Adapting to Route-demand and Mobility (ARM)
in Ad hoc Network Routing*

Sungjoon Ahn and A. Udaya Shankar
(sjahn@cs.umd.edu, shankar@cs.umd.edu)
Computer Science Department

University of Maryland
College Park, MD 20742

February 14, 2001

Abstract

We present ARM (Adapting to Route-demand and Mobility), a con-
trol mechanism that allows any proactive routing protocol to dynamically
adapt in a totally distributed manner to changes in node mobility and
workload route-demands. Each node independently maintains a mobility
metric indicating how fast its neighborhood is currently changing, and a
route-demand metric indicating which destinations are currently involved
in data forwarding. Control functions use these metrics to dynamically ad-
just the period and the content of routing updates. We apply ARM to the
DSDV protocol, coming up with ARM-DSDV. For various mobility and
workload scenarios, ARM-DSDYV typically achieves the same data deliv-
ery as DSDV with update period optimized for the scenario, while saving
up to 60% in routing cost. Lower cost gives data traffic more available

bandwidth.
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to the University of Maryland, College Park. It should not be interpreted as representing the opinions or
views of DARPA or the U.S. Government.



1 Introduction

Ad hoc networks, also called MANETs (Mobile Ad hoc NETworks), are wireless data
networks that do not require any communication infrastructure, unlike cellular networks
and access point based wireless LANs. Ad hoc networks are suited for combat situations,
search and rescue operations, and instant conferencing in infrastructure-absent geographic
areas.

Ad hoc networks have characteristics that routing protocols for conventional networks
need not deal with, among them dynamic topology, low bandwidth, short host battery life,
and unreliable links. New routing protocols are needed for ad hoc networks and a number
have been proposed, for example [1, 2, 3, 4, 5]. These routing protocols are usually classified
as proactive or reactive. Proactive routing protocols [1, 2] periodically exchange routing
updates to continuously maintain routes between all mobile host pairs, as in conventional
wire routing protocols. Reactive protocols [3, 4, 5] send routing updates only when the data
traffic demands routes and these updates are only for those routes.

However, in general no single routing protocol performs well over a wide range of mobility
and route-demand patterns. In fact, few of the proposed routing algorithms adapt their
behavior to mobility and route-demand patterns. Rather, most ad hoc routing protocols
are optimized for certain operating conditions.

This paper presents ARM (Adapting to Route-demand and Mobility), a control mech-
anism that allows any proactive routing protocol to adapt in a totally distributed manner
to changes in node mobility and changes in data traffic demand for routes. FEach node
independently maintains two metrics. One is mobility metric indicating how fast its neigh-
borhood is currently changing, thereby reflecting the current rate of mobility. The other
is route-demand metric indicating which destinations are currently involved in data for-
warding, thereby reflecting the current demand for routes. These metrics are used by two
control functions, called update-period control function and update-content control function,
to dynamically adjust the period and the content of routing updates.

The ARM approach can be readily applied to any proactive routing protocol. In this
paper, we apply it to DSDV (Destination Sequence Distance Vector) protocol [1], coming
up with ARM-DSDV, and evaluate its performance relative to DSDV for several simple
control rules using simulations. The simulator has a physical layer modeled by transmission
range and bandwidth, a link layer based upon IEEE 802.11 (including CSMA/CA and
RTS/CTS), and a workload layer of end-to-end connections. The performance metrics
are data delivery ratio (fraction of data packets delivered to destinations) and routing
cost (number of routing update octets transmitted). For various mobility and workload
scenarios, ARM-DSDYV typically achieves the same data delivery ratio as scenario-optimized
DSDV while saving up to 60% in routing cost. (Scenario-optimized DSDV is DSDV with
its update period optimized for the particular mobility and workload scenario.) Naturally,
ARM-DSDV achieves higher data delivery ratio than non-optimized DSDV.

This paper is organized as follows. Section 2 addresses related work. Section 3 explains
the ARM mechanism. Section 4 details the ARM-DSDV protocol. Sections 5, 6, and 7
describe respectively the performance evaluation model, the performance metrics, and the
simulation results. Section 8 concludes.



2 Related Work

Proactive routing protocols [1, 2] periodically exchange routing updates to continuously
maintain routes between all mobile host pairs, as in conventional wire routing protocols.
Their advantage is that a data packet can be sent out immediately without any routing
delay if a route exists. On the other hand, a proactive protocol wastes a large portion of
available bandwidth when most of the routes it maintains are not used. Some optimizations
are suggested to mitigate the routing overhead in [1]. One is incremental dump where each
node advertises only the difference from the last update, reducing update message traffic.
Delayed update defers broadcasting route update messages in hopes of better routes arriving
shortly. Despite these optimizations, the routing update traffic of proactive routing is rather
large. This is the main reason why proactive protocols perform inefliciently in certain
network conditions [6], especially those characterized by skewed workload.

