5, 3, 1, 0.66] s.

Next, we consider the example when (B1, B2) = (20, 2) Mbits, we have the

optimal transmission policy, as shown in Figure 6.12. In this example, the cut-

off power is greater than P1, and therefore, P1 is allocated to the first user only

over [0, 5) s, and after t = 5 s, the first user keeps transmitting at a constant rate

until all bits are transmitted. In this case, the transmission rates for both users

monotonically increase. The transmitter finishes its transmissions by time T = 9.25

s, and the last energy harvest is not used.
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Figure 6.12: Cut-off power Pc = 4.107 mW. Optimal transmit rates r1 = [2, 2.353,
2.353, 2.353] Mbps and r2 = [0, 0.167, 0.856, 2.570] Mbps, with durations l =
[5, 3, 1, 0.25] s.

6.6 Conclusions

In this chapter, we investigated the transmission completion time minimization prob-

lem in an energy harvesting broadcast channel. We assumed that there are certain

number of packets at the transmitter, ready to be transmitted to both users before

the transmission starts. We first analyzed the structural properties of the optimal

transmission policy, and proved that the optimal total transmission power has the

same structure as that in the single-user communication channel. We also proved

that there exists a cut-off power for the stronger user. If the optimal total transmis-

sion power is lower than this cut-off level, all power is allocated to the stronger user,

and when the optimal total transmission power is greater than this cut-off level, all

power above this level is allocated to the weaker user. Based on these structural

properties of the optimal policy, we developed an iterative algorithm to obtain the

globally optimal off-line scheduling policy.
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Chapter 7

Optimal Packet Scheduling in a Multiple Access Channel with

Energy Harvesting Transmitters

7.1 Introduction

Efficient energy management is crucial for wireless communication systems, as it

increases the throughput and improves the delay performance. Energy efficient

scheduling policies have been well investigated in traditional battery powered (un-

rechargeable) systems [13–18]. On the other hand, there exist systems where the

transmitters are able to harvest energy from the nature. Such energy harvesting

abilities make sustainable and environmentally friendly deployment of communi-

cation systems possible. This renewable energy supply feature also necessitates a

completely different approach to energy management.

In this chapter, we consider a multi-user rechargeable wireless communication

system, where data packets as well as the harvested energy arrive at the transmitters

as random processes in time. As shown in Figure 7.1, we consider a two-user multiple

access channel (MAC), where each transmitter node has two queues. The data queue

stores the data arrivals, while the energy queue stores the energy harvested from

the environment. Our objective is to adaptively change the transmission rate and

power according to the instantaneous data and energy queue sizes, such that the
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transmission completion time is minimized.

E2

B1 user 1

energy queue

B2

user 2

receiver

E1

data queue

(a)

Cs

Cs

R2

C2

R1C1

(b)

Figure 7.1: (a) An energy harvesting MAC model with energy and data queues, and
(b) the capacity region of the additive white Gaussian noise MAC.

In general, the arrival processes for the data and the harvested energy can

be formulated as stochastic processes, and the problem requires an on-line solution

that adapts transmission power and rate in real-time. Since this seems to be an

intractable problem for now, we simplify the problem by assuming that the data

packets and energy will arrive in a deterministic fashion, and we aim to develop an

off-line solution instead. In this chapter, we consider the scenario where packets

have already arrived before the transmissions start. Specifically, we consider two

nodes as shown in Figure 7.2. For the traffic load, we assume that there are a total

of B1 bits and B2 bits available at the first and second transmitter, respectively,

at time t = 0. We assume that energy arrives (is harvested) at points in time

marked with ◦. In Figure 7.2, E1k denotes the amount of energy harvested for the

first user at time sk. Similarly, E2k denotes the amount of energy harvested for the

second user at time sk. If there is no energy arrival at one of the nodes, we simply
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let the corresponding amount be zero, which are denoted by the dotted arrows in

Figure 7.2. Our goal then is to develop methods of transmission to minimize the

time, T , by which all of the data packets from both of the nodes are delivered to

the destination.

B2

s2

E20

t0 s1 T

E22

s2

E2K

sK

sK−1 sK

· · ·

B1

E10 E1,K−1E11

t0 s1 sK−1 T

· · ·

Figure 7.2: System model with all packets available at the beginning. Energies
arrive at points denoted by ◦.

The optimal packet scheduling problem in a single-user energy harvesting com-

munication system is investigated in Chapter 5. In Chapter 5, we prove that the op-

timal scheduling policy has a “majorization” structure, in that, the transmit power

is kept constant between energy harvests, the sequence of transmit powers increases

monotonically, and only changes at some of the energy harvesting instances; when

the transmit power changes, the energy constraint is tight, i.e., the total consumed

energy equals the total harvested energy. In Chapter 5, we develop an algorithm to

obtain the optimal off-line scheduling policy based on these properties. Reference

[19] extends Chapter 5 to the case where rechargeable batteries have finite sizes. We

extend Chapter 5 in [20] to a fading channel. In the two-user MAC setting studied

in this chapter, the scheduling problem is significantly more complicated. This is

because the two users interfere with each other, and we need to select the trans-
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mission powers for both users as well as the rates from the resulting rate region, to

solve the problem. In addition, because the traffic load and the harvested energy for

both users may not be well-balanced, the final transmission durations for the two

users may not be the same, further complicating the problem.

We first investigate a problem which is “dual” to the transmission completion

time minimization problem. In this “dual” problem, we aim to characterize the

maximum number of bits both users can transmit for any given time T . These two

problems are “dual” to each in the sense that, if (B1, B2) lies on the boundary of the

maximum departure region for time T ∗, then, T ∗ must be the solution to the trans-

mission completion time minimization problem with initial number of bits (B1, B2).

We propose a generalized iterative backward waterfilling algorithm to achieve the

boundary points of the maximum departure region for any given time T . Then,

based on the solution of this “dual” problem, we go back to the transmission com-

pletion time minimization problem, simplify it into standard convex optimization

problems, and solve it efficiently. In particular, we first characterize the maximum

departure region for every energy arrival epoch, and based on the location of the

given (B1, B2) on the maximum departure region, we narrow down the range of

the minimum transmission completion time to be between two consecutive epochs.

Based on this information, we propose to solve the problem in two steps. In the

first step, we solve for the optimal power policy sequences to achieve the minimum

T , so that (B1, B2) is on the maximum departure region for this T . This step can

be formulated as a convex optimization problem. Then, with the optimal power

policy obtained in the first step, we search for the optimal rate policy sequences
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from the capacity regions defined by the power sequences to finish B1, B2 bits. The

second step is formulated as a linear programming problem. In addition, we further

simplify the problem by exploiting the optimal structural properties for two special

scenarios.

7.2 System Model and Problem Formulation

The system model is as shown in Figures 7.1 and 7.2. As shown in Figure 7.1, each

user has a data queue and an energy queue. The physical layer is modeled as an

additive white Gaussian noise channel, where the received signal is

Y = X1 + X2 + Z (7.1)

where Xi is the signal of user i, and Z is a Gaussian noise with zero-mean and

unit-variance. The capacity region for this two-user MAC is [24]

R1 ≤ f(P1) (7.2)

R2 ≤ f(P2) (7.3)

R1 + R2 ≤ f(P1 + P2) (7.4)

where f(p) = 1
2
log(1+ p). We denote the region defined by these inequalities above

as C(P1, P2). This region is shown on the right figure in Figure 7.1.

As shown in Figure 7.2, user i has Bi bits to transmit which are available at

transmitter i at time t = 0. Energy is harvested at times sk with amounts Eik
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at transmitter i. Our goal is to solve for the transmit power sequence, the rate

sequence, and the corresponding duration sequence that minimize the time T by

which all of the bits are delivered to the destination.

We assume that the transmitters can adapt their transmit powers and rates

according to the available energy level and number of bits remaining. The energy

consumed must satisfy the causality constraints, i.e., for each user, the total amount

of energy consumed up to time t must be less than or equal to the total amount of

energy harvested up to time t by that user.

Let us denote the transmit power for the first and second user at time t as

p1(t) and p2(t), respectively. Then, the transmission rate pair (r1(t), r2(t)) must be

within the capacity region defined by p1(t) and p2(t), i.e., C(p1, p2)(t). For user i,

i = 1, 2, the energy consumed up to time t, denoted as Ei(t), and the total number

of bits departed up to time t, denoted as Bi(t), can be written as:

Ei(t) =

∫ t

0

pi(τ)dτ, Bi(t) =

∫ t

0

ri(τ)dτ, i = 1, 2 (7.5)

Here ri and powers pi are related through the f function as shown in (7.2)-(7.4).

Then, the transmission completion time minimization problem can be formulated
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as:

min
p1,p2,r1,r2

T

s.t. E1(t) ≤
∑

n:sn<t

E1n, 0 ≤ t ≤ T

E2(t) ≤
∑

n:sn<t

E2n, 0 ≤ t ≤ T

B1(T ) ≥ B1, B2(T ) ≥ B2

(r1, r2)(t) ∈ C(p1, p2)(t), 0 ≤ t ≤ T (7.6)

The optimization problem in (7.6) is a difficult optimization problem in gen-

eral. We first investigate a problem which is “dual” to this transmission completion

time minimization problem. Specifically, we aim to characterize the maximum de-

parture region, which is the region of (B1, B2) the transmitters can depart within

a deadline T . Based on the solution for this “dual” problem, we will go back and

decompose the original transmission completion time minimization problem into

convex optimization problems, and solve it in an efficient way.

7.3 Characterizing D(T ): Largest (B1, B2) Region for a Given Dead-

line T

In this section, our goal is to characterize the maximum departure region for a given

deadline T . We define it in the following way.

Definition 7.1 For any fixed transmission duration T , the maximum departure re-

gion, denoted as D(T ), is the union of (B1, B2) under any feasible power and rate
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allocation policy over the duration [0, T ).

We call any policy which achieves the boundary of D(T ) to be optimal.

