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Mikio Sato devised microfunctioﬁs as a means of measuring the singularities
of hyperfunctions. In 1970, I(awai and Sato introduced Fourier hyperfunctions in
their study of partial differential operators. The class of Fourier hyperfunctions
has been generalized by Saburi, Nagamachi, and Kaneko, among others, and
most recently by Berenstein and Struppa.

Berenstein and Struppa introduced Fourier p-hyperfunctions, where p is a
plurisubharmonic function satisfying certain smoothness and growth conditions.
p(z) = |z|%, s > 1 are the cases studied by Sato, Kawai, Nagamachi, and Kaneko.

Following the methods of Sato, I{awai and Kashiwara, this dissertation intro-
duces Fourier p-microfunctions functorially, though under very severe conditions
on p. These restrictions on p are satisfied when, for instance, p(z) = log™ |f]
where f is a product of 1 variable holomorphic functions with zeroes uniformly
bounded away from the real axis. Kaneko has introduced Fourier microfunc-
tions for p(z) = |Rez|®, s > 0, using tubes. When s < 1 these p’s are not

plurisubharmonic. Thus the results here complement his.
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PREFACE

In their work on Dirichlet series, Berenstein and Struppa [1988], introduced a
new theory of interpolation for 4, o(I") (definition 1.2.1), the space holomorphic
functions in an open cone I' C C" satisfying growth conditions depending upon
a plurisubharmonic function p, and for its dual m ). They noticed that the
proofs of these interpolation theorems, and some theorems on mean periodic
functions amounted to theorems on the vanishing of cohomology groups. In the
spirit of Kawai [1970], they [preprint] thus introduced sheaves of holomorphic
functions with growth conditions.

These sheaves are defined on the radial compactification D® of R", or its
corresponding “complexification” Cr = D" + /—1R™. Both compactifications
were introduced by Sato and Kawali in Kawai [1970]. Sato and Kawai defined
the sheaves, &, of slowly increasing holomorphic functions and, é’ , of rapidly de-
creasing holomorphic functions. Then they defined the Fourier hyperfunctions in
the same manner that hyperfunctions are defined, namely as Zp» := R"T'pn (0).
The sheaf of Fourier hyperfunctions Zp» on D".

The sheaves Berenstein and Struppa [preprint| defined were the sheaf of holo-
morphic functions of minimal type p, #, where the plurisubharmonic function
p satisfies, among other things, Hormander’s condition (definition 1.2.1(4)(4)!),

and the sheaf of rapidly decreasing functions of type p, ,0. As in Kawai [1970]

1Hoérmander [1967].
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they introduced the sheaf of Fourier p-hyperfunctions, here denoted 2. When
p(z) = | |, these are the Fourier hyperfunctions of Kawai and Sato. Saburi
[1978]% introduced Fourier hyperfunctions using a radial compactification of C*,
and Kaneko [1985] has introduced Fourier hyperfunctions when p is the (not
necessarily plurisubharmonic) function |Rez|* (s > 0).

As one of their interest lay in the singularities of Dirichlet series, Beren-
stein & Struppa asked what would correspond to microfunctions for Fourier
p-hyperfunctions. Microfunctions (for ordinary hyperfunctions), it should be re-
called, were introduced by Sato [1970], and defined functorially in Sato, Kawai
& Kashiwara [1973]. They measure the extent to which hyperfunctions fail to be
real analytic, thus measuring the singularities of hyperfunctions. By using tubes,
Kaneko [1985] has introduced microfunctions for the Fourier hyperfunctions he
defined.

Following Sato, Kawai & Kashiwara [1973], this paper introduces Fourier
p-microfunctions. The results here complement Kaneko’s. Eventhough the con-
ditions to be imposed on the plurisubharmonic function p in chapter 2 will turn
out to be rather severe, they allow for functions not considered by Kaneko.
However, the results here do not include Kaneko’s, since p(z) = |Rez|® is not
plurisubharmonic when s < 1.

It is shown in chapter 4 that Fourier p-microfunctions defined here are con-
centrated in one degree. More specifically it is shown (theorem 4.2.18) that
S*Q is purely n-codimensional with respect to #7!# in analogy to the case of
(ordinary) microfunctions. It should be noted here that C* and D" are mani-
folds with boundary. Thus this result contrasts with microfunctions up to the

boundary studied by Schapira®, where the microfunctions are not in general

?For references to Saburi, the reader should also refer to Saburi [1982] and [1985].
3See for instance Schapira [1988] §2.
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concentrated in one degree. On the other hand, Lieutenant [1986] showed that
S$*Q is purely n-codimensional with respect to 7~ 1i,&, where i : C* — Cr is
the inclusion. Thus the result here is similar to his.

As a more tenuous justification for studying such microfunctions, one might
note that Fourier hyperfunctions have appeared in quantum field theory as a

means of enlarging the space of states®.

4See Briining & Nagamachi [1989] and references contained therein.
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CHAPTER 1

INTRODUCTION
AND
THE BASIC TRIANGLES

David Harum says, “A reasonable amount of fleas is good for a dog.
They keep him from broodin’ on bein’ a dog.” A goodly supply of
fleas might likewise keep man from brooding over anything deeper
than the presence of these fleas, but in some cases this in itself is a
rather serious thing to brood over.

—Asa C. Chandler, Introduction to Parasitology [1944].

§1.1 Introduction

To define the Fourier p microfunctions, I have basically followed the results
of Sato, Kawai & Kashiwara [1973] for (ordinary) hyperfunctions. More specifi-
cally, in this chapter, we will note that all the basic triangles for hyperfunctions
remain true without modification on open subsets of D", and that most of the
terms of these triangles can be computed in exactly the same manner. These
results do not depend on any assumptions on p.

In the following chapters we proceed to compute the other’terms of these
triangles. Again as in Sato, Kawai & Kashiwara, these terms are the two van-
ishing theorems in chapter 4. The preliminaries needed to prove one of these
vanishing theorems (4.2.18), are laid out in chapters 2 and 3. As in the case of
hyperfunctions, proposition 1.4.12 below reduces one of the vanishing theorems
(4.2.7) to a computation of H, . (V; %), where G is a wedge and V an open set.

Then following Kashiwara, Kawai & Kimura [1986] we show in chapter 3 and



§4.1 that V N G can be written as I’ — K for suitable compact subsets of Cn.
The techniques involved are elementary if tedious. Theorem 2.4.8 in chapter 2,
then shows Hﬁ-,_K(@;Hﬁ) = 0 for k # n.

To prove theorem 2.4.8 is the goal of chapter 2. This theorem generalizes
proposition 2.2.2 of Kashiwara, Kawai & Kimura [1986] to certain compact
subsets of @, and by remark 2.4.9, to compact subsets of C* equal to their
plurisubharmonic hull. This result is however essentially contained in Kawai
[1970], and I have closely followed his ideas. Hérmander’s L? methods provide
the main tools. Crucial to this goal is Kawai’s approximation theorem, which
is noted to hold not only for subsets of D", as stated in his paper, but also for

compact subsets of Cm that are in some sense equal their plurisubharmonic hull.

It is in chapter 2 during the course of proving theorem 2.4.8 that restrictions
are placed on the plurisubharmonic function p. These restrictions are the prop-
erty (Pp) introduced by Berenstein & Struppa (in analogy with a condition in
Meril [1983]), and the existence of holomorphic functions of “controlled growth”,
which is implicit in Kawai and Saburi’s work.

As a philosophical point, one might note that such “controlled growth” func-
tions will play only a catalytic role in the proofs. They are used locally only at
points at infinity (of {2, or, more precisely, of some Cn neighbourhood of §2), and
then only to bring functions from one space to another and then back again, by
first multiplying and then dividing by the function of “controlled growth”. Ex-
amples, although admittedly scant, of plurisubharmonic functions p that satisfy
these conditions are given in chapter 2.

The other vanishing theorem (4.1.5) requires sufficiently many #-pseudocon-

vex sets. Unlike the case of C*, where several characterizations of pseudoconvex

sets are known, little more than the definition characterizes ®-pseudoconvex



sets.! As a consequence to produce an WJ-pseudoconvex set almost certainly
requires the exhibition of an exhaustion function. This indeed was one of the
problems that necessitated the explicit calculations to prove the previous van-
ishing theorem. In this case, the Grauert tubular theorem is used to exhibit
the ®0-pseudoconvex sets and exhaustion functions. This theorem is proven by
Kawai [1970], and Berenstein & Struppa [preprint] for open subsets of D*, and
in detail by Saburi [1985] for open subsets of D" in a different compactification
of C*. A proof following Harvey & Wells’ [1972] proof of Grauert’s original
theorem (for real analytic submanifolds of complex manifolds) is supplied here
for the reader’s convenience.

After a proposition on smoothing plurisubharmonic functions, proposition
4.1.4 shows that points at infinity on 1/—1S§ have sufficiently many neighbour-
hoods whose projection on Cr —-D" is "0-pseudoconvex. The classical proof of
the vanishing theorem can then be used to show theorem 4.1.5 with no modifi-
cation.

In summary, all the main ideas in this work are due to Sato, Kawai & Kashi-
wara [1973], and Kawai [1970]. Here, only a few calculations are added to their

already extensive and formidable work.

§1.2 Review of Results

Listed below are some of the main definitions of Berenstein and Struppa
[preprint]. As an important remark, the properties listed below that the plu-
risubharmonic function p are to satisfy form the ideal case. In actuality more
severe restrictions shall have to be made; this is done in the following chapters.

The results in §§3 and 4 hold regardless.

! For instance convex sets are pseudoconvex. This provides an abundance of albeit unin-
teresting pseudoconvex sets.



DEFINITION 1.2.1.

(1) & is the sheaf of holomorphic functions on C*;
(2) D" is the radial compactification of R"?, viz. D" := R®"U S ;, S,
being the n — 1 sphere at infinity, which is identified with R™ — {0} /R™;
(3) € :=D" + V=1IR™;
(4) p is a smooth plurisubharmonic function on C" satisfying:
(i) p(z) 20, log(1l+ |2]) = O(p(z)),
(ii) there are constants K, K, K3, K4, such that
|21 — 22| < exp(—Kp(z1)— K2) implies p(z1) < K3p(z2)+ K4; and
(1ii) p is C*° and convex;

(5) For a pseudoconvex region, U, in C*, A4,(U) is the set
{f € O(U) : 3 positive constants A and B s. t. |f(z)] < AeBp(z)} .

(6) For U C Cr, open, ®(U) is the set of all holomorphic functions f €
O(U N C™) such that, for aﬁy € > 0 and any compact set K C U,

sup |f(z)e” P < 0.
zEKNC»

These ®(U) form a sheaf, denoted %
(7) For U C C", open, »O(U) is the set of all holomorphic functions f €

O(U N C") such that, for any compact set X C U, 3§ > 0 such that

sup |f(2)e’?F] < oo.
ze€ KNCr

These ®'(U) form a sheaf, denoted %
(8) pr, or simply #, denotes the sheaf of Fourier hyperfunctions on D";
this by definition is the sheaf R"I'p» (7). ¢



REMARK 1.2.2. Kawai [1970] uses Z to denote the Fourier hyperfunctions on
D™; this corresponds to the case p(z) = |z| in Berenstein and Struppa [preprint]
Fourier p-hyperfunctions on D", ?Z. >

Instead of the notation above for Fourier hyperfunctions, this paper will use

DEFINITION 1.2.3. Let Q be an open subset of D". Define the sheaf of Fourier
p-hyperfunctions on 2 to be R"I'q(®). This sheaf will be denoted by #q or

simply 2. ¢

DEFINITION 1.2.4%2. An open set V C C" satisfies property (Pp) if

(F5) d¢ € (V) such that VM >0, sup(—Rep(z) + Mp(z)) < oo.
1%

REMARK 1.2.5. Clearly if V' D V satisfies property (Pp) then so does V. >

REMARK 1.2.6. Any V CC C" satisfies (P,) for ¢ plurisubharmonic and merely
upper semicontinous on C*. Take ¢ =0. D>
DEFINITION 1.2.7%. An open set U C Cn is 10 -pseudoconvex if

(1) U N C™ satisfies property (Pp);

(2) There is a C% plurisubharmonic function 6 on U N C* such that
(i) Vee R, {z:0(2) <c} CCU;
(ii) VK C U, compact, 3M such that supgncn 6(2) < Mg. O

THEOREM 1.2.8%. Let U C Cn be R0 -pseudoconvex. Then

H*(U;%0) = 0, fork>1. O

2Meril [1983], Berenstein & Struppa [preprint].
3Kawai [1970], Saburi [1978], Nagamachi [1981], Berenstein & Struppa [preprint].
4Kawai, Meril, Saburi, Nagamachi, Kaneko, Berenstein & Struppa.



§1.3 The Basic Triangles

The general set-up will involve a convex set with what will be called “full
trace” at infinity, and “thickenings” and closures of such sets in Cr. Following

Lieutenant [1986] these are assumed to “taper” linearly at the boundary.

DEFINITION 1.3.1. The trace at oo of a set U C @, denoted trooU, is the set

of points in S, 100 + {R™ having U U (Sn—100 + ¢{R™) as a neighbourhood. ¢

DEFINITION 1.3.2. An open subset U C C" has full trace at infinity if U =

(T AP Ut . ¢
Similarly

DEFINITION 1.3.3. The trace at co of a set  C D", denoted troo{2 is the set of

points in S, _j00 having Q US,-j00 as a neighbourhood. ¢

DEFINITION 1.3.4. An open subset 2 C R”™ has full trace at infinity if Q =

(QNR™) Utreo®. O

REMARK 1.3.5. In some sense a set has full trace at infinity if it contains most
of its interior frontier points at infinity.

There are clearly other definitions of traces at infinity such as closed traces,
but only the ones above shall be used here. More generally the trace at “infinity”

of a subset of a manifold with boundary can be defined. ©>.

NOTATION 1.3.6. Throughout the rest of this paper,  will denote an open

subset of D™ with full trace at infinity such that N C" is convex. A

The following are modifications of Lieutenant’s [1986] definitions and nota-
tions. Eventhough spaces involving the closure of 2 are defined, they will not

be used in the rest of the paper.



DEFINITION 1.3.7.

(1) For v > 0,

Q, :=cv(QU {Ev—1V"¢; : e; is the jth unit vector in R",
i€

§=1, 000,10 < ¥ <))

This is a complexification of 2.

(2) F:=chpQ and F, := clz8,.

(3) SQ:=Q xS,-1; SF:=F xS,_1. These are the sphere bundles.
(4) S*:=Q xS;_;; S*F:=F xS}_;. The dual sphere bundles.

(5) Q, = (2 —-Q)USQ; F, := (F, — F) USF. The real monoidal

transforms.

(6) 1 := (Q, — Q) US*Q; F*:= (F, — F)US*F. The real comonoidal
transforms.

(7) D :={(2,£,n) €2 xSn1 xS :(§m) <0}

(8) DF :={(z,£,n) € F XSn_1 X874 :({,n) <0}

(9) DY = (2, —Q)UDQ; DE := (F, — F) UDF;

(10) iy: Q, = F,; a,:Q, — F,;

)

(11) By: §2 —)ﬁ‘:, €&:F,—-F—=F, ¢
REMARK 1.3.8. Toamap f: X — Y is associated the mapping cone triangle:

F*—I> fof 1 F* — Co(r) >

where Z#* € KH(Y), and Co(7) is the mapping cone of the canonical adjunction
T

Twisting and translating this triangle produces

Co()-1] =8> #* =L> f f1 7t s b




DEFINITION 1.3.9. Zist,(£#°) = Co(7)[-1]. ¢

REMARK 1.3.10. Zist, can be considered a functor from K*Y) to K¥(Y).
However Co(&/® — Z°) is not a functor nor does it normally give rise to a
derived functor.> >

As in Sato, Kawai & Kashiwara [1973], many of the triangles in the sequel

will take the form

(3-1) Pist, (F*) Fo—T > f,flge—IL.

We now use (3-1) in the following situation. Consider the inclusions and

projections in the following diagram:

B, Be,
3
0y~ Q=i —L g,
. v |
F,—F I, = I,

For #°* € K*(§,) or Z* € K*(F,) there are triangles

(3-5) F*—1] — rr LF 1] — ist (F°)

(3-6) F* 1] — (19)4(ri) LT [-1] — Disti(F°) 15

(3-7) 1 1] — (1i)u(ri) LT [-1] — 7. Disty(r 1 F*) I

These triangles form an octahedron, and the octahedral axiom provides the

dashed arrows:

F[-1] —— 1L F -] > Dist, (F*) —=
I | y
F* i—l] e (Ti)*(ri)|“l137‘[——1] —> Pistri(F*) et
¥V
TeT L F 0 [=1] = (19) (1) 1 F*[—1] = 7 Disti(r 71 F°) Rl

\ | v

5See Komatsu [1971] §8.




The triangle with dashed arrows gives rise to a triangle in the derived category

D*HY):
(3-8) R Zist (F*) =R Dist,;(F*) = Rr,R Zist;(r1.7°) &
Note that
R isti(F*) = R[q(F")
and

Rr.R Zist;(r7'#*) = Rr,RTgq 712",

so (3-8) gives:

(3-9) R Zist, (F*) - RTq(F*) = Rr,Rlgqr—1.7° &

§1.4 Computation of Terms of the Triangles

The proofs given here are, with little or no modification, due to Sato, Kawai

& Kashiwara [1971].
LEMMA 1.4.1. RZist(&F) = (F)a[-n].

PROOF®. The long exact sequence from the triangle (3-5) gives
0 — R® Zist,(F) — &F — 1,7 F — R! Dist, (F) — 0,
and the equality

R Dist (F) = Rk—lT*T—lﬁ', for k 2 2.

