
Planning in a Multi-Agent Environment: Theory and Practice

Jürgen Dix
Univ. of Manchester
Oxford Road
Manchester M13 9PL
UK
dix@cs.man.ac.uk

Héctor Muñoz-Avila
Dept. of Computer Sci-

ence and Engineering
Lehigh University
Bethlehem, PA 18015
USA
munoz@cse.lehigh.edu

Dana S. Nau
Dept. of Computer Science
and Inst. for System Research
University of Maryland
College Park, MD 20742
USA
nau@cs.umd.edu

Lingling Zhang
Dept. of Computer Science
University of Maryland
College Park, MD 20742
USA
lzhang@cs.umd.edu

Abstract

We give the theoretical foundations and empirical eval-
uation of a planning agent, shop, performing HTN

planning in a multi-agent environment. shop is based
on A-SHOP, an agentized version of the original SHOP

HTN planning algorithm, and is integrated in the IM-

PACT multi-agent environment. We ran several exper-
iments involving accessing various distributed, hetero-
geneous information sources, based on simplified ver-
sions of noncombatant evacuation operations, NEO’s.
As a result, we noticed that in such realistic settings
the time spent on communication (including network
time) is orders of magnitude higher than the actual in-
ference process. This has important consequences for
optimizations of such planners. Our main results are:
(1) using NEO’s as new, more realistic benchmarks
for planners acting in an agent environment, and (2) a
memoization mechanism implemented on top of shop,
which improves the overall performance a lot.

1. Introduction
Planning a course of action is difficult, especially for
large military organizations (e.g., the U.S. Navy) that
have their available assets distributed world-wide. For-
mulating a plan in this context requires accessing re-
mote, heterogeneous information sources. For example,
when planning for a Noncombatant evacuation opera-
tion, denoted by NEO, military commanders must ac-
cess several information sources including: assets avail-
able in the zone of operations, Intelligence assessment
about potential hostiles, weather conditions and so
forth.

A-SHOP is an HTN planning algorithm for planning
in a multi-agent environment. A-SHOP can interact
with external information sources, frequently hetero-
geneous and not necessarily centralized, via the IM-

PACT multi-agent environment. The IMPACT project
(see (ESP99; SBD+00) and http://www.cs.umd.edu/
projects/impact/) aims at developing a powerful and
flexible, yet easy to handle framework for the interop-
erability of distributed heterogeneous sources of infor-
mation.

In previous work we described the definition of the
A-SHOP planning algorithm, an agentized version of
SHOP that runs in the IMPACT environment and for-
mulated the conditions needed for A-SHOP to be sound
and complete (NN02).

In this paper we will focus on the actual implemen-
tation of A-SHOP following the principles stated in our
previous work and experiments we did on a transporta-
tion domain for NEO operations. Our analysis of the
initial runs of A-SHOP revealed that most of the run-
ning time was spent on communication between the IM-

PACT agents and accessing the information sources.
Compared to that, the actual inferencing time in A-

SHOP was very small. Furthermore, we observed that
frequently the same IMPACT query was performed sev-
eral times. To solve this problem we implemented a
memoization mechanism to avoid repeating the same
IMPACT queries. As we will show, the key for this
mechanism to work is that the A-SHOP algorithm per-
forms a planning technique called ordered task decom-
position. As a result, A-SHOP maintains partial in-
formation about the state of the world. Experiments
performed show that the memoization mechanism re-
sults in a significant reduction of the running time in
A-SHOP. This reduction depends on the overall net-
work time spent to access the information sources: the
higher this network time, the higher is the gain obtained
by our memoization technique.

This paper is organized as follows. The next sec-
tion describes the Noncombatant evacuation operations
(NEO’s) planning domain, which partly motivated our
approach.

In Section 3 we introduce IMPACT, define A-SHOP

and the results establishing the soundness and com-
pleteness of A-SHOP. Section 4 describes the actual im-
plementation of A-SHOP. Section 5 describes the mem-
oization mechanism and its dependence on the Ordered
Task Decomposition planning technique. In Section 6
we describe several experiments with A-SHOP for lo-
gistics NEO problems. Finally, we discuss related work
in Section 7 and conclude with Section 8.