Lemma 7.1 Under the optimal policy, the transmission power/rate remains con-

stant between energy harvests, i.e., the power/rate only potentially changes at an

energy harvesting epoch.

Proof: Assume that the transmitter changes its transmission power between

two energy harvesting instances si, si+1. Denote the transmit powers for the first

and second user as p1n, p1,n+1, and p2n, p2,n+1, respectively. Denote the instant when

the rate changes as s′i, as shown in Figure 7.3. Now, consider the duration [si, si+1).

We equalize the transmit power of both users by letting

p′1 =
p1n(s′i − si) + p1,n+1(si+1 − s′i)

si+1 − si

(7.7)

p′2 =
p2n(s′i − si) + p2,n+1(si+1 − s′i)

si+1 − si

(7.8)

It is easy to check that the energy constraints are satisfied under this new power

allocation policy, thus this new policy is feasible. On the other hand, the total

number of bits departed over this duration under this new policy is a pentagon

bounded by

f(p′1)(si+1 − si) > f(p1n)(s′i − si) + f(p1,n+1)(si+1 − s′i)

f(p′2)(si+1 − si) > f(p2n)(s′i − si) + f(p2,n+1)(si+1 − s′i)

f(p′1 + p′2)(si+1 − si) > f(p1n + p2n)(s′i − si) + f(p1,n+1, p2,n+1)(si+1 − s′i) (7.9)
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where the inequality follows from the fact that f(p) is strictly concave in p. We

note that the right hand side of these inequalities characterizes the boundary of the

departure region under the original policy over [si, si+1). Therefore, the departure

region under the original policy is strictly inside the departure region under the new

policy, which conflicts with the optimality of the original policy. 2

· · ·

E1i E1,i+1

si+1

p′

1

p1n

· · ·

· · ·

t
· · ·

· · ·

si s′

i

p2,n+1

E2i E2,i+1

si+1

p′

2

p2n

· · ·

· · ·

t
· · ·

si s′

i

p1,n+1

Figure 7.3: The power/rate must remain constant between energy harvests.

Therefore, in the following, we only consider policies where the rates are con-

stant between any two consecutive energy arrivals. In order to simplify the notation,

in this section, for any given T , we assume that there are N−1 energy arrival epochs

(excluding t = 0) over (0, T ). We denote the last energy arrival epoch before T as

sN−1, and sN = T , with ln = T − sn−1. Let us define (p1n, p2n) to be the transmit

power over [sn−1, sn).

Lemma 7.2 For any feasible transmit power sequences p1, p2 over over [0, T ), the

total number of bits departed from both of the users, denoted as B1 and B2, is a
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pentagon defined as





(B1, B2)

∣∣∣∣∣∣∣∣∣∣∣∣

B1 ≤
∑N

n=1 f(p1n)ln

B2 ≤
∑N

n=1 f(p2n)ln

B1 + B2 ≤
∑N

n=1 f(p1n + g2n)ln





(7.10)

This lemma can be established based on the property of pentagon with 45◦ dominant

face.

Lemma 7.3 D(T ) is a convex region.

Proof: Consider two power policies (p1,p2) and (p̄1, p̄2) over [0, T ). Without

loss of generality, we assume that

N∑
n=1

f(p2n)ln >

N∑
n=1

f(p̄2n)ln (7.11)

N∑
n=1

f(p1n + p2n)ln ≤
N∑

n=1

f(p̄1n + p̄2n)ln (7.12)

Let us construct a new policy as a linear combination of these two policies over

[0, T ), i.e., p′i = λpi + (1 − λ)p̄i, i = 1, 2, 0 < λ < 1. It is straightforward to

check that the energy constraints are still satisfied, thus the new policy is feasible.

Consider the upper corner points of the departure region under the policies (p1,p2)
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and (p̄1, p̄2). Because of the concave property of f(p) in p, we have

N∑
n=1

f(p′2n)ln > λ

N∑
n=1

f(p2n)ln + (1− λ)
N∑

n=1

f(p̄2n)ln (7.13)

N∑
n=1

f(p′1n + p′2n)ln > λ

N∑
n=1

f(p1n + p2n)ln + (1− λ)
N∑

n=1

f(p̄1n + p̄2n)ln (7.14)

i.e., the upper corner point of the departure region under the new policy is always

above the line connecting these two upper corner points under policies (p1,p2) and

(p̄1, p̄2). Therefore, the union of (B1, B2) over all feasible power allocation policies

is a convex region. 2

Lemma 7.4 For any T ′ > T , D(T ) is strictly inside D(T ′).

Proof: For any policy achieving the boundary point of D(T ), let us fix the

power sequence for one user, and change the transmit power of the other user by re-

moving part of its energy consumed before T and spend it over the duration [T, T ′).

Since there is no interference over [T, T ′), the departures for the user can be po-

tentially improved while the departures for the other user is unchanged. Therefore,

D(T ) must be strictly inside D(T ). 2

As a first step, we aim to explicitly characterize D(T ) for any T . Similar to

the capacity region of the fading Gaussian multiple access channel [30], where each

boundary point is a solution to maxR∈C µ ·R, here, in our problem, the boundary

points also maximize µ · B for some µ. First, let us examine three different cases

separately.
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7.3.1 µ1 = µ2.

In this subsection, we consider the scenario where µ1 = µ2. Therefore, our problem

becomes maxp1,p2 B1+B2. In Chapter 5, we examined the optimal packet scheduling

policy for the single-user scenario. We observe that for any fixed T , the optimal

power allocation policy has the “majorization” property. Specifically, we have

in = arg min
in−1<i≤N

{∑i−1
j=in−1

Ej

si − sin−1

}
(7.15)

pn =

∑in−1
j=in−1

Ej

sin − sin−1

(7.16)

In this two-user multiple access channel, if we want to maximize the sum of de-

partures, we conclude that the sum of powers must have the same “majorization”

property as in the single-user scenario. Therefore, we merge the energy arrivals

from both users, and obtain the sum of energy arrivals as a function of t. We can

obtain the optimal sequence of sum of transmit powers, p1, p2, . . ., pn based on

(7.15)-(7.16).

The sum of transmit powers and its corresponding duration defines
∑N

n=1 f(pn)ln.

However, we can divide each pn into p1n, p2n pair in infinitely many ways, such that

their sums equal pn for all n. Each feasible sequence of p1n and p2n gives a feasible

region of (B1, B2), which is a pentagon. The dominant faces of all of these pentagons

are on the same line. Therefore, the union of these pentagons is a larger pentagon.

We need to identify the boundary of this larger pentagon, i.e., the end points of its

dominant face.
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With the sum of powers fixed, we want to find feasible power allocations which

maximize B1 and B2, individually. As we proved for the single-user case, whenever

the sum of powers changes, the total amount of energy consumed up to that instance

must be equal to the total amount of energy harvested up to that instance. In other

words, both users must deplete their energy completely at that moment. This adds

additional energy constraints on both users besides the casuality constraints.

In order to maximize B1, we plot the sum of E1n as a function of t in Figure 7.4.

Then, we equalize the transmit powers of the first user as much as possible with the

casuality constraints on energy and the additional energy consumption constraints.

This latter constraint requires us to empty the energy queue at given instances si1 ,

si2 , etc. The former constraint requires us to choose the minimum slope among

the lines passing through the origin and any other corner point before the next

energy emptying epoch, Chapter 5. This gives us the sequence of p1n, as shown in

Figure 7.4. Based on the concavity of the function f(p), we can prove that this

policy maximizes B1 under the constraint that B1 + B2 is maximized at the same

time.

Once p1n is obtained, p2n can be obtained by subtracting p1n from pn. Since pn

is always feasible in our allocation, the corresponding p2n must be feasible as well.

This power allocation defines a pentagon region for (B1, B2), where the lower corner

point of this pentagon is also the lower point on the flat part of the dominant face

of D(T ), which is point 1 in Figure 7.5. Similarly, we can obtain the upper corner

point on the flat part of the dominant face of D(T ), which is point 2 in in Figure 7.5.

Since any linear combinations of these two policies still achieves the sum rate, any
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p15

E13
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sK
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p11

p13
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si1
Tsi2

∑
E1i

p12

E10

· · ·

E1K

t0 s1

E11

Figure 7.4: The transmit powers of individual user.

point on the flat part of the dominant face can be achieved. Therefore, the flat part

of the dominant face of D(T ) is bounded by these two corner points.

2

B2

4

3

(B1, B2)

1

B1

Figure 7.5: The departure region D(T ).

7.3.2 µ1 = 0 or µ2 = 0.

In this subsection, we aim to maximize the departure from one user only. This

procedure is exactly the same as the procedure in the single-user scenario. On top
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of that, we also want to maximize the departure from the other user. Without

loss of generality, we aim to maximize B1 first. This is a single-user scenario, and

the optimal policy can be obtained according to (7.15)-(7.16). Given the allocation

p∗1n, in order to maximize the departure from the second user, we need to solve the

following optimization problem

max
p2

N∑
n=1

f(p∗1n + p2n)ln

s.t.

j∑
n=1

p2nln ≤
j−1∑
n=0

E2n, 1 ≤ j ≤ N (7.17)

Theorem 7.1 The optimal power allocation for (7.17) can be interpreted as a back-

ward waterfilling process with base water level p∗1n over [sn−1, sn) for 1 ≤ n ≤ N .

Starting from n = N , we fill the energy E2,N−1 over [sN−1, sN), and get an updated

water level as p2N + p∗1N ; and then, we start to fill energy EN−2 over [sN−2, sN−1);

once the water level exceeds p2N + p∗1N , we fill the remaining energy over [sN−2, sN)

until it is depleted. We continue this process until n = 0. The difference between

the updated water level and base water level gives p2.