6cf. Prop. 2.3.3 of Kawai, Kashiwara & Kimura [1986].



Since 7 is a closed map and (2, is metrizable, one has, for z € Q,,,7
RF Dist,(F) = HF (r7 e} — ¢; F2)
_{0, ifzagQ or k#n-—1,
| &, fk=n-1.
This proves the lemma. O
LEMMA 1.4.2. Let 7 : DQf — ., be the canonical projection. Then there is

an isomorphism

(4-1) n !Rlsq (771 F*) = RTporn~ir 1 #*®

PROOF. Let ¥° € K*(,). There is a composition of canonical maps
T lsq¥9* — 1 ' Tgqmn™19°® = 7 0, D pigqn 1 9°
(+2)
=r 1 n*Tpar~19® — Tpar~1¥°.

Consequently for ¥° € D¥(€,), this induces, in the derived category, a map
7RI sq (¢°) — RI‘DQﬂ"—lg.

When ¢° = 771.%° this is the map claimed in the lemma. That this map is an

isomorphism is proven in Lieutenant [1986]%. O

LEMMA 1.4.3. Consider the following diagram and maps where the left arrows

are inclusions®:

DQ+ <~ D2

RS
N

)

"Kawai, Kashiwara & Kimura [1986], proposition 2.3.6.
8Page 105 equation (1).
% After Sato, Kawai & Kashiwara [1973]

10



There is an isomorphism

(4-3) Rr,m IRIsq (771 F*) «o= RTseqm L F°,

PROOF. The triangle (3-1) gives rise to the following triangle in the derived
category:
R Qist (771 F*) — 771 F°* — Rrr " In7 1 F° LN
Applying RT's«q produces the triangle
RIs-qR Zist, (171 .#°) — RTgqr ' F* — RTgqRr, v In 12 2
By (4-1) the last term of this triangle is

Rls:oR7, 7 7 1 Z° = R,RTpor~in"1.Z°
= Rr.Rlpgr~tr 1%

= Rr,7 'Rlgqr 1. Z°.

From the proof of Lemma 3.9 in Lieutenant [1986, 1988], R Zist,(r~1.%*) = 0,

SO

Rl qn ' F* =4 Rror! RFSQ(T_ly.). O
PROPOSITION 1.4.4.

(4-4) RRIsq(77'F°) = Rm,Rls. o™ 1 F°.

PROOF. From the proof of lemma 1.4.2 we see that (4-2) gives the quasi-

isomorphism

e 1 Tsq¥® — m Tpan~19°® ~ Tgqm.n 1G.

11



Taking derived functors gives and using the Vietoris-Begle isomorphism ¢° —

Rm,.mw~1%° (which is possible by lemma 1.4.5 below) gives the isomorphism
Rr,m 1RI'gq¥® =% Rm,RI'par™1¥°* ~ RIgqRm, 77 1¥°* ~ R[gq¥".
For 4° = 7—1.%° this isomorphism produces:

RmRIsq (771 #°*) = R R, m 'Rlsq (771 F°)
=R(r7),m 'Rlsq (171 Z*)
= Rm.R7.7 !Rlsn (7_137')

= Rm.Rlgeqr 1%, O

LEMMA 1.4.5. 7 : DQ+ — Q, is proper and has contractible fibres. [

THEOREM 1.4.6. There is a triangle

(4-4) (£°)a — RTa(F°)[n] — RmRTseq(r 1.7 %)[n] =5 .

PROOF. Substitute the terms computed in lemma 1.4.1 and proposition 1.4.4
into the triangle obtained from the octahedral axiom (3-9) and translate by
[n]. O

DEFINITION 1.4.7.

(1) o = (W)Q’
(2) P9q = RPSQ(T_IPﬁ)[+l],
(3) P& := RTs.q(n~170)[n]®, where a is the antipodal map. ¢

(4-3) gives

12



PROPOSITION 1.4.8. Rr,n™ 122 =Pg[1 —n|*. O
Theorem 1.4.6 gives

PROPOSITION 1.4.9. There is a triangle

(4-5) Bfq —> RO (0)[n] —— R, Py — >

PROPOSITION 1.4.10'°. Let F be a sheaf on Q,, and let zo + i€po0 € S*Q.
Then there is an isomorphism
jzoslfQ(W—lg)wo-f'lfooo = @_} Hr\k/ﬁG(V;gz)’

V3zg
G

where V' runs through neighbourhoods of x¢ in Q,, and G through the following

setsll:

Tmgo = {€ € 8% : [ — &o| < 1/m};

Gm,go =0+ 1{y: (yl€) <0,VE € Ym0} -
PROOF. To be explicit, let V. (e > 0) be the intersection of a basis of #-
pseudoconvex neighbourhoods of zg with €2, that decreases to zg as € decreases

to 0. Let Up, e be the neighbourhoods of z¢ + ¢{poo in Q,’ﬁ defined by

Um - ;:7{'_1‘/6 N ((Q + Z7m,§ooo) U an,fo)

’

=7V, N <(Q + 1Ym,g,00) U (Q +1 {y 2y 0, H_??jﬂ € Sn—1— Ve, }))

There is a morphism of triangles

(4-8)

TG, eonve(Ve; F) ~T(V.; F)

| | |

Tse 0, . (Um,e; 771 F) = D(Unm,e; 71 F) = T(Um,e — S*Q;n1.7) 1

10 After Sato, Kawai & Kashiwara [1973].
11 Notation follows Lieutenant [1986, 1988].
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The vertical maps are essentially “restrictions”:oc — om, 7 being the canon-
ical projection 7 : Qﬁ — £,,.
The morphism of triangles, (4-8), gives rise to a commutative diagram of long

exact Sequences
(4-9)
0—=Hg, . w.(V6 &) ——=HO(Vy F) —> H (Ve = Gmygo; &) >

{ { |

0> Hg-anv,, . Um,e; 7' F) > HO(Um,e; 7~ F) > HO(Upn,e — S*Q; F)

Hém,foﬁvs(‘/e;«g)-—>ﬂl(v;;y)__.__>H1(‘/e _ Gm,§0§7r_1ﬁ)—>"-

{ { {

Hg onv,, . (Ume;® 1 F) > H (Um, ;7 ' F) —> H (Upm,e — S*Q; F) —>- -
Next take the direct limit as € tends to 0 and then the direct limit as m tends

to co. Since C" is paracompact and since, for Z closed,

lim I'U; ) — INZ; &)
_)
UdZ

is an isomorphism, it follows that

Fro, for k=0

lim HY(V.; & ==
= ( l2.) {0, for k # 0,

m,e

and
T for k=0
lim H* (U 7t #) = { T T eotitace:
— (Urmiei m ) .{O for k # 0.

m,e 2

Thus (4-9) provides

0'—_>h—rr>l ngm,EonVc(%;y)_——)yxﬂ

m

(4-10) { |

. 0 .
0—>h_n+1m€HS*QnUm,e(Um,u7T F) > Fo,

L lim H(Ve—Gme F) —lim  Hy (Vo) —g

—m,e —m

v v
~lim  H°(Up,—S*Q;n1%) _).li_r)nm,E HSI'QmUm,E(Um,d 1 F) 0

'—)m,e ?

14



and for k > 2,

(4-11)
0—lim HH(Ve = Gmgo; &) —lim HEg o (V6 F)—s0
v v
0 _>]i1.£)1m . H’k—l(Um,e = S*Q; 77-19) »];i_rl:)lm . HSk'QﬁUm,C(Um,G; 7{'_1.9) -.>O

The vertical maps, being induced from isomorphisms, are themselves isomor-

phisms. It follows from the five lemma applied to (4-10), and from (4-11) that
h_f)nHém,fonVE(Ve; 9) =~ l_ir_)nHSk*QnUm,c(Um,dW—lg;) — RkFS‘Q(ﬂ"ly)zo-HEooo-
This proves the theorem. [J

REMARK 1.4.11. Clearly the proposition holds for % defined on F, mutatis

mutandis. >

DEFINITION 1.4.12.
(1) Pty = (i,,*pﬁ)g,
(2) PDp = RI‘SF(T—liV*‘Iﬁ)[+1],
(3) P = RTss F(ﬂ'_li,,*fﬁ)[n]. O

The theory for these sheaves is however not complete at present.
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CHAPTER 1I

THEOREMS OF KAWAI

Balances are delicate and easily tipped. The social status of a word,
its force, its length, its history of use: anything can do it. Syntax sets
up the scale, but semantics puts the weights in the pans. The follow-
ing are out of balance: (1) “the bandit shot my son, stabbed me in
the arm, and called me names,” (2) “what bitter things both life and
aspirin are!,” (3) “I have boated everywhere—on the Po and on Paw-
tucket Creek,” (4) “you say your marriage suffers from coital insuffi-
clency and greasy fries?,” (5) “yeah, my wife kisses her customers and
brings their bad breath to bed.”

—William H. Gass, ‘And’ in Habitations of the Word [1985].

This chapter presents some restatements of Kawai’s [1970] results, especially
his theorems 2.2.1, 3.2.1 and 3.2.2. There is essentially nothing new here. The
thrust of the effort has been to distill the essence of Kawai’s results, to make sure
that his results hold for these slightly more general plurisubharmonic functions.
This has been carried out the way a janitor might go about making sure things

are in order.

§2.1 Conditions on the Plurisubharmonic Function p

DEFINITION 2.1.1. Let V C C" and p(z) a plurisubharmonic function defined
on C". A holomorphic function ¢ € (V) is controlled exponential type (x, p(+))
if

(1-1) k', 0<k'<k, JAc>0,B;>0 suchthat

Be*' P < [ih(z)| < Ae®P) z e V.

16



An open set U € C" is said to have a function of controlled exponential type

(k,p) if there is function of controlled exponential type (k,p) on U NC*. ¢

REMARK 2.1.2. Suppose U D U’ has a function of controlled exponential type

(k,p) then clearly so does U'. D>

REMARK 2.1.3. Suppose V CC C", and ¢ is a continuous plurisubharmonic
function. Then there are holomorphic functions of type (x,q) on V for every
k > 0. Take ¢ =1 in (1-1) and note that ¢ attains its maximum and minimum

onclenV.

DEFINITION 2.1.4. In addition to the assumptions made in §1.1, we shall im-
pose more restrictive conditions on the plurisubharmonic growth function p.
Explicitly:

(1) p>0, p e C*= is convex.

(2) For every compact K C C7, log(1+ |z|) = o(p(2)) as z —> o0, z €

K MC*;
(3) 3A,B > 0 such that |z — {|'< 1 = p({) < Ap(z) + B;!
(4) For sufficiently small v every point of 2, — C" has a neighbourhood with

functions of controlled type (x,p) for every £ > 0. ¢

EXAMPLES 2.1.5.
(1) p(z) = (14 |2]?)*/? or p(z) = |z|*, s > 0; when s = 1 this is the case
considered by Kawai [1970], and Meril [1983].
(2) p(z) = |Rez|®, s > 1; Kaneko [1985] considers the case s > 0. For
s < 1 these p’s are not plurisubharmonic, so the methods here are not

applicable to his case.

1 This condition goes back to Berenstein and Taylor. See references in Struppa [1983].
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(3) p(z) = log™ |f(z)| where f(z) = 17 fi(2?), with f; entire and uniformly
bounded away from 0 in a ¢ neighbourhood of R. In this case (1-1) will

be satisfied. >
Recall
DEFINITION 2.1.62. An open set V C C” is Saburi type (1) if for some a > 0

cu |Jmz|
Vr](gn 'meZI +a

Here |Jmz| = ,'/ijjvz and |[Rez| = /> 202 ¢

EXAMPLE 2.1.8. Suppose V' C Cn is Saburi type (1). Let p(z) = |z|, the case

considered by Kawai and Saburi. Then t.(z) := cosh (n\/g, DI ) is a

function of controlled exponential type «, |- | for V.

(1-2) < L.

PRrROOF. First note from the series expansion that 1, is entire.

For computational purposes let ¢ := supyncn W < 1, o(z) =
a

A/ 22702, 0c(2) 1= Rea(2), and 0i(2) := IJmo(z). Note that

2
cosh \/g/ia = cosh 2\/%"?0% + cos 2\/%-:@.

Let 27 = z7 + 14y’ = rje!%. Then o(z) = \/2o;r3e*% . Define r and 6 by
r2e2i0 . Z 7.2 21, Then

8 _\/Z r? cos 20;)% + (3,72 sin 26;)?,

> r? cos29

o(z) =re? =rcosf+isinb, and cos 20 = . So up to sign

/1-}—(‘0529 /1+cos29
T cos 26 ri cos 26,
=:t\/ 22 :l:z\/ 22 .

2Saburi, Y. [1978].
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Hence

r2 + 5 .r2 cos20; r cos 26;
(1-3) Fp = :i:\/ ZJ ] ]; & = \/ Z

2

Similarly, using “cartesian” coordinates one gets

= \/Ej(va"" —yh?) + 22'21-3:.7'3/1' = re*f.

Then

(1-4) P = /(297 - yi?)? +4(X;00yi)% and

3312._ 72
cos29—E 4

In terms of these coordinates

R G S W e W
1 8
2

a(z)zrcos€+isin9=:i:\/ 5

Thus up to sign

T.2 + . CL'j’2 P . 7-2 s ; "l;jvz — yh2
- m:i¢ T, — 7). m=i¢ (e - yi2)

2

1) Upper bound.

2
2
cosh \/; KO

Now estimate o, using the “polar” coordinates (1-3).

r? + r cos26 r2 + 5 .12
bl e

19
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< cosh2y/2ko, +1 < 62\/;KI . + 1.




Since

r? < \Z]r] cos 26, }+ 'Z 2 sin 26; , < ZJ %

jov < /311 = 1/3p(2)

By choosing A sufficiently large, there is an upper bound

cosh \/g KO

< Ae”P,

2) Lower bound.
For the lower bound the case when cosh SMI = 0 is dispensed with and

then a asymptotic growth is obtained.

a) cosh \/grw = 0 if and only if 2\/%‘50} =0 and 2\/%{@ =(2k+1)r k€

Z.
7"2 + 3 m],2 —_— ]72 i o
ar—:!:\/ E( 2 )=0 & r2+zj(m]’2—y”2)=0,
gh? — yh? 2k + )7
m—i¢ Z y?) _ (2k+
z\[
i ( 1)271'2
= r’ - Z]($]2 yh?) = 1.2
Hence -
: : 2%
Ejmj’z —yh? = _E:&_;t_%)_f,y or
Sk

3
: o (2k+1)272
Ly =l T

3

This would be impossible if it fails to satisfy Saburi’s type (1) inequality (1-2).

So cosh \/%—FCG' # 0 if

- , 2k + 1)%x? , ~
Ejyf’z = Ejmm + g__;%ﬁ)i > CZZj.’L']’2 + 2c2azjw”2 + c2a?.
3
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Simplifying and completing the square gives

. = 2%k + 1)2n?
0< (1- ) 5,0 — 220y [¥ o2 — 2o 4 CEEDT

3k
~ c2a ; (2k + 1)?xn?
=(1-¢") (Ej‘”]’2 2Tz Zj‘””z) —cat + s —
3

= a-o) (YEer- 2%

2 2 k4 1)272
_(1_02)< c“) —c2a2+(2—j)—ﬁ-—.

o2 8 .2
l—c¢ sk

2 2
Since (1 — ¢?) (1 /30 a0 ~ l_c_a_§> > 0, if kK can be chosen so that the other
—c

two terms of the last line are greater than zero, (1-2) will be false; i. e. & has to

be chosen so that

2 2 Is 2,2
—(l—cz)(ca) ——c2a2+(—2M—>0, for k € Z.

1—¢? 8 k2
Equivalently
2
(2k + 1)%x? 5 cla 9 2
31{2 >( —c) 1 — 2 +c“a
c2a?
=1 for k € Z.

This has to be true for all k € Z, so k has to be chosen such that

n? goa”

— > ——
82 7 1—¢2

This will clearly hold for k < kg for some small xg.

cosh \/gmfl > 0.

b) Now provide a lower bound for the asymptotic behaviour. Assume first of

In summary when 0 < k < ko,

all that |z| > 1, and note that

cosh 2 \/g KOy

2\/2190 -2 Zna'
e V3 T e V3T 12\/gn|0':]
> =€ .
2

(1-6) .
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Now estimate |o¢| in (1-6). From (1-4)
2> ‘ijj,z _ yj,zl .

(1-2) implies that for sufficiently large ’, /zjaﬂﬂ‘, ijj,z & Ej:cm; so in this
case (1-4) and (1-5) give

It follows that
'2"& o
(1-7) %ez\/; =l 5

On the other hand,

p(z) = \/L,097 + Tp97 < /5097 + [T 092 < (14 ), [,092 + ca,

and

Together with (1-7), this yields

1 2\/z ! 1 —2\/z —2\/Z i 2\/z T / j
Ee 3K|g' (2)] > 56 3ncae BNH_Cca6 3K1+CP(Z), for large Z]_w_],Z'
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Since |cosh \/gl-w’ > 0 from step (2a), this lower asymptotic bound shows

cosh \/g KO

Choosing B sufficiently small gives the lower bound

2, 1-c
Be\/—;n rFep(?) < |cosh \/gna(z)

§2.2 Spaces of Holomorphic Functions with Growth Conditions

that

>m > 0.

. O

The topologies of the spaces involved are first recalled from Saburi [1978],

Nagamachi [1981], Meril [1983] and Berenstein & Struppa [preprint].

DEFINITION 2.2.1. Let U C C" be open and K}, K; CC it K}, be an

exhaustion of U by compact subsets of Cr.

PXOU) := lim L? (int K; N C*;ep(2)) ;
J€N0
,,f(fpt(U) = lim L? (int5 K N C*; —ep(2)) ;

70

(U} = lim L (intm K} N C*;ep(2)) N O (intz K; NC");
7eN0

pﬁ(U) e @ h_r)n pﬁde (int@;I&’; NnC*; —5p(z)) .

