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Mikio Sato devised microfunctions as a means of measuring the singularities 

of hyperfunctions. In 1970, Icawai and Sato introduced Fourier hyperfunctions in 

their study of partial differential operators. The class of Fourier hyperfunctions 

has been generalized by Saburi, Nagamachi, and Kaneko, among others, and 

most recently by Berenstein and Struppa. 

Berenstein and Struppa introduced Fourier p-hyperfunctions, where p is a 

plurisubharmonic function satisfying certain smoothness and growth conditions. 
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Following the methods of Sato, Kawai and Icashiwara, this dissertation intro- 

duces Fourier p-microfunctions functorially, though under very severe conditions 
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bounded away from the real axis. Kaneko has introduced Fourier microfunc- 
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plurisubharmonic. Thus the results here complement his. 
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PREFACE 

In their work on Dirichlet series, Berenstein and Struppa [1988], introduced a 

new theory of interpolation for Ap,@(I') (definition 1.2. I ) ,  the space holomorphic 

functions in an open cone r E Cn satisfying growth conditions depending upon 

a plurisubharmonic function p, and for its dual Ap,O (I?)'. They noticed that the 

proofs of these interpolation theorems, and some theorems on mean periodic 

functions amounted to theorems on the vanishing of cohomology groups. In the 

spirit of Kawai [1970], they [preprint] thus introduced sheaves of holomorphic 

functions with growth conditions. 

These sheaves are defined on the radial compactification IDn of Rn, or its 
h 

corresponding "complexification7' Cn = IDn + G R n .  Both compactifications 

were introduced by Sato and Icawai in Kawai [1970]. Sato and Kawai defined 

the sheaves, 8, of slowly increasing holomorphic functions and, 0, of rapidly de- 
N 

creasing holomorphic functions. Then they defined the Fourier hyperfunctions in 

the same manner that hyperfunctions are defined, namely as := RnrW (6'). 
The sheaf of Fourier hyperfunctions on IDn. 

The sheaves Berenstein and Struppa [preprint] defined were the sheaf of holo- 

morphic functions of minimal type p, W ,  where the plurisubharmonic function 

p satisfies, among other things, Hormander7s condition (definition 1.2.1(4) (ii)' ), 

and the sheaf of rapidly decreasing functions of type p, As in Kawai [I9701 

Hormander [1967]. 



they introduced the sheaf of Fourier p-hyperfunctions, here denoted %. When 

p(z) = I . 1 ,  these are the Fourier hyperfunctions of Kawai and Sato. Saburi 

[197812 introduced Fourier hyperfunctions using a radial compactification of (Cn , 

and Kaneko [I9851 has introduced Fourier hyperfunctions when p is the (not 

necessarily plurisubharmonic) function I%ez I S  (s > 0). 

As one of their interest lay in the singularities of Dirichlet series, Beren- 

stein & Struppa asked what would correspond to microfunctions for Fourier 

p-hyperfunctions. Microfunctions (for ordinary hyperfunctions), it should be re- 

called, were introduced by Sato [1970], and defined functorially in Sato, Kawai 

& Kashiwara 119731. They measure the extent to which hyperfunctions fail to be 

real analytic, thus measuring the singularities of hyperfunctions. By using tubes, 

Kaneko [I9851 has introduced microfunctions for the Fourier hyperfunctions he 

defined. 

Following Sato, Kawai & Ibshiwara [1973], this paper introduces Fourier 

p-microfunctions. The results here complement Kaneko's. Eventhough the con- 

ditions to be imposed on the plurisubharmonic function p in chapter 2 will turn 

out to be rather severe, they allow for functions not considered by Kaneko. 

However, the results here do not include Kaneko's, since p ( z )  = I%ezls is not 

plurisubharmonic when s < 1. 

It is shown in chapter 4 that Fourier p-microfunctions defined here are con- 

centrated in one degree. More specifically it is shown (theorem 4.2.18) that 

S*R is purely n-codimensional with respect to T-'W in analogy to the case of 

(ordinary) microfunctions. It should be noted here that 6 and IDn are mani- 

folds with boundary. Thus this result contrasts with microfunctions up to the 

boundary studied by Schapira3, where the microfunctions are not in general 

2For references to Saburi, the reader should also refer to Saburi [I9821 and [1985]. 
3See for instance Schapira [I9881 52. 



concentrated in one degree. On the other hand, Lieutenant [I9861 showed that 
h 

S*O is purely n-codimensional with respect to 7r-'i,@, where i : Cn -+ Cn is 

the inclusion. Thus the result here is similar to his. 

As a more tenuous justification for studying such microfunctions, one might 

note that Fourier hyperfunctions have appeared in quantum field theory as a 

means of enlarging the space of states4. 

4See Briining & Nagamachi [I9891 and references contained therein. 
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CHAPTER I 

INTRODUCTIOb1 

AND 

THE BASIC TRIANGLES 

David Harum says, "A reasonable amount of fleas is good for a dog. 
They keep him from broodin' on bein' a dog." A goodly supply of 
fleas might likewise keep man from brooding over anything deeper 
than the presence of these fleas, but in some cases this in itself is a 
rather serious thing to brood over. 

-Asa C. Chandler, I ~ ~ i r o d u c t i o n  t o  Parasitology [1944]. 

To define the Fourier p microf~~pctions, I have basically followed the results 

of Sato, Kawai & Kashiwara [I9731 for (ordinary) hyperfunctions. More specifi- 

cally, in this chapter, we will note that all the basj c triangles for hyperfunctions 

remain true without modification on open subsets of IDn, and that most of the 

terms of these triangles can be computed in exactly the same manner. These 

results do not depend on any assumptions on p. 

In the following chapters we proceed to compute the other' terms of these 

triangles. Again as in Sato, Kawai & Kashiwara, these terms are the two van- 

ishing theorems in chapter 4. The preliminaries needed to prove one of these 

vanishing theorems (4.2.18), are laid out in chaptlers 2 and 3. As in the case of 

hyperfunctions, proposition 1.4.12 below reduces one of the vanishing theorems 

(4.2.7) to a computation of H ~ , ~ ( V ;  W ) ,  where G is a wedge and V an open set. 

Then following Kashiwara, Kawai & Kimura [I9061 we show in chapter 3 and 



h 

54.1 that V n G can be written as I<' - K for suitable compact subsets of Cn. 

The techniques involved are elementary if tedious. Theorem 2.4.8 in chapter 2, 

then shows Hfc,-K(Cn; W) = 0 for k # n. 

To prove theorem 2.4.8 is the goal of chapter 2. This theorem generalizes 

proposition 2.2.2 of Kashiwara, Kawai & Kimu:ra [I9861 to certain compact 

subsets of 6, and by remark 2.4.9, to compact subsets of Cn equal to their 

plurisubharmonic hull. This result is however essentially contained in Kawai 

[1970], and I have closely followed his ideas. Horrnander's L2 methods provide 

the main tools. Crucial to this goal is Kawai's a:pproximation theorem, which 

is noted to hold not only for subsets of Dn, as stated in his paper, but also for 
h 

compact subsets of Cn that are in some sense equal their plurisubharmonic hull. 

It is in chapter 2 during the course of proving theorem 2.4.8 that restrictions 

are placed on the plurisubharmonic function p. These restrictions are the prop- 

erty ( P p )  introduced by Berenstein & Struppa (in analogy with a condition in 

Meril [1983]), and the existence of holomorphic fun.ctions of "controlled growth", 

which is implicit in Kawai and Saburi's work. 

As a philosophical point, one might note that such "controlled growth" func- 

tions will play only a catalytic role in the proofs. They are used locally only at 
h 

points at infinity (of R, or, more precisely, of some Cn neighbourhood of R), and 

then only to bring functions from one space to another and then back again, by 

first multiplying and then dividing by the functioin of "controlled growth". Ex- 

amples, although admittedly scant,-of plurisubharmonic functions p that satisfy 

these conditions are given in chapter 2. 

The other vanishing theorem (4.1.5) requires sufficiently many W-pseudocon- 

vex sets. Unlike the case of Cn, where several characterizations of pseudoconvex 

sets are known, little more than the definition characterizes W-pseudoconvex 



sets.' As a consequence to produce an 49'-pseudoconvex set almost certainly 

requires the exhibition of an exhaustion function. This indeed was one of the 

problems that necessitated the explicit calculatio~is to prove the previous van- 

ishing theorem. In this case, the Grauert tubulas theorem is used to exhibit 

the W-pseudoconvex sets and exhaustion functions. This theorem is proven by 

Kawai [1970], and Berenstein & Struppa [preprint] for open subsets of Dn, and 

in detail by Saburi [I9851 for open subsets of Dn in a different compactification 

of Cn. A proof following Harvey & Wells' 119721 proof of Grauert7s original 

theorem (for real analytic submanifolds of comp1e:x manifolds) is supplied here 

for the reader's convenience. 

After a proposition on smoothing p1urisubhar:monic functions, proposition 

4.1.4 shows that points at infinity on -9~1 have sufficiently many neighbour- 
h 

hoods whose projection on Cn - Dn is W-pseudoc~onvex. The classical proof of 

the vanishing theorem can then be used to show theorem 4.1.5 with no modifi- 

cation. 

In summary, all the main ideas in this work are due to Sato, Kawai & Kashi- 

wara [1973], and Kawai [1970]. Here, only a few ~a~lculations are added to their 

already extensive and formidable work. 

$1.2 Review of Results 

Listed below are some of the main definitions of Berenstein and Struppa 

[preprint]. As an important remark, the properties listed below that the plu- 

risubharmonic function p are to satisfy form the ildeal case. In actuality more 

severe restrictions shall have to be made; this is done in the following chapters. 

The results in §§3 and 4 hold regardless. 

For instance convex sets are pseudoconvex. This provides an abundance of albeit unin- 
teresting pseudoconvex sets. 



(1) B is the sheaf of holomorphic functions on Cn; 

(2) IP is the radial compactification of Rn, viz. IDn := Rn U SF-1, 

being the n - 1 sphere at infinity, which is identified with Rn - {o)/R+; 

(3) 6 :=  ID^ + G R ~ ;  

(4) p is a smooth plurisubharmonic function on Cn satisfying: 

(i) P(.) 2 0, log(l + I z I )  = O ( P ( ~ > > ,  

(ii) there are const ants Kl , I{2, K3, I<4, such that 

Izl - z2 I < - e~p( - I{~p(z~)  - IC2)  implies p(zl) 5 1{3p(z2) + I(4; and 

(iii) p is Cm and convex; 

(5) For a pseudoconvex region, U, in Cn, Ap(U) is the set 

{ f E B(U) : 3 positive constants A and B s .  t. I f  (z) 1 < Ae B P ( ~ ) )  

(6) For U 2 6,  open, W(U) is the set of all holomorphic functions f E 

B(U n Cn) such that, for any e > 0 and any compact set I{ C U, 

sup ~f(z)e-'~(')l < m. 
r € lr'nCn 

These W(U) form a sheaf, denoted W'; 

(7) For U 6,  open, B ( U )  is the set of all holomorphic functions f E 

B(U n Cn) such that, for any compact set I< C U, 36 > 0 such that 

sup [f(z)e6p(')~ < 00. 
r E KnCn 

These W(U) form a sheaf, denoted W 

(8) B D n ,  or simply B, denotes the sheaf of Fourier hyperfunctions on IDn; 

this by definition is the sheaf RnFm (W). 0 



REMARK 1.2.2.  Kawai [I9701 uses 9 to denote the Fourier hyperfunctions on 

W ;  this corresponds to the case p(z) = lzl in Berenstein and Struppa [preprint] 

Fourier p-hyperfunctions on IDn, p 9 .  D 

Instead of the notation above for Fourier hyperfunctions, this paper will use 

DEFINITION 1.2.3. Let S1 be an open subset of IDn. Define the sheaf of Fourier 

p-hyperfunctions on S2 to be Rnrn ( 4 9 ) .  This sheaf will be denoted by @R or 

simply %. 0 

DEFINITION 1 . 2 . 4 ~ .  An open set V C Cn satisfies property (Pp) if 

(PP 1 34 E @(V) such that VM > 0, sup(-%e+(z) + Mp(z)) < oo. 
v 

REMARK 1.2.5. Clearly if V' _> V satisfies property (Pp) then so does V. D 

REMARK 1.2.6. Any V cc Cn satisfies (Pq) for q plurisubharmonic and merely 

upper semicontinous on Cn. Take 4 - 0. D 

DEFINITION 1 .2.73. An open set U C 6 is is-pseudoconvex if 

(1) U n Cn satisfies property (Pp); 

(2) There is a C 2  plurisubharmonic function B on U n Cn such that 

(i) Vc E R, {z : O(z) < c) cc U; 

(ii) VI< C U, c o ~ p a c t ,  3M1< such that suPKncn O(Z) < MK. 0 

THEOREM 1 .2.84. Let U G 6 be is-pseudoconvex. Then 

2Meril [1983], Berenstein & Struppa [preprint]. 
3Kawai [1970], Saburi [1978], Nagamachi [1981], Berenstein & Struppa [preprint]. 
4Kawai, Meril, Saburi, Nagamachi, I<aneko, Berenstein & Struppa. 

5 



51.3 The Basic Triangles 

The general set-up will involve a convex set with what will be called "full 
h 

trace" at infinity, and "thickenings" and closures of such sets in Cn. Following 

Lieutenant [I9861 these are assumed to "taper" linearly at the boundary. 