Proof: We note that the constraint in (7.17) must be satisfied with an equal-

ity when k = N , otherwise, we can always increase some p2n without conflicting

with any other constraint, and the resulting number of departures is thus increased.
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Based on this observation, (7.17) can be equivalently expressed as

N∑
n=j

p2nln ≥
N−1∑

n=j−1

E2n, 1 < j ≤ N (7.18)

N∑
n=1

p2nln =
N−1∑
n=0

E2n (7.19)

The Lagrangian becomes

L(p2,λ) =
N∑

n=1

f(p∗1n + p2n)ln +
N∑

n=1

λn

(
N∑

j=n

p2jlj −
N−1∑

j=n−1

E2j

)
−

N∑
n=1

γnp2n (7.20)

where λn ≥ 0 when n > 1, γn ≥ 0 and γnp2n = 0. The optimal solution must satisfy

p2n =

(
1

λ1 −
∑n

j=1 λj

− p∗1n − 1

)+

, n = 1, 2, . . . , N (7.21)

1
λ1−

∑n
j=1 λj

can be interpreted as the “water” level over [sn−1, sn), and p∗1n + 1 is the

base water level. If λn > 0, no energy flows across the epoch t = sn−1, and we have,

1

λ1 −
∑n

j=1 λj

>
1

λ1 −
∑n−1

j=1 λj

(7.22)

i.e., the water level over [sn−1, sn) must be higher than that over [sn−2, sn−1).

If λn = 0, energy harvested before flows across the epoch t = sn−1, and we

have,

1

λ1 −
∑n

j=1 λj

=
1

λ1 −
∑n−1

j=1 λj

(7.23)
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i.e., the water level over [sn−1, sn) is equal to that over [sn−2, sn−1). Therefore,

energy flows across the epoch t = sn−1 only when the water level [sn−2, sn−1) has

the potential to surpass that over [sn−2, sn), and the energy flow makes the water

levels even. A backward waterfilling process naturally leads to the optimal power

policy. 2

The backward waterfilling procedure is shown in Figure 7.6. This power al-

location defines another pentagon, and its lower corner point maximizes B1, which

is point 3 in Figure 7.5. Similarly, we can obtain another pentagon whose upper

corner point maximizes B2, which is point 4 in Figure 7.5. In general, points 3 and

4 do not coincide with the points 1 and 2, respectively, and consequently, there are

curved parts connecting these corner points.

B1

s4

P

p13

p12

E10

· · ·

EK

t0 s1

E11 E13

s2 s3 s4
sK

E20

· · ·

EK

t0 s1

E22

s3 s4

E24

sK

B2

s2

T

p11

s1 s2 s3

Figure 7.6: The optimal transmit power for the second user to maximize its depar-
ture.
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7.3.3 General µ1, µ2 > 0.

The curved parts can be characterized through the solution of maxB∈D(T ) µ ·B for

some µ > 0. Since each boundary point corresponds to a corner point on some

pentagon, for µ1 > µ2, we need to solve the following problem:

max
p1,p2

(µ1 − µ2)
∑

n

f(p1n)ln + µ2

∑
n

f(p1n + p2n)ln

s.t.

j∑
n=1

p1nln ≤
j−1∑
n=0

E1n, ∀j : 0 < j ≤ N

j∑
n=1

p2nln ≤
j−1∑
n=0

E2n, ∀j : 0 < j ≤ N (7.24)

The problem in (7.24) is a convex optimization problem with linear constraints,

therefore, the unique global solution satisfies the extended KKT conditions as fol-

lows:

µ1 − µ2

1 + p1n

+
µ2

1 + p1n + p2n

≤
N∑

j=n

λj, 1 ≤ n ≤ N (7.25)

µ2

1 + p1n + p2n

≤
N∑

j=n

βj, 1 ≤ n ≤ N (7.26)

where the conditions in (7.25) and (7.26) are satisfied with equality if p1n, p1n > 0.

When µ1 6= µ2, it is difficult to obtain the optimal policy explicitly from the KKT

conditions. Therefore, we adopt the idea of generalized iterative waterfilling in [37]

to find the optimal policy.

Specifically, given the power allocation of the second user, denoted as p∗2, we

optimize the power allocation of the first user, i.e., we aim to solve the following
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optimization problem:

max
p1

(µ1 − µ2)
N∑

n=1

f(p1n)ln + µ2

N∑
n=1

f(p1n + p∗2n)ln

s.t.

j∑
n=1

p1nln ≤
j−1∑
n=0

E1n, 0 < j ≤ N (7.27)

Once the power allocation of the first user is obtained, denoted as p∗1, we do

a backward waterfilling for the second user to obtain its optimal power allocation.

We perform the optimization for both users in an alternating way. Because of the

concavity of the objective function and the Cartesian product form of the convex

constraint set, it can be shown that the iterative algorithm converges to the global

optimal solution, [38].

Because there is more than one term in the objective function of (7.27), the

optimal policy for the first user does not have a backward waterfilling interpretation.

However, using the method in [37], we can interpret the procedure for the first user

as a generalized backward waterfilling operation. In order to see that, given p∗2, we

define a generalized water level bn(p1n) as the inverse of the left hand side of (7.25),

i.e.,

bn(p1n) =

(
µ1 − µ2

1 + p1n

+
µ2

1 + p1n + p∗2n

)−1

(7.28)

and the base water level as bn(0), which can be seen as the modified interference

plus noise level over the duration [sn−1, sn). We generalize the form of the water

level by taking the priority of users into account. Then, the KKT condition for this
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single-user problem is

1

bn(p1n)
≤

N∑
j=n

λ̃j, n = 1, 2, . . . , N (7.29)

We note that λ̃j in general is different from the Lagrange multiplier λj in (7.25),

since p∗2n need not be the optimal p2. However, because of the convergence of the

iterative algorithm, λ̃j converges to λj eventually as well.

Therefore, under the definition of the generalized water level bn(p1n), we can

also interpret the optimal solution for the first user as a generalized backward wa-

terfilling process. We first fill E1,N−1 over the duration [sN−1, sN), with the base

water level bN(0). This step gives us an updated water level bN(E1,N−1/lN). Then,

we move backward to the duration [sN−2, sN−1), and fill E1,N−2 over that duration

until it is depleted, or the water level becomes equal to bN(E1,N−1/lN). Once the

latter happens, we fill the remaining energy over the durations [sN−2, sN−1) and

[sN−1, sN) in a way that the water level always becomes even. We repeat the steps

until E10 is finished. This allocation gives the optimal p1 when the power of the

second user is fixed. The optimality of this procedure can be proved in the same

way as in the proof of Theorem 7.1.

Therefore, in this section, we determined the largest (B1, B2) region for any

given T , i.e., D(T ). We also determined the optimal power/rate allocation policy

that achieves the points on the boundary of this (B1, B2) region. However, we recall

that our goal is to find the minimum time, T , by which we can transmit given fixed

number of bits (B1, B2). In the next section, we go back to our original problem,
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and provide a solution for it, using our findings in this section.

7.4 Minimizing the Transmission Completion Time T for a Given

(B1, B2)

For a given pair (B1, B2), in order to minimize the transmission completion time

of both users, we need to obtain T such that (B1, B2) lies on the boundary of the

departure region D(T ), as shown in Figure 7.5. However, D(T ) depends on T , which

is the objective we want to minimize, and is unknown upfront.

Therefore, in order to solve the problem, we first calculate D(t) for t =

s1, s2, . . . , sK . Then, we locate (B1, B2) on the maximum departure region. If

(B1, B2) is exactly on the boundary of D(t) for some t = si, then, based on the

“duality” of these two problems, we know that this si is exactly the minimum trans-

mission completion time the system can achieve, and the corresponding power and

rate allocation policy achieving this point is the optimal policy.

If (B1, B2) is outside D(si) but inside D(si+1) for some si, then, we conclude

that the minimum transmission completion time, T , must lie between these two

energy arriving epoches, i.e., si < T < si+1. Therefore, T − si, denoted as t here, is

the duration we aim to minimize.

We propose to solve this optimization problem in two steps. In the first step,

we aim to find a set of power allocation policy to ensure that (B1, B2) is on the

boundary of the departure region defined by this power allocation policy. In the

second step, with the power allocation obtained in the first step, we find a set
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of rate allocation within its corresponding capacity region, such that B1, B2 are

finished by the minimal transmission duration obtained in the first step. The first

step guarantees that such a rate allocation exists. Solving the problem through these

two steps significantly reduces the complexity for each problem, since the number

of unknown variables is about half in each problem. In addition, as we will observe,

the first step can be formulated as a standard convex optimization problem, and the

second step becomes a linear programming problem. Therefore, both steps can be

solved through standard optimization tools in an efficient way.

Let us define the energy spent over [sn−1, sn) by the first and second trans-

mitter as e1n, e2n, respectively. Then, let e1 = [e11, e12, . . . , e1,i+1], and e2 =

[e21, e22, . . . , e2,i+1], we formulate the optimization problem in the first step as follows

min
e1,e2,t

t

s.t.

j∑
n=1

e1n ≤
j−1∑
n=0

E1n, 0 < j ≤ i + 1

j∑
n=1

e2n ≤
j−1∑
n=0

E2n, 0 < j ≤ i + 1

B1 ≤
i∑

n=1

f

(
e1n

ln

)
ln + f

(e1,i+1

t

)
t

B2 ≤
i∑

n=1

f

(
e2n

ln
ln

)
ln + f

(e2,i+1

t

)
t

B1 + B2 ≤
i∑

n=1

f

(
e1n + e2n

ln

)
ln + f

(
e1,i+1 + e2,i+1

t

)
t (7.30)

where the last three inequality constraints simply mean that (B1, B2) ∈ D(si + t).

We state the problem in this form, so that the constraint set becomes convex, and
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the problem is transformed into a standard convex optimization problem. The joint

concavity of f
(

e
t

)
t in (e, t) can be proved through taking second derivatives of the

function with respect to e and t, and observing that the Hessian is always negative

semidefinite. Therefore, the right hand side of these inequality constraints are all

jointly concave, thus the constraint set is convex.