J N0

For K compact in C" and ints I; a basis of compact neighbourhoods of K, let
pﬁ(ﬂ’) — h_n-)l pﬁde (znt@; IK;nN (G —Jp(z)) R

59N0

where

20Bad(K;¢) :={f e O(KNC"): sup |fle™® =: ||fllk < oo}, and,
0*(L; ¢) := {f €O(L): \//L |f2e~¢dh =: ||f]7 < 00}- 0

23



LEMMA 2.2.2%. Let L; = int K; N C", K] increasing as in definition 2.2.1.

Let m > 0. Then

—

h;)n o (L;; —%p(z) — 2mlog(l + |z|2)) = lir.n o (L;-; —%p(z)) as TVS.
i

J

PROOF. Clearly

0 (Ljs —1p(=) - 2mlog(1+ |=%)) — lim & (L; ~1p(2)

J

is a continuous inclusion. Hence

l_i;n 7 (L;-; —%p(z) — 2mlog(1 + |z|2)) — li;nﬁ (L;'; —%p(z))
j j

is a continuous injection.
On the other hand, let f € & (L;-; —%p(z)), and choose § > 0 such that

4mé < 0. Since log(1+ |z|) = o(p(z)) as z — oo there is an R such that

S| P
1(5+1)

log(1 + |z]) < ép(z) for |z| > R. Thus
e~ THTP(2)+amlog(1+]z]) 8p(2), |z| > R.

It follows that

J.

lf|2e;‘.}.—lp(z)+2m10g(1+|2|2)d/\ < / |fl2e%1’(z)e—j(Tl_I_ﬁp(z)+4mlog(1+|z])d)\

1 /
i1 Lt

1
< M/ 1f2e 3PP d.
Lfya
So the map induced by restriction

lii‘)n 17 (L;-; —%p(z) —2mlog(1l + |zlz)> — h_r_)n 7 (L;; —%P(Z))
j j

is continuous. This proves the lemma. [

PROPOSITION 2.2.3*. Let L; = intg; K; N C", K; decreasing as in definition

3Kawai [1970].
4Kawai [1970].
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2.2.1. Then

lim 0 (z'nt@;Kj; —-%p(z)) = lim (Lj; —-}p(z)) as TVS.
int K; DK L

PRrROOF. First note that the map

4 (int@-,;Kj; —%p(z)) —s 7 (Lj; ——%p(z))

f— f

1
is well-defined and continuous because if f € ,0(intg; K;) then supy, [f lei? <

o0o. Thus

1 o
lflzeipd/\z/ f2edre™ TP d)
L; L;

2
L _1
(sup|f|ejp> / e 17dA.
L; L;

J

iN

1
However log(1 + |z|) = o(p(2)) as z — oo, so ij e 77d\ < co. Thus

li_r-)npﬁ (int@; K;j;— %p(z)) — h_rg o (L]—; —%p(z))
j 7.
is continuous.
Next we show l_if_)nj 0 (intcf,;Kj§ ——%p(z)) - lir__)nj 7 (LJ-; —%p(z)) is surjec-

tive. Consider the map given by restriction:
0 (intgs Kz — o)) « 0 (L =2p(2)

where the brackets [-] here denote the greatest integer, and the constant A comes

from definition 2.1.4(3)
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Choose r so that B(z,r) C Lj for all z € Lj;1. Then

1
|f(2)] < W/B(z,r) |F(C)ldA

< / |2e;p(C)d)\ / e— 7P
- Z T B(z, r) B(z, r)

But from definition 2.1.4(3) p(¢) > (p(z) — B)/A, so

C ‘ .
17(2)] < ﬂ_n,,ne—p(z)/fzm < Ol ?(0)/[2iA+1] z € Ljty.

Thus ,0 (mt I&[2]A+1],—[7]./1T1]p(z)) — ﬁ(Lj;—%p(z)) is well-defined.
This proves the surjectivity.

Since the preimages of barrels are barrels, l_1_r_)n 7 (Lj; —%p(z)) is barreled.

j

Moreover as the direct limit of injective® weakly compact® maps it is a DFS*
space, and thus Hausdorff.

li_r)nj 4 (int@ K e —%p(z)) = ,0(K) is a DFS space, and the strong dual of
a Fréchet space, thus it is fully complete’.

Thus li_I)l’lj 0 (int@;Kj; —%p(z)) — li_r_)nj (73 (Lj; —-%p(z)) is open®. It is clear-
ly 1-1. O

REMARK 2.2.4.
lim 07 (Lj; ~1p(2)) = limlim & (L;; ~6p(2))
7 ;
Similarly for & replaced with ,0 and the weight —%p replaced with ——%p -
2mlog(1 + |z|?).

This follows because limits commute and from “diagram chasing”. >

5Each component of int@; K; intersect K by assumption.
6The spaces (Lj; —%p(z)) are Hilbert spaces; Aloaglu— Bourbaki theorem.

"Page, W. [1988] theorem 21.3(47).
8Page, W. [1988] corollary 21.9.
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DEFINITION 2.2.5%. Let X (Lj; —ép(z)) denote the closure of & (L;;—2dp(2))
in L% (Lj; —6p(2)). Similarly for X (L;; —ép(z) — 2mlog(l + |2}*)). ¢

REMARK 2.2.6. X (Lj;—dp(z)) C-€(L;;—dp(z)), since & (Lj;—0p(z)), being
the kernel of —0, is closed in L? (L;; —dp(z)). ©

LEMMA 2.2.710,

lim X (Lj; ~p(z) — 2mlog(1 + |2[*)) = lim X (Lj; ~6p(2))
5\0 50

PROOF. The proof is essentially the same as in lemma 2.2.2. First consider the

map

X (Lj; —6p(2) — 2mlog(l + |2]*)) — X (L;; —8p(2)) ;

This is well-defined and continuous since

/ |f!266p(z)+2mlog(1+lz|2)d)\ = / |f|2€6p(z)d/\.
L; L;

If fr € ©(Lj;-26p(z) —2mlog(l+|z[*)), and fr — f in
L? (Lj; —6p(z) — 2mlog(1l + |2|?)), then fx € €(Lj;—20p(z)) and fr — f
in L? (Lj; —6p(2)).

On the other hand, for § < &',

X (Lj; —6p(2) — 2mlog(1 + |2|*)) «— X (L;; =4'p(2))

fe—f

9Kawai [1970].
10Kawai [1970].
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is well-defined since

/|f|2e51’(")+2m]°g(1+|z|2)d/\S/ |f'2e6'p(Z)e—(6’—6)p(2)+2m108(1+IZI2)d)\
L; : L;

<M | |f2efP(® 4.
Lj

Again if fx € O(Lj;-26'p(2)),fx — f € L*(Lj;—d'p(2)), then fr €
O (Lj; —26p(z) — 2mlog(l + |2|?)) and fx — f in L*(L;;—dp(z)
—2mlog(l + |2[?)). O

LEMMA 2.2.8"1. Let K; C U be compact neighbourhoods of K that decrease

to K. Suppose U satisfies property (P,). Then

X (Lj; —dp(z) — 2mlog(1 + |2[?)) = € (Lj; —6p(z) — 2mlog(1 + |2|%)) .

PRroOOF. There is an injection

clra(L;;—8p(z)—2mlog(14+]212)) @ (Lj; —26p(z) — 2mlog(1 + |2[*))

= X (Lj; —0p(z) — 2mlog(l + |2|?)) — € (Lj; —6p(z) — 2mlog(1l + |2|?)) .

Let
JUS L? (Lj; —dp(z) — 2mlog(1l + ]z|2))'
such that
u (6 (Lj; —26p(z) — 2mlog(1 + |2[2))) = 0.
Then

Ju € L? (Lj; —0p(z) — 2mlog(l + |z|?))

11 Kawai [1970].
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such that
p(v) = / () +2mlog(1+1:1%) gy

Suppose f € & (L;; —6p(z) — 2mlog(1 + |2|?)). Let ¢ be the holomorphic func-
tion given by property (P,). Then fe~ = 0 (L;; —26p(z) — 2mlog(l + 12]2))

for all k € Zt because
|fe-—%¢‘265p(z)+2m log(1+|z.12)d/\
Lj

/ If|%e” 26+dp(2) 6p(2)+2mlog(1+]21%) g\

< / |fe(5p(z)+21nlog(1+|z|2)d)\esupl,j (—2Red+0p(2))

< oo.
So
0= p(fe-t#) = [ femkbgesn(a+amlos(+l=%) gy
L;
Now, for some ¢ > 0,
e_%d’ _ e—m?d’/k < (eS“Pn —me¢)1/k < (esupn —me¢+€1’)1/k < oo, Vk.

So Lebesgue’s dominated convergence theorem gives

N(f) - 0= / fﬂeép(z)+2mlog(1+|z|2)d/\,
Lj

Vf e 6 (Lj;—dp(z) — 2mlog(l+|z]?)).

By the Hahn-Banach theorem, & (Lj; —2dp(z) — 2mlog(1 + |z|?)) is dense in
O (Lj;—dp(z) — 2mlog(l + [2?)). O
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DEFINITION 2.2.9. For an open set U C C" and a family of increasing compact

sets Kc,c€ R, K.TU, K, CCintg Ky for c<c, define

o*(UNC) := lim lim 0 (K.NC*;—4'p(z) — 2mlog(1 + |2]?)),
¢ oo §'\0

O(U) = lim lim & (Ko —8'p(z) — 2mlog(1 + |2%)) . 0
¢ too 6' 0

LEMMA 2.2.10. For U and K. as in definition 2.2.9,

o*UNC*) = ,0(U) as sets.

PRoOF. The proof follows that of Proposition 2.2.3.
Let ,0(U) — 62%(U N C") be the “identity”: f — f. To show this is well-
defined, let K be a compact subset of U. Without loss of generality, K can be

taken to be K. for some c. By definition

36 >0 suchthat sup |f|efP(x)+2m log(1+]21*) ~ .
K.nCr

Thus

/ If,2€6p(z)+2mlog(l+|Z|2)d)\
K.nCr

_ / lfi262(5p(z)+4mlog(1+|z|2)e—-5p(z)-—2mlog(1+|z|2)d)\
K.nCr

2
< ( sup 'fleﬁp(z)+2mlog(1+|z|2)) / e—0p(2)—2mlog(1+]z|%) 7
K.nC" K.nC»

< 00.

To show that the inverse ,&(U) «— &%(U N C") is well defined, let K be a

compact subset of U, and f € 6*(U NC"). Then K CC ints; K for some c.
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Choose r > 0 so that B(z,r) C K, for all z € K N C". By definition there is a

§ > 0 such that

/ |f|2e6p(<:)+2mlog(1+IZI2)d,\ < M < oo.
K.nCr

Following the argument in proposition 2.2.3, we have for z € K,

1
If(Z)I.S W/@(N) | £()]dA

1 / .
S _— f C ZeJP(C)d/\ / e“sP(C)d}\
/\(B(Z7T))\/ B(z,r) I ( )l B(z,r)

Thus

C ! 1"
lf(Z)l S 7.2_117‘”6—6 p(2) S 0,6_6 P(z)+2mlog(1+|z|2)’ 2 € L]+1

So sup e |f(2)|f P +2mlog(1+121) « o6 This proves the lemma. O

LEMMA 2.2.11'2. Suppose K is a decreasing sequence of compact neighbour-
hoods of a compact set K C U and that U satisfies (P,). Then for § < &' there

is a dense inclusion
¢ (Lj; —6'p(z) — 2mlog(1 + [zl2)) — & (Lj; —dp(z) — 2mlog(1 + |z|2)) .

In fact the closure of the image in L* (Lj;—-ép(z)—2mlog(1+lz|2)) is
6 (Lj; —6'p(z) — 2mlog(1 + |2[2)).-

PROOF. Recall that & (L;; —6p(z) — 2mlog(l + |z|?)) is a closed subspace of
L? (Lj; —6'p — 2mlog(1 + |2|?)). Follow the proof of lemma 2.2.8. 0O

12Kawai [1970].
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COROLLARY 2.2.12.

lim &' (Lj; —6'p — 2mlog(1 + |2|")) — lim & (L5 —p(2) — 2mlog(1 + |2]*))
J J

has dense image.

PROOF. This follows from general definitions of direct limits. Let u be a con-

tinuous linear functional and suppose each f; has dense image:

£

A; —J—>A;

N

lim A L, lim 4j £ ¢

Suppose pf = 0. Then pfp; = 0 = up} f;, and hence pup; = 0 Vj. This implies
that u=0. O

§2.3 Kawai’s Approximation Theorem

In this section we note that Kawai’s approximation theorem remains true for

sets not necessarily in D"13,

LEMMA 2.3.1. Consider the inductive system {A.} in an abelian category. (For

simplicity assume this category is concrete.)

peL’

13See also Saburi [1985] §2.3.
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Given morphisms f and f' consider the pull-backs p¥f and p*f'.
The following are equivalent:
(1) p:A—>B; puf=0= uf' =0;
(2) pe:Ac = B; Ve pepef =0 = pepef' =0.

PRrROOF. 1 Given p., p exists from the definition of direct limits. Let a € A.
Then there are an € and an a’ € A such that pe(a’) = a. If moreover a = f(I),
then (I,a') € p:L.

So pf(a) = ppe(pff)(l,a’) = 0. By hyphothesis this implies that uf’ = 0. So
pe(pif) =0 Ve

Suppose p is given such that uf = 0. Let pe := ppe. Then puf = 0 =
pe(pff) = 0 Ve. By hypothesis this implies pc(pXf’) = 0 Ve. Let I’ € L'.
Jda’ € A, for some ¢, such that f'(I') = pe(a’). So (I';a’) € p*L'. But then
pf'(l') = ppe(p f)(I',a') = 0;ice. pf' =0. O

LEMMA 2.3.2. Suppose w € L? (U;6p(z) + 2mlog(l + |z|?)) and || > Bex'?

on U. Then
-Z— € L* (U; —ep(z) — 2mlog(1l + |2|?)), for e < 2k’ — 6.
PRroOF.
2
Ii efp(z)+2mlog(1+{z|2)
()

+8)p+4amlog(1+]|z|*
2 ,—6p(2)—2m log(1+|z|?) elet+d)p+amlog(1+]z|?)
|4

L |o[2etp()-2m10g(1+1217) p(et5-20")p(2) +amlog(1+]:1%)
L .

< Jwl

Now note that e(c+0=2x)p(2)+4mlog(1+z]*) ¢ [ when e < 2k’ — 4, and

lw|2e_5p(z)—2mlog(1+|212) € L. O

14This should be true without assuming that the objects are sets.
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LEMMA 2.3.3. Suppose v € L? (U; —6p(z) — 2mlog(l + |2|?)) and || < Ae P
on U. Then

vp € L? (U; ep(z) + 2mlog(1 + |2[?)), for 2k — 6 < e.

ProOF.
2 2 2
|v1/)|28_5p—2m]0g(1+lz| ) < IUI266p+2mlog(1+|z] )|¢|26—(e+6)p—4mlog(1+|z| )

< .A2|U|2e6p+2mlog(l+|z'2)e(2n—e—6)p—4mlog(1+lz|2).
Note that e(2s—¢=0)p—4mlog(1+|:1*) ¢ [ when 2k — § <e 0O

REMARK 2.3.4. Note that ,0(Ky) injects into l_ii)ne\OL2(L6;—6p(z)

— 2mlog(1l + |z|?)). By lemma 2.2.3, the induced topology is the same as

the original topology on ,0(Kj).

PROPOSITION 2.3.5 (KAWAI'®). Let U C Cr be ®-pseudoconvex with a C?

strictly plurisubharmonic exhaustion function 6. Define
Le={0<e); and K,= clg Le; c € R.

Suppose U has a holomorphic function with controlled exponential type (k,p)
for some k > 0.

Then ,0(U) — p0(Ko) has dense image in the topology induced by

lim = L? (L¢; —ep(z) — 2mlog(1l + |2]?)) .

—>e\O0
PROOF. Note first that ,0(U) injects into ,0(Kp). Its image will again be
denoted ,0(U). The Hahn-Banach theorem will be applied to show

/
p € | lim L? (Le; —ep(2) — 2mlog(1 + |2]?)) and p(@U))=0

e\0
implies (@ Ka)) =0,

15 ¢f. Hormander [1990] lemma 4.3.1.
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By lemma 2.3.1 this is equivalent to showing

p € L? (Le; —ep(z) — 2mlog(1l + |z|2))l and  u(p7',0U)) =0

implies p(p1 0 (Ko)) = 0,
where

pe : L*(Le; —ep(z) — 2mlog(l + |2[%))

i : 2070, _ 1 _ 2
- lll_i‘_)r:)L (LL; —€'p(2) — 2mlog(l + |2]%)).

By the Riesz representation theorem Ju € L? (L¢; —ep(z) — 2mlog(1l + |2]?))

such that

/"(U) s / vaeep(z)+2mllog(1+|z|2)d/\’
K.nCr

v € L* (L¢; —ep(2) — 2mlog(l + |2[%)) .

Extend u by 0 to U N C*. Then p can be defined for v € L2(U N C*; —ep(2)

— 2mlog(1 + |2|?)) by the same integral:
nw) = / veeP( )+ 2mlog(+1:1) gy
Ju

Let ¢, be the assumed holomorphic function of controlled exponential type
k,p. Then since weP(x)+2mlog(i+lzI") ¢ L2 (U NC";ep(z) + 2mlog(1l + |z[2))
lemma 2.3.2 gives

(2_7) /(/)ieep(z)+2mlog(1+|z|2) c L2 (U nC: —fp(z) = Dy log(l I |Z]2)) :

K

for £ < 2k’ —e.
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Assume € < 2k'. Let w € L? (U N C";¢ép(z) + 2mlog(1l + |z|?)). Define
fi € L* (UNC*;¢ép(2) + 2mlog(1 + |z|2))l
by

(2-8) fi(w) = / s e (2)+2mloB(1+127) g
UnCr ¢n

Let 6% := max(0,6 — ¢), 6 being the exhaustion function of U. Let
A= Ux>oL? (UNC*;€p(2) + 2mlog(1l + |2|?) + A87) .