Reactive protocols [3, 4, 5] aim to eliminate the excessive overhead of proactive protocols
by sending routing packets only when the data traffic demands routes. One disadvantage
is the unavoidable initial delay in forwarding the first packet of a connection. Also, even
though the goal is to reduce routing traffic, reactive protocols can suffer from high routing
traffic overhead because they flood the network when discovering a new route [7]. The effect
of flooding can be disastrous when the network is large and demand for new routes is high.
Modifications can be introduced to alleviate the cost of flooding. For instance, geographic
location of each node is exploited in LAR (Location Aided Routing) [8] to limit flooding
area. However this assumes that all nodes are equipped with special devices like GPS.
Another approach [9] makes use of prior routing histories to localize route request queries.

Hybrid protocols try to combine the strengths of proactive and reactive protocols. ZRP
(Zone Routing Protocol) [7] is a hierarchical routing protocol that combines proactive and
reactive protocols. A network is divided into zones inside which routing is done proactively.
Interzone routing is performed reactively and only among zone leaders, which are elected
nodes responsible for providing interzone routes to their zone members. By allowing proac-
tive routing only within a zone, bandwidth is not wasted in advertising route entries of
other zones. Flooding is limited by their route query control schemes. The zone radius is
a configurable parameter. With zone radius of one, ZRP becomes purely reactive. With
infinite zone radius, it becomes purely proactive. Through simulation the authors show that
the optimal zone radius value depends on the call-to-mobility ratio (the ratio of number of
calls or connections to node speeds). A high ratio (i.e., large number of connections or low
mobility) favors large radius or more proactivity, while a low ratio favors small radius or
more reactivity. ZRP assumes that the network condition (call-to-mobility ratio) is rela-
tively static and known a priori for setting the optimal zone radius. Dynamically changing
the zone radius involves reconfiguring zones and electing zone leaders, which can be pretty
expensive and may require data forwarding to be halted during the transition.

In a survey paper of ad hoc routing protocols [10], the authors suggest switching between
different protocols according to current network conditions. But no detailed work has been
reported about intelligently switching between routing protocols based on dynamic network
conditions. The cost of switching would be high in general because it has to occur globally
throughout the network.

To summarize, few routing protocols adjust their operational parameters dynamically
during their execution. ARM, proposed in this paper, allows any proactive routing protocol
to adapt dynamically to changes in mobility and route-demand patterns. Furthermore
it is completely decentralized. Adaptations do not require network-wide synchronization.



Each node adapts independently based on local observation and decision, spending a small
amount of additional overhead.

3 ARM Mechanism

Recall that ARM has two controls. The update-period control maintains the mobility metric
and dynamically adjusts the routing update period. The update-content control maintains
the route-demand metric and dynamically adjusts the content of routing updates.

ARM can be applied to any routing protocol in which each node periodically sends
routing updates. Specifically, in each period a node sends an routing update message con-
structed from its current routing information and builds new routing information based
upon routing update messages received. At the end of the period, the new routing infor-
mation becomes the current routing information, and the cycle repeats. Data packets are
forwarded based on the current routing information.

Most proactive routing protocols behave this way. Also, these protocols broadcast rout-
ing update messages and hence can lose them. ARM is robust to such loss.

3.1 Update-period control

The intuition behind update-period control is that a node should update more frequently in
high mobility, so as to accurately reflect the current network topology, and less frequently
in low mobility, when frequent updates do not bring additional accuracy but consume
bandwidth.

A node measures mobility by measuring the rate of change in its neighborhood, i. e.,
the set of nodes within radio range. The node maintains two neighbor tables: cur-
rent_neighbor_table, based on updates received by the start of the current update period,
and new_neighbor_table, based on updates received during the current update period. Both
tables have entries of the type {neighbor_id, t_expiration}. Member t_expiration represents
the time when the next update from the neighbor is expected to arrive. An entry is regarded
as expired if t_expiration is less than current clock. This expiry time information is required
because each nodes can have different update periods and update information from a node
with a longer period should survive longer than that from a node with a shorter period.

To maintain these neighbor tables, routing update messages need to contain the sender’s
update period, in addition to the sender’s id. Additional types of packets can be used to
build the tables, depending on the particular underlying protocols, for example, sender
information in hello messages and predecessor information in data packets.

Figure 1 describes the processing involved in the update-period control. At the start
of a new period, an “instantaneous” mobility metric is obtained by dividing the number of
nodes that became neighbors or stopped being neighbors by the previous update period.
Smoothing the instantaneous metric over time interval TW_SMOQOTH yields the mobility
metric. The update-period control function maps the mobility metric to the new update
period. The new neighbor table is merged into the current neighbor table and expired
entries are deleted.

There are several points to note. In computing the mobility metric, an alternative to
smoothing is to use weighted time averaging, as in TCP’s RTT estimation [11]. Regarding
update-period control function, it turns out that even simple update-period control func-
tions, such as shown in Figure 2, can outperform non-adaptive update periods. The expiry
times of entries in the neighbor tables is reasonably well-approximated by the sum of the



At start of an update period:

// Mobility metric computation

Remove expired entries from new_neighbor_table ;

Let nbd_change be the number of nodes e such that
e is expired in current_neighbor_table and not in new_neighbor_table
or e is in new_neighbor_table and not in current_neighbor_table

Let inst_nbd_rate_change be nbd_change divided by current update period ;

Let mobility_metric be the inst_nbd_rate_change smoothed over TW_SMOOTH ;

// New update period computation
New update period is update-period control function value at mobility_metric

// Neighbor tables update
Remove expired entries from current_neighbor_table
For each entry n in new_neighbor_table
if match m is found in current_neighbor_table then
assign n.t_expiration to m.t_expiration ;
otherwise insert n into current_neighbor_table ;
Empty new_neighbor_table

At reception of routing update message:
Let expiration_time be sender’s update period plus clock plus slack ;
If sender’s id has match in new_neighbor_table then
update t_expiration in the table ;
otherwise insert the sender’s id and expiration time into the table ;

Figure 1: ARM update-period control

New New
Update Update
Period Period
y
X Mobility Metric X Mobility Metric
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Figure 2: Simple update-period control functions

current time and the sender’s update period; some slack can be added for a more conser-
vative estimate. When ARM is instantiated in a routing protocol, the routing table entries
are subject to the same expiry time constraints as neighbor table entries.

The update-period control computation is completely local to the node. The overhead
consists of the extra field in routing update messages and the computation/storage of mo-
bility metric, new update period, and neighbor tables.

3.2 Update-content control

The intuition behind update-content control is that a node does not have to send a piece of
routing information in every routing update if that information is not being used by other
nodes. In ARM, each node keeps track of which destinations it has forwarded packets to
recently, specifically within a time window TW_RFCENT. When constructing a routing
update message, routing information for other destinations is included only if it satisfies a
update-content control function.



At forwarding of a data packet:
// Route-demand metric computation
If the data packet’s destination is in the route_demand_table then
update the entry’s t_last_forwarded to clock value ;
otherwise create an entry in the route_demand_table with
packet destination id and clock value ;

At construction of a routing update message:
For every entry in the routing table
// Update-content control function
if there is a match m in route_demand_table with age less than TW_RECENT
or if the entry passes the filter function ;
then the entry is included in the message

Figure 3: ARM update-content control

To implement this, the node maintains a route_demand_table whose entries have the
form {destination_id, t_last_forwarded}, indicating when the last forwarding occurred to the
destination. The recent route demands recorded in the table represent route-demand metric.
Figure 3 describes the update-content control operation.

The filter function can be implemented in a several ways, for example, in every Kth
routing message, randomly with some probability, etc. We point out that even if the update-
content control decides not to include any routing information, the node still transmits a
routing update (depending on update-period control) in order to advertise its own presence
and help the update-period control of its neighbors.

The above description of update-content control assumes an underlying routing protocol
which uses destination information, such as distance vector. However update-content control
can be applied to other types of proactive protocols. For example, in a link state protocol
the update-content control can decide whether or not to disseminate an outgoing link cost
change based on how recently the link was used or whether the link is the current next hop
to a “recently used” destination.

As in update-period control, update-content control is carried out locally and introduces
minimal overhead, namely the computation/storage for route_demand_table and the filter
function.

In most proactive protocols, every available entry (in routing table or next hop table) is
included when update messages are constructed. But not sending all the information each
time would not seriously affect the operation of the network. Thus a network in which only
some nodes have ARM would still work.

4 DSDV and ARM-DSDYV Protocol

Details of DSDV is presented first. How ARM is applied to DSDV producing ARM-DSDV
is presented next.

4.1 DSDYV protocol

DSDV uses improved version of Bellman-Ford algorithm. One of its main advantages over
traditional distance vector protocol is the loop of freedom through the use of destination
sequence numbers [1]. Original DSDV uses both periodic and triggered updates. We only
focus on periodic updates in this paper.



CONSTANTS : UPDATE_PERIOD
VARIABLES : dest_seq_no, t_update
current_routing_table, new_routing_table
each routing table entry has members
{ dest_id, next_hop_id, num_hops, dest_seq_no }

Figure 4: Variables of DSDV protocol

MESSAGE FIELDS : sender_id, sender_dest_seq_no, routing_update_vector
each entry in the vector has members
{ dest_id, num_hops, dest_seq_no }

Figure 5: Routing update message of DSDV protocol

In DSDV, nodes maintain variables as shown in Figure 4. Constant UPDATE_PERIOD
denotes the globally fixed update period for all nodes. Variable dest_seq_no and t_update
denotes destination sequence number and start of the next update period of the node, respec-
tively. Routing entries to all possible destinations are maintained in current_routing_table,
for data packet forwarding. New_routing_table stores routing entries based on the informa-
tion in routing update messages received in the current period. Entries in routing tables
have members denoting id of the destination, id of the next hop, number of hops to the
destination, and sequence number originating from the destination, in the order they appear
in the figure.

As shown in Figure 5, a routing update message contains id of the sender, current
destination sequence number of the sender, and the routing update vector whose entries
are copied from corresponding entries of the sender’s current_routing_table. Table member
next_hop_idis not included in vector entries because sender_id becomes next_hop_id for vector
entries in the message when they are stored in routing tables.

EVENT : expiration of t_update

dest_seq_no ++

update current_routing_table using new_routing_table

empty new_routing_table

build routing update message from current_routing_table and send it
t_update += UPDATE_PERIOD

EVENT : reception of a routing update message
for x ranging over sender and vector entries
if ( new_routing_table has no entry for x )
// if x is sender, x.dest_id is sender_id of the message
then
insert x into new_routing_table
else // let m be the matched entry in new_routing_table
if ( (x.dest_seq_no > m.dest_seq_no) or
((x.dest_seq_no == m.dest_seq_no) and
(x.num_hops + 1 < m.num_hops) )
// if x is sender, x.dest_seq_no is sender_dest_seq_no of the message
// if x is sender, x.num_hops is zero

then
m.next_hop_id := sender_id of the message
update other members of m using members of x
endfor

Figure 6: Routing events of DSDV protocol

A node handles two routing events, expiration of {_update and reception of a rout-
ing update message as shown in Figure 6. On expiration of {_update, dest_seqno of the
node is incremented to favor the to-be-broadcast routing update message of the current
period. Contents of new_routing_table is copied into current_routing_table for packet for-



warding in the current period. A routing update message is constructed from entries in
current_routing_table, and then broadcast to the neighbors. Finally, {_update is increased by
UPDATE_PERIOD for the next update.

On reception of a routing update message, if entry to the sender does not exist in
new_routing_table, the node creates an entry to the sender and stores sender_dest_seq_no
along with it. Otherwise, only the destination sequence number is updated. Then the node
processes the vector entries. A vector entry is inserted into new_routing_table if there is no
entry with the same dest_id. Otherwise, entry with the same dest_id is updated in the table
only when the vector entry is favored, i.e., it either has the larger destination sequence
number or has smaller number of hops if sequence numbers are identical. As sequence
numbers are monotonically increasing over time, this guarantees new routes are selected
over old routes.

4.2 ARM-DSDYV protocol

Figure 7 shows variables used in ARM-DSDV. Now update_period is varied to control update
periods. Two neighbor tables are for update-period control and route_demand_table is for
update-content control as described in section 3. Each entry in routing tables now has new
member t_expiration to denote its expected expiration time.

VARIABLES : dest_seq_no, t_update
update_period // new for ARM-DSDV
current_neighbor_table, new_neighbor_table // new for ARM-DSDV
each entry has members
{ neighbor_id, t_expiration }
current_routing_table, new_routing_table
each entry has members
{ dest_id, next_hop_id, num_hops, dest_seq_no, t_expiration }
// t_expiration is new for ARM-DSDV
route_demand_table // new for ARM-DSDV
each entry has members
{ dest_id, t_forwarded_last }

Figure 7: Variables in ARM-DSDV protocol

MESSAGE FIELDS : sender_id, sender_dest_seq_no
sender_update_period // new for ARM-DSDV
routing_update_vector
each entry in the vector has members
{ dest_id, num_hops, dest_seq_no }

Figure 8: Routing update message of ARM-DSDV protocol

As shown in Figure 8, the only additional field in ARM-DSDV’s routing update messages
is the sender’s update period that is used to calculate t_expiration of table entries.

On expiration of t_update, additions to DSDV are computation of next update period and
how current_neighbor_table is updated as shown in Figure 9. Both issues were addressed pre-
viously. Current_routing_table is updated using new_routing_table as follows. First, expired
entries in both tables are thrown away. Second, for each entry n in new_routing_table, insert
n into current_neighbor_table if no match is found. Otherwise, favored route of the two is se-
lected and updated in current_neighbor_table if necessary. Entries in current_neighbor_table
is used for forwarding in the current period regardless of their t_expiration. Routes updated
by neighbors on shorter periods may be used beyond their {_expiration. An alternative



EVENT : expiration of t_update

dest_seq_no ++

update_period := value computed as in Figure 1 (section 3.1)

update current_routing_table using new_routing_table

update current_neighbor_table using new_neighbor_table as in Figure 1 (section 3.1)
empty new_neighbor_table and new_routing_table

build routing update message from current_routing_table and send it

t_update += update_period

EVENT : reception of a routing update message
tmp_t_expiration := clock + sender_update_period in the message + slack
insert sender’s id into new_neighbor_table as in Figure 1 (section 3.1)
for x ranging over sender and vector entries
if ( new_routing_table has no entry for x )
// if x is sender, x.dest_id is sender_id of the message
// entry with same id but expired t_expiration
// is thrown away and processed here
insert x into new_routing_table
else // let m be the matched entry in new_routing_table
if ( (x.dest_seq_no > m.dest_seq_no) or
((x.dest_seq_no == m.dest_seq_no) and
(x.num_hops + 1 < m.num_hops) )
// if x is sender, x.dest_seq_no is sender_dest_seq_no of the message
// if x is sender, x.num_hops is zero

then
m.new next_hop_id := sender_id of the message
update other members in m using members in x
endfor

Figure 9: ARM-DSDV update-period control

would be stop using those entries for forwarding. But there is a possibility that those en-
tries are being updated in new_routing_table. Another alternative would be to keep a single
routing table and update entries in place whenever routing update messages are received.
This prevents expired entries from being used for forwarding, but then the semantics of
DSDV is somewhat compromised.

On reception of a routing update message, local variable tmp_t_expiration is calcu-
lated to be stored as t_expiration in neighbor and routing tables. Entries are updated
in new_neighbor_table as explained in section 3.1. New_routing_table is updated like DSDV
except that each expired entry in the table is thrown away and never considered as a match.

EVENT : forwarding of a data packet

if ( dest_id of data packet exists in route_demand_table )
then

update t_forwarded_last to clock value

else

insert the dest_id with t_forwarded_last

EVENT : expiration of t_update
// when building routing update messages
for e ranging over current_routing_table entries
if ( ( e has match m in route_demand_table and less than

TW_RECENT passed since m.t_last_forwarded )
or ( filter function allows copy ) )
then
copy e into the routing update message
endfor

Figure 10: ARM-DSDYV update-content control

Figure 10 illustrates update-content control of ARM-DSDV. For ARM-DSDV, destina-
tions are recorded in route_demand_table to be compared with routing table entries when
constructing routing update messages. Other than this, no additional processing specific to
DSDV are required for update-content control.



5 Performance Evaluation Model

To compare the performance of DSDV and ARM-DSDV, we have a simulator (written in
CSIM [12]) with the layered structure as shown in Figure 11. DSDV and ARM-DSDV share
the common lower layers as well as the upper workload layer. The figure also summarizes
parameters of each layer.

End-to-end workload :
CONNECTION_START_TIME, CONNECTION_DURATION
DPKT LENGTH, DPKT_RATE

Routing layer :
DSDV : UPDATE_PERIOD
ARM-DSDV : TW_SMOOTH (for update-period control)
TW_RECENT (for update-content control)

Link layer :
RTS_LEN, CTS_.LEN, ACK_LEN
PKT_HEADER, SLOT_TIME, QUEUE_LEN

Physical layer :
TX_RANGE, BANDWIDTH, TA_TIME

Mobility

Figure 11: Layer model and parameters

5.1 Mobility

The mobility of a node is modeled as a series of pauses and motions. A pause is defined by
a time duration during which the node does not move. A motion is defined by direction,
speed, and time duration. A motion can be followed by a pause or another motion. By
juxtaposing two motions, variable speed can be modeled.

5.2 Physical layer

The physical layer is characterized by three parameters: TX_RANGFE, BANDWIDTH,
TA_TIME. Two nodes are able to transmit packets to each other only when they are
in transmission range, specified by parameter TX_RANGFE. The transmission time is deter-
mined by dividing the packet length by BANDWIDTH. Parameter TA_TIMF specifies the
time length required to turn the antenna from receiving mode to sending mode and vice
versa.

Transmission delay is treated as zero because of the relatively short transmission dis-
tances. For a successful transmission of a packet from one node to another, the two nodes
must stay within transmission range during the entire packet transmission time, and the
receiver’s antenna must be in receiving mode and should not receive (part or whole of)
another packet during the same period of time.

We do not see any substantial reason to sacrifice simplicity and fast simulation by
modeling physical layer details like multi-path fading, attenuation of signal strength, and



noise. Also the model does not depend on any particular spread spectrum implementation

(FHSS, DSSS, etc).

5.3 Link layer

The link layer model replicates IEEE 802.11 standard [13] MAC layer operations as de-
scribed below.

The MAC layer uses CSMA/CA (Carrier Sense Multiple Access with Collision Avoid-
ance) to share the channel among all nodes. In CSMA/CA, a node starts a transmission
only if the channel is free and this is determined by both physical and virtual carrier sensing.
Physical carrier sensing is done by analyzing signal strength at the air interface. Virtual
carrier sensing is done by looking up the NAV (Network Allocation Vector), a data struc-
ture indicating if the channel is currently free of ongoing RTS/CTS handshakes. If the node
finds the channel busy, the node performs binary back-off, waiting for its back-off counter
to reach zero. The counter is initialized to a random integer that doubles on average at
every consecutive failed transmission attempt. The counter decrements when the channel
appears free for a specified period of time called slot time (typically set to 20 u seconds).

The RTS/CTS handshake is as follows. A node with a data packet to send first broad-
casts an RTS frame, advertising its intention to send a data frame. The intended destination
station responds with CTS, advertising that it is ready to receive. The sender transmits
the data packet. On valid reception, the destination sends back an ACK. On receiving or
overhearing a RTS, CTS or data frame, a node sets its NAV busy for the time duration
inferred from data packet length in the frame header. Since RTS/CTS frames are much
shorter than data packets, recovery from a collision is much cheaper. RTS/CTS handshakes
are not mandatory. They are not used for broadcast packets.

In the model, fragmentation and reassembly are avoided by having packets be smaller
than fragmentation threshold. Every node has a send queue that holds both routing and
data packets. The maximum size of the queue is given by QUFEUF_LFEN in number of
packets. Routing packets have precedence over data packets. FIFO is used as the queuing
discipline within data packets and LIFO is used within routing packets. When a routing
packet arrives from the upper layer to a full send queue, the data packet most recently
enqueued is dropped; if the queue has only routing packets, the oldest routing packet gets
dropped.

PKT_HFEADER octets are added to upper layer packets in order to accommodate link
layer protocol header information. Parameter SLOT_TIME specifies the unit in which the
back-off counter decrements.

Unlike the physical layer, it is important to have a detailed model of the link layer.
Bandwidth consumption by link layer control frames and retransmissions have significant
impact on instantaneous residual bandwidth for upper layers.

5.4 Routing layer

For both DSDV and ARM-DSDV, all the operations described previously are modeled into
the simulator. We do not model the incremental dump and delayed update features of the
original DSDV.
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5.5 End-to-end workload

The end-to-end workload is modeled in terms of connections and packets. A connection
is defined by source node, destination node, start time (CONNECTION_START_TIMFE),
duration (CONNECTION_DURATION), data packet length (DPKT_LENGTH), and data
packet rate (DPKT_RATE). The packet interarrival time is constant.

6 Performance Metrics

A simulation scenario is characterized by mobility pattern, end-to-end workload, average
node speed, simulation duration, and routing protocols—ARM-DSDYV with specified control
functions and DSDV with specific update period. For a simulation scenario, we have the
following performance metrics:

¢ Delivery ratio: number of data packets that arrived at their destinations divided by
the number of data packets sent out from source nodes.

¢ Routing cost: total number of octets in all the routing update messages sent.

¢ Relative cost: routing cost of ARM-DSDV divided by routing cost of DSDV.

Delivery Ratio Routing Cost

ARM savings

NS4 :
ARM-DSDV |~ atoptimal
DSDV Update Frequency
Optimal Optimal
DSDV DSDV —

Update Update
Frequency . Frequency
DSDV Update Frequency DSDV Update Frequency

Figure 12: Generic result

For a mobility pattern, workload, node speed, and simulation time, we expect ARM-
DSDV and DSDV performance to be as illustrated in Figure 12. The solid lines connects
the results for DSDV over different update frequencies. The shaded line indicates the result
for ARM-DSDV. The delivery ratio of DSDV increases rapidly as the update frequency ap-
proaches the optimum. After that point, it either plateaus or decreases due to the contention
introduced by excessively frequent updates. We expect the delivery ratio of ARM-DSDV
to be similar to what DSDV achieves at optimal update frequency. The cost is compared
between the cost at an update frequency of DSDV and the cost of ARM-DSDV. The routing
cost of DSDV grows with update frequency. We expect the routing cost of ARM-DSDV to
be much lower. Even if the routing cost is similar, ARM-DSDV still has an advantage over
DSDV in that it does not require to manually configure optimal update frequency.
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7 Simulation Results

We present simulation results for two mobility patterns. Figure 13 lists common parameter
values for lower layers that we use for all our simulations.

Physical layer :
TX_RANGEFE = 100 m, BANDWIDTH = 2 Mbps
TA_TIME = 10 pu sec

Link layer :
RTS_LEN = 40 octets, CTS_LEN = 40 octets
ACK_LEN = 34 octets, PKT_HFADER = 58 octets
SLOT_TIMFE = 20 g sec, QUEUE_LEN = 100 packets

Figure 13: Common parameter values

7.1 Mobility pattern 1

Mobility pattern 1 models wireless nodes on vehicles crossing each other at a highway
interchange as shown in Figure 14. There are four groups of vehicles in a 2km x 2km
geographical area. Fach group has two rows of five vehicles. The rows are separated by
50m. Groups moving in opposite direction on adjacent lanes are separated by 20m. All
groups have same group speed but individual vehicle speed varies within £20% of the group
speed. Adjacent nodes in each group start with 50m separation but the separation varies
due to varying individual speeds. We have four different group speeds of 5 m/sec, 8 m/sec,
9 m/sec, and 10 m/sec (or 18 km/hr, 28.8km/hr, 32.4km /hr, and 36km /hr, respectively).
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Figure 14: Mobility pattern 1

As the figure shows, each group starts from the fringe and moves towards the middle.
Connections are opened at about the time all nodes obtain paths to each other. Connections
are closed before the vehicles pass by each other completely and all paths break down. The
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Routing layer :
DSDV :
UPDATE_-PERIOD = 2, 1, 0.5, 0.2, 0.1, 0.05, 0.02 sec
ARM-DSDV :
TW_SMOOTH =1 sec, TW_RFECENT = 3 sec
0.50 if mobility metric is 0

0.15 " v " s in (0,1]
update-period control function = 0.12 " " v s in (1,10]

0.10 " " " in (10,150]

0.05 " " " s in (150,00)

filter function = skips one in every two advertisement opportunities
End-to-end workload :

CONNECTION_START_TIMFE = when nodes start to have paths to each other

CONNECTION_DURATION = 5 sec

DPKT_LENGTH = 100 octets, DPKT_RATE = 1 packets/sec
Values of (node speed, simulation time, number of runs) :

( speed = 5 m/s, 220 sec, 10 runs )

( speed = 8 m/s, 170 sec, 10 runs )

( speed = 9 m/s, 150 sec, 10 runs )

( speed = 10 m/s, 130 sec, 10 runs )

Figure 15: Scenario parameters of mobility pattern 1

last picture of Figure 14 shows which vehicles become connected. Each row has exactly one
node that transmits packets, resulting in a total of eight connections in the network.

Figure 15 gives scenario parameters. The simulation time depends on the speed of
vehicles; the slower the speed, the longer the simulation time in order for vehicles to complete
their trips. The update-period control function used in this paper is obtained empirically.
It is subject of future research to develop a systematic way of constructing such functions.

Figure 16 presents delivery ratios achieved by DSDV and ARM-DSDV. Curves for DSDV
clearly show that it performs well only around optimal update frequency. ARM-DSDV
achieves good delivery ratios, specifically 99.5%, 99.3%, 96.2%, and 97.8% for increasing
speeds. Best delivery ratios of DSDV are 100.0% at 10 updates/sec, 99.5% at 20 up-
dates/sec, 97.9% at 20 updates/sec, and 99.5% at 20 updates/sec. Thus ARM-DSDV has
practically the same delivery ratios. Apparently, ARM-DSDV finds appropriate values of
update frequency.

Figure 17 illustrates the routing cost of both protocols. As expected, DSDV results in
linear increase in the routing cost regardless of vehicles speed. One might wonder why the
routing cost decreases as vehicles travel faster. As the vehicles travel the same distance,
more speed means less simulation time, and hence less occurrences of updates. In addition,
more speed gives more distance between vehicles resulting in sparser topology because of
variable individual speed. Thus each routing update message carries less number of vector
entries. These two factors offset the more frequent updates in high mobility.

The routing cost of ARM-DSDV is much less than that of DSDV at all speeds. Relative
cost at optimal DSDV update frequency are 57.3%, 31.1%, 29.9%, and 30.0% for the different
speeds. However, all the speeds do not show big differences between delivery ratios at the
optimal update frequency and the next optimal (but less frequent) update frequency for
DSDV. For these update frequencies, DSDV delivery ratios are 98.3%, 98.8%, 94.4% and
99.0% compared to 100.0%, 99.5%, 97.9%, and 99.5% obtained at optimal frequency. The
new relative cost is 113.0%, 59.9%, 57.5% and 57.7%, respectively. Still, ARM-DSDV has
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Figure 16: Delivery ratio of mobility pattern 1
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Figure 17: Routing cost of mobility pattern 1
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far less routing cost in three of the four speeds. It spends about 10% more than DSDV
when the speed is 5 m/sec.

7.2 Mobility pattern 2

Mobility pattern 2 models a search and rescue operation. Nodes are located relatively close
in the beginning. After halting for individually different time periods (less than 5 seconds),
all nodes repeat 5 seconds of moving and 5 seconds of pausing until the end of simulation.
Speed is identical for all nodes. There are four different node speeds— 2 m/s, 5 m/s, 10
m/s, and 15 m/s (or 7.2 km/hr, 18 km/hr, 36 km/hr, and 54 km /hr, respectively). Figure
18 shows how nodes move over the time when the node speed is 10 m/s; at time 100 seconds,
the nodes are spread over 1km x 1km. There are 40 nodes and each has a single connection
to a randomly selected peer.
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Figure 18: Mobility pattern 2

Figure 19 shows the scenario parameters.

Routing layer :
DSDV :
UPDATE_PERIOD = 2,1, 0.5, 0.2, 0.1, 0.05 sec
ARM-DSDV :
TW_SMOOTH =1 sec, TW_RFECENT = 3 sec
update-period control function and filter function = same as in Figure 15
End-to-end workload :
CONNECTION_START_TIMF = uniformly distributed along simulation time
CONNECTION_DURATION = 5 sec
DPKT_LENGTH = 100 octets, DPKT_RATE = 1 packets/sec
Values of (node speed, simulation time, number of runs) :
( speed = 2 m/s, 100 sec, 10 runs )
( speed = 5 m/s, 100 sec, 10 runs )
( speed = 10 m/s, 100 sec, 10 runs )
( speed = 15 m/s, 100 sec, 10 runs )

Figure 19: Scenario parameters of mobility pattern 2

Figure 20 shows delivery ratios of ARM-DSDV and DSDV. ARM-DSDV achieves 99.4%,
98.1%, 94.3%, and 77.7% while the best delivery ratios of DSDV are 99.9% at 5 update/sec,
99.4% at 10 updates/sec, 96.0% at 10 updates/sec, and 78.1% at 10 updates/sec. The ratios
are very similar between ARM-DSDV and DSDV. One can also observe that, as the group
speed increases, the overall delivery ratio is getting low regardless of the protocol. This is
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Figure 20: Delivery ratio of mobility pattern 2

because more dynamics makes it harder for a routing protocol to accurately maintain route
information.

The routing cost is shown in Figure 21. The relative cost at optimal DSDV update
frequency is 129.3%, 76.1%, 70.0%, and 68.1%, respectively. Except the case of speed 2
m/sec, ARM-DSDV saves from 23.9% to 31.9%. Compared to mobility pattern 1, savings
are smaller. One of the reasons is that mobility pattern 1 has fewer connections of eight
compared to forty connections in mobility pattern 2. Update-content control has more
opportunities to cut down on vector entries in mobility pattern 1.

8 Conclusion

The ARM control mechanism presented here allows a proactive routing protocol to dynam-
ically adjust the period and content of its routing updates in order to adapt to the mobility
and route-demand pattern. Furthermore, ARM is completely decentralized, allowing each
node to adapt independently, and its overhead is low.

We applied ARM to the DSDV protocol, coming up with ARM-DSDV. We showed
that for various mobility and workload scenarios, ARM-DSDV typically achieves the same
data delivery ratio as DSDV with update period optimized for the mobility and workload
scenario, while saving up to 60% in routing cost. Lower cost gives data traffic more available
bandwidth, a valuable resource in ad hoc networks. Naturally, ARM-DSDV achieves higher
data delivery ratio than non-optimized DSDV.

Changes in neighborhood appear to be a good approximation to the actual extent of
mobility. Keeping track of forwarded packets appears to be a useful yet inexpensive way of
assessing the route-demand patterns.
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Figure 21: Routing cost of mobility pattern 2

Regarding future work, clearly ARM requires much more analysis. Alternative ways
to obtain mobility and route-demand metrics need to be investigated and compared with
current metrics. Sophisticated control functions may outperform the simple ones used in
the paper.

Another area of future work is to make reactive protocols adapt to mobility pattern. This
appears to be conceptually harder than ARMing proactive protocols. A proactive protocol
can be made adaptive by slowing down its proactivity, reducing routing information being
exchanged among nodes. But for a reactive protocol, one would need to add new mechanisms
of information gathering.
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