Once we obtain e1, e2 and t, we divide the energy by its corresponding dura-

tion, and get the optimal power policy sequences p1 and p2. Next, we perform the

rate allocation in the second step. Therefore, the problem becomes that of searching

for r1 and r2 from the sequence of capacity regions defined by the sequences p1 and

p2 to depart B1 and B2. This solution may not be unique. Therefore, we formulate

it as a linear programming problem as follows:

min
r1,r2

r1,i+1

s.t.
i∑

n=1

r1nln + r1,i+1t = B1

i∑
n=1

r2nln + r2,i+1t = B2

(r1n, r2n) ∈ C(p1n, p2n), 0 < n ≤ i + 1 (7.31)

Here the objective function can be any arbitrary linear function in r1 and r2, since

our purpose is only to obtain a feasible solution satisfying the constraints. We choose

the objective function to be r1,i+1 for simplicity. The solution of the optimization

problem (7.30)-(7.31) gives us an optimal power and rate allocation policies, which

minimize the transmission completion time for both users.
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Obtaining D(si) for every si requires a large number of computations, and as

we will see, it is not necessary. In order to reduce the computation complexity, we

aim to explore two special cases of the problem, and use the algorithm in Chapter 5

to obtain a lower bound for T .

7.4.1 (B1, B2) lies on the flat part of the dominant face.

For a given pair of (B1, B2), the minimum possible transmission completion time

can be achieved if it lies on the flat part of the dominant face of D(T ) for some T .

This corresponds to the scenario discussed in Section 7.3.1. Therefore, we can also

treat these two users as a single-user system, and identify the value of T through

the method discussed in Chapter 5.

Specifically, we calculate the minimum energy required to finish B1 +B2 by s1,

this is equal to 2
2
(

B1+B2
s1

)
− 1, denoted as A1. Then, we compare A1 with E10 + E20.

If A1 is smaller than E10+E20, then, the minimum possible transmission completion

time is the solution to the following equation

f

(
E10 + E20

T

)
=

B1 + B2

T
(7.32)

In this case, the maximum departure regionD(T ) is a pentagon defined by C (
E10

T
, E20

T

)

T . If B1 < f
(

E10

T

)
T and B2 < f

(
E20

T

)
T , then, we always select a rate from

C (
E10

T
, E20

T

)
to achieve the minimum transmission completion time.

If A1 is greater than E10 + E20, then, we continue to calculate the minimum

energy required to finish B1 +B2 by s2, s3, . . . , denoted as A2, A3, . . . , and compare
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these with
∑1

j=0 E1j+E2j,
∑2

j=0 E1j+E2j, . . . , until the first Ai that becomes smaller

than
∑i−1

j=0 E1j + E2j. Then, the minimum possible transmission completion time is

the solution of

f

(∑i−1
j=0 E1j + E2j

T

)
=

B1 + B2

T
(7.33)

Then, we need to determine whether this constant sum of transmit power is

feasible when the energy arrival times are imposed. We merge the energy arrivals

from both users and plot the sum of energy as a function of time. Then, we connect

the corner points up to T with the origin, and the smallest slope among the lines

gives us the first sum of the transmit power, p1. We repeat this process, to obtain

p2, p3, . . . , until all of B1 +B2 bits are transmitted. This gives the shortest possible

transmission completion time, T1, for the system.

Next, we need to determine whether (B1, B2) lies on the flat part of the dom-

inant face of D(T1). We obtain the region D(T1) and find the corner points of the

flat part on its dominant face through the method described in Section 7.3.1, and

compare them with (B1, B2). If (B1, B2) lies within the bound, as shown in Fig-

ure 7.5, this means that it is feasible to empty both queues by time T1. The only

remaining step is to identify a feasible power and rate allocation sequence to achieve

this lower bound.

In order to obtain a feasible power allocation, we simplify the optimization
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problem in (7.30) into the following form

min
p1,p2

p11

s.t. p1n + p2n = pn, 0 < n ≤ i + 1

B1 ≤
i∑

n=1

f(p1n)ln + f(p1,i+1)(T1 − si)

B2 ≤
i∑

n=1

f(p2n)ln + f(p2,i+1)(T1 − si) (7.34)

Again, the objective function can be arbitrary since our purpose is only to obtain a

feasible solution satisfying the constraints. We choose p11 for simplicity. Once the

feasible power allocation is obtained, the optimal rate allocation can be obtained by

solving (7.31).

7.4.2 (B1, B2) lies on the vertical or horizontal part.

If (B1, B2) does not lie on the flat part of the dominant face of D(T1), then, it either

lies on the vertical or horizontal parts of the boundary of D(T ) for some T , or lies

on the curved part of the boundary of D(T ) for some T . Specifically, we assume

that (B1, B2) is beyond the lower corner point of the flat part of the dominant face

of D(T1), as shown in Figure 7.7. This implies that if we keep transmitting with

any policy corresponding to the point on the flat part of the boundary of D(T1),

by T1, we have B2 bits departed from the second user, however, there are still some

more bits left in the queue of the first user. This situation motivates us to put more

priority on the first user.
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Therefore, as the second step, we consider the scenario that (B1, B2) lies on

the vertical part of the boundary of D(T ), for some duration T . We first ignore

the second user, and treat the first user as the only user in the system. This is

exactly the same situation as in the single-user scenario. We apply the algorithm in

Chapter 5, and obtain the transmission duration for the first user, denoted as T2. T2

is the shortest possible transmission completion time for given B1. If we can depart

B2 bits from the second user by T2, then T2 is the shortest transmission completion

time for both users; otherwise, we cannot finish both data queues by T2, and the

final transmission time should be greater than T2.

With T2 fixed, we obtain the optimal energy allocation for the second user

through the backward waterfilling procedure described in Section 7.3.2. Once p1n

and p2n are determined, we can calculate the maximum number of bits departed

from the second user under the assumption that the first user is the primary user.

This gives us a number B′
2. If B′

2 ≥ B2, as shown in Figure 7.7, it implies that our

assumption is valid, and we can empty both queues by T2, which is also the shortest

possible transmission duration for the system.

If B′
2 < B2, this implies that we cannot depart B2 bits from the second queue

by T2, therefore, the final transmission duration could not be T2 either for the system.

This leaves us with the last possibility that (B1, B2) must be on the curved part of

some other region with some duration T , where T > T1, T2.

Therefore, up to this point, we obtained a lower bound for the transmission

completion time T , which is max(T1, T2). In order to identify an upper bound for

T , we only need to calculate the maximum departure region for the energy arriving
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D(T1)
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Figure 7.7: The minimum transmission completion time T to depart (B1, B2).

epochs right after max(T1, T2), until (B1, B2) is included for some t = si.

7.5 Numerical Results

We consider a band-limited additive white Gaussian noise channel, with bandwidth

W = 1 MHz and noise power spectral density N0 = 10−19 W/Hz. We assume that

the distance between the transmitters and the receiver is 1 Km, and the path loss

is about 110 dB. Then, we have f(p) = W log2

(
1 + ph

N0W

)
= log2

(
1 + p

10−2

)
Mbps.

For the energy harvesting process, we assume that at times t = [0, 2, 7, 11] s, we

have energy harvested with amounts E = [5, 5, 10, 10] mJ for the first user; at times

t = [0, 5, 8, 12] s, we have energy harvested with amounts E = [5, 10, 5, 10] mJ for

the second user. We find the maximum departure region D(T ) for T = 7, 8, 11, 12

s, and plot them in Figure 7.8. We observe that the maximum departure region is

convex for each value of T , each boundary consists of three different parts, and as

T increases, the maximum departure region monotonically expands.
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Figure 7.8: The maximum departure region of the multiple access channel for various
T .

We assume that at t = 0, we have B1 = 2.5 Mbits from the first user and B2 =

2.32 Mbits from the second user to transmit. We choose the numbers in such a way

that the solution is expressable in simple numbers, and can be plotted conveniently.

Then, using the proposed algorithm, we obtain the optimal transmission policy,

which is shown in Figure 7.9. We also determine the transmission rates as r1 =

[0.263, 0, 0.585, 0.3] Mbps and r2 = [0.1155, 0.585, 0, 0.285] Mbps. We note that, for

this case, the active transmission is completed by time T = 10 s, and the energy

harvests at time t = 11 s and t = 12 s are not used. We also note that (B1, B2) lies

on the flat part of the dominant face of D(10), therefore, we finish the transmission

of both user simultaneously at t = 10 s. Since (B1, B2) is not at the corner point, the

optimal policy is not unique. We may have different p1 and p2 and choose different
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rates accordingly to have the same departure time. However, the sequence of the

sum of transmit powers is unique.

1

0 7 11

850

5

12

0

5

10

10 10

10

5

5

0

T = 10

T = 10

2.552

5

2.5

2

Figure 7.9: Optimal transmit powers p1 = [2, 0, 5, 2.5] mW, p2 = [1, 5, 0, 2.5] mW,
with durations l = [5, 2, 1, 2] s.

If (B1, B2) is not well-balanced, then, it may not be on the dominant face of

D(10), even though the sum B1 + B2 is the same. For example, if B1 = 2.63 Mbits

and B2 = 2.19 Mbits, a simple calculation indicates that (B1, B2) lies beyond the

range of the dominant face of D(10), and we cannot finish both queues at t = 10

s. Therefore, we take the first user as our primary user, and calculate the minimum

possible transmission time for it. The optimal policy for the first user is p11 = 1.43

mW over [0, 7) s, and p12 = 2.67 mW over [7, 10.75) s. Based on this allocation, we

perform the waterfilling procedure for the second user. The optimal allocation for

the second user is shown in Figure 7.10, and the maximum number of bits departed

from the second user is 2.22 Mbits, which is greater than B2. This implies that the

minimum transmission duration for both users is T = 10.75 s, and the data queue

of the second user will be emptied earlier than the first user.