Note that A C L? (U N C™; €ép(z) — 2mlog(l + [2[%)).

Claim: Let L} (U NC™; —ep(z) — 2mlog(1 + |z|%)) denote the set of functions
square integrable over compact subsets of Cr with respect to the given weight;

1. e.

LIZOC (U NC"; —ep(z) — 2mlog(1 +‘|z|2))

= li;nLQ (Le; —ep(z) — 2mlog(1 + [2[?))

J

= {f : V compact K C U, / |f|26“’(z)+2mlog(1+|z|2)d)\ < oo} :
KnCr

If w € A then J* € L (UNC"; —ep(z) — 2mlog(1l + |2]?)).

loc

PROOF. Suppose w € L? (U N C";ép(z) + 2mlog(l + |z|?) + A6T). Then

w

P

2
eép(z)+2m log(1+4]z]2) -8t

+8)p(2)+4mlog(1+]|z|>)—Ar6t

[ ]?

= |w|2e—tp()—2mlog(1+[z|")— A6 €

< B'e(—26 +E+8)p(2)+4mlog(1+]2]?)
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Consequently - € L? (UNC"; —6p(z) —2mlog(1 + |2|?) + A6F) when § <
2k’ — ¢ By (2-7) € <2k’ —€or e < 2k’ — €. So

1—;3 € L2 (U N C"; —ep(z) — 2mlog(1 + |2[?) + AF) .

Let K C U be compact. By definition 3M < oo such that supgcn MY <

M. But then

2
eep(z)+2mlog(1+|zlz)e—)\0+d/\

oo > / s
KnNCn

Y

2

> _}_ eep(z)+2mlog(1+|z|2)d)\.

~ M Jkncn

w

Vi

Tohits praes fhs clien,

Now the hypothesis of Hérmander’s proposition 2.3.2 [1965] are shown to
hold with his ¢ as the 6 here, and his ¢ = £p(z) + 2mlog(l + |z]|?). Note that
ép(z) + 2mlog(1 + |2|?) is strictly plurisubharmonic, and

_tZ_eep(z)+2mlog(l+|z'2) c L2 (U 0 Cn; —&fp(Z) — 9m log(l + |Z!2)) )

Suppose w € A and Ow = 0, so that w is analytic. Then 51/% = 0. Moreover

f(w) = p (1—;":), (2-8). By the claim above

w

5 € Lhoe (UNC5 —ep(z) — 2mlog(1 + |+")) n 6T N C").

From lemma 2.2.10

) s = lim lim 0 (K.NC"; —ep(z) — 2mlog(1 + |2|*))
¢ oo €' \0
= ,0(U), as sets,

=: lim lim O (Kc;—ep(z) — 2mlog(l + |2[%)) .
c oo €' \0
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Note that

pt (02 (U)) = LE. (U NC"; —ep(z) — 2mlog(l +|2]*)) N €(U N C*)|z..

loc

So j= € pt (,6%(U)). Thus fi(w) = p (1/‘,”—“) =1

Hence proposition 2.3.2 of Hérmander [1965] shows that
JF e L?O,]) (U NC"; —€p(z) — 2mlog(l + |z|2))
such that

OF = —Et—efp(z)+2ml°g(1+|z|2) in the sense of distributions.
K

Here

g, i
Og=-2;55 9= X997

Moreover F vanishes when 6 > ¢; 1. e.F' =0 on KN C".

Let
(p,9)

T: L%, » (U;ép(z) + 2mlog(l + |2]?)) — L%P’q) (U; €ép(z) + 2mlog(l + |2[?))

be the densely defined operator T = §. According to proposition 2.2.1 of

Hormander [1965], 2, q) is dense in graph norm in Dom(T). It follows that
flw) = / wOFd\
U
ow -
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In paticular this is true for w € & (Le;Ep(z) + 2mlog(1l + |z|*)) since w can be
extended by 0 to all of U, and since F' and u both vanish outside L.. Such w

are thus in Dom(T'). The formula above shows that
fi (€ (Le; €p(z) + 2mlog(1 + |2]%))) = 0.
Recall that (2-8)
cov o [ 9 ep(aamlog(i+a?) _ (i)
9) = e = :
i) /L b “\we
Hence p vanishes on ‘,;,ljﬁ (Le; €p(z) + 2mlog(l + |2|?)). By lemma 2.3.3

Ve O (LE; —dp(z) — 2mlog(1l + |z]2))

C 0 (Le;ép(z) + 2mlog(l + |2]?)), for 2k —€ <6
Since e < 2k’ — € <2k — € =: €,
1
O (Le; —€"p(z) — 2mlog(1 + |2|?)) C —J—ﬁ(Lf;fp(z) + 2mlog(1 + |2|?)) .

Thus p vanishes on & (L¢;—€'p(z) — 2mlog(1l+ |z|?)). By lemma 2.2.11
O (Le; —€"p(z) — 2mlog(l + |2]?)) is dense in & (L¢; —ep(2) — 2mlog(1 + |2[?)).
Thus p vanishes on & (L; —ep(z) — 2mlog(1l + |2|?)). But note that

o7 (;0(Ko)) = O (Lo —ep(z) — 2m log(L + |=[2)) .

So the proposition is proven. [
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LEMMA 2.3.6. Let I be a directed index set. Thenlim A; =lim lim  A;.

ProoF. (Here j > k means j > k and j # k. Suppose given f; : A; — B.

Consider the diagram

The maps intolim ~ A; andlim  A; are well defined, and a unique dashed
_)l>]ll _—>I>]HI

arrow exists. 0O

REMARK 2.3.7. The lemma above is applied to the theorem below in step 2
with index set ] = {Kv : K CC Ky cCc V}. b
The lemma and proposition 2.3.5 give the following approximation theorem

essentially due to Kawail®.

THEOREM 2.3.8 (KAWAI). Suppose K is a compact subset of an #7-pseudocon-
vex set U C Cn. Suppose that for every Cn neighbourhood V of K,V C U,
there is a C? strictly plurisubharmonic function 8y, depending on V, such that
(1) {6 <c} CcCU, for c € R;
(2) KNC" C{#<0} Cclm{f<0} =Ko, CV;
(3) supy, g 0 < oo for every compact subset K' C U.
Moreover suppose that U has a function of controlled exponential type (k,p) for

some k > 0. Then ,0(U) — ,0(K) has dense image.

16Kawai [1970]. cf Hérmander [1990] theorem 4.3.2. Kawai states his result only for
subsets in D™, eventhough it is applicable without this restriction.
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Proor.

pO(K) = lim  lim,Opqa (V;—0p(z))

UDDVIK §
= lim lim lim,Opaq (W;—dp(2)), (Kv := cls:{6v < 0}),

Ky>K WDKy 6

= lim O(Kv).
Ky DK

By proposition 2.3.5, ,0(U) is dense in ,0(Ky). The proof of corollary 2.2.12
shows that ,&(U) is dense in liI_I_)IV LO(Kyv)=,0(K). O

We shall Kawai’s approximation theorem in the following form.

COROLLARY 2.3.9 (KAWAI). Let U and K be as in the theorem, and let K C K’

be compact in U. Then ,0(K') — ,0(K) has dense image.

ProoOF. There is a commutative diagram

0(U) L 0(K)

-

WO (K

fK has dense image and im fxr = imin o f. So im in is dense. O

§2.4 A Vanishing Theorem

DEFINITION 2.4.117. Let U be an open subset of Cn.

PX(U) := {f €L (U):VK cCU, Ve / |712e~P(dA(z) < oo}.
K

NCnr

Let PX(p ¢)(U) denote the corresponding (p, q) forms. ¢

17Berenstein & Struppa [preprint].
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DEFINITION 2.4.218, Let U be an open subset of C".
X U) = {f €L (U):VK cc U, 3k, / |F12e®xP(Dd)(2) < oo} :
KnCr

Let X(p,q)(U) denote the corresponding (p, q) forms. ¢
Recall the following propositions

PROPOSITION 2.4.3'°. Suppose U C C" is #-pseudoconvex. Then the sequence

PX(p0y(U) 22X, 1y(U) 22X oy (UP— - - > BX () (UF =0

is exact. O

PROPOSITION 2.4.4%°, Suppose K C , is compact and has a fundamental
system of B0-pseudoconvex neighbourhoods. Moreover suppose that for every
k > 0 one of these neighbourhoods has a function of controlled exponential type

(k,p). Then the sequence

PXp.0)(K) % pX(p,1)(K) 2 X 2) (K =+ - =5 ny (K] =0

is exact.

PROOF2!. Let f € ,X(K) satisfy df = 0. Since I is compact and C* is Haus-

dorff, X' (K) X (V) where V may be assumed to be relatively com-

= lim p
—SVOK

pact ®J-pseudoconvex neighbourhoods of K. The representative of f in X, (V)

for some V satisfies

/ 1£12eP(2)d)\ < 0.
|4

18 Berenstein & Struppa [preprint].
19Kawai [1970], Saburi [1978], Nagamachi [1981], Meril [1983], Berenstein & Struppa

[preprint].
20Kawai [1970], Saburi [1978], Nagamachi [1981], Berenstein & Struppa [preprint].
21Saburi [1978].
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By choosing « sufficiently small, and restricting f to a smaller &7-pseudoconvex
neighbourhood if necessary, we may suppose that ¥, f € PX(, y(V), where 1,
is a function of controlled exponential type (k,p). Since d(t.f) = 0 there is
a g € PX(p q—1)(V) such that 0g = 1. f by proposition 2.4.3 and lemma 2.3.2.
Then 5—15: = fand & € X -p(V). O

COROLLARY 2.4.5%%2. There is an exact sequence
00 = R0 e £ a0

PROOF. This follows from the assumption that points at infinity (£, —C") have
a basis of neighbourhoods having functions of controlled exponential growth p

for every k. O

COROLLARY 2.4.6. Let K be a compact subset of Cn satisfying the conditions

of proposition 2.4.4. Then
HY(K;0) =10, fork>0. O

Recall the following theorem from Kawai [1970], Nagamachi [1981], Beren-

stein & Struppa [preprint].

THEOREM 2.4.7. Let K C U C @, where K is compact and U is -

pseudoconvex. Suppose H¥(K; ,0) =0 for k > 0. Then

HE(U; %) =0, for k # n,

and HMU;?)~ ,06(K). O

These results together yield the main theorem of the chapter.

22Kawai, Saburi, Nagamachi, Berenstein & Struppa.
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THEOREM 2.4.8%3, Let K C K' C C" be two compact subsets of C* satisfying

(1) K' and K have fundamental systems of ®-pseudoconvex neighbour-

hoods;

(2) there is an open #-pseudoconvex neighbourhood U of K' having a holo-
morphic function of controlled exponential type (k,p) for any k > 0;
(3) there is a function 6y for every cn neighbourhood V of K satisfying the

conditions of theorem 2.3.8.

Then Hﬁ»,_l((@;’ﬁ) = 0 for k #n.

PROOF. Recall that I'z(X; %) = I'z(V; %), where Z is locally closed and V'

is an open set containing Z as a closed subset. Thus for the situation here
HE(U; %) = H}}(@;’iﬁ’) = and similarly for K’.
Now consider the long exact sequence
0— HY(C*;0) —= HY, (C*;10) — HY:_ 1 (C*; %)
R S—
— Hp™!(C7;90) —~ Hp | (CF0) —~ Hi L 1o (T )
— H};(C*310) —> H}, (CF10) — HE,_1c(C0)
_>HIH(+1(@;W) N
Since HE, (@,pﬁ) = Hi(@,pﬁ) = 0, for k # n by corollary 2.4.6 and theorem

24.7,

Hf(/_l((@;pﬁ):'O, fork#:n—l,n.

23 ¢f. Kawai, Kashiwara & Kimura [1986] proposition 2.2.2.
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For k = n — 1, n there is the exact sequence

0—> Hp 21 (Ch;10) = HE (CF ) =~ H, (CF; ) = Hy_ 1o (CF6) =0

PO (K) ——,0(K')
By corollary 2.3.9 ,0(K) — ,0(K')" is injective. Hence H}:’T_IK(@;W) ==
i. e.

H}“{,_K(@;”ﬁ)=0, fork#n. O

REMARK 2.4.9. If K and K' are compact in C* satisfying K = I/{’{]), the
plurisubharmonic hull of K, and K’ = I/'x\”g, then the conditions of the the-
orem are automatically satisfied by remarks 1.2.6 and 2.1.3 above, and theorem
2.6.11 in Hormander [1990]. (See also scholium 4.3.1 below.) Thus the theo-
rem generalizes proposition 2.2.2 of Kawai, Kashiwara & Kimura [1990], which
states that HE,_,(C"; &) = 0 for k # n when K and K' are compact analytic

polyhedra. >
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CHAPTER III

TOPOLOGICAL LEMMATA

Who, if I cried out, would hear me among the angels’
hierarchies? and even if one of them pressed me

suddenly against his heart: I would be consumed

in that overwhelming existence. For beauty is nothing

but the beginning of terror, which we still are just able to endure,
and we are so awed because it serenely disdains

to annihilate us. Every angel is terrifying.

—Rainer M. Rilke, Duino Elegies [1923].1

The purpose of this chapter is to show that the traces at infinity (definition
1.3.1) of certain neighbourhoods are well behaved. The method used is simply
to look at the asymptotic expansions of the functions that define these neigh-
bourhoods. These calculations are simple and terrifying, but, unfortunately, not

beautiful.

§3.1 Exhaustion functions

The following functions will be crucial in this and the next chapter. While
they play an important role, their importance is merely technical in that they

serve only to make the machinery work.

CONVENTION 3.1.1. In this and the following chapter, sums over k run from
2,...,n, while sums over 7 run from 1,...,n (n being as usual the n in C").

A

ITranslated by Stephen Mitchell.
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DEFINITION 3.1.23.

I W Ll aE s i 1
(1) P (z) == X(ml _1/a) +Zj|y | +X($1 _l/a),where

[0 t<0
HE=1 2, 150

For simplicity x will not be explicitly written in most cases. Instead

p® shall be written as

SF12 4 102 ,
)= R B
. i Ay 2Rt =% PFa— (Plz—1/a) i .
(2) Wa(z) :==ta+);Plz— (Ile—l/a)g—f—Qi(zl ~1a) T E—jal

(3) ha(z) = TmTy(2). ¢

NOTATION 3.1.3. To simplify notation let  := 2! — 1/a when dealing with p®,
and ¢ := z! — 1/e when dealing with p¢. No confusion should arise from this
imprecision. Superscripts are used to denote coordinates, and this necessitated

the more perverse notation z'2 (etc.) for (z! —1/a)?. A

LEMMA 3.1.4.

T :
(L'v2 + yl’2 + Z]P]y

{ (AT pla™? = y*%) = T Piy)(e” — " — 29") }

(1-2) ¢a(z) :=a—

+2AL e y* + X Pre + Pa)22(y’ +1)
(22 — yl2 — 2y1)2 + dz 2 (yl + 1)2

PROOF.

i MY 28t — 5 Pk — (Plz — 1/a)
x + 1yt z? —yb? 2yl + 24z — 2!

U, =ia+ ) ;(Pz+iPly) -

3The definition of p* is essentially due to Nagamachi [1981]. The idea for the function ¥
comes from a similar function in Kawai Kashiwara, & Kimura [1986].
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. -1
. ] 5 FEi T —y
=ZG+Z]~(PJCC+1P]y)—;('—2——4—_71,—2)

B (MY p2F? = 3 Pre — (2! — 1/a))(z? — y¥? — 29! — 2zi(y! + 1))
(z,z __ y1,2 . 2y1)2 2 4:1:12(y1 & 1)2

_ y! + iz
22 4yl
(Aizk(x“ — %% + 2iz*y*) — ¥ (P*e + iP*y) — Po — iPly)
x (2% —yh? — 2y' — 2iz(y’ +1))
_ (15’2 _ y1,2 - 2y1)2 + 4x"2(y1 + 1)2

=ia+ 3 ;(Pz +iP'y)

1 .
. ; - Yy +z
:Z&+E](P]$+1P]y)—m2-
<—Pm — S Pre — 203 2Fyt )
+ 1(2;, (/\mk,Z _ /\y)'c,2 _ Pky) _ P1y>

x (22 —y'? —2y' — 2x(y' + 1))
(22 — y1Z — 2y1)2 + Az 2(yl + 1)2

Thus
1 ny — piy_ %
Ya(z',...,2") a+Z]P y T
(AZk(fc’“’z —y"?) - S Py — Ply) (a* —yh? —2y")
+(2/\Eka:kyk + ZkPk:c I P:::)Qac(y1 +1)

B (22 —y12 — 2y1)2 + 42 (y! + 1)2

REMARK 3.1.5.

(1) %a > 0if and only if

T :
(1-3) a>— T 2Py
()‘Zk(xm - yk’Q) - kaky - Ply) (x,rz —yh? — 23/1)
L +H2AL 2ty + kaka’ + Pz)2z(y" +1) -
(22 —yb2 — 2y1)2 + 4a2(y! + 1)2 '
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(2) ¢a(z) =a+ ’(/JQ(Z);
(3) Yats(z) =a+p(z). b

NOTATION 3.1.6. For the rest of this chapter let zo := (1,0,...,0) € D" —
R™ A

LEMMA 3.1.7 (NAGAMACHI).