2. Planning Noncombatant Evacuation
Operations (NEO’s)

Noncombatant evacuation operations are conducted to
assist the U.S.A. Department of State (DOS ) with evac-
uating noncombatants, nonessential military personnel,
selected host-nation citizens, and third country nation-
als whose lives are in danger from locations in a host
foreign nation to an appropriate safe haven. They usu-
ally involve the swift insertion of a force, temporary



Launch 

From
CarrierGroup

Establish Base 

within Flying

Distance

Select Helos Launching Base 

Transport helos

available
(H)Air  refueling

capability (H)
Security force

available (F)

Transport helos

available
(H)

Select Helos Launching Base

Position security force
(F,A)Transport fuel to
(A)

Transport sec. force
(F,A,H)

Embark sec. force (F,H)

Fly(H,A)

Select transport
(A)

Launch 

From Carrier

Group

Establish Base 

within Flying

Distance

Select Helos Launching Base 

Transport helos

available (H)

Air  refueling

capability (H)
Security force

available (F)

Transport helos

available
(H)Security force

available (F)

Transport helos

available (H)

Select Helos Launching Base

Position security force
(F,A)Transport fuel to
(A)

Transport sec. force
(F,A,H)

Embark sec. force (F,H)

Fly(H,A)

Select transport
(A)

Select Helos Launching BaseSelect Helos Launching Base

Position security force
(F,A)Transport fuel to
(A)

Transport sec. force
(F,A,H)

Position security force (F,A)

Transport fuel to (A)

Transport sec. force (F,A,H)

Embark sec. force (F,H)

Fly(H,A)

Embark sec. force (F,H)

Fly(H,A)

Select transport (A)

Figure 1: NEO transportation example.

occupation of an objective (e.g., an embassy), and a
planned withdrawal after mission completion. NEO’s
are often planned and executed by a Joint Task Force
(JTF ), a hierarchical multi-service military organiza-
tion, and conducted under an American Ambassador’s
authority.

The decision making process for a NEO is conducted
at three increasingly-specific levels: strategic, opera-
tional and tactical. The strategic level involves global
and political considerations such as whether to perform
the NEO. The operational level involves considerations
such as determining the size and composition of its ex-
ecution force. The tactical level is the concrete level,
which assigns specific resources to specific tasks. Thus,
this domain is particularly suitable for a hierarchical
(HTN) planning approach.

JTF commanders plan NEO’s by gathering informa-
tion from multiple sources. For example, in prepara-
tion for Operation Eastern Exit (Mogadishu, Somalia,
1991), commanders accessed Intelligence Satellite Pho-
tographs from NIMA (National Imagery and Mapping
Agency), intelligence assessment information from the
CIA, the Emergency Action Plan (EAP) from the US
Embassy in Mogadishu, among others (Sie91). Any au-
tomated system planning in this domain must be able to
access these multiple distributed information sources.

3. Planning with Remote,
Heterogeneous Information Sources

In this section we review results obtained in (NN02).
After giving a brief overview on SHOP and IMPACT,
we state the main results of (NN02).

SHOP

Rather than giving a detailed description of the kind
of HTN planning used by SHOP ((NCLMA99)), we
consider the following example.

In order to do planning in a given planning domain,
SHOP needs to be given knowledge about that domain.
SHOP’s knowledge base contains operators and meth-
ods. Each operator is a description of what needs to
be done to accomplish some primitive task, and each
method is a prescription for how to decompose some
complex task into a totally ordered sequence of sub-
tasks, along with various restrictions that must be sat-
isfied in order for the method to be applicable.

Given the next task to accomplish, SHOP chooses
an applicable method, instantiates it to decompose the
task into subtasks, and then chooses and instantiates

other methods to decompose the subtasks even fur-
ther. If the constraints on the subtasks prevent the
plan from being feasible, SHOP will backtrack and try
other methods.

As an example, Figure 1 shows two methods for the
task of selecting a helicopter launching base: establish-
ing the base within flying distance, and launch from
carrier battle group (i.e., use the carrier as the heli-
copter launching base). Note that each method’s pre-
conditions are not used to create subgoals (as would be
done in action-based planning). Rather, they are used
to determine whether or not the method is applicable.
Establishing the base within flying distance requires to
have transport helicopters and a security force avail-
able. Launching from carrier battle group also requires
to have helicopters available and those helicopters have
to have air refuelling capability (which wasn’t necessary
in the first method because the helicopters are within
flying distance).