The value of (B1, B2) may be such that it is neither on the flat part of the

dominant face nor on the vertical part of the boundary of any D(T ). For example,
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Figure 7.10: Optimal transmit powers p1 = [1.43, 1.43, 2.67] mW, p2 = [1, 3.54, 2.11]
mW, with durations l = [5, 2, 3.75] s.

let B1 = 2.58 Mbits and B2 = 2.24 Mbits (note that the sum B1 +B2 is the same as

in the previous two examples). From our first example, we know that it is beyond

the dominant face of D(10). Then, we use the method for the second example to find

the minimum transmission time for the first user by treating it as the primary user.

Calculation indicates that the minimum transmission duration for the first user is

T = 9.7 s, and the corresponding power allocation is p11 = 1.43 mW over [0, 7) s,

and p12 = 3.7 mW over [7, 9.7) s. Then, since T < 10 s, and 10 s is the minimum

possible transmission duration for the system, it implies that the total number of

bits departed by T = 9.7 s is strictly less than B1 + B2. Therefore, we cannot

finish the second queue by T = 9.7 s. Based on this analysis, we conclude that

(B1, B2) must be on the curved part of D(T ) for some T . Then, since it lies within

D(11), together with the lower bound max(10, 9.7) = 10 s, we solve the optimization

problem described in (7.31). The optimal policy is shown in Figure 7.11. We observe

that the sum of the transmit powers is always increasing, even though they are not
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monotonically increasing for each individual user. The power changes at t = 2 s and

t = 8 s, where the energy constraints are satisfied with equality for the second user.

T

7 11

850 12

5

10

10 10

10

5

5

1.86 0.35 3.03

2.381.144.431

T = 10.13.63

5

20

Figure 7.11: Optimal transmit powers p1 = [1.86, 0.35, 3.63, 3.03] mW, p2 = [1, 4.43,
1.14, 2.38] mW, with durations l = [5, 2, 1, 2.1] s.

These three pairs of (B1, B2) are plotted in Figure 7.12. Although the sum

of B1, B2 is the same, they corresponds to different scenarios discussed before, and

lies on different parts of the boundary of their corresponding maximum departure

regions.
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Figure 7.12: The maximum departure region of the multiple access channel for
various T .
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7.6 Conclusions

In this chapter, we investigated the transmission completion time minimization

problem in an energy harvesting multiple access communication system. We as-

sumed that the packets have already arrived and are ready to be transmitted at the

transmitter before the transmission starts. We first proposed a generalized iterative

backward waterfilling algorithm and characterized the maximum departure region

for any given deadline constraint T . Then, based on these findings, we simplified

the transmission completion time minimization problem into convex optimization

problems, and solved it efficiently.
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Chapter 8

Average Delay Minimization for an Energy Constrained Single-User

Channel

8.1 Introduction

Our objective in this chapter is to minimize the packet delay in a general energy

constrained system, where the transmitter may harvest energy from the nature. We

aim to develop optimal transmission policies that take into account the randomness

both in the arrivals of the data packets as well as in the arrivals of harvested energy.

As shown in Figure 8.1, we will consider a single node, where packets arrive at

random times marked with × and energy arrives (is harvested) at random points in

time marked with ◦. In Figure 8.1, Bi denotes the number of bits in the ith arriving

data packet, and Ei denotes the amount of energy in the ith energy arrival (energy

harvesting). our objective is to minimize the overall delay of the packets subject

to the energy constraints on the transmitter. The delay includes both the queuing

time and the transmission time for the packet. Our aim is to adaptively allocate

the energy over all packets according to the available amount of energy and number

of packet at the transmitter, in a way to minimize the overall delay of the system.

The most general version of the problem is complicated. In this chapter, we

will consider three scenarios, starting with the simplest setting and proceeding with
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B0 B1 B2 BM

t0 t1 t2 tMsK Ts1

· · ·

E0 EK

Figure 8.1: System model with random packet and energy arrivals. Data packets
arrive at points denoted by × and energies arrive (are harvested) at points denoted
by ◦.

progressively more complicated settings. In the first scenario, we assume that the

transmitter has a fixed number of packets to transmit, and a fixed amount energy

to use in its transmissions. We formulate the problem as a convex minimization

problem. We use a Lagrangian based approach, and develop an iterative algorithm.

The iterative algorithm is guaranteed to converge to the unique global optimum

solution.

In the second scenario, we assume that the transmitter has a fixed amount

of energy, but the packets arrive during the transmissions. We also formulate the

problem as a convex minimization problem. However, even though the overall cost

function is convex in the energies allocated to the packets, it is not differentiable.

The reason for this is that the cost function takes different forms in different re-

gions of allowable energy distributions. In other words, the energy allocated to a

packet affects the form of the cost function for later packets. For this setting, unlike

[13], the problem does not admit a closed-form solution. Therefore, we develop an

iterative algorithm that is based on the principle of decreasing the overall delay at

each iteration. We prove that the proposed algorithm decreases the overall delay

monotonically. However, due to the non-differentiability of the overall delay func-
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tion, the proposed algorithm may converge to a suboptimal fixed point. In order to

overcome this problem, we use two modifications on our algorithm: increasing the

dimensionality of the sub-problem solved at each iteration (i.e., considering more

than two packets at any given iteration), and ε-perturbation of the sub-optimal fixed

points. In addition, we develop a dynamic programming (DP) based formulation

for the same problem.

In the third scenario, we assume that the transmitter has a fixed number of

packets available at the beginning, but the energy arrives during the transmissions.

This models an energy harvesting transmitter which harvests energy from the na-

ture by using a rechargeable battery. In this scenario, a certain amount of energy

from the battery is allocated to a packet for its transmission. In order to shorten

the transmission time, a packet may hold its transmission until the battery gathers

enough energy. This on the other hand increases its waiting time in the queue.

Therefore, in this scenario, there is a trade-off between the waiting time and trans-

mission time for the packets. This problem is not convex in general, and we develop

a DP formation to obtain the optimal solution.

8.2 Scenario I: Packets and Energy Ready Before Transmission Starts

In many situations, such as multimedia communications, the source (video, music,

etc.) may be available at the server waiting to be downloaded to their destinations.

In sensor networks, a node may have gathered a number of packets before the

transmission starts. In these scenarios, minimizing the overall transmission delay

212



with a given amount of energy is an important problem.

We consider a non-fading single-user wireless channel. We assume that there

are M packets available at the transmitter at t = 0; see Figure 8.2. The packets

have a uniform size, which is B0 bits per packet. The transmitter has a total

energy constraint which is denoted by E0. Let ei denote the energy allocated for

the transmission of packet i, then
∑M

i=1 ei ≤ E0. We can express the relationship

between the transmission duration of τi and the energy spent in its transmission ei,

for packet i, as a deterministic function τi = f(ei). Without loss of generality, as in

[13, 18], we assume that f(e) satisfies the following properties: i) f(e) ≥ 0, ii) f(e)

decreases monotonically in e, iii) f(e) is strictly convex in e, iv) f(e) is continuously

differentiable, and v) f(e) → ∞ as e → 0. As shown in [13, 18], the first four

conditions are satisfied in realistic channel coding schemes. The last condition is

reasonable as a packet cannot be transmitted with zero energy.

f(e2)
f(e1)

f(e3) . . .

Figure 8.2: System model when all packets and energy are ready before the trans-
mission starts.

Therefore, for the ith packet, the delay Di can be expressed as

Di =
i∑

k=1

τk =
i∑

k=1

f(ek) (8.1)
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Then, our optimization problem becomes

min
M∑
i=1

(M − i + 1)f(ei)

s.t.
M∑
i=1

ei ≤ E0

ei ≥ 0, i = 1, . . . , M (8.2)

We note that, since all the packets have arrived before the transmission starts,

the cost function has a fixed form. This makes the optimization problem tractable.

The problem in (8.2) is a convex optimization problem, and there exists a unique

global optimum solution that satisfies the KKT optimality conditions.

We note that because of property v) of f(e), no ei can be zero, as it would

require the cost function to go to infinity. As a result, the KKTs can be expressed

as

(M − i + 1)f ′(ei) + λ = 0 (8.3)

i.e., as

ei = f ′−1

( −λ

M − i + 1

)
, i = 1, 2, . . . ,M (8.4)

where λ is the non-negative Lagrange multiplier which is chosen such that
∑i

k=1 ek =

E0.

In the following, we also devise an iterative algorithm to solve this problem.

Initially, we allocate the total energy E0 to the first packet. Then, we consider the

first two packets, and optimize the distribution of the total energy E0 over these

214



two packets, in a way to minimize the overall delay, while we keep the energies

allocated to the rest of the packets fixed. We continue this process until we reach

the last packet, then we return to the first packet. The local optimization in the

kth iteration becomes

min (M − i + 1)f(ek
i ) + (M − i)f(ek

i+1)

s.t. ek
i + ek

i+1 = ek−1
i + ek−1

i+1 , ek
i , e

k
i+1 ≥ 0 (8.5)

It is easy to prove that this algorithm converges to a fixed point, since the

algorithm monotonically decreases the cost function which is lower bounded by

zero. Assume that ek converges to a fixed point, ē, we need to show that ē is the

solution to (8.2). From the KKTs of the local optimization, we have

Mf ′(ē1) = (M − 1)f ′(ē2) = . . . = f ′(ēM) (8.6)

We also have
∑M

i=1 ēi = E0. Therefore, ē satisfies the global KKT conditions in

(8.3) and is the globally optimal point.

Based on the properties of f(e), we know that f ′(e) is negative and monotoni-

cally increasing in e. From (8.6), we have f ′(ē1) > f ′(ē2) > . . . > f ′(ēM). Therefore,

at the optimal point, the energy spent for each packet monotonically decreases in

the order of transmission. Thus, earlier packets are assigned larger energies and

therefore, are transmitted quicker than the later ones. Therefore, this model for the

delay minimization problem yields a solution which is in contrast with the principle
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of lazy scheduling that the model in [13] resulted in.