(1) p* is C strictly plurisubharmonic where it is defined;
(2) Let Se := {z € C* : p(2) < €}, and let S, = intg; clg Se. Then
{§E}0<E<% is a fundamental system of neighbourhoods of zy + 10.

(3) S. is ®W-pseudoconvex, having

€(y) — 1 (. e
Q(Z)'_e—-pf(z)’ g el {2 p(2) < B}, 0<fB<e

as exhaustion function and exhaustion sets.

PROOF.
(1) Since the last two terms of p%, ijm and 1/2'? are C* plurisubharmonic

where ever p® is defined, it is sufficient to show likewise for the first term of p,

_ — 1_ sk
e Ekzkzk o y1,2 B zkzkzk +(z 21_2 )2
1 == 12 - iz 2
= (== -1/a)

Compute the Levi form:

1 1

-7z = 21_21
oTy 'l-'(z_ﬁ“) _Zkzkzk+ 2 )?

1

021 (252 _ly (22t 7,

€ 2
On _ 1yl oy SN 4yt
0210z 222  gx3 3 2 xt

1 3 Tl 4yt
T 2z 2 z '
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82T1 Zk

0z10zk 3
PT 1
Ozkozk T 22’

Thus the matrix of the Levi form is

P N T
22 2 T T T
=2
_Z 1 0 0
’ T
1 -3
) _Z 0 1 0
T

\ i 0 o ... 1 )

This is positive definite.
(2) Let

k,2
. n . ka ‘ E X 7|2 E

N '_{ZGC .(.'1:1—3/6)2<3’ Z]|y| <4},
and let NV := int@ cl@-; N' C C". Then N is a neighbourhood of zgoo 4 0. Let

z € N'. Then z' > 2 implies that .

since € < 1. Thus
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So z € S.. Thus N C §..

Clearly given any “conic” basic neighbourhood of zg + 70, there is an € such
that .S~'6 is contained in that neighbourhood.
(3) t — 1/(e —t) is a convex increasing function for ¢ < e. Hence ¢%(z) :=
1/ (e — p¢(2)) is C° strictly plurisubharmonic. The corresponding exhaustion
sets are {¢° < c}, for 1 < ¢ < oo, or since ¢° < c if and only if p¢ < € — -i—, these

sets can be rewritten as {p* < S}, for0 < B <e. O

83.2 General Lemmas

LEMMA 3.2.1. If A is open in a topological space X then clxintxclx A = clx A.

PROOF. A C intxclx A so clA C clxintxclxA. If C is closed and C D A then
C DintxclxA. So C D clxintxclx A. Thus clA D clxintxcixA. O

Leits 8.2.2. et X be o tapolosiesl spese aud et U be an opep subset of X,
For ACX, (cxA)NU = cly(ANU).

PROOF. (clxA)NU is a closed subset of U containing ANU. So (clxA)NU 2
cly(ANU). Now let z € (cix A)NU. Then z € U and every neighbourhood N of
z meets A. Since U is open, N NU is a neighbourhood of z. So NNANU # @.

This implies that (NNU)N(ANU) # @. Thusz € cly(ANT). O

LEMMA 3.2.3. Let X,U, A be as in the previous lemma. Then (intx A)NU =
inty(ANT).

PROOF. (intxA)NU isopen in U and is contained in ANU. So (intx A)NU C
inty(A N U). On the other hand, inty(A N U) is open in X since U is open.

Thus (intxA)NU D wnty(AUU). O

51



LEMMA 3.2.4. Let A be an open convex subset of a TVS X. Then intxcix A =

A.

ProoF. Clearly A C intxclx A. Suppose now that zg € intxcix A. By transla-
tion, zp can be taken to be 0. Since 0 € intx clx A, there is a neighbourhood, NV,
of 0 such that N C clxA. By considering N N —N we may suppose N = —N.
Since 0 is a limit point of A, and A is open, there exist a and an open set
V such that a € V C AN N. Then —V C N. Now —V must contain a point
of A, for otherwise, —a € N is not in the closure of A, contradicting N C A.
So there exists b € VN N C A such that —b € AN N. Since A is convex,

0=1b+1(=b) € A. Thus intxclxAC A. O

LEMMA 3.2.5. Let A C C". Suppose that inicn clen A = A. Then it clsz A =

AU trooA.

Proor. Clearly int@; cl@;A D AUtreA.

Suppose 20 € intmclm A If zp € C*, then 20 € (intmclzA) NC* =
inten clen A = A

If 2o € Cr — C™, then there is a neighbourhood IT" of zg such that I' C cl@; A.
Hence 'NC" C clgsANC" = clen A. Since 'NC™ is open in C*, TNC* C

inten clen A = A. By definition, zg € treoA. O
Conversely there is

LEMMA 3.2.6. Suppose A C C" is open. Then intg; clmm A = AU troo A implies
int(cn Cl(cn A=A.

PROOF. intcn clgn A = (intm clm A) NC" = (AU treo4)NC" = A, O

COROLLARY 3.2.7. If A C C" is convex then gy clmA=AUtroA. O
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LEMMA 3.2.8.

(1) anden clen {p® < c} = {p* < c}, (c>0);
(2) intcn clen {ha > 0} = {¥a > 0}.

Proor.

(1) Since {p* < ¢} is open, inice clen {p® < ¢} D {p® < ¢}. Néw let 2 =
(', y',...,2™,y") € inten clen {p® < ¢} C inten {p* < c}. Since a neighbour-
hood of z in C" must project to a neighbourhood of (y!,... ,y™), and since z is

an interior point of {p* < c} we cannot have

because increasing the values of y’’s will increase the value of p%. Thus z €
{p* < c}.

(2) As above inter clon {a > 0} 2 {tha > 0}, and intn clon {gha > 0} C
inten {po > 0}. Let B D inten clgn {9, > 0} be a neighbourhood of z and
suppose that ¥,(z) = 0. Since , is harmonic and %,(z) > 0 for z € B, the
minimum principle implies that ¥, = 0 on B. But 1, is real analytic when
z > 0(z = 2! — 1/a), so ¥, = 0. This is clearly impossible. Thus Ya(z) > 0;
i. e. wnten clon {a > 0} C {¢p, >0}. O

COROLLARY 3.2.9.

(1) intg clm {p™ < ¢} = {p* < c} U treo{p® < ¢};

(2) intm el {¥a > 0} = {¢ps > 0} U treo{tpa > 0}. O
LEMMA 3.2.10.

(1) elen{p* < c} = {p* < c};
(2) cler {pe >0} = {¢, > 0}, for a outside a set of measure 0;
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(3) inter {p* < ¢} = {p* < c};
(4) wnten {¢pe 2 0} = {¢a > 0}, for a outside a set of measure 0.

PROOF. (1) Suppose z = (z! + 1y!,..., 2™ + iy™) satisfies p®(2) = ¢. Then

ze = (a +aityl,...,z™ +ity™) 0 <t < 1 satisfies

_ Tt 2 41

x2

P (z¢) +t2Z]-yj’2 <¢,

and z; » zast T 1.

(2) This is a consequence of Sard’s theorem. Recall (remark 3.1.5) that 1, = 0
if and only if ¥o = —a. Since ¢g is C® when z > 0, {tpgp = —a} is a C®
hypersurface in R?" when a is outside a set of measure 0. Suppose z € C"
satisfy 1q(2z) = 0. Since {¢po = 0} is a (smooth) submanifold of R?", there is
a sequence z, € {¥, > 0} that tends to z)0. (Take for instance z, to be a
sequence along the normal.) So z € clgn {t, > 0}.

(3) is a corollary of (1) and lemma 3.2.8.

(4) is a corollary of (2) and lemma 3.2.8. O

§3.3 Lemmas on Traces

LEMMA 3.3.1. troo{p® < ¢} = [Jpcgcc{p® < d}.

PROOF. It is clear that treo {p® < ¢} 2 Upcgec{p® < d}, so it remains to show
troo {0 < ¢} € Upcacc{p® < d}.

To this end, let z, = z,00 + 1y, € troo{p® < ¢}, where as usual z, € S,_;.
Define z; := tz4 + 1y.. By the definition of neighbourhoods at co, 37" > 0 such
that t > T = 2z € {p* < c}.

Let

) o 2 e’ + D +1 .
R
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Then

97y _ 2y ,ak? 252 + Sl + 1
dt (tzl —1/a)? * (tzl —1/a)?
_ 2t2mizkxf’2 - %t}:kwf’z - 2t2xizkmf’2 - 2:cizjyi"2 — 27!
(tzy —1/a)?

2yt 4 20l (T i + 1)
(tsl — L/al®

<0, since 2z > 0. O

So p%(zt) < p(zr) < cfor t > T. Thus z4 € clm {p® < p*(27) =: '}
Next it is shown that z, € treo{p® < ¢'}.

Let I :=]—1,1[ . Let N, be the basic neighbourhood of z, defined by

N, i=
{(Tz./e+s2')+iy € C* : 5> 0,2" € Bre (z4,€) NSn_1,y’ € yu +€eI™}

U{:c'oo + iy’ : 2’ € Bre (T4,€) N Spo1,y’ € ys + eI},

Claim: For sufficiently small ¢, N. N C* C {p® < ¢'}.
Proof. A sketch of the proof is given. Let z| := Tzo/e + sz’ + 1y’ € N. N C™.
By drawing a picture, it is seen that 2z, € {p® < ¢'} for small e let 2" =

" . " " s "
(b +ayl,...,2™ +1iy™ ). Then

" "
(@ —1/e)® et ?

— 2 : ki
s\ (s
CI = ijjv’ly2

Let 2" = 27/ = Tz./e + iy.. Then the inequality (3-1) will remain true for

(3-1) pF")<d = 1<

y € eI™ for all s when € is small. Hence z, € {p® < ¢’}. This proves the claim

and the lemma. O
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LEMMA 3.3.2. Let V cCc U C Cn. Suppose U C int@cl@;{p“ < ¢}. Then

3c’,0 < ¢’ < ¢ such that V C intg cls {p* < ¢'}.
PROOF.

nig cls {p® < ¢} = {p” < c} U treo{p® < ¢}

= U {p® < d}uU U treo{p® < d}, by lemma 3.3.1,

0<ce<d 0<d<c
= U intC; Cl@\, {p® < d}.
0<d<c

Since clz V' is compact and clm V' C Uy ge. inte clm {0 < d},

elg V' C intgs ol [° < '}, for some 0 < ¢’ <e. O

LEMMA 3.3.3. For0 < ¢’ <e¢, intgcls{p® < c'} CC intg cls {p® < c}.

PROOF. A sketch of the proof is provided. It is sufficient (in fact equivalent) to

prove that tro{p® < ¢'} CC treo{p® < ¢} because it will then follow that

clsintg ol {p® < ¢} = el {p® <}

= el {p® < '}V elgtrea{p® < '}
C{p* <c}Utreo{p® < c}
= intg cls {0 < ¢},

and moreover clg; ints; {p® < ¢'}, having bounded imaginary parts, is compact.

But troo{p® < ¢'} CC treo{p® < ¢} is clear from a picture. In fact let

1

Zy = T400 + iyy, where z, = (z},2%) and y. = (y!,y¥). Then

\/ka* < \/c’ — Y (el - 1/a) < \/c — il — 1/a).

So for sufficiently large s € R™, sz, + 1y« € intce {p® < c}. Hence z,00 + 1y, €

ftestp® < e O
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LEMMA 3.3.4. treo{%a > ¢} = Upsase troo{%a > d}.

PROOF. Clearly troo{ta > ¢} 2 Usosase troo{ta > d}. So we show

traaith, > 8} C U Womltly > d}-

co>d>c

Let 2z, := 2« 4+ 1Yx € troo{¥a > ¢} where z, € Sp,—; = D* — R™. Define
zt 1=tz + 1y, for t > 0, and let N, be the basis of neighbourhoods of z, defined
by

Ne:={z./e+ sz +iy. + i€’y € C* : $ > 0,2 € Bro (z4,€2) N Sp_1,y € I"}

J{zoo + iys + iy : @ € Be (24, €%) USnoy,y € I,

where I = |—1,1] . By definition of tre,, Jeg > 0 such that 0 < € < ¢¢ =
N UC* C {¢pg > c}.

Let 2/36(3) = a(2¢,5), Where 2z 5 1= z4/€ + sz + 1y, + 162y € N.C". This of
course depends on = and y. Explicitly

zl/e+ szl — 1/
(zi/e+ szt —1/a)? + (y; + €*y*)?

(3-2) te(s) =a— + ¥, (Piy, + & Piy)
(AT u(@h/e + 5052 = AT (u + €844)? = 5(Piy. + Piy))

X ((zy/e+ sz’ —1/a)? = (ys + €y")? = 2(ys + €’y"))
N :
[ (220 (e /e + s3*)(yi + €y )+ T (PFa. /e + sPFa)
: ( +P1:c*/6+sP1:c—1/a)

L x (z,/e+ sz! —1/a)(y, + €y' 4+ 1) !
[((ah/e+ 52 —1/a)? = (y! + €y1)? = 2(y! + €%y"))’
+4(zy/e+ szt — 1/a)?(y; + €y' +1)°

Now examine the asymptotics of this function when 0 < € < €.
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Assume first that z! # 0. Consider each of the terms above separately. For
convenience set X7 = zJ + sexd for j=1,...,n.

(1) 2nd term of (3-2):

zl/e+ szl —1/a _ e(zl + sex! —¢/a)
(z3/e+ szt —1/a)? + (yl +e2y!)? (X! —e/a)? + €2 (yl + 2y?)?
B (X! —€/a)
= (L + Ey)?
1_ 2 2
(X! —¢€/a) [1-{-6 (XT—¢/a)?
.. 2
T Xl—¢/a +oiE)
(2) 4th term numerator of (3-2):
(AZWXH2 — NS (vF + E2yh)? — 5, (Plya + EPTy))
1 % (X1 = ¢fa)? - E(ut + &) — 28 (51 + 1))
)t
262 (20, X*(y¥ + €y*) + T, PFX + P'X — ¢/a)
: X(X! —efa)(ys + €'y’ +1) )

( ()\Eka’z — Ay yR? — ezszjy*)((Xl —e/a)? — €yy? — 2€%y;)
1
=9 +28 A X Y+ PPX + PIX —€/a) (X —€/a)(yl +1)

!
[ Fo(e)
( /\Eka’z(Xl —e/a)? — /\ezz:kny(X1 —€/a)? )

- 62Eijy*(X1 —e/a)? — AelyPry S, XE? — o)Xyl S XK
T ] + 2822 X yF 4+ L PEX 4+ PIX —efa)( Xt —€¢/a)(yl +1)

{ + o(€?) )
(3) 4th term denominator of (3-2):

L [((XF —e/a)? — €5k + €' =26yl + )
e —4(X" — e/a)’(yl + Syt + 1)
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1 |(X! —e/a)t —2¢(X! — ¢/a)?ys? — 4e2(X! — ¢/a)?yl J
' —4e* (XY — e/a)®(y} + 1)? 4+ o(€?)

1 1 2 2y + 4yl + 4(ys +1)° 2
=g ‘6/“)4(1_6 ( S ))“(6 )>'

(4) 4th term of (3-2): Putting the numerator and denominator calculated above

gives

CATXE2(XT = e/a)? 4 ofe) (1 + € 2y + dys +4(y, + 1)’ g 0(62)>

(X —efa) (X =efa)?
rk,2
=-(—)§—1—Z‘f—%3+o(e).
(5) Hence
(3-3)
hel8) = 6 — e j—w-oe c or small €
Ye(s) = (Xl_e/a)+2jy* X gar T (€) >¢, K Il e

If € (small) is decreased, 1/36 will decrease because of the second term. Now
s occurs, if at all, only in the denominators of each term, including the o(e)-
term. Moreover as s increases, the second term decreases in size, so that 1/36 has
its minimum at finite s. Thus one sees that reducing € to say € provides the

estimate

inf ber(s) > c.

$,2€ Brn (24;¢2)
Let d = inf, ;e Byn(zu;e) Ve (), then No N C" C troo{the < d}; 1. €. 2, €
troo {0 < d}.
(6) Consider now the case z1 = 0. As before let z¢ s := z./€ + sz + 1y, + 1€’y €
N.NC". For notational simplicity, let § = y. + e2y. When z! = 0, (3-2) reduces

to

- szl —1/a
(szl —1/a)? + g1:?

+ 3P’
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(ASi(ab e+ 5252 = AT, 0" = 3, P74)
x ((sz' = 1/a)® = g —27")
A (zh /e + s2¥)g* + Ty (PFas/e+ sPra) >
o gl +P]w*/e+sP1x—1/a
x (szt —1/a)(' +1) )
((sz? = 1/a)? — g2 — 251)% + 4(sz? — 1/e)2(§! + 1)?

~

By assumption Jeg such that 0 < e <eg = N.NC™ C {¢, > c}; i e
Ye(s) > ¢ for z.s€ N.NC".

This inequality must remain true for 2! = 0. In this case only the 4th term
depends on s. So comsider its behaviour when s is large. As the denominator
will in this case be independent of s, only the numerator will be significant.

(6¢) 4th term numerator of (3-4):

— (AT i(ak /e +sak)? = AT, 3M - ,P7) (1/a? - 2 - 257)
2 2AY i (25 Je + sa*)i* + T (PFas /e + sP*a) 51
T3 (@' +1).
“ : + Plz,/e+sPlz —1/a

Let Azl := 27 — . Then the above numerator can be rewritten as

— (AT (s + Dat + s8eb)” - AX, M - 5, Piy)(1/a® - 71 — 277)
2 ((s + £)as + sAzl) §*
+ = | | (7" +1).
# +22; ((s+2)Pz, +sP'Az,) —1/a

For s > 1 and 0 < € < ¢g, this gives

= A(Zk ((3 = %)2 ab? 42 (s + 1) sk Azt + SZA:z:f’z))(l/a2 — g% —25%)

+ o(s?)
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_ "1\2 k2 1 k k
( A(s+ E) D kTs 2X (s + 6)52;;37*?332* A k2>(1/012 - g7 —2§")
— AS E k .’I,'*’

+ ofs?).