If the method establishing base within flying distance
method is selected, the select helicopter launching base
is decomposed into three subtasks: transport secu-
rity force (F) using the helicopters (H) to the selected
launching base (A), position the security force in the
base, and transport the fuel to the base. Some of these
tasks, such as transporting the security force, can be
further decomposed. Others such as position security
force cannot. The former are called compound tasks,
the latter primitive tasks.

IMPACT
To get a bird’s eye view of IMPACT, here are the most
important features:

Actions: Each IMPACT agent has certain actions
available. Agents act in their environment according
to their agent program and a well defined semantics
determining which of the actions the agent should
execute.

Legacy Code: IMPACT Agents are built on top of
arbitrary software code (Legacy Data).

Agentization: A methodology for transforming
legacy code into an agent has been developed.

For example, in many applications a math agent is
needed. This agent is able to do mathematical calcu-
lations shipped to it by other agents. For example it
can determine the time it takes for a particular vehicle
to get from one location to another. Another example
is a monitoring agent, that keeps track of distances
between two given points and the authorized range or
capacity of certain vehicles. These information can be
stored in several databases.

The Code Call Machinery To perform logical rea-
soning on top of third party data structures (which are
part of the agent’s state) and code, the agent must have
a language within which it can reason about the agent
state. We therefore introduce the concept of a code call
atom, which is the basic syntactic object used to access
multiple heterogeneous data sources.

A code call executes an API function and re-
turns as output a set of objects of the appropri-



  

ate output type. Going back to our agent intro-
duced above, monitoring may be able to execute the
cc monitoring : distance(locFrom, locTo). The math
agent may want to execute the following code call:
math : computeTime(cargoPlane, locFrom, locTo).

What we really need to know is if the result of evalu-
ating such code calls is contained in a certain set or not.
To do this, we introduce code call atoms. These are log-
ical atoms that are layered on top of code calls. They
are defined through the following inductive definition.

Definition 1 (Code Call Atoms (in(X, cc))) If cc
is a code call, and X is either a variable symbol, or
an object of the output type of cc, then in(X, cc) and
not in(X, cc) are code call atoms. not in(X, cc) suc-
ceeds if X is not in the set of objects returned by the
code call cc.

Code call atoms, when evaluated, return boolean val-
ues, and thus may be thought of as special types of
logical atoms. Intuitively, a code call atom of the form
in(X, cc) succeeds if X can be set to a pointer to one of
the objects in the set of objects returned by executing
the code call.

As an example, the following code call
atom tells us that the particular plane
“f22” is available as a cargo plane at ISB1 :
in(f22, transportAuthority : cargoPlane(ISB1))

Often, the results of evaluating code calls give us back
certain values that we can compare. Based on such
comparisons, certain actions might be fired or not. To
this end, we need to define code call conditions. Intu-
itively, a code call condition is a conjunction of code call
atoms, equalities, and inequalities. Equalities, and in-
equalities can be seen as additional syntax that “links”
together variables occurring in the atomic code calls.

Definition 2 (Code Call Conditions (ccc))
1. Every code call atom is a code call condition.

2. If s, t are either variables or objects, then s = t is a
code call condition.

3. If s, t are either integer/real valued objects,
or are variables over the integers/reals, then
s < t, s > t, s ≥ t, s ≤ t are code call conditions.

4. If χ1, χ2 are code call conditions, then χ1 &χ2 is a
code call condition.

A code call condition satisfying any of the first three
criteria above is an atomic code call condition.

IMPACTING SHOP
A comparison between IMPACT’s actions and SHOP’s
methods shows that IMPACT actions correspond to
fully instantiated methods, i.e. no subtasks. While
SHOP’s methods and operators are based on STRIPS,
the first step is to modify the atoms in SHOP’s pre-
conditions and effects, so that SHOP’s preconditions
will be evaluated by IMPACT’s code call mechanism
and the effects will change the state of the IMPACT

agents. This is a fundamental change in the repre-
sentation of SHOP. In particular, it requires replacing
SHOP’s methods and operators with agentized meth-
ods and operators. These are defined as follows.

Definition 3 (Agentized Meth.: (AgentMeth h χ t) )
An agentized method is an expression
(AgentMeth h χ t) where h (the method’s head)
is a compound task, χ (the method’s preconditions) is
a code call condition and t is a totally ordered list of
subtasks, called the task list.