DEFINITION 1.3.1. The trace at CCI of a set U 6, denoted tr,U, is the set 

of points in Sn-lca + iRn having U U (Sn-lca + iRn) as a neighbourhood. 0 

DEFINITION 1.3.2. An open subset U c 6 has full trace at infinity if U = 

(UnCn)utr ,U.  0 

Similarly 

DEFINITION 1.3.3. The trace at ca of a set R C EDn, denoted tr,R is the set of 

points in Sn-lca having R U S n - l ~  as a neighbourhood. 0 

DEFINITION 1.3.4. An open subset 52 c Rn. has full trace at infinity if R = 

(0 n Rn) u tr,R. 0 

REMARK 1.3.5. In some sense a set has full trace at infinity if it contains most 

of its interior frontier points at infinity. 

There are clearly other definitions of traces at infinity such as closed traces, 

but only the ones above shall be used here. More generally the trace at "infinity" 

of a subset of a manifold with boundary can be defined. D. 

NOTATION 1.3.6. Throughout the rest of this paper, R will denote an open 

subset of IDn with full trace at infinity such that fl n Cn is convex. A 

The following are modifications of Lieutenant's [I9861 definitions and nota- 

tions. Eventhough spaces involving the closure of R are defined, they will not 

be used in the rest of the paper. 



DEFINITION 1.3.7. 

(1 )  For v  > 0, 

R ,  := cv(R U {&-v1ej : ej is the j th unit vector in W n ,  

j = 1,. . . , n; 0  < v' < v ) ) ;  

This is a complexification of 52. 

(2) F := c ~ R  and Fu := c16R,. 

(3) $a:= R x Sn-1; SF  := F x These are the sphere bundles. 

(4 )  S*R := R x SL-,; S*F := F x Sk-,. The dual sphere bundles. 

(5) 6, := ( R ,  - R )  U SR;  F, := (Fu - F )  U SF.  The real monoidal 

transforms. 

( 6 )  8: := ( R ,  - a) U S*R; F; := (F,  - F )  IJ S*F. The real comonoidal 

transforms. 

(7 )  DR := { ( x ,  t ,  q )  E R x 9,-1 x Sk-l : (t,  7 )  L 0) .  

( 8 )  DF := { ( x , t , q )  E F x %-I x 9;-1 : (I,q) 5 0); 
.--v - 

( 9 )  DO: := ( R ,  - 0)  u DO; DF$ := (F,  - F )  U DF;  

( 1 1  : 6 ;  c,: F , - F - +  F,. 0 

REMARK 1.3.8. To a map f : X -+ Y is associated the mapping cone triangle: 

where 9' E K+(Y), and CO(T) is the mapping cone of the canonical adjunction 

7. 

Twisting and translating this triangle produces 



REMARK 1.3.10. gist, can be considered a functor from K+(Y) to KS(Y). 

However Co (d*  + 9) is not a functor nor does it normally give rise to a 

derived f ~ n c t o r . ~  D 

As in Sato, Kawai & Kashiwara [1973], many of the triangles in the sequel 

will take the form 

We now use (3-1) in the following situation. Consider the inclusions and 

projections in the following diagram: 

P,, - ao,, 
J 

R , - , R -  *fi,,_L_t.R,, 

.1 J J. 
F,, - F-P" * F,, 

For 9' E K+(R") or S* f K+(F,,) there are triangles 

These triangles form an octahedron, and the octahedral axiom provides the 

dashed arrows: 

See Komatsu [I9711 $8. 



The triangle with dashed arrows gives rise to a triangle in the derived category 

D+(Y): 

Note that 

R 9 is tTi (9 ' )  = R r n  (2") 

and 

RT* R 9 i s t i ( ~ - ' s ' )  = RT* RI'M ~-'9', 

so (3-8) gives: 

51.4 Computation of Terms of tihe Triangles 

The proofs given here are, with little or no moclification, due to Sato, Kawai 

& Kashiwara [1971]. 

PROOF'. The long exact sequence from the triangle (3-5) gives 

and the equality 

R~ 9 i s t T ( 9 )  = R~-'T,T-'B, fo rk  3 2. 

cf. Prop. 2.3.3 of Kawai, Kashiwara & IGmura [19SG]. 



Since T is a closed map and R, is metrizable, one has, for x E R,,7 

R* J i s t , ( S )  = H*(T-'{x} + x; gz) 

This proves the lemma. 

- 
LEMMA 1.4.2. Let T : DR: -+ 0, be the canonical projection. Then there is 

an isomorphism 

PROOF. Let Y* E K+(!?,). There is a composition of canonical maps 

Consequently for 9 E ~ + ( f i , ) ,  this induces, in the derived category, a map 

When g* = T-~S' this is the map claimed in the lemma. That this map is an 

isomorphism is proven in Lieutenant [198618. 

LEMMA 1.4.3. Consider the following diagram and maps where the left arrows 

are inclusionsg: 

7Kawai, Kashiwara & Kimura [1986], proposition 2.3.6. 
8Page 105 equation (1) .  
'After Sato, Kawai & Kashiwara [I9731 



There is an isomorphism 

(4-3) RT*T-' R r m  (T-' 9 ' )  e ~ r g *  0 T-' 9'. 

PROOF. The triangle (3-1) gives rise to the following triangle in the derived 

category: 

Applying Rrs*  0 produces the triangle 

By (4-1) the last term of this triangle is 

From the proof of Lemma 3.9 in Lieutenant [1986, 19881, R Oist,(n-'9') = 0, 

SO 

Rrs*  0 n-' 9' -=+ RT* n-' ~r~ (T-I  9 ' ) .  

PROOF. From the proof of lemma 1.4.2 we see that (4-2) gives the quasi- 

isomorphism 



Taking derived functors gives and using the Vietoris-Begle isomorphism g' -+ 

Rrr,rr-lC4' (which is possible by lemma 1.4.5 below) gives the isomorphism 

For '3' = ~-'9' this isomorphism produces: 

CV 

LEMMA 1.4.5. rr : DSt+ + a, is proper and has contractible fibres. 

THEOREM 1.4.6. There is a triangle 

(4-4) + R h  (3') [n] -+ RT. R ~ S *  (n-' ~ * ) [ n ]  3 . 

PROOF. Substitute the terms computed in lemma 1.4.1 and proposition 1.4.4 

into the triangle obtained from the octahedral axiom (3-9) and translate by 

[nl. 

(1) Pd~ := (w)n, 
(2) pZ2n : = R r m  (T -'W) [+ I], 

(3) WO := Rrs* ~1 (rr-lW)[nIa, where a is the antipodal map. 0 

(4-3) gives 



PROPOSITION 1.4.8. Rr,r-'p%2 = W[l - nIa. 

Theorem 1.4.6 gives 

PROPOSITION 1.4.9. There is a triangle 

PROPOSITION 1.4.10'~. Let S be a sheaf on a,,, and let xo + itow E S*Q. 

Then there is an isomorphism 

~2~ (T-' 9),,+ib, lim ----+ H'$,~(v; 9), 
V 3 x o  

G 

where V runs through neighbourhoods o f  zo in Q,, and G through the following 

Grn,[o := Q + i {Y : (ylt) < O,v(I E ~ r n , [ o }  

PROOF. To be explicit, let V, ( E  > 0) be the intersection of a basis of W- 

pseudoconvex neighbourhoods of xo with 0, that decreases to xo as E decreases 

to 0. Let Urn,, be the neighbourhoods of xo + it0co in defined by 

-1 
urn,, :=r K n ((Q + iym,<ow) U Gf , to)  

There is a morphism of triangles 

(4-8) 
r ~ ~ , ~ ~ n ~ ,  (K;  9) r ( K ;  9 )  - $1 *r(K - Grn,~o; 9) + 

i 4 4 
rs*nnu,,. (Urn,,; n - l g )  + r(Urn,,; * - I S )  -t I'(Um,, - $*a; T - ' s ) ~  

1 ° ~ f t e r  Sato, Kawai & Kashiwara [1973]. 
l l ~ o t a t i o n  follows Lieutenant [1986, 19881. 



The vertical maps are essentially "restrictions":a H a.rr, T being the canon- 
- 

ical projection .rr : St: -+ St,. 

The morphism of triangles, (4-8), gives rise to a commutative diagram of long 

exact sequences 

Next take the direct limit as e tends to 0 and then the direct limit as m tends 
A 

to m. Since Cn is paracompact and since, for Z c:losed, 

lirn r ( U ;  9) -+ r ( Z ;  S) + 
u > z  

is an isomorphism, it follows that 

for k = 0 
lirn H*(v,; 91ny) = + 
m>c 

for k # 0, 

and 
{ ) + i  f k = O  

lirn H* (urn,,; ~ ~ ' 9 )  = 
-----f 
m,c 

for k # 0. 

Thus (4-9) provides 

o----tlim +m,e H8m,c0nK (v,; 5) - sX,, 
(4- 10) J. 

*m,c 

1 
-, lirn H:* anurn,. (Urn.,; ~ - ' 9 )  + s x , ,  

4 lim HO(% - Gmlc0; 9) -lim H&m, ,on~c  
+m,e + m , ~  

( K ; 9 )  -0 

J, 
1 

+ 
, lirn HO(Um,, - $*St; ~ - ' 9 )  + lirn Hs. nnum,. (Urn,,; n - l 9 )  -+ 0, 

d m , €  +m,e 



and for k > 2, 

(4- 1  1)  

0-lim Hk--l 
+m1c 

(K - G m l t o ;  5) -1im H & m , c o n v e ( x ;  9) -0 +m,c 

4 
k 

4 
0 + lim H * - ' ( U ~ ~ ,  - S*Q; ~- '9 )  + lim Hs*nnum,c (Urn,.; ~ ~ ' 9 )  + 0 -m,c +m,c 

The vertical maps, being induced from isomorphisms, are themselves isomor- 

phisms. It follows from the five lemma applied to ( 4 - l o ) ,  and from (4-11) that 

This proves the theorem. 

REMARK 1 .4 .11 .  Clearly the proposition holds for 9 defined on F, mutatis 

mutandis. D 

The theory for these sheaves is however not complete at present. 



CHAPTER I1 

THEOREMS OF KAWAI 

Balances are delicate and easily tipped. The social status of a word, 
its force, its length, its history of use: anything can do it. Syntax sets 
up  the scale, but semantics puts the weights in the pans. The follow- 
ing are out of balance: (1) "the bandit shot my son, stabbed me in 
the arm, and called me names," (2) "what bitter things both life and 
aspirin are!," (3) "I have boated everywhere--on the Po and on Paw- 
tucket Creek," (4) "you say your marriage suffers from coital insuffi- . . 
ciency and greasy fries?," (5) "yeah, my wife kisses her customers and 
brings their bad breath to bed." 

-William H. Gass, 'And' in Habitations of the Word [1985]. 

This chapter presents some restatements of Kawai7s [I9701 results, especially 

his theorems 2.2.1, 3.2.1 and 3.2.2. There is essentially nothing new here. The 

thrust of the effort has been to distill the essence of Kawai7s results, to make sure 

that his results hold for these slightly more general, plurisubharmonic functions. 

This has been carried out the way a janitor might go about making sure things 

are in order. 

$2.1 Conditions on the Plurisubl~arrnonic Function p 

DEFINITION 2.1.1. Let V Cn and p(z) a plurisubharmonic function defined 

on Cn . A holomorphic function $ E O(V) is controlled exponential type (K,  p(.)) 

if 

3 ~ ' ,  0 < K' < K, 3AK > 0, B,  > 0 such that 

B~"P(' )  < I+(z)l < A~"P( ' )  r E V. 



A 

An open set U E Cn is said to have a function of controlled exponential type 

( ~ , p )  if there is function of controlled exponential type ( ~ , p )  on U n Cn. 0 

REMARK 2.1.2. Suppose U _> U' has a function of controlled exponential type 

( ~ , p )  then clearly so does U'. D 

REMARK 2.1.3. Suppose V cc Cn, and q is a continuous plurisubharmonic 

function. Then there are holomorphic functions of type (K,  q )  on V for every 

K > 0. Take II, E 1 in (1- 1) and note that q attains its maximum and minimum 

on clQlnV. D 

DEFINITION 2.1.4. In addition to the assumptions made in 51.1, we shall im- 

pose more restrictive conditions on the plurisubharmonic growth function p. 

Explicitly: 

(1) p 2 0, p E Cm is convex. 
h 

(2) For every compact I< C Cn, log (1 + 121) = o(p(z)) as z ---+ co, z E 

I< n cn; 
(3) 3A, B > 0 such that lz - C1-e 1 p(C) .< Ap(z) + B;' 

(4) For sufficiently small v every point of 52, - Cn has a neighbourhood with 

functions of controlled type ( ~ , p )  for every K > 0. 0 

EXAMPLES 2.1.5. 

(1) p(z) = (1 + lr12)S/2 or p(z) = 12Is, s > 0; when s = 1 this is the case 

considered by Kawai [1970], and Meril [1983]. 

(2) p(z) = I%ezls, s 2 1; Kaneko [I9851 considers the case s > 0. For 

s < 1 these p7s are not plurisubharmonic, so the methods here are not 

applicable to his case. 