8.3 Scenario II: Random Packet Arrivals

We assume that M packets arrive at the transmitter during the transmissions at

times t1, t2, . . . , tM , where the inter-arrival times are denoted as d1, d2, . . . , dM−1; see

Figure 8.3.

tM−1 tM

dM−1

. . .

DM

t1

d3d2d1

t2

D1

D2

D3

t3 t4

. . .

DM−1

Figure 8.3: System model with random packet arrivals.

Let Di denote the delay experienced by the ith packet, which includes the

waiting time in the queue and the transmission time. Then, the delay experienced

by each packet can be written recursively as,

D1 = f(e1)

D2 = (D1 − d1)
+ + f(e2)

D3 = (D2 − d2)
+ + f(e3)

...

DM = (DM−1 − dM−1)
+ + f(eM) (8.7)

where (x)+ = max(0, x). Here, for the ith packet, (Di−1−di−1)
+ denotes the waiting

time in the queue, and f(ei) denotes the actual transmission time. Then, we can
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express our optimization problem as

min
M∑
i=1

Di

s.t.
M∑
i=1

ei ≤ E0

ei ≥ 0, i = 1, 2, . . . , M (8.8)

where the parameters of the optimization are the energies allocated to all packets,

{ei}M
i=1, and the givens of the optimization problem are the total energy E0 and the

inter-arrival times of the packets {di}M
i=1.

Intuitively, the optimization problem in (8.8) is a convex optimization problem

since function f(ei) is convex and a linear combination of convex functions is convex.

However, the existence of (·)+ function complicates matters, and the joint convexity

of the cost function with respect to all ei, i.e., with respect to e = [e1 e2 . . . eM ]>

needs to be proved.

Theorem 8.1 The objective function in (8.8) is convex with respect to e.

Proof: We will prove the convexity recursively. First, we note that D1 =

f(e1) and f(e1) is convex in e1. We also note that D2 = (f(e1)− d1)
+ + f(e2) and

the function (f(e1)− d1)
+ is convex in e because of the convexity of the function

f(e1) in e1. Thus, D2 is convex in e also.

Then, we look at D3 =
(
(f(e1)− d1)

+ + f(e2)− d2

)+
+ f(e3). We let F (e) =

(f(e1)− d1)
+ + f(e2)− d2. We note that F (e) itself is convex in e, and we need to

prove that (F (e))+ is convex in e as well. Using the definition of (·)+, for any two
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vectors e and e′ in the constraint set, we have

λF (e)+ + (1− λ)F (e′)+ ≥ λF (e) + (1− λ)F (e′)

≥ F (λe + (1− λ)e′) (8.9)

If F (λe + (1− λ)e′) is positive, we have

λF (e)+ + (1− λ)F (e′)+ ≥ F (λe + (1− λ)e′)

= F (λe + (1− λ)e′)+ (8.10)

If F (λe+(1−λ)e′) is negative, then F (λe+(1−λ)e′)+ = 0. Using the nonnegativity

of the (·)+ function, we have

λF (e)+ + (1− λ)F (e′)+ ≥ 0

= F (λe + (1− λ)e′)+ (8.11)

Therefore, using (8.10) and (8.11), we conclude that

λF (e)+ + (1− λ)F (e′)+ ≥ F (λe + (1− λ)e′)+ (8.12)

which implies that (F (e))+ is convex in e. Therefore, D3 is convex in e as well.

The convexity of (Di − di)
+ for i = 4, . . . , M − 1 can be proved in a similar
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manner. Since the objective function can be expressed as

M∑
i=1

Di =
M−1∑
i=1

(Di − di)
+ +

M∑
i=1

f(ei) (8.13)

and since each term in the cost function is convex in e, the linear combination is

convex in e as well. 2

Therefore, our problem is a convex minimization problem which has a convex

objective function and linear constraints. However, there are two main difficulties in

this optimization problem. First, since the overall delay includes both the queuing

time and the transmission time of the packets, the transmission time for a packet

affects the queuing time of all of the following packets. This causes the queuing

time of earlier packets to be multiply counted in the objective function. This leads

to the varying coefficients before f(ei)’s in the cost function, which implies that the

convexity of f(·) alone will not provide us a closed-form solution; we note that the

convexity of the cost function alone provided a closed-form solution in [13] due to the

symmetry in the cost function. Secondly, because of the existence of (·)+ function

in the overall delay expression, the cost function has non-differentiable points. In

addition, depending on whether the insides of (·)+ functions are negative or positive,

we have 2M possible cost functions. Since the number of different cost functions

to consider grows exponentially with the number of packets, standard Lagrangian

method is not tractable here. In the following, we will use a simple 3-packet problem

to illustrate the difficulties involved in solving this convex optimization problem.
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Using the definition of Di in (8.7), the 3-packet problem is

min f(e1) + (f (e1)− d1)
+ + f(e2) +

(
(f (e1)− d1)

+ + f(e2)− d2

)+
+ f(e3)

s.t. e1 + e2 + e3 ≤ E0, e1, e2, e3 ≥ 0 (8.14)

Opening the parentheses, we have four different possible cases:

Case 1: Both the transmission of the first and second packets end before the

arrival of the next packet, i.e., insides of both (·)+ functions are negative. This case

is illustrated in Figure 8.4(a). In this case, we have

min f(e1) + f(e2) + f(e3)

s.t. f(e1) ≤ d1, f(e2) ≤ d2

e1 + e2 + e3 ≤ E0, e1, e2, e3 ≥ 0 (8.15)

Case 2: The transmission of the first packet ends after the arrival of the second

packet, while the transmission of the second packet ends before the arrival of the

third packet. This case is illustrated in Figure 8.4(b). In this case, we have

min 2f(e1) + f(e2) + f(e3)− d1

s.t. f(e1) > d1, f(e1) + f(e2) ≤ d1 + d2

e1 + e2 + e3 ≤ E0, e1, e2, e3 ≥ 0 (8.16)

Case 3: The transmission of the first packet ends before the arrival of the
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second packet, while the transmission of the second packet ends after the arrival of

the third packet. This case is illustrated in Figure 8.4(c). In this case, we have

min f(e1) + 2f(e2) + f(e3)− d2

s.t. f(e1) ≤ d1, f(e2) > d2

e1 + e2 + e3 ≤ E0, e1, e2, e3 ≥ 0 (8.17)

Case 4: The transmissions of both the first and the second packets end after

the arrival of the next packet. This case is illustrated in Figure 8.4(d). In this case,

we have

min 3f(e1) + 2f(e2) + f(e3)− 2d1 − d2

s.t. f(e1) > d1, f(e1) + f(e2) > d1 + d2

e1 + e2 + e3 ≤ E0, e1, e2, e3 ≥ 0 (8.18)

As we see, the sub-problems in (8.15), (8.16), (8.17) and (8.18) are similar in

structure, except for different coefficients in front of the transmission delay times,

f(ei), in the cost function. In addition, each problem has a different constraint set,

which are all convex due to the monotonicity of f(ei) in ei. In order to solve the

optimization problem in (8.14), we need to solve the four optimization problems in

(8.15), (8.16), (8.17) and (8.18), and take the solution that gives us the smallest cost

function, i.e., overall delay. Even though each problem is differentiable and convex,

the number of problems to be solved increases exponentially with the number of
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packets, making this approach intractable for practical scenarios with many packet

arrivals.

t1 t2 t3

d2d1

D3D2D1

(a) Case 1.

t1 t2 t3

d2d1

D3D1

D2

(b) Case 2.

t1 t2 t3

d2d1

D1 D2

D3

(c) Case 3.

t1 t2 t3

d2d1

D1

D3

D2

(d) Case 4.

Figure 8.4: Four different cases.

8.3.1 An Iterative Approach

Because of the intractability of the global problem, in this section, we consider

developing an iterative algorithm, which at any given iteration, considers a smaller

local sub-problem. Similar to the FlowRight algorithm developed in [18], in this

section, we consider optimizing two of the variables, the energies allocated to two

consecutive packets, at any iteration, when the rest of the variables, the energies

allocated to the rest of the packets, are fixed.

We follow the procedure of iterative algorithm described in the previous sec-

tion. Initially, we allocate the total energy E0 to the first packet. Then, we consider

the first two packets, and optimize the distribution of the total energy E0 over these
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two packets, in a way to minimize the overall delay, while we keep the energies al-

located to the rest of the packets fixed. We continue this process until we reach the

last packet, then we return to the first packet. We express the local optimization

problem in terms of the energies of two consecutive packets, as follows

min
M∑
j=i

Dj(e
k
i , e

k
i+1)

s.t. ek
i + ek

i+1 = ek−1
i + ek−1

i+1 , ek
i , e

k
i+1 ≥ 0 (8.19)

where ek−1
i and ek−1

i+1 denote the energies of the packets in the previous iteration.

This problem can be solved relatively easily as it essentially is a single-variable

optimization problem.

Similarly, it is easy to prove that this algorithm converges to a fixed point,

since the value of cost function monotonically decrease in each step, and it is

lower bounded by zero. If the objective function had a fixed form and was twice-

differentiable, as in the previous section, we could be sure that the algorithm con-

verges to the globally optimum solution. Since our cost function is not differen-

tiable at some points, the algorithm may converge to a strictly sub-optimal fixed

point. Reference [38] proposes two approaches to solve the difficulty introduced by

non-differentiability in network flow problems: “multiple node relaxation method”,

and “ε-relaxation method”. We adopt these two methods here in order to escape

sub-optimal fixed points. Following multiple node relaxation method, we consider

sub-problems involving three or more packets, as opposed to two packets as we have

done above. Similarly, following the ε-relaxation method, we move a small amount
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of energy from one packet to another to perturb a sub-optimal fixed point. Ex-

perimentally, we have observed that both methods improve the convergence of the

algorithm.