The primary difference between definition of an agen-
tized method and the definition of a method in SHOP is
as follows. In SHOP, preconditions were logical atoms,
and SHOP would infer these preconditions from its
current state of the world using Horn-clause inference.
In contrast, the preconditions in an agentized method
are IMPACT’s code call conditions rather than logical
atoms, and A-SHOP (the agentized version of SHOP

defined in the next section) does not use Horn-clause
inference to establish these preconditions but instead
simply invokes those code calls, which are calls to other
agents (which may be Horn-clause theorem provers or
may instead be something entirely different).

Definition 4 (Agentized Op.: (AgentOp h χadd χdel) )
An agentized operator is an expression
(AgentOp h χadd χdel), where h (the head) is a
primitive task and χadd and χdel are lists of code calls
(called the add- and delete-lists). The set of variables
in the tasks in χadd and χdel is a subset of the set of
variables in h.

The Algorithm

procedure A-SHOP(t,D)
1. if t = nil then return nil
2. t := the first task in t; R := the remaining tasks
3. if t is primitive and a simple plan for t exists then
4. q := simplePlan(t)
5. return concatenate(q, A-SHOP(R,D))
6. else if t is non-prim. ∧ there is a reduction of t

then
7. nondeterministically choose a reduction:

Nondeterministically choose an agentized method,
(AgentMeth h χ t), with µ the most general
unifier of h and t and substitution θ s.t.
χµθ is ground and holds in IMPACT’s state O.

8. return A-SHOP(concatenate(tµθ, R),D)
9. else return FAIL

10. end if
end A-SHOP

procedure simplePlan(t)
11. nondeterministically choose agent. operator

Op = (AgentOp h χadd χdel) with ν the most
general unifier of h and t s.t. h is ground

12. monitoring : apply(Op ν)
13. return Op ν

end A-SHOP

Figure 2: A-SHOP, the agentized version of SHOP.
The A-SHOP algorithm is now an easy adaptation

of the original SHOP algorithm. Unlike SHOP (which
would apply an operator by directly inserting and delet-
ing atoms from an internally-maintained state of the
world), A-SHOP needs to reason about how the code
calls in an operator will affect the states of other agents.
One might think the simplest way to do this would be



 

simply to tell these agents to execute the code calls
and then observe the results, but this would not work
correctly. Once the planning process has ended success-
fully, A-SHOP will return a plan whose operators can
be applied to modify the states of the other IMPACT

agents—but A-SHOP should not change the states of
those agents during its planning process because this
would prevent A-SHOP from backtracking and trying
other operators.

Thus in Step 12, SHOP does not issue code calls
to the other agents directly, but instead communicates
them to a monitoring agent. The monitoring agent
keeps track of all operators that are supposed to be ap-
plied, without actually modifying the states of the other
IMPACT agents. When A-SHOP queries for a code call
cc = S : f (d1, . . . , dn) in χ to evaluate a method’s pre-
condition (Step 7), the monitoring agent examines if
cc has been affected by the intended modifications of
the operators and, if so, it evaluates cc. If cc is not af-
fected by application of operations, IMPACT evaluates
cc (i.e., by accessing S). The list of operators main-
tained by the monitoring agent is reset whenever a plan-
ning process begins. The apply function applies the op-
erators and creates copies of the state of the world. De-
pending on the underlying software code, these changes
might be easily revertible or not. In the latter case, the
monitoring agent has to keep track of the old state of
the world.

Finite Evaluability of ccc’s and
Completeness of ASHOP

We have introduced syntactic conditions, similar to
safety (and consequently called strong safety) in clas-
sical databases, to ensure evaluability and termination
of ccc’s (see (ESR00; SBD+00)).

Theorem 1 (Soundness, Completeness) Let O be
a state and D be a collection of agentized methods and
operators. If all the preconditions in the agentized meth-
ods and add and delete-lists in the agentized operators
are strongly safe wrt. the respective variables in the
heads, then A-SHOP is correct and complete.