This condition goes back to Berenstein and Taylor. See references in Struppa [I9831 



(3) ~ ( z )  = log+ If ( z )  1 where f ( z )  = n; f j  ( z j ) ,  with f j  entire and uniformly 

bounded away from 0 in a 6 neighbourhood of W. In this case (1-1) will 

be satisfied. D 

Recall 

DEFINITION 2.1 .62. An open set V 2 6 is Saburi type ( 1 )  if for some a > O 

Here 13mzl = Cjyjv2 and Ifllezl = JF. 0 F 
EXAMPLE 2.1.8. Suppose V C 6 is Saburi type (1). Let p ( z )  = lzl, the case 

considered by Kawai and Saburi. Then $,(z) := cosh ( t c f i J v )  is a 

function of controlled exponential type tc, I . / for V. 

PROOF. First note from the series expansion that $, is entire. 

For computational purposes let c := 1 JmzI < 1, n ( z )  := 
I 

SUPvne lRezl+ a 

\ / x j z j l 2 ,  o r ( z )  : = W t n ( z ) ,  and a i ( z )  := 3 m a ( z ) .  Note that 

1 cash f i t c .  1 = cash 2 + cos 2 Gnoi. 
Let z j  = z j  + i y j  = r j ea j .  Then g ( z )  = JC jr? e2"j . ~ e f i n e  r and o by 

r2e2i6' .- .- C .r2e2"j. Then 
3 3 

2 r = \ / ( x j r ?  cos 20j)2 + ( C j r ?  sin 20i)2, 

C. r2 cos 20j  
g ( z )  = reie = r cos 8 + i sin 8, and cos 28 = ' 3r2 . So up to sign 



Hence 

r2 + x jr: cos 20) r2 - jr: cos 20, 

Similarly, using "cartesian" coordinates one gets 

Then 

Cjxj,2 - j , 2  
cos 29 = 

Y 
r2 

In terms of these coordinates 

Thus up to sign 

1) Upper bound. 

BY 

Now estimate a, using the "polar" coordinates (1-3). 



Since 

By choosing A sufficiently large, there is an upper bound 

2) Lower bound. 

For the lower bound the case when cosh = 0 is dispensed with and 

then a asymptotic growth is obtained. 

a) cosh f i ~ ~  = 0 if and only if 2 f i ~ 0 ,  = 0 and 2 f i ~ 0 i  = (2k + 1)rr k E 

Hence 

This would be impossible if it fails to satisfy Saburi7s type (1) inequality (1-2). 

SO cosh f i K o  # o if 



Simplifying and completing the square gives 

2  

Since ( 1  - c 2 )  ( J F  - A) > 0, if tc can be chosen so that the other 
1 - c 2  - 

two terms of the last line are greater than zero, (1 -2 )  will be false; i. e. K has to 

be chosen so that 

Equivalently 

cLa' -- - for k E Z .  
1 - c 2 '  

This has to be true for all k E Z ,  so K has to be chosen such that 

This will clearly hold for K < KO for some small K O .  

In summary when 0 < K < K O ,  lcosh f i ~ c l  > 0. 

b) Now provide a lower bound for the asymptotic behaviour. Assume first of 

all that lzl > 1 ,  and note that . 

2 4 ;  ru ,  - 2 4 $ K U ,  
e 

(1 -6 )  C O S ~  2 6 ~ ~ .  = + 2 e > -e 2 1 2 f i r 1 u . i  



Now estimate larl in (1-6). From (1-4) 

(1-2) implies that for sufficiently large I Jxjxj121, xj  yj12 < Cjxjf2;  SO in this 

case (1-4) and (1-5) give 

= (1 - c ) \ / ~ ~ x j i ~  - ca. 

It follows that 

(1-7) 

On the other hand, 

and 

Together with (1-7), this yields 

1 2 f i . 1 u c ( z ) 1  > ~ e - 2 f i " C " e - 2 f i ' ~ c a e 2 f i K ~ P ( % )  

?ie 2 I for large Jw. 



Since cosh zlca > 0 from step (Za), this lower asymptotic bound shows I P I  
that 

Choosing B sufficiently small gives the lower bound 

52.2 Spaces of Holomorphic Functions with Growth Conditions 

The topologies of the spaces involved are first recalled from Saburi [1978], 

Nagamachi [1981], Meril [I9831 and Berenstein & Struppa [preprint]. 

h 

DEFINITION 2.2.1. Let U C @In be open and I{;, li'; CC int@ I{;+, be an 
h 

exhaustion of U by compact subsets of Cn. 

p x O ( u )  := lirn L~ (int@ IC; n Cn ; e p ( z ) )  ; 
t 

j,c'ho 
J,&t (u) : = lim L~ (int@ I(: n Cn ; - cp(z)) ; ---+ 

j,c'hO 
P@(U) := lim Lm ( in t6  I{; n Cn;  ep(z)) n 6' (id,-- K; n a~") ; 

t 

j , c ' hO  

p@(U) := lim lim p&dd ( in t6  I{; n @" ; -sp(z))  . 
t+ 

j ALo 
h 

For K compact in Cn and intG Icj a basis of compact neighbourhoods of I{, let 

p6'(K) := lim pB~dd ( in t6  n Cn;  -~P(z)) , 
j ,GO 

where 

pOBdd(Ic;4) := {f E B ( K n @ " )  : sup lfle-' =: I l f l l ~  < m), and, 
IinCn 



LEMMA 2.2.23. Let L$ = intG I q  n Cn,  Ki increasing as in definition 2.2.1. 

Let m > 0. Then 

lim B LJ;  - $p(z) - 2 m  log(l + lz 1 2 ) )  = lim B ( L J ;  - fp(z)) ( as TVS. - 
3 

- 
3 

PROOF. Clearly 

B L;; -fp(z) - 2 m  log(I. + 1zl2)) + lim B ( L J ;  -ip(z)) ( - 
3 

is a continuous inclusion. Hence 

lim B L J ;  - f p(z) - 2 m  log(l + lz 1 2 ) )  + lirn B ( L J ;  - fp(z)) - 
3 

( --+ 
3 

is a continuous injection. 

On the other hand, let f E B ( L J ;  -fp(z)), and choose 6 > 0 such that 

4m6 - A < 0. Since log(1 + lzl) = o (p(z)) as z + oo there is an R such that 3(3+1) 

log(1 + lzl) < dp(z) for lzl > R. Thus 

It follows that 

1 

< M / 1 f 12e?P(z)dh. 
L:: +I 

So the map induced by restriction 

lim B LJ;  -fp(r) - 2 m  log(1 + 1zl2)) +- lim B (L;; - fp(z)) - 
3 

( - 
3 

is continuous. This proves the lemma. 

PROPOSITION 2.2.34. Let Li = inte ICj n Cn,  ICj decreasing as in definition 



2.2.1. Then 

1 pB (ints - f p ( z ) )  = lim + B L j ; - f P ( z ) )  as TVS. 
antG K j  cjK L j 

PROOF. First note that the map 

L 

is well-defined and continuous because if f E pB(intGI(,) then  sup^^ 1 f leSP < 

oo. Thus 

1 - -P However log(1 + lzl) = o(p(z ) )  as z --+ oo, so e j dX < oo. Thus 
=j 

is continuous. 

Next we show lirn . ,8 ints Kj;  - f p(z))  4 lirn B ( L ~ ;  - f p(z))  is surjec- 
-3 ( --+j 

tive. Consider the map given by restriction: 

where the brackets [.I here denote the greatest integer, and the constant A comes 

from definition 2.1.4(3) 



Choose r so that B(z, r)  Lj  for all z E Lj+l. Then 

But from definition 2.1.4(3) p(C) > (p(z) - B)/A, so 

~ h u s  p@ ( i n t ~ I { [ 2 j ~ + l ] ;  --P(z)) + B ( L  j ;  - fp(z)) is well-defined. 

This proves the surjectivity. 

Since the preimages of barrels are barrels, lim d L j ;  -fp(z)) is barreled. 
- - f j  ( 

Moreover as the direct limit of injective5 weakly compact6 maps it is a DFS* 

space, and thus Hausdorff. 

lim ,B ( i d F  I<,; -fP(z)) = pB(IC) is a DFS space, and the strong dual of 
-i 

a Frkchet space, thus it is fully complete7. 

Thus lim intF I$; - f p(z)) -+ lim B (L j ; - $p(z)) is open8. It is clear- 
-j ( + j 

ly 1-1. 

limp@ L j ;  - f p(z)) = lim lim B (L j ;  -Jp(z)) 
+ ( +--f 

Similarly for B replaced with p@ and the weight -Ap replaced with --Ap - 
3 3 

2mlog(l + 1zI2). 

This follows because limits commute and from "diagram chasing". D 

5Each component of int@Kj intersect Ii' by assumption. 

6The spaces 6 (L ; - f P ( z ) )  are Hilbert spaces; Aloaglu- Bourbaki theorem. 

'page, W. [I9881 theorem 21.3(ii). 
8Page, W. [I9881 corollary 21.9. 
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DEFINITION 2.2.5'. Let X ( L j ;  -Jp(z ) )  denote the closure of @ ( L j ;  -2Sp(z))  

in L2 ( L j ;  - Jp ( z ) ) .  Similarly for X ( L ~ ;  -Jp(z )  - 2m log(1 + lzI2)) .  0 

REMARK 2.2.6. X ( L  j ;  - J P ( z ) )  G - 0 ( L  j ; - J p ( z ) ) ,  since @ ( L j  ; - J P ( ~ ) )  being 

the kernel of -8, is closed in L2 ( L j ;  - Jp ( z ) ) .  D 

lim X ( L ~ ;  -6p(z)  - 2mlog(l + (z12)) = lim X ( L j ;  -Jp(z ) )  . + + 
ah0 ah0 

PROOF. The proof is essentially the same as in lemma 2.2.2. First consider the 

map 

This is well-defined and continuous since 

If fk E B ( ~ j ; - 2 J p ( z ) - 2 m l o g ( l + l z / ~ ) ) ,  and fk i f in 

L~ ( L ~ ; - ~ P ( z )  -2mlog(l + l z I2) ) ,  then fk E B ( L j ; - 2 J p ( z ) )  and fk + f 

in L 2  ( L j ;  - 6 p ( ~ ) ) .  

On the other hand, for S < S', 

'Kawai [1970]. 
lo Kawai [1970]. 



is well-defined since 

Again if fk E @(Lj;-2S1p(z)), fk -+ f E L2 (Lj;-S1p(z)), then fk E 

@ (Lj; -2dp(z) - 2m Iog(1 + lzI2)) and fk + f in L2(Lj; -Sp(z) 

- 2mlog(l + 1zI2)). 

LEMMA 2.2.8". Let I<j C U be compact neighbourhoods of I< that decrease 

to I<. Suppose U satisfies property. (Pp). Then 

PROOF. There is an injection 

Let 

p E L~ ( ~ j ;  -6p(~)  - 2mlog(l + 1 ~ 1 ~ ) ) ~  

such that 

p (0 ( ~ j ;  -26p(z) - 2m log(l + Iz12))) = 0. 

Then 

~ Z L  E L~ (Lj; -6p(*) - 2m log(l + Iz12)) 

l1 Kawai [1970]. 



such that 

vfie6~(z)+2m log(l+lr12)dX. 

Suppose f E B (L j ;  -bp(z) - 2mlog(l + 1zI2)). Let 4 be the holomorphic func- 

tion given by property (P,). Then f e - t m  € B (L j ;  -2sp(z) - 2mlog(l+ Iz12)) 

for all k E Z+ because 

Now, for some [ > 0, 

),-;+1 = ,-Wl*/k < (,supn-We4 l/k < (esuI'n -Be4+fp 'Ik < m, 
- - 1 Vb. 

So Lebesgue's dominated convergence theorem gives 

By the Hahn-Banach theorem, 6' ( L ~ ;  -26p(z) - 2m log(l + Iz12)) is dense in 

@ ( ~ ~ ; - d ~ 1 ( ~ ) - 2 m l o g ( 1 + 1 ~ 1 ~ ) ) .  



DEFINITION 2.2.9. For an open set U 6 and a family of increasing compact 

sets Kc, c E R, Kc U, Kc c c ints Kc! for c < c', define 

( Cn) := 1 lim B (Kc n C ;  -S1p(z) - 2mlog(l + 1.~1~)) , 
t + 

c p c o  6'\0 

p@(U) := lim lim @(I(,;-d'p(~) -2mlog(l+Iz12))- 0 
t 4 

c/o0 6!\0 

LEMMA 2.2.10. For U and Kc as in definition 2.2.9, 

O2 (U n Cn ) = p@(U) as sets. 

PROOF. The proof follows that of Proposition 2.2.3. 

Let p@(U) -+ 02(U n Cn ) be the "identity" : f H f .  To show this is well- 

defined, let I< be a compact subset of U. Without loss of generality, I{ can be 

taken to be Kc for some c. By definition 

3S>O suchthat sup I f 1  e6~(z)+2mlog(l+lz12) < 
zcC nu? 

Thus 

To show that the inverse #(U) t B2(U n Cn) is well defined, let I< be a 

compact subset of U, and f E @2 (U n Cn ) . Then K cc intG Kc for some c .  



Choose r > 0 so that B(z ,  r )  c II ,  for all z E K n Cn. By definition there is a 

S > 0 such that 

Following the argument in proposition 2.2.3, we have for z E I<, 

Thus 

So suplcnc,, ~f ( z ) l e6"p ( z )+2m'og (1+1z12 )  < m. This proves the lemma. 

LEMMA 2.2.1 112. Suppose ISj is a decreasing sequence o f  compact neighbour- 

hoods o f  a compact set I< 5 U and that U satisfies (Pp). Then for S < 6' there 

is a dense inclusion 

In fact the closure o f  the image in L2 (Lj; -Sp(z) - 2mlog(l + 1zl2)) is 

8 ( L ~ ;  -Stp(*) - 2mlog(l + lzI2)). . 