8.3.2 A Dynamic Programming Approach

In this section, we develop a DP approach to our delay minimization problem. In

particular, we partition the problem into M stages, and define the state space to be

E×A, where E includes the possible amounts of energy remaining at the current stage

and A is the set of possible queuing times associated with the packet. Specifically,

in stage n, we define Sn(e, a) to be the minimal delay for the last M −n+1 packets,

given the total energy remaining is e and the waiting time in the queue for the

n-th packet is a, as shown in Figure 8.5. Then, we have the following recursive

relationship

Sn(e, a) = min
0≤en≤e

{
a + f(en) + Sn+1

(
e− en, (a + f(en)− dn)+

)}
(8.20)

for n = 1, 2, . . . , M , and SM+1(e, a) = 0.

During the process of solving the recursive equations backwards, we keep track

of en that leads to the minimum value. Let us denote the minimizing values as

ên(e, a) for n = 1, 2, . . . , M .

After computing the functions {Sn(e, a), 0 ≤ e ≤ E0} in a backward recursion

and obtaining the ên(e, a), we get the optimal energy allocation strategy as e1 =
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dn. . . . . .

f(en)
. . .

an

. . .

an+1

Figure 8.5: System model for the dynamic programming approach.

ê1(E0, 0). For n = 2, . . . , M ,

an = (an−1 + f(en−1)− dn−1)
+

en = ên

(
E0 −

n−1∑
i=1

ei, ai

)
(8.21)

Since getting a closed form solution for the recursive equations appears to be

intractable, we perform numerical approximation instead. To this end, we quantize

the state space into a finite number of discrete states. The step size of the quanti-

zation decides the size of the state space. Specifically, if there are N levels for the

energy and J levels for the waiting time, for each packet we have N · J different

states. The number of evaluations of a + f(en) + Sn+1[e− en, (a + f(en)− dn)+] is

once per quantized en for each quantized state for each stage. Thus, the number of

basic evaluations is N2JM , and the number of calculations grows linearly with the

total number of packets M . We note that we can use the DP approach for more

general cases where the packet arrivals are modeled as a random process, and the

delays are calculated as expectations. In addition, we can incorporate the fading

nature of the wireless channel, as well as develop online algorithms.
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8.4 Scenario III: Random Energy Arrivals

In this section, we consider the situation where M packets are ready to transmit at

t = 0. We assume that the packets have the same size, which is B0 bits per packet.

We also assume that there is E0 amount of energy available at time t = 0, and at

times s1, s2, . . ., sK , we have energies harvested with amounts E1, E2, . . . , EK ,

respectively. This system model is shown in Figure 8.6. Our goal is to adaptively

choose the transmit rate according to the available energy and traffic level, in a way

to minimize the average delay of the packets.

s2s1 sK

· · ·

· · ·

t

f(e2)
f(e3)

E0

f(e1)

D2

W2

E1 E2 EK

0

Figure 8.6: Average delay minimization with energy harvesting.

In order to make the system consistent with the model we have discussed in

the previous sections, we assume that, the transmit rate of a packet is kept constant

during its transmission. This assumption guarantees that the transmission time of

a packet τ is a function of the energy allocated to it, i.e., τi = f(ei). Moreover, we

assume that at the time epoch right before packet i’s transmission starts, we allocate

a certain amount of energy ei to it, and ei cannot be greater than the total amount of

energy available at that time epoch. This assumption is consistent with the causality

constraint on energy, i.e., energy cannot be allocated before it has been harvested.

This assumption also makes the stochastic optimal online algorithm possible, as we
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will see later in this section.

Again, we let Di denote the delay experienced by the ith packet, which includes

the waiting time in the queue and the transmission time. Different from previous

sections, where the waiting time only includes the time waiting for all of the packets

in front of it in the queue depart from the system, in this scenario, the waiting time

may also include the time spent waiting for energy to become available.

Define Wi to be the earliest epoch when the energy allocated to the ith packet

ei becomes available. Then, given e1, e2, . . . , eM , we have

W1 = min
k

{
sk :

k∑
j=0

Ej ≥ e1

}
(8.22)

W2 = min
k

{
sk :

k∑
j=0

Ej ≥ e1 + e2

}
(8.23)

...

WM = min
k

{
sk :

k∑
j=0

Ej ≥
M∑
i=1

ei

}
(8.24)

From the definition, we note that if e1 ≤ E0, then, W1 = 0; otherwise, the first

packet needs to wait for the arrivals of energy, until e1 amount of energy becomes

available. Then, the delay experienced by each packet can be expressed recursively
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as

D1 = W1 + f(e1) (8.25)

D2 = max(D1, W2) + f(e2) (8.26)

...

DM = max(DM−1,WM) + f(eM) (8.27)

where max(Di−1,Wi) denotes the waiting time in the queue, and f(ei) denotes the

actual transmission time. Then, the average delay minimization problem becomes

min
M∑
i=1

Di

s.t. ei ≥ 0, i = 1, 2, . . . , M (8.28)

where the parameters of the optimization are the energies allocated to all packets,

{ei}M
i=1, and the givens of the optimization problem is the energy arrival profile.

Different from previous scenarios, where the optimization problems are convex,

in this scenario, because of the existence of Wis in the cost function, the problem,

in general, is not convex. From the definition of Wi and Di in (8.22)-(8.24), we

note that Wi and Di are functions of e1, e2, . . . , ei. Specifically, W1 is a staircase

function of e1, and D1 is a piecewise convex function, as shown in Figure 8.7. The

expressions of Wis and Dis for i > 1 have more complex forms. As we can see from

W1 and D1, in general, they are not convex in e. However, for given Wis, the cost

function is jointly convex in e. We illustrate this fact through a simple two-packet
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case with two energy arrivals E0, E1 at times 0 and s1, respectively.

0

W1

E0

s1

s3

s2

e1E0 + E1

(a)

E0 + E1

D1

E0

s1

s3

s2

e1

(b)

Figure 8.7: (a) The waiting time for the first packet, W1 and (b) the delay for the
first packet, D1.

Using the definition of Wi and Di, the optimization problem becomes

min W1 + f(e1) + max(W1 + f(e1),W2) + f(e2) (8.29)

s.t. W1 = min
k

{
sk :

k∑
j=0

Ej ≥ e1

}
(8.30)

W2 = min
k

{
sk :

k∑
j=0

Ej ≥ e1 + e2

}
(8.31)

e1, e2 ≥ 0 (8.32)

Opening the parentheses of the min function in the constraint, we have three

different possible cases:

Case 1: W1 = W2 = 0, i.e., the second energy arrival is not utilized during
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the transmission. The optimization problem becomes

min 2f(e1) + f(e2)

s.t. e1 ≤ E0, e1 + e2 ≤ E0, e1, e2 ≥ 0 (8.33)

Case 2: W1 = 0, W2 = s1, i.e., the second packet is held until the second

energy arrives, while the first packet’s transmission is started at the beginning. The

optimization problem becomes

min f(e1) + max(f(e1), s1) + f(e2)

s.t. e1 ≤ E0, E0 < e1 + e2 ≤ E0 + E1, e1, e2 ≥ 0 (8.34)

Depending on relative values f(e1) and s1 in the cost function, we may have

two different cases as follows:

Case 2a:

min 2f(e1) + f(e2)

s.t. f−1(s1) < e1 ≤ E0, E0 < e1 + e2 ≤ E0 + E1, e1, e2 ≥ 0 (8.35)

Case 2b:

min f(e1) + f(e2) + s1

s.t. e1 ≤ min(E0, f
−1(s1)), E0 < e1 + e2 ≤ E0 + E1, e1, e2 ≥ 0 (8.36)
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Case 3: W1 = W2 = s1, i.e., the first packet is held until the second energy

is harvested, and the second packet’s transmission is started after the first packet

departs. The optimization problem becomes

min 2f(e1) + f(e2)

s.t. e1 > E0, e1 + e2 ≤ E0 + E1, e1, e2 ≥ 0 (8.37)

As wee see, the sub-problems in (8.33), (8.35), (8.36) and (8.37) are similar

in structure, and are all convex. In order to solve the average delay minimization

problem in (8.32), we need to solve the optimization problem for each different

case, and take the solution that gives us the smallest average delay. In the random

packet arrivals scenario discussed in Section 8.3, the number of sub-problems to be

solved increases exponentially with the number of packet arrivals. In this scenario,

depending on the value selection of Wis, there are KM

M !
different constraint sets,

and each constraint set corresponds to multiple cost functions (Cases 2a, 2b in the

example), which again increases the complexity of the problem. Therefore, solving

the problem analytically becomes intractable with large number of packets and

energy arrivals.

8.4.1 A Dynamic Programming Approach

In this section, we develop a DP approach to our delay minimization problem. In

particular, we partition the problem into M stages, and define the state space to be

E × A, where E includes the possible amounts of energy remaining at the current
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stage and A is the set of possible epochs when the packet’s transmission is started.

Specifically, at stage n, we define Sn(e, a) to be the minimal delay for the last M−n

packets, given the total energy remaining at t = a is e.

Assuming there is no packet transmitting at t = a. Then, the transmitter may

start to transmit the nth packet immediately, or it may postpone the transmission

until more energy is harvested. Then, the start time is either t = a, or t = si

for some si > a. If we start to transmit nth packet at t = a with energy en,

where en ≤ e, then, the transmission time for nth packet is f(en). Since this

transmission duration affects the queueing time of all these packets behind the

nth packet, it should be counted M − n + 1 times in the total delay. Once the

transmission of the nth packet finishes, the system enters another stage n + 1, with

state (e− en +
∑

i:a<si≤a+f(en) Ei, a + f(en)). If we hold the transmission of the nth

packet until t = si for si > a, then, the waiting time si − a should also be counted

M − n + 1 times in the total delay.