4. ASHOP: Implementation
Each cycle in the A-SHOP algorithm consist of three
phases (see lines 3 and 7 of Figure ):

1. Selection Phase: Selecting a candidate agentized
method or operator to reduce a task.

2. Evaluation Phase: Evaluating the applicability of the
chosen agentized method or operator.

3. Reduction Phase: Performing the agentized method
or operator.

To accomplish these phases we have implemented 3
IMPACT agents which perform pieces of these phases:

ashop: This is the agent that all IMPACT agents com-
municate with for generating a plan. It receives as
input a problem and outputs a solution plan. The A-

SHOP agent also performs the Selection Phase and
the evaluation phase for the situation in which an

operator is chosen. The operator is then send to the
Monitor Agent, to perform a virtual execution of it.
If the selection of a method is made, the A-SHOP

agent sends a message to the Preconditions Agent
with the code-call condition of the selected method.

preconditions: Receives a code-call condition and
evaluates each code-call by sending it to the Moni-
toring Agent.

monitoring: The monitor agent has two functions:
firstly, it receives a operator and performs a virtual
execution of it. Secondly, it receives code-calls and
evaluates them. We explain both of these operations
in detail below as they are closely inter-related.

One of the main issues we are confronted with during
the implementation is how to cope with the execution of
agentized operators. In classical AI planning, where the
state is centralized, executing an operator is a matter
of simply making the changes to the state indicated by
the operator and keeping track of those changes in an
stack; if backtracking occurs, the stack is used to restore
to the previous state.

This approach is not working in a multi-agent en-
vironment, where the state is distributed among sev-
eral information sources. Firstly, remote information
sources might not be able to backtrack to a previous
state. Secondly, even if backtracking was possible, per-
forming such an operation may be costly. Thirdly, ex-
ecuting an operation may make resources unavailable
temporarily for other agents and if backtracking takes
place, these resources could have been used. For ex-
ample, an operator may reserve a recon plane but a
later operator trying to provide flight escort to the re-
con plane might not succeed. In this case the original
recon plane should have not been reserved in the first
place.

The Monitoring Agent overcomes these problems by
keeping track of each operator execution without ac-
cessing the corresponding information sources to re-
quest an execution of the operation. For this reason
we refer to this as a virtual operator execution. Since
monitoring keeps track of the changes in the states
of the remote information sources, the preconditions
sends the code-calls to the monitoring. monitoring
makes the code-call to the corresponding information
source and then checks if the answer is affected by the
previously virtually executed operators before sending
its answer to the preconditions.

5. Memoization in ASHOP

While our implementation secures that the produced
plans are consistent, the resulting running time was
large compared to the inferencing time (we will describe
the experiments later). Our experiments show that the
bulk of the planning time has been spent in accessing
the remote information sources. Further analysis re-
vealed that the same code-calls were repeatedly being
executed during the planning process. Our solution was
to implement a cache mechanism to avoid repeated eval-
uations of the same code call in IMPACT.



 

Again this issue marked a difference from classical AI
planning approaches. In SHOP, for example, we use a
hash table to quickly check the validity of a condition in
the current state. Other planning systems use more so-
phisticated data structures to reduce the time for eval-
uating a condition in the current state. For example,
TLPlan, the winner of the 2000 AI planning competi-
tion, uses a bit map that allows checking conditions in
almost constant time (Bac01).

Obviously none of these techniques would be useful
here since the information sources are remote and A-

SHOP has no control over how data is stored there and
how it is updated. However, implementing a memo-
ization mechanism turned out to be adequate for A-

SHOP for two reasons: Firstly, A-SHOP performs Or-
dered Task Decomposition. Secondly, all access to the
information sources is canalized through monitoring.

The fact that access to the information sources is
canalized through monitoring makes this agent the
natural place for maintaining the updated partial state
of the world. As a result, we modified monitoring:

• When it receives a code-call from preconditions, the
monitoring will first check if the code-call can be
answered based on previous code-calls and the mod-
ifications indicated by the virtually executed opera-
tors. Only if it is not possible to answer this code
call, the remote information source is accessed via
the IMPACT code-call evaluation mechanism.

• After, receiving the answer from IMPACT for the
evaluation of the code-call, monitoring records this
answer.

In the example of the recon plane, after the first op-
erator reserving the recon plane is virtually executed,
monitoring knows that there are no more recon planes
available. Thus, as it receives the code-call enquiring
about the availability of recon planes it will answer
that this code-call cannot be satisfied without having
to access the corresponding remote information source
via IMPACT. As will be shown next, these changes re-
sulted in a reduction of the running time.

6. Empirical Evaluation

The test domain is a simple transportation planning
for a NEO (MAAN+01). Its plans involve performing
a rescue mission where troops are grouped and trans-
ported between an initial location (the assembly point)
and the NEO site (where the evacuees are located).
After the troops arrived at the NEO site, evacuees are
re-located to a safe haven.