PROOF. Recall that 8 (Lj; -Sp(z) - 2m log(1 + /*I2)) is a closed subspace of 

L2 (Lj; -Stp - 2m log(1 + [*I2)). Follow the proof of lemma 2.2.8. 



has dense image. 

PROOF. This follows from general definitions of direct limits. Let p be a con- 

tinuous linear functional and suppose each f j  has dense image: 

Supposepf = 0. Thenpfpj = 0 =pp;fj, and henceppj = 0 V j .  Thisimplies 

t ha tp=O.  

$2.3 Kawai's Approximation Theorem 

In this section we note that Kawai's approximation theorem remains true for 

sets not necessarily in IDn 13. 

LEMMA 2.3.1. Consider the inductive system {A,) in an abelian category. (For 

simplicity assume this category is concrete.) 

13See also Saburi [I9851 s2.3. 



Given morphisms f  and f' consider the pull- backs p: f  and p: f' 

The following are equivalent: 

( 1  : A B  p f  = O  + p f t = 0 ;  

(2) p , : A ,  -t B; V p,p,f = O  =+ p,p, f l=O. 

PROOF. l4 Given p,, p exists from the definition of direct limits. Let a E A. 

Then there are an e and an a' E A such that p,(af)  = a. If moreover a = f  ( l ) ,  

then ( I ,  a ')  E p:L. 

SO p f  ( a )  = pp,(p: f ) ( l ,  a ' )  = 0. By hyphothesis this implies that p f' = 0. So 

p € ( p : f )  = 0 ve.  

Suppose p is given such that p f  = 0. Let p, := pp,. Then p f  = 0 ==+ 

p,(p: f )  = 0 Ve. By hypothesis this implies p,(p: f  ') = 0 Y E .  Let I' E L'. 

3a1 E A,, for some E ,  such that f1 ( l ' )  = p,(al). So ( I t ,  a ' )  E p:L1. But then 

p f ' ( l ' ) = p p , ( p : f ' ) ( l ' , a ' ) = O ; i . e .  p f l = O .  

LEMMA 2.3.2.  Suppose w E L2  ( U ;  dp ( z )  -I- 2m log(l lzI2)) and Id1 > 
on U .  Then 

W 
- E L~ (u; -ep(r)  - 2mlog(l + lz12)) , for e < 2 ~ '  - 6.  
II, 

2 Now note that e(~+6-2 " ' )~ (z )+4mlog ( l+ I~ l  ) E L a  when e < 2 ~ '  - 6 ,  and 

1 ~ 1 2 ~ - 6 ~ ( z ) - ~ m l o g ( l + l z l ' )  E ~1 . 

14This should be true without assuming that the objects are sets. 



LEMMA 2.3.3. Suppose v E L2 (U; -Sp(z) - 2m 1og(l+ Iz12)) and < AeKP 

on U. Then 

v d  E L~ (u; ep(z) + 2m log(l+ lzI2)) , for 26 - s 5 E. 

Note that e(2~-~-6)I ' -4m log(1-k I "I2) E Lm when 26 - 6 5 E. 

REMARK 2.3.4. Note that p@(I<o) injects into lim L2(Lc;-EP(Z) 
+€\O 

- 2mlog(l + 1 . ~ 1 ~ ) ) .  By lemma 2.2.3, the induced topology is the same as 

the original topology on . 

PROPOSITION 2.3.5 (KAWAI'~). Let U C 6 be W-pseudoconvex with a C2 

strictly plurisubharmonic exhaustion function 8. Define 

LC := (8 < c);  and IC, := c16Lc; C E R .  

Suppose U has a holomorphic function with controlled exponential type ( ~ , p )  

for some K > 0.  

Then p@'(U) --+ p@(I{O) has dense image in the topology induced by  

lim L 2 ( ~ , ; - ~ p ( z ) - 2 m l o g ( l + / z 1 2 ) ) .  
-+rho  

PROOF. Note first that p@(U) injects into pO(I{o). Its image will again be 

denoted pB(U). The Hahn-Banach theorem will be applied to show 

lim L~ (LC; -~p(z )  - 2m log(1 + IzI2)) and ,-L (#(u)) = 0 

implies p (p@(I<o)) = 0. 

l5 cf. Hormander [1990] lemma 4.3.1. 



By lemma 2.3.1 this is equivalent to showing 

p E L~ (L,;-ep(z) -2mlog( l+  I Z I ~ ) ) '  and p (p; lp@(~))  = 0 

implies p (p,lp@(I{o)) = 0, 

where 

lim L2 (L:; -e$(z) - 2m log(1 + 1.~1~)). + 
€ ' L O  

By the Riesa representation theorem 3u E L2 (L,; -ep(z) - 2m log(l+ 1zI2)) 

such that 

Extend u by 0 to U n Cn.  Then p can be defined for v E L2(U n Cn;  -ep(z) 

- 2mlog(l + 1zI2)) by the same integral: 

Let +, be the assumed holomorphic function of controlled exponential type 

6 ,  p. Then since ~ e ' ~ ( ' ) + ~ ~ ' ~ g ( ' + l ~ l ~ )  E L2 (U n Cn ; ep(z) + 2m log(1 + lzI2)) 

lemma 2.3.2 gives 

- 
U (2-7) -e"~(~)+2mlog(l+l~12) ~2 (u n Cn 

+K 

; - - ~ P ( z )  - 2m log(1 + Iz12)) , 

for [ < 26' - e. 



Assume e < 2 ~ ' .  Let w E L2 (U n Cn; [p(z) + 2m log(1 + lz12)). Define 

p E L~ (U n c"; @(z) + 2mlog(l+ 1zl2))l 

by 

Let 8+ := max(0,O - e), 8 being the exhaustion function of U. Let 

Note that A C L2 (U fl Cn; [p(z) - 2m log(l+ 1 ~ 1 ~ ) ) .  

Claim: Let L;, (U n Cn ; -ep(z) - 2m log(1 + 1 . ~ 1 ~ ) )  denote the set of functions 
A 

square integrable over compact subsets of Cn with respect to the given weight; 

i. e. 

= {/ : a compact I< i_ U, ~f l2,~~(~)+2mlo~(l+lzI~)d~ < 

If w E A then E L:,, (U n Cn; -ep(z) - 2mlog(l + 1 ~ 1 ~ ) ) .  

PROOF. Suppose w E L2 (U fl Cn; ( p ( z )  + 2mlog(l + lzI2) A@+). Then 



Consequently % E L2 (U n Cn; -bp(z) - 2m log(1 + lzI2) + XB+) when 6 < 

2 ~ '  - [. By (2-7) [ < 2 ~ '  - t: or E < 26' - [. So 

Let K 2 U be compact. By definition 3M < oo such that S U P K ~ Q ~ ~  eXO+ < 

M .  But then 

1 2 1 1 e ' ~ ( z ) + 2 n ' l o ~ ( l + I ~ 1 2 ) d ~ .  

This proves the claim. 

Now the hypothesis of HSrmander's proposition 2.3.2 [I9651 are shown to 

hold with his + as the 8 here, and his q5 = [p(z) + 2172 log(1 + (zI2). Note that 

[p(z) + 2mlog(l + 1zI2) is strictly plurisubharrnonic, and 

Suppose w E A and 8w = 0, so that w is analytic. Then 8 8  = 0. Moreover 

F(w) = p (2-8). By the claim above 
( w )  

From lemma 2.2.10 

p B 2 ( ~ )  : = lim lim B (Kc  n Cn; -ep(z) - 2m log(1 + 1zI2)) 
t + 

c ~ o o  €'LO 

= p@(U)7 as sets, 

=: lirn lim B (IC,; -EP(Z) - 2mlog(l + Iz12)) . 
t + 

c p o a  " L O  



Note that 

So E p;' ( p 8 2 ( ~ ) ) .  Thus Q(w) = p (e) = 0. 

Hence proposition 2.3.2 of Hormander [I9651 shows that 

such that 

U OF = e'p(z)+2m'0g(1+1"12) in the sense of distributions. 
+K 

Here 

dg . Og = -C .L. g = Cjg jd5 '  .I 8Z.i ' 

Moreover F vanishes when 0 > E ;  i. e .F = 0 on K,C f l  (Cn 

Let 

be the densely defined operator T = 8. According to proposition 2.2.1 of 

Hormander [1965], 9(p,q) is dense in graph norm in Dom(T) .  It follows that 

aw - = ~ c ~ ~ F ~ ~ A ,  for w t D o m ( T ) .  



In paticular this is true for w E 6' (L,; [p(z) + 2m log(1 + lz12)) since w can be 

extended by 0 to all of U ,  and since F and u both vanish outside L,. Such w 

are thus in Dom(T). The formula above shows that 

Recall that (2-8) 

Hence p vanishes on ' 6  (L,; [p(z) + 2m log(l 4- lzI2))- BY 1emma 2 - 3 3  
* I  

Since E < 2K1 - [ 5 2~ - [ =: €11, 

Thus p vanishes on B(L, ;  -~"p(z) - 2mlog(l + lzI2)). By lemma 2.2.11 

d (L,; -E"P(z) - 2m log(1 + lzI2)) is dense in 0' (L,; -~p (z )  - 2m log(1 + lzI2)). 

Thus p vanishes on d (L,; -~p(z )  - 2mlog(l + (zI2)). But note that 

P;l (,@(KO)) = B (L,; -cp(z) - 2m log(1-t lzI2 1) . 

So the proposition is proven. 



LEMMA 2.3.6. Let I be a directed index set. Then lim A .  - lim lim Aj. j '--k--tj>k 

PROOF. (Here j > k means j 2 k and j # k. Suppose given f j  : Aj + B. 

Consider the diagram 

The maps into l ~ l , p ,  Al and l ~ l , j , , J  A1 are well defined, and a unique dashed 

arrow exists. 

REMARK 2.3.7. The lemma above is applied to the theorem below in step 2 

withindexset I={IcV : K C C  I < V ~ ~ V ) .  D 

The lemma and proposition 2.3.5 give the following approximation theorem 

essentially due to Kawai16. 

THEOREM 2.3.8 (KAWAI). Suppose K is a compact subset of an W-pseudocon- 

vex set U G 6. Suppose that for every 6 neighbourhood V of I<, V 2 U, 

there is a C 2  strictly plurisubharmonic function Bv,  depending on V, such that 

(1) (8 < c) CC U, f o r c e  ]W; 

(2) K n C n  g {8 < 0) g cl,--{8 < 0) =: IC, 2 V; 

(3) s u p K I n s  9 < oo for every compact subset Ii' U. 

Moreover suppose that U has a function of controlled exponential type ( ~ , p )  for 

some tc > 0. Then pB(U) -, p8(IC) has dense image. 

16Kawai [1970]. cf. Hijrmander [I9901 theorem 4.3.2. Kawai states his result only for 
subsets in W , eventhough it is applicable without this restriction. 



p ( I < )  = lim limp&dd (V; -Sp(z)) + + 
U>>V_>K 6 

= lim lim limp@Bdd (W; -Sp(r)) , (Kv  := cZ,-- {OV < 0)) , + + +  
K v > K W > K v  6 

= lim p@'(I<v). + 
KV >K 

By proposition 2.3.5, pB(U) is dense in p@(I<V). The proof of corollary 2.2.12 

shows that p@(U) is dense in lim p@(KV) = pB(K).  +v 

We shall Kawai's approximation theorem in the following form. 

COROLLARY 2.3.9 (KAWAI)  . Let U and Ii' be as in the theorem, and let K C I<' 

be compact in U. Then pB(K') t p@(I<) has dense image. 

PROOF. There is a commutative diagram 

f ~ c  has dense image and im fIc = imin o fIc .  So im in is dense. 

52.4 A Vanishing Theorem 

DEFINITION 2.4. 117. Let U be an open subset of 6 

Let PX(p,q)(U) denote the corresponding (p, q) forms. 0 

17Berenstein & Struppa [preprint]. 



DEFINITION 2.4.218. Let U be an open subset of @. 

Let &(p,q)(U) denote the corresponding ( p ,  q) forms. 0 

Recall the following propositions 

h 

PROPOSITION 2.4.319. Suppose U C Cn is W-pseudoconvex. Then the sequence 

isexact. 

PROPOSITION 2.4.420. Suppose I{ is compact and has a fundamental 

sys tem of W-pseu doconvex neigh bourhoods. Moreover suppose that for every 

K > 0 one of these neighbourhoods has a function of controlled exponential type 

( ~ , p ) .  Then the sequence 

is exact. 

h 

 PROOF^^. Let f E & ( K )  satisfy 8f = 0. Since I< is compact and P is Haus- 

dorff, , X ( K )  = .X(V)  where V may be assumed to be relatively com- 

pact W-pseudoconvex neighbourhoods of I<. The representative off in &(,,,) ( V )  

for some V satisfies 
F 

18Berenstein & Struppa [preprint]. 
lgKawai [1970], Saburi [1978], Nagamachi [1981], Meril [1983], Berenstein & Struppa 

[preprint]. 
'O~awai [1970], Saburi [1978], Nagamachi [1981], Berenstein & Struppa [preprint]. 

~ a b u r i  [1978]. 



By choosing K. sufficiently small, and restricting f to a smaller W-pseudoconvex 

neighbourhood if necessary, we may suppose that T), f E PX(p,q)(V), where $, 

is a function of controlled exponential type ( ~ , p ) .  Since a($, f )  = 0 there is 

a g E PX(,,,-l)(V) such that ag = $d, by proposition 2.4.3 and lemma 2.3.2. 