In order to simply the notation, we define Tn(e, a) as the total minimal delay

for the rest M − n + 1 packet if the transmitter starts to transmit the n-th packet

at t = a. Then, we have

Tn(e, a) = min
0<en<e

{
(M − n + 1)f(en) + Sn+1

(
e− en +

∑

a<sj≤a+f(en)

Ej, a + f(en)
)}

(8.38)

Sn(e, a) = min

{
Tn(e, a), (M − n + 1)(si − a) + Tn

(
e +

∑
a<sj≤si

Ej, si

)
,∀si > a

}

(8.39)
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for n = 1, 2, . . . , M , and SM+1(e, a) = 0. The relationship between Tn(e, a) and

Sn(e, a) is illustrated in Figure 8.8.

· · · · · ·

Ei Ei+1

a tsi+1si

Tn(e + Ei, si)

Tn(e + Ei + Ei+1, si+1)

Tn(e, a)
· · ·

Figure 8.8: Tn(e, a) in the dynamic programming formulation.

During the process of solving the recursive equations backwards, we keep track

of en and the start point an that leads to the minimum value of Sn(e, a). Let us

denote the minimizing values as ên(e, a) and ân(e, a) for n = 1, 2, . . . , M .

After computing the functions Tn(e, a), Sn(e, a) in a backward recursion and

obtaining the ên(e, a), and ân(e, a), we get the optimal energy allocation strategy as

e1 = ê1(E0, 0), a1 = â1(E0, 0). For n = 2, . . . , M ,

an = ân


 ∑

sj≤an−1+f(en−1)

Ej −
n−1∑
i=1

ei, an−1 + f(en−1)




en = ên


 ∑

sj≤an−1+f(en−1)

Ej −
n−1∑
i=1

ei, an−1 + f(en−1)


 (8.40)

First, let us examine the example with two packets and two energy arrivals
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under the DP formulation. Based on (8.38)-(8.39), we have

T2(e, a) =f(e) (8.41)

S2(e, a) = min

{
f(e), (si − a) + f

(
e +

∑
a<sj≤si

Ej

)
,∀si > a

}
(8.42)

=





min{f(e), s1 − a + f(e + E1)}, a < s1

f(e), a ≥ s1

(8.43)

T1(e, a) =





min0≤e1≤e

{
2f(e1)+

min
(
f(e− e1), s1 − a− f(e1) + f(e− e1 + E1)

)}
, a + f(e1) < s1

min0≤e1≤e{2f(e1) + f(e− e1 + E1)}, a + f(e1) ≥ s1

(8.44)

S1(E0, 0) = min {T (E0, 0), 2si + T1(E0 + E1, s1)} (8.45)

After taking derivatives of the functions on the right hand side of T1(e, a) and

obtain the minimizers for each possible case, we can plug them in the expression of

S1(e, a), and solve the problem explicitly. Although getting a closed form solution

for the recursive equations becomes intractable when M becomes large, we can still

perform numerical approximation to obtain the optimal energy allocation policy.

The complexity is about KMN2J , where there are N levels for the energy space and

J levels for the time space. Based on the DP formulation, we can easily incorporate

the random energy harvesting process to develop online algorithms.
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8.5 Numerical Results

We consider a band-limited additive white Gaussian noise channel, with bandwidth

W = 1 MHz and the noise power spectral density N0 = 10−19 W/Hz. We assume

that the path loss between the transmitter and the first receiver is about 110 dB.

We assume that the packets have a uniform size of 10 Kbits. Since the transmission

rate with given power p is equal to

W log2

(
1 +

ph

N0W

)
= 106 log2

(
1 +

e

10−2τ

)
(8.46)

the transmission time of a packet τ and the energy allocated to it e are related

through the following equation

106 log2

(
1 +

e

10−2τ

)
=

104

τ
(8.47)

Although we cannot express τ as an explicit function of e, we can prove that the

relationship between τ and e satisfies all of the stated properties for f(e).

We assume that at time t = [0, 1.5, 2, 3.5, 5.25]×10−2 s, we have packets arrive

at the transmitter. We use five algorithms, including our iterative algorithm, the

versions of it with dimension relaxation, and ε-perturbation methods, DP based

algorithm and built-in Matlab optimization functions.

Simulation results indicate that DP based algorithm always converges to the

solution that the built-in Matlab function finds. In Figure 8.9, we observe that

our iterative algorithm converges to the solution the built-in Matlab function finds.
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However, in Figure 8.10, we observe that there is a gap between the convergence

point of our iterative algorithm and the Matlab solution. We note that, at the point

that our algorithm converges to, the departure time of the third packet coincides with

the arrival time of the fourth packet. This means that our algorithm converges to a

non-differentiable sub-optimal fixed point. When we apply dimension-3 relaxation

and ε-perturbation methods, we observe that the modified version of our algorithm

escapes the sub-optimal fixed point and converges to the optimal solution.
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Figure 8.9: Overall delay as a function of the iteration index, when E = 48× 10−2

mJ.

For the third scenario with energy arrivals, we assume that at t = [0, 2, 5, 6, 8, 9]×

10−2 s, we have energy harvested with amount E = [10, 5, 10, 5, 10, 10] × 10−2 mJ.

We assume that at t = 0, we have four packets to transmit. We apply the DP algo-

rithm, and obtain the policy as shown in Figure 8.11. We observe that since there is

only a small amount of energy available at t = 0, in order to minimize the average

delay, all of the packets except the first one have to wait for the arrivals of energy
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Figure 8.10: Overall delay as a function of the iteration index, when E = 45× 10−2

mJ.

to transmit their packet, and the objective function in this case is equivalent to

minimize
∑4

i=1 f(ei), i.e., the transmission time for each packet has the same weight

in the cost function.Therefore they have the same value in the optimal solution.

10

0 2

10 10 1055

985 t6

τ1 τ2 τ4τ3

Figure 8.11: The optimal energy allocation e = [10, 10, 10, 10] × 10−2 mJ, with
duration τ = [1, 1, 1, 1]× 10−2 s, respectively.

When E0 increases to 20×10−2 mJ and the rest Eis are the same, the optimal

transmission policy is shown in Figure 8.12. We observe that in this scenario, the

second packet starts its transmission right after the first packet, and last two packets

finish their transmission with the same energy amount. Although the second packet
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has a longer transmission duration than the last two packet, the overall delay is

minimized since the the waiting time for the second packet is avoided under this

allocation.

10 10 1055

985 t

20

τ3 τ4

2 6

τ1 τ2

0

Figure 8.12: The optimal energy allocation e = [10.5, 9.5, 10, 10] × 10−2 mJ, with
duration τ = [0.89, 1.15, 1, 1]× 10−2 s, respectively.

When E0 increases to 40×10−2 mJ, the optimal transmission policy is shown in

Figure 8.13. This policy is identical to the policy in the first scenario when 45×10−2

mJ is available at t = 0. Because of the multiple counting of the transmission time

for each packet in the cost function, the optimal policy has monotonically increasing

transmission duration for the packets.

10 1055

t

40

τ1 τ2 τ3

8 92 650

τ4

10

Figure 8.13: The optimal energy allocation e = [12.6, 11.8, 10.9, 9.7]×10−2 mJ, with
duration τ = [0.63, 0.70, 0.82, 1.07]× 10−2 s, respectively.

8.6 Conclusions

In this chapter, we investigated the average delay minimization in a general energy

harvesting system. Depending on the arrival profiles of the energy and data pack-

ets, the average delay minimization problem becomes different. We consider three
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different scenarios here. In the first scenario, we assume that both packets and

energy are ready at the transmitter before the transmission starts. In the second

scenario, we assume that packets may arrive during the transmission, while energy

is ready at the transmitter before the transmission. These two scenarios correspond

to traditional unrechargeable systems. We developed iterative approaches and DP

formulation for both scenarios. For the third scenario, we assume that packets are

ready before the transmission starts, and energy is harvested during the transmis-

sion. We first analyzed the structural properties of the optimal transmission policy,

and developed an iterative algorithm and/or DP formulation to obtain the offline

scheduling policy.
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Chapter 9

Conclusions

In this dissertation, we investigated delay minimization problems in wireless com-

munication channels with energy and power constraints at the transmitters. We

combined queueing theory with information theory and designed queue-length based

cross-layer transmission policies.

We first studied the average delay minimization problem in a two-user multiple

access system, where each transmitter has an average power constraint. We analyzed

the trade-off between the average power constraints and the average delay, and

proved that the optimal transmission policy has a threshold structure, i.e., if the

sum of the queue lengths exceeds a threshold, both users transmit a packet from

their queues, and if the sum of the queue lengths is smaller than a threshold, the

user with the larger queue length transmits a packet from its queue.

Delay-optimal rate allocation is another important research area in multi-user

communications. We first studied the optimal rate allocation policies in a symmetric

multiple access channel. We proved that the delay optimal rate allocation policy is

to balance the queue lengths in each slot as much as possible. In order to observe

the tension between maximizing the current throughput and balancing the queue

lengths, we studied the optimal rate allocation policy in a system with a general

pentagon rate region. We proved that a switch curve structure exists in the queue
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state space, and the switch curve has a limit on one of the queue lengths. The

optimal policy implies that we can operate the queues partially distributedly. It also

implies that the system may need to trade sum-rate for balancing queue lengths in

order to achieve the optimal delay performance.

Next, we consider communication systems with rechargeable batteries, where

the transmitters are able to harvest energy from the nature throughout the duration

of the transmissions. We investigated the transmission completion time minimiza-

tion problem in such systems. We first considered a single-user communication

channel with an energy harvesting transmitter. We developed an iterative algo-

rithm, and proved its global optimality. Then, we extended the single-user scenario

to a broadcast channel and a multiple access channel. For these two scenarios, we

first characterized the maximum departure region for a given deadline T , then, based

on the “duality” between the departure region maximization and transmission com-

pletion time minimization problems, we simplified the transmission completion time

minimization problem into simple single-user problems, and obtained the optimal

scheduling policies efficiently.

Finally, we studied the average delay minimization problem in a single-user en-

ergy harvesting communication channel. We investigated three different scenarios.

For each scenario, we first analyzed the structural properties of the optimal trans-

mission policy, and developed an iterative algorithm and/or dynamic programming

formulation to obtain the offline scheduling policy.
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