This estimate provides an upperbound on Ye as follows. Recall that € is small

but fixed; that 1 = Ej:v,;’z = Ekxf’2 since z! = 0; and that © € Bgs (z+;€%), so

that ,/EjA:c*"z < €2. Then

(—)\ (s+ %)2 Sreb?—2x(s+1) sy xk Azt — /\szzkAxf’Z)

<(1/a? - g2 — 2| T

c<
< (—/\ (s + %)2 +2X(s+ 1) s’ + /\3264)(1/a2 — g4 —2¢") + o(s?)
< ,\32(— (1+£)" +2(1+ L) & +e)1/a® = g2 = 2") + ofs?).

Thewes, e & b mmell

(3-5) 1/a? — 492 — 27 < 0.

(642) The next goal is to show

die
ds

(3-6) (s) >0, Vs >0,

provided 0 < € < € for some €' which can be taken to be less than ¢p.
Let 0 < €’ < €’. Once this is proven the proof of the lemma is completed by

noting that

3-7 d ;= inf Yo(ze/€" +iys + i€’y
/
yelr
/ 1 1 . .’2
<o | T+ | 5 — 5 ) Ts t iy +1€7Y
€ €
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<e.
Then choose d such that ¢ < d < d’. For 2¢,s € Ne NC5 200 g i= 24 J€ + 57 +
e + i€ 2y,
Ya (ze’,S) > tha(2e0)
> min (2, /€ + iy, + 2'6'23/)
yeln
=d = d.

Thus No NC" C {¢a > d}; 1. €. 2y = T,00 + 1Yy € troo{ta > d}.
(6117) Differentiating (3-4) yields

(3-8)
dz/;e( _ at
N Y P Y Y EE (T
2(zl/e+ szt — 1/a)?z?
((@h/e+sat —1/a)? + (y} + €2y?)?)*
(e3/e + 52’ ~1/a)’ ~ (y, + €y')? ]
2/\Zk($f/f+3$k)$k< — oyt + e2yt)

+

(NTu(ab /e 5042~ NSy(5# + @yH)2 - 55, (Piy. + @ Piy))
x(zl/e+ szl — 1/a)a!

+
(223, 2% (yF + %) + Sy PFz+ Plz) (21 /etsa’ —1/a) ¢
L. (e + €y +1)

[ (22X, (a% /e + s2*) (! + k) + X, (Prz, Je + sPFa)
+Plz,/e+ sP'z — 1/

\ x 2! (yl + €y + 1) !

{«xi/e +sal = 1/a)? - () + €2y')? — 2(y + €2y))’ ]

+4(zi /e + s2' — 1/a)*(ys + €y')?
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x ((z}/e+ szt —1/a)? — (ys + €2y)? — 2(ys + €*y?))
_+_
X

AT (oh e+ 52)(F + EyF) + Ty (Pas e+ sPHa)
2 +Plz,/e+ sPlz —1/a

( {(Azk(:c’:/e sk = ATk + YR - 0l + e"’yf))} ’

+ | A x (z/e+ sz’ —1/a)(y, + €y’ +1) )

2
(21 /e + szt —1/a)? — (g} + €2y})? = 2(y} + €2y"))”
+4(al/e + sat — 1/a)(y} + ey +1)?

x (zl/e+ sz? — 1/a)a!

[4 ((mi/e + szt —~1/a)2 — (yl + y1)? - 2(yi + e2y1)):|
X
] +8(ay/e+ set —1/a)al (y; + €'y’ +1)°

As in 61) above, let § = y. + €?y. When z! = 0, (3-8) simplifies to
(3-9)

dip. il = — " 2(szx! — 1/a)?z?
ds 77 (szl —1/a)2 +§1% " ((sz! —1/a)? + §12)?

QAZka:ck ((s:vl —1/a)? — 12 - 2g1)
+2 (AEka’z - )\GZZkg]k’Z — eZEjPJfQ)(s:cl —1/a)z!
J-862 (2/\kak37k -+ Z:kPk:r o le)(sml —1/a)g* +1)
12620 X *GF + 3 P X + sePrz — e/a)e? (5t + 1)
€ ((sz! — 1/a)? — 1% — 21)° + 4e?(sz! — 1/)?(§* + 1)?

" ( (sz! — 1/a)? 17
()\Eka,Z _ AGZZkgk,Z _ e2sz]g)

\ _ g2 — o
(AT X*5* + T, P*X + seP'z — ¢/) (
+2
t { x (sez' —e/a)(§' + 1) )

e (((sw ~ 1/a)? — 12 — 241" + 4(sa? — 1/a) (g +1)2)

+8(sz! —1/a)z (§* + 1)?

y (4 ((sz! = 1/a)? — §1? — 25")(sa! — 1/a):c1)
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(61v) First 2 terms of (3-8):
z! 2(szt — 1/a)?a!
(sz! —1/a)? +§12  ((sz! —1/a)? + g1.2)?
_ —z! ((sz! — 1/a)? + §2) + 2(sz! — 1/a)?z?
B (sa! = 1/a)? + ")’
y_(szl —1/a)? —g*
((s? — 1/a)? +§42)"

But 2! = 0 and z € Bgn (z4;€?), implies |z!| < €. Thus the first 2 terms is

o(e).
(6v) Numerator of the 3rd and 4th terms of (3-8).

r

First consider the numerator of the 3rd term of (3-8):

(numerator of the 3rd term of (3-8))
X (((sxl —1/a)? — 2 — 250)% + 4(sz — 1/a)?(F + 1)2)

= 22T, Xz ((s2! — 1/a)? — g% — 21)°
— A XEaE ((s2! — 1/a)? — g% = 2§) (sa’ — 1/@)?(§" +1)?

. [2 (—)\Zka’2 + A3, 5 + ezszjgj) (sz' — 1/a)z! }

x ((sz! = 1/a)? — g+? — 25")°
+8 (AT XF2 4 ACT, M + A, PIY) (sot — 1/a)%al (@ +1)°
+ o(e%).
The numerator of the 4th term of (3-8) is

4 (AT XM - AL - &T;P7)
x ((sz! = 1/a)? = §"? - 2@1)2 (sz! — 1/a)%z!
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L8 (VD Xh2 - AT, 42 - 5, PI)
X ((3:1:1 ~1/a)? - gt — 2371) (sm1 — l/a)xl(ﬂl =1 1)2

+ o(eo).
With common denominator
2
(3810) € (((s" —1/a)? = 7" = 2")" + 4(sa = 1/a)*(F* + 1)),

the numerator of the 3rd and 4th terms of (3-9) combined is

(3-11)
— 22 XFaF ((sa? — 1/a)? — g% — 2¢)°

— 8L X 2t ((s2' = 1/0)? — g% — 25" N(s2* — 1/a)*(§" +1)°

+2 (AR XE2 4 AT, 552 + €5, Pig (52t — 1/a)
xz! ((so = 1/a)? — g2 — 2)’

+8 (—/\Zka’Q + X235 + ezszjg7>(sx1 —1/a)2 (§* +1)*

B - - 7 . ~i8\ 2
i (/\szk’2 — A3, 502 — eQZjP]y)(t\s:cl —1/a)? —g"? —23")
x(sz! — 1/a)?z?!
s (DX X5 - AT, 52 — @5 Pig) (s = 1/a)? — 5% — 2%)
x(sz! — 1/a)z! (§* + 1)
+o(€)

Note that the o(e®) term cannot be disregarded because it contains s. This term

will be studied separately in each of the two cases below.

(6vi) Case 1: z! = 0.
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In this case the denominator (3-10) is independent of s while the numerator

3-11) including the o(€%) term explicitly written out reduces to
p

(3-12)

" » 8A o T
_ 2/\sz’€$’€(1/0[2 _ y1,2 _ y1)3 _ _d_zszkxk(l/QZ _ y1,2 _ ylxyl . 1)2
o [@AL2* 5" + ZpPre + Pla)g' +1)
+ = o . 4
a <(1/oz2 =)+ -+ 1)2>

In this case the o(e?) term is independent of s, so, for small ¢, the dominating
terms are
(3-13)
; 4
— 223, X* 2k (1/a® — g7 - .’91)<(1/a2 - -+ 5@ + 1)2>
o
22T (1 + se)zk + seAal) (2 + Azk)

5 5 " " s
<(1fa? = ) (e = = ) + 5+ 1)

Thus putting (3-10) and (3-13) together yields
—22F (e} + sext)aF(1/0? — g2 — §')?
&((1/o? — 507 ~ 1) 1 &(@ + 1))

a?

+ o(e7?%).

(3-14)
Now

S (1 + s€)zk + seAak)(zf + AzE)
=5, (1 + se)zk? + 3, (1 + 2se)Axfa® 4 557, Azh?
>(1+se)— (14 236)\/Z:kA:cf’2\/kaf’2 — seet

>(1 4 s€) — (1 + 2s€)e® — se”

=1+ s(e—2€® — ) — ¢
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>0  for e sufficiently small. (s >0).

Together with (3-5), this shows that (3-14), the 3rd and 4th terms of (3-8)
combined, is greater than 0 for small € and all s > 0.
(6vi1) Case 2: z1 # 0.

In this case the largest power of s in the denominator (3-10) is 8 while it is
at most 7 in the numerator (3-11)(this includes the o(e°) term). Thus the o(e®)

term in (3-11) can be estimated by bounds independent of s, z' being estimated

by €.

Since |z'| < €2, the terms in the numerator involving z* are o(e?), and can
be grouped with the o(€®) term; thﬁs the sum of the 3rd and 4th terms of (3-8)
18
(3-15)

=223 XFak ((sa! —1/@)? — g2 - g1)3
—8AY X Fak (sz! — 1/a)? — g% — g )(sa' — 1/a)X(F" 4+ 1)* + o(°)

& (((sa* = 1fa) =12 = ) + 4(sa’ = 1/a)(g +1)2)

As in the previous case
S p(aF + sexF)ak = 14 se+ (1 + se)X b Ak + s€3 Ak,

Again the terms containing Az¥ are o(e!) and are thus o(e). Thus (3-15)
reduces to

{2A(1 +se) ((s2' —1/a)? — g™ —§') }
((se! — 1/a)? = ™% — §*)" + 4(se? — 1/e)?(§" +1)? N

G

X
& (s —1/a)2 = §% = )° +4(sa’ — 1/a(§* + 1)2)2

_ —2M(1 + s¢) ((sa! — 1/a)? —g"? — ') o(¢?)
€ ((sz? —1/a)? — 1% — ) +4e?(sz! — 1/a)2(§" + 1)?
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> 0, for sufficiently small € independent of s.

(61z) Together with the first two terms computed in (64v) it follows that

die

7 (s) >0, for sufficiently small € and any s > 0.
s

This proves the lemma. O

COROLLARY 3.3.5. For a outside a set of measure 0,

7en cl@-,; {1 > e} = U int@; Cl@;{l,/)a >d}.

co>d>c

PROOF.

nig el {Ya > ¢} = {Ya > ¢} Utreo{tba > c}
={a>c}U | treo{ta >d}

co>d>c

= U intg clgs {Ye > d}. O
co>d>c

LEMMA 3.3.6. Let V cC U C C=. Suppose U C intz clsz{tha > c}. Then

dc’,00 > ¢’ > ¢ such that V C intg; clg {a > ¢'}.
PROOF. cls: V' is compact and ¢l V C Ugos s i el {¥a > d}. O
LEMMA 3.3.7. For ¢' > c, cl@;{¢a > c'} C intg cl {pa > c}, when a,c,c’

are outside a set of measure (.

PROOF. As in lemma 3.3.3, this is equivalent to proving

clgitroo{tha > €'} C troo{tpa > ¢}.
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Let 24 = z,00 + iy, € cl@;troo{i/)a > c¢'},z. € Sp—1. So there is a sequence
Zm = Tm00 + 1Ym — Zs, Zm € troo{tha > '}
(1) Case 1: z; # 0. Since z,,, — 2, it can be assumed that z! % 0. Then from

(3-3) in the proof of lemma 3.3.4:

(3‘16) "/)a(:rm/em + S Tm +7:ym)
A (1 + smem )2 zk2

(1 + Smem )22k’

+ Om(ém),

€ :
=qaq — L ayd
©T T smen)al, T2

where the €, /a terms are collected with the om(€) term. Since z in (3-3) is
here chosen to be z,,, Az? = 0. Moreover, choose €, — 0 as m — oo.

By assumption ¢, (z«/€m + SmTm + tym) > ¢, Vsm > 0 when €, is suffi-
ciently small.

On the other hand, for z € Bgn (z4;€2) NS,,—; and y € I,

Va(Ts/€+ ST + iy, +i€%Y)

¢ . g
T (14 se)zl + seAzl + 2;(Plys + € Ply)

AY (14 se)zk + seA:vf)z
((1 4 se)zl + seAzl)?

+ o(e)

€m €

LT Pt

= "/)a(x*/em + SmTm + zym)

2
o piy 14 a2 T (L4 sc)ch + seAak)
+ ¢ P] * PJ ¢ + )\ i /\

E]( ¥ Ym) :c},f (1 4 se)zl + seAm1)2

+ om(€m) + o(€).

Clearly the 2nd, 3rd, and 4th terms can be made arbitrarily small for small €

and large m.
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The 5th and 6th terms combined give:

SrzE? ((1+ se)®zl? 4 2(1 + se)sexi Az + s*€* Azy?)
=3 (1 +se)?zb? +2(1 + se)sexk Az 4 22 Axk?) 212
A

zh? (1 + se)zl + seAzl)?

Tal1-+ s (ehtal? —alfch?)
+2(1 + se)seX, (zF 2zl Aal — 2h2ab Ak)
52T (e Ard? — 2P AT

i (1 4 se)zl + seAgl)?

1,2 k,2
k2pl2 _ gl2,k2y g g

This can be made arbitrarily small since since (z;; ol

m — oo, and the other terms in the numerator contain Azl-terms which are
small for 0 < € € 1. As in lemma 3.3.4, the power of s in the numerator is no
greater than that in the denominator. Thus by choosing all the terms except

the first term to be less than § in absolute value,

Va(Ts/€+ ST + 1y, + iezy) > Ya(Tm/€m + SmTm + 1Ym + 1Ym) — &

>c —8>¢, for 0<éxK 1.

That is 2. € Ne C intg; clg {ta > c}.
(2) Case 2: z1 = 0.

In this case pick z, — z.. We can assume z,, # z. and since troo{t0s > ¢’}
is open choose z,, so that =% # 0 for all m.

Consider

VYa(zs/€+ sz + 1y, + iezy)
= "pa(xm/fm + SmTm + 7:ym)

+ (¢a(x*/e + 5T + 1Y + 1€2Y) — Vo (Tm/€m + SmTm + iym)) .
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By choosing e, sufficiently small, the first term on the right is greater than ¢’

for all s, > 0.

For simplicity, let
Ty :=Ya(zs /€ + 5T + iy, + 1€’y)
T = Yulzmfem + 8w +505m)
The next step is to estimate Ty — T7,. From (3-4) and (3-16)

T*_‘Tm:

szl — 1/ :
a— +> . Py,
(sz! —1/a)? + §3* 2770

[ [(-2 (2% + sez*)? + AT, 557 + 3, PE4i) ‘
x ((sz! = 1/a)® — g2 — 27,)

2)\>:k(mf + sexk)gf

— 2¢ + 3 (PFz, + sePFz) (sz! —1/a)(g! + 1)
\ + Plz, + seP'z — ¢/a J
+ . -
& (st = 1/a)2 = i = 201) +4e2(sa! — 1/a)2(gh + 1)?
S ' A k(14 smem)?ah?
= @ - vl m + + o(€e
(14 smem)z, 2Py (1 + Smem)2Tm? o(e)
€m szl —'1/a A, ok

= — +Z_,'(Pjy* _Pjym) 5

(1+smem)zl,  (sz! —1/a)? +§22 ol
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<">‘Zk($f + sex®)? + A G0 + 52Ek15ky*)
x ((sz! —1/a)® — G, — 24,)

< 2/\Zk($,’f + sex®)gF + Z‘k(ka* + sePkz) ¥
— 9% + Pz, + sePlz — ¢/a

x (sz! = 1/e)(F, +1) J

~ 2
€2 ((sx1 ~1/a)? - ﬂi’z — 237,1) + 4e%(sz! — 1/a)?(gl 4+ 1)2

+ \

+ o(e).

The first term is bounded. The 2nd term can be made arbitrarily small by
choosing m sufficiently large so that €, is small, and then fixing m and choosing
sm large. Since ym — ys, Zj(Pjy* — Ply,,) > —6 for an arbitrary § > 0 by
choosing m large.
To estimate the 5th term, consider the following two cases.
(3) Case 2a: (zl =0 and) z! = 0.
In this case the 5th term reduces to
=AY (el + seat)*(1/a® — g7 - 27))
+25 (20 (ot + seat)gt + T, (Pias + sePla)) (g +1)

+ o0 il
@(1/a? — GiT — 2g1)? + 4e2 /(7 + 1)2 e

Estimate the numerator
— A (2f + sex*)?(1/a® - §i? - 2;)
+ 22— (2)\Ek(mf + se:ck)gf -+ Zk(Pj:c* + ser:v)) (7t +1)

> Y, (ah + sez®)?(1/a® — 4% — 24;)

— 25 /Tulek + seat)? (20/Tut + Kypa ) I+ 1]
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~ Az, + sez|(1/a? — go* ~ 23})

= ||zs + sez| . 35 .
=2 ( 20/ 2548 + Kypsyy ) 93 +1]

The first term in square brackets is greater than 0 by (3-5). Thus choosing e < 1
makes the 5th term as large as needed.
(4) Case 2b: (z! =0 and) z! # 0.