Then 3 2  = f and 2 E J(p,,-l)(V). 

COROLLARY 2.4.522. There is an exact sequence 

PROOF. This follows from the assumption that points at infinity (Q, -(Cn) have 

a basis of neighbourhoods having functions of controlled exponential growth p 

for every K.. 

COROLLARY 2.4.6. Let I< be a compact subset o f  6 satisfying the conditions 

o f  proposition 2.4.4. Then 

Recall the following theorem from I<awai [1970], Nagamachi [1981], Beren- 

stein & Struppa [preprint]. 

THEOREM 2.4.7. Let K G U G 6, where K is compact and U is W-  

pseudoconvex. Suppose H~(K;,B) = 0 for k > 0. Then 

H ~ - ( u ; ~ B ) = O ,  f o r k # %  

and H (  0 )  2 p(I<)'. 

These results together yield the main theorem of the chapter. 

22Kawai, Saburi, Nagamachi, Berenstein & Struppa. 



THEOREM 2.4.823. Let K C I<' G 6 be two compact subsets of 6 satisfying 

(1) K' and I< have fundamental systems of 49'-pseudoconvex neighbour- 

hoods; 

(2) there is an open W-pseudoconvex neighbourhood U of I<' having a holo- 

morphic function of controlled exponential type ( ~ , p )  for any K > 0; 

(3) there is a function Bv for every 6 neighbourhood V of I< satisfying the 

conditions of theorem 2.3.8. 

Then H$,-,(6;W') = 0  for k # n. 

PROOF. Recall that r z ( X ;  9) = FZ(V; 9 ) ,  where Z is locally closed and V 

is an open set containing Z as a closed subset. Thus for the situation here 

H; (u; W )  = Hfi (6 ; 49') = and similarly for I('. 

Now consider the long exact sequence 

h 

Since H&, (P; W) = H k ( 6 ;  W) = 0 ,  for k # n by corollary 2.4.6 and theorem 

2.4.7, 

H ! ~ , - ~ ( ~ ; P B )  = 0, fork # n -  l ,n.  

23 cf. Kawai, Kashiwara & Kimura [I9861 proposition 2.2.2. 



For k = n - 1, n there is the exact sequence 

A 

By corollary 2.3.9 pb(Ir')' 4 pb(K')' is injective. Hence H;I,;:,((C~ ; W) = 0; 

1. e. 

H , ( ; ~ ) = O ,  f o r k i n .  

A 

REMARK 2.4.9. If K and I<' are compact in Cn satisfying Ir' = I{;, the 
-P 

plurisubharmonic hull of K, and I<' = KtU, then the conditions of the the- 

orem are automatically satisfied by remarks 1.2.6 and 2.1.3 above, and theorem 

2.6.11 in Hormander [1990]. (See also scholium 4.3.1 below.) Thus the theo- 

rem generalizes proposition 2.2.2 of Kawai, Kashiwara & Kimura [1990], which 

states that H ; ~ . - ~ ( C ~ ;  0) = 0 for k # n when I< and I" are compact analytic 

polyhedra. D 



CHAPTER I11 

TOPOLOGICAL LEMMATA 

Who, if I cried out, would hear me among the angels' 
hierarchies? and even if one of them pressed me 
suddenly against his heart: I would be consumed 
in that overwhelming existence. For beauty is nothing 
but the beginning of terror, which we still are just able to endure, 
and we are so awed because it serenely disdains 
to annihilate us. Every angel is terrifying. 

-Rainer M. Rilke, Duino Elegies [1923].' 

The purpose of this chapter is to show that the traces at infinity (definition 

1.3.1) of certain neighbourhoods are well behaved. The method used is simply 

to look at the asymptotic expansions of the functions that define these neigh- 

bourhoods. These calculations are simple and terrifying, but, unfortunately, not 

beautiful. 

$3.1 Exliaustion functions 

The following functions will be crucial in this and the next chapter. While 

they play an important role, their importance is merely technical in that they 

serve only to make the machinery work. 

CONVENTION 3.1.1. In this and the following chapter, sums over k run from 

2,. . . , n, while sums over j run from 1, .  . . , n (n being as usual the n in (Cn). 

A 

'Translated by Stephen Mitchell. 



(1) ,oa(z) := Cklzk12 +ylv2  + xjlY j 2 +  I 1 
where 

x(xl - 1 / ~ )  x(xl - l/a)' 

For simplicity x will not be explicitly written in most cases. Instead 

pa shall be written as 

NOTATION 3.1.3. To simplify notation let x := x1 - l/a when dealing with pa7 

and x := x1 - l / e  when dealing with p'. No confusion should arise from this 

imprecision. Superscripts are used to denote coordinates, and this necessitated 

the more perverse notation x12 (etc.) for (xl - 1 1 ~ ~ ) ~ .  A 

3 ~ h e  definition of pa is essentially due to Nagamachi [1981]. The idea for the function yl 
comes from a similar function in Kawai Kashiwara, & Kimura [1986]. 



Thus 

REMARK 3.1.5. 

(1) $, > 0 if and only if 



NOTATION 3.1.6. For the rest of this chapter let xo := ( 1 7 0 , .  . . , 0 )  E Dn - 

IWn. A 

( 1 )  pa is C m  strictly plurisubharmonic where it is defined; 

( 2 )  Let S ,  := { z  E Cn : pe(z)  < € 1 ,  and let 3, = int6c16S,. Then 

is a fundamental system o f  neigl~bourhoods o f  xo + iO. 
( 3 )  SE is W-pseudoconvex, having 

as exhaustion function and exhaustion sets. 

PROOF. 

(1) Since the last two terms of pa7 Cj  yjt2 and l / x t 2  are Cm plurisubharmonic 

where ever pa is defined, it is sufficient to show likewise for the first term of pa7 

Compute the Levi form: 



Thus the matrix of the Levi form is 

This is positive definite. 

(2) Let 

and let N := int6 clF N' C 6.  Then N is a neighbourhood of x o m  + iO. Let 

z E N'. Then x1 > $ implies that . 

since E < 1. Thus 



So z E S,. Thus N C 3'. 

Clearly given any "conic" basic neighbourhood of xo + iO, there is an E such 

that 3, is contained in that neighbourhood. 

(3) t H I/(& - t )  is a convex increasing function for t < E .  Hence q'(z) := 

1/ (E - pC(z)) is Coo strictly plurisubharmonic. The corresponding exhaustion 

sets are {q' < c}, for < c < m, or since q' < c if and only if p' < E - f ,  these 

sets can be rewritten as {p' < p}, for 0 < ,b' < E .  

53.2 General Lemmas 

LEMMA 3.2.1. I f  A is open in a topological space X then clxintxclxA = clxA. 

PROOF. A C intxclxA so clA E clxintxclxA. If C is closed and C _> A then 

C 2 intx clxA. So C _> clxintxclxA. Thus clA 2 clxintx clxA. 

LEMMA 3.2.2. Let X be a topological space and let U be an open subset o f  X. 

For A c X ,  (clxA) n U = clU(A n U). 

PROOF. (clxA) n U is a closed subset of U containing A n  U .  So (clxA) n U _> 

clu(An U). Now let x E (clxA) n U. Then x E U and every neighbourhood N of 

x meets A. Since U is open, N n U is a neighbourhood of x. So N n A n U # 0. 

This implies that ( N  n U) n (A n U) # 0. Thus x E clu(A n U). 

LEMMA 3.2.3.  Let X, U, A be as in the previous lemma. Then (intx A) n U = 

intv(A n U). 

PROOF. (intxA) n U is open in U and is contained in A n  U. So (intxA) n U 2 

intu(A n U). On the other hand, intu(A n U) is open in X since U is open. 

Thus (intxA) n U 2 intu(A U U). 



LEMMA 3.2.4. Let A be an open convex subset of a TVS X. Then intxclxA = 

A. 

PROOF. Clearly A C intxclxA. Suppose now that zo E intxclxA. By transla- 

tion, zo can be taken to be 0. Since 0 E intx clxA, there is a neighbourhood, N ,  

of 0 such that N C clxA. By considering N n - N  we may suppose N = -N. 

Since 0 is a limit point of A, and A is open, there exist a and an open set 

V such that a E V G A n N.  Then -V G N .  Now -V must contain a point 

of A, for otherwise, -a E N is not in the closure of A, contradicting N C A. 

So there exists b E V n N c A such that -b E A n N.  Since A is convex, 

0 = '6 2 + f (-b) E A. Thus intxclxA A. 

LEMMA 3.2.5. Let A C Cn . Suppose that i n b  c&p A = A. Then int6 c16 A = 

A U tr,A. 

PROOF. Clearly ints c l 6  A _> A U tr,A. 

Suppose 20 E int,-- cl,--A. If zo E @", then ro E ( id6  elF A) n Cn = 

intQln c h  A = A. 
h 

If zo f Cn - Cn , then there is a neighbourhood r of zo such that I' C cl3 A. 

Hence I 'n  Cn G c16A n Cn = c b A .  Since I" n Cn is open in Cn, I'n Cn C 

intQln c&p A = A. By definition, zo E tr,A. 

Conversely there is 

LEMMA 3.2.6. Suppose A S Cn is open. Then int@ c16 A = A U tr, A implies 

intQln c b  A = A. 

COROLLARY 3.2.7. I f A  & Cn is convex then intGclQIA = AU tr,A. 



LEMMA 3.2.8. 

( 1 )  i n b  ckn { p a  < c )  = { p a  < c ) ,  ( c  > 0 ) ;  

( 2 )  i n b  ~ k n  {$a > 0 )  = {$a > 0 ) .  

PROOF. 

( 1 )  Since {pa < c )  is open, i n b  c b  {pa < c )  _> {pa < c).  Now let z  = 

( x l ,  y l , .  . . , xn ,  yn) E i n b  c b  { p a  < C )  i n b  { p a  5 c) .  Since a neighbour- 

hood of z in Cn must project to a neighbourhood of ( y l , . .  . , yn) ,  and since z  is 

an interior point of {pa 5 c )  we cannot have 

because increasing the values of yj's will increase the value of pa. Thus z  E 

{P" < 4. 
(2) AS above i n b  ckn {$a > 0 )  _> {$a > 0 ) ,  and i n b  C& {$a > 0) 

inkn {$,  > 0 ) .  Let B 2 in& c l p  { $ a  > 0 )  be a neighbourhood of z  and 

suppose that $,(z) = 0. Since $, is harmonic and $,(z) 2 0  for z  E B, the 

minimum principle implies that $, - 0  on B. Rut $, is real analytic when 

x  > O(x = x1 - llcu), so $, EE 0. This is clearly impossible. Thus $,(z) > 0; 

i. e. in& ckn {$, > 0 )  {$, > 0 ) .  

( 1 )  in te  el(@ { p a  < c )  = { p a  < c )  U tr,{pO < c ) ;  

( 2 )  in te  el(@ {$a > 0 )  = {$, > 0 )  U tr ,{$,  > 0) .  

( 1 )  c b { p "  < c )  = { p a  _< c ) ;  

( 2 )  c l p  (4 ,  > 0 )  = {$, 2 01, for a outside a  set of measure 0; 



(3) ink- {pa I c )  = {pa < c); 

(4) i n b  {$a 2 0) = {$a > 01, for a outside a set of measure O. 

PROOF. (1) Suppose z = (xl + iy l , .  . . , x n  + iyn) satisfies ~ ~ ( z )  = c. Then 

zt := (xl + i tyl , .  . . , xn + ityn) 0 5 t < 1 satisfies 

and zt -, z a s t  f 1. 

(2) This is a consequence of Sard's theorem. Recall (remark 3.1.5) that $, = 0 

if and only if $0 = -a. Since $0 is C m  when x > 0, ($0 = -a) is a Cm 

hypersurface in EX2n when a is outside a set of measure 0. Suppose z E Cn 

satisfy $,(z) = 0. Since {$, = 0) is a (smooth) submanifold of there is 

a sequence z, E {$, > 0) that tends to zlO. (Take for instance z, to be a 

sequence along the normal.) So z E c l p  {$, > 0). 

(3) is a corollary of (1) and lemma 3.2.8. 

(4) is a corollary of (2) and lemma 3.2.8. 

$3.3 Lemmas on Traces 

PROOF. It is clear that tr,{pa < c) _> Uo<d<c{pa < d), SO it remains to show 

t r m { ~ a  < '1 2 Uo<d<c{~a < 

To this end, let z, = x,oo + iy, E tr,{pa < c ) ,  where as usual x, E 

Define zt := tx, + iy, . By the definition of neighbourhoods at oo, 3T > 0 such 

that t 2 T zt E {pa < c). 

Let 



Then 

< 0 ,  since x: > 0. 

SO pa(zt)  < p(zT) < c for t > T. Thus z, E clG { p a  < pa(zT) =: c').  

Next it is shown that z, E tr,{pa < c'). 

Let I := ] - 1,1[ . Let N, be the basic neighbourhood of z, defined by 

Claim: For sufficiently small e ,  N,  n Cn 2 { p a  < c').  

Proof. A sketch of the proof is given. Let z: := T x O / e  + S X '  + iy' E N, n Cn.  