Planning involves selecting possible pre-defined
routes, consisting of four or more segments each. The
planner must also choose a transportation mode for
each segment. In addition, other conditions were de-
termined during planning such as whether communi-
cation exists with State Department personnel and the
type of evacuee registration process. A-SHOP’s knowl-
edge base included six agentized operators and 22 agen-
tized methods. There were four IMPACT information
sources available:

• Transport Authority: Maintains information about the
transportation assets available at different locations.

• Weather Authority: Maintains information about the
weather conditions at the different locations.

• Airport Authority: Maintains information about avail-
ability and conditions of airports at different loca-
tions.

• Math Agent: math evaluates arithmetic expressions.
typical evaluations include the subtract a certain
number of assets use for an operation and update
time delays.

The top level task for each problem in this experi-
ment was the following: to perform a troop insertion
and evacuees extraction plan. This top level task is de-
composed into several subtasks, one for each segment
in the route that the troops must cover (these segments
are pre-determined as part of the problem description).
Within each segment, A-SHOP must plan for the means
of transportation (planes, helicopters, vehicles etc.) to
be used and select a route for that segment. The se-
lection of the means of transportation depends on their
availability for that segment, the weather conditions,
and, in the case of airplanes, on the availability and
conditions of airports. The selection of the route de-
pends on the transportation vehicle used and may lead
to backtracking. For example, the choice of ground
transportation assets needs to be revised if no roads
are available or they are blocked, or too risky to take.

We ran our experiments on 30 problems of increasing
size. The first five problems had four segments pass-
ing over five locations (including a particular location
known as the Intermediate Staging Base ISB), the next
five problems had five segments passing over six loca-
tions (two ISB ’s), and so forth until the Problems 26–30
which had nine segments passing over 10 locations (five
ISB ’s).

We ran shop in two modes: with and without the
memoization mechanism and measured for each mode
two variables: inferencing time and total time. The
inferencing time includes the time spent in the three
agents implementing the A-SHOP algorithm. Thus, the
difference between the total time and the running time
indicates the sum of the communication time needed
by IMPACT to access the remote information sources
and of the time needed by the information sources to
compute the answers to the queries.

Figure 3 shows the results of the experiments. Not
surprisingly the inferencing times with and without
memoization are almost identical. More interesting is
the fact that the inferencing time is only a fraction of
the overall running time. In addition, the use of the
memoization mechanism results in a decrease in the
running time of more than 30%.

7. Related Work
Most AI planning systems are unable to evaluate

numeric conditions at all. A few can evaluate nu-
meric conditions using attached procedures (e.g., SIPE

(Wil88), O-Plan (CT91), TLPlan (BK00) and SHOP

(NCLMA99)), but the lack of a formal semantics for



0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

1
2

3
4

5

N
u

m
b

e
r o

f IS
B

's

Running Time (sec)

to
ta

l tim
e
 

to
ta

l tim
e
 +

m
e
m

o
iz

a
tio

n

in
fe

re
n
c
e
 tim

e

in
fe

re
n
c
e
 tim

e
 +

m
e
m

o
iz

a
tio

n

Figure 3: Results of the experiments.

these attached procedures makes it more difficult to
guarantee soundness and completeness. Integer Pro-
gramming (IP) models appear to have excellent poten-
tial as a uniform formalism for reasoning about com-
plex numeric and symbolic constraints during plan-
ning, and some work is already being done on the use
of IP for reasoning about resources (Köh98; KW99;
WW99). However, that work is still work in progress,
and a number of fundamental problems still remain to
be solved.

Approaches for planning with external information
sources typically have in common that the informa-
tion extracted from the external information sources
is introduced in the planning system through built-in
predicates (EWD+92; GEW94; Kno96; FW97). For ex-
ample, a modified version of UCPOP uses information
gathering goals to extract information from the external
information sources (Kno96). The information gather-
ing goals are used as preconditions of the operators.
The primary difficulty with this approach is that since
it is not clear what the semantic of the built-in predi-
cates is, this makes it difficult to guarantee soundness
and completeness.

8. Conclusion

The original motivation of our work was to make HTN

planning available in a multi-agent environment. This
is beneficial for both, planners (they gain access to
distributed and heterogenous information sources for
free and can ship various tasks to other agents) as well
as agent systems (which usually do not have available
planning components that are highly sophisticated and
efficient).