Because the power of s in the numerator is less than that in the denominator,

the dominéting term in the numerator, for small €, will be
=AY (e + seat ) (1/0® = §p? — 24,),

since |z!| = |1 — 2| < €%. Again by (3-5), this is greater than 0. Thus the 5th
term can be made as large as needed.

In conclusion Ty — T), > —46 for 6 > 0 by suitably choosing ¢ < 1. Thus
Ty =T+ (Ts —Tw) > — (¢ —¢) =con Ne. So 2y € treo{ta > c¢}. This

proves the lemma. O
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CHAPTER IV

THEOREMS ON PURE
CODIMENSIONALITY
AND
FUNDAMENTAL EXACT SEQUENCES

Whoso has sixpence is sovereign (to the length of sixpence) over all
men; commands cooks to feed him, philosophers to teach him, kings
to mount guard over him,—to the length of sixpence.

—Thomas Carlyle, Sartor Resartus [1833].

In this chapter we show that S§2 is pure l-codimensional with respect to
TG (i e. JBK (17180) = 0 for k # 1); and S*Q is pure n-codimensional with
respect to 7 1#0,

Since the Fourier-Sato transform works just as well on  C D" as on a real
analytic manifold, many of the usual results for microfunctions on a real analytic
manifold are seen to remain true for Fourier p-microfunctions. Specifically one
has the usual short exact sequences on the sphere and cosphere bundles, S€2 and

S*Q) respectively. These are stated in §4.3.

§4.1 Computation of g (171%)

Some preliminaries are needed to begin. Proposition 4.1.2 allows one to
smooth plurisubharmonic exhaustion. It is modelled after a classical result.

Next we recall the Grauert! tubular neighbourhood theorem in the form Kawai

1 Grauert [1958], §3.
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used for open subsets of D". The proof given here is almost exactly Harvey and
Wells’ [1972] proof that dispenses with Grauert’s original cone construction.
Finally essentially by intersecting the Grauert tubular neighbourhood with a
wedge, we show that every point of 1/—1S2 has a basis of neighourhoods whose
projection on C* — D" is ®-pseudoconvex. Y (17110 can then be calculated

using the classical proof.

LEMMA 4.1.1. Let (X,U) be a uniform space, andlet f : X - Randg: X - R

be uniformly continuous. Then fV g := maz(f,g) is uniformly continuous. O

PROPOSITION 4.1.22. Let U be an open subset of@, and Ky a compact subset

of U. Suppose q is a continuous plurisubharmonic function such that

1) {¢<c} CCU, c€eR;

(1)
(2) supg,nce ¢ <0;
(3) for every compact subset X C U, supgncn ¢ < o0; and
(4) for every compact subset K C U, q is uniformly continuously on K NC".
Then 3§ € C°°(U N C") strictly plurisubharmonic, § > q, satisfying (1), (2), (3)

and (4).

PROOF. Let V; :={¢ < j}, and

; o - z—=¢ —2n , 5
= [ a0 T3 )+ syt

where ¢ is a Friedrich mollifier, and ¢; is chosen so small that sup g ~cs vo <0,
and supg, ~ce v1 < 0. This is possible because of condition (2) in the statement
and because for a compact set Ko, supg, |IJmz|? < co. Moreover uniform conti-

nuity of ¢, condition (4), shows that for j = 2,3,... the §;’s can be chosen so

2This is essentially the second part of Hormander [1990] theorem 2.6.11. The same proof
goes through with these new hypotheses.
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that v; < ¢+ 1 on Vj since

0(e) - 4) = [

£ — —2n
(¢(¢) —a(2)) “0(“3*() §72"dX + §;|Imz?,
Vi+1NB(2,6;) J

_ - N
= / la(¢) — q(2)] %(jyﬁ) 872" d\ + 8; My,
Vi+10B(z,6;) J

i I for small 4;.

Thus there is a @—neighbourhood, V] of clgn Vj, such that on f/] NC*, v; is
strictly plurisubharmonic (because of the |Jmz|? term) and is > ¢q. Moreover
note that v; vanishes outside a ¢;-neighbourhood of V1. Let x(t) be a convex
C* function that is 0 when ¢ < 0, and > 0 when ¢ > 0, such that x’ > 0 when
t =10,

Then x (vj + % — j) is strictly plurisubharmonic in a cr neighbourhood of
clen V; — V;—1 (intersected with C*) since

(1-1)

52 Ov; _0Ov;
_t 3 . _ . 3 N s
O asa X (it i i) w=xX"(vj +3 ) Gro gt
0%v;
/ 52 J
X (vt g —5) @ ga0w
- 11N -t 8%,- 5
> x'(3)® Oiazw’ for z outside Vj__%.

Next inductively choose constants a; and define u,, by

Um =0 + Dy a;x (vi + £ - j),

so that u, is strictly plurisubharmonic on a cr neighbourhood of clg» Vi, and
o, > U

um can be chosen strictly plurisubharmonic since v,,—; vanishes outside a
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dm—1 neighbourhood of Vy, giving

vy (2= _/ ()" p (22— “ d\
Y 970z \om )" Sy T 920:\60r ) 82,

FPo (2—¢
> —(m+1 572" dA|w|?
> —( )/V (7= )| el
> —(m 4+ 1)Ms;,,_, |w|?, for some constant Ms, _,.
Thus a similar calculation as in (1-1) shows that
0*x (Vvm—1 + 2~
Nk X( _1 - J)w > —Cm-1|w]?, outside Vi_1.
0z0z
Choosing a,, sufficiently large thus makes u, strictly plurisubharmonic.
U, can be chosen > ¢ since on Vi, — Vg
amX (Vm + § —m) = amx (3)
can be chosen greater than m + 1, the maximum of ¢ there.
Let § := limm—oo Um. § is C* and strictly plurisubharmonic on U N C".

This is uniformly continuous on K N C" since each v; is. § satisfies the other

requirements of the proposition. [

Recall the following Grauert tubular neighbourhood theorem from Kawai
[1970]3.
THEOREM 4.1.3. Let O be an open subset of D", and U a complex neighbour-
hood of O such that U ND™ = Q. There is an ®-pseudoconvex neighbourhood
W of O such that O C W C U and WND" = 0.

Moreover a strictly plurisubharmonic exhaustion function, q, of V can be

chosen to satisfy

(1) ¢>0;

3See also Saburi [1985]. The proof given here follows Harvey & Wells [1972].
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(2) q is C® on W (W considered as a manifold with boundary);
(3) For every compact subset K C W there is a constant A\ such that the

Levi form of g, Ly, satisfies Ly(z)(w,w) > Ag|w|?, for z € K.

PROOF. As in Saburi [1985], let @ be the C*° diffeomorphism of C* onto

B(0;1) 4+ :R™ given by

g S
m = Yy, if z= IC/CD € Sn—loo e D% — Rn,

V1+ |z)|?

w(z +1y) =
+iy, if x+i1yeC".

Let Ky, k=0,1,2,... be an exhaustion of w(U); i. e.
Ky Cintm Ki1; Ky cCw(U); wl(U) = Up K-

Let

Up= int@Ifl; Uk = int@:Kk.H e I{k—la k 2 1.

This is a locally finite cover of w(U’). Take a partition of unity, 1, subordinate
to this cover. We may suppose that only finitely many v; are non-zero on K.
Let 42) := |Jmz|2. Then ¢ is C* on € and strictly plurisubharmonic on
C". We shall consider C™ functions €(ww(z)) that vanish at frs; (U) for which
¢ — € 0 w is strictly plurisubharmonic on U N C".
For instance, take 0 < €(2) = Y, ax¥x(£), 2 € w(U) C Cr. For small
ar > 0, 42z) — e(o(z)) will be strictly plurisubharmonic on U N C". This follows

by directly computing the Levi form on each @ }(K;) NC" and using Lemma
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2.2.1 of Saburi [1985] (with his notation):

S g (9(2) = d(2)) 1w

> 2wl’ — BYS{_ 01+| B (IV*kl(w(2)) + [Vil((2))) el?

sup (IV29;1(e(2)) + |v¢,-|(w<z>>)] wl?,

=01+ I 12 Kk.nCr
for z € K, — Ki—.

[2 BY I

By choosing ay sufficiently small for large k, € vanishes at the boundary frg; (U).
Such € are C°°v on U.

Let Uc := {2 € U: ¢(z) < €(ww(z))}. Then asin Harvey & Wells [1972], {U}.
form a basis of neighbourhoods of O; and (e 0o @ — ¢)~!|c» is an # exhaustion

function satisfying the conditions of the theorem. O

PROPOSITION 4.1.4*. Every point of \/—1S) has a basis of neighbourhoods, U,
such that U — /=1SQ is #-pseudoconvex.

ProoF. If the point is not in Sp-j00 X V/—18,-10, then the usual convex,
relatively compact basis of neighbourhoods suffices.

Solet I := I'Utreol be a C* neighbourhood of zgo0, ||zo|| = 1. For simplicity
suppose I' is convex so that IV = itz cls . Let W and g be obtained from

the Grauert theorem 4.1.3, with W an #-pseudoconvex neighbourhood of I

Yy

e < €
|||y|| }
St:=T"+4 {iv0 € V=18n_1: [v —wo| < €}

U!:= (V/US)n (W-T")u+v~1ST")

contained in §2,.

Let
V

’::f"—l—{yER"-—O: — v

m

4This should really be a corollary of a C" version of theorem due to Bros and Tagolnitzer
[1976] essentially stating that every tuboid with convex base contains a smaller pseudoconvex
tuboid with the same profile.
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Then the (:/'E' from a basis of neighbourhoods of zgoo + ivo0, with W and e

varying. We show that
U :=U'—/=-1SQ=V/nW

is ®W-pseudoconvex.

Note that V, := V/ N C" is convex hence pseudoconvex. Thus —logd(z, V)
is a continuous plurisubharmonic exhaustion function.

Let 6(z) := max(—log d(z,V,),q(z)). Then 8 is a continuous non-negative
plurisubharmonic function on U, := U/ N C".

U, satisfies (P,) since W does. Moreover
{6 <c} ={-logd(z, V) <c}n{qg<c} cCU..
Now let K be a compact subset of U/. Then

sup 6 < max ( sup —logd(z,VSF), sup q) :
KnCr KnCr KnCr

Suppose that supgqee —logd(z,V€) = oo; i.e. Jzp = zp +iyr € K NC?
such that d(zx, V) — 0. Since K is compact in U/, by taking a subsequence
if necessary, we can assume z; — 2z, for some z, € K. Clearly z, ¢ C* for
otherwise d(z«, V) = 0 contradicting z, € K.

So z, = zsy00 + iys. Now, there is a neighbourhood (I'; U T'jo0)
+v/=1(yo+ ]—6,8[ ™) of z, such that 'y CC T and 2’s are contained in
this neighbourhood for large k.

For simplicity let

B = {yeR"—O: -y——vo
llyll

®
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Since d(zx,I') > ¢ > 0 for some constant ¢, we must have d(yx, B°) — 0. Thus
yr — 0 or lﬂ%ﬁ—vo‘ — €. But since yr — yo # 0 and yo € B, this is a
contradiction. Thus supgnce —logd(z, V) < 00
Thus if K is compact in U,
sup 6 < oo.
KnCr
Moreover q is uniformly continuous on K N C*. Next we show the same is
true for —logd(z, Vf), and hence for 6.
Let z,2’ € KNC™. Then

(=, V)
d(z,Ve)

d(=, V)
og (1 + 5757 1)

< 3 }(_1(2,7 ‘/Ec)

= 20d(z, Ve)

| —log d(z, V) + logd(z", V7)| = |log

— ll, when

1

—d(2, V)

ld(2, VE) = d(z, V).

But by what was proven earlier, 1/d(z, V) < My on K N C"*. Since d(-,V,?) is
uniformly continuous on C", it follows that — log d(-, V,?) is uniformly continuous

on K NC".

The proposition now follows from proposition 4.1.2. [
THEOREM 4.1.5. RF[sq(771%) = 0, for k # 1.

PROOF®. Let % be a sheaf on §2,. Recall the following maps:

Q- 9=, >,

5 After Kawai, Kashiwara & Kimura [1986].
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This gives the triangle

Rlsq.# — Rl (F)—Rlg, _q(F) >
Since 2, — €2 is open in @, and the functor I'g, —q = 7.7~ !, this triangle with
F =171 is

Rlsqr 10 — RFQV (T'_lpﬁ) —RTgq, -Q(T—lpﬁ) b~

This gives the long exact sequence
0> H(r~10) = r-itp > g
s A (r710) > O R1j, O

— o (1710) 0

Thus there is a sequence

(1-2) 0 —s S (r7H0) — 170 — eI — Ry (r70) — 0,
and isomorphisms

(1-3) RFj j 7110 ~ HGEF (17100),  for k> 1.

Consider first the morphism 771 — j,7 17718 = j,®0|q, —q in (1-2). It
shall be shown that this map is injective. This map is obtained as follows. Let
UcQ, bea neighbourhood of zy € Q,. The map above is the direct limit as

U runs through a basis of neighbourhoods zy of
rU5(0) — §.80)a, —q (U) = %|q, —q (ff N (Qy — Q)) .
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Recall that r~1#(U) consists of sections o’ o 7, where o’ is continuous and

o' =1id as in

L8
U—=rU S
Thus since U N (Q, — Q) = U — SQ the map above is ¢’ o 7 — ¢/|5_gq -
Suppose that o'|;_gg = 0. If 20 € Q — Q = Q, — SQ, then for sufficiently
small 7TU = U C Q, — Q, then ¢’ = 0 and hence o = 0.
On the other hand, if zo = o + 1000 € SQ where vy = 1 then we can take U
o be the sets U, defined as follows,

If zg € R™ define

Ac:i={z+0: |z —z0] <€ lv—wo]| <g|v|| =1} € SQ

If zo € D® — R"™ say zo = 2’0o where ||z'|| = 1, define
T = {:1: e R*—{0}: ﬁ € Bgn (x',e)} U {zco € Sp—100 : T € Brn (2',€)}
i

Ao =T +zo/e) +i{v:lv—wo| <e |v|=1}0 C SQ.

In both cases define
B.:={z+itv:0<t<ez+iv0 €A, |v||=1}

U.:=(A.UB)NQ,

Then note that in either case 7U, is open in Q,. Hence ¢’ is a section of

%, o € ®(rU.). Thus o' € 6(tU.NC") is an analytic function and by the

)
uniqueness of analytic continuation, o’|5 _gqg = 0 implies o' =0 on 7U..
This proves that 7718 — j,j~'r 71 = j,W0|q, —q is injective. It follows

from (1-2) that £ (r~1%0) = 0.
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Now consider the isomorphisms (1-3). As before Rfj, ;i7" =

R¥j.(®)q,-q). This is the sheaf associated to the presheaf
7 — H* (ff ) (Kl = Q);Pﬁjm_g) .
For z € Q,,,

(1-4)  RFj(Wlg, ). = lim H*(U N (Q, — Q);%0).
U3z

If 2z € Q, —SQ=Q, —Q, (1-4) becomes the direct limit over neighbourhoods
of z in C7.

lim H*(U;%0) = 0, for £ > 1.
Us:

If on the other hand z € SQ, z = z¢ + ivp0, with x¢ € @, and ||v|| = 1, take
U = U, as in proposition 4.1.4, with U, forming a basis of neighbourhoods of z.

Then since U, N (€, — Q) is #-pseudoconvex,
H* (z?e N (2, — Q);Pﬁ’) =,

So in either case the direct limit vanishes. This proves the claim and the

theorem. O
From the proof of the lemma one has

COROLLARY 4.1.6. There is short exact sequence

0— 79 P9 0. O
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§4.2 Computation of s, (7~1%0)
DEFINITION 4.2.1. W, := intg ¢l ({2 : Ya(2) > 0} N {z: p¥(2) < 2a}). ¢

REMARK 4.2.2. As in chapter 3, we set zg := (1,0,...,0)c00 € D* — R"™. These
sets W, will be a basis of neighbourhoods of zg, as is seen below. We will then

write these sets as a difference of compact sets, K! and K2.
LEMMA 4.2.3. {W,} form a basis of neighbourhoods of z¢ + 10 € Cr fora > 0.

PROOF. By definition W, C inig; cls {p® < 2a}. It remains to show that for
sufficiently small €, {p® < €} C {¢po > 0}.

Suppose p®(z) < €, where as usual z = (2! +1y,..., 2" + iy™). Next each
of the terms of 9, is estimated. Write ¢, = a — Ty — T, — T3 in (II1.1-2). Since

p* < ¢, it follows from (III.1-1) that

T 1
T1:=——————§—5=—< €;
T

Ty := =Y ;Ply < ¥;|Py| < Kpi|ly|l < K+/e.
Now examine the third term:

AZp(@™? = y*) =T Ply)(? - y"* — 2y") -
+ 2z (2)\Ekmkyk + 5 Pra + Pz) (y' +1)
(22 — y12 — 2y1)2 + 4z 2(y! + 2)2

(Wi (a™? — y*3) =3 Ply)(a? — y'? — 2")
+22(y' +1) AT 2" (3" +1) + X, Pe)
it — zm,zyl (yl + 2) 4 y1,2(y1 + 2)2 + 4m’2(y1’2 + 2y1 ot 1)

Tgi:

2z Pz(y' + 1)
it — 2‘,1’.,2y1 (yl A 2) u yl,Q(yl ofs 2)2 + 4:(1’2(3/1*2 s 2y1 = 1) :

_|_
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The denominator of these two terms simplifies:

ot =20y (' +2) + V(v + 27 + 42 (v + 20 + 1)
=2 = 20%y' (y! +2) +yV 2y +2)? +40? + 4oy (y' +2)
— 2% 4 de? 4y 2y + 2)? 4 202y (v 4 2)
=zt +y"2(y!' +2)" + 22 (y"* + 2y +2)

Note that y1'2 4+ 2y! + 2 > 0, so the 2nd summand of T3 can be estimated as

follows

2z(P'z — 1/a)(y* +1)
oh +y 2yl + 27 + 202 (y12 + 2y + 2)
2Pz — 1)y’ + 1)
o 2
T2z
2(y' + D(Eypyllzll +1/e)
T2z

< 2(1 + \/E)G . (I&"“pl ||\/M + e+ é\/g) !