B y  drawing a picture, it is seen that zI, E { p a  ,< c') for small E :  let z" = 
I 1  

(xll" + iyll", . . . , any + iyn*"). Then 

Let z" = z ~ , ~  = Tx, /E + iy,. Then the inequality (3-1) will remain true for 

y E € I n  for all s when E is small. Hence zI, E { p a  < c'). This proves the claim 

and the lemma. 



LEMMA 3.3.2. Let V cc U 6. Suppose U intG cl3 {pa < c ) .  Then 

3cr,  0 < c' < c such that  V C intG c l ~  {pa < c'). 

= U inte^clG{pa < d ) .  
O<d<c 

Since c l 6  V is compact and c16 V Uo<d<c i n t ~  clG {pa < d ) ,  

c1,- V int6 cl,- {Pa < c') , for some 0 < c' < c. 

LEMMA 3.3.3. For 0 < c' < c,  intF clF {pa < c') CC int6 clc {pa < c ) .  

PROOF. A sketch of the proof is provided. It is sufficient (in fact equivalent) to 

prove that tr,{pa < c ' )  cc tr,{pa < C )  because it will then follow that 

c l ~  intG c16 {pa < c') =. c16 iplY < c') 

= c16 {pa < c') IJ clG tr,{pa < c')  

C {pa < c )  U tr,{~" < c )  

= int6 ~1,- {pa < C )  , 

and moreover c& int6 {pa < c') ,  having bounded imaginary parts, is compact. 

But tr,{pa < c') CC tr,{pa < C )  is clear from a picture. In fact let 

Z, = x*m + i y* ,  where x, = (xi ,  x t )  and y, = (yi, yt). Then 

So for sufficiently large s E R+, sx, + i y, E i n b  {pa < c ) .  Hence x,w + iy, E 

tr,{pa < c ) .  



LEMMA 3.3.4. tr,{$, > c}  = Uw>d>c t ~ m { $ ~  > d}.  

PROOF. Clearly trw{$a > c )  _> Uoo>d>c trw{$a > d } .  SO we show 

Let z, := x ,  + iy, E tr,{$, > c )  where x ,  E = IDn - Rn. Define 

zt := t x ,  + iy ,  for t > 0,  and let N ,  be the basis of neighbourhoods of z, defined 

by 

N ,  := {x , /E  + sx  + iy ,  + ie2y E Cn : s > 0,  x € . B R ~  ( x * ,  e 2 )  fl sn-1, y  E I n }  

U { x m  + iy, + s2iy : x E B R ~  (x, ,  e 2 )  U Sn-l ,y  E I n } ,  

where I  = 1- 1,1[ . By definition of tr,, 3eo > 0 such that 0  < e < €0 + 
N ,  U Cn C { $ a  > c} .  

Let &.(s) := $,(re,,), where z,,, := x./e + sx + iy ,  + i sZy  E N.Cn. This of 

course depends on x  and y. Explicitly 

x i / €  + sxl - l / a  
(3-2) 4, (s) = a - 

( X ~ E  + sx1 -- 1/a)2 + ( y i  + e2y1)2 
+ C j ( p j y *  + e 2 p j y )  

Now examine the asymptotics of this function when 0  < E << €0. 



Assume first that xi # 0. Consider each of the terms above separately. For 

convenience set xj = xi +  SEX^, for j = 1,. . . , n. 

(1) 2nd term of (3-2): 

(2) 4th term numerator of (3-2): 

(XC,X*'~ - ~ e ~ C , ( y f  + e2y*)2 - e 2 C j ( p j y *  + e2p'y)) 
2 1 2 1 2  x ((XI - - e (y, + e y ) - 2e2 (y: + e2y1)) 

2e2 ( ~ x c ~ x ~ ~ :  + sZyk)  + CI.pkx + P'X - €/a) 

x ( X 1  - e/a)(y; + e2y1 + 1)  I 

(3) 4th term denominator of (3-2): 



(4) 4th term of (3-2): Putting the numerator and denominator calculated above 

gives 

(5) Hence 

s . XC,Xk*2 
&(s) = a - + x j y :  - (XI - €/a)2 -+ o(s) > c ,  for small e. 

(XI - € /a )  

If e (small) is decreased, 4, will decrease because of the second term. Now 

s occurs, if at all, only in the denominators of each term, including the o(e)- 

term. Moreover as s increases, the second term decreases in size, so that 4, has 

its minimum at finite s. Thus one sees that reducing 6 to say 6' provides the 

estimate 

inf $,,(s) > C. 
s , x E B R ~ ( x * ; E ~ )  

Let d = inf,,,EsRn(r*;r~) $.~(s), then N,, n Cn G tr,{$. < d); i. e. z. E 

trm {$a < d) .  

(6) Consider now the case x: = 0. As before let z,,, := x,/e + sx + iy, + ie2y E 

N, n Cn . For notational simplicity, let y" = y, + e2 y. When xi  = 0, (3-2) reduces 



k k  2XCk(x: / f  f Sx )c + x b ( ~ k ~ * / ~  + s p k x )  

+. [' + P'x* /€  + s p 1 x  - l / a  

x (sx' - 1/a) (g1  + 1) 
L 

y . ((sx' - 1/a)2 - - I t 2  - 2ijq2 + 4(sx1 - l/a)2(g' + 

By assumption 3e0 such that 0 < E < €0 N, 17 Cn C { + a  > c ) ;  i. e. 

4 4 s )  > c for z,,, E N, n CY 

This inequality must remain true for x' = 0. In this case only the 4th term 

depends on s. So consider its behaviour when s is large. As the denominator 

will in this case be independent of s, only the numerator will be significant. 

(6;) 4th term numerator of (3-4): 

Let A x ;  := xi  - x i .  Then the above numerator can be rewritten as 

2XCk  ( ( s  + $ ) x t  + S A X : )  ek 
a (el + 1)  

+ C' ( ( s  + $ ) p i x *  + S P ' A X * )  - l / a  

For s  >> 1 and 0 < E < <  € 0 ,  this gives 

- X(zk ( ( s  + f ) 2  x t92  + 2 ( s  + j )  S X ~ A X ~  + s 2 ~ s : 7 2 ) ) ( l / a 2  - el f2  - 2c1) 

+ 0( s2 )  



This estimate provides an upperbound on 4, as follows. Recall that c is small 

but fixed; that 1 = c jx:'2 = ~ ~ x : ' ~  since x: = 0; and that x E Barn ( x ,  ; e 2 ) ,  so 

that < r 2 .  Then 

Thus, since r  is small, 

( 6 4  The next goal is to show 

provided 0 < E 5 r' for some r' which can be taken to be less than € 0 .  

Let 0 < e" < E'. Once this is proven the proof of the lemma is completed by 

noting that 

( 3 - 7 )  d' : = inf +.(x* /st' + i y,  + id"' y )  
~ € 1 "  



Then choose d such that c < d < dl. For z,~,, E N,I n Cn; z,I,, := x,/d + sx + 
iy, + ii92y, 

$a ( ~ € 1  ,s ) > $a ( ~ € 1  ,o) 

> min $.(x,/el + iy, + i e ~ ~ ~ )  
y E I n  

= dl > d. 

Thus Net n Cn 5: {$, > d); i. e. z, = x,m + iy, E tr,{$, > d). 

(6iii) Differentiating (3-4) yields 



As in 6;) above, let y" = y, + e2y. When x: = 0, (3-8) simplifies to 

(3-9) 



(6iv) First 2 terms of (3-8): 

But xi = 0 and x E Bw (x* ; e2), implies la1 1 < c2. Thus the first 2 terms is 

o(e). 

(6v) Numerator of the 3rd and 4th terms of (3-8). 

First consider the numerator of the 3rd term of (3-8): 

(numerator of the 3rd term of (3-8)) 

x (((sxl - ~ / a ) ~  - sly2 - 2 ~ ~ ) ~  + 4(sx1 - ~ / a ) ~ ( s l  + I ) ~ )  1 

The numerator of the 4th term of (3-8) is 



With common denominator 

the numerator of the 3rd and 4th terms of (3-9) combined is 

Note that the o(eO) term cannot be disregarded because it contains s. This term 

will be studied separately in each of the two cases below. 

( 6 4  Case 1: x1 = 0. 



In this case the denominator (3-10) is independent of s while the numerator 

(3-11) including the o(cO) term explicitly written out reduces to 

In this case the o(eO) term is independent of s ,  so, for small E, the dominating 

terms are 

Thus putting (3-10) and (3-13) together yields 

Now 

> ( I  + SE) - (1 + 2 s ~ )  J c ~ A ~ ~ ~ ~ J c ~ ~ : ~ ~  - SEE 4 



> O  for e sufficient1.y small. (s > 0). 

Together with (3-5), this shows that (3-14), the 3rd and 4th terms of (3-8) 

combined, is greater than 0 for small e and all s > 0. 

(6vii) Case 2: x1 # 0. 

In this case the largest power of s in the denominator (3-10) is 8 while it is 

at most 7 in the numerator (3-ll)(this includes the o(rO) term). Thus the o(rO) 

term in (3-11) can be estimated by bounds independent of s, x1 being estimated 

Since Ixl 1 < r2, the terms in the numerator involving x1 are o(r2), and can 

be grouped with the o(rO) term; thus the sum of the 3rd and 4th terms of (3-8) 

As in the previous case 

Again the terms containing AX; are o(el) and are thus o(rO). Thus (3-15) 

reduces to 

- - 
-2X(1+ sr) ((sxl - l / a ) 2  - jjli" gl) + 0 ( E - ~ )  

€2 ((sxl - l / a ) 2  - - g q 2  + 4r2(sx1 -- l /a)2(Sl  + 1 ) 2  



> 0, for sufficiently small E. independent of s. 

(6;s) Together with the first two terms computed in (6iv) it follows that 

d4e 
- ( s )  > 0,  for sufficiently small E and any s > 0. 
ds 

This proves the lemma. 

COROLLARY 3.3.5. For a outside a set of measurle 0, 

LEMMA 3.3.6. Let V CC U C 6. Suppose U c i n t 6  cle {$. > c). Then 

3c1, co > c' > c such that V C int6 c l 6  {$, > c'). 

PROOF. clFV is compact and c l 6 V  C Um>d..,c ~ n t ~ c l ~ { + ~  > d) .  

LEMMA 3.3.7. For c' > c, c& {$. > c'} idf ;  elG {$, > c}, when a ,  c, c' 

are outside a set of measure 0. 

PROOF. As in lemma 3.3.3, this is equivalent to proving 

c l ~ t r , { + ~  > c'} G tr,{$, > c}. 



Let z, = x,co + iy, E c16tr,{$, > c1),x, E So there is a sequence 

2, = X m W  + i ~ m  + z*, zm E trm{$a > c'}. 

(1) Case 1: x: # 0. Since x, + x, it can be assumed that x& # 0. Then from 

(3-3) in the proof of lemma 3.3.4: 

where the €,/a terms are collected with the om(€,) term. Since x in (3-3) is 

here chosen to be x,,  AX^ = 0. Moreover, choose 6, -, 0 as m -+ oo. 

By assumption $a(x*/€m + SmXm + iym) > c'? VSm > O when em is suffi- 

ciently small. 

On the other hand, for x E BWn (x,; e2) n and y E In, 

+ om (em) + o(E). 

Clearly the 2nd, 3rd, and 4th terms can be made arbitrarily small for small e 

and large rn. 



The 5th and 6th terms combined give: 

This can be made arbitrarily small since since ( X ~ ~ X : ' ~  - ~ 2 ~ x 1 ' ~ )  -3 0 as 

m + m, and the other terms in the numerator contain AX:-terms which are 

small for 0 < E << 1. As in lemma 3.3.4, the power of s  in the numerator is no 

greater than that in the denominator. Thus by choosing all the terms except 

the first term to be less than S in absolute value, 

$a ( x +  / E  + S X  + iy* + ie2y) 2 $a  ( x m / %  + S m X m  + iyrn + iym) - 6  

> c ' - S z c ,  for O < S < < l .  

That is z, E N, intF c16{$, > c) .  

( 2 )  Case 2: x i  = 0. 

In this case pick zm --+ 2,. We can assume zm # z, and since tr,{$, > c') 

is open choose z ,  so that x k  # 0 for all m. 

Consider 

Ga(x t /c  + sx  + iy ,  + ic2y) 

= $a(xm/cm + smxm + iy,) 

($a(x*/c + sx + iy ,  + i c2  y) - $ J ~ ( x , / E ,  + s,xm + i ym) )  . 



By choosing E ,  sufficiently small, the first term on the right is greater than c' 

for all sm 2 0. 

For simplicity, let 

The next step is to estimate T, - Tm. From (3-4) and (3-16) 



-xCk(x: + + x E ~ c ~ ~ ~ ' ~  + E 2 ~ k ~ k y * )  

x ((sx' - I / Q ) ~  - 8 : ~ ~  - 2~:)  

k k  2XCk(xt + sex )g* + C k ( p k x ,  + S L P ~ X )  

I '  
+ P1x, + seP1x - €/a 

x (sx' - l/a)(g: + 1) 

The first term is bounded. The 2nd term can be made arbitrarily small by 

choosing m sufficiently large so that em is small, and then fixing m and choosing 

sm large. Since ym i y,, Cj(I'jy, - Pjym) > -6 for an arbitrary S > 0 by 

choosing m large. 

To estimate the 5th term, consider the following two cases. 

(3) Case 2a: (xi = 0 and) x' = 0. 

In this case the 5th term reduces to 

Estimate the numerator 



The first term in square brackets is greater than 0 by (3-5). Thus choosing e << 1 

makes the 5th term as large as needed. 