After developing the theory and implementing it, we
ran experiments on a simplified version of the NEO

domain, where data needed for the planning process is
distributed and highly heterogenous. In such a situa-
tion, data changes dynamically, eg. weather conditions
or available resources. Thus the available data can not
be stored locally, because of the sheer amount and the
dynamic changes in the database.

Our experiments revealed clearly that most of the
time is spent on communication with the information

sources and therefore network time. Thus improving
the actual planning algorithm (as done by most plan-
ners that assume all info is there locally) does not pay
off: the amount gained is orders of magnitude less than
the overall time. We really need caching mechanisms, to
avoid computing the same results over and over again.
In the extreme case, when caching is just storing every-
thing locally, we would end up with our original local
planner. This is not feasible because of the amount of
data involved and the fact that it changes dynamically.
The other extreme is not to do any caching at all. Our
memoization technique seems to be a good compromise
between these two extremes. The decrease in time we
are getting depends on the overall network time spent to
access the information sources: the higher this network
time, the higher is the gain obtained by our memoiza-
tion technique. Consequently our experiments showed
an overall gain ranging from 20%-40%.

References
Fahiem Bacchus. The AIPS’00 Planning Competition.
AI Magazine, 22(3), 2001.

F. Bacchus and F. Kabanza. Using Temporal Logics
to Express Search Control Knowledge for Planning.
Artificial Intelligence, 116(1-2):123–191, 2000.

K. Currie and A. Tate. O-plan: the open planning
architecture. Artificial Intelligence, 52(1), 1991.

NN et al.. IMPACTing SHOP: Putting an AI planner
into a
Multi-Agent Environment. Annals of Mathematics
and AI, 2002. to appear.

Thomas Eiter, V. S. Subrahmanian, and Georg Pick.
Heterogeneous Active Agents, I: Semantics. Artificial
Intelligence, 108(1-2):179–255, 1999.

T. Eiter, V.S. Subrahmanian, and T J. Rogers. Het-
erogeneous Active Agents, III: Polynomially Imple-
mentable Agents. Artificial Intelligence, 117(1):107–
167, 2000.

O. Etzioni, D. Weld, D. Draper, N. Lesh, and
M. Williamson. An approach to planning with incom-
plete information. In Proceedings of KR-92, 1992.

M. Friedman and D. Weld. Efficiently executing
information-gathering plans. In Proceedings of IJCAI-
97, 1997.

K. Golden, O. Etzioni, and D. Weld. Omnipotence
without omniscience: efficient sensor management for
planning. In Proceedings of AAAI-94, 1994.

C.A. Knoblock. Building a planner for information
gathering: a report from the trenches. In Proceedings
of AIPS-96, 1996.

J. Köhler. Planning under Resource Constraints. In
Proceedings of the 13th European Conference on Arti-
ficial Intelligence, pages 489–493, 1998.

Henry Kautz and Joachim P. Walser. State-space
Planning by Integer Optimization. In Proceedings of
the 17th National Conference of the American Associ-
ation for Artificial Intelligence, pages 526–533, 1999.

H. Munoz-Avila, D.W. Aha, D.S. Nau, R. Weber,
L. Breslow, and F. Yaman. Sin: Integrating case-based



reasoning with task decomposition. In Proceedings of
IJCAI-01, 2001.

D.S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila.
Shop: Simple hierarchical ordered planner. In Pro-
ceedings of IJCAI-99, 1999.

V.S. Subrahmanian, Piero Bonatti, Jürgen Dix,
Thomas Eiter, Sarit Kraus, Fatma Özcan, and Robert
Ross. Heterogenous Active Agents. MIT Press, 2000.

A.B. Siegel. Eastern Exit: The noncombatant evacu-
ation operation (NEO) from Mogadishu, Somalia, in
January 1991 (TR CRM 91-221). Arlington, VA: Cen-
ter for Naval Analyses, 1991.

D.E. Wilkins. Practical planning - extending the clas-
sical AI planning paradigm. Morgan Kaufmann, 1988.

Steven A. Wolfman and Daniel S. Weld. The LPSAT
Engine and its Application to Resource Planning. In
Proceedings of the 15th International Joint Conference
on Artificial Intelligence, pages 310–317, 1999.