Similarly for the first summand of T3,

(/\Ek(xk,Q —yk2) - szjy)(xﬂ —yh? oyl

+22(y' +1) (22 2"y + 2P o)
ot +yi2(yl +2)2 + 202 (512 + 21 + 2)

(AZals* P + 1Pyl (Ja2 =y — zyln}

+ 22y’ + 122X [e¥(ly*] + X4 [P =)

4

(Ae|z|? + Kypi v/e)(2? + /(2 = /¢))
< L (VSR + Ky VT F (1 + V)22
< o(1), as € — 0.
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Thus 71 + T3 + T3 < a, for € > 0 sufficiently small. That is, 1,(2) > 0 when ¢

is sufficiently small. This proves the lemma. 0O
LEMMA 4.2.4. W, NC" = {¢, > 0} N {p® < 2a}.

PROOF. intg; (cls {a > 0} 0 {p* < 2a}) N C* = inten ((cler {ta > 0} N {p* <
2a}) N C") = intcn clen {pa > 0} N inten clon {p* < 2a} = {Yo > 0} N {p* <
2q}. O

LEMMA 4.2.5. Fore>0 cl@;Wa_E CW,.

PROOF. Recall that W, := intg; cls ({¥a > 0} N {p® < 2a}). Thus the lemma
is a corollary of corollary 3.2.9, and lemmas 3.3.2, 3.3.6, 3.3.7, since t,_, > 0 if

and only if ¥, >e. O

ASSUMPTION 4.2.6. From now on assume that « is very small, and in particular
smaller than

(1) 0<a< %;

() §-3a-3/a20

This is used in lemma 4.2.9 below._

DEFINITION 4.2.7.
(1) @ ={{z" ;2% Py 2 0rv sy Py = 0.1
(2) K=l (G {p7 < §});
(3) K :=cls (K" n{y, <0}).

LEMMA 4.2.8. K! - KD W,NnQG.

PROOF. From corollary 3.2.9, W, NGNC"* = {¢p, > 0} N {p* < 2a} NG i. e.
‘the “intg; cls:” operator does not add points of C* to {¢)y > 0} N {p* < 2a}.’
Similarly (K' — KZ)NC" = GN{p* < £} N {yp > 0}. Since 0 < a < £,

2a < 5. SoWanNGNC* C K' — K2. Let z € (Wo N G) — C*. Then by the
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lemmas 3.3.2 and 3.3.7 (since z € W, — C") there is a (conic) neighbourhood
of z, say T', such that TNC* C W,. So ¢.(I'NC*) > § > 0. Hence z ¢
cls{¥a < 0}. Moreover z € K since {1po > 0} N {p* < 2a} NG C K!. So

W.NGCK'-K2 O
LEMMA 4.2.9. K' - K2 CW,NG.

PROOF. First we show K! — K2NC" C {¢, > 0} N {p* < 2a}. From (IIL.1-3)

(2-1)

Y >0&a> —Zijy—}—()\pa—/\p“)

T2 L y1,2

()‘Ek(mk,2 _ yk,Z) _ ZkPky _ Ply)($’2 _ y1,2 _ 2y1)
+(2/\Ekmkyk + EkPka: + Pz)2z(y' +1)

(22 — ybL2 — 2y1)2 + 42 (y! + 1)2

+

= (3Pl - ,\Ejyj,é) - <_m__ _ A)

2 fyl2 g2

(AL (2% = y*?) = ¥ Pry — Ply)(a? — y"? — 2¢)
+(2/\kakyk + szka: + Pz)2z(y' + 1)
+ ¢ (x,2 —yl2 — 2y1)2 i 41’2(y1 7 1)2 }
il
\ T2 J
+ Ap®.

As in the proof of the previous lemma (K' — KZ2)NC* = GN{p* < $}N{¢o >
0} € {p* < $}1 N {¥a > 0}. As usual let z = (z! +iy’,...,z™ + iy™). We shall
show that if Py < 0 then ¢a(z) > 0 = p*(z) < 2a when z € {p* < £}. To
this end, we shall show that the first three summands together are nonnegative

when Ply <0
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1) The first summand of (2-1)

=3Py = A w0t = 2Pyl = Ayl
> ||Pylli = Mlyll2,  since [yl < 1,

> Kllyll2 = Mlyllz

>0, for A < K.

2) The second summand of (2-1). (II1.3-1) gives

5"ijj’2 il _ _ Yop

145 .yi2
S L > E) (a<2)
E—Z]’y” a

Moreover by assumption 4.2.6

So

1,2
i 3a
LIRS
2 T 4~ !
Hence
T A x 1 2\
__F A B e lg Zixg
22 4yl 2?2 T gldg? 2?7 22 ( T )
3) Now estimate the third summand of (2-1)
(2-2)
(AT k(=" —y*?) = 3 PPy — Ply)(z? — ™% — 2¢")
+(2A e y* + X Pre + Pr)2a(y' +1)

(22 — y12 — 2y1)2 + 4o 2 (y! + 1)2

N i

T2
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()\Zk(wk’2 — g - Ekpky - Ply)(m'2

1,2
-y

— 2y1)m’2

+ (22T 2 y* + Ty Pre + Pe)22® (y' +1)

— (@ = 2 =201 + 427" + 1)) Ol + 29™?)

(@2 —y™% — 2417 + 422 (y? + 1)?) 27

We shall examine the numerator of (2-2) by collecting powers of z.

(2-3)

2 (yl (yl e 2)()\Ekyk,2 & Ejpjy) —

(AZi(@®? —yF?) = ¥ PPy — Ply) (= —

(y' +2))z?

+ (22X 2Fy* + Ty Pre + Pe)2e (y' +1)

(z* = 222yt (y* +2) + ¥y (v +2)° +4e?(y' +1)%)
x (AL lz517 + 2y™?)

+2(3,/ +1) (2/\Zk

4 x
ST, +
4)\(y + 1)2

CL'

+

2yt (y +2)

Ay + 2
— Ay = Ply - —%—)kak’z

¥+ ¥ P*z + Pa)

Ayt 2(y +2)°

(Crat? + 2,477
(Cre®? + 2077

z2
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( _ 2>‘Ekyk'2 _ Ekpky _ /\y1,2 _ .Ply \

My'(y' +2 .
= (m,z )(Ekmk,Z + ij],2 + 1)

1

v (¥ +2)(AT " + 'Azjym + Eijy)
1,2¢,.1 2
2(y! +2) |
(xa —(Tez™? + Tp? + 1)

+a? e 32
+ 2 (Yt +2) + 220y + 20 +2)

2 .

+

- 2/\Zkyk,2 _ ijjy _ )\y1’2
=3\ + 20" + 4)(p%(2) — X977
2(y' +1
+ _(_Q_wi_)(zkmkyk + 3. P*z + P2)
Yy + 2w + ATy + 5, Ply)
+ z? _ )\yl,2(y1 e 2)2(,70(2) _ zjyj,2)

+2X(y"? + 3y’ + 2)

+ Ayt (yt + 2)2
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: 2(yt + 1) ~
3w + 2yt + T + T (5 akyk 4 5 PR 4 o)

=3y + 2y + £)p%(2) — 223, y5? — Eijy —\y'?
+

, (V@ DT AT+ X Py) + 0y +2)7E
T’ 3
=Myt +2)%p%(2) + 2M(5y"* + 3y +2)

Ry +2)

Let c4 denote the coefficient of x%, ¢y the coefficient of 22, and let ¢y be the
last term of (2-4). By assuming « is sufficiently small, a computation shows
a)co >0

b) ¢z > 0 since [y!| < v/a when p(z) < a/2.

c¢) On the other hand ¢4 may be less than 0. However together with the term
computed in °(2) above, we see that for small « this term is o(1/z). Thus the
2nd and 3rd summands of (2-1) together are greater than 0 for small a.

Hence if ¥,(z) > 0 then
a>1p*(z), whenze {p*<g}.
This shows
(2-5) (K1 = K2)NC" C {¢o >0} N {p® < 2a} C W,.

Now let z, € (K* — K2)— C". 3z, € GN{p* < £} — K? such that z, — z,

in C*. By corollary 3.2.9, z, ¢ K2 implies there is a (conic) neighbourhood
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I' 5 2z, such that ¥,(I' N C*) > 0. Then for z, € I'' CC T', 3¢ > 0 such that
Ya—e(I'"'NC*) > 0 (lemma 3.3.6).
Now z, € I for large n, and by (2-5), lemmas 3.3.3 and 3.3.6, is contained

n

clon {a—e > 0} N {p® < 2(a—¢)}
= elg itz clgi {Ya—e > 0} N {p* < 2(a —¢€)}
= clc';Wa._f

Cc W, (lemmas 3.3.3, 3.3.6)

So K' — K2 C W,; and since K! — K2 C G, K! — K? C W, N G. This proves

the lemma. O
The two previous lemmas show
COROLLARY 4.2.10. K!' — K2 =W, NG, for smalla > 0. O

REMARK 4.2.11. (IIL.1-3) shows that if b < 0 then intg clgs {toy < 0} is a C"

neighbourhood of K. >
DEFINITION 4.2.12. Suppose a and a are given.

Let ' := maz(Bvq, p® — %,Ply,... ,P™y), where # > 0 is chosen so small
that a — 235 < 0.

Let 6 := maz(p® — 2 PN e e Y

Let Up := intg cls {0 < §}.

Let G := intg cls: {2 € C" :Pily<0,5=1,...,n}. ¢
REMARK 4.2.13. By remark 4.2.11, Up is a neighbourhood of K1. >

REMARK 4.2.14. ¢’ is plurisubharmonic, and {6’ < §} C {p® < a}. The same

is true for 8. >

93



LEMMA 4.2.15. ¢' and § are uniformly continuous on {p® < ra}.

PROOF. Clearly each y — Py is uniformly continuous on {p® < ra}. By taking
the derivatives of p* — 5, and showing that each of the partials is bounded on
{p™ < ra}, one concludes that p® — § is uniformly continuous on {p® < ra}.

Similarly the techniques of the previous chapter and those of lemma 3.3.4 in

particular show that 2¢, has bounded partials on {p* < ra}. O

LEMMA 4.2.16. intg; cls {0' < €}o<e<q is a basis of ®-pseudoconvex neigh-

bourhoods of Kg.

PROOF. First note that
clz {tha < 0} C intg clm {;ba < %} ’ fore >0
since

g {$a <0} = int ({$a £ 0})°
= (intg clg: {ha > 0})°

= (U inte; clgs {Ya > d}) , by lemma 3.3.5

d>0
= () clg inte ({#ha < d} USn_100 +iR")
d>0

= ﬂ Cl@;; int@; Cl@;{wa < d}
d>0

S ﬂ d@?{d)a < d}

d>0

= () ints clg {a < d}.

a>0

In particular one has

el {tha < 0} = () int cls {$a < £}

>0
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Similarly

cl@;{yj <0} = ﬂ nte scls{y’ < el
€>0

cl@{p"sg—}-—-ﬂmt clA{p < = +e}
e>0

Moreover each of the sets in the intersection on the right hand side is a neigh-
bourhood of the corresponding set on the left.

Note that

K? = cls {¢' < 0}
= clg {tha <0} N clzs {p* < &} [ el {v’ < 0}.

1

So

nts: cls {va < < £} Nintg cls {pa<%+e}ﬁﬂmt@ (Cn{y < €}
J

= intg; clg {0 < €}

is a neighbourhood of KZ2. In fact these form a fundamental system of neighbour-
hoods of K2 since K? is compact and C" is metrizable. These sets are relatively
compact for each € and tend to K2 as € tends to 0. Moreover these sets are ¥-
pseudoconvex: by lemma 4.2.15, 8’ is uniformly continuous on compact subsets;
then consider (e — 6')~!; finally smooth these according to proposition 4.1.2.

This proves the lemma. O
Similarly one has

LEMMA 4.2.17. intg; cl@;{é < €lo<ex Is a basis of ®7-pseudoconvex neigh-

bourhoods of K'. 0O
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THEOREM 4.2.18. 5o (r7180) = 0, for k # n.

PROOF. By proposition 1.4.12 this is equivalent to showing

lim HE 6i(V;70) =0, for k # n.

V3zg
el

If zo € C* then this reduces the usual result about microfunctions on C*
(scholium 4.3.2 below).

Suppose first that zo = (1,0, .. ..,O)oo € D" — R"™, and let G’ = G (definition
4.2.12). Since {W,}o<ax1 (a outside a set of measure 0) form a basis of Cn-

neighbourhoods of zo by lemma 4.2.3, V can be taken to be the W,. But then

corollary 4.2.10 gives

lim Hiy,ng(V;%0) = lim Hia g2 (C™;70).

Waazo a
G

Thus the theorem will follow if the conditions of theorem 2.4.8 hold. We proceed

to show this next.

Let 6’ and Uy be as in definition 4.2.12. Then recall that
K2 = clz {8 < 0}; K’nC" = {¢ <0}.
By lemma 4.2.16, given a cr neighbourhood V of K2

Jey > 0,2 > ey such that K7 C intg cls {0' — ev < 0}
CC intg CZ@T {9/ =L o O}

cV.

Now let xv(-) be a convex increasing function such that

(1) xv is uniformly continuous on {t : ¢t < d} for every d € R;
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(2) limisg xv(t) = oo;
(3) xv (52‘4) < 0; and

(4) xvob >0o0n Ve,

Then xv o 6 is a plurisubharmonic exhaustion function of Uy satisfying the
conditions of proposition 4.1.2. Thus it can be smoothed to produce an #-
pseudoconvex exhaustion function, 6y, of Uy. 6y satisfies the requirements of
theorem 2.3.8.

For general zo € D™ — R", take a unitary transformation R mapping zo to

(1,0,...,0)c0. Modify the functions p*® and 1, as follows:

_ SRR+ R 1 ,
(B 1) T G e
/\izk(Rz)k’2 = ZkPk(Rz) — (Pl(Rz) — l/a)
((R2)! —1/a)? ¥ 2i((Rz)! — 1/a)

7

p?(2)

To(z) =ta+ Y Pz —

(Rz) ~1/a’
Ya(z) = JmV,(2) )
Rz)l —1/a .
=~ G - o Epr T

[ [ (A4 (R2)*? — (Ry)*?) - =, PI(Ry)) }
_ x (((Ra) = 1/a)" - (Ry)"? — 2 By)")

o
[ (AL (Re)" (By)* + 2, P*(Ra) + (P! (Rz) — 1/a))
I x 2z(y' +1) ] )
((Ra)* —1/0)* = (Ry)*® — 2(By))” }

+4((B2)' —1/a)" (Ry)' +1)°

Calculations similar to those in chapter 3 and in lemma 4.2.9 show that lemma
4.2.10 still holds.

This proves the theorem. 0O
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84.3 Fundamental Exact Sequences

ScHOLIUM 4.3.1. Let U be an open subset of a topological space X. Let Z
be a locally closed subset of a topological space U and V an open subset of U

containing Z as a closed set. For a sheaf & on X, HY(V; %) = HE(V; Z|v).

PROOF. In fact take a flabby resolution .#* of %#. Then since U is open .Z°*|y
is a flabby resolution of #|y. Moreover I'z(V; %) = I'z(V; F|y) and similarly
Pe(V; 2% =T V&g O

SCHOLIUM 4.3.2. Mg |rr = Manr» -

PROOF. This follows from the previous scholium since #q(U) = Hi~y(U;%0),

and W|c» = 0. O
SCHOLIUM 4.3.3. P&q|(qnRn)++/=T8,_100 = GONR" -

PROOF. Let z, + 1,00 € (RN R™) 4+ /—=1S,_100. Then

(4-1) jzosfﬂ(”_lpﬁ)z.+i5.oo e h{_)n H‘\k/nG(V;pﬁ),
) V3zg
G
But since z, € R™, V runs through bounded of C*. Thus again by scholium

4.3.1, (4-1) becomes the usual limit for microfunctions on Q UR™. 0O

We have now computed all the terms in the triangle (I1.3-5) of proposition
1.3.9. We suppose as always the conditions on the plurisubharmonic function p
stated in Chapter II.

Recall that R (#)[n] vanishes except in degree 0; it is the sheaf of Fourier
p-hyperfunctions, #q, and %7 vanishes except in degree 0. From the long exact
sequence associated to the triangle in proposition 1.4.9 it follows that R/7,P6qn =
0, for j # 0. From theorem 4.2.7 we now have the stronger result that 74 is

concentrated in degree 0. Thus there is

98



THEOREM 4.3.4. Let ) be an open subset of D". There there is a short exact

sequence

0 MQ ’PZQ 77*1’59 —0

PROOF. Take the long exact sequence of triangle (1.3-5), and use theorem 4.2.7.

d

Similarly one can produce the other short exact sequences involving 76 as

in Sato, Kawai & Kashiwara [1973].
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