(4) Case 2b: (xt = 0 and) x1 # 0. 

Because the power of s in the numerator is less than that in the denominator, 

the dominating term in the numerator, for small e, will be 

since lxl J = Is1 - x: 1 < e2. Again by (3-5), this is greater than 0. Thus the 5th 

term can be made as large as needed. 

In conclusion T, - Tm > -6 for S > 0 by suitably choosing e << 1. Thus 

T* = Tm + (T* - Tm) > C' - (c' - C) = c on N,.  SO Z* E tr,{$, > c). This 

proves the lemma. 



CHAPTER IV 

THEOREMS ON PURE 

CODKMENSIONALITY 
AND 

FUNDAMENTAL EXACT SEQUENCES 

Whoso has sixpence is sovereign (to the length of sixpence) over all 
men; commands cooks to feed him, philosophers to teach him, kings 
to mount guard over him,-ta the length of sixpence. 

-Thomas Carlyle, Sartor Resartus [1833]. 

In this chapter we show that S O  is pure 1-codimensional with respect to 

r-'49 (i. e. X&(r-lW) = 0 for k # 1); and S*R is pure n-codimensional with 

respect to T-~W. 

Since the Fourier-Sato transform works just as well on $2 C Dn as on a real 

analytic manifold, many of the usual results for microfunctions on a real analytic 

manifold are seen to remain true for Fourier p-microfunctions. Specifically one 

has the usual short exact sequences on the sphere and cosphere bundles, S R  and 

S*R respectively. These are stated in 54.3. 

Some preliminaries are needed to begin. Proposition 4.1.2 allows one to 

smooth plurisubharmonic exhaustion. It is modelled after a classical result. 

Next we recall the Grauertl tubular neighbourhood theorem in the form Kawai 

l Grauert [1958], $3. 



used for open subsets of IDn. The proof given here is almost exactly Harvey and 

Wells7 [I9721 proof that dispenses with Grauert's original cone construction. 

Finally essentially by intersecting the Grauert tubular neighbourhood with a 

wedge, we show that every point of G S f l  has a basis of neighourhoods whose 
h 

projection on (Cn - IDn is W-pseudoconvex. (T-'@) can then be calculated 

using the classical proof. 

LEMMA 4.1.1. Let (X, U )  be a uniform space, and let f : X -+ R and g : X + R 

be uniformly continuous. Then f V g := maz( f, g) is uniformly continuous. 

PROPOSITION 4.1 .22. Let U be an open subset o f  6, and Ino a compact subset 

o f  U .  Suppose q is a continuous plurisubharmonic function such that 

(1) { q  < C) cc U,  c E R; 

(2) s u P ~ < ~ n ~  q < 0; 

(3) for every compact subset K E U ,  suplincn q < m; and 

(4) for every compact subset Ii' C_ U ,  q is uniformly continuously on I< n Cn . 

Then 3 i  E Cm(U n Cn) strictly plurisubharmonic, ij > q, satisfying ( I ) ,  (Z), (3) 

and (4). 

PROOF. Let := iq  < j), and 

where y is a Friedrich mollifier, and Sj is chosen so small that vo < 0, 

and s u P ~ , , - , ~  v1 < 0. This is possible because of condition (2) in the statement 

and because for a compact set Ino,  sup^^ 13m2I2 < 00. Moreover uniform conti- 

nuity of q, condition (4), shows that for j = 2,3, . . . the Sj  's can be chosen so 

=This is essentially the second part of Hormander [I9901 theorem 2.6.11. The same proof 
goes through with these new hypotheses. 



that v j  < q + 1 on Vj since 

< 1, for small Jj. 

Thus there is a 6-neighbowhood, fi of c&p 4, such that on n Cn, v j  is 

strictly plurisubharmonic (because of the 13mz12 term) and is > q. Moreover 

note that vj vanishes outside a Gj-neighbourhood of Vj+1. Let ~ ( t )  be a convex 

Cm function that is 0 when t 5 0, and > 0 when t > 0, such that X' > 0 when 

t > 0. 
h 

Then x (vj + $ - j )  is strictly plurisubharmonic in a C? neighbourhood of 

tip Vj - VjVl (intersected with C )  since 

d2vj 
2 x 1 ( $ ) g t m w 7  for z outside Vj-5. 

Next inductively choose constants a j  and define urn by 

h 

so that urn is strictly plurisubharmonic on a Cn n.eighbourhood of C& Vm, and 

Urn > q. 

urn can be chosen strictly plurisubharmonic since v,-~ vanishes outside a 



Sm-1 neighbourhood of Vm g.iving 

Thus a similar calculation as in (1-1) shows that 

a2x (urn-, + $ -- j )  wt ---W > - -Crn-lIwI , outside Vrn-1. 2 

azaz 

Choosing a, sufficiently large thus makes urn strictly plurisubharmonic. 

urn can be chosen > q since on Vm - Vrn-1 

can be chosen greater than m! + 1, the maximum of q there. 

Let 6 := limrn+, urn. 6 .is Coo and strictly plurisubharmonic on U n Cn. 

This is uniformly continuous on I< n Cn since each vj is. ij satisfies the other 

requirements of the proposition. 

Recall the following Grau.ert tubular neighbourhood theorem from Kawai 

[197013. 

THEOREM 4.1.3. Let 0 be an open subset o f D n ,  and U a complex neighbour- 

hood o f  0 such that U n Dn := 0. There is an W-,pseudoconvex neighbourhood 

W o f O s u c h t h a t O ~ W ~ l J a n d W ~ D n = O .  

Moreover a strictly plurisubharmonic exhaustion function, q, o f  V can be 

chosen to satisfy 

(1) 4 2 0; 

3See also Saburi [1985]. The proof given here follows Harvey & Wells [1972]. 
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(2) q is Cm on W (W considered as a manifold with boundary); 

(3) For every compact subset I< C W there is a constant X K  such that the 

Levi form of q, Lq, satisfies Lq(z)(w, w) 2 Xalw12, for z E I<. 

PROOF. AS in Saburi [1985], let w be the Cm diffeomorphism of 5 onto 

B(0; 1) + iRn given by 

- + iy, if x = X'OO E Sn-lm = Dn - Rn, 
w(x + iy) = x 

+iy,  if x +iy  E Cn. 

Let I<k,  k = 0,1,2,. . . be an exhaustion of w(U); i. e. 

Let 

This is a locally finite cover of w(U).  Take a partition of unity, $Jk, subordinate 

to this cover. We may suppose that only finitely many $ J j  are non-zero on K k .  

Let 42) := I Jmz12. Then cp is Cm on Cn and strictly plurisubharmonic on 

Cn. We shall consider Cm functions e(w(z)) that vanish at fr6 (U) for which 

cp - e o w is strictly plurisubharmonic on U n Cn. 

For instance, take 0 < e ( i )  := Ckat$Jk(i),  i E w(U) 2 6. For small 

ak > 0, 42) - e(a(z)) will be strictly plurisubharmonic on U f l  Cn. This follows 

by directly computing the Levi form on each a - I  (Kk) n Cn and using Lemma 



2.2.1 of Saburi [I9851 (with his notation): 

for z E I<k - Kk-]. 

By choosing a k  sufficiently small for large k,  e vanishes at the boundary frG (U). 

Such e are Cm on U .  

Let U, := {z E U : y~(z) < E(W(Z))}. Then as in. Harvey & Wells [1972], {U,), 

form a basis of neighbourhoods of 0; and (e o w -- y)-l lp is an 49 exhaustion 

function satisfying the conditions of the theorem. 

PROPOSITION 4.1 .44. Every point of G S R  has a basis of neighbourhoods, 0, 

such that 0 - G S R  is 49-pseudoconvex. 

PROOF. If the point is not in 9,-100 x f l ~ ~ , - ~ O ,  then the usual convex, 

relatively compact basis of neighbourhoods suffices. 
A 

So let I?' := r U  tr,r be a Cn neighbourhood of zow, llxo 11  = 1. For simplicity 

suppose r is convex so that I" = int6cl6r. Let W and q be obtained from 

the Grauert theorem 4.1.3, with W an 49-pseudoconvex neighbourhood of I" 

contained in a , .  

Let 

@ := (v: u s,) n ((w - r') u Gsr1)  

*This should really be a corollary of a 6 version of th'eorem due to Bros and Iagolnitzer 
[I9761 essentially stating that every tuboid with convex base contains a smaller pseudoconvex 
tuboid with the same profile. 



Then the 0: from a basis of neighbourhoods of' xom + ivoO, with W and c 

varying. We show that 

is 49-pseudoconvex. 

Note that V, := V: n Cn is convex hence pseudoconvex. Thus - log d(z, V:) 

is a continuous plurisubharmonic exhaustion function. 

Let 8(z) := max(- log d(z, V:), q(z)). Then 8 is a continuous non-negative 

plurisubharmonic function on U, := U: n Cn. 

U, satisfies (Pp)  since W does. Moreover 

Now let IT be a compact subset of U:. Then 

sup 8 5 max sup - log d(z, V:), sup q 
KnCn lr'ncn fr'nCn 

Suppose that SUPKn@n - log d ( ~ ,  V:) = a; i. e. 3zk = xr, + iyk E I< fI Cn 

such that d(zk, V') t 0. Since IT is compact in U:, by taking a subsequence 

if necessary, we can assume zk t z, for some z, E IT. Clearly z, $ Cn for 

otherwise d(z,, V,C) = 0 contradicting z, E IT. 

So z, = x,m + iy,. Now, there is a neighbourhood (Fl U rim) 

+G (yo+ ] - 6,6[ ") of z, such that rl cc I' and zk7s are contained in 

this neighbourhood for large k. 

For simplicity let 



Since d(xk, I?) > c > 0 for some constant c, we must have d(yk, BC)  + 0. Thus 

yk + Oor  l f i - v o l  + e. But sinceyk + y o  # Oand yo E B, t h i s i s a  

contradiction. Thus s u P ~ ~ @ n  - log d(z, Vt) < 03 

Thus if I< is compact in U:, 

sup 8 < 0 0 .  
I tnCn 

Moreover q is uniformly continuous on K n Cn. Next we show the same is 

true for -log d(z, Vt), and hence for 8. 

Let z,zl  E K nCn.  Then 

I - logd(z,Vz) + logd(zl,V,C)I = log 1 :::;cc; 1 

But by what was proven earlier, l/d(z, V,C) < Mo on I< n Cn. Since d(-, V:) is 

uniformly continuous on Cn , it follows that - log d(., V,C) is uniformly continuous 

on I<nCn.  

The proposition now follows from proposition 4.1.2. 

THEOREM 4.1.5. R k r s n ( ~ - l W ' )  = 0, for k # 1. 

 PROOF^. Let P be a sheaf on Q,. Recall the following maps: 

(Q, - a)'+ 6,  a, 

5 ~ f t e r  Kawai, Kashiwara & Kimura [1986]. 
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This gives the triangle 

h 

Since R, - R is open in Cn, and the functor l?n,-n = j * j - l ,  this triangle with 

9 = rmlW is 

This gives the long exact sequence 

Thus there is a sequence 

and isomorphisms 

(1-3)  
.-lT-lp@, ~ k + l  Rkj*.7 - ,so ( ~ - l ~ @ ) )  for k > 1. 

Consider first the morphism T-~W'  -+ j ,  j - lr- lW'  = j,Wlnu-n in (1-2).  It 

shall be shown that this map is injective. This map is obtained as follows. Let 

0 C f l u  be a neighbourhood of zo E 0,. The map above is the direct limit as 

0 runs through a basis of neighbourhoods zo of 



Recall that r-'W'(O) consists of sections a' o T ,  where a' is continuous and 

Thus since 0 n ( R ,  - R )  = 0 - S R  the map above is a' o T c a'lii-sQ. 
- 

Suppose that a'lo-sQ = 0. If zo E R ,  - 52 = R ,  - SO, then for sufficiently 

small TO = 0 R ,  - 52, then a' = 0 and hence a = 0. 

On the other hand, if zo = xo + ivoO E S R  where vo = 1 then we can take 0 

to be the sets O6 defined as follows. 

If xo E R n  define 

If xo E IDn - R n  say xo = x'oa where IIx'II = 1, define 

{ 
x r, := x E R n  - ( 0 )  : - E BRn (x ' ,  E )  U { X C O  E S n - l ~  : x E BRn (x ' ,  E ) }  

llxll I 
A, := (r, + xo/e)  + i { v  : - v0l < E ,  l l ~ l i l  = 110 E SSt. 

In both cases define 

B, := { x  + i tv  : 0 < t < e,x + ivO E A,, llvll = 1 )  

0, := (A€ u B € )  n 6,  

Then note that in either case 7.0, is open in R,. Hence a' is a section of 

PB, a' E W(T &). Thus a' E B(T 0, ir Cn ) is an analytic function and by the 
- 

uniqueness of analytic continuation, a'lir.-sQ = 0 implies a' 0 on TU.. 

This proves that T - ~ W '  ---+ j, j-lr- 'W = j,Wln, -n is injective. It follows 

from (1-2) that %&(T-'W') = 0. 



Now consider the isomorphisms (1-3). As before R k j * j - l ~ - l W '  = 

Rk j, (Win, -n). This is the sheaf associated to the presheaf 

For z E flu,  

(1-4) ~ * j , ( p @ l ~ , - ~ ) ~  = 1 5  H ~ ( O  n (Q, - R);PB). 
03z 

If z E flu - SR = Q, - R, (1-4) becomes the direct limit over neighbourhoods 

If on the other hand z E 90, z = xo + ivoO, with xo E R, and llvoll = 1, take 

8 = as in proposition 4.1.4, with oc forming a basis of neighbourhoods of z 

Then since Oc n (52, - R) is W-pseudoconvex, 

So in either case the direct limit vanishes. This proves the claim and the 

theorem. 

