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This work presents the mathematical modeling and analysis of heli-

copters towing submerged loads using long cables for sub-surface object

detection when surface-based vessels cannot operate safely. A geomet-

rically exact model of rotating beams is derived, and used to represent

both the cable dynamics and rotor blade dynamics. Flight dynamics and

trim conditions for an axially flexible straight cable and a curved cable

are separately formulated for a general case of helical climbing turns,

and used to cross-validate each other. In steady flight, the trim longitu-

dinal dynamics of the submerged load produces down-forces from towed

body fins, increasing the apparent weight of the tow system. Cable and

towed body drag manifest as increases in the effective equivalent flat-

plate area, necessitating excessive nose-down helicopter trim pitch atti-

tudes (-6◦) and causing pilot discomfort. Excessive pitch attitudes can

be avoided using aft offset of the helicopter tow point, or the deployment

of longer cables in combination with pitching fins to regulate towed body



depth. In steady level turning flight, cable and towed body drag result

in the submerged load turning with a consistently smaller radius than

the helicopter. Depth regulation in turning flight using pitching fins is

less effective than in forward flight due to increased cable drag opposing

larger down-forces.

Analysis of linearized models showed that the helicopter frequency re-

sponse to pilot inputs is unaffected by the addition of the cable and

towed body above 1 rad/s. The low-frequency response magnitude re-

duces with increasing hydrodynamic drag on the cable and towed body,

and is unaffected by cable structural properties due to over-damped sta-

bilization from hydrodynamics.

The swashplate inputs required to guide the towed body along a “tear-

drop” shaped trajectory are obtained using a two-stage process. The

motions of the tow point that guide the submerged load along the tar-

get path are obtained using an optimization process. The system target

states are generated based on these tow point motions, and an LQR con-

troller is used to guide the helicopter along its target path. Trim rotor

inflows from the vortex wake model are obtained at the various equilib-

rium points used to construct helicopter target states, interpolated and

applied as “delta” corrections to the dynamic inflow model. Blade elastic

twist has a significant effect on rotor power predictions and the steady

hub loads, while flap bending elasticity acts as a vibration absorber to

attenuate the oscillatory component of hub rolling and pitching moments.
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1 Introduction

The rotorcraft mission that is the focus of this work is to tow an underwater

object, by attaching it to a helicopter with long cables, for sub-surface object de-

tection. Using an aerial platform for tow operations continues to be explored as a

viable alternative to traditional ship-based tow procedures (Refs. [1], [2], [3], [4], [5]).

The primary application of such a configuration is in shallow water and locations

which may have mines, where surface-based vessels are vulnerable to damage.

Figure 1.1: The Helicopter-based Tow Mission For Submerged Loads - from Ref. [6]
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This application is unique in comparison to other roles that rotorcraft have

come to occupy over the years, and presents its own specific challenges to overcome.

The towed body is fitted with pitching hydrofoils to maintain a specified depth below

the water surface. The interaction of depth control system and hydrodynamics of

the load, dynamics of the helicopter rotor and the long cable lengths involved (350-

500 ft) may trigger physical phenomena that pose a risk to flight safety. Further, the

large hydrodynamic drag on the submerged components (including the cable) results

in increased engine power requirements and large nose-down trim pitch attitudes,

resulting in inefficient operation, reduced life and pilot discomfort.

Figure 1.2: Height-Velocity Curve : UH-60 BlackHawk (Ref. [7])

The tow mission is typically executed at an altitude of 150 ft at 20-25 knots.

This flight condition is on the verge of violating the height-velocity curve restric-

tions (known as the “dead-man curve”) shown in Fig. 1.2. The helicopter altitude

is constrained from increasing beyond a reasonable limit by cable weight and en-

gine power restrictions, and from decreasing by safety of flight issues. The vehicle

possesses insufficient altitude and airspeed to safely execute autorotation following
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engine failure, and operates on a knife-edge balancing safety and efficiency. Through

careful selection of design parameters and control co-ordination techniques, the sys-

tem efficiency can be increased and adverse effects of dynamic interactions can be

alleviated or avoided entirely.

Figure 1.3: Tow System Components and Related Applications (Refs. [6], [8], [9])

The tow mission brings together aspects of two different fields. The first

field is helicopter flight, in which the relevant areas of study are rotor dynamics,

flight dynamics and sling load operations. The second area is sub-surface sensing

from auxiliary devices towed from ships using long cables. The dominant physical

phenomena in this application are cable flexibility, hydrodynamics of the towed

body and fluid forces on the cable. These areas of interest are illustrated in Fig.

1.3. Prior work in each of these areas has allowed the scientific community to

identify reliable analytical tools to model the physical phenomena of interest. While
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the building blocks for the helicopter tow mission have been individually studied,

certain assumptions were made, tailored to the specific systems under consideration,

that limit their direct applicability to the present problem. The next section will

summarize the state-of-the-art in four key areas :

• Rotor Dynamics

• Helicopter Flight Dynamics

• Sling Load Operations

• Cable and Towed Body Modeling

1.1 Previous Work in Rotor Dynamics Modeling

Over the last few decades, significant advances have been made in simulation

modeling of rotor blade structures and aerodynamics. The general term used for

detailed rotor dynamics modeling is Comprehensive Analysis, which refers to a class

of techniques that encompass rotor trim, time marching simulations and stability

analysis. The modeling of most problems in structural dynamics can be broken down

into two components : the structural model, which is concerned with the reaction

forces in the flexible material, and the forcing model, that deals with inertia, gravity

and aerodynamics.

The primary contributions to the so-called “external” loads acting on the ro-

tor blade are the inertial forces and aerodynamic forces. The inertial loads can

be obtained from the motions of the structure using Newton’s II law, as given in
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Chapter 2 for Euler-Bernoulli beams, and are common to all manner of structures.

The aerodynamic models are specific to rotors and blades, and are discussed in the

following section.

Aerodynamic forces on a rotor blade are generated by virtue of its motion

relative to the free-stream flow. These motions include blade rotation, pitch control

inputs, geometric and elastic twist, flap/lag transverse motions, hub translations

(forward flight and climb/descent) and hub rotations due to fuselage pitch, roll and

yaw. The airload distributions generated by the rotor blades give rise to sheets of

trailed and shed vorticity that roll up into discrete tip vortices. The various elements

of vorticity in the flowfield are responsible for the induced inflow over the rotor

disk. The problems of quantifying the induced velocity in the flowfield

and structural motions are inherently coupled, and iterative methods are

employed to obtain solutions that yield flowfields that are consistent with

the structural response and vice versa.

Rotor Blade Structures

Figure 1.4: Beam Model of an Elastic Rotor Blade - Ref. [10]
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Most rotor blades are slender structures (radius to chord ratios over 10) and

have been successfully modeled as Euler-Bernoulli beams with elastic flap, lag and

torsion (Refs. [10], [11], [12], [13]). Initial analyses invoked small-angle assumptions

based on ordering schemes to reduce the number of terms in analytical expansions

(Ref. [10]). Variants of the beam theory were derived (Ref. [11]) to accommo-

date so-called “moderate rotations” and partial numerical formulations of the beam

equations. Further systematic efforts (Refs. [14], [15]) allowed for lifting the various

assumptions made during the formulation of the beam equations, and expanded the

generality of the analysis. These “implicit formulations” were developed to express

the governing beam equations in state-space form using a numerical representation,

which is extremely useful for stability analysis and the circumvention of ordering

schemes. However, as highlighted in Ref. [15], the inherent “implicitness” of the

formulation does not guarantee the accommodation of large deflections. A survey

of the beam theories used for rotorcraft analyses may be found in Ref. [16].

Beam theories that make no assumptions regarding the relative magnitudes

of various rotations and displacements, or those that place limitations only on the

maximum strains in the material, are referred to as geometrically exact representa-

tions (Refs. [17], [18]). With the advent of these improved formulations, they quickly

gained a place as tools of choice in most rotorcraft comprehensive analyses.

Successful validation with flight tests and wind-tunnel tests have demonstrated

that, for the purposes of predicting rotor performance and vibrations (Refs. [19],

[20], [21]), beam models are sufficient representations of blade elasticity. Examples

of Comprehensive Analyses that use beam models include CAMRAD II (Ref. [22]),
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RCAS (Ref. [23]), UMARC (Ref. [19]), UMARC II (Ref. [21]) and KTRAN-RDYNE-

GENHEL (Sikorsky). In the last analysis, KTRAN (Ref. [24]) models structural

dynamics, RDYNE (Ref. [25]) is used for structural/aerodynamics and GENHEL

(Ref. [26]) is used for the vehicle flight dynamics. In addition to the examples

mentioned here, various organizations such as Westland, Bell and Eurocopter use

their in-house codes for performance and vibration analysis.

Rotor Aerodynamics

The simplest wake model for a rotor is obtained from momentum theory, where

the rotor disk is treated as a pressure discontinuity and the induced inflow is assumed

to be uniform. For steady axial flight, the Blade Element Momentum Theory (Ref.

[27]) can be used to impose fewer assumptions on the spanwise distribution of the

inflow, but is restricted to hover, climb and windmilling descent with a well-defined

steady wake boundary.

Figure 1.5: Visualization of Tip Vortices - Ref. [28]
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As the rotor transitions into forward flight, the discrete tip vortices interact

strongly with each other between advance ratios of 0 and 0.1 and the inflow dis-

tribution is non-uniform. At slightly higher advance ratios (0.15 or higher), the

rotor wake is swept away by the free-stream flow, and the inflow distribution over

the disk can be approximated using a constant component superimposed with a

radially linear longitudinal and lateral skew (Refs. [27], [29]). These models were

extended to include additional variations in spanwise and azimuthal distributions

of induced inflow, resulting in a generalized finite-state model based on unsteady

potential flow theory (Ref. [30]). The reduced-order wake models relate the inflow

distribution over the rotor disk to the aerodynamic load distributions along the span

and around the azimuth based on assumed shape functions, and may be adequate

for aeroelastic stability analysis. However, the quantitative accuracy of such models

comes into question during the so-called “transition” flight regimes (µ 6 0.1) and

certain stages of descending flight. In these operating conditions, non-uniformities

in the rotor inflow distribution are significant, and the assumptions used to con-

struct these reduced-order models are violated by the nature of the resulting wake

geometry.

With improvements in computational power, it became possible to utilize vor-

tex models of the rotor wake. These refined models are used to represent the rotor

wake using the fundamental physical elements, i.e. individual vortices, that comprise

the flowfield. A comprehensive survey of vortex wake methodologies may be found

in the literature (Refs. [27] and [19]), and the milestones related to time-marching

wake are summarized here.
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Initial vortex wake models were based on experimental measurements of wake

geometry (Refs. [31], [32]), which resulted in significant improvements in rotor hover

performance predictions. A relaxation wake model (Ref. [33]) was used to obtain

periodic (steady-state) solutions for the wake geometry, valid for a single tip vortex

corresponding to a bound circulation distribution with one maximum. These works

were refined (Ref. [34]) and extended to forward flight (Ref. [35]), and formed the ba-

sis of time-marching wake algorithms that accommodate multiple rotors (Ref. [36]),

multiple trailers and associated local maxima in the bound circulation distribution

(Ref. [37]) and dissimilar blades (Ref. [38]). These time marching vortex wake mod-

els are necessary for the analysis of unsteady flight conditions (i.e. maneuvers), and

may also be used in steady flight conditions.

As a result of concerted efforts by various researchers, these models have

evolved as useful tools that provide an accurate representation of the flowfield, and

can be coupled to both the rotor dynamics and the vehicle flight dynamics.

1.2 Previous Work in Flight Dynamic Modeling

The field of helicopter flight dynamics is concerned with understanding the

aerodynamic and structural couplings between rotor motion, airframe translations

and rotations, and the time-varying flowfield that manifests as a result of these inter-

actions. Over the years, commercial software developers, helicopter manufacturers,

academic institutions and research labs have developed flight dynamic analyses of

increasing fidelity levels. A detailed review of these tools may be found in Refs. [39]
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and [20], and is summarized here for completeness. All these analyses can per-

form trim and time integration to simulate a maneuver in response to prescribed

pilot inputs. With the exception of CHARM, the other simulations can also obtain

linearized dynamic models for stability analysis.

The final entry in Table 1.1 has been developed starting from the GENHEL

model (Ref. [26]) over the years at the University of Maryland. The original GEN-

HEL model was augmented with a dynamic inflow model and the ODEs were recast

into state-space form in Ref. [40]. Ref. [41] details the implementation of a fully

numerical structural formulation for elastic blades with coupled flap-lag-torsion dy-

namics, modal reduction and the addition of a finite-state wake model (Ref. [30]).

In Ref. [39], the structural/flight dynamics were coupled with a vortex wake model

(Ref. [42]), Keller’s extended momentum theory was implemented for inflow compu-

tations and a quasi-steady forcing model was introduced for blade section aerody-

namics. Aerodynamic modeling refinements were found to be necessary to improve

prediction of the vehicle off-axis response. During the work of Ref. [43], the ODEs

were expressed in implicit form for improved modularity. The flight dynamics were

coupled with the time marching vortex wake of Ref. [44] in Ref. [20] for trim and

time marching, and serves as a starting point for the present analysis.

(*The details of FLIGHTLAB are from Ref. [46], last updated 15 Feb 2008)
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Table 1.1: Rotorcraft Flight Dynamic Models

Name Fuselage Rotor Wake

CAMRAD II Rigid body w,v,φ Johnson Wake (Ref. [37])

CHARM Rigid body w,v,φ,u Fast vortex (Ref. [45])

COPTER Flexible w,v,φ Scully vortex wake

FLIGHTLAB Rigid body w,v,uncoupled φ 3-state Dynamic Inflow

HOST Rigid body Elastic Pitt-Peters

RCAS Flexible w,v,φ Peters-He, Vortex wake

UMARC Flexible u,v,w,φ Pitt-Peters, Vortex wake

HeliUM Rigid body w,v,φ Peters-He, Vortex Wake

1.3 Previous Work in Sling Load Modeling

Helicopters present an attractive option for short-haul cargo transport, espe-

cially for ship-to-ship transfer or in areas where wheeled or tracked vehicles cannot

progress due to the nature of the terrain (e.g. logging operations and emergency

rescues in mountainous regions). To that end, they are fitted with cargo hooks for

lifting external loads using cables. The addition of a pendulous mass beneath the he-

licopter affects the system dynamics (Ref. [47]), increases pilot workload (especially

for large rotorcraft - Ref. [48]) and sometimes imposes stability-based restrictions

on the maximum flight speeds (Ref. [49]). Subsequent efforts focused on modeling,

predicting and alleviating the aerodynamics-induced instabilities (Ref. [50]) and un-

derstanding the Handling Qualities (HQ) requirements for helicopters with sling
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loads (Refs. [51]).

Flight-test based HQ ratings for isolated helicopters have been found to cor-

relate well with frequency-domain characteristics of the fuselage on-axis attitude

responses. However, the addition of an external load modifies the system dynamics,

with increasing load mass (in relation to helicopter mass) and long sling cables hav-

ing pronounced effects on the on-axis response. Previous studies (e.g. Refs. [52], [53])

have identified a dipole signature (closely spaced pole-zero pair) in the phase and

reduction in magnitude in the vicinity of the natural pendulum frequency of the

load, resulting in a “double crossing” of the magnitude and phase bandwidth cut-

offs. It was found in Ref. [53] that bandwidth parameters obtained from the aircraft

translational rate response were found to correlate well with trends in HQ ratings

obtained from flight tests. The work of Refs. [51] and [54] collectively highlighted

two significant findings:

• The metrics formulated in Ref. [53] based on vehicle translational rate response

did not completely correlate with flight test results

• Another criterion based on a bandwidth and a magnitude deformation param-

eter of the vehicle attitude response correlated well with the HQ ratings from

flight tests

Given the large hydrodynamic forces acting on the towed body, the total force

exerted by the towed body on the helicopter is similar in magnitude to that expe-

rienced when carrying a heavy sling load (mload > 0.2 mhelo). Therefore, frequency

response criteria pertaining to sling loads may yield additional insight into the Han-
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dling Qualities of the helicopter tow system, discussed in Chapter 6.

Payload Delivery Systems using Fixed-Wing Aircraft

Two-body problems joined by a curved cable are of practical interest to air-

borne delivery systems using fixed-wing aircraft. In these applications, the cargo

(payload) is suspended from the aircraft using a long tow cable and the pilot main-

tains a level circular hold pattern (steady level turn). The cumulative effects of

weight, aerodynamic drag and long cables result in the payload assuming a steady

circular path of extremely small turn radius, i.e. it is near-stationary and may be

safely detached. When the turn radius is sufficiently small, the delivery is termed

“pin-point”. This problem was studied in Ref. [55], and an interesting trend was

found - that the nature of the solution was multi-valued, i.e. there are multiple

payload paths for the same aircraft turn rate. These multivalued solution regions

are intricately linked to the regions of pin-point deliveries. The cable was assumed

to act as an inextensible catenary, and the forces on the payload considered were

steady aerodynamic drag and gravity.

Reference [56] also investigates the aforementioned problem using a flexible

cable modeled with finite elements. “Jump” discontinuities and regions of multi-

valued solutions were observed to occur for specific combinations of aircraft turn

radius and cable length. Dynamic instabilities based on linearized analyses were

also observed. Experimental measurements on circularly towed aerial tethers were

recorded in Ref. [57], while simulation modeling and optimal control is performed
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in Ref. [58].

Figure 1.6: Schematic of Aircraft-based Cargo Delivery - Ref. [56]

Reference [59] discusses dynamic modeling and control of a small maneuver-

able flight vehicle towed by a fixed-wing aircraft. The cable is modeled using a

multibody formulation with multiple straight-line segments. Nonlinear control laws

using dynamic inversion are formulated in Ref. [60] for a maneuverable towed target,

and optimal control of a similar system is studied in Ref. [61].

Helicopters Towing Hydroplaning and Submerged Loads

Reference [62] analyzes towing a sea pallet fitted with hydrofoils using a HSS-2

helicopter, and addresses steady-state performance analysis. Significant power sav-

ings may be obtained by allowing the payload to float on the water surface on a hy-

droplaning sled, and towing the sled using a helicopter. Using FlightLAB (Ref. [46])
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to model the helicopter dynamics, a lumped-mass model of the cable and a rigid-

body model of the towed body with table-lookup hydrodynamics for quasi-steady

forces and moments, Ref. [63] represents the most relevant comprehensive analytical

work for the rotorcraft tow mission. Trim and OEI conditions were analyzed for the

tow system. The location of the cable attachment point on the helicopter was also

found to play an important for speed stability (longitudinal static stability).

Reference [64] documents flight tests of a U.S. Navy H-53 helicopter towing

a floating oil-spill containment barrier. Large transient cable forces are attributed

to vortex shedding. By choosing cables with cross-sections of different dimensions,

the tow ropes were effectively used as vibration absorbers to improve pilot comfort.

In Ref. [65], the development of a hydroplaning hull sled for delivery of pollution

response equipment is discussed. Payload transport was demonstrated for an HH-

3F helicopter, initially using the (more powerful) Navy RH-53 as a test platform

to verify the behavior of the sled. A maximum speed of 53 knots was achieved for

the the HH-3F helicopter. Reference [66] discusses systematic development of tow

procedures through flight tests of a hydroplaning body using an HH-3F helicopter.

The helicopter trim attitude is increasingly nose-down with higher speeds (less than

-6 deg), leading to pilot fatigue. The challenges of operating rotorcraft with

submerged loads extend beyond overcoming dynamic interactions and

human factors must also be considered.
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1.4 Previous Work in Cable and Towed Body Modeling

Cable modeling has received considerable attention in the field of Ocean En-

gineering due to its use in underwater mooring and tow lines. A floating platform

(ship) is used to tow single or multiple cables for applications ranging from fishing to

submarine detection using sonar. Due to the relative masses of the tow platform and

the towed cable, two-way couplings are usually neglected, and the motion of the ship

is often imposed as a kinematic constraint (boundary condition) for the root end

of the cable. Initial efforts focused on modeling the cable as multiply jointed rigid

straight-line segments. This methodology captures global curvature effects without

resorting to (at the time) computationally expensive simulations (Ref. [67]).

Figure 1.7: Cable Model with Multiple Jointed Links - Ref. [68]

Reference [69] details the modeling of cables using the approach mentioned

above, and showed that transitioning from straight-line tow to circular motion and

back resulted in large differences in turn radii for the tow point and towed body.

These differences were found to be larger for increased tow speed, and that transient

drag forces played an important role in determining the depth of the towed body.
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In Ref. [68], results from these “rigid-link” models were compared to analytical

solutions of the PDEs governing the motion of a catenary with a concentrated tip

mass. The natural frequencies showed excellent agreement with analytical solutions

with increasing number of elements. However, the transient behavior predictions (in

air) did not yield satisfactory solutions in comparison to analytical results, but these

were attributed to small-angle assumptions used to obtain the analytical solution.

Comparisons with experimental results in a water tank were also presented which

showed overall good agreement. A versatile variant of this model was formulated in

Ref. [70] to accommodate multiple cables of dynamically changing length.

One shortcoming of these rigid-link models is that they ignore the cable flexural

stiffness and invariably exhibit slope discontinuities, which play an important role

in determining the variation of cable hydrodynamic loading as a function of the flow

incidence angle (Ref. [71]). These inaccuracies diminish with an increasing number

of segments, but still persist as an inherent part of the approach.

Reference [72] discusses the modeling of three-dimensional motion of a towed

system under steady conditions, neglecting cable elastic torsion, bending resistance,

side forces, added mass, inertial loads and axial elongation. A conservative estimate

using parameters specific to a particular tow system is made to justify the dropping

of various terms in the governing equations, and a lumped parameter approach

is adopted for the analysis. Since inertial loads were dropped, only steady-state

configurations can be obtained.

Reference [73] adopts an approach called “the method of lines” to solve the

governing equations, similar to that in Ref. [74]. This analysis accounted for cable
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inertia but neglected flexural stiffness of the cable. A comparison with experiments

revealed that while the cable positions were representative, the errors in trail angle

and depth were of the order of 5-10% of the cable length. The simulation consistently

over-predicted the sink rate of the cable. The transient peaks in the tension at the

fixed point showed similar trends.

In Ref. [75], the numerical solution scheme of Ref. [76] was improved to solve

the governing equations using a finite-difference approach. Comparisons between

the analyses and with experimental data showed good agreement.

Reference [77] demonstrated the use of a finite element method to model the

inherent curvature in the tow cable. The PDEs were reduced to ODEs (similar

to the treatment of rotor blades) and an ODE solver (Ref. [78]) tailored for stiff

problems was used to obtain numerical solutions. This effort was among the first to

address problems in tow cable dynamics using standardized methods and acceptable

numerical errors. Further, the differences in experimental errors associated with at-

sea testing vs. controlled laboratory testing were noted to govern the accuracy of

measurements.

Reference [79] presents a finite-element based approach for modeling the cable

dynamics of a deep-sea ROV (Remotely Operated Vehicle) system. Each element is

modeled with axial extension at the end nodes, with linear shape functions. This

model was developed for studying snap loads in rough seas where the vertical motions

of the ship cause alternate tensing and slackening of the cable. Comparisons with

test data showed good agreement, especially when including refined hydrodynamic

forcing on the cable due to the wake of the cage.
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The fluid-structure coupling problem for cables is addressed in Ref. [80]. A

finite-difference based structural discretization and solutions of the governing PDEs

is presented, together with verification and validation of the formulation was pre-

sented. The governing equations were derived neglecting the flexural stiffness terms,

and buckling effects are therefore absent.

Figure 1.8: Axially Extensible Cable Model of Ref. [79]

A cable model is developed in Ref. [81] that accounts for flexural stiffness con-

tributions to the governing equations based on a simplified beam assumption. This

model was improved in Ref. [82] to include nonlinear stress-strain relationships and

arbitrarily large rotations, this avoiding the singularities associated with the Euler

rotation sequence. This model is used with finite-difference spatial discretization
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and various time marching schemes to study the transient behavior of the cable,

along with simulations of cable break in Ref. [83]. Reference [84] present an in-

vestigation of cable and towed-body response under transient conditions and water

currents, for a fixed tow vehicle trajectory. For the large cable length considered

(4000 m), the turn radius of the submerged body is consistently smaller than that

of the tow vehicle, and the separation between the two increases with the turn rate

of the platform.

Cable Hydrodynamic Characteristics

A concise description of the dominant flow phenomena around submerged

cables, together with experimental data is given in Ref. [85], the key conclusions of

which are summarized below.

Figure 1.9: Tow Cable Cross-Section - Ref. [85]
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Tow cables are constructed from multiple strands that are wound around each

other, shown in Fig. 1.9. When hydrodynamic fairings are not used, the resulting

outer shape is not symmetric, resulting in a steady non-zero lift force in addition to

steady drag. Unsteady flow separation on the upper and lower portions of the rear of

the cross-section, known as vortex shedding, creates fluctuating lift and drag forces

on the cross-section. This shedding may be symmetric or asymmetric depending on

the Reynolds number, as shown in Fig. 1.10.

Figure 1.10: Flow Around Circular Cylinders at Various Reynolds Numbers - Ref.

[85]

In the present investigations, the target tow speed is 25 knots. For a cable

diameter of 0.025 m, the Reynolds number in water is 3.1 × 105, where laminar to
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turbulent transition of the flow in the cable boundary layer is incipient, as shown in

Fig. 1.11 for a circular cylinder with its axis normal to the flow.

The Independence Principle states that the fluid dynamic proper-

ties of a yawed cylinder are governed by the normal component of the

flow. Therefore, metrics such as the Reynolds number and Strouhal number may

be appropriately modified to use the flow component normal to the cable axis.

Figure 1.11: Strouhal Number for a Circular Cable - Ref. [85]

The motion of the cable in response to unsteady loads induced by vortex

shedding is labeled strumming, which consists of one cycle normal to the flow

and two cycles in line with the flow. Lock-in phenomena may also occur when the

natural frequencies of the cable are close to the vortex shedding frequency. During

lock-in vibrations, the vortex shedding frequency of the cable is modified by the

structural motions, resulting in a larger resonance band, extending from 75-125% of

the original natural frequency.
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Experimental measurements were also obtained in Ref. [85] to determine the

variation of cable hydrodynamic forces at various flow inclinations. Based on the

data, a normalized hydrodynamic loading function is proposed, of the form

fN =
FN(β,Re)

R(Re)

fT =
FT (β,Re)

R(Re)

fL =
F ′L(β,Re)

R(Re)

The subscripts N ,T ,L represent the normal, tangential (along cable axis) and lift

forces per unit span acting on the cable. R(Re) represents the drag force per unit

span for a cable with its axis perpendicular to the flow (β = 90◦) and F ′L is the max-

imum lift force per unit span. Re is the Reynolds number based on diameter and β

is the inclination angle between the flow direction and the cable axis. The advantage

of this normalized representation is that at a given speed (Reynolds number), the

force coefficients are dependent only on the inclination angle β. The variation of

each of these force coefficients FN , fT and FR are discussed below.

Normal Force

The normal drag coefficient of circular cylinders is initially sensitive to Reynolds

numbers from 0 to 104, and nominally constant above 104 up to turbulent transition

at Re=3×105. The measurements of Ref. [85] indicate that for stranded cables,

normal force sensitivity to Reynolds numbers extends up to 6×104. Since the tow

mission of interest (for a 1-inch cable at 25 knots inclined at 45◦ to the flow) has

an operating Reynolds number of 2×105, the effects of Reynolds number on this
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force are not considered to be significant. The tests of Ref. [71] indicated very small

changes in normal force with Reynolds number above 104.

The variation of normal loading with flow inclination is given by

fN(β) = A0 + A1 cos β +B1 sin β + A2 cos 2β +B2 sin 2β

This representation was independently determined by Ref. [71] based on tow tests

conducted using ships. Ref. [85] suggests various coefficients that are specific to

each cable tested. However, Ref. [71] determined a common functional form for two

different cables (shown in Fig. 1.12 using φ instead of β along the x-axis), given by

fN(β) = −0.424 + 0.869 cos β + 0.979 sin β − 0.445 cos 2β − 434 sin 2β

Figure 1.12: Normal Loading Function - Ref. [71]
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Lift Force

Measurements of the steady lift force acting on a cable with its axis normal

to the flow direction showed scatter of the order of the measured value. Further,

attempts to fit similar loading functions for the lift force variation with flow incli-

nation resulted in significant error. The average lift force was found to be 5% or

smaller in comparison to the normal force. With increasing Reynolds number, the

normal force coefficients decreased rapidly, dropping to as much as 0.05 based on

the cable diameter and normal flow velocity. With the presence of hydrodynamic

fairings, this lift force (at zero sideslip) will vanish, and is ignored in the present

analysis.

Tangential Force

The tangential force, primarily a result of viscous forces on the cable surface,

was not measured in Ref. [85]. Ref. [71] estimated a constant value of 0.0249 with

respect to the cable diameter and total flow speed, using data collected from ship-

based tow tests and a static catenary analysis program at the David Taylor Research

Center (DTRC).

Towed Body Modeling

The submerged load (underwater sensor) is treated as a rigid body with 6DOF

motions. The towed bodies of interest are streamlined to reduce drag, and fitted

with hydrofoil surfaces to enable maneuvering as shown in Fig. 1.13. The hydrody-
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namic forces on the hull, hydrodynamic depressors and aft tailplanes are modeled

component-wise and added together, assuming negligible interference effects.

Figure 1.13: Typical Submerged Loads - from Ref. [86]

The hydrodynamic forces on each of these components is computed using

experimental data (in the case of bluff bodies) or semi-empirical models (for the

hydrofoils) based on the flow velocities and orientations at a reference point. Added

mass effects (also known as virtual mass) are taken into account when considering

unsteady motions by augmenting the inertial loads with acceleration-dependent hy-

drodynamic forces. These virtual mass forces are based on experimental data for

bluff bodies or unsteady thin airfoil theory for lifting surfaces.

The approach outlined above has been used almost universally for modeling

towed body dynamics (e.g. Ref. [67]). Research on underwater towed bodies has

primarily focused on surface-based platforms, where two-way interactions are neg-

ligible. In recent work, a dynamical model and control strategy for an underwater

vehicle towed by a semi-submersible is formulated in Ref. [87]. Two-way couplings

are considered between the bodies at either end of a tow cable that is modeled using

rigid jointed sections, and validation of the same is shown in Ref. [88]. Hydrody-

namic lift and drag, as well as added mass of the two vehicles are accounted for in
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a component-wise manner. Using pitching fins, depth control is achieved with PID

feedback, and turns by using proportional rudder feedback based on heading errors

to target way points. The turn maneuver simulations in Ref. [88] also demonstrated

that the two bodies did not turn with the same radius.

Modeling Deficiencies

• The use of independent controls for depth and heading may be sufficient when

both the tow platform and the towed body are immersed in water, where

damping is significant. For aerial platforms (rotorcraft), such an assumption

cannot be made. The bare airframe (open-loop) dynamics are unstable at low

speeds, couplings are non-negligible and off-axis responses are significant.

• Till date, Ref. [82] is the most comprehensive cable model that accounts for

flexural stiffness contributions and material non-linearities. However, the gov-

erning equations have been derived for a circular cross-section, assuming no

structural or inertial cross-couplings. Further, the original PDEs are inte-

grated numerically, and not available in state-space form for stability analysis.

• Previous work (Ref. [63]) used dynamic inflow at model the rotor wake at low

advance ratios (µ=0.06), which may yield quantitatively inaccurate predictions

of rotor power.

A deficiency exists in state-of-the-art simulation modeling of the helicopter tow

system, and the over-arching goal of the present work is to improve the analysis

fidelity. Specifically, the objectives are
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Objectives

• Construct improved mathematical models of the rotorcraft tow system with

components operating in different media

• Study trim configurations of helicopter and towed body in steady forward and

turning flight conditions, and identify means of reducing engine power required

during tow

• Perform stability analysis on the tow system and identify the dominant pa-

rameters that affect vehicle frequency response characteristics (for insight into

Handling Qualities)

• Formulate an approach to obtain the helicopter swashplate control inputs that

are required to guide the submerged load along a prescribed path

1.5 Key Contributions

1. Formulated coupled flight dynamics model of helicopter and hydrodynamics

of curved cable and towed body, together with kinematic-kinetic couplings to

account for boundary conditions and load transfers in state-space form

2. Improved cable modeling by extending the beam formulation to include non-

circular cross-sections

3. Formulated trim conditions for the tow system with simplified straight cable

as well as curved cable in steady forward flight and a helical ascending turn
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4. Identified key physical mechanisms to reduce rotorcraft power required and the

dominant parameters that affect vehicle frequency response characteristics

5. Applied a two-step approach for obtaining the pilot stick inputs required to

guide the towed body along a prescribed search pattern using optimization and

feedback control

1.6 Scope and Organization of Thesis

The present work is focused on systematic development of improved simulation

modeling of helicopters towing submerged loads using flexible cables, while retaining

a state-space formulation for stability analysis (as in Refs. [40], [39], [20]) .

• In Chapter 2, I detail the mathematical models used to represent the dynamics

of the helicopter fuselage, main rotor blade structures and wake, empennage,

tail rotor, tow cable and towed body are given, along with implementation

details for the dynamic couplings

• In Chapter 3, I formulate the trim conditions for the tow system using both

simplified straight cables as well as flexible (curved) cables, and detail how the

cable and towed body model fit into the overall structure of the simulation

• In Chapter 4, I provide the helicopter physical parameters used in this work,

together with verification and validation of the helicopter, wake and cable

models

• In Chapter 5, I show trim results for steady forward flight and steady turning
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flight, and identify the physical mechanisms that govern rotorcraft perfor-

mance, together with design and operational recommendations for reducing

power required

• In Chapter 6, I examine characteristics of the system frequency response to

pilot stick inputs using linearized dynamics in the neighborhood of equilibrium

(trim) conditions

• In, Chapter 7, I present an approach for trajectory tracking using optimization

and feedback controls to determine the pilot stick inputs required to guide the

towed body along a prescribed path

• Chapter 8 summarizes the key results and conclusions drawn from this work,

and suggests directions for future work

• Appendix A gives additional details on rotation matrices and their time deriva-

tives. Appendix B briefly touches on parallelization techniques used to acceler-

ate computations. Appendix C provides expressions for the kinematic integral

twist and its time derivatives, in addition to details on numerical quadrature
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2 Mathematical Model

This chapter provides a brief description of the structural and aerodynamic

models used for simulating the dynamics of individual components of the helicopter-

cable-towed body system. The first section provides the equations of motion gov-

erning the motion of rigid bodies, i.e. the helicopter airframe and towed body. The

second section outlines the geometrically exact beam formulation, and covers the

structural, inertial and aerodynamic loads on flexible components, i.e. rotor blades

and cable. The next section provides a brief description of aerodynamic forces acting

on the fuselage, empennage and tail rotor. The final section covers the boundary

conditions used to determine the dynamics of the cable and towed body.

2.1 Overview

Except for the free-vortex wake model, the equations of motion governing

the system dynamics are formulated in state-space form as a system of first-order

nonlinear coupled ODEs of the form

f(y , ẏ , u , t) = ε = 0

y is a vector of system states, u is a vector of control inputs and t is the current time

in seconds. Numerical solutions of these equations with optional simplifications (e.g.
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zero body-axis accelerations for trim) can be used to study vehicle performance in

steady flight, perform stability analysis and simulate unsteady maneuvers.

The state vector consists of the following components

y =
{

y
T

F
y

T

λ y
T

rotor y
T

cable y
T

load

}T

(2.1)

• y
F

represents the vector of the 12 airframe rigid-body states

• yλ represents the induced inflow coefficients for all rotary-wings present in the

system.

• yrotor represents the vector of rotor deflection states for all blades.

• ycable represents the vector of deflection states for the flexible cable

• yload is the vector of rigid-body states of the submerged load

The vector of control inputs is

u =
{

δ0 δlat δlon δped θ
F1

θ
F2

}T

The first four controls are manipulable by the helicopter pilot and represent, in order,

the positions of the collective lever, lateral and longitudinal cyclic stick and the foot

pedal. The last two controls represent the pitch inputs for the towed body fins, used

to simultaneously regulate depth and lateral separation from the helicopter.

2.2 Coordinate Systems

Various reference frames are used in dynamic simulations, depending on the

component being analyzed. Earth-fixed axes to track vehicle displacements, body
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axes for force and moment equilibrium equations, hub-fixed axes for hubloads and

rotating axes for blade deflections are some examples. To transfer displacements

and loads across various interconnected components, consistency must be main-

tained, i.e. quantities must be transferred from one axis system to another through

coordinate transformations to use in the governing equations for that component.

Mathematically, this rotation can be expressed as the pre-multiplication of a vector

(X,Y,Z components) with a rotation matrix.

One method to perform a rotation from one system to another is to use an

Euler angle sequence. The three rotations occur in the following order:

• Yaw angle ψ about the Z axis (the new system is X1,Y1,Z1=Z)

• Pitch angle θ about the Y1 axis (the new system is X2,Y2=Y1,Z2)

• Roll angle φ about the X2 axis (the new system is X3=X2,Y3,Z3)

The rotations are “positive” in the anti-clockwise sense. For example, a yaw rotation

is positive if the (new) X1 axis lies between the (old) X and Y axes (for a rotation

angle less than 90◦). The rotation matrices for the yaw, pitch and roll rotations are

given below.

Tψ =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1



Tθ =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


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Tφ =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ


Since the sequence occurs in the order Z → Y → X, the rotation matrices

must be premultiplied in that order. Thus, the final rotation matrix from co-ordinate

system “G” to “A” through angles (ψ,θ,φ) is

TAG = Tφ Tθ Tψ = R(ψ, θ, φ)

The first subscript on the left hand side is the label of target co-ordinate system

to which we are converting quantities, and the second subscript is the label of the

source co-ordinate system from which we are converting quantities. The reverse

rotation from co-ordinate system “A” to “G” follows the exact opposite sequence

in reverse, i.e. angles (-φ,-θ,-ψ) about the (X,Y,Z) axes. In that case, the rotation

matrix is given by

TGA = T−φ T−θ T−ψ

Using trigonometric identities, it can be shown that

T−φ = T
T

φ

T−θ = T
T

θ

T−ψ = T
T

ψ

Thus, the rotation from “A” to “G” is simplified to

TGA = T
T

φ T
T

θ T
T

ψ
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Using the matrix property

(A B C)
T

= C
T

B
T

A
T

(2.2)

TGA = (Tψ Tθ Tφ)
T

= T
T

AG

These rotation matrices do not depend explicitly on time, and the time derivatives

of the forward and backward rotations are also transposes of each other.

Time Derivatives of Rotation Matrices

Often, the time derivatives of these rotation matrices are required for transferring

displacements and loads across co-ordinate systems. Instead of expanding the matrix

multiplication and then differentiating a long expression, it is more elegant to derive

expressions for the time derivatives of individual rotations first, and then apply the

matrix multiplication to build the total rate of change of a rotation matrix. To that

end,

ṪAG =
d

dt
(Tφ Tθ Tψ)

= Ṫφ Tθ Tψ + Tφ Ṫθ Tψ + Tφ Tθ Ṫψ (2.3)

The second time derivative is obtained by differentiation

T̈AG =
d

dt

(
ṪAG

)
= T̈φ Tθ Tψ + Tφ T̈θ Tψ + Tφ Tθ T̈ψ +

2
(
Ṫφ Ṫθ Tψ + Ṫφ Tθ Ṫψ + Tφ Ṫθ Ṫψ

)
(2.4)

All that remains is to obtain the time derivatives of the sequential rotations, which
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are given below.

Ṫψ =


− sinψ cosψ 0

− cosψ − sinψ 0

0 0 0

 ψ̇

Ṫθ =


− sin θ 0 − cos θ

0 0 0

cos θ 0 − sin θ

 θ̇

Ṫφ =


0 0 0

0 − sinφ cosφ

0 − cosφ − sinφ

 φ̇

T̈ψ =


− sinψ cosψ 0

− cosψ − sinψ 0

0 0 0

 ψ̈ +


− cosψ − sinψ 0

sinψ − cosψ 0

0 0 0

 ψ̇
2

T̈θ =


− sin θ 0 − cos θ

0 0 0

cos θ 0 − sin θ

 θ̈ +


− cos θ 0 sin θ

0 0 0

− sin θ 0 − cos θ

 θ̇
2

T̈φ =


0 0 0

0 − sinφ cosφ

0 − cosφ − sinφ

 φ̈ +


0 0 0

0 − cosφ − sinφ

0 sinφ − cosφ

 φ̇
2

Various coordinate systems are used in this analysis. Each of these axes sys-

tems simplify calculations of certain force and moment components used in the

dynamics simulation, and are detailed in the following sections.
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2.2.1 Earth-Fixed Axes

The earth-fixed axes represent an inertial reference system used to track the

motion of objects in space. The origin of this axis system is chosen to be a fixed

point on the ground. The unit vector triad along the earth-fixed axes is represented

by (i
G

, j
G

, k
G

). The earth-fixed axes are oriented so that i
G

points North, j
G

points

East and k
G

points towards the ground. The position vector of the helicopter CG

in space is given by

r
CG

= x
CG
i
G

+ y
G
j

G
+ z

CG
k

G

2.2.2 Helicopter Body-Fixed Axes

The body axes for the helicopter, shown in Fig. 2.1, are obtained from the

earth-fixed axes using three translations to shift the origin to the helicopter CG,

followed by three Euler rotations ψ
F
, θ

F
, φ

F
in the order Z→Y→X, positive for

nose-right, pitch-up and roll-right motions respectively. The unit vectors along the

body axes are given by 
i
B

j
B

k
B


= TBG


i
G

j
G

k
G


(2.5)

The rotation matrix from gravity to helicopter body axes is given by
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TBG =


1 0 0

0 cosφ
F

sinφ
F

0 − sinφ
F

cosφ
F




cos θ

F
0 − sin θ

F

0 1 0

sin θ
F

0 cos θ
F




cosψ

F
sinψ

F
0

− sinψ
F

cosψ
F

0

0 0 1


(2.6)

Figure 2.1: Earth-fixed axes and helicopter body axes

2.2.3 Helicopter Hub Non-Rotating Axes

The hub non-rotating axes, shown in Fig. 2.2, are obtained from the helicopter

body axes using a translation of the origin, followed by two Euler rotations αs, βs in

the order Y → X, followed by a 180◦ rotation about the intermediate Y-axis. The

first two rotations are positive when the shaft tilt causes the hub to move aft and

starboard, respectively. The origin of this axis system is at the center of the hub.

The unit vectors along the hub non-rotating axes are
i
H

j
H

k
H


= THB


i
B

j
B

k
B


(2.7)
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The rotation matrix from the helicopter body axes to the hub non-rotating axes is

THB =


−1 0 0

0 1 0

0 0 −1




1 0 0

0 cos βs sin βs

0 − sin βs cos βs




cosαs 0 − sinαs

0 1 0

sinαs 0 cosαs

 (2.8)

Figure 2.2: Helicopter hub non-rotating axes

2.2.4 Blade Rotating Unpreconed Axes

The blade rotating unpreconed axes, shown in Fig. 2.3, are obtained from

the hub non-rotating axes using one rotation ψj about the hub non-rotating Z-axis

k
H
. The origin of the blade rotating unpreconed axes is at the center of the hub,

and is coincident with the origin of the hub non-rotating axes. The quantity ψj is

the azimuth angle of the jth blade, zero when the blade passes over the tail boom,

positive counter-clockwise and is given by ψj = Ω
MR
t +

2π

Nb

(j − 1). The

unit vectors along the blade rotating unpreconed axes are given by
i
R

j
R

k
R


= TRH


i
H

j
H

k
H


(2.9)
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Figure 2.3: Helicopter blade rotating unpreconed axes

The rotation matrix from the hub non-rotating axes to the blade rotating

unpreconed axes is

TRH =


cosψj sinψj 0

− sinψj cosψj 0

0 0 1

 (2.10)

2.2.5 Blade Preconed Undeformed Axes

The blade pre-coned undeformed axes, shown in Fig.2.4 are obtained from the

unpreconed axes using one rotation through an angle −βp about the j
R

unpreconed

rotating axis, and is positive for vertically upward motion of the blade tip. The

origin of the blade preconed axes is coincident with that of the unpreconed axes.

The unit vectors along the blade rotating unpreconed axes are given by
i

j

k


= TUR


i
R

j
R

k
R


(2.11)
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The rotation matrix from the unpreconed axes to the preconed axes is given by

TUR =


cos βp 0 sin βp

0 1 0

− sin βp 0 cos βp

 (2.12)

Figure 2.4: Pre-cone Rotation

2.2.6 Blade Deformed Axes

The blade deformed axes are unique to each point on the elastic axis, and

are obtained using three translations along the preconed undeformed axes, followed

by three consecutive rotations. The first translation is along the i axis through a

distance e + x + u, where e is the hinge offset, u is the axial fore-shortening due

to bending and x is the spanwise position of the beam cross-section. The second

translation is along the j axis through the in-plane lead displacement v, and the third

translation is along the k axis through the out-of-plane flap bending displacement

w as shown in Fig. 2.5. The origin of the deformed axes defining the orientation

of a blade cross-section is at the intersection of the deformed elastic axis with that
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cross-section. The unit vectors along the deformed axes are
i ′

j ′

k ′


= TDU


i

j

k


(2.13)

The transformation matrix from the undeformed axes to the deformed axes is

TDU =


cβ1cξ1 cβ1sξ1 sβ1

−cξ1sβ1sθ1 − cθ1sξ1 cξ1cθ1 − sξ1sβ1sθ1 cβ1sθ1

−cξ1sβ1cθ1 + sθ1sξ1 −cξ1sθ1 − sξ1sβ1cθ1 cβ1cθ1

 (2.14)

Here, c() = cos() and s() = sin(). The angles ξ1, β1 and θ1 may be identified from

the spatial gradients of the elastic axis deflections and the elastic twist. The i ′

axis is tangent to the deformed elastic axis. In accordance with the Euler-Bernoulli

hypothesis, plane cross-sections normal to the undeformed elastic axis before beam

bending remain plane and normal to the deformed elastic axis after bending. Thus,

the cross-section (after bending and twist), is completely contained in the j ′ − k ′

plane.

Figure 2.5: Undeformed and Deformed Axes
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2.2.7 Cable Undeformed Axes

The cable undeformed axes are obtained from the earth-fixed axes after two

sets of translations followed by two sequential rotations. The first set of translations

shifts the origin from the earth-fixed axes to the helicopter center of gravity. The

second set of translations shifts the origin from the helicopter CG to the cable

attachment point on the airframe. After these translations, the earth-fixed axes are

rotated through the Euler angles (ψ
F
, −π

2
) in the sequence Z → Y , and are given

by 
i
C

j
C

k
C


= TCG


i
G

j
G

k
G


(2.15)

The direction i
C

points vertically down and is identical to k
G

, while j
C

and k
C

are

defined so that cable lateral trail on the starboard side and longitudinal trail aft are

positive.

Figure 2.6: Cable Undeformed Axes
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The rotation matrix from earth-fixed axes to the cable undeformed axes is

TCG =


0 0 1

0 1 0

−1 0 0




cosψ

F
sinψ

F
0

− sinψ
F

cosψ
F

0

0 0 1

 (2.16)

2.2.8 Cable Deformed Axes

The transformation from cable undeformed axes to cable deformed axes are

defined in a manner similar to the transformation from blade undeformed axes to

blade deformed axes. The cable deformed axes are obtained using three translations

along the cable undeformed axes, followed by three consecutive rotations. The first

translation is along the i
C

axis through a distance x
C

+u
C
, where u

C
is the axial fore-

shortening due to bending and x
C

is the spanwise position of the cable cross-section.

The second translation is along the j
C

axis through the lateral trail displacement

v
C
, and the third translation is along the k

C
axis through the longitudinal trail

displacement w
C
. The origin of the cable deformed axes is at the intersection of the

deformed cable elastic axis and the cross-section of interest. The unit vectors along

the deformed axes are given by
i ′

C

j ′
C

k ′
C


= TDU


i
C

j
C

k
C


(2.17)

The transformation matrix from the cable undeformed axes to the cable deformed

axes is given by Eq. (2.14), with the Euler angles β1, ξ1 and θ1 defined by the bending

displacements of the cable with respect to the cable undeformed axes. The choice
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of cable undeformed axes allows for use of the geometrically exact beam theory to

model the cable deflections for the tow mission. The 90◦ limit imposed by the use

of positive square roots in the derivation of the TDU matrix is reached only when

the local cable elastic axis lies in a plane parallel to the water surface. Since the

helicopter is always above the load and the scale of cable lengths (hundreds of feet)

limit the transient accelerations during maneuvers, it is reasonable to assume that

the cable slopes will never reach this limit (although there is no loss of modeling

accuracy as they approach it, unlike traditional small deflection theories).

2.2.9 Submerged Load Body Axes

The body axes for the submerged load, shown in Fig. 2.7, are obtained from

the earth-fixed axes using three translations to shift the origin to the towed body

CG, followed by three Euler rotations ψ
L
, θ

L
, φ

L
in the order Z→Y→X, positive for

nose-right, pitch-up and roll-right motions respectively. The unit vectors along the

load body axes are given by
i
L

j
L

k
L


= TLG


i
G

j
G

k
G


(2.18)

The rotation matrix from earth-fixed to load body axes is given by

TLG =


1 0 0

0 cosφ
L

sinφ
L

0 − sinφ
L

cosφ
L




cos θ

L
0 − sin θ

L

0 1 0

sin θ
L

0 cos θ
L




cosψ

L
sinψ

L
0

− sinψ
L

cosψ
L

0

0 0 1


(2.19)
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Figure 2.7: Submerged Load Body Axes

2.3 Helicopter Rigid Body Dynamics

The helicopter fuselage is assumed to be rigid, and the inertial loads can

be computed from the body-axis components of the airframe linear and angular

velocities. These components are obtained from the partition of the system state

vector that contains the fuselage states, given by

y
F

=
{
u

F
v
F

w
F

p
F

q
F

r
F

φ
F

θ
F

ψ
F

x
CG

y
CG

z
CG

}T

The terms (x
CG

, y
CG

, z
CG

) represent the positions of the helicopter CG in earth-fixed

axes, (u
F
, v

F
, w

F
, p

F
, q

F
, r

F
) are the components of linear and angular velocity of

the helicopter CG along and about body-fixed axes and (ψ
F
, θ

F
, φ

F
) are the Euler

angles used in the Z→Y→X sequence to define the fuselage orientation with respect

to earth-fixed axes.

Since the fuselage is rigid, the position and orientation of the lifting surfaces

(main rotor, tail rotor, horizontal and vertical stabilizers) and cable attachment
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point remain constant as measured along body-fixed axes. Further, the moments

of inertia of a rigid object remain constant when measured about body-fixed axes.

Therefore, it is convenient to formulate force and moment equilibrium equations

along the fuselage body axes. The force equilibrium equations are

X = m
F
(u̇

F
+ q

F
w

F
− r

F
v
F

+ g sin θ
F
) (2.20)

Y = m
F
(v̇

F
+ r

F
u

F
− p

F
w

F
− g sinφ

F
cos θ

F
) (2.21)

Z = m
F
(ẇ

F
+ p

F
v
F
− q

F
u

F
− g cosφ

F
cos θ

F
) (2.22)

Here, p
F
, q

F
and r

F
represent the angular velocity components about the body axes,

and can be expressed in terms of the Euler angles (φ
F
, θ

F
, ψ

F
) and their time

derivatives as

p
F

= φ̇
F

− ψ̇
F

sin θ
F

(2.23)

q
F

= θ̇
F

cosφ
F

+ ψ̇
F

cos θ
F

sinφ
F

(2.24)

r
F

= −θ̇
F

sinφ
F

+ ψ̇
F

cos θ
F

cosφ
F

(2.25)

The moment equilibrium equations are

L = IxxṗF
− Ixy(q̇F − pF

r
F
)− Ixz(ṙF + p

F
q
F
)− Iyz(q2

F
− r2

F
)− (Iyy − Izz)qFrF

(2.26)

M = Iyy q̇F − Iyz(ṙF − qFpF
)− Iyx(ṗF

+ q
F
r
F
)− Izx(r2

F
− p2

F
)− (Izz − Ixx)rFpF

(2.27)

N = Izz ṙF − Izx(ṗF
− r

F
q
F
)− Izy(q̇F + r

F
p
F
)− Ixy(p2

F
− q2

F
)− (Ixx − Iyy)pF

q
F

(2.28)
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Since the positions of the helicopter CG are tracked with respect to the earth,

the components of this position vector are assigned as states x
CG

, y
CG

, z
CG

. The

corresponding ODEs are given by

d

dt


x

CG

y
CG

z
CG


= TGB


u

F

v
F

w
F


(2.29)

The terms on the left hand side of Eqs. (2.20) -(2.22) and (2.26) - (2.28) (X, Y , Z)

and (L, M , N) represent the cumulative forces and moments about the center of

gravity, respectively, exerted by airframe aerodynamics, main rotor loads, tail rotor

loads, empennage aerodynamics and cable force, and are given by

X = X
MR

+ X
TR

+ X
HT

+ X
VT

+ X
F

+ Xcable

Y = Y
MR

+ Y
TR

+ Y
HT

+ Y
VT

+ Y
F

+ Ycable

Z = Z
MR

+ Z
TR

+ Z
HT

+ Z
VT

+ Z
F

+ Zcable

L = L
MR

+ L
TR

+ L
HT

+ L
VT

+ L
F

+ Lcable

M = M
MR

+ M
TR

+ M
HT

+ M
VT

+ M
F

+ Mcable

N = N
MR

+ N
TR

+ N
HT

+ N
VT

+ N
F

+ Ncable

The mathematical models for loads generated by each of these components are

discussed in the following sections. Sections 2.4.4, 2.5.5, 2.5.4, 2.5.3 provide details

on calculation of force and moment contributions from the main rotor, tail rotor,

empennage and fuselage aerodynamics, respectively, to the total loads acting at the

vehicle CG. The loads experienced by the cable and towed body manifest as a single

concentrated force at the tow point, and are discussed in Section 2.6.
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2.4 Flexible Blade Dynamics

The rotor blade motions are influenced by gravity, aerodynamics, inertia (in-

cluding centrifugal forces), structural properties and pitch control inputs. A geo-

metrically exact representation is used to model the main rotor blade dynamics as

flexible rotating Euler-Bernoulli beams with flap, lag and torsion. The system states

corresponding to motions of the rotor blades are given by

yrotor =
{
η

T

1 η
T

2 · · · η
T

Nb η̇
T

1 η̇
T

2 · · · η̇
T

Nb

}T

The vector of generalized displacements for the “ jth ” blade is given by

ηj =
{
ηj,1 ηj,2 · · · ηj,Nm

}T

ηj,i represents the “ ith ” generalized displacement of blade “ j ”. These generalized

displacements are the coefficients of the normal modes corresponding to the rotating

beam structure of the blade, the computation of which is discussed in Section 2.4.7.

A detailed derivation of the beam dynamics is given in the following section.

2.4.1 The Blade Structural Model

The first step in the dynamic analysis of a rigid or flexible structure is to iden-

tify the motions of a generic point “P”. For a flexible body, the displacement of a

point contains contributions from both rigid-body translations/rotations and flexi-

ble motions. The flexible motion contributions that displace “P” to P′ are used to

determine the displacement field and the internal strains produced by elastic deflec-

tions. Since the structures of interest are treated as slender beams, the displacement
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of P can be broken down into two components : the motion of the elastic axis (and

therefore the rigid translation of the cross-section containing P), and the motion of

P relative to the elastic axis.

Figure 2.8: Undeformed and Deformed Axes

The Euler-Bernoulli hypothesis is invoked here, which assumes that plane

cross-sections normal to the undeformed elastic axis before bending remain plane

and normal to the deformed elastic axis after bending. Further, the effects of shear

deformation on bending are neglected. As a result of these assumptions, points

that were originally located within a cross-section normal to the elastic axis before

bending, remain on the same cross-section that is normal to the new elastic axis

direction after bending. This implies that a cross-section rotates as a whole in a

rigid-body sense about the deformed elastic axis. The axial displacement u will be

related to the bending displacements v, w, assuming that the elastic axis does not

stretch. Therefore, the location of a point within a cross-section after bending can

be computed from two translations of the elastic axis (v, w), and elastic twist of the

cross-section(φ).
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The process of beam bending can be conceptualized in two stages for every

cross-section. In the first stage, the entire cross-section is translated rigidly (u,v,w)

along the undeformed axes without any rotations. In the second stage, the elastic

axis is held fixed in space and the entire cross-section is reoriented using a Z→Y→X

rotation sequence through angles (ξ1, β1, θ1), with the rotation matrix given in Eq.

(2.14). The relationship between the TDU matrix and the elastic deflections v, w,

φ is given below.

2.4.1.1 Undeformed to Deformed Frame Transformation

Detailed derivations of the TDU matrix are given in the literature, both with

and without ordering schemes (Refs. [10], [12]). To second-order, near-identical gov-

erning equations were obtained in Ref. [11]. Minor differences still exist between the

derivations obtained by the two authors. Hodges and Dowell (Ref. [10]) isolated and

clearly distinguished between the derivatives along the deformed and undeformed

axis while obtaining strain components and then applied the ordering scheme, while

Rosen and Friedmann (Ref. [11]) applied an ordering scheme before obtaining ex-

pressions for the strain tensor. This work closely follows the Hodges and Dowell

beam formulation, giving allowances for finite rotations.

The position vector of a point on the elastic axis at a distance x from the root

end of a flexible beam, after elastic bending, is given by

r = (x+ u)i + vj + wk (2.30)

By definition, the unit vector tangent to the deformed elastic axis i ′ is the gradient
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of the elastic axis deflection along the curvilinear coordinate r along the deformed

elastic axis (Ref. [10]). Thus,

∂r

∂r
= i ′ = T11i + T12j + T13k (2.31)

Here, Tij is the element in row i and column j of the TDU matrix, given in Eq.

(2.14). Substituting Eq. (2.30) in Eq. (2.31) and comparing components along i , j

and k , it is clear that

(x+ u)+ = T11 (2.32)

(v)+ = T12 (2.33)

(w)+ = T13 (2.34)

Comparing the terms in Eqs. (2.14), (2.33), (2.34) and applying trigonometry yields

sin β1 = w+ (2.35)

cos β1 =
√

1− w+2 (2.36)

sin ξ1 =
v+√

1− w+2
(2.37)

cos ξ1 =

√
1− v+2 − w+2√

1− w+2
(2.38)

An implicit assumption made in this formulation through the use of the positive

square root is that the bending slopes do not exceed 90◦ in magnitude. The third

rotation angle θ1 may be obtained from the TDU matrix. Consider a point on the

elastic axis at a location r. The deformed beam axes at r+dr can be obtained using

three rotations (κ3 dr, κ2 dr, κ1 dr) about the deformed beam axes (i ′, j ′, k ′) at r.

The gradient of these rotations along the span of the beam are, by definition, the
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curvatures (Ref. [89]) κ3, κ2, κ1. Since these rotations are infinitesimal in nature,

terms in dr2 and dr3 can be neglected and so we obtain an expression for the spatial

derivative (along r) of the unit vectors defining the deformed beam axes

∂

∂r


i ′

j ′

k ′


=


0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0




i ′

j ′

k ′


= κ TDU


i

j

k


(2.39)

Where

κ =


0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0

 (2.40)

Differentiate Eq. (2.13) once with respect to r to obtain

∂

∂r


i ′

j ′

k ′


=

∂TDU

∂r


i

j

k


(2.41)

Comparing the expressions on the right hand side of Eqs. (2.39) and (2.41)

κ TDU = T+
DU

Rearranging and using T
T

DU = T−1
DU = TUD, we obtain

κ = T+
DU T

T

DU (2.42)

After carrying out matrix multiplications, we obtain expressions for the curvatures

κ1 = θ+
1 + ξ+

1 w
+ = (θt + φ)+

κ2 = − β+
1 cos θ1 + ξ+

1 cos β1 sin θ1

κ3 = ξ+
1 cos β1 cos θ1 + β+

1 sin θ1


(2.43)
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θt is the rigid pre-twist of the beam and φ is the elastic twist. Substituting for ξ+
1

from Eq. (2.35) and integrating along the deformed elastic axis, we obtain

θ1 = θt + φ−
∫ r

0

w+√
1− v+2 − w+2

(
v++ +

v+w+w++

1− w+2

)
dr (2.44)

2.4.1.2 Strain, Stress and Structural Loads

The strain tensor components are derived using the displacement field. The

expressions are repeated from Ref. [10], neglecting axial stretch and warping effects.

The strain tensor components acting at a point (η,ζ) on a cross-section of the beam

are

2ε11 = (−ηκ3 + ζκ2)2 + κ2
1(ζ2 + η2) + 2(−ηκ3 + ζκ2)

+ (v+2

+ w+2 − u+2

) + 2u+
√

1− v+2 − w+2

− θ+2

(η2
0 + ζ2

0 ) (2.45)

2ε12 =− ζκ1 +

(
dη0

dη

)
θ+ζ0

2ε13 = ηκ1 −
(
dζ0

dζ

)
θ+η0

2ε22 = 1 −
(
dη0

dη

)2

2ε23 = 0

2ε33 = 1 −
(
dζ0

dζ

)2
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Figure 2.9: Coordinates of a Point in a Cross-Section along Beam Deformed Axes

Application of Hooke‘s law for an isotropic material yields
σ11

σ22

σ33

 =
E

(1 + ν)(1− 2ν)


1− ν ν ν

ν 1− ν ν

ν ν 1− ν




ε11

ε22

ε33



σ23

σ31

σ12

 = G


ε23

ε31

ε12





(2.46)

The uni-axial stress assumption, which is valid for long slender beams, is

invoked at this stage. Under this assumption,

σ22 = σ33 = σ23
def
= 0

This assumption is used to obtain the derivatives
dη0

dη
and

dζ0

dζ
as

dη0

dη
=

dζ0

dζ
=

√
1 + 2νε11 (2.47)
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The material stresses are obtained by inverting Eqs. (2.46) as

σ11 = Eε11

σ12 = Gε12

σ13 = Gε13


(2.48)

The structural loads at a cross-section are obtained by integrating the stresses over

the area. The elastic force vector is

Fs = Sxi
′ + Syj

′ + Szk
′

Sx =

∫ ∫
A

σ11dA

Sy = 2

∫ ∫
A

σ12dA

Sz = 2

∫ ∫
A

σ13dA


(2.49)

The components of the elastic moment about the deformed beam axes are obtained

by integrating over the cross-section, moments of the material stresses about the

deformed elastic axis. The total elastic moment is

Ms = Mxi
′ + Myj

′ + Mzk
′

Where

Mx = 2

∫ ∫
A

( ησ13 − ζσ12 ) dA

My =

∫ ∫
A

ζσ11dA

Mz = −
∫ ∫

A

ησ11dA


(2.50)

The relationship between (ζ,η) and (ζ0,η0) can be determined using an assumption

of small axial strain ε11. Most materials can withstand 0.2% of strain (ε11 = 0.002)

before exhibiting inelastic behavior and hysteresis. Further, the Poisson‘s ratio ν
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is less than unity for typical materials used in rotor blade and cable construction

(metals and carbon composites). Thus, an upper limit for the derivatives
dη0

dη
and

dζ0

dζ
can be obtained from Eq. (2.47) as

dη0

dη
=

dζ0

dζ
<=

√
1 + 2× 0.002 ≈ 1.001 (2.51)

Based on the upper limit obtained above, a further approximation can be made -

the location of points in a cross-section remain fixed with respect to the elastic axis,

for the purposes of obtaining structural loads via integration over the cross-section.

Thus, it is reasonable to assume that the cross-section coordinates after bending (η,

ζ) are identical to their counterparts (η0, ζ0) before bending.

η ≈ η0 and ζ ≈ ζ0

Substituting for the stresses from Eq. (2.48), the structural moment components

about the deformed elastic axes are obtained as

Mx = G

∫ ∫
A

[ [η2 + ζ2] (κ1 − θ+) + 2ηζ(νε11) ] dA (2.52)

2My = E

∫ ∫
A

[ η2ζ(κ2
3 + κ2

1 − θ+2

) + ζ3(κ2
2 + κ2

1 − θ+2

)

+ ηζ(−2κ3) + ζ2(2κ2) + ηζ2(−2κ3κ2)

+ ζ(v+2

+ w+2 − u+2

+ 2u+
√

1− v+2 − w+2)] dA


(2.53)

2Mz = E

∫ ∫
A

[ η3
(
θ+2 − κ2

3 − κ2
1

)
+ ζ2η

(
θ+2 − κ2

2 − κ2
1

)
+ 2η2(κ3) − 2ζη(κ2) + 2η2ζ(κ3κ2)

− η
(
v+2

+ w+2 − u+2

+ 2u+
√

1− v+2 − w+2

)
] dA


(2.54)
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In each of the integrals, the terms in the parentheses are constant across a cross-

section. Another assumption is introduced at this stage - that the load-carrying

members of the cross-section are symmetric about the η axis. Thus, all integrals

over odd polynomials in ζ vanish, and the expressions reduce to

Mx = G

∫ ∫
A

(η2 + ζ2) (κ1 − θ+) dA

2My = E

∫ ∫
A

[ ζ2(2κ2) + ηζ2(−2κ3κ2)] dA

2Mz = E

∫ ∫
A

[ η3
(
θ+2 − κ2

3 − κ2
1

)
+ ζ2η

(
θ+2 − κ2

2 − κ2
1

)
+ 2η2(κ3)

− η
(
v+2

+ w+2 − u+2

+ 2u+
√

1− v+2 − w+2

)
] dA

The cross-section integrals are second and third moments of area, and the above

expressions can be reduced to

Mx = GJ(φ+)

My = EIηη(κ2) − EIηηζ(κ3κ2)

Mz =
1

2
EIζζζ

(
θ+2 − κ2

3 − κ2
1

)
+

1

2
EIηηζ

(
θ+2 − κ2

2 − κ2
1

)
+ EIζζ(κ3)

− 1

2
EAeA

(
v+2

+ w+2 − u+2

+ 2u+
√

1− v+2 − w+2

)
(2.55)

The terms in parentheses are functions of deflection and beam pre-twist. The

terms outside the parentheses are cross-section properties, i.e. the area moments of

inertia and are given by

Iζζ =

∫ ∫
A

η2 dA

Iηη =

∫ ∫
A

ζ2 dA
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J = Iζζ + Iηη

Iζζζ =

∫ ∫
A

η3 dA

Iηηζ =

∫ ∫
A

ζ2η dA

A =

∫ ∫
A

dA

AeA =

∫ ∫
A

η dA

Spatial Derivatives : Deformed and Undeformed Elastic Axis

The relationship between the spatial derivatives ∂
∂r

and ∂
∂x

is obtained using

geometry. The differential along the deformed elastic axis may be written as

dr =
√

(dx+ du)2 + dv2 + dw2 (2.56)

Dividing Eq. (2.56) by dx, we obtain

dr

dx
=

√
(1 + u′)2 + v′2 + w′2

Using

dr

dx
=

1
dx
dr

=
1

x+

We obtain

x+ =
1√

(1 + u′)2 + v′2 + w′2
(2.57)

Thus,

()+ =
∂

∂r
() =

∂

∂x
()x+ = ()′x+ (2.58)

Squaring Eq. (2.56) and dividing by dr2, we obtain

1 = (x+ u)+2

+ v+2

+ w+2

(2.59)
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Substituting Eq. (2.59) in Eq. (2.55), the component of the structural moment

about the k ′ axis simplifies to

Mz =
1

2
EIζζζ

(
θ+2 − κ2

3 − κ2
1

)
+

1

2
EIηηζ

(
θ+2 − κ2

2 − κ2
1

)
+ EIζζ(κ3) − 1

2
EAeA

(
1− x+2

) (2.60)

2.4.1.3 Ordering Scheme

Some of the area moments of inertia can be neglected because they are small

in comparison to other terms. The cross-sections of interest have dimensions that

are 10% of the span along the η coordinate, and 1% span along the ζ coordinate.

Estimates for the higher moments of inertia may be obtained assuming rectangular

cross-sections, and the relative magnitudes of the terms in the equations may be

compared based on curvatures corresponding to a strain limit of 0.002. This analysis

provides estimates for the orders of magnitude of individual terms (expressed in

Newton-meters), for a beam of length “R” and allows us to identify the dominant

terms, if any. The κ in Eqs. (2.61) refers to the bending curvatures only, and the

twist rate κ1 must be handled separately.

EIηηζκ
2 = Eκ2

∫ ∫
A

ζ2η dA ≈ 10−2R3

EIζζζκ
2 = Eκ2

∫ ∫
A

η3 dA ≈ 100R3

EIηηκ = Eκ

∫ ∫
A

ζ2 dA ≈ 101R3

EIζζκ = Eκ

∫ ∫
A

η2 dA ≈ 103R3


(2.61)
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An inspection of Eqs. (2.55) reveals that in the j ′ component, the dominant term is

EIηη κ2, which is at least three orders of magnitude higher than EIηηζ κ3κ2. Similarly,

the k ′ component is dominated by EIζζ , which is at least three orders of magnitude

larger than the two terms involving third moments of inertia and squares of bending

curvatures. With this rationalization, the structural moment components about the

deformed elastic axes can be reduced (using Eq. (2.60) for the k ′ component) to

Mx = GJ(φ+)

My = EIy(κ2)

Mz = EIζζ(κ3) − 1

2
EAeA

(
1− x+2

)
− EB2

(
θ+φ+ +

1

2
φ+2

)


(2.62)

Here, Iy = Iηη is the flap-wise moment of area for the cross-section about the neutral

axis, and EB2 = Iηηζ + Iζζζ . The twist rate terms are preserved with the present

ordering scheme to retain the ability to model dynamics of beams with large geomet-

ric pre-twist (e.g. propeller and tilt-rotor blades). The terms in parentheses depend

on the deflection (v,w) and twist (φ) of the elastic axis, while the terms outside the

parentheses are functions of the cross-section shape and material properties.

2.4.1.4 Conversion of Structural Loads to Undeformed Frame

The TDU matrix can be used to convert the structural forces and moments

to the undeformed frame, which is used to formulate the governing equations. The

quantities of interest are the structural moments and their derivatives. The spatial

derivative of the components of the structural moment about the undeformed axes

are
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
M̃+

x

M̃+
y

M̃+
z


=

(
T

T

DU

)+


Mx

My

Mz


+ TT

DU


M+

x

M+
y

M+
z


(2.63)

2.4.1.5 Governing Equations

The next step is to relate the structural moments to the axial and shear forces

at a cross-section, accomplished by applying force and moment equilibrium to a

section of the elastic axis that is acted upon by external forces and moments. The

external loads per unit span due to the cumulative effects of inertia, gravity, buoy-

ancy and fluid forces are denoted by p and q respectively. Applying force equilibrium

for an element of length dr, we obtain

p + F+
s = 0

Moment equilibrium, when applied to a point on the elastic axis segment of length

dr, yields after neglecting squares in the infinitesimal dr

q + M+
s + i ′ × Fs = 0 (2.64)

Fs represents the structural force vector. Resolving into components along the

undeformed axes, we obtain 
p̃x

p̃y

p̃z


= −


S̃+
x

S̃+
y

S̃+
z


(2.65)

62



.


q̃x

q̃y

q̃z


+


M̃+

x

M̃+
y

M̃+
z


+


T12S̃z − T13S̃y

T13S̃x − T11S̃z

T11S̃y − T12S̃x


= 0 (2.66)

The shear forces can be expressed in terms of the structural moments and the axial

force using Eq. (2.66) as

S̃y =
T12

T11

S̃x −
(
M̃+

z + q̃z

) 1

T11

S̃z =
T13

T11

S̃x +
(
M̃+

y + q̃y

) 1

T11

 (2.67)

Tij is the entry in row i and column j of the TDU matrix given in Eq. (2.14).

Substituting expressions for the shear forces in Eq. (2.67) in the X-component of

Eq. (2.66) yields

M̃+
x +

T12

T11

(
M̃+

y + q̃y

)
+

T13

T11

(
M̃+

z + q̃z

)
+ q̃x = 0

The expressions on the left hand side are exactly equal to the spatial gradient of

the torsion moment along the deformed elastic axis. After multiplying by T11, the

equation reduces to

M+
s · i ′ + qx = 0 (2.68)

Premultiply Eq. (2.63) by TDU to obtain

TDUM̃
+

s = TDUTT+

DUMs + TDUTT
DUM+

s (2.69)

The equation can be simplified further, using the following identities

TDU T
T

DU = I

T+
DU T

T

DU + TDUTT+

DU = 0

κ = T+
DU T

T

DU = −TDU TT+

DU
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To yield

TDUM̃
+

s = −κMs + M+
s (2.70)

The first row of the left hand side is M+
s · i ′, and can be substituted into Eq. (2.68)

to obtain the beam torsion equation as

Mzκ2 − Myκ3 + M+
x + qx = 0 (2.71)

If the slope of the vertical deflection is an odd multiple of π
2
, the rotation matrix

becomes singular and the first and third Euler rotations occur about the same axis.

We will assume that this situation will not occur, since the physical configuration

corresponding to a 90◦ slope with respect to the equilibrium position is difficult

(if not impossible) to achieve for rotor blades, and for the cases of cable deflection

considered. Thus, multiplications and divisions by T11 are permissible under these

assumptions. Substituting the shear forces given by Eq. (2.67) in the force balance

equation 2.65, we obtain

p̃z +
∂

∂r

[
T13

T11

S̃x +

(
∂M̃y

∂r
+ q̃y

)
1

T11

]
= 0 (2.72)

p̃y +
∂

∂r

[
T12

T11

S̃x −

(
∂M̃z

∂r
+ q̃z

)
1

T11

]
= 0 (2.73)

At this stage, the governing equations have been formulated in terms of the

structural moments about the undeformed axes, which can be obtained from their

deformed-frame counterparts using a coordinate transformation. The outstanding

quantity that is undetermined is the term EAeA
1
2
(1 − x+2

) in the Z-component of

Eqs. (2.62), which represents the coupling between axial force and “lag” bending

due to chord-wise offset of the cross-section centroid. (A similar term would exist
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in the flap bending moment if we had not assumed one axis of symmetry for the

cross-section.) The term 1
2
(1−x+2

) is the axial strain at the elastic axis ε11(η = ζ =

0), or simply ε11(0, 0), which can be obtained through the following manipulations.

Integrating the force equilibrium relations Eq. (2.65), we obtain the structural

reaction components along the undeformed axes as

S̃x = −
∫ R

r

p̃x(s)ds

S̃y = −
∫ R

r

p̃y(s)ds

S̃z = −
∫ R

r

p̃z(s)ds


(2.74)

These components can be expressed in the deformed frame using a coordinate trans-

formation (premultiplying by the TDU matrix). The force component along the

deformed elastic axis is

Sx = −
(
T11

∫ R

r

p̃x(s)ds + T12

∫ R

r

p̃y(s)ds + T13

∫ R

r

p̃z(s)ds

)
(2.75)

The structural force Sx may also be obtained by integrating the axial strain over

the cross-section, given by Eqs. (2.49) and (2.45) as

Sx =

∫ ∫
A

[
1

2
η2(κ2

3 + κ2
1 − θ+2

) +
1

2
ζ2(κ2

2 + κ2
1 − θ+2

) + ηζ(−κ2κ3)

+ η(−κ3) + ζ(κ2) + ε11(0, 0)] dA

Using the area moments of inertia to denote the integrals,

Sx =
1

2
EIζζ(κ

2
3 + κ2

1 − θ+2

) +
1

2
EIηη(κ

2
2 + κ2

1 − θ+2

)

+ EA [eA(−κ3) + ε11(0, 0)]

An order of magnitude analysis similar to Eq. (2.61) can be performed to isolate

the dominant terms (based on an assumption of maximum bending strain)

Sx = EA [eA(−κ3) + ε11(0, 0)] + EJ

[
θ+φ+ +

1

2
φ+2

]
(2.76)
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Substituting for Sx from Eq. 2.75 in Eq. (2.76), we obtain the force along the elastic

axis as

EAε11(0, 0) = EA
1

2
(1− x+2

)

= Sx + EAeAκ3 − EJ

(
θ+φ+ +

1

2
φ+2

) (2.77)

Substitute the expression for ε11(0, 0) from Eq. (2.77) in Eq. (2.62) to yield an

expression for the lag structural moment as

Mz = EIzκ3 − eASx − EB∗2

(
θ+φ+ +

1

2
φ+2

)
(2.78)

Where

Iz = Iζζ − Ae2
A ; EB∗2 = EB2 − EJeA

Iz is the lag-wise second moment of area of the cross-section about the neutral axis,

which is offset a distance eA ahead of the elastic axis along the η coordinate. This

completes the structural loads formulation, and all quantities have been expressed

in terms of the external loads p,q and the deflections (v, w, φ).

2.4.1.6 Beam Dynamics : External Loading

Expressions for the external forces p and moments q per unit span are ob-

tained in this section. The sources of external loading are fluid forces (aero or

hydrodynamics), gravity, buoyancy and inertia. A mechanical damper is used to

stabilize the rotor lag modes, and introduces point loads at its attachment point on

the blade. The contributions to the external loads from each of these components

are given in this section.
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2.4.1.7 Lag Damper Loads

The rotor blade used in the present study is attached to the hub using coin-

cident flap and lag hinges, and is fitted with a mechanical lag damper to provide

structural damping for the in-plane motions, i.e. the first lag mode. The moments

provided by the damper to the rotor blade are computed using a linear spring con-

stant and a tabulated damping coefficient (Ref. [26]). Since the other end of the

damper is attached to the airframe, its loads are internal to the entire aircraft.

2.4.1.8 Rotor Blade Boundary Condition

The rotor blades are mounted using a nexus, or hub, which rotates about a

fixed axis on a shaft that is driven by a gas turbine engine, using a gearbox to

reduce RPM and increase torque. Rotor hubs are mounted above the vehicle center

of gravity due to safety requirements. Additionally, the rotor shaft is often mounted

with a forward tilt with respect to the body. This shaft mount angle is critical

for orienting a component the rotor thrust into the wind in forward flight without

affecting longitudinal moment balance. Finally, a precone angle is given to the blade

spar to reduce the flap bending moments.

In this analysis, the connections from body to shaft, shaft to hub and hub to

blade are assumed to be rigid. The variations of rotor speed due to engine dynamics

are assumed to be small and neglected. Therefore, the blade root motions can be

obtained using rigid-body kinematics using the helicopter motions, hub offset from

vehicle CG, shaft tilt and rotor rotational speed from the states corresponding to
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the airframe rigid-body motions yRB. The position of the rotor hub is

rhub = r
CG

+


i
G

j
G

k
G



T

TGB


∆x

∆y

∆z


hub

(2.79)

Where TGB = T
T

BG is the rotation matrix from the earth-fixed axes to the helicopter

body axes, obtained from Eq. (2.6). Rotor hub offsets from the vehicle CG are

represented by (∆x, ∆y, ∆z)hub, measured in body-fixed axes. Differentiate Eq.

(2.79) once with respect to time to obtain the hub velocity with respect to the earth

as

vhub = v
CG

+


i
G

j
G

k
G



T

ṪGB


∆x

∆y

∆z


hub

(2.80)

Traditional analyses operate in the body-fixed axes system, and the effects of angular

rotation are usually accounted for using a cross-product ω × rhub. In the present

analysis, the premultiplication by ṪGB automatically accounts for these rotations

and simultaneously converts the velocities to earth-fixed axes. Differentiate Eq.

(2.80) once with respect to time to obtain the hub acceleration with respect to the

earth as

ahub = a
CG

+


i
G

j
G

k
G



T

T̈GB


∆x

∆y

∆z


hub

(2.81)

The time derivatives of TGB are given in Eqs. (2.3) and (2.4). The final component

used in the formulation of beam external loads is the rotation from the earth-fixed
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axes (i
G

, j
G

, k
G

, Section 2.2.1) to the blade undeformed axes (i , j , k , Section

2.2.5). The coordinate transformation matrix and its time derivatives are given by

TUG = TUH THG (2.82)

ṪUG = ṪUH THG + TUH ṪHG

T̈UG = T̈UH THG + 2 ṪUH ṪHG + TUH T̈HG

Where

THG = THB TBG TUH = TUR TRH

ṪHG = THB ṪBG ṪUH = TUR ṪRH

T̈HG = THB T̈BG T̈UH = TUR T̈RH

• The matrix TBG represents the rotation from earth-fixed axes to helicopter

body axes, given in Eq. (2.6). The time derivatives of rotation matrices are

obtained using Eqs. (2.3) and (2.4) by substituting φ = φ
F
, θ = θ

F
, ψ = ψ

F
,

φ̇ = φ̇
F
, θ̇ = θ̇

F
, ψ̇ = ψ̇

F
, φ̈ = φ̈

F
, θ̈ = θ̈

F
and ψ̈ = ψ̈

F
.

• The terms THB and TUR represent the rotations from body axes to hub non-

rotating axes, and rotating blade unpreconed axes to rotating blade preconed

undeformed axes, are time-invariant by definition and given in Eqs. (2.8) and

(2.12) respectively.

• The matrix TRH represents the rotation from the hub non-rotating axes to

the blade rotating unpreconed axes, given in Eq. (2.10). The time derivatives

of this matrix are obtained using Eqs. (2.3) and (2.4) by substituting φ = θ =

φ̇ = θ̇ = φ̈ = θ̈ = ψ̈ = 0, ψ = ψj and ψ̇ = Ω
MR

.
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2.4.2 Inertial Loads

Consider a flexible rotor blade mounted to a hub attachment that is translating

and rotating with the helicopter. The accelerations of an arbitrary point “P” are

obtained and integrated over the cross-sections to yield the sectional loads per unit

span. To include the effect of helicopter hub accelerations, the coordinates of “P”

are written in an earth-fixed reference as

r
P

= rhub + rea + rcs (2.83)

In Eq. (2.83), rhub represents the position of the hub with respect to the earth,

given in Eq. (2.79) ; rea represents the deformed positions of the elastic axis in the

undeformed frame ; TGU is the rotation matrix from the undeformed beam axes (i ,

j , k , Section 2.2.5) to the inertial axes (i
G

, j
G

, k
G

, Section 2.2.1) ; x is the radial

distance of the cross-section from the root before deformation ; (u, v, w) are the

displacements of the elastic axis along the undeformed axes ; TGD = TGU TUD is

the rotation matrix from the beam deformed axes (i ′, j ′, k ′, Section 2.2.6) to the

earth-fixed axes, given by Eqs. (2.14) and (2.82) ; rcs represents the coordinates of

a point in the cross-section with respect to the deformed elastic axis ; and (η, ζ) are

the coordinates of P along the (j ′, k ′) axes.

rea =


i
G

j
G

k
G



T

TGU


x+ u

v

w



70



rcs =


i
G

j
G

k
G



T

TGD


0

η

ζ


Differentiate Eq. (2.83) once with respect to time, to obtain

vp = vhub + ṙea + ṙcs (2.84)

Where vhub is given in Eq. (2.80), and

ṙea =


i
G

j
G

k
G



T  TGU


u̇

v̇

ẇ


+ ṪGU


x+ u

v

w





ṙcs =


i
G

j
G

k
G



T  ṪGD


0

η

ζ




Differentiate Eq. (2.84) once with respect to time, to obtain

ap = ahub + r̈ea + r̈cs (2.85)

Where ahub is given by Eq. (2.81), and

r̈ea =


i
G

j
G

k
G



T  TGU


ü

v̈

ẅ


+ 2ṪGU


u̇

v̇

ẇ


+ T̈GU


x+ u

v

w





r̈cs =


i
G

j
G

k
G



T

T̈GD


0

η

ζ


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The inertial force per unit span is obtained by integrating the acceleration over the

cross-section area as

F+
I = −

∫ ∫
A

ap ρbdA (2.86)

Here, ρb represents the mass density of the rotor blade material. Since the beam

equations are formulated in the undeformed reference frame, the accelerations need

to be expressed in that frame. The components of the inertial force per unit span

along the undeformed beam axes are
p̃x

p̃y

p̃z


I

= −mTUG




ẍ0

ÿ0

z̈0


+


ẍea

ÿea

z̈ea


+ T̈GD


0

eA

0



 (2.87)

The term m represents the mass per unit span of the rotor blade at the spanwise

position of interest. The acceleration components ahub and r̈ea are functions of the

root-end motion, orientation of the undeformed frame with respect to the inertial

reference and motion of the elastic axis, while r̈cs depends on the coordinates (η,

ζ) of a point in the cross-section. For convenience, the first two acceleration terms

are handled together, while the third term rcs is treated separately. Using a process

similar to that followed for inertial forces, the moment per unit span about the

deformed beam axes exerted by inertial forces on a cross-section are

M+
I = M+

I1 + M+
I2

Where

M+
I1 = −

∫ ∫
A

(ηj ′ + ζk ′) × (ahub + aea) ρbdA
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M+
I2 = −

∫ ∫
A

(ηj ′ + ζk ′) × acs ρbdA

The first integral M+
I1 contains accelerations that represent the motions of the root

and elastic axis, which are independent of the cross-section coordinates (η, ζ). The

components of MI1 along earth-fixed axes are
M+

x

M+
y

M+
z


I1

= −
∫ ∫

A


ryaz1 − rzay1

rzax1 − rxaz1

rxay1 − ryax1


ρbdA

Where
rx

ry

rz


=


T ∗12η + T ∗13ζ

T ∗22η + T ∗23ζ

T ∗32η + T ∗33ζ


ax1

ay1

az1


= (ahub + r̈ea) ·


i
G

j
G

k
G


T∗ij is the element in row i and column j of the matrix TGD. Assuming that the

cross-section has a symmetric mass distribution about the η axis, the integrals can

be reduced to
M+

x

M+
y

M+
z


I1

= meA


ay1T

∗
32 − az1T ∗22

az1T
∗
12 − ax1T

∗
32

ax1T
∗
22 − ay1T

∗
12


(2.88)
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Where m eA =
∫ ∫

A
η ρb dA. The components of MI2 along earth-fixed axes are

M+
x

M+
y

M+
z


I2

= −
∫ ∫

A


ryaz2 − rzay2

rzax2 − rxaz2

rxay2 − ryax2


ρbdA (2.89)

Where
ax2

ay2

az2


=


T̈ ∗12η + T̈ ∗13ζ

T̈ ∗22η + T̈ ∗23ζ

T̈ ∗32η + T̈ ∗33ζ


(2.90)

T̈ ∗ij is the element in row i and column j in the matrix T̈GD. Expanding the expres-

sion for the X-component, we obtain

(M+
x )I2 = −

∫ ∫
A

(ryaz2 − rzay2) dA

= −
∫ ∫

A

(T ∗22η + T ∗23ζ) (T̈ ∗32η + T̈ ∗33ζ) ρbdA

+

∫ ∫
A

(T ∗32η + T ∗33ζ) (T̈ ∗22η + T̈ ∗23ζ) ρbdA

The integrals over the cross-section can be represented using mass moments of in-

ertia, and the expression reduces to

(M+
x )I2 = mk2

m2

(
T ∗32T̈

∗
22 − T ∗22T̈

∗
32

)
+ mk2

m3

(
T ∗33T̈

∗
23 − T ∗23T̈

∗
33

)
Cross-section symmetry about the j ′ axis has been used to eliminate the integrals

in odd powers of ζ, and the non-zero integrals have been represented using

mk2
m2 =

∫ ∫
A

η2 ρbdA mk2
m3 =

∫ ∫
A

ζ2 ρbdA

The terms km2 and km3 are the radii of gyration of the cross-section about the k ′

and j ′ axes respectively. Working similarly, the components of MI2 along j
G

and
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k
G

are obtained. The three components (along earth-fixed axes) are

(M+
x )I2 = mk2

m2

(
T ∗32T̈

∗
22 − T ∗22T̈

∗
32

)
+ mk2

m3

(
T ∗33T̈

∗
23 − T ∗23T̈

∗
33

)
(M+

y )I2 = mk2
m2

(
T ∗12T̈

∗
32 − T ∗32T̈

∗
12

)
+ mk2

m3

(
T ∗13T̈

∗
33 − T ∗33T̈

∗
13

)
(M+

z )I2 = mk2
m2

(
T ∗22T̈

∗
12 − T ∗12T̈

∗
22

)
+ mk2

m3

(
T ∗23T̈

∗
13 − T ∗13T̈

∗
23

) (2.91)

The components of inertial moment per unit span about the undeformed beam

axes are obtained by using a coordinate transformation on Eqs. (2.88) and (2.91),

yielding 
q̃x

q̃y

q̃z


I

= TUG




M+

x

M+
y

M+
z


I1

+


M+

x

M+
y

M+
z


I2

 (2.92)

2.4.2.1 Gravity and Buoyancy

The effects of gravity and buoyancy are computed simultaneously, since these

forces act along the k
G

axis but in opposite directions. The gravitational acceleration

at a beam section is

ag = g k
G

(2.93)

Archimedes’ principle states that the buoyancy force (upward) exerted by a

fluid on a partially or completely immersed object is equal to the weight of the fluid

displaced by that object. Denoting the fluid density by ρf and the material density

of the beam by ρb, the buoyancy acceleration is

ab = −ρf
ρb

g k
G

(2.94)
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Following a procedure similar to that adopted for inertial loads, the cumulative

effects of gravity and buoyancy forces and moments per unit span are obtained
p̃x

p̃y

p̃z


env

= TUG


0

0

1


mg

(
1− ρf

ρb

)
(2.95)


q̃x

q̃y

q̃z


env

= TUG


T ∗22

−T ∗12

0


mg

(
1− ρf

ρb

)
eA (2.96)

The buoyancy and gravity forces create moments about the elastic axis of a beam

when the centroid has an offset eA. This can be thought of physically as the total

force on the cross-section acting at the mass centroid, which then produces a moment

about the elastic axis.

2.4.3 Aerodynamic Loads

The aerodynamic forces acting on a rotor blade are obtained from the motions

of the structure relative to the fluid. Since ambient winds are assumed to be absent,

the fluid forces depend only on the absolute motions of the structure (and induced

inflow, in the case of rotor blades) in the present analysis. From Eq. (2.84), the

absolute velocity of a point in a cross-section of the beam can be resolved into
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components along the deformed beam axes as
v1

v2

v3


= TDG


ẋ0

ẏ0

ż0


+ TDU


u̇

v̇

ẇ


+ TDG ṪGU


x+ u

v

w



+ TDG ṪGD


0

η

ζ


The velocity of air relative to the structure is equal in magnitude and opposite in

direction to the velocity of the structure relative to the fluid. In the case of a rotor

blade, the induced inflow must be accounted for in computing the velocity of the

air relative to the blade sections. The velocity components for a counter-clockwise

turning rotor are shown in Fig. 2.10, given by
U
R

U
T

U
P


=


−v1

v2

−v3


+


Vxi

−Vyi

Vzi


Vxi

Vyi

Vzi


= TDH


λxi

λyi

λzi


U
T

is the tangential velocity along the airfoil reference line, U
P

is the “upwash”

velocity for the airfoil section, U
R

is the spanwise flow velocity, defined positive

outward as shown in Fig. 2.10. (Vxi, Vyi, Vzi) are the induced velocity components

in the deformed frame, and the inflow components (non-dimensionalized by tip
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speed) along the hub non-rotating axes are (λxi, λyi, λzi). TDH = TDU TUR TRH

is the transformation matrix from the hub non-rotating axes to the blade deformed

frame, obtained from Eqs. (2.14), (2.12) and (2.10).

Figure 2.10: Velocity Components in Deformed Axes

Fluid Forces on an Airfoil Section

Main rotor blades are composed of airfoil cross-sections. These beam sec-

tions operate in a three-dimensional flow environment when the flow velocity has a

component normal to the cross-section. For rotor blades, flow along the longitudi-

nal direction is often referred to as “radial flow”. The presence of a flow velocity

component along the elastic axis implies that the resultant velocity vector is not

contained in the same plane as the airfoil cross-sections, as shown in Fig. 2.11. The

angle of attack of the section in a plane containing the resultant velocity is

α = tan−1 U
P√

U2
T

+ U2
R

(2.97)
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Figure 2.11: Blade Airfoil Section in Radial Flow

The skew angle γ
I

that occurs due to radial flow is defined as the angle between

the components UT and UR, given by

γ
I

= tan−1 UR
U
T

Empirical corrections are implemented as given in Ref. [90] to compute the lift, drag

and moment coefficients in yawed (radial) flow as

dL

dr
=

dL
C

dr
+

dL
NC

dr

dD

dr
=

1

2
ρ V 2
∞ c Cd(α,M)

dM
A

dr
=

dM
C

dr
+
dM

NC

dr

(2.98)

V∞ is the free-stream velocity magnitude at the elastic axis, given by

V∞ =
√
U2
T

+ U2
P

+ U2
R

L+
C

is the lift per unit span from circulatory forces (Ref. [27]) that acts at the

aerodynamic center, obtained from the angle of attack at three-quarter chord as

L+
C

=
1

2
ρ V 2
∞ c C`(α cos γ

I
,M) at aerodynamic center
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The non-circulatory component of lift distribution (Ref. [27]) is given by

L+
NC

= L+
2 + L+

3 Where

L+
2 =

π

4
ρ c2 ḧ

∣∣∣∣
0.5 c

at mid-chord

L+
3 =

π

4
ρ c2 V∞ α̇ at 3/4 chord

ḧ

∣∣∣∣
0.5 c

is the plunge acceleration at mid-chord. The aerodynamic moment per unit

span about the elastic axis due to circulatory forces is

M+
C

=
1

2
ρ V 2
∞ c2 Cm(α cos γ

I
,M) + xacL

+
C
− π

16
α̇ ρ V∞ c3

xac is the chordwise offset of the aerodynamic center from the elastic axis, posi-

tive towards the leading edge. The non-circulatory component of pitching moment

distribution about the elastic axis is

M+
NC

= L+
2 xmc + L+

3 x0.75c − πρc4

128
α̈ (2.99)

(xmc, x0.75c) are the locations of the mid-chord and three-quarter chord points, re-

spectively, with respect the the elastic axis and are positive when these locations are

between the leading edge and the elastic axis. The last term in the non-circulatory

moments is dropped, since its magnitude is small compared to the quasi-steady con-

tributions for rotor blades in the frequency range of interest (ω ≤ 10 rad/s). The

terms C`, Cd and Cm are the airfoil lift, drag and moment coefficients obtained from

experiment-based tables. The force components in the beam deformed axes are
px

py

pz


aero

=
1

V∞


D+U

R
− L+U

P
sin γ

I

−D+U
T

+ L+U
P

cos γ
I

D+U
P

+ L+
√
U2
T

+ U2
R


(2.100)
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
qx

qy

qz


aero

=


M+

A
cos γ

I

M+
A

sin γ
I

0


(2.101)

These loads are converted to the undeformed frame using the TUD rotation matrix,

obtained from Eq. (2.14), to yield
p̃x

p̃y

p̃z


aero

= TUD


px

py

pz


aero

(2.102)


q̃x

q̃y

q̃z


aero

= TUD


qx

qy

qz


aero

(2.103)

2.4.4 Hub Loads

The forces and moments transmitted to the hub are obtained by integrating

the loads along the span and summing the contributions from each of the blades.

The force components along the rotating undeformed axes from the jth blade are

X
R
(j) =

∫ R

0

p̃x dr

Y
R
(j) =

∫ R

0

p̃y dr

Z
R
(j) =

∫ R

0

p̃z dr

Where p̃x, p̃y, p̃z represent the load components per unit span along the rotating

undeformed blade axes, containing the sum of inertial, aerodynamic, gravitational
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and buoyancy loads given in Eqs. (2.87) and (2.102). The moment components

along the rotating undeformed axes from the jth blade are

L
R
(j) =

∫ R

0

[q̃x + v p̃z − w p̃y] dr

M
R
(j) =

∫ R

0

[q̃y + w p̃x − (x+ u) p̃z] dr

N
R
(j) =

∫ R

0

[q̃z + (x+ u) p̃y − v p̃x] dr

Where q̃x, q̃y, q̃z represent the moment components per unit span along the rotating

undeformed blade axes, containing the sum of inertial and aerodynamic loads given

in Eqs. (2.92) and (2.103). The hub loads are obtained by resolving the blade loads

along the hub non-rotating axes and summing the contributions from individual

blades. The hub force and moment components are
X

NR

Y
NR

Z
NR


=

Nb∑
j=1

T
T

RH T
T

UR


F

XR

F
YR

F
ZR


L

NR

M
NR

N
NR


=

Nb∑
j=1

T
T

RH T
T

UR


M

XR

M
YR

M
ZR


Where the matrices T

T

RH and T
T

UR are obtained from Eqs. (2.10) and (2.12), and

the azimuth angle of the jth blade is ψj = ψ1 +
2π

Nb

(j − 1). Finally, the hub

loads are converted to the helicopter body axes using the transformation matrix

TBH = T
T

HB from Eq. (2.8), to yield the contributions from the main rotor to the
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vehicle force and moment equilibrium Eqs. (2.20) - (2.28) as
X

MR

Y
MR

Z
MR


= TBH


X

NR

Y
NR

Z
NR


(2.104)


L

MR

M
MR

N
MR


= TBH


L

NR

M
NR

N
NR


+


∆yhub ZMR

− ∆zhub YMR

∆zhub XMR
− ∆xhub ZMR

∆xhub YMR
− ∆yhub XMR


(2.105)

2.4.5 Approximate Solution and the Galerkin Method

Equations 2.71, 2.72 and 2.73 are nonlinear Partial Differential Equations,

since the non-structural (external) loads p and q include inertial accelerations and

fluid forces that depend on the time derivatives of v, w and φ. Galerkin’s method

of weighted residuals is used to transform these equations into a system of Ordinary

Differential Equations to reduce the computational cost for obtaining a solution.

As a result, the beam equations are rendered compatible to use in a state-space

formulation (system of coupled ODEs). The solutions of these ODEs are called

weak solutions, since they satisfy the original PDEs in an average sense instead of

at every point along the beam. The problem of beam bending and torsion is solved

using separation of variables, and the deflections can be parameterized using spatial

and temporally-varying components as

v =
Nv∑
i=1

qv,iγv,i
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w =
Nw∑
i=1

qw,iγw,i

φ =

Nφ∑
i=1

qφ,iγφ

γv,i, γw,i and γφ,i are the trial functions that depend on the span-wise position r,

and qv,i, qw,i, qφ,i are the trial function coefficients that depend only on time. Let

the original PDEs in Eqs. (2.71) - (2.73) be represented by

fφ(v, w, φ) = 0

fw(v, w, φ) = 0

fv(v, w, φ) = 0

Trial functions that are admissible for each equation are used to obtain the weighed

residuals, and the problem of solving the PDE is converted to that of finding the

coefficients qv,i, qw,i and qφ,i such that∫ R

0

fφ(v, w, φ)γv,i dr = 0∫ R

0

fw(v, w, φ)γw,i dr = 0∫ R

0

fv(v, w, φ)γφ,i dr = 0


(2.106)

Consider the elastic twist equation 2.71. A weak solution must satisfy∫ R

0

(
Mzκ2 −Myκ3 +M+

x + qx
)
γφ,idr = εφ,i = 0 (2.107)

For practical purposes, we will further relax the condition that the residuals

εφ,i be exactly zero. Instead, the weak solutions are assumed to be obtained when

the residuals decrease (in magnitude) below a specified threshold δ0. This threshold

is set to a small number relative to the magnitudes of the terms in the original PDE.
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The numerical values of the structural moments can be computed from the

elastic deflections (v, w, φ) and used without further manipulation to compute the

residuals of the modified PDEs. However, terms involving spatial derivatives (e.g.

M+
x ) needs to be handled differently. When lower-order polynomial trial functions

are used, repeated differentiation results in loss of information and erroneous compu-

tation of the spatial gradient for structural loads. To avoid these errors, the residuals

of the modified PDEs are computed using regular span-wise integration for terms

that are “directly” available, and using integration by parts for the derivatives with

respect to r. Following this approach,

εφ,i =

∫ R

0

[
(Mzκ2 −Myκ3 + qx) γφ,i − Mxγ

+
φ,i

]
dr

+ Mxγφ,i

∣∣∣∣R
0

εw,i =

∫ R

0

[
p̃zγw,i −

(
T13S̃x + q̃y

T11

)
γ+
w,i +

(
γ+
w,i

T11

)+

M̃y

]
dr

+
T13S̃x + q̃y + M̃+

y

T11

γw,i

∣∣∣∣R
0

−
γ+
w,i

T11

M̃y

∣∣∣∣R
0

εv,i =

∫ R

0

[
p̃yγv,i −

(
T12S̃x − q̃z

T11

)
γ+
v,i −

(
γ+
v,i

T11

)+

M̃z

]
dr

+
T12S̃x − q̃z − M̃+

z

T11

γv,i

∣∣∣∣R
0

+
γ+
v,i

T11

M̃z

∣∣∣∣R
0

Using Eq. (2.67), the boundary-value terms may be identified as tip loads, and the

residuals of the modified PDEs can be simplified to

εφ,i =

∫ R

0

(Mzκ2 −Myκ3 + qx) γφ,idr
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−
∫ R

0

γ+
φ,iMxdr + Mxγφ,i

∣∣∣∣R
0

(2.108)

εw,i =

∫ R

0

p̃zγw,idr +

(
S̃zγw,i −

M̃yγ
+
w,i

T11

)∣∣∣∣R
0

−
∫ R

0

T13S̃x + q̃y
T11

γ+
w,idr +

∫ R

0

(
γ+
w,i

T11

)+

M̃ydr (2.109)

εv,i =

∫ R

0

p̃yγv,idr +

(
S̃yγv,i +

M̃zγ
+
v,i

T11

)∣∣∣∣R
0

−
∫ R

0

T12S̃x − q̃z
T11

γ+
v,idr −

∫ R

0

(
γ+
v,i

T11

)+

M̃zdr (2.110)

Table 2.1: Boundary conditions for beams

Boundary condition Mathematical Representation

Root restraint γw,i(0) = γv,i(0) = 0

Torsion restraint γφ,i(0) = 0

Cantilever γ+
w,i(0) = γ+

v,i(0) = 0

Hinge M̃y(0) = M̃z(0)= 0

Swivel M̃x(0) = 0

Free end MS = FS = 0

Physical considerations will be used to handle the boundary-value terms at

the lower limit, i.e. r = 0 or the root end. The constraint conditions for the ends

of the beam that are modeled are cantilever supports and hinges. Based on these
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conditions, the choice of admissible trial functions is limited to those that satisfy

properties given in Table 2.1.

2.4.6 Finite Element Discretization

The trial functions γv,i, γw,i, γφ,i must be continuous along the span to ac-

curately reflect the nature of the physical deflections. Since the beam exhibits

smoothly changing gradients of transverse deflections (slopes), the first derivatives

γ+
w,i, γ

+
v,i must also be continuous. Therefore, polynomials are a natural choice to

represent beam deflections. In cases where certain sections of the beam have higher

curvatures than others, higher-order polynomials become necessary to accurately

represent beam deflections but are susceptible to Runge oscillations during inter-

polation. Therefore, the trial functions are built using local polynomials, or shape

functions, that are smoothly fitted over multiple segments, or finite elements, of

the beam. A natural choice of shape functions for the transverse deflections (v, w)

within an element is the set of Hermite polynomials

Hw,1(s) = 2s3 − 3s2 + 1

Hw,2(s) = le(s
3 − 2s2 + s)

Hw,3(s) = 1−Hw,1(s)

Hw,4(s) = le(s
3 − s2)

s represents the non-dimensional span location along an element of length le. The

shape functions for the “lag” deflection (v) are identical to Hw,i given above, since

the transverse deflections have identical representation constraints. For torsion,
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the twist angle (φ) must be continuous, but the twist rate (φ+) need not. Thus,

quadratic shape functions are sufficient to accurately represent linear variations in

twist rate along an element, and are given by

Hφ,1(s) = 2s2 − 3s+ 1

Hφ,2(s) = − 4s2 + 4s

Hφ,3(s) = 2s2 − s

The shape functions for bending Hw,i and torsion Hφ,i are shown in Fig. 2.12.

The trial functions γw,i, γφ,i are obtained using admissible linearly independent

combinations of the shape functions, i.e. those that preserve continuity along the

span and, in the case of the transverse bending, differentiability also. The trial

functions for transverse bending γw,i and γv,i are identical, since they are constructed

from the same shape functions.

Figure 2.12: Shape Functions in a Finite Element

Figures 2.13 and 2.14 show the trial functions for transverse bending and tor-

sion, respectively, for a beam with four finite elements, together with the coefficients

qw,i and qφ,i that represent the numerical value of the trial function coefficients at
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the intersection of finite elements, called nodes.

Figure 2.13: Trial Functions for Beam Bending with 4 Finite Elements

Figure 2.14: Trial Functions for Beam Torsion with 4 Finite Elements
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After applying boundary conditions, the appropriate degrees of freedom and

trial functions are eliminated from the system of equations before computing the

residuals εw,i, εv,i and εφ,i of the modified PDEs.

2.4.7 Modal Reduction

The flap, lag and torsion dynamics of each rotor blade is represented using

6Ne+5 ODEs, where Ne is the number of finite elements. For a four-bladed rotor

each with four finite elements, this results in 116 ODEs for the rotor dynamics.

With increasing variations in the spatial distribution of aerodynamic and inertial

loads (e.g. high-speed forward flight or BVI conditions), additional finite elements

are required to obtain accurate blade force distributions, and the subsequent blade

response and vehicle motions. However, additional finite elements also result in

increased computational cost, in terms of the number of ODEs used to represent

the system dynamics. One technique to reduce the computational cost without

compromising the accuracy of the load distributions is modal reduction.

The operating condition of the physical system (typical helicopter blades) are

such that its structural dynamics are strongly linear, with mild contributions from

non-linear components (due to axial fore-shortening and elastic flap-lag-torsion cou-

plings). Therefore, the deflections of the rotor blade can be approximated to a linear

combination of the natural mode shapes. These mode shapes are obtained from

eigenvector solutions of the linearized structural dynamics for the rotating blade in

vacuum, and are orthogonal to each other. Each mode is associated with a natural
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frequency. Higher natural frequencies are associated with larger spatial variations in

the deflections (more zero crossings and larger bending curvatures/twist rates) and

therefore more elastic energy. For typical rotor blades, the energy required to excite

the high-frequency modes is relatively enormous, and is typically not encountered in

flight, where the external forces are continuous and near-monotonic along the span.

With this rationalization, the blade response is approximated to a linear

combination of a finite number of natural mode shapes. Modal reduction

effectively decouples the computational complexity of the rotor ODEs

from the spatial resolution of the external loads while preserving the

dominant blade motions. For the purpose of modal reduction, it is convenient

to use the original form of the beam equations, given by

grotor(q, q̇, q̈,u) = εbeam = 0

The beam equation residuals can be subdivided into the contributions from the flap,

lag and torsion equations as

εbeam =
{

ε
T

φ ε
T

w ε
T

v

}T

εφ,i, εw,i and εv,i are given by Eqs. (2.108)− (2.110)

εφ =
{

εφ,1 εφ,2 · · · εφ,n
}T

εw =
{

εw,1 εw,2 · · · εw,n
}T

εv =
{

εv,1 εv,2 · · · εv,n
}T

The nodal degrees of freedom are

q =
{

q
T

w q
T

v q
T

φ

}T
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Where

qw =
{

qw,1 qw,2 · · · qw,n
}T

qv =
{

qv,1 qv,2 · · · qv,n
}T

qφ =
{

qφ,1 qφ,2 · · · qφ,n−1

}T

qw, qv represent the flap and lag nodal degrees of freedom respectively, each of which

number n = 2Ne + 2. The torsion nodal degrees of freedom are qφ which number

n− 1 = 2Ne + 1. Figures 2.13 and 2.14 show the nodal degrees of freedom for flap

bending and torsion, respectively, for four finite elements.

The entries in row i and column j of the stiffness and mass matrix are approx-

imated using finite differences, and are given by

Ki,j =
∂εbeam(i)

∂q(j)
≈ ∆εbeam(i)

∆q(j)

Mi,j =
∂εbeam(i)

∂q̈(j)
≈ ∆εbeam(i)

∆q̈(j)

∆εbeam(i) represents the change in the residual of the ith beam equation. ∆q(j) and

∆q̈(j) represent, respectively, perturbations in the jth nodal degree of freedom and

its second time derivative. The linearized beam dynamics in vacuum may then be

written as a series of coupled second-order ODEs given by

M q̈(t) + K q(t) = 0 (2.111)

Since M and K are time-invariant, the solution for the nodal degrees of freedom q

is of the form

q(t) = q0 sinωt
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Substituting this solution into Eq. (2.111) yields the following Eigenvalue problem

M ω2 q0 = K q0

An inspection of the above expression reveals that the square roots of the Eigenvalues

represent the natural frequencies of the rotating beam. The Eigenvectors represent

the natural mode shapes of the rotating beam. When the cumulative spanwise

distribution of the external loads resembles a particular mode shape, the blade

response consists predominantly of that mode shape. The Eigenvectors for the

modes of interest are assembled into a matrix V, and the nodal degrees of freedom

can be computed from the mode coefficients η as

q = η
T

V

The mode coefficients η are the generalized displacements of the rotor blades when

modal reduction is used. If modal reduction is not selected, then V is set to an

identity matrix of the appropriate size, and the generalized displacements are the

nodal degrees of freedom (qφ , qw , qv) of the flexible beam.

Modal reduction can be conceptualized as a second-stage Galerkin

method applied to the modified beam PDEs. The nodal degrees of freedom

are expressed as a linear combination of the normal mode shapes. In Galerkin’s

method, the trial functions must be equal to the shape functions used to represent

the nodal deflections. (For modal reduction, the term “function” may be somewhat

misleading, since the shape functions - Eigenvectors - consist of discrete values of

the beam deflection at the finite element nodes.) Therefore, the residuals of the
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modified PDEs are weighted by the Eigenvector matrix to yield the beam residuals

corresponding to the generalized coordinates as

εmodes = V
T

εbeam (2.112)

2.5 Aerodynamic Models

This section provides a brief description of the aerodynamic loads acting on

the helicopter fuselage, empennage and tail rotor, together with rotor inflow models

(dynamic inflow and free-vortex wake) used to quantify the induced inflow of the

main rotor. Two inflow models - dynamic inflow and vortex wake - are discussed

in the following sections. Vortex wake models provide a numerical representation of

the flowfield through summation of velocities induced by individual vortex filaments.

Semi-analytic dynamic inflow models relate the aerodynamic thrust distribution over

the rotor disk to the inflow coefficients. When a 3-state dynamic inflow model is

used to represent the main rotor flowfield, the inflow state vector is given by

yλ =
{
λ0 λ1c λ1s λ

TR

}T

λ0 represents the average induced inflow ratio of the main rotor, scaled by a constant

factor
√

3 (Ref. [30]) ; λ1c, λ1s are the (scaled) longitudinal and lateral skews of the

induced inflow ratio ; and λTR represents the induced inflow ratio of the tail rotor.

2.5.1 Main Rotor Dynamic Inflow

The aim of dynamic inflow models is to capture, in an approximate manner,

the time-varying inflow distribution on a rotor disk operating in flight conditions
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that are slowly varying as a function of time. The general form of these models

(Refs. [30]) consists of two sets of coupled first-order ordinary differential equations,

given by

τ c λ̇c + λc = fc( C`(r, ψ), cosψ, cos 2ψ, cos 3ψ, · · · )

τ s λ̇s + λs = fs( C`(r, ψ), sinψ , sin 2ψ , sin 3ψ , · · · )
(2.113)

Here, r represents the non-dimensional radial distance from the shaft, and ψ repre-

sents the azimuthal position of a point on the rotor disk. The first set of equations

represent the longitudinal inflow dynamics, i.e. variations along the flight direction,

including the uniform component. The second set of equations represent the lat-

eral skew in inflow. Dynamic inflow models traditionally focus on rotors in forward

flight, which reduce to hover at zero flight speed. A comprehensive summary of

these models may be found in Ref. [91]. The uniform inflow λ0 and longitudinal

skew λ1c are coupled to each other, and each is individually uncoupled from the

lateral skew component λ1s. The inflow at a point (r, ψ) is given by

λ(r, ψ) = λ0 + r (λ1c cosψ + λ1c sinψ)

λ0, λ1c and λ1s are obtained from the inflow states λ0, λ1c and λ1s and coefficients

of the radial basis functions as given in Ref. [30].

2.5.2 Time Marching Free Vortex Wake

For the tow mission, the flight speeds of interest range from hover (µ = 0) to

transition flight conditions (µ <0.1) where blade-vortex interactions cause significant

azimuthal and radial variations in the inflow distribution. Cross-couplings between
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rotor-airframe lateral and longitudinal modes are introduced by the wake, and these

dynamics are not modeled by “reduced-order” (in a comparative sense) dynamic

inflow equations. To accurately represent the coupled dynamics of helicopter flight

and the rotor wake, an in-house free-vortex wake methodology (Refs. [44], [92]) is

used to model the rotor wake. For completeness, a brief summary is presented here,

borrowing heavily and paraphrased from detailed descriptions in Ref. [92].

Mathematical Model of Vortex Wake

The tip vortex trailed from a rotor blade is naturally curved, but is discretized

into multiple straight-line segments. Lagrangian markers are placed at the intersec-

tions of these line segments, and the approximate trailer geometry is obtained using

a piecewise linear reconstruction as shown in Fig. 2.15. This choice of discretiza-

tion has been shown to be second-order accurate (Refs [44], [93], [94]) and that to

maintain overall second-order accuracy, the wake discretizations must be less than

5◦.

The markers so defined are allowed to convect to force-free locations in space

based on the vortex-induced velocities and free-stream conditions. The motion

of these particles is governed by the three-dimensional incompressible form of the

Navier-Stokes equation written in velocity-vorticity form. For the purposes of con-

vecting vortex particles, viscous effects can be ignored since they are usually confined

to much smaller length scales (e.g. airfoil boundary layers). Under inviscid incom-

pressible flow conditions, the problem of tracking the location of vortex markers in
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space reduces to

drp
dt

= Vi rp(t0) = r0

Here, r0 is the initial position of the marker. For the wake trailed from a helicopter

blade rotating at constant angular speed Ω
MR

, the left hand side can be expressed

as a function of the blade azimuth ψ and wake age ζ. The convection equation is

∂rp
∂ψ

+
∂rp
∂ζ

=
Vi

Ω
MR

Using five-point central and second-order backward difference representations, re-

spectively, for the spatial and temporal derivatives results in the following approxi-

mation

Dζ +Dψ ≈ 1

Ω
MR

Vi

Figure 2.15: Free-Vortex Wake Model of a Rotor
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Blade Bound Vortices and Near Wake

Each blade is modeled as a distribution of vortex singularities in the flowfield

(Refs. [42], [44], [92]). To accurately capture spanwise variation of lift and the

associated trailed wake strengths, a Weissinger-L lifting surface model is used to

represent the effect of the blade on the rest of the flowfield. Each blade is divided

into multiple spanwise segments, each with a bound line vortex located at quarter-

chord as shown in Fig. 2.16.

Figure 2.16: Bound Vortices on a Helicopter Blade

The strengths of the trailed vortex segments are obtained using Helmholtz’s

laws of vorticity conservation (Ref. [95]), given by

Γt|j = Γb|j − Γb|j+1

The so-called “near wake” of the rotor blade consists of the trailed line vortices

obtained from the Weissinger-L model. As in Ref. [92], the near wake is assumed

to be rigid and aligned with the local airfoil chordline. These trailers are truncated

after a short distance ∆ψw = 30◦. It is assumed that at an azimuth ∆ψw behind
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the rotor blade, the vortex sheet has completely rolled up into free-vortex trailers,

or elements of circulation, that comprise the far wake.

The bound circulation strengths Γb are obtained by enforcing the flow tan-

gency criterion at the three-quarter chord points (or control points) at the mid-span

locations of each blade segment. Mathematically, this is achieved by setting to zero

the total velocity normal to the airfoil reference line, i.e.

V(i) · n(i) = 0 i = 1, 2, 3, ..., N
S

V(i) represents the velocity vector and n(i) represents the unit vectors normal to

the airfoil reference line corresponding to control point i. The total velocity V(i)

can be obtained by summing the contributions from hub translations, hub rotations,

free-wake trailers, (rigid) near-wake trailers and bound vortices as

V(i) = Vhub(i) + ωhub × r(i) + V
FW

(i) + V
NW

(i) + V
B
(i) (2.114)

r(i) represents the position vector of the point of interest from the center of the hub

in non-rotating hub axes. The velocity components V
NW

and V
B

at all control points

can be summed and expressed as a matrix-vector product of influence coefficients

and bound vortex strengths, i.e.

V
NW

(i) + V
B
(i) =

N
S∑

j=1

Ib(i, j) Γb(j) (2.115)

Substituting Eq. (2.115) in Eq. (2.114), the bound vortex strengths can be

obtained by solving a system of linear equations given by

Ib(i, j) Γb(j) = −(Vhub + ωhub × r + VFW )(i) · n(i) (i = 1, 2, 3, ..., N
S
)

(2.116)
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2.5.3 Fuselage Aerodynamics

The aerodynamic forces and moments acting on the body of the fuselage are

computed based on the flow velocity components at a “reference point” on the

fuselage (Ref. [26]), given by

uref = u
F

+ yref rF − zref qF + uintF

vref = v
F

+ zref pF
− xref rF + vintF

wref = w
F

+ xref qF − yref rF + wintF

The position vector of the fuselage reference point relative to the vehicle center of

gravity is given by

rref = xref iB
+ yref j B

+ zref kB

(u, v, w)intF are interference velocity components along body axes, and are computed

from the average main rotor downwash λ0Ω
MR
R, nose-down tilt of the rotor tip path

plane β1c and wake skew angle χ as

uintF = λ0Ω
MR
R νx(β1c, χ)

vintF = 0

wintF = λ0Ω
MR
R νz(β1c, χ)

(2.117)

The functions νx(β1c, χ) and νz(β1c, χ) are obtained from look-up tables, and

the wake skew angle is obtained from the free-stream velocity components along

shaft axes (u, v, w)
S

as

χ = tan−1 u
S

λΩ
MR
R− w

S

+ β1c
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Using the velocity components at the fuselage reference point, the flow incidence

angles α
F
, β

F
are obtained as

α
F

= tan−1 wF

u
F

β
F

= tan−1 v
F√

u2
F

+ w2
F

(2.118)

α
F

is positive when the fuselage is tilted nose-up with respect to the free-stream flow,

and β
F

is positive when the starboard side is facing the free-stream flow. Using these

two flow angles and the dynamic pressure at the fuselage reference point q
F
, the

aerodynamic coefficients in the wind-axes system are obtained using a table look-up

procedure based on wind-tunnel measurements (Ref. [26]), and transformed to the

body axes (Ref. [20]). Representing the body-axes fuselage forces and moments at

the fuselage reference point by F
F

and M
F

respectively, the loads at the vehicle

center of gravity are given by
X

Y

Z


F

= q
F


C
X

C
Y

C
Z


F

L

M

N


F

= q
F


C
L

C
M

C
N


F

+ rref × F
F

Where

q
F

=
1

2
ρ

(
u2

F
+ v2

F
+ w2

F

)
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2.5.4 Empennage Aerodynamics

The aerodynamic loads acting on the horizontal and vertical tail are computed

using a procedure similar to that followed for the fuselage. The velocity at the

reference point for each lifting surface is computed from the fuselage translation

velocity Vb, angular velocity ωb and the position of the reference points with respect

to the vehicle center of gravity r
H
, r

V
as

V
HT

= K
H
Vb + ω × r

H
+ VintH

V
VT

= K
V
Vb + ω × r

V
+ VintV

(2.119)

K
H

and K
V

are used to empirically model the dynamic pressure loss at the tail

surfaces, which occurs as a result of operating in the wake of the airframe. VintH

and VintV represent the velocities at the tail surfaces induced by the main rotor

wake, (obtained from wind-tunnel tests) and are given by

VintH = λ0Ω
MR
R [νxH(β1c, χ) i

B
+ νzH(β1c, χ) k

B
]

VintV = λ0Ω
MR
R [νxV(β1c, χ) i

B
+ νzV(β1c, χ) k

B
]

(2.120)

The functions νxH , νzH , νxV , νzV are obtained from look-up tables based on the wake

skew angle χ and the tip-path plane tilt β1c with respect to the fuselage. Using (u,

v, w)
H

and (u, v, w)
V

to represent the velocity components at the horizontal and

vertical stabilizers, respectively, along vehicle body axes, the angles of attack and

sideslip at the tail surfaces are computed as

α
H

= tan−1 wH

u
H

+ θ
HT

β
H

= tan−1 v
H√

u2
H

+ w2
H
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α
V

= tan−1 wV

u
V

β
V

= tan−1 v
V√

u2
V

+ w2
V

The pitch of the horizontal stabilizer θ
HT

is scheduled to change with the fuselage

speed in a prescribed manner. An approach similar to that followed for the fuse-

lage aerodynamics is utilized for computing the forces on the horizontal and vertical

stabilizers. Using the incidence angles α and β for each surface and the dynamic

pressure at the reference points, the aerodynamic lift and drag coefficients are ob-

tained using a table look-up procedure based on wind-tunnel measurements, and

transformed to the helicopter body axes. Using (F
HT

, F
VT

) and (M
HT

, M
HT

) to

represent the body-axes forces and moments, respectively, at the reference points,

the loads at the vehicle center of gravity are given by
X

Y

Z


emp

= q
HT


CX

CY

CZ


HT

+ q
VT


CX

CY

CZ


VT

L

M

N


emp

= r
HT
× F

HT
+ r

VT
× F

VT

The dynamic pressures are given by

q
HT

=
1

2
ρ V

HT
·V

HT
and q

VT
=

1

2
ρ V

VT
·V

VT

(2.121)
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2.5.5 Tail Rotor Aerodynamics

The tail rotor model is based on a simplified implementation of the closed-form

solution given by Ref. [96], which relates the free-stream velocity to the rotor thrust,

torque and induced inflow. The velocity at the tail rotor reference point (hub) is

V
TR

= Vb + ω × r
TR

+ VintTR
(2.122)

VintTR
represents the induced velocity at the tail rotor reference point due by the

wake of the main rotor and fuselage, given by

VintTR
= λ0Ω

MR
R [νxTR

(β1c, χ) i
B

+ νzTR
(β1c, χ) k

B
] (2.123)

The functions νxTR
, νzTR

are obtained from look-up tables based on the wake skew

angle χ and the tip-path plane tilt β1c with respect to the fuselage. The velocity V
TR

at the tail rotor reference point r
TR

is resolved into components along the tail rotor

axes. The tail rotor axes system are obtained using two rotations in the sequence

Z → Y through angles (Γ
TR

, Λ
TR

) starting from the helicopter body axes. The

rotation matrix from fuselage body axes to tail rotor axes is given by

TTR,B =


cos Λ

TR
0 − sin Λ

TR

0 1 0

sin Λ
TR

0 cos Λ
TR




cos Γ

TR
sin Γ

TR
0

− sin Γ
TR

cos Γ
TR

0

0 0 1


The velocity components in the tail rotor reference frame are

u

v

w


TR

= TTR,B

 V
TR
·


i
B

j
B

k
B



 (2.124)
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The tail rotor thrust (assumed to act along the shaft direction) is

T
TR

= π R4
TR

Ω2
TR
|V |

TR
vi,TR

K
TR

(2.125)

vi,TR
= λ

TR
Ω

TR
R

TR
is the average induced velocity of the tail rotor, K

TR
accounts

for blockage effects of the vertical fin and |V |
TR

is the magnitude of the total velocity

(including induced inflow) at the tail rotor, given by

|V |
TR

=
√
u2

TR
+ v2

TR
+ (w

TR
− λ

TR
Ω

TR
R

TR
)2

The tail rotor torque due to induced and profile drag is

Q
TR

= CQTR
ρ π Ω2

TR
R5

TR

The forces and moment components in fuselage body axes exerted by the tail rotor

on the airframe center of gravity are obtained using a coordinate transformation
X

Y

Z


TR

= T
T

TR,B


0

−T
TR

0


L

M

N


TR

= T
T

TR,B


0

−Q
TR

0


+ r

TR
× (X

TR
i
B

+ Y
TR

j
B

+ Z
TR

k
B
)

Tail Rotor Dynamic Inflow

The induced inflow of the tail rotor is assumed to be uniform over the disk,

and is represented using a 1-state Pitt-Peters dynamic inflow model (Ref. [29]). The
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ODE governing the inflow dynamics is

4R
TR

3π|V
TR
|
λ̇

TR
+ λ

TR
=

CTTR
Ω

TR
R

TR

2|V
TR
|

(2.126)

CTTR is the thrust coefficient of the tail rotor.

2.6 Cable Dynamics

The treatment of cable structural dynamics is very similar to the rotor blade

formulation, and represents a special case of non-rotating beam with zero hinge

offset. The partition of the system state vector containing the cable states is

ycable =
{
η
C1

η̇
C1

η
C2

η̇
C2

· · · η
C Nmc

η̇
C Nmc

}T

η
CN

represents the “ Nth ” generalized coordinate of the cable. The discontinuity in

loading at the air/water free surface precludes the use of modal reduction, since an

infinite number of modes is required to represent the response to a step discontinuity

in spanwise loading. The beam bending nodal degrees of freedom, as obtained after

finite element discretization in Section 2.4.6, are used as the generalized displacement

coordinates in the presence of hydrodynamics. Structural loads are computed as

given in Section 2.4.1. The inertial loads are obtained using the formulation given

in Section 2.4.2. The motion at the root of the cable are obtained from helicopter

translations and rotations as follows.

The cable is attached to the helicopter at the tow point using a spherical

bearing that transmits only forces and no moments. The tow point position vector
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is defined as

rtow = r
CG

+


i
G

j
G

k
G



T

TGB


∆x

∆y

∆z


hook

(2.127)

Here, r
CG

is the position of the helicopter CG in space, TGB is the rotation matrix

from earth-fixed axes to helicopter body axes, obtained from Eq. (2.6) and (∆x,

∆y, ∆z)hook represents the coordinates of the cable attachment point in helicopter

body axes with respect to the airframe CG. The velocity and acceleration of the

tow point are obtained by differentiating Eq. (2.127) once and twice, respectively,

with respect to time to yield

vtow = v
CG

+


i
G

j
G

k
G



T

ṪGB


∆x

∆y

∆z


hook

(2.128)

atow = a
CG

+


i
G

j
G

k
G



T

T̈GB


∆x

∆y

∆z


hook

(2.129)

Here, v
CG

and a
CG

represent the velocity and acceleration, respectively of the he-

licopter CG, and ṪGB, T̈GB are obtained as specified in Section 2.4.1.8. The fi-

nal component used in the formulation of cable inertial, hydrodynamic, buoyancy

and gravitational loads is the rotation from the earth-fixed axes (i
G

, j
G

, k
G

, Sec-

tion 2.2.1) to the cable undeformed axes (i
C
, j

C
, k

C
, Section 2.2.7). The coor-

dinate transformation matrix is given by Eq. (2.16) as TUG = TCG, and its two
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time derivatives may be obtained from Eqs. (2.3) and (2.4) with the substitutions

φ = φ̇ = φ̈ = θ̇ = θ̈ = 0, θ = −π
2
, ψ = ψ

F
, ψ̇ = ψ̇

F
and ψ̈ = ψ̈

F
.

Hydrodynamic Forces on Tow Cable

The tow cable is attached to the helicopter on one end and the submerged load

on the other end. A part of the tow cable is above the water surface and experiences

aerodynamic forces, while the rest of the cable experiences hydrodynamic forces,

both normal and tangential to the axis of the cable. The cable section velocities

are obtained using the procedure outlined in Section 2.4.3, and the cable sectional

hydrodynamic loads are used in place of airfoil lift, drag and pitching moment. The

tangential force is given by

F+
r =

1

2
ρ V 2
∞ D Cr

D is the cable diameter and Cr is the radial force coefficient, which was determined

to be 0.025 (Ref. [71]). The force normal to the cable axis in the U
T
-U

P
plane is

given by

F+
n =

1

2
ρ V 2
∞ D Cn

The normal force coefficient is determined from experiments as

Cn = C
Do

(−0.424 + 0.869 cos γ
I

+ 0.979 sin γ
I

− 0.455 cos 2γ
I
− 0.434 sin 2γ

I
)

The normal drag coefficient is C
Do

= 1.73 for bare cables, obtained from experiments

(Ref. [71]). Since pitching moment data is unavailable, the moment coefficient is
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set to zero for all flow conditions. The various forces at a point on a bare cable are

shown in Fig. 2.17.

Figure 2.17: Forces on Bare Cables

The tremendous drag created by hydrodynamics on the submerged sections of

the cable necessitates the use of fairings to reduce the engine power required in for-

ward flight. The normal drag coefficient is therefore set to C
Do

=0.1 to better model

the profile drag of a fairing. The hydrodynamic force distributions are obtained in

the cable deformed axes, and converted to the undeformed axes as in Eq. (2.102).

The contributions from external and structural loads are computed and substituted

into the governing Eqs. (2.109) and (2.110) for transverse bending to compute the

ODE residuals.

The submerged load is treated as a tip mass for the tow cable. Using the

helicopter rigid-body states and cable generalized displacements, the motions of the

towed body are obtained. These motions are used to obtain the total forces acting

on the submerged load that manifest as tip forces for the cable. The cumulative

forces on the towed body and cable are transmitted to the helicopter as towing

tension. These forces are obtained using a procedure similar to the computation of

hub loads as given in Section 2.4.4, with the following modifications

• The matrix product T
T

RHT
T

UR is replaced with TGC
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• The matrix TBH is replaced with TBG

2.6.1 Towed Body Dynamics

The primary function of the towed body is to detect submerged objects in its

vicinity using sensors placed inside a waterproof frame. The hull is shaped like a

modified torpedo and streamlined to reduce drag. Two active fins near the load CG

can pitch relative to the body and produce lift (or down-force) for depth regulation.

Three stationary fins are mounted at the tail end in an inverted-Y configuration to

help orient the nose of the towed body into the free-stream flow and reduce pitch

attitude excursions from a design point. It is assumed that the submerged load is

attached to the tow cable using a spherical bearing that allows all three rotations.

A schematic of a towed body is shown in Fig. 2.7.

The submerged load is modeled as a rigid distributed mass that is attached to

the tip of the tow cable using a spherical bearing that allows rotations about all three

axes. The orientations of the towed body are determined using Euler rotations, and

moment equilibrium is enforced using Eqs. (2.26) - (2.28). The treatment of the

towed body dynamics is distinctly different from the fuselage rigid-body dynamics,

where the body-axis translations and rotations are immediately available from the

system state vector. For the towed body, translations must be obtained from the tip

deflections of the cable to preserve the state-space formulation and prevent using an

overdetermined system of equations. The towed body states are obtained from the
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appropriate partition of the system state vector, given by

yload =
{
p
L

q
L

r
L

φ
L

θ
L

ψ
L

}T

(p
L
, q

L
, r

L
) are the components of angular velocity of the submerged load about

body-fixed axes and (ψ
L
, θ

L
, φ

L
) are the Euler angles used in the Z→Y→X sequence

to define the towed body orientation with respect to the earth-fixed axes. When

using a simplified axially flexible straight cable model, the curved cable states vanish

and six additional towed body states (position vector components along gravity-axes

and velocity components along body-axes ) are added to the vector of load states.

If the attachment between the tow cable and submerged load does not allow

all three rotations, then the bending slopes and twist at the tip must also be used to

determine the load attitudes that are constrained by the cable attachment, and the

appropriate moment equilibrium equations must be dropped from the formulation.

The cumulative forces and moments on the towed body due to inertia, gravity,

buoyancy and hydrodynamics manifest as tip loads for the flexible beam that is

defined by the cable structure.

2.6.2 Towed Body Translations

The position of the cable attachment point on the load is given by

rload hook = rload CG + rhook wrt CG

= rcable tip

 (2.130)

The first expression identifies the cable attachment point on the towed body using

the CG locations in space and the hook location with respect to the CG of the load.
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The second expression identifies the same point using the helicopter tow point and

the cable tip deflections. The expressions can be rearranged to obtain the position

of the load CG in space as

r
L

= rtow +


i
G

j
G

k
G



T  TGC


x

C
+ u

C

v
C

w
C


− TGL


∆x

∆y

∆z


LH

 (2.131)

The first term on the right hand side represents the coordinates of the heli-

copter tow point, given by Eq. (2.127). The second term represents the position

of the cable tip with respect to the tow point, and the third term represents the

coordinates of the load CG with respect to the tip of the cable. (∆x, ∆y, ∆z)
LH

represent the coordinates of the cable attachment point on the load with respect to

the CG of the load along body-fixed axes, and are time-invariant. Differentiating

Eq. (2.131) with respect to time, we obtain the velocity of the load CG as

v
L

= vtow +


i
G

j
G

k
G



T  TGC


u̇

C

v̇
C

ẇ
C


tip

− ṪGL


∆x

∆y

∆z


LH

+ ṪGC


x

C
+ u

C

v
C

w
C


tip


(2.132)
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Differentiate Eq. (2.132) with respect to time to obtain the load CG acceleration as

a
L

= atow +


i
G

j
G

k
G



T  TGC


ü

C

v̈
C

ẅ
C


tip

− T̈GL


∆x

∆y

∆z


LH

+ T̈GC


x

C
+ u

C

v
C

w
C


tip

+ 2 ṪGC


u̇

C

v̇
C

ẇ
C


tip


(2.133)

The velocity and acceleration components of the load CG along body-fixed axes can

be obtained from Eqs. (2.132) and (2.133) using a transformation matrix as
u

L

v
L

w
L


= TLG


v

L
· i

G

v
L
· j

G

v
L
· k

G


ax

ay

az


L

= TLG


a

L
· i

G

a
L
· j

G

a
L
· k

G


(2.134)

TLG is the rotation matrix from earth-fixed axes to the load body-fixed axes, given

by Eq. (2.19). The acceleration components in Eq. (2.134) are

axL
= u̇

L
+ q

L
w

L
− r

L
v
L

+ g sin θ
L

ayL
= v̇

L
+ r

L
u

L
− p

L
w

L
− g cos θ

L
sinφ

L

azL = ẇ
L

+ p
L
v
L
− q

L
u

L
− g cos θ

L
cosφ

L


(2.135)
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Eqs. (2.135) can be substituted in Eqs. (2.20) - (2.22) and the resulting expressions

can be manipulated to isolate the cable force components along the body-fixed axes

of the submerged load as

Xc = m
L
axL

− Xext

Yc = m
L
ayL

− Yext

Zc = m
L
azL − Zext

The components of total force exerted by the towed body on the cable are obtained

using two transformations : from the load body axes to the earth-fixed axes, and

then from the earth-fixed axes to cable undeformed axes, which are then applied as

tip loads for the beam structure defining the flexible cable. Thus,
S̃xL

S̃yL

S̃zL


tip

= TCG TGL


Xc

Yc

Zc


(2.136)

The final step consists of obtaining expressions for the external loads (Xext, Yext,

Zext) due to gravity, buoyancy, and hydrodynamics of the hull and fins.

2.6.3 External Loads on Towed Body

The external forces and moments on the towed body are gravity, buoyancy,

hull drag, and fin lift and drag. Effects of flow interference between the body and

fins, and radial flow over the individual fins are neglected. Gravity, hull drag and

buoyancy are treated as point loads that act at specific locations on the towed body
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(load CG for gravity and hull drag, center of buoyancy for the third force), given by

Fg = m
L
g kG

Fb = − ρw V
L
g kG

Fhull =
1

2
ρw

√
u2

L
+ v2

L
+ w2

L
f
L

(u
L
i
L

+ v
L
j

L
+ w

L
k

L
)

m
L

is the load mass, ρw is the water density, V
L

is the load volume and f
L

is the

equivalent flat-plate area of the towed body.

Fin Forces

Steady hydrodynamic lift and drag on the fins are implemented in a table-

lookup form, shown in Fig. 2.19. The components of flow velocity at a reference

point on each fin are resolved along fin-fixed axes, which are shown in Fig. 2.18.

Figure 2.18: Flow and forces on a fin

Force coefficients along fin-fixed axes (with respect to fin plan-form area and

free-stream dynamic pressure at the fin reference point) are obtained based on aero-

dynamics of three-dimensional flat plates (Ref. [97]) in three distinct flow regimes:

• Attached flow regime
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This is a small-angle regime (|α| ≤ α1) in which the flow stays attached and

lift increases linearly with fin incidence angle α, up to a certain upper bound

α1. The chordwise force is due to a combination of profile and induced drag.

In fin-fixed axes, the force coefficients (with respect to fin area and free-stream

dynamic pressure at a reference point) are

CFZ = − CLαα

CFX = − cosα

[
C2
FZ

πAReOst
+ CDo

]

• Fully stalled flow regime

This is the large angle condition (180 ≥ |α| ≥ α2) in which flow over the lifting

surface is completely stalled once the incidence angle exceeds a “second” stall

angle, and flow over the airfoil resembles that over a bluff body, with significant

profile drag (CDp).

CFX = − CDo cosα

CFZ = − sin2 α
α

|α|
CDp

• Stall transition regime

The intermediate angles between the post-stall and attached flow regime (α1 ≤

α ≤ α2 and −α1 ≥ α ≥ −α2) is called the stall transition regime. Over this

range of incidence angles, the flow transitions from fully attached to fully

detached flow. The forces for this range of incidence angles are obtained using

linear interpolation from the ends of the bounding regimes, as

CFX = Cx1 +
Cx2 − Cx1

α2 − α1

(|α| − α1)
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CFZ = Cz1 +
Cz2 − Cz1
α2 − α1

(|α| − α1)

Where

Cx1 = − cos2 α1

[
CDo +

C2
Lα
α2

1

πAReOst

]
Cx2 = − cos2 α2CDo

and

Cz1 = − CLαα1
α

|α|

Cz2 = − sin2 α2
α

|α|
CDp

The moments created by all external forces about the load CG are summed and

used in the rigid-body moment equilibrium equations. The right hand side of Eqs.

(2.26) - (2.28) are computed using the towed body inertias, Euler angles, angular

velocities and accelerations, obtained from the state vector partition corresponding

to the towed body yload.

Figure 2.19: Lift and drag coefficients of fins
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2.7 Summary

Each element in the state vector y has a corresponding differential equation

in vector f of equations used to model the system dynamics. The vector of ODEs

can be subdivided into

• 12 non-linear equations that enforce force and moment equilibrium for the fuse-

lage rigid-body motions, and kinematic compatibility between time derivatives

of Euler angles and body-axis angular rates. The corresponding ODE residu-

als are represented by ε
F
, and the ODEs are given in Eqs. (2.20) - (2.28) and

(2.29), Section 2.3.

• 4 dynamic inflow equations for the main and tail rotors, when using a 3-state

Peters-He model to compute the main rotor induced inflow. If the free wake

model is used instead of the Peters-He model, then the main rotor dynamic in-

flow equations are removed from the system and the wake geometry is evolved

separately using a time-marching process. The corresponding ODE residuals

are ελMR
and ελTR

, given by Eqs. (2.113) and (2.126), Section 2.4.3.

• 2 × Nb × Nm equations for rotor blade dynamics that represent the mode-

weighted Euler-Bernoulli beam equations. The corresponding ODE residuals

are εrotor, given by Eqs. (2.112), Section 2.4.7.

• 2 × Nmc equations for the flexible cable that represent the weighted residuals

of the Euler-Bernoulli transverse beam bending equations. The corresponding

ODE residuals are εcable, given by Eqs. (2.109) and (2.110), Section 2.4.5.
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• 6 equations that enforce moment equilibrium and kinematic compatibility for

the towed body Euler angles. The corresponding ODE residuals are ε
L
, given

by Eqs. (2.26) - (2.28). When a simplified axially flexible cable model is used,

the cable equations are eliminated from the system and the force equilibrium

equations are included, given in Eqs. (2.20) - (2.22), Section 2.3.

The vector of ODE residuals ε is assembled from the individual components and is

given by

ε =
{

ε
T

F
ε
T

λMR
ε
T

λTR
ε
T

rotor ε
T

cable ε
T

L

}T

(2.137)
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3 Solution Methods

This chapter describes the numerical techniques used to solve the differential

equations governing the motion of rigid and flexible structures that comprise the

helicopter-cable-towed body system. The first section details the computation of

“trim” (steady flight) configurations, in which the vehicle acceleration components

along body axes are zero and the rotor response is periodic. The second section

covers extraction of linearized models about equilibrium configurations which are

useful for stability analysis and evaluating characteristics of the vehicle frequency

response to pilot inputs. The third section describes the numerical procedure used

to simulate the evolution of the system dynamics as a function of time in response

to user-specified pilot inputs, starting from an initial condition. The final section

covers the procedure used to include the free-vortex wake during trim and time

marching.

The ODEs of interest are strongly coupled to each other, especially for the

rotor dynamics. Explicit expressions for the accelerations (second time derivatives

of displacements) as a function of forcing and velocities are lengthy and cumbersome

to manipulate. One way to simplify the beam equations is to make small-angle

assumptions and use an ordering scheme (Ref. [19]), which then restricts the validity
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of the analysis to small angles. Alternately, it is possible to use the original form of

the governing ODEs

f(ẏ, y, u, t ) = ε = 0 (3.1)

with a class of techniques that, given an initial guess y0(t), obtain a solution y(t)

such that e(ε) < δ, where e(ε) is an error metric and δ is a user-specified threshold

that is used to terminate the solution process to required numerical precision. Thus,

the task of simulating vehicle dynamics is simplified to that of programming the logic

for computing numerical values of ε for a given y, ẏ,u and leveraging open-source

subprograms from NETLIB for obtaining trim solutions and simulating maneuvering

flight (Ref. [98]).

3.1 Definition of Trim

The term “trim” is used to refer to a steady flight condition in which the

translational and angular acceleration components along and about the body axes

are zero. Therefore, trim includes steady level flight, steady climbing flight, steady

level turns and steady climbing/descending turns of constant radii. The concept of

rotorcraft trim evolved from the corresponding definition for fixed-wing platforms,

and so it is useful to define aircraft trim first.

3.1.1 Aircraft Trim

Trim for a fixed-wind aircraft is defined as a steady flight condition in which

the control settings, orientations and velocity of the vehicle produce forces (inertial
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and aerodynamic) that exactly cancel out contibutions from gravity and buoyancy,

thus allowing the aircraft to remain in its state of rest or uniform motion “ indefi-

nitely ”. The force distributions on a fixed-wing aircraft in trim are steady, hence

the aerodynamic and inertial loads at any two instants in time will be near-identical.

There may still be fluctuations in these loads at extremely high frequencies (deter-

mined by the RPMs of the various rotors inside the engine), but the amplitudes of

these fluctuations are so small that their effect on aircraft trim is negligible.

Unlike a fixed wing, the aerodynamic and inertial loads generated by each rotor

blade are not steady. In forward flight, rotor blades experience time-varying dy-

namic pressures and operating angles of attack, and therefore undergoes unsteady

motion in response to these time-varying force and moment distributions along the

span. These unsteady motions result in time-varying inertial blade loads in addition

to the fluctuating aerodynamic loads, hence the forces transmitted to the airframe

are vibratory in nature. With these considerations, rotor trim can be defined.

3.1.2 Rotor trim

When the controls for a rotor (collective and cyclic pitch inputs) are held

constant, the rotor is said to be trimmed if the blade response is periodic, i.e. it has

reached steady-state, and the forces and moments, when averaged over this period,

do not change over successive cycles. Often, the time period is assumed to be

that reqiured for one rotor revolution, due to the cyclic variation of the free-stream

velocities as seen by the blade and the kinematics of the pitch control system.
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3.1.3 Rotorcraft Trim

Just as fixed-wing trim is not significantly affect by engine vibrations, it is

assumed that, for the purposes of enforcing body force and moment equilibrium,

rotorcraft trim is insensitive to the oscillatory forces and moments transmitted to

the hub. Instead, the time-averaged forces and moments will be used to represent the

contributions from rotor loads to Eqs. (2.20) - (2.28). This assumption is justified

since the vibratory loads manifest at sufficiently large frequencies that the airframe

response is negligible and the vehicle trim state is unaffected (Ref. [40]). When the

blade motion is periodic and the time-averaged forces and moments generated by

the rotor are sufficient for establishing vehicle force and moment equilibrium, the

system is said to be in coupled trim or propulsive trim.

The most general case of trim considered is a steady coordinated helical climb-

ing turn of constant radius (Ref. [99]). This flight condition is defined by three

parameters : the flight speed V , the flight path angle γ (positive for climb) and the

turn rate ψ̇ (positive for nose-right turns). Using this definition,

• Steady level turning flight is a special case in which γ = 0 (constant altitude)

• Steady climbing flight is a special case in which ψ̇ = 0

• Steady level forward flight is a special case in which γ = 0 and ψ̇ = 0

• Hover is a special case in which γ = 0, V = 0 and ψ̇ = 0

Mathematically, trim is enforced by imposing additional conditions on the govering

ODE set Eq. (3.1). For the rotorcraft trim problem, the differential equations
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reduce to nonlinear algebraic equations that may be represented as

F(X) = εtrim = 0 (3.2)

The problem of trim is then converted to solving a set of algebraic equations for the

so-called trim unknowns. The trim unknowns include the rotor response, vehicle

attitudes, rotor induced inflow ratios and the pilot controls. Solution of the trim

equations is achieved by manipulation of the trim variables X using a numerical

solver (Ref. [100]) until an error metric e(|ε|trim) falls below a user-specified thresh-

old δtrim. To avoid formulating an over-determined or under-determined system of

equations, the number of trim variables X must be equal to the number of trim

equations F. The trim equations and corresponding trim variables are given in the

following section.

3.2 Trim Equations and Trim Variables

• The components of time-averaged fuselage translational and rota-

tional accelerations along and about the body axes must be zero, as

given in Eqs. (2.20) - (2.28). Using “ T ” to represent time period for one

rotor revolution, the first six trim equations are

∫ T

0

u̇
F
dt = ε

RB1
= 0 (3.3)∫ T

0

v̇
F
dt = ε

RB2
= 0 (3.4)∫ T

0

ẇ
F
dt = ε

RB3
= 0 (3.5)∫ T

0

ṗ
F
dt = ε

RB4
= 0 (3.6)

124



∫ T

0

q̇
F
dt = ε

RB5
= 0 (3.7)∫ T

0

ṙ
F
dt = ε

RB6
= 0 (3.8)

Equations (3.3) - (3.8) constitute the six trim conditions that enforce vehicle

force and moment equilibrium under steady flight conditions. The correspond-

ing trim variables are the pilot controls (δ0, δlat, δlon, δped) and the fuselage

pitch and roll attitudes (φ
F
, θ

F
). The last two trim variables are indirect

controls, in the sense that they cannot be immediately adjusted by the pi-

lot. Instead, the vehicle has to be flown into these orientations using the four

direct controls that influence the lift distributions over the rotor disks.

• The rotor must be trimmed, i.e. the motions of all blades must be indi-

vidually periodic. Since we assume that all blades are identical, it follows that

all blades must exhibit identical motions with phase offsets correspond-

ing to their relative azimuthal spacing. Therefore, the problem of obtaining

the motion of all blades of a particular rotor is simplified to that of obtaining

the motion of a reference blade. Without loss of generality, the first blade is

chosen to be the reference blade.

A further assumption is made at this stage to simplify the analysis - that

the resulting periodic blade motion is well-represented using a Fourier series

in integer multiples of the rotor frequency Ω. This method is often called

harmonic balance, and can capture the dominant blade motions (with regard

to flight dynamics) using the first few harmonics. A Galerkin method

with harmonic balance is used to obtain the time-resolution of the
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rotating blade modes. The generalized coordinates of a blade at azimuth

ψ can be approximated to

ηj(ψ) ≈ η0 +
Nh∑
k=1

(ηkc cos kψ + ηks sin kψ) (3.9)

η0 represents the steady part of the generalized coordinates, and the ampli-

tudes of the sine and cosine components for the “ kth ” harmonic are (ηkc , ηks).

The Nm(1+2 Nh) Fourier coefficients are the trim variables that define the

rotor blade motions with respect to the undeformed rotating preconed axes.

These Fourier coefficients are used to compute the blade deflections which

are substituted into the beam equations, to yield the mode-weighted ODE

residuals

εblade 1 = fbeam(y1, ẏ1, u, t) (3.10)

Here, fbeam represents the ODEs governing rotating beam dynamics, i.e. the

mode-weighted flap, lag and torsion equations. y1 represents a subset of the

state vector that contains the 12 rigid-body fuselage states and the generalized

coordinates (together with their first time derivatives) for the reference blade.

Since we are using Galerkin’s method, the corresponding trim equations are

obtained by weighting the beam equations with the azimuthal shape func-

tions and integrating over one revolution. The algebraic equation residuals

corresponding to the steady, cosine and sine components of blade motions are

εsteady =

∫ T

0

εblade 1(t) dt (3.11)

εcos,k =

∫ T

0

εblade 1(t) cos kΩt dt (3.12)
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εsin,k =

∫ T

0

εblade 1(t) sin kΩt dt (3.13)

• The components of helicopter linear, angular velocities along fuse-

lage body axes, and roll and pitch attitudes must be time-invariant

For trimmed flight, the vehicle must move at constant speed V. The orienta-

tion of the free-stream velocity vector relative to the airframe can be described

using the spherical angles α
F

and β
F

as defined in Eq. (2.118). The translation

velocity components along helicopter body axes are

u
F

= V cosα
F

cos β
F

v
F

= V sin β
F

w
F

= V sinα
F

cos β
F


(3.14)

The helicopter yaw rate ψ̇
F

must be constant and the Euler pitch and roll

attitudes must be time-invariant. Applying these conditions to Eqs. (2.23),

the angular velocity components along body axes are obtained as

p
F

=− ψ̇
F

sin θ
F

q
F

= ψ̇
F

cos θ
F

sinφ
F

r
F

= ψ̇
F

cos θ
F

cosφ
F


(3.15)

At low forward speeds, the reduced dynamic pressure on the vertical stabilizer

renders it ineffective for producing anti-torque. Therefore, below a certain

threshold airspeed, the helicopter is constrained to fly with zero

sideslip angle, i.e.

β
F

= 0
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Above the threshold airspeed, all turns must be coordinated to in-

crease ride comfort and reduce the danger of entering a spin. Mathematically,

turn coordination is enforced by setting the cumulative component of iner-

tial and gravitational forces along the j
B

direction to zero. Substituting Eqs.

(3.14) and Eqs. (3.15) in Eq. (2.21) yields the residual of the turn coordination

equation as

εcoord = Vψ̇
F

cos β
F
(cosα

F
cos θ

F
cosφ

F
+ sin θ

F
sinα

F
)− g sinφ

F
cos θ

F

(3.16)

Another kinematic relationship exists between the climb angle γ, the Euler

angles (ψ, θ, φ)
F

and the wind angles (α, β)
F
. To determine this relationship,

consider the velocity components of the helicopter along fuselage body axes,

as given in Eqs. (3.14). The velocity components along the earth-fixed axes

can be obtained using the rotation matrix from body axes to gravity axes as
ẋ

F

ẏ
F

ż
F


= TGB


u

F

v
F

w
F


(3.17)

The component along k
G

is given by the third row of the right hand side. By

definition, the same velocity component is equal to

ż
F

= −V sin γ

The negative sign accounts for the fact that k
G

points downward and a positive

γ indicates a steady increase in altitude. The equation of flight path can

be obtained by comparing the two expressions for ż
F

above, and dividing by
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the velocity magnitude V. The residual of this trim equation is

ε
FP

= cosα
F

cos β
F

sin θ
F
− sin γ

F

− cos θ
F
(sin β

F
sinφ

F
+ sinα

F
cos β

F
cosφ

F
)

 (3.18)

The trim variables corresponding to the turn coordination and flight path

equations are (α
F
, β

F
). Perfect hover with identically zero forward speed is

simulated by replacing the flight path equation with

ε
FP

= α
F

at hover

• The inflow ratios are time-invariant when averaged over one revolution

of the main rotor. The corresponding trim equation residuals are

ελTR =

∫ T

0

λ̇
TR

dt

ελ0,MR
=

∫ T

0

λ̇0MR
dt

ελ1c,MR
=

∫ T

0

λ̇1cMR
dt

ελ1s,MR
=

∫ T

0

λ̇1sMR
dt

3.3 Trim with Simplified Cable Model

When a simplified cable model is used, it is assumed that the cable is straight

and acts like a linear spring in tension. The towed body formulation is similar to

the helicopter fuselage formulation, and the state vector contains both positions

and orientations of the submerged load. The trim variables are the components of

the towed body CG relative to the helicopter CG along earth-fixed axes (X
L
, Y

L
,
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Z
L
), the Euler pitch and roll angles (θ

L
, φ

L
) and the angles (α

L
, β

L
), which are

analogous to the wind-axes angles (α
F
, β

F
) for the airframe. The corresponding

trim equations are zero accelerations along and about the load body axes, and the

flight path equation (3.18) applied to the towed body. The Euler angle ψ
L

can be

obtained in terms of the wind-axes angles (α
L
, β

L
), the Euler roll and pitch attitudes

(φ
L
, θ

L
) and the flight path angles (γ

L
, ξ

L
) and the helicopter angle of flight path

(γ
F
) using kinematic consistency conditions, as follows.

Consider a time instant in which an object is moving with a non-zero velocity

V , and the velocity orientations with the gravity axes described by the spherical

angles γ and ξ, shown in Fig 3.1.

Figure 3.1: Flight path angles

The load velocity components along earth-fixed axes are

ẋg = V cos γ cos ξ

ẏg = V cos γ sin ξ

żg = −V sin γ
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The velocity of the object may also be resolved along body-fixed axes to yield

u = V cosα cos β

v = V sin β

w = V sinα cos β

The gravity-axes velocity components may also be obtained from their body-axes

counterparts using a rotation matrix as
ẋg

ẏg

żg


=


V cos γ cos ξ

V cos γ sin ξ

−V sin γ


= TGB


u

v

w


= TGB


V cosα cos β

V sin β

V sinα cos β


The above expressions can be broken down into components, yielding 3 equations

cos γ cos ξ = cosα cos β cos θ cosψ + sin θ sinφ sin β cosψ

− cosφ sinψ sin β

+ sinα cos β(sin θ cosφ cosψ + sinφ sinψ)


(3.19)

cos γ sin ξ = cosα cos β cos θ sinψ + sin θ sinφ sinψ sin β

+ cosφ cosψ sin β

+ sinα cos β(sin θ cosφ sinψ − sinφ cosψ)


(3.20)

− sin γ = sin β cos θ sinφ − cosα cos β sin θ

+ sinα cos β cos θ cosφ

 (3.21)

Eq. (3.21) is the flight path angle equation, and is used as the trim equation

corresponding to the wind-axes angle α for both the helicopter and the towed body.
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The heading angle ψ can be computed using Eqs. (3.19) and (3.20) by grouping the

unknowns, to obtain simultaneous equations in cosψ and sinψ

a11 cosψ + a12 sinψ = b1

a11 sinψ − a12 cosψ = b2

The coefficients are

a11 = cos θ cosα cos β + sin θ sinφ sin β + sinα cos β sin θ cosφ

a12 = − sin β cosφ + sinα cos β sinφ

b1 = cos γ cos ξ

b2 = cos γ sin ξ

The simultaneous equations can be used to obtain ψ in terms of a11, a12, b1 and b2.

• When a11 is very small, the equations reduce to

tanψ = −b1

b2

= − cot ξ

• When a12 is very small, the equations reduce to

tanψ =
b2

b1

= tan ξ

• When both a11 and a12 are non-negligible,

tanψ =
b1a12 + b2a11

b1a11 − b2a12

This relationship is valid for a general rigid body, and is applied to both the heli-

copter fuselage and the towed body for the trim formulation in turning flight.
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Two-body Turn Kinematics

In steady turning flight, the positions and orientations of the helicopter and

submerged load remain fixed relative to each other. However, it is not necessary

that the load travels along the same path as the helicopter - it may travel along a

circle of larger or smaller radius. The instantaneous velocity vectors of the helicopter

and towed body may also be oriented along different directions. The present trim

formulation in turning flight can accommodate these possible scenarios.

Figure 3.2: Helicopter with towed body

For the helicopter in trim, the spherical angle ξ
F

is set to zero without loss of

generality. Henceforth, the
L

subscript is dropped and the variable ξ will be used

to refer to the load spherical angle. The load spherical angle ξ is obtained from

kinematics, shown in Fig. 3.3, as

tan ξ = − ∆X

R
H

+ ∆Y
(3.22)
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Figure 3.3: Right-handed turn with towed body

This formulation is for a nose-right turn, but the general method may be

applied for nose-left turns as well. In trim, the load and helicopter have the same

vertical velocity, i.e. rate of climb. Mathematically, this is expressed as

żgF = żgF = V sin γ
F

= V
L

sin γ
L

(3.23)

The helicopter turn radius can be computed from known trim parameters as

R
H

=
V

|ψ̇
H
|

(3.24)

The turn radius of the submerged load can be computed using the trim variables

(∆X, ∆Y , ∆Z) as

R
L

=
√

(R
H

+ ∆Y )2 + ∆X2 (3.25)

The CGs of the helicopter and the load both execute circular motions of different

radii in the plane of the turn, about the same center. The velocity of the CG of the

towed body in the plane of the turn is obtained from kinematics by

V
L2

= R
L
ψ̇

H
(3.26)
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The magnitude of the load velocity is obtained from Eqs. (3.23) and (3.26) as

V
L

=
√

V2 sin2 γ
F

+ V2
L2

The trim variables (X
L
, Y

L
) are directly related to the trail distances ∆X and ∆Y

as

∆Y = −Y
L

(3.27)

∆X = −X
L

(3.28)

Modification for Left-handed Turns

A left-handed turn is shown in Fig. 3.4. The treatment of nose-left turns

is very similar to that of nose-right turns, and the following equations have to be

modified to maintain consistency.

Figure 3.4: Left-handed turn with towed body
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Method 1:

The first method of ensuring compatibility of left-handed turns with the present

formulation is to mirror the lateral trail distances, i.e.

• Eq. (3.27) has to be modified as ∆Y = Y
L

• Eq. (3.22) has to be modified as tan ξ = ∆X
R

H
+∆Y

Method 2:

Another way to ensure compatibility for right and left-handed turns is to

allow the turn radius to become negative for left-handed turns. Thus, Eq. (3.24) is

modified as

R
H

=
V

ψ̇
H

All other expressions may be retained in their original form. This implementa-

tion allows for “on-line” computation of the load velocity during the trim process,

depending on the solver-adjusted value for the load positions.

3.4 Trim with Curved Cables

The curved cable is treated as a flexible beam with its own mass and fluid

force distributions along the span. In turning flight, the cable (and towed body)

may be subject to additional inertial forces due to centrifugal loading. These inertial

loads are automatically accounted for by defining the cable deflections in a rotating

coordinate system that is aligned with the helicopter heading ψ
F
. This choice of
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reference frame substitutes one lengthy set of coupling terms in the cable equations

(specifically, the role of helicopter turn rate in the cable centrifugal accelerations)

with a one-step matrix multiplication for rotating reference frames. This formulation

is also identical to that used to analyze rotor blades, hence it involves no additional

implementation overhead.

The towed body is treated as a distributed mass attached to the tip of the

cable. The load trim variables are the Euler angles (ψ
L
, θ

L
, φ

L
) and the trim

equations correspond to zero angular acceleration components about load body axes.

The trim variables for the curved cable are the generalized coordinates ηc,

and the corresponding trim equations are the beam flap, lag and torsion equations

(2.108) - (2.110).

3.5 Free-Vortex Wake Model in Trim

When the free wake model is used in trim, all the trim conditions given in the

previous sections are enforced. The main rotor inflow equations are initially used to

generate a starting guess for the trim controls, rotor response and fuselage orienta-

tions. Once trim is achieved with dynamic inflow, the main rotor inflow equations

are removed from the trim equations and a “ loose-coupling ” procedure is used

to periodically exchange information over one rotor revolution between the aero-

dynamics and rotor/flight dynamics. A detailed description of the implementation

of information exchange between the aerodynamics and flight/structural dynam-

ics may be found in Ref. [20]. Reference [101] provides additional details on the
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loose-coupling trim procedure, and a brief summary is given here for completeness.

1. With the trim controls, fuselage velocity and blade motions from the previous

iteration, the free wake solution is marched forward in time until the L1 norm

of the inflow over the rotor disk reduces below a threshold value δinflow.

2. The inflow distribution over the rotor disk is computed from the converged

free wake geometry and frozen.

3. Using this frozen inflow distribution, the trim procedure is applied a solu-

tion for simultaneous vehicle equilibrium and rotor response periodicity. Once

trim is achieved with the inflow distribution from step 2, the structural/flight

dynamics are frozen.

4. Steps 1-3 are repeatedly performed until the L1 norm of trim variables (ex-

cluding 2/rev and higher rotor harmonics) reduce below a threshold δ
TV

.

3.6 Extraction of Linearized Models

Models that represent the linearized dynamics of a system in the neighborhood

of an equilibrium point (trim condition) can be used to gain insight into system sta-

bility characteristics. Consider the dynamics represented by Eqs. (3.1). Expanding

the left hand side in a Taylor series, we obtain

f +
∂f

∂ẏ
∆ẏ +

∂f

∂y
∆y +

∂f

∂u
∆u + · · · = ε (3.29)

At equilibrium (trim), f = ε
def
= 0. Let the Jacobian matrices be

E =
∂ε

∂ẏ

∣∣∣∣
trim

; F =
∂ε

∂y

∣∣∣∣
trim

; G =
∂ε

∂u

∣∣∣∣
trim
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Neglecting the higher-order terms, we obtain the linearized system dynamics about

equilibrium, given by

E ∆ẏ + F ∆y + G ∆u = 0 (3.30)

Rearranging the equations and isolating ∆ẏ, we obtain

∆ẏ = A ∆y + B ∆u (3.31)

Where

A = − E−1F

B = − E−1G

Using Eq. (3.31) and an appropriate state-to-output conversion matrix C, transfer

functions between pilot inputs and system outputs for the relevant physical quanti-

ties can be constructed as

H(s) = C (s I − A )−1 B + D (3.32)

D is called the “ feed-through matrix ”, which represents the direct influence of

the inputs on the outputs. For mechanical systems such as rotorcraft and fixed-

wing aircraft, the nature of the aerodynamics and rotor dynamics introduces time

delays between application of input and establishment of steady-state response. The

control inputs influence the force distributions over the rotor disks, modifying the

rotor and airframe accelerations. These accelerations, integrated over time, manifest

as changes in the positions and velocities which are the system states and outputs.

Therefore, the feed-through matrix D is identically zero.
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3.7 LQR and the Riccati Equation

Feedback control inputs based on linearized models are used in the present

analysis to track prescribed vehicle motions and obtain the control inputs required

to fly a certain trajectory. To obtain the feedback gains K from the linearized

dynamics, the Linear Quadratic Regulator (LQR) (Ref. [102]) is used, which provides

a methodology to stabilize and control a linear system by minimizing a designer-

weighted quadratic cost functional in the state deviations from targets and the

control inputs. For an LTI system with dynamics given by Eq. (3.31), the infinite-

horizon continuous-time LQR controller yields state feedback gains K to minimize

the quadratic cost functional

J =

∫ ∞
0

(
xT Q x + ∆uT R ∆u

)
dt (3.33)

Where

x = ( y − ytarget )

The state feedback controls are given by

∆u = −K x

The feedback gains are obtained from

K = R−1BTP (3.34)

P is the unique positive definite steady-state solution of the continuous-time Riccati

Equation

dP

dt
+ ATP + PA − PBR−1BTP + Q = 0 (3.35)
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At steady-state, the time derivatives vanish, and the stabilizing solution satisfies the

algebraic Riccati equation

ATP + PA − PBR−1BTP + Q = 0 (3.36)

Taking transpose on both sides

ATPT + PTA − PTBR−1TBTPT + QT = 0

The vehicle and load rigid-body states are assigned non-zero weights, and the control

inputs are penalized with a unit weight. All other states and off-diagonal weights

(entries of Q,R) are assigned to zero. The diagonal form of the weighting matrices

for controls and states allows for further simplification of the solution procedure to

obtain the feedback gains K from the Riccati equation. The steady-state equation

simplifies to

ATPT + PTA − PTBR−1BTPT + Q = 0 (3.37)

Eq. (3.37) is very similar to Eq. (3.36), with P replaced by PT . Thus, if P is

a stabilizing solution, PT is also a stabilizing solution and if a unique stabilizing

solution exists, the matrix P must be symmetric. For a matrix of size n×n, the

number of elements of P to find are n(n+1)
2

. Thus, Eq. (3.35) can be integrated

numerically from an initial condition towards the stabilizing solution by exploiting

symmetry and updating the upper or lower-triangular elements of P.
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Practical Considerations

• Controllability

A few candidate flight conditions (straight and turning flight at various speeds)

were considered to determine whether the system is controllable, which is a

necessary condition for a stabilizing solution of the Riccati equation to exist.

In all cases, the Grammian was found to be full-rank.

• Solving the Riccati Equation

A Runge-Kutta (fourth-order) scheme is used to advance the Riccati equation

forward in time starting from 0. For computational efficiency, the time step

is increased as the infinity-norm of Ṗ decreases, and marching is terminated

when it falls below a threshold value (10−8)

• Computation efficiency

Additional time savings are obtained by marching the Riccati equation forward

from the previous steady-state solution instead of the original initial condition

(0). In case the Riccati equation does not converge to a steady-state solution

within a prefixed number of iterations (30000 in this case), the feedback gains

from the previous update are used and the initial condition is reset to 0.

• Gain Scheduling and Control Smoothness

It is possible, but practically cumbersome, to generate feedback gain matrices

for a combination of speeds, climb angles, turn rates and altitudes. Every

additional parameter (e.g. fin pitch settings) increases the number of potential
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pre-computations exponentially. Instead, a dynamic update of the system A

and B matrices is performed every 30 revolutions following a re-trim based

on the current flight condition and altitude, and the feedback gains K are

smoothly transitioned from the previous set to the current one over a few

rotor revolutions to avoid abrupt changes in the control inputs.

• Linearization with Simplified Cable Model

The linearized dynamical model in Eq. (3.31) is traditionally obtained using

central differences and small perturbations from trim values of the state and

control vectors. Obtaining the system A matrix using forward-difference based

perturbations ensures that slackening effects during the linearization process

are avoided and accuracy of the linearized model is retained.

3.8 Maneuvering Flight : Time Integration

A maneuver is a general unsteady flight condition which includes both trimmed

flight and accelerating motions. While it is computationally more expensive to simu-

late compared to trim, the nature of the present formulation Eq. (3.1) used also ren-

ders it extremely straightforward to implement. Using an ODE solver (Ref. [103]),

the values of y and ẏ are adjusted automatically at each time step by the solver

(internally using polynomial interpolation up to order 5) until the relative and ab-

solute errors fall below a user-specified threshold δODE. Reducing this threshold,

i.e. enforcing more precision increases the computational effort, but does not sig-

nificantly affect the accuracy of the solutions beyond a certain numerical value of
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δODE. In this case, the point of diminishing returns was obtained at δODE = 10−6.

3.9 Non-Dimensionalization

The analysis has been performed in a non-dimensional form to avoid overflow

and underflow truncation errors. Table 3.1 shows the reference parameters used to

nondimensionalize the relevant physical quantities. For non-rotating beams (cables),

the reference rotational speed is set to unity. The reference mass per unit span m0

and stiffness EI0 are set to the corresponding values at the root of the beam.

Table 3.1: Non-Dimensionalization Constants

Physical Quantity Reference Parameter

Length Beam Length (R)

Mass per unit span m0

Bending Stiffness EI0

Velocity Vtip = ΩR

Force m0 Ω2 R2

Moment m0 Ω2 R3
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4 Verification and Validation

This chapter discusses the test cases used to validate the present analysis.

In the first section, verification tests are applied to the beam model by comparing

it to analytical solutions for a cantilever beam. In the second section, test data

obtained from ship-based towing of submerged loads is used to validate the cable

(beam) model under static conditions. In the third section, the beam model is

applied to rotor blades, and the coupled rotor-fuselage-inflow dynamics are validated

under steady and transient conditions, using shaft power measurements and on-axis

transfer functions from pilot inputs to vehicle response, respectively, for the UH-60

Blackhawk.

4.1 Verification : Beam Model

Consider the case of planar bending of a uniform cantilever beam. After

bending, a point on the beam (x, 0, 0) is displaced to (x + u, v, w). The bending

slope tangent, defined as the ratio of vertical displacement to horizontal material

displacement is

tanα =
w+

(x+ u)+
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The curvature is the spatial derivative of the angle α along r, given by α+. Differ-

entiate the expression for tanα with respect to r to obtain

α+ sec2 α =
w++

(x+ u)+
− w+(x+ u)++

(x+ u)+2

Using Eqn. 2.59, the expression for α+ can be reduced to

α+ =
w++

(x+ u)+
=

w++

√
1− w+2

(4.1)

Pure Tip Moment

When the external load is a pure tip moment, the analytical solution for the

beam deformed shape is a circular arc of radius 1/α+, with bending coordinates

w =
1− cos θ

α+

x+ u =
sin θ

α+

These expressions can be substituted into Eqn. 4.1 to verify that the curvature is

constant at all points along the beam. This test indicates that arbitrarily large cur-

vatures can be represented using the spatial gradients of the deflection coordinates

(u, v, w).

Vertical Tip Load

Consider a cantilever beam subjected to a vertical tip load. As the magnitude

of the load increases, the effects of transverse bending on axial displacement of the

beam sections becomes increasingly important, changing the moment arm for the

individual sections. Semi-analytical solutions for elastica (Ref. [104]), are available
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for the vertical and axial displacements of the beam tip, and can be evaluated

numerically using multi-point quadrature to provide a basis for validating the beam

model. The vertical and axial deflection of a vertically loaded cantilever beam are

shown for various tip loads in Fig. 4.1 for six equi-spaced finite elements.

Figure 4.1: Deflection of a Tip-Loaded Cantilever. (+) : elastica (-) : FEM

Free Vibration Frequencies

Using Eq. (2.109), free-vibration frequencies for a non-rotating uniform can-

tilever beam with 20 equi-spaced elements are identified and compared to analytical

solutions in Table 4.1. The frequencies are non-dimensionalized by
√

EI
mL4 . The

comparisons indicate that the flap bending frequencies match almost exactly with

the analytical solutions. The finite element method always results in a slight over-

prediction of the natural frequencies. This over-prediction is a result of the assump-

tions associated with the finite element method, which imposes additional “stiffness”

or “restraints” on a structure by replacing an inifinite number of degrees of freedom

with a finite set of deflection parameters.
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Table 4.1: Free-Vibration Frequencies of Non-Rotating Cantilever Beams

Mode No. Analytical Solution FEM solution

1 3.516 3.516

2 22.034 22.035

3 61.684 61.698

4 120.903 120.910

5 199.860 199.890

6 298.564 298.670

4.2 Ship-based Tow Tests

Experimental tests with submerged loads towed by ships using long cables

have been documented in Ref. [71]. A schematic of the test configuration is shown

in Fig. 4.2.

Figure 4.2: Ship-Based Tow Tests of Submerged Load - from Ref. [71]

The data available includes towed body depth, cable angles along the length
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and at the tow point, and the total cable force at the tow point. Seven sets of

test data are presented. Four datasets correspond to a thinner cable (called “small

cable”) of lengths 200, 400, 600 and 800 ft. The other three datasets correspond to a

thicker cable (called “large cable”) of lengths 300, 500 and 700 ft. The cross-section

properties of the small and large cables are given in Tables. 4.2 and 4.3 respectively.

Table 4.2: Cross-section Properties of Small Cable

Property Value Units

Diameter 0.376 (9.55) inch (mm)

Air weight per unit length 0.234 (3.41) lb/ft (N/m)

Lengths 200, 400, 600, 800 ft

Table 4.3: Cross-section Properties of Large Cable

Property Value Units

Diameter 0.778 (19.76) inch (mm)

Air weight per unit length 0.92 (13.42) lb/ft (N/m)

Lengths 300, 500, 700 ft

The beam model is used to represent the dynamics of the tow cable, and the

submerged load is treated as a tip mass with its own forces and moments, obtained

from the Appendix of Ref. [71]. The tow system is simulated with both the small

and large cables. All seven test cases are evaluated with the present model and

compared to a static catenary analysis and experimental data.
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Figure 4.3 shows the variation of the cable angle along the length of the 800-

ft small cable. Each of the lines corresponds to a different tow speed. The solid

lines show the predictions from the present work, while the dashed lines represent

predictions from a static catenary analysis developed at the David Taylor Research

Center (DTRC). Experimental measurements are represented by data points. Excel-

lent agreement is observed with both the DTRC model and test data at all speeds.

The geometrically accurate beam theory (without small angle restrictions) is essen-

tial to capture the large variation of slope from 80 deg at the tip to 15 deg near the

water surface.

Figure 4.3: Angles along Length of 800 ft Small Cable

Figure 4.4 shows the depth of the towed body as a function of tow speed

for various lengths of the small cable. The two analyses match each other almost

exactly, while the correlation with test data is better for shorter cables. As the

cable lengths increase, the effects of unmeasured cross-currents become significant

and may cause reductions in the measured towed body depth.
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Figure 4.4: Towed Body Depth below Water Surface

Figure 4.5 shows the inclination of the cable to the horizontal at the root, i.e.

attachment point on the ship for various cable lengths. Excellent agreement is again

obtained, within 1-2 degrees with both test data and the DTRC analysis.

Figure 4.5: Cable Angle at the Tow Point

Figure 4.6 shows the total cable force at the tow point as a function of tow

speed. Each of the lines represents a different cable length. The longer cables are

heavier and experience more hydrodynamic drag, resulting in increased cable force
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at the root. The difference between predicted and measured forces are within the

range of experimental scatter. At very low speeds, the effects of water currents on

cable force are significant, which may lead to increased data scatter.

Figure 4.6: Cable Force at the Tow Point

The corresponding test cases for the large cable are shown below.

Figure 4.7: Angles along Length of 700 ft Large Cable

Figure 4.7 shows the variation of cable inclination to the horizontal as a func-
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tion of distance from the towed body for three different tow speeds, for the 700-ft

large cable. Near the towed body, excellent agreement is observed with experimen-

tal measurements. The error in predicted cable inclination close to the mid-point

is 10 degrees at 4 knots, and 5 degrres at 8 knots. Figure 4.8 shows the variation

of towed body depth with tow speed for three different lengths of the large cable.

The present analysis shows excellent agreement with the DTRC model, and good

agreement with experimental data at low speeds. A near-constant offset between

experimental data and predictions exists above 7.5 knots.

Figure 4.8: Towed Body Depth below Water Surface

Figure 4.9 shows the variation of cable root angle at the tow point with tow

speed for various cable lengths. Excellent agreement is again obtained, within 1-2

degrees with both test data and the DTRC analysis. Figure 4.10 shows the variation

of cable force at the tow point as a function of tow speed for various lengths of the

large cable. The agreement with the DTRC model is excellent, and both analyses

agree well with experimental data at low speeds. At tow speeds above 7.5 knots, the

trendlines indicate a slight under-prediction from both analyses, but experimental
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scatter also increases to almost 200 lb for the 700-ft large cable.

Figure 4.9: Cable Angle at the Tow Point

Figure 4.10: Cable Force at the Tow Point
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4.3 Helicopter Configuration and Validation

The helicopter used in the present analysis is similar to the UH-60 Blackhawk.

The relevant main rotor geometry parameters are given in Table 4.4, and the air-

frame parameters are given in Table 4.5. All other parameters, including airfoil

section characteristics, are obtained from Ref. [26]. The blade structural properties

are obtained from Ref. [105]. The swept tip section is considered rigid in the present

analysis, with its own inertial and aerodynamic loads.

This section presents a validation of the coupled helicopter wake-flight dy-

namic model. Predictions of main rotor power required in steady forward flight

are compared to flight test data (Ref. [106]) at five different density altitudes to

establish the accuracy of the coupled model.

To obtain accurate predictions of helicopter performance at both low and high

speeds, all relevant parameters that represent various aspects of the aerodynamics

and structures must be chosen methodically. The most significant of these parame-

ters are discussed below.

Fuselage Drag

Reference [106] observed that the baseline equivalent flat-plate area of the UH-

60 fuselage (22-24 sq.ft) is not representative of the vehicle used for flight tests, due

to additional fairings, wires and airframe appendages that were not added to the

wind-tunnel model. A value between 33 and 36 sq.ft was found to be representative

of the final configuration used during tests. Since the equivalent flat-plate area
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is a measure of fuselage drag, this parameter significantly affects forward flight

performance (above 70 knots), and must be chosen carefully.

The present flight dynamic model accounts for the aerodynamic drag from the

tail surfaces and tail rotor separately from the fuselage drag. Since the empennage

contributes 3 sq.ft to the equivalent flat-plate area of the helicopter (Ref. [106]),

the baseline fuselage flat-plate area was set to 30 sq.ft instead of the

wind-tunnel test value of 24 sq.ft.

Blade Flexibility

The frequencies of the first ten blade modes (computed in vacuum) are given

in Table 4.7. Since these mode shapes and frequencies depend on the blade pitch

setting, it is important to define the root angle used to determine the modes. For

finding the blade modes, the root angle is set so that the total pitch at

75% span is zero.

The torsion frequencies (4.7/rev and 14.2/rev) are significantly affected by

the pre-twist term θ+ in the rotating beam equations. Without this term, these

frequencies are shifted up to 5.04/rev and 16.1/rev, close to integer multiples of the

rotor speed. Therefore, the pre-twist term must be included in the modal

analysis when checking for frequency coalescence, especially for elastic

torsion.

The first two modes correspond to rigid flap and lag motions with negligible

bending curvatures and elastic twist. For the present blade, the blade section of
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Table 4.4: Main Rotor Geometry

Parameter Value Units

Rotor Type Single Rotor, ccw

# blades 4

Radius 26.83 ft

Rotation Speed 27 rad/s

Chord 1.73 ft

Blade weight 256.9 lbs

Shaft tilt aft relative to body -3 degrees

Airfoil SC1095

Hinge offset 4.66 % Radius

Root cut-out 20 % Radius

Blade twist Non-linear

Swashplate control phase offset -9.7 deg

Location of Swept tip 92.9 % Radius

Sweep Angle 20 deg

Pitch Link Stiffness 67900 ft-lb/rad

gravity is offset from the elastic axis towards the trailing edge from 14% to 72% (de-

fined negative), and towards the leading edge between 72-100% span. This variation

closely resembles the flap deflections for the second flap bending mode (2.837/rev),

and is one of the primary reasons for elastic flap-twist coupling in this mode. The
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Table 4.5: Airframe Parameters

Parameter Value Units

Roll Inertia Ixx 4658 slug-ft2

Pitch Inertia Iyy 38512 slug-ft2

Yaw Inertia Izz 36796 slug-ft2

Roll-Yaw Coupling Inertia Ixz 1882 slug-ft2

Fuselage Station of vehicle CG 360 in

Fuselage Station of main rotor shaft 341.215 inch

Waterline Station of vehicle CG 243 in

Waterline Station of main rotor shaft 300 in

Atmosphere ISA

Table 4.6: Tail Rotor Geometry

Parameter Value Units

# blades 4

Radius 5.5 ft

Rotation Speed 124.62 rad/s

Section lift-curve slope 5.73 /rad

Chord 0.81 ft

Cant angle with vertical 20 deg
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Table 4.7: Main Rotor Blade Frequencies

Mode Freq (/rev) Mode Freq(/rev)

1 0.267 6 5.222

2 1.035 7 7.923

3 2.837 8 11.567

4 4.600 9 12.426

5 4.710 10 14.214

torsion and flap-torsion modes (4.6/rev and 4.71/rev) introduce additional elastic

twist, in addition to that from pitch link flexibility. The cumulative effect of elastic

twist from modes # 3,4,5,6 results in a change in the near-wake distribution, since

the section angles of attack are modified significantly (3◦ near the tip). Further,

the tip vortex strength is altered, since it is obtained from the peak of the bound

circulation distribution. At low speeds up to 30 knots, elastic twist is beneficial for

rotor performance (3.5% power reduction with respect to a torsionally rigid blade),

since the total blade twist along the span approaches the “optimum” (in a power

loading sense) hyperbolic distribution. At high speeds, increased elastic twist re-

sults in increased rotor power requirements by 4% with respect to a torsionally rigid

blade. This reduction in rotor efficiency is a result of airfoil sections along the blade

operating at “non-optimal” (in a lift-to-drag ratio sense) angles of attack, incur-

ring profile drag penalties to sustain the target rotor thrust. Therefore, neglecting

elastic twist results in an over-prediction of power at low speeds and
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under-prediction at high speeds.

Neglecting the contributions of distributed inertial moments in the flap and

lag equations (e.g. through use of ordering schemes) exaggerates the flap-torsion

couplings in the rigid flap mode (1.035/rev) when the cross-section CG is offset

from the elastic axis. These assumptions result in artificially decreased levels of

elastic twist in the blade motions, increasing power predictions at hover (0.6%) and

reducing predictions in forward flight (0.7%).

Effect of Elastic Twist on Wake

Some level of modification is required to introduce elastic blade deflections

into the free-wake model. The wake model assumes that rotor blades are rigid

structures with flap motions. These blade motions are replaced with an equivalent

flap angle obtained from the structural dynamics, similar to Refs. [20] and [101].

In the present work, an important update is introduced to improve consistency in

the information exchange. The wake model is modified to include elastic

twist during computation of bound circulation along the span. This has a

significant effect on the predicted rotor power when using torsionally flexible blades.

If the elastic twist is not included in the wake model (but included in the structural

dynamics), the error in predicted rotor power at 120 knots is as much as 12%.

The airfoil zero-lift angle of attack α0 (as given by tabulated data in Ref. [26])

changes as a function of Mach number. These characteristics in experimental data

result in discrepancies in the near-wake model, which relies on a single zero-lift
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angle of attack along the span. Further, changes in α0 result in a constant offset

in the bound vortex strength along the blade, which then affects the tip vortex

strength (and therefore induced inflow) significantly. To avoid propagating the effect

of these discrepancies into the wake model, the tip vortex strength was prescribed

from blade lift distribution (computed from tables of Ref. [26]), using the Kutta-

Joukowski theorem to directly relate the wake trailer strengths and the aerodynamic

loads. When the near-wake strengths were assigned in a similar manner, the iterative

convergence process was numerically unstable.

Root Cut-Out and Blade Spar Drag

Most rotor blades have cut-out sections near the root, where airfoil sections

are absent and the blade spar is exposed to the free-stream flow in the root cut-out

region (20% span in the present case). The spar experiences profile drag that has

an increasingly significant effect on rotor power required. In the present case, it is

assumed that the blade spar profile drag corresponds to a CD=0.05 and a reference

cross-section dimension of the root chord (1.73 ft). Blade spar drag affects the

rotor power prediction by as much as 3% at 100 knots, and is one of the

empirical parameters that must be chosen with care.

Comparison to Analyses with Traditional Ordering Schemes

Previous work (Refs. [19], [20]) utilized ordering schemes tailored for small

or moderate rotations, to simplify the analysis and reduce the number of terms in
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analytical expansions of the governing equations. These so-called “second-order”

approximations introduce errors in the beam dynamics. A comparison of the rotor

power predictions was obtained using ordering schemes and the geometrically exact

approach, based on which the following conclusions are drawn

• Axial fore-shortening has no perceptible effect on rotor torque

• Contributions from aerodynamic loads to the tensile force computations have

negligible effects on rotor power

• Small-angle assumptions have no effect on structural loads, due to inherently

small curvatures in the blade

• Using second-order approximations to the inertial loads results in 0.8% (hover)

to 1.5% (150 knots) under-prediction of power. The error scales with the

magnitudes of the lag angles, and is minimum at 70 knots

• Using second-order approximations to the aerodynamic loads results in 2.5 to

3.5% under-prediction of power, depending on airspeed

Elimination of the individual higher-order terms one-at-a-time may result

in negligible error in the final solution. However, these higher-order

terms are so numerous, that their collective effect introduces second-

order error in the inertial and aerodynamic loads.
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Discretization

Grid convergence is important when using discretized models of continuous

systems (in this case, the rotating beam equations and the wake model). For the

structural dynamics, six blade modes (each with steady, 1/rev, 2/rev and 3/rev

motions) were found to be sufficient to obtain accurate estimates of rotor power

required. Using more than 6 modes increased the computational effort but yielded

less than 1% change in the predicted power. Five finite elements with eight quadra-

ture points in each element are needed to represent the bending and torsion of the

flexible section of the rotor blade with six modes. Additional spatial resolution does

not affect the predicted rotor power for the cases investigated. For trimming the

rotorcraft, the blade loads are sampled at 40 azimuthal stations and averaged over

the revolution. These 40 points can be conceptualized as five equal azimuthal sub-

divisions of the rotor disk, with eight quadrature points in each subdivision. These

quadrature points are spaced similar to the radial locations along the blade finite

element. A summary of the parameters used for the rotor blade is given in Table

4.8.

The wake model is modified to run on Graphics Processing Units (GPUs)

with CUDA-Fortran. Use of GPUs greatly reduces the time required to obtain

a trim solution by a factor of 20-25, while affecting the final trim solution (and

power predictions) by less than 0.1% compared to CPU computations with double

precision. The minor differences in CPU and GPU solutions stem from the fact that

induced velocity computations involve the addition of millions of numbers for each
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Table 4.8: Discretization for Rotor Blade Structures

Parameter Value Units

Azimuthal samples for trim 40

Flexible finite elements 5

Quadrature points / element 8

Number of modes 6

Blade harmonics per mode 3

Table 4.9: Discretization for Rotor Wake

Parameter Value Units

Wake discretization 10 deg

Near-wake 30 deg

Blade bound vortex segments 40

Number of wake turns 6

wake collocation point, and round-off errors are affected by the order of operations,

which are markedly different when using parallelized multi-stage binary reduction

trees (GPU) vs. single-thread accumulation (CPU). Additional details of GPU

parallelization are given in Appendix B. Parametric sweeps were used to determine

the discretization for the wake model, given in Table 4.9.
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Comparison with Test Data

Propulsive trim solutions are obtained for the helicopter in steady forward

flight at five select density altitudes and vehicle gross weights, corresponding to

flight test configurations (Ref. [106]). Predictions of main rotor power required

(MRHPreq) are compared to flight test data to validate the coupled wake-flight

dynamics model.

Figure 4.11: Main Rotor Power vs. Speed in Steady Forward Flight

Figure 4.11 shows the comparison of predicted main rotor power with test

data from hover to 150 knots at a density altitude of 3670 ft. The comparisons show

excellent agreement at speeds above 50 knots. At low speeds (below 30 knots), the

predicted power curve exhibits discontinuities associated with rotor-wake interfer-

ence typical of “transition” flight at µ ≤ 0.1. The “knee” in the power curve at 40

knots is captured by the coupled simulation, but instead of the sharp step, the power
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curve corresponding to the converged simulation exhibits a gentler reduction with

airspeed. The data also shows a linear range between 60 and 100 knots, whereas

the predictions place this linear region between 70-100 knots with a higher slope.

Figure 4.12: Main Rotor Power vs. Speed in Steady Forward Flight

Figure 4.12 shows the comparison of predicted main rotor power with test

data from hover to 150 knots at a density altitude of 7780 ft. The comparisons

show fair agreement at speeds above 50 knots, and predicted power shows a smooth

trend. The step-like changes in rotor power required at low speeds are a result of

rotor-wake interactions. Again, the “knee” in the power curve is captured at 40

knots, with maximum error due to over-prediction from 45-60 knots. To ensure

that the power predictions and controls are insensitive the convergence process,

repeated simulations of wake convection and rotor-body trim are performed until

the cumulative error in controls, steady and 1/rev blade motions and rotor power
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reduces to 1% or smaller.

Figure 4.13: Main Rotor Power vs. Speed in Steady Forward Flight

Figure 4.13 shows the comparison of predicted main rotor power with test data

from hover to 150 knots at a density altitude of 10450 ft. The comparisons show

excellent agreement throughout, except between 30-45 knots. At this altitude, the

“knee” in the flight test data is replaced with two step changes at 25 and 40 knots

that may be a result of experimental error. The linear region in the flight test still

persists from 50-90 knots. The predicted power exhibits smooth trends from 40-150

knots with negligible error (≤ 1%).

Figure 4.14 shows the comparison of predicted main rotor power with test data

from hover to 150 knots at a density altitude of 13230 ft. The comparisons again

show excellent agreement at speeds above 50 knots. There exist two distinct steps in

the flight test data, one at 30 knots and another at 40 knots that are not predicted
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by the present model. The linear region in the flight test is present between 60-100

knots, together with significant data scatter (14%) from 90-100 knots. The predicted

power exhibits smooth trends above 40 knots.

Figure 4.14: Main Rotor Power vs. Speed in Steady Forward Flight

Figure 4.15 shows the comparison of predicted main rotor power with test

data from hover to 150 knots at a density altitude of 16770 ft. The comparisons

show excellent agreement at speeds above 70 knots. The flight test data exhibits

two steps at 35 and 45 knots, together with an increase in power with airspeed

from 35 to 45 knots. The linear region in the flight test is present between 60-110

knots. The predicted power exhibits smooth trends throughout. At this altitude,

the density is 60% of that at sea-level and so the rotor tip vortex strengths (and

induced velocities) increase significantly (30% more at hover compared to sea level).

The wake is convected away from the rotor quickly at this high thrust condition
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(
CT
σ

= 0.123), and results in faster convergence without oscillations. The differences

between predictions and flight test data is largest at 45 knots (20%) between the

two step changes in the flight data.

Figure 4.15: Main Rotor Power vs. Speed in Steady Forward Flight

Sources of Error

The term “error” is used here as a measure of discrepancy between flight tests

and predictions, which are susceptible to inaccuracies in measurement and mathe-

matical modeling, respectively. The step changes in measured power at 40 knots are

indicative of data scatter due to environmental disturbances, or the difficulty asso-

ciated with obtaining trimmed flight at low speeds, especially the transition region

between hover and forward flight (µ ≤ 0.15).

Several modeling assumptions have been made to recast the governing equa-
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tions into forms that yield engineering solutions in reasonable times. The blade

dynamics are assumed to be represented using beam models, except at the swept

tip, which is treated as a rigid attachment. Airframe-wake interactions are neglected

and a single trailer is used to model the rolled-up wake emanating from a rotor blade

with a swept tip. Further, unsteady aerodynamics of rotor blades and the effects

of blade-vortex intersections (i.e. viscous interactions between the blade boundary

layer and tip vortex core) are neglected.

4.4 Validation of Helicopter Frequency Response to Pilot Inputs

After obtaining trim configurations for the helicopter at hover, 80 knots and

120 knots (steady forward flight), the linearized rotor-airframe dynamics around

equilibrium are extracted numerically using finite-difference perturbations and used

to construct transfer functions. In this section, these transfer functions from pilot

stick inputs to vehicle response outputs are compared to test data (also provided as

transfer functions) to validate the helicopter flight dynamic model. The free-vortex

wake equations, in their present form, are currently incompatible with a state-space

representation of the coupled rotor-airframe dynamics. Therefore, dynamic inflow

models are used to compute vehicle frequency responses for validation, observed in

Ref. [39] to be sufficient for predicting the on-axis vehicle response.

Figure 4.16 shows the helicopter heave acceleration response to collective stick

inputs at hover, while Figs. 4.18, 4.17 and 4.19 show the vehicle pitch, roll and yaw

rate responses to lateral stick, longitudinal stick and foot pedal inputs respectively.
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These four transfer functions are the “on-axis” vehicle responses, since they represent

the primary helicopters motions for each of the corresponding pilot controls.

The on-axis transfer functions at 80 knots are shown in Figs. 4.20, 4.22, 4.21

and 4.23. The on-axis transfer functions at 120 knots are shown in Figs. 4.24, 4.26,

4.25 and 4.27. In forward flight, the heave acceleration along the helicopter k
B

axis

is given by ẇ + pv − qu, where v and u are evaluated at the trim condition. The

reductions in helicopter roll rate response magnitude between 10-20 rad/s corre-

sponds to the coupling of body motions and rotor blade lag. The nonlinearities in

the damper force characteristics and the linearization technique (azimuthal averag-

ing for fixed-frame rotor dynamics) result in prediction errors in the magnitude at

higher frequencies. Overall, agreement is very good in the regions marked “accurate

flight tests’ for all on-axis vehicle responses.

This range of “accurate flight tests” indicates regions where the input-output

coherence is above a cutoff value of 0.6, to ensure that dynamic nonlinearities and

effects of other pilot inputs on the vehicle response parameter of interest are small.

At very high frequencies, the human pilot cannot apply consistent stick inputs of

sufficient amplitude reliably. At very low frequencies, inputs amplitudes that are

sufficient to excite a measurable response also cause the helicopter to drift away

from equilibrium, and the linearized dynamic model is no longer valid. Therefore,

intermediate frequencies between 0.5 rad/s to 15 rad/s is a good range for using

frequency-domain data to validate the dynamic model.
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Figure 4.16: Heave Acceleration Response to Collective Stick Inputs at Hover

Figure 4.17: Roll Rate Response to Lateral Stick Inputs at Hover
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Figure 4.18: Pitch Rate Response to Lateral Stick Inputs at Hover

Figure 4.19: Yaw Rate Response to Lateral Stick Inputs at Hover
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Figure 4.20: Heave Acceleration Response to Collective Stick Inputs at 80 knots

Figure 4.21: Roll Rate Response to Lateral Stick Inputs at 80 knots
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Figure 4.22: Pitch Rate Response to Lateral Stick Inputs at 80 knots

Figure 4.23: Yaw Rate Response to Lateral Stick Inputs at 80 knots
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Figure 4.24: Heave Acceleration Response to Collective Stick Inputs at 120 knots

Figure 4.25: Roll Rate Response to Lateral Stick Inputs at 120 knots
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Figure 4.26: Pitch Rate Response to Lateral Stick Inputs at 120 knots

Figure 4.27: Yaw Rate Response to Lateral Stick Inputs at 120 knots
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5 Trim Characteristics

This chapter discusses the trim configurations of the coupled helicopter-cable-

towed body system in steady level flight. The first section covers results for steady

forward flight, and the second section covers steady turning flight. The implications

of towing a submerged load on helicopter steady-state performance are explored

through parametric studies. These sweeps are performed by perturbing relevant

physical quantities one-at-a-time, centered on a baseline helicopter, towed body

and cable configuration. Initial predictions with dynamic inflow models are used

to illustrate the effects of various cable and towed body parameters on the forces

transmitted to the helicopter and trim depths of the submerged load. These dy-

namic inflow models are also used to gain qualitative insight into the helicopter trim

configurations and rotor power requirements, which are subsequently refined using

a free-vortex wake model of the rotor flowfield.

Baseline Configuration

The baseline helicopter is similar to the UH-60 Blackhawk, with relevant phys-

ical parameters given in Chapter 4. The baseline helicopter weight is 18000 lb,

discounting the air weight of the towed body and cable. The trim density altitude
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for the helicopter is set to 150 ft above sea level. The tow point on the airframe is

vertically offset below the vehicle CG as given in Table 5.1.

Table 5.1: Helicopter Tow Point Location

Parameter Value Units

Fuselage station 361 inches

Buttline station 0 inches

Waterline station 208 inches

The physical parameters for the baseline cable are given in Table 5.2. Based

on anecdotal evidence, the cable is assumed to be fitted with a hydrofoil fairing that

reduces its diameter-based drag coefficient to 0.1, instead of the bare-cable value of

1.73 as given in Ref. [71]. The elastic axis is assumed to coincide with the center of

gravity of the cable cross-section. Five finite elements, each with eight quadrature

points are sufficient to represent the flexure of the cable.

Table 5.2: Baseline Cable Parameters

Parameter Value Units

Lengths 350, 500, 700 ft

Mass/length 0.64 kg/m

Diameter 0.025 m

Bending stiffness 4 × 104 Nm2
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Table 5.3: Baseline Towed Body

Parameter Value Units

Weight in air 4454 (1000) N (lb)

Hull diameter 0.25 m

Hull length 2.0 m

Roll inertia Ixx 3.5 kg-m2

Pitch inertia Iyy 150 kg-m2

Yaw inertia Izz 150 kg-m2

Coupling inertias Iyz, Ixz, Ixy 0 kg-m2

Drag coefficient (frontal area) 1.0

Lift coefficient (frontal area) 0.0

# main fins 2

Longitudinal offset from CG 0 m

Vertical offset from CG 0 m

Main fin span 0.4 m

Main fin chord 0.2 m

# tail fins 3

Placement of tail fins inverted-Y

Longitudinal offset of tail fins from nose 1.9 m

Tail fin span 0.2 m

Tail fin chord 0.1 m
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The 3-view of the baseline towed body is shown in Fig. 5.1, and the relevant

physical parameters are given in Table 5.3. The center of gravity and center of

buoyancy of the baseline towed body are each assumed to coincide with the geometric

center, i.e. on the axis of cylindrical hull at 1 m from the nose. The cable attachment

point lies 0.125 m above the geometric center, on the surface of the hull.

Figure 5.1: Baseline Towed Body. All dimensions are in cm

5.1 Trim in Steady Forward Flight

The effects of the towed body on helicopter performance in steady forward

flight are inferred from trim solutions, and the performance during tow is compared

to that of an isolated helicopter with the same gross take-off weight. A tow cable

of length 700 ft and weight 300 lb is considered, with different deployed lengths.

A deployed length of 350 ft corresponds to a 150 lb cable of length 350 ft used
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to tow the baseline submerged load, and the rest of the cable weight (150 lb) is

carried inside the airframe. Thus, the additional weight of the undeployed length

of the 700-ft cable is accounted for in the following results. The trim attitudes of

the towed body are examined first, since they are independent of both cable and

helicopter parameters.

Figure 5.2: Towed Body Trim Attitudes in Steady Forward Flight

Figure 5.2 shows the trim pitch and roll attitudes of the fully submerged base-

line towed body in steady forward flight. The roll attitude is zero due to symmetric

loading on the fins, and the pitch attitude is increasingly nose-down (hence neg-

ative, by sign convention) with increases in tow speed. The reason for this trim

pitch attitude variation with tow speed lies in longitudinal moment balance for the

submerged load. To counter increasing hydrodynamic drag at higher tow speed, the

forward component of cable force must increase. Since the cable attachment point is

vertically offset above the load CG, the cable force component parallel to the water

surface produces a nose-down pitching moment. This nose-down pitching moment
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from cable forces can be countered only by nose-up pitching moments (down-force)

from the tail fins, achieved by trimming the towed body to a nose-down pitch atti-

tude. When the main fins (mounted near the load CG) are fixed at their zero pitch

setting, they experience down-forces proportional to the trim pitch attitude of the

submerged load. Therefore, increases in tow speed result in increased cable loads

transmitted to the helicopter due to two dominant phenomena

• Increase in cable force component parallel to the tow direction (drag)

• Increase in cable force component normal to the tow direction (down-

forces) from the main fin, arising from longitudinal moment balance

Figure 5.3: Cable Force in Steady Forward Flight

These effects cause an increase in the resultant cable force with tow speed, as shown

in Fig. 5.3 for a 350-ft cable. In this case, the effects of cable drag and buoyancy

have been neglected. Since the helicopter ultimately provides the aerodynamic loads

necessary to maintain trim, thrust requirements on the rotor increase, leading to
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increased engine power consumption during tow procedures as shown in Fig. 5.4.

Figure 5.4: Main Rotor Power Required in Steady Forward Flight, No Cable Drag

Also shown in Fig. 5.4 are the power requirements for the isolated helicopter.

The effects of buoyancy are apparent between 0-5 knots, where an isolated heli-

copter with the same GTOW requires more power to hover than a tow system with

the submerged load and part of the cable immersed in water. The towed body

hydrodynamic forces manifest as increases in weight and equivalent flat-

plate area on the helicopter. Thus, the main rotor thrust vector must increase in

magnitude and tilt into the tow direction to counter hydrodynamic drag and down-

force. To simultaneously maintain longitudinal moment balance for the airframe,

the helicopter CG must lie close to lines of action of rotor thrust and cable force at

the tow point. Therefore, the trim pitch attitudes of the helicopter are increasingly

nose-down (negative, by sign convention) with increasing tow speed compared to

an isolated helicopter, as shown in Fig. 5.5. The trim roll attitudes are insensitive

to towed body drag up to 25 knots, and show slight differences at 40 knots due to
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additional rolling moments induced by increasing tail rotor thrust (coupled with the

vertical offset of the tail rotor above the helicopter CG).

Figure 5.5: Helicopter Attitudes in Steady Forward Flight, No Cable Drag

Figs. 5.4 and 5.5 also serve as verification tests of the present implementation.

Since the first two modes of a hinged beam correspond to rigid-body rotations,

reduction of cable dynamics to two normal modes is equivalent to using a straight

cable. Various cable and load parameters influence the total force transmitted to

the airframe. The dominant parameters are discussed in the following sections.

5.1.1 Effect of Cable Hydrodynamics

The previous section discussed the effect of towed body hydrodynamics on the

trim characteristics of the tow system. In this section, cable drag and buoyancy are

introduced to identify their effect on trim with straight cables.
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Figure 5.6: Helicopter Tow Tension, Steady Forward Flight, 350-ft Straight Cable

Figure 5.7: Helicopter Attitudes in Steady Forward Flight, 350-ft Straight Cable

Figure 5.6 shows the variation of the total force transmitted to the helicopter

for the baseline submerged load towed by a 350-ft cable. When cable buoyancy is

ignored, the force is slightly over-predicted at hover. When cable drag is ignored,

force is under-predicted in forward flight by 16%. Ignoring cable drag also propagates
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the error to helicopter trim attitudes, as shown in Fig. 5.7. When hydrodynamic

loads are ignored for a 700 ft cable, the cable force is under-predicted by 65%, rotor

power is under-predicted by 20% and the trim pitch attitude is under-predicted

by 12◦ at 40 knots. Under-prediction of trim attitudes is significant for choosing

configurations that offer higher levels of pilot comfort, since operating at trim pitch

attitudes in excess of -6◦ may lead to fatigue (Ref. [66]).

Figure 5.8: Towed Body Depth in Steady Forward Flight, 350-ft Straight Cable

The variation of submerged load depth (measured as distance from water sur-

face) with tow speed is shown in Fig. 5.8 for a 350-ft cable. With increasing speed,

hydrodynamic drag and down-force increase, the interplay between which determines

towed body depth. Ignoring cable drag erroneously increases the relative magnitude

of vertical forces, resulting in over-prediction of depth by 68% for a 350-ft cable and

81% for a 700-ft cable at 40 knots.
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5.1.2 Effect of Cable Curvature

Cable curvature introduces variations along the cable span, of the angle of the

flow inclination to the cable axis and modifies the force distributions normal to the

local cable axis. For a 350-ft cable, the changes in helicopter trim attitudes, total

cable force transmitted to the helicopter, trim controls and rotor power required is

less than 1% from hover to 40 knots. The error in prediction of towed body trim

depth is at most 5% (4 ft). When the cable length increases to 700 ft, ignoring cable

curvature results in 3% under-prediction of cable force and 1.6% under-prediction of

rotor power at 40 knots. Helicopter trim attitudes are unaffected by cable curvature

for the cases investigated. The primary effect of curvature is on towed body depth,

shown in Fig. 5.9.

Figure 5.9: Towed Body Depth with 700-ft Cable

Neglecting cable curvature for the 700-ft cable results in at most 9.3% over-

prediction of towed body depth. As the cable lengths increase, effects of curvature
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become increasingly significant. Perturbing the bending stiffness of the cable by one

order of magnitude in each direction about the baseline value produced insignificant

changes in the trim state of the vehicle for all cable lengths considered. This insen-

sitivity to cable flexural stiffness indicates that the axial force always dominates the

stiffening term in the cable bending equations, due to the large spans involved.

5.1.3 Cable Attachment Point on the Towed Body

The location of the cable attachment point on the towed body plays a dominant

role in determining the towed body trim depth, cable force, rotor power required

and helicopter trim pitch attitudes. The baseline value of the hook offset is 2 inches

above the CG. The effects of increasing this vertical offset by 2 and 4 inches on the

trim pitch attitudes of the towed body are shown in Fig. 5.10 for the baseline towed

body.

Figure 5.10: Towed Body Trim Attitudes, Various Cable Attachment Offsets

As the moment arm for the horizontal component of the cable force increases,
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the nose-up moments from the tail fins must increase to maintain equilibrium, neces-

sitating additional nose-down pitch attitudes. The main fins experience additional

down-force, increasing the depth of the towed body as shown in Fig. 5.11.

Figure 5.11: Towed Body Depth, Various Cable Attachment Offsets, 700-ft Cable

Figure 5.12: Helicopter Attitudes, Various Cable Attachment Offsets, 700-ft Cable

At 40 knots, 4 inches of additional vertical offset of the cable attachment point

results in a 25% increase in towed body depth. Down-forces on the main fin also
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orient larger sections of the cable normal to the tow direction, increasing hydrody-

namic drag. The helicopter assumes an increasingly nose-down pitch attitude to

overcome the additional cable drag, while roll attitudes are unaffected as shown in

Fig. 5.12. The increase in down-force and cable drag together impose higher thrust

requirements on the helicopter rotor to maintain trim, resulting in higher power

consumption (6% for an additional 2 inches and 15% for an additional 4 inches at

40 knots) as shown in Fig. 5.13.

Figure 5.13: Main Rotor Power Required, Various Cable Attachment Offsets on the

Towed Body, 700-ft Cable

5.1.4 Cable Attachment Point on the Helicopter

The longitudinal position of the cable attachment point on the helicopter is

a key parameter that determines the fuselage trim attitudes, shown in Fig. 5.14.

Rearward displacement of this point allows for closer spacing between the lines of

action of the cable force and rotor thrust, resulting in smaller fuselage trim pitch
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attitudes. Roll attitudes and hub rolling moments are unaffected by longitudinal

rearward translation of the tow point on the helicopter, shown in Figs. 5.14 and

5.15.

Figure 5.14: Helicopter Trim Attitudes : Effect of Tow Point Location

Figure 5.15: Helicopter Hub Moments : Effect of Tow Point Location

The reduction in fuselage pitch attitude is accompanied by incrementally

higher rotor longitudinal flapping (0.5◦) and additional nose-down hub pitching

192



moments, shown in Fig. 5.15 to preserve longitudinal moment equilibrium. This

parameter does not affect rotor thrust and power, and can be engineered to improve

pilot comfort levels by reducing pitch attitudes in forward flight.

5.1.5 Effect of Cable Length

A side view (plane containing longitudinal and vertical dimensions) of the cable

shapes in trim at various speeds is shown in Figs. 5.16, 5.17 and 5.18 for the 350,

500 and 700-ft cables, respectively. Each of the black curves represents the shape

of the cable at a particular tow speed when the system is moving from left to right,

and the red dots represent the tip of the cable (i.e. location of towed body). The

numbers next to the red dots represent the trim tow speed in knots corresponding to

a particular line/dot combination. Curvature above the water surface is negligible

for all three cases.

Figure 5.16: Shape of 350-ft Cable in Steady Forward Flight, Various Speeds
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Figure 5.17: Shape of 500-ft Cable in Steady Forward Flight, Various Speeds

Figure 5.18: Shape of 700-ft Cable in Steady Forward Flight, Various Speeds

Consider first the 350-ft cable (Fig. 5.16). As the tow speed increases, the trim

depth of the submerged load below the water surface changes from 200 ft at hover

to 150 ft at 12 knots, to 100 ft at 22 knots. Above 20 knots, the trim depth is less
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sensitive to tow speed, asymptoting to 70 ft at 40 knots, indicating that the total

hydrodynamic forces in the horizontal (drag) and vertical (down-force) directions

are well-balanced. When the deployed length increases to 500 ft (Fig. 5.17), the

total depth below the water surface increases. However, increased hydrodynamic

drag on the cable results in higher initial sensitivity of the trim depth to tow speed

from 0 to 20 knots. As the deployed length increases to 700 ft (Fig. 5.18), the effects

of curvature become more apparent in the shape of the cable, and the range of trim

depths varies from 550 ft at hover to 200 ft at 40 knots.

Figure 5.19: Cable Force in Steady Forward Flight, Various Cable Lengths

Longer cables (700 ft) experience additional hydrodynamic drag that

result in increased depth variations with tow speed, and transmit up to

42% more cable force to the helicopter than shorter cables (350 ft) with

identical properties. Figure 5.19 shows the variation of total cable force with tow

speed for the three different deployed lengths. At very low speeds, the cable force

is near-identical among the three cases except for imperceptible variations due to
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buoyancy. As the tow speed increases, hydrodynamic drag on the cable (even with

fairings) is comparable to that on the towed body, and forms a significant fraction

of the total force transmitted to the helicopter. The helicopter must assume an

increasingly nose-down pitch attitude to overcome both towed body and cable drag

while simultaneously maintaining longitudinal moment equilibrium, as shown in Fig.

5.20. Increasing the cable length from 350 to 700 ft results in a 100% increase in

the helicopter pitch attitude from -8◦ to -16◦ at 40 knots.

Figure 5.20: Helicopter Trim Attitudes in Steady Forward Flight, Dynamic Inflow

The increases in hydrodynamic drag and down-force with tow speed are so

large that the minimum power speed is reduced from 65 knots to 20 knots for the

700-ft cable. With increasing rotor thrust, the rotor power required to maintain trim

increases with flight speed, as shown in Fig. 5.21. Minor differences in the hover

power (between various deployed cable lengths) arise from cumulative buoyancy

loads acting on the submerged sections of the tow cable. Since longer cables undergo
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additional weight alleviation due to buoyancy at low speed but larger hydrodynamic

drag at high speeds, the power curves intersect each other at 16 knots. Above 20

knots, the effects of hydrodynamic drag on the cables dominates the total cable force

acting on the helicopter, resulting in 75% higher power compared to an isolated

helicopter with the same GTOW for the 700-ft cable, and 46% for the 350-ft cable.

At 40 knots, the 350-ft cable case has exceeded the rated Maximum Continuous

Power (MCP = 1900 Hp) of the aircraft, not including tail rotor power.

Figure 5.21: Main Rotor Power Required in Steady Forward Flight, Dynamic Inflow

5.1.6 Predictions with Free-Vortex Wake Models

The trim state of the cable and towed body are completely uncoupled from

that of the helicopter. Therefore, towed body depth, cable force transmitted to the

helicopter and the shape of the cable are independent of the tow platform. For all
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three cable lengths considered, the trim attitudes of the helicopter are completely

unaffected by choice of induced inflow models, as indicated by Figs. 5.20 and 5.22.

The steady and 1/rev flap response of the blade tip is near-identical between pre-

dictions made using dynamic inflow and free wake.

The differences in predictions between dynamic inflow and free wake mod-

els appear in rotor performance, since vortex models of the rotor wake accurately

represent most non-ideal physical effects, such as blade tip losses and non-uniform

inflow distributions over the rotor disk. Using a free-vortex wake model of the rotor

aerodynamics yields quantitatively different power curves for the helicopter rotor,

compared to predictions based on dynamic inflow.

Figure 5.22: Helicopter Trim Attitudes in Steady Forward Flight, Free Wake

Consider the solid lines without markers in Figs. 5.21 and 5.23. Dynamic

inflow models under-predict rotor induced power between 0-40 knots, and show

steeper reductions in rotor power requirements with airspeed, since they do not
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capture rotor-wake interactions below µ ≤ 0.1.

Figure 5.23: Main Rotor Power Required in Steady Forward Flight, Free Wake

When towing the baseline submerged load, the shape of the power curve

changes depending on the deployed cable length. Up to 15 knots, the reductions

in induced power with airspeed dominate the power requirements. Above 15 knots,

hydrodynamic drag on the cable and submerged load increase rapidly, and the power

curves for all three tow configurations (of various cable lengths) increase monotoni-

cally.

Reductions in the rotor induced power with airspeed are similar between the

three tow configurations and an isolated helicopter with the same GTOW. Since

part of the weight is supported by buoyancy, rotor power requirements for tow con-

figurations are reduced compared to the isolated helicopter carrying the tow system

inside the airframe. As airspeed increases, larger sections of the cable raise out of

the water, simultaneously reducing buoyancy and wetted area, but increasing the
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dynamic pressure on both the cable and towed body. This interplay between ca-

ble buoyancy, hydrodynamic drag and rotor induced power variations with airspeed

result in the power curves crossing each other at different speeds corresponding to

their deployed lengths. The effective differences in power requirements between the

three cables are small, and near-identical up to 25 knots. Above 25 knots, the effects

of hydrodynamic drag dominate power requirements, and shorter cables are more

power-efficient in steady forward flight.

5.1.7 Depth Regulation using Pitching Fins

In this section, the effects of depth regulation on the trim state of the tow

system are examined. To achieve depth regulation independent of the helicopter al-

titude, the submerged load is fitted with two main fins that are capable of pitch ac-

tuation relative to the hull. When the fins are rotated nose-up or nose-down,

the trim configuration of both the cable and load change simultaneously.

As the main fins exert hydrodynamic down-forces, they also experience signif-

icant induced drag due to their small aspect ratio (2). As a result, the horizontal

component of the cable force increases to maintain equilibrium, thereby increasing

the nose-down pitching moments on the towed body. To maintain longitudinal mo-

ment balance, the submerged load trims with an additional nose-down pitch attitude

for larger down-forces, i.e. nose-down main fin pitch angle as shown in Fig. 5.24.

The towed body pitch attitude is negative even when the fin angle is increased above

zero. At 3-4◦ of fin nose-up actuation, the surfaces produce incremental levels of
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hydrodynamic lift. Due to the incremental drag created by the tail fins, the point

of minimum towed body pitch attitude is not attained at the negative value of the

fin angle.

Figure 5.24: Towed Body Trim Attitudes at 25 knots

Figure 5.25: Cable Force at 25 knots for Various Cable Lengths
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Figure 5.26: Towed Body Depths at 25 knots for Various Cable Lengths

When the fin exerts down-forces through pitch actuation, larger sections of

the cable are aligned normal to the tow direction, increasing hydrodynamic drag

and down-force. Conversely, reducing fin down-force alleviates both vertical

force and hydrodynamic drag, resulting in significant reductions in the cable

force, as shown in Fig. 5.25.

The corresponding towed body depth variation with fin angle is shown in Fig.

5.26. A target depth of 200 ft below the water surface can be achieved using a

500-ft cable with a fin angle of -6◦, or a 700-ft cable with a fin angle of +2◦. The

corresponding values of cable force and power from Figs. 5.25 and 5.27 are (4200

lb, 1900 Hp) for the 500-ft cable, and (2900 lb, 1700 Hp) for the 700-ft cable. For

the same trim depth, the longer cable with hydrodynamic fairings is a

more power-efficient choice than an equivalent shorter cable. Thus, using

the 700-ft cable can yield significant power savings in forward flight (10% to track
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200 ft at 25 knots) in addition to providing a larger achievable depth range.

Figure 5.27: Main Rotor Power Required at 25 knots, Dynamic Inflow

5.1.8 Effect of Fin Pitch Angle on Curvature

Figure 5.28 shows the trim configurations of the cable and towed body for the

350-ft cable at 25 knots, at various fin pitch settings. As the fin angle increases, hy-

drodynamic down-force reduces and the cable trail angle increases, since modifying

the vertical-axis forces by manipulating the fins changes the relative magnitudes of

external forces in the vertical and longitudinal directions. The corresponding cable

shapes for the 500-ft and 700-ft cables are shown in Figs. 5.29 and 5.30 respectively.

As fin angle increases, the towed body depth reduces and simultaneously, the cable

assumes a straight-line shape. The effects of cable curvature vanish when

there is no down-force from the submerged load.
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Figure 5.28: Shapes of the 350-ft Cable, 25 knots, Various Fin Pitch Orientations

Figure 5.29: Shapes of the 500-ft Cable, 25 knots, Various Fin Pitch Orientations
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Figure 5.30: Shapes of the 700-ft Cable, 25 knots, Various Fin Pitch Orientations

5.1.9 Effect of Fin Pitch on Helicopter Trim

Figure 5.31 shows the helicopter trim attitudes for varying fin pitch angles.

The pitch attitude is a measure of total drag acting on the cable and towed body.

As the fin pitch angle increases, larger sections of the cable emerge from the water.

These reductions in the total drag result in corresponding changes in the airframe

pitch attitudes. Using a 700-ft cable requires -3.5◦ of pitch attitude, while achieving

the same trim depth with a 500-ft cable requires -5.5◦. Using a longer cable is a

more power-efficient choice while simultaneously allowing the pilot to operate the

aircraft at more benign orientations.
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Figure 5.31: Helicopter Trim Attitudes at 25 knots, Dynamic Inflow

Figure 5.32: Helicopter Trim Attitudes at 25 knots, Free Wake
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Figure 5.33: Main Rotor Power Required at 25 knots, Free Wake

The use of free-vortex wake models does not significantly alter predictions

of the trim attitudes, as shown in Figs. 5.31 and 5.32. The attitudes predicted

using the two inflow models differ by less than 1◦. Main rotor power predictions

obtained using the free wake model are shown for the three cables at 25 knots in Fig.

5.33. Cable drag differences between the three deployed lengths results in increased

power requirements for longer cables at all fin angles. Performance improvements

as predicted by dynamic inflow still hold, and 10% power reduction (now 200 Hp)

may indeed be realized by using a 700-ft cable to track 200 ft depth instead of a

500-ft cable.
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5.2 Trim in Steady Turning Flight

In this section, the characteristics of the tow system will be examined in steady

level turning flight at 25 knots. At this low speed, the vertical tail of the helicopter

is ineffective in providing sufficient lateral forces and yawing moments necessary for

turn coordination. Instead, the helicopter is trimmed to fly with zero sideslip angle

(β
F
=0). For the individual cable lengths (350, 500, 700 ft) the magnitude of the

peak turn rate is limited so that the smallest turn radius is always less than or equal

to the length of the cable.

The towed body trim state is unaffected by that of the cable and helicopter,

and is shown in Fig. 5.34 for turning flight at 25-knots of helicopter airspeed. With

increasing turn rate, the pitch attitude does not change appreciably, indicating that

the total drag on the towed body remains nominally constant. The submerged load

rolls into the turn, with left roll attitude (negative) for nose-left turns, and right roll

attitude for nose-right turns. The linear variation of roll angle with turn rate is a

result of symmetry of the load geometry about the load X-Z plane.
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Figure 5.34: Towed Body Trim Attitudes in Turning Flight, 25 knots

Figure 5.35: Helicopter Tow Tension in 25-knot Turn, 350-ft Straight Cable : Axially

Flexible vs. Reduced Curved Cable Model, No Cable Hydrodynamics

Figure 5.35 shows the variation of the cable force transmitted to the airframe at
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25 knots for a 350-ft straight cable, without cable hydrodynamics. With increasing

turn rate magnitude, the turn radius of the towed body initially increases up to

7.5◦/sec, resulting in higher dynamic pressure on the fins and hull and larger drag.

Above 7.5◦/sec, the cable force reduces because the turn radius of the submerged

load reduces, and at extremely high turn rates, the path of the submerged load

asymptotes to the center of the turn. These trends are qualitatively similar to

phenomena observed in the previous work with aircraft-based sling load operations.

When loads are suspended from flying platforms that maintain a steady turn, they

migrate to the center of the turn with sufficient aerodynamic drag (Ref. [56]).

The results in Fig. 5.35 were obtained two different methods : the axially

flexible straight cable, and a two-mode solution of the curved cable. The excellent

agreement between the two predictions serves as another cross-validation of the two

formulations and indicates that axial stretching effects are negligible.

The trim attitudes of the helicopter are shown in Fig. 5.36 for steady turn-

ing flight at 25 knots. When towing the submerged load, the airframe nose-down

pitch attitude increases by 4◦ in comparison to an isolated helicopter with the same

GTOW. The roll attitudes, while still linearly varying with turn rate, are smaller in

magnitude when towing the submerged load. Since the tow point is offset below the

helicopter CG, the vertical component of the cable force (due to fin down-force and

towed body weight) serves as a stabilizing mechanism for the airframe roll attitude.

Towed body drag and down-force result in elevated rotor power requirements at 25

knots in comparison to an isolated helicopter. However, the variation of rotor power

with turn rate (up to 9◦/sec, without cable hydrodynamics) is less than 1%.
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Figure 5.36: Helicopter Trim Pitch Attitudes in Turning Flight, 25 knots

Figure 5.37: Main Rotor Power Required in Turning Flight, 25 knots
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5.2.1 Effect of Cable Hydrodynamics

Cable hydrodynamic forces significantly influence the trim state of the towed

body in turning flight, in addition to altering the forces transmitted to the airframe

and therefore the helicopter trim state. The variation of total cable force with turn

rate is shown in Fig. 5.38 for a 350-ft straight cable. With increasing turn rate, the

effect of cable drag (in combination with towed body drag) is to reduce the turn

radius of the submerged load even for incrementally small turn rates, resulting in

lowered cable force levels for increasing turn rate. When cable drag is neglected, the

trend predictions (as seen in the previous section) are reversed : an initial increase

in load turn radius, followed by a decrease above 7.5◦/sec.

If cable drag is neglected, the errors cascade into the helicopter trim state, as

shown in Fig. 5.39. Without cable forces, the roll attitudes are over-predicted by 2◦

at 5◦/sec of turn rate. With increasing turn rate, the turn radius of the towed body

reduces, and the errors associated with neglecting cable drag cancel those due to

over-predicting towed body drag. As a result, the total horizontal force transmitted

to the helicopter is not grossly altered, resulting in lower differences in the trim

pitch attitudes and 3.6% error in the rotor power required.

The most significant impact of cable drag is on the predictions of

trim depth of the towed body. Neglecting cable drag results in almost 50%

error in depth prediction, as shown in Fig. 5.40.
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Figure 5.38: Cable Force in 25-knot Turn, 350 ft straight cable

Figure 5.39: Helicopter Trim Pitch Attitudes in 25-knot Turn, 350 ft straight cable
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Figure 5.40: Towed Body Trim Depth in 25-knot Turn, 350 ft Straight Cable

5.2.2 Effect of Cable Curvature in Turning Flight

Tow cable curvatures are small at 25 knots with the depth control system

turned off. When the tow system executes turning flight at this helicopter speed,

the effects of cable curvature on the turn radius of the towed body are negligible.

Ignoring curvature results in 3% over-prediction of cable force transmitted to the

helicopter at the peak turn rate (9◦/sec), with negligible changes in predictions of

rotor power requirements and helicopter trim controls. Cable flexural stiffness and

axial stiffness play do not noticeably influence trim predictions, again highlighting

the dominance of the axial force terms in the cable dynamics over the bending

resistance afforded by the cross-section considered.
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5.2.3 Effect of Cable Length

In steady forward flight, the trim state of the submerged load is influenced only

by its own geometry. In turning flight, the trim state of the towed body depends on

its own geometry and the parameters of the cable, due to effects of cable drag on

the turn radius of the submerged load.

Figure 5.41: Towed Body Trim Attitudes in Turning Flight, V
HELO

=25 knots

Figure 5.42 shows the variation of trim roll and pitch attitudes of the sub-

merged load with different cable lengths. The trim pitch attitude is independent of

cable length, indicating that the hull drag (and hence, forward speed) is unchanged.

The roll attitude is constant for all three cables until the turn radius approaches the

cable length. When the helicopter turn rate increases, the towed body turn radius

decreases as it asymptotes to the center of the turn. At this limit, the increase

in lateral force with turn rate almost vanishes, and the roll attitude trends exhibit
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nonlinearities. The trim depths of the submerged load are shown in Fig. 5.42. The

variations of trim depth across the range of turn rates are 10 ft (3% length), 60 ft

(12% length) and 90 ft (13% length) for the 350, 500 and 700-ft cables respectively.

Figure 5.42: Towed Body Trim Depth in Turning Flight, V
HELO

=25 knots

Top views of the tow system in turning flight are shown in Figs. 5.43, 5.44 and

5.45 for the 350, 500 and 700-ft cables respectively. The shapes of the 700-ft cable at

the peak turn rates display visible levels of lateral curvature, which is absent in the

350 and 500-ft cables. For the 350-ft cable, turning flight at the peak rate of 9◦/sec

results in significant towed body lateral offset from the helicopter (160 ft or 45% of

cable length). The corresponding numbers for the 500-ft cable at 7.25◦/sec and 900-

ft cable at 5◦/sec are 250 ft (50%) and 420 ft (60%) respectively. Increasing cable

length in turning flight reduces the load turn radius, resulting in three

dominant effects on the tow system : reduction of main fin down-force,

reduction of hull hydrodynamic drag and reduction in cable drag.
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Figure 5.43: Top View in Turning Flight, V
HELO

=25 knots, 350 ft cable

Figure 5.44: Top View in Turning Flight, V
HELO

=25 knots, 500 ft cable

Figure 5.45: Top View in Turning Flight, V
HELO

=25 knots, 700 ft cable

The corresponding cable forces transmitted to the helicopter are shown in Fig.
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5.46 for various cable lengths and helicopter turn rates. In forward flight (zero turn

rate), hydrodynamic drag on the immersed lengths of the cables results in higher tow

tension for longer cables. With increasing turn rate, the towed body moves closer

to the center of the turn when using longer cables, reducing hydrodynamic drag on

both the submerged load and the sections of the tow cable close to the towed body.

Thus, hydrodynamic drag on the cable causes higher cable forces at low

turn rates, and lower cable forces at high turn rates for long cables.

Figure 5.46: Helicopter Tow Tension in Turning Flight, V
HELO

=25 knots

The trend of reducing hydrodynamic drag with turn rate is clearly visible in the

pitch attitude of the helicopter, shown in Fig. 5.47. As the hydrodynamic drag on

the cable and towed body decreases, the reduction in horizontal component of cable

drag causes the fuselage to trim with an increasingly nose-up pitch attitude with

increasing turn rate. The power required by the rotor to sustain flight reduces with

increasing turn rate, as shown in Fig. 5.48. The differences in power predictions

218



between the three cables at steady forward flight (zero turn rate) stem from the

effects of hydrodynamic drag on elevated rotor thrust requirements for longer cables.

Figure 5.47: Helicopter Pitch Attitude in Turning Flight, V
HELO

=25 knots

Figure 5.48: Main Rotor Power Required in Turning Flight, V
HELO

=25 knots
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5.2.4 Predictions with Free-Vortex Wake

The simulations for the three curved cables were repeated with a vortex wake

model of the main rotor aerodynamics to obtain refined performance predictions.

Since the rotor model is completely uncoupled from the trim solutions of the cable

and towed body, inclusion of free-vortex wake does not affect predictions of towed

body depth, cable shape or total cable force at the helicopter tow point. Potential

differences may occur in the trim state of the helicopter. However, Figs. 5.47 and

5.49 shows that the helicopter trim pitch attitude as predicted by free wake is almost

identical to the corresponding results obtained using dynamic inflow.

Figure 5.49: Helicopter Pitch Attitude in Turning Flight, V
HELO

=25 knots

Capturing non-uniform inflow distributions with free wake yields more accu-

rate predictions of rotor power, shown in Fig. 5.50 compared to dynamic inflow.

The apparent lack of smoothness in the power curve for the isolated helicopter is
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the outcome of an oscillatory convergence process, and is exaggerated by the scale

of the plot. To avoid terminating the trim process prematurely, alternate updates of

wake geometry and vehicle retrim are continuously performed until the cumulative

normalized change in rotor power, trim controls, rotor response, airframe attitudes,

towed body orientations and cable deflections is less than 1% between two iterations.

The maximum change in rotor power at the last trim iteration was less than 0.5%

(less than 10 Hp).

The longest cable (700 ft) initially requires maximum power in steady forward

flight due to cable drag. With increasing turn rate, the trim turn radius of the sub-

merged load reduces faster for longer cables, resulting in lower power consumption.

The dynamic inflow model indicates that nose-right turns require incrementally more

power than nose-left turns for the isolated helicopter, but power requirements for

the tow system exhibit less asymmetry. The free wake model highlights that these

differences are larger for both the isolated helicopter and the tow system, and scale

with rotor thrust requirements. Steady turns of the tow system require lesser

rotor power compared to straight-line tow at the same helicopter speed.

Therefore, steady level turns do not impose additional performance penalties on the

tow system and are not restricted by available power. Engine power limits determine

the maximum straight-line tow speeds, while the maximum turn rate is determined

by cable length and hydrodynamics.
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Figure 5.50: Main Rotor Power Required in Turning Flight, V
HELO

=25 knots

5.2.5 Depth Regulation using Pitching Fins

In this section, the effects of depth regulation using pitching of the main fins

on the towed body on trim configurations in turning flight are investigated at the

peak turn rate (as dictated by cable length) for the helicopter-cable-load system in

turning flight at 25 knots, with three cable lengths. For a given cable length and

helicopter turn rate, the trim pitch attitude of the submerged load varies from -6◦

at -9◦ of fin pitch to -4◦ at 5◦ of fin pitch, and is similar to the corresponding results

in steady forward flight. The trim roll attitude varies by less than 2◦ (with respect

to the trim state at zero fin pitch) across the range of fin pitch angles investigated.

The changes in trim pitch attitudes of the towed body arise from induced drag on

the pitching fins, while the changes in the trim roll attitude stem from an altered

trim turn radius for the submerged load.
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Figure 5.51: Towed Body Depth in Turning Flight, V
HELO

=25 knots

The trim depth of the towed body is shown in Fig. 5.51 for tow systems in

a 25-knot turn with three different cable lengths, at the peak turn rates for each

cable. While fin pitch is useful in forward flight to track various depths, it is less

effective in turning flight due to the reduced dynamic pressures experienced by the

towed body and its hydrofoils. For the 350-ft cable, the range of available depths

is restricted to 90-120 ft, while in straight-line tow, the same range of fin actuation

allows for 30-120 ft. As the cable lengths increase, two aspects of depth control

begin to interact with each other. While longer cables allow for larger ranges of

trim depths to be reached in forward flight, the influence of cable drag on towed

body turn radius reduces fin effectiveness, restricting the range of available depths.

As a result of this interplay, the 500 and 700-ft cables can track 200-230 ft and

280-340 ft, respectively, at their peak turn rates. The corresponding depth ranges

in forward flight for the two cables are, in order, 80-210 ft and 130-310 ft.
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Figure 5.52: Helicopter Tow Tension in Turning Flight, V
HELO

=25 knots

The cable force variations with fin angle for the three cables at their peak

turn rates are shown in Fig. 5.52. When the hydrofoils produce down-force, the

turn radius of the towed body increases, resulting in larger hydrodynamic drag. In

this operating condition, the 350-ft cable transmits the maximum tow tension to

the airframe. For nose-up fin pitch angles, the 700-ft cable transmits the maximum

tension, due to increased hydrodynamic drag on the cable. The combination of

smaller load turn radius, peak turn rate, cable buoyancy and hydrodynamic drag on

the 500-ft cable results in minimum tow tension throughout the range of fin angles

investigated. The main variations in towing tension between the three cables arise

from differences in hydrodynamic drag. To compensate for this increased cable drag,

the helicopter trims to an increasingly nose-down pitch attitude, as shown in Fig.

5.53.
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Figure 5.53: Helicopter Pitch Attitude in Turning Flight, V
HELO

=25 knots

Figure 5.54: Helicopter Roll Attitude in Turning Flight, V
HELO

=25 knots

The helicopter roll attitudes at the peak nose-left and nose-right turn rates

for the three cables are shown in Fig. 5.54. The roll attitudes of the helicopter are
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antisymmetric about φ
F

= −1◦. With increasing fin pitch angle, the towed body

down-force increases. Since the magnitude of the towed body trim roll attitude

at the peak turn rate increases with cable length, down-forces from the main fins

cause increased lateral forces on the helicopter. To counter these lateral forces and

simultaneously maintain roll moment equilibrium, the helicopter rolls away from the

turn (i.e. roll right in a left-handed turn and roll left in a right-handed turn).

Figure 5.55: Main Rotor Power Required in Turning Flight, V
HELO

=25 knots

The main rotor power required to maintain a 25-knot turn is shown in Fig.

5.55, as predicted by dynamic inflow. The 350-ft cable requires the maximum power

among the three lengths investigated, since the towed body experiences the smallest

reductions in turn radius at this cable length. Predictions for the 500-ft and 700-ft

cables are near-identical, with near-identical thrust requirements. For these two

cable lengths, weight alleviations due to buoyancy are offset by increases in hydro-

dynamic drag. The crossing of the power curves is a result of the rotor operating at
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two different turn rates.

5.2.6 Predictions with Free-Vortex Wake

The trim configurations of the cable and towed body, and total tow-point

tension at the helicopter are unaffected by the rotor dynamics model, since turn

kinematics (and not kinetics) determines the equilibrium solution. Predictions of

trim attitudes obtained using dynamic inflow and free wake are near-identical and

differ by less than 0.5◦.

Figure 5.56: Main Rotor Power Required in Turning Flight, V
HELO

=25 knots

The rotor power requirements as predicted using free wake are shown in Fig.

5.56. The power required to maintain a 25-knot turn for the helicopter at the peak

turn rates are obtained for various fin pitch settings. The 500-ft cable requires the

least power at all fin pitch angles, consistent with the results obtained using dynamic
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inflow. However, dynamic inflow does not penalize the increased thrust requirements

due to increased cable forces from the 700-ft cable (compared to the 500-ft cable)

among the two flight conditions. When the free wake model is used, the difference in

thrust requirements between the 500-ft and 700-ft cables is clearer, indicating that

induced power penalties due to increasing cable forces are more dominant than the

corresponding thrust alleviations obtained by operating at lower turn rates.

Maintaining a steady turn at the same helicopter speed at 9◦/sec with a 350-ft

cable is the most power-inefficient configuration among the three cases investigated

(up to 3◦ of fin pitch), since the reduction in turn radius of the towed body (and

therefore the hydrodynamic drag) is the smallest for this deployed cable length.

The crossing of the power curves for the 700-ft cable and 350-ft cable is a result

of an interplay between decreasing hydrodynamic drag and cable buoyancy with

increasing fin pitch angle, and its corresponding effect on rotor thrust requirements.
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6 Analysis of Linearized Models

This chapter discusses the analysis of linearized system dynamics in the neigh-

borhood of equilibrium (trim) conditions in steady forward flight. The extraction of

linearized models presents certain difficulties for the tow system, which has specific

nonlinearities. All conclusions drawn from these studies are valid for specific operat-

ing conditions and combination of parameters that ultimately result in dominantly

linear tow system dynamics.

The primary source of nonlinearities is the sharp discontinuity at the water/air

free surface, where aerodynamic loading on the cable changes abruptly to hydrody-

namic forces. This discontinuity in cable force distribution along the span and the

variation of section normal force with flow angle are the dominant sources of cable

curvature.

For the purposes of extracting linearized models, the first two blade modes

(corresponding to “rigid” flap and lag) are used. Fixed-frame frequencies of the

flexible blade modes for this articulated rotor are sufficiently large that they do

not interact with the airframe modes and do not affect flight dynamic frequencies

(up to 30 rad/s). The open-loop eigenvalues of the isolated helicopter are given in

Table 6.1. The high-frequency modes (large imaginary part) corresponding rotor
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fixed-frame flap and lag motions, while the low-frequency rotor modes (lag and

regressive flap) are coupled with airframe motions. All open-loop modes are stable

except modes # 15 and # 17. Mode 15 is an oscillatory divergent translation

(longitudinal, lateral and vertical) with small contributions from body roll, pitch and

yaw. The dominant motions in mode 17 consist of divergent longitudinal, vertical

and lateral translations, and is stabilizing or destabilizing depending on the blade

mode shapes (specifically, the flap-torsion coupling terms in the beam equations).

Thus, accurate modeling of the blade dynamics (including the so-called higher order

terms) is required for coupled rotor-airframe stability analysis. The mode with zero

eigenvalue corresponds to the heading pole, i.e. there is no preferential heading for

the airframe.

6.1 Tow System : Eigenvalues

The eigenvalues for the tow system at 25 knots obtained without cable hydro-

dynamics are given in Table 6.2. The introduction of rigid-body position states for

the helicopter, required for tracking towed body depth, results in three additional

poles at the origin. These modes indicate that the dynamics are unaffected by the

position of the system in space so long as the towed body remains submerged. At

hover, the heading pole is unchanged for the helicopter, and an identical pole at the

origin is introduced corresponding to the towed body direction. In forward flight,

the heading pole for the entire system is preserved. The mode shape corresponding

to the heading pole is transformed into rigid translations along the earth-fixed axes
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Table 6.1: Helicopter Bare Airframe Eigenvalues at 25 knots

Mode # Real part Imaginary part Mode # Real part Imaginary part

(rad/s) (rad/s) (rad/s) (rad/s)

1 0 0 2 -12.9 47.03

3 -34.57 0 4 -3.10 37.91

5 -30.67 7.76 6 -12.34 20.05

7 -2.63 18.31 8 -15.18 0

9 -15.02 22.48 10 -3.56 7.82

11 -3.43 4.40 12 -3.79 0

13 -1.93 0 14 -0.22 0.86

15 0.27 0.42 16 -0.22 0

17 0.0185 0 18 -3.02 7.34

contained in the i
B
-j

B
plane, since the helicopter heading modifies the (non-zero)

earth-fixed velocity components.

The rotor modes are altered as a result of operating at a higher thrust con-

dition, required to overcome hydrodynamic drag. The real part of the unstable

airframe eigenvalue is unchanged, while the second marginally unstable mode with

a small positive real part (mode 17 for the isolated helicopter case) is stabilized.

The overdamped mode # 6 for the tow configuration corresponds to longitudinal

translation and pitch motions for the towed body. The tow cable and submerged

load do not introduce any unstable modes when attached to the helicopter, when
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including effects of cable drag. If cable drag is neglected, the cable mode predictions

turn unstable, and the eigenvalues have real positive components. The same cable

drag that stabilizes the coupled helicopter translation-transverse vibration modes

introduces (for large-amplitude motions) nonlinearities into the system through the

discontinuous load at the water interface, and the variation of normal loading with

flow inclination to the cable axis.

6.2 Analysis of Tethered Helicopters

Figure 6.1: Tethered Helicopter Schematic

To understand the nature of the helicopter frequency response when used

as a tow platform, a systematic approach is followed to isolate the contributions

of various physical parameters. An idealized system is initially considered, and

gradually augmented with additional degrees of freedom until the tow system is

obtained. The idealized system considered here consists of a helicopter tethered

to the ground as shown in Fig. 6.1. Using this system, the effects of vertical and

forward components of rotor thrust, hook offset, forward flight and cable properties

are examined to determine the effect of the operating conditions on the vehicle
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response sensitivities over a range of frequencies. To extract linearized dynamics,

equilibrium solutions are required. The tethered system is trimmed so that the cable

inclination and force are equal to prescribed values (θ=θtrim and TC=TCtrim
).

6.3 Effect of Thrust in Hover

For this case alone, the cable deflections are defined with respect to a vertical

reference axis. The system is trimmed to various values of cable force up to 4000 lb,

and the frequency response characteristics are compared at hover. The cable angle

is θ=90◦, and the attachment point is coincident with the helicopter CG.

Figure 6.2: Helicopter Roll Rate Response to Lateral Stick

Figure 6.2 shows the on-axis roll response for the isolated helicopter and the

tethered systems for increasing trim cable force. Above 1 rad/s, the frequency

responses are identical except in the vicinity of the notch at 20 rad/s corresponding

to lag-roll air resonance. This notch is sensitive to the nonlinearities in the lag

233



damper force characteristics. Both the roll and pitch response (Fig. 6.3) show

reductions in the low-frequency magnitude compared to the isolated helicopter case,

while the yaw rate response is unaffected as shown in Fig. 6.4.

Figure 6.3: Helicopter Pitch Rate Response to Longitudinal Stick

Figure 6.4: Helicopter Yaw Rate Response to Pedal

The vertical offset of the rotor hub above the helicopter center of gravity

provides a stabilizing effect to the attitudes. When the aircraft rolls or pitches, this

234



offset acts as a moment arm for the rotor thrust which aligns with the line of action

of the cable force, and stabilizes the helicopter. Dynamics above 1 rad/s do not

show effects of this stabilization since the aircraft does not translate significantly for

inputs at this frequency. Since the cable connection is a spherical bearing, the yaw

dynamics are largely unaffected by vertical tethers for the helicopter.

6.4 Horizontal Tether

Cable deflections are defined with respect to the earth-fixed axes. The system

is trimmed to various values of cable force up to 4000 lb, and the frequency response

characteristics are compared at hover. The cable angle is θ=0◦, and the attachment

point is coincident with the helicopter CG. Since the excess force is in the horizontal

direction perpendicular to gravity, the total rotor thrust is less than the sum of

the two forces and so increases in power with increasing cable force are minimal

compared to the vertical tether case.

Figure 6.5: Helicopter Roll Rate Response to Lateral Stick
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Figures 6.5 and 6.6 show the helicopter on-axis roll response for increasing

trim cable force up to 4000 lb. Compared to the isolated helicopter, the frequency

response is unaffected above 1 rad/s, while the low-frequency magnitude is larger.

In the horizontally tethered configuration, the cable force and rotor forward thrust

create a couple that increase the aircraft response magnitude in pitch, since the cable

under tension acts as a restraint for translations. The yaw dynamics are unaffected

as in the previous case, since the helicopter is free to rotate about its vertical axis,

and are not shown.

Figure 6.6: Helicopter Pitch Rate Response to Longitudinal Stick

Vertical tethers reduce the aircraft pitch and roll rate response magnitudes at

low frequency, while horizontal tethers increase these response magnitudes at the

same frequencies in comparison to an isolated helicopter. The effect of cable angle

will be examined next to see the effect of an angled tether.
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6.4.1 Effect of Tether Angle

The system is trimmed to various values of cable force up to 4000 lb and

various cable angles, and the frequency response characteristics are compared at 25

knots. The attachment point is still coincident with the helicopter CG. The trim

cable angle is set to 10◦ to determine the effect of a dominantly horizontal force and

a small vertical component at hover.

Figure 6.7: Helicopter Roll Rate Response to Lateral Stick

Figures 6.7 and 6.8 show the aircraft on-axis pitch and roll responses, respec-

tively for a tether angle of 10◦ and increasing cable force up to 4000 lb. Due to the

small cable inclination and dominantly horizontal force, the aircraft low-frequency

response magnitudes are larger than the baseline helicopter, but these increases over

the isolated helicopter response are perceptibly diminished compared to the horizon-

tal tether. While roll response does not show as much sensitivity to the cable force

at 0.1 rad/s, the effects of the vertical component of cable force on pitch are visible.
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With increasing cable force, the reduction in aircraft pitch response is perceptible

even for 10◦ of cable angle. Yaw dynamics remain unaffected, and are not shown.

Figure 6.8: Helicopter Pitch Rate Response to Longitudinal Stick

Cable Angle of 30◦

As the cable angle is increased to 30◦, the vertical component of cable force increases

and horizontal component decreases, resulting in the expected behavior of further

reduction in magnitude of aircraft on-axis response. Figures 6.9 and 6.10 show the

helicopter on-axis pitch and roll responses for a tether angle of 30◦ for increasing

cable force. The increase in vertical component of the tether force results in further

reductions of the aircraft response magnitude due to stabilization from the couple

system set up by the rotor and the tether cable.

Cable Angle of 45◦

Further increases in the cable angle to 45◦, as shown in