From the proof of the lemma one has 

COROLLARY 4.1.6. There is short exact sequence 



84.2 Computation of R & n ( n - f ~ )  

REMARK 4.2.2.  As in chapter 3, we set s o  := (1 ,0 , .  . . , 0 ) m  E llY - Rn. These 

sets Wa will be a basis of neighbourhoods of xo, as is seen below. We will then 

write these sets as a difference of compact sets, IC1 and I<:. D 

LEMMA 4.2.3. { W a )  form a basis of neighbourhoods of  xo + iO E 6 for a > 0. 

PROOF. By definition Wa C intG c16 {pa  < 2a). It remains to show that for 

sufficiently small E, { p a  < E) C {$J, > 0 ) .  

Suppose pa( z )  < E, where as usual z = ( x f  + i y l , .  . . , x n  + i y n ) .  Next each 

of the terms of $I, is estimated. Write = a - TI - T2 - T3 in (111.1-2). Since 

pf f  < e ,  it follows from (111.1-1) that 

Now examine the third term: 

T3 : = 1 + 2 s  (2XC,x 'yX  + C k p k x  + P x )  ( y l  + I)( 
(xy2 - Y  - 2 y f ) 2  + 4 x J ( y f  + 2)2 



The denominator of these two terms simplifies: 

Note that y112 + 2 y 1  + 2 > 0, so the 2nd summand of T3 can be estimated as 

follows 

Similarly for the first summand of T3, 



Thus TI + T2 + T3 < a ,  for t: > 0 sufficiently small. That is, $,(z) > 0 when t: 

is sufficiently small. This proves the lemma. 

LEMMA 4.2.5. For t: > 0 clew,-, 5 Wa. 

PROOF. Recall that W, := int6 ele ({$a > 0) n { p a  < 2a) ) .  Thus the lemma 

is a corollary of corollary 3.2.9, and lemmas 3.3.2, 3.3.6, 3.3.7, since $,-, > 0 if 

and only if $, > t:. 

ASSUMPTION 4.2.6. From now on assume that cr is very small, and in particular 

smaller than 

This is used in lemma 4.2.9 below. 

( 1 )  G  := { ( z l  ,... , z n )  : P l y  5 0 ,... , P n y  5 0.); 

( 2 )  K1 := ele ( G n  { p a  5 F}); 

( 3 )  K,Z := clG ( K 1  n {$, 5 0)). 

PROOF. From corollary 3.2.9, Wa fl G  n Cn = {$a > 0) n {pa < 2a)  fl G ;  i. e. 

'the " i n t s  c l e "  operator does not add points of @" to {$a > 0) n {pa < 2a).' 

Similarly ( K 1  - I{:) n Cn = G  n { p a  < :) n {$a > 0). Since 0 < a  < :, 

2a < f. So W a n G n a 7 .  2 K 1 - I < : .  Let z E ( W a n G ) - @ " .  Thenbythe  



lemmas 3.3.2 and 3.3.7 (since z E Wa - Cn) there is a (conic) neighbourhood 

of z, say I?, such that I' n Cn E Was So $a(I' n Cn) 2 S > 0. Hence z $ 

CI@{$~ < 0). Moreover z E K1 since {$a > 0) n {pa < 2a) n G 2 K1. So 

W a n G & K 1 - K : .  

PROOF. First we show I{' - Kz n Cn C {$, > 0) n {pa < 2a). From (111.1-3) 

(2-1) 
x 

$ , > O @ a >  
X'2 + y1,2 - CjpjY + (Xp" - Xp") 

As in the proof of the previous lemma (I<' - I - )  n Cn = G n {pa 5 ;) n {$, > 

0) C {pa 5 :) n {$, > 0). As usual let z = (xl + iyl, .  . . , xn  + iyn). We shall 

show that if P j y  < 0 then $.(z) > 0 + pa(z) < 2a when z E {pa < P). To 

this end, we shall show that the first three summands together are nonnegative 

when piy 5 0 



1) The first summand of (2-1) 

-Cjp'y - XC 3 .yi,2 = CjlpjYl - Xllyll: 

2 Y - Y since l l ~ l l a  < 1, 

2 KIIY112 - XIIY112 

2 0, for X < I<. 

2) The second summand of (2-1). (111.3-1) gives 

Moreover by assumption 4.2.6 

Hence 

3) Now estimate the third summand of (2-1) 



We shall examine the numerator of (2-2) by collecting powers of x. 





Let c4 denote the coefficient of xi4, co the coefficient of xy2, and let co be the 

last term of (2-4). By assuming a is sufficiently small, a computation shows 

a) co L 0 

b) c2 > 0 since lyl 1 < f i  when pa(z) < a/2. 

c) On the other hand c4 may be less than 0. However together with the term 

computed in "(2)  above, we see that for small a this term is o(l/x). Thus the 

2nd and 3rd summands of (2-1) together are greater than 0 for small a .  

Hence if t,ba(z) > 0 then 

This shows 

Now let z, E (K1 -I<:) - Cn. 3zn E G n  {pa 2; ;} - Kz such that zn -t z, 

in 5. By corollary 3.2.9, z ,  $ Ic implies there is a (conic) neighbourhood 



r 3 z, such that $,(I' n Cn) > 0. Then for z ,  cf I" cc I?, 3e > 0 such that 

$,-,(I" fl Cn) > 0 (lemma 3.3.6). 

Now zn E I" for large n, and by (2-5) ,  lemmas 3.3.3 and 3.3.6, is contained 

,I, {$a-, > 0) n {pa < ~ ( u - E ) )  

= el,- int,- clG {$,-, > 0) CI {pa < 2(a - e)) 

= c1,- wa-c 

C Wa (lemmas 3.3.3, 3.3.6) 

So K1 - Kz C Wa; and since K1 - I<: G, I<' -- 11; C_ Wa n G. This proves 

the lemma. El 

The two previous lemmas show 

COROLLARY 4.2.10. I<' -I<: = Wa fI G, forsmall a > 0. 

REMARK 4.2.11. (111.1-3) shows that if b < 0 then intsc16{$s < 0) is a 6 
neighbourhood of K1. D 

DEFINITION 4.2.12. Suppose a and a are given. 

Let 0' := rnax(P$,, pa - z, P1 y , .  . . , Pn y), where p > 0 is chosen so small 

that a -  $ < 0. 

Let 8" := max(pa - f, Ply,. . . , Pny). 

Let Uo := in t6  c l6  { O f  < $1. 
Let G : = i n t ~ c l , - { z ~ C ~ : ~ ~ ~ ~ 0 , j = 1 ,  ..., n). 0 

REMARK 4.2.13. By remark 4.2.11, Uo is a neighlbourhood of K1. D 

REMARK 4.2.14. 0' is plurisubharmonic, and (0' < f )  & {pa < a}.  The same 

is true for 8". D 



LEMMA 4.2.15.  0' and # are uniformly continuous on { p a  < r a ) .  

PROOF. Clearly each y I+ pj LJ is uniformly continuous on { p a  < r a )  . By taking 

the derivatives of pa - 5 ,  and showing that each of the partials is bounded on 

{ pa  < 7-4, one concludes that pa - is uniformly continuous on { pa  < ra} .  

Similarly the techniques of the previous chapter and those of lemma 3.3.4 in 

particular show that 2da  has bounded partials on { pa  < r a )  . 

LEMMA 4.2.16. int@ cl@ {O' < e)o<,<q is a basis of 49-pseudoconvex neigh- 

bourhoods of I<:. 

PROOF. First note that 

{ d o  5 0) L intG clF {da  < f } , for e > 0 

since 

= (2 i n t e  ~1~ {$a  > d ) )  , by lemma 3.3.5 

In particular one has 



Similarly 

Moreover each of the sets in the intersection on the right hand side is a neigh- 

bourhood of the corresponding set on the left. 

Note that 

is a neighbourhood of K i .  In fact these form a fund.amenta1 system of neighbour- 

hoods of KZ since K; is compact and 6 is metrizable. These sets are relatively 

compact for each E and tend to I{: as E tends to 0. Moreover these sets are W- 

pseudoconvex: by lemma 4.2.15, 8' is uniformly continuous on compact subsets; 

then consider ( E  - el)-'; finally smooth these according to proposition 4.1.2. 

This proves the lemma. 

Similarly one has 

LEMMA 4.2.17. intF; ~1~ 16 < e)o<,cl is a basis of W-pseudoconvex neigh- 

bourhoods of K1. 



THEOREM 4.2.18. X&n(x-lW) = 0, fork # n. 

PROOF. By proposition 1.4.12 this is equivalent to showing 

lim HSnGt (V; '6) = 0, + for k # n. 
V 3 x 0  

G ' 

If xo E Cn then this reduces the usual result about microfunctions on Cn 

(scholium 4.3.2 below). 

Suppose first that xo = (1,O,. . . , O)m E IDn - Rn, and let G' = G (definition 
h 

4.2.12). Since {Wa)o<aal ( a  outside a set of measure 0) form a basis of Cn- 

neighbourhoods of xo by lemma 4.2.3, V can be taken to be the W,. But then 

corollary 4.2.10 gives 

h 

lim ----+ H&~-,~(V;'@') = l i m ~ ~ , _ ~ ( C ~ ; ~ @ ) .  + 

Thus the theorem will follow if the conditions of theorem 2.4.8 hold. We proceed 

to show this next. 

Let 0' and Uo be as in definition 4.2.12. Then recall that 

By lemma 4.2.16, given a 6 neighbourhood V of I(,2 

3rv > 0, f > EV such that I{: 2 int6 c k  {0' - ry  < 0) 

Now let x v ( - )  be a convex increasing function sucln that 

(1) x v  is uniformly continuous on { t  : t 5 d) for every d E R; 



( 2 )  limt-+ xv(t)  = m; 

( 3 )  xv (7) < 0;  and 

( 4 )  xv 0 8' > 0  on VC. 

Then xv o 8' is a plurisubharmonic exhaustion function of Uo satisfying the 

conditions of proposition 4.1.2. Thus it can be smoothed to produce an W- 

pseudoconvex exhaustion function, B v ,  of Uo. 8 v  satisfies the requirements of 

theorem 2.3.8. 

For general xo E Dn - Rn, take a unitary transformation R mapping xo to 

(1,O, . . . , 0)oo. Modify the functions pa and $, as follows: 

Ckl(Rz) '12  + (Ry)'12 + Cjlyj12 + 
1  

pa(.> = 
( ( R x ) '  - ~ / a ) ~  ( (Rx) '  - l/a)' ' 

. X i C , ( ~ z ) ~ i '  - C k p k ( ~ z )  - ( P 1 ( R r )  - l / a )  
Q a ( z )  = i a +  C j P J z  - 

( (Rz ) '  - 1 1 0 ) ~  + % i ( ( R z ) l  - l / a )  

= a -  (Rx) '  - l / a  

( (Rx) '  - I / C X ) ~  + ( R y ) l J  
+ Cjp's 

Calculations similar to those in chapter 3  and in lemma 4.2.9 show that lemma 

4.2.10 still holds. 

This proves the theorem. 



$4.3 Fundamental Exact Sequences 

SCHOLIUM 4.3.1. Let U be an open subset o f  a topological space X .  Let Z 

be a locally closed subset o f  a topological space U and V an open subset o f  U 

containing Z as a closed set. For a.sheaf 9 on X ,  H ~ ( v ;  9 )  = H ~ ( v ;  9 1 ~ ) .  

PROOF. In fact take a flabby resolution 2' of 9 .  Then since U is open 9' Iu 

is a flabby resolution of 91~. Moreover r z (V;  9 )  = rz (V;  F lu)  and similarly 

r z ( v ;  3') = r Z ( v ;  2 . 1 ~ ) .  

PROOF. This follows from the previous scholium since ?%a (U) = HEnU(U; p8), 

and WIc = 8 .  

SCHOLIUM 4.3.3. l ~ n n l l g " ) - t m s n - l ~  = e n n R n  . 

PROOF. Let x, + i[,m E (a n Rn) + f l S n - l m .  Then 

( x p ) +  lim -----+ H:,~(V; PB), 

But since x, E Rn, V runs through bounded of Cn. Thus again by scholium 

4.3.1, (4-1) becomes the usual limit for microfunctions on U Rn. 

We have now computed all the terms in the triangle (1.3-5) of proposition 

1.3.9. We suppose as always the conditions on the plurisubharmonic function p 

stated in Chapter 11. 

Recall that Rrn(W)[n] vanishes except in degree 0; it is the sheaf of Fourier 

p-hyperfunctions, ?%a, and P d  vanishes except in degree 0. From the long exact 

sequence associated to the triangle in proposition 1.4.9 it follows that Rjx,WR = 

0, for j # 0. From theorem 4.2.7 we now have the stronger result that W is 

concentrated in degree 0. Thus there is 



THEOREM 4.3.4. Let 52 be an open subset o f D n .  There there is a short exact 

sequence 

0 - P d o  -??afi ---t~*%~ -0 

PROOF. Take the long exact sequence of triangle (1.3-5), and use theorem 4.2.7. 

Similarly one can produce the other short exact sequences involving Wn as 

in Sato, Kawai & Kashiwara [1973]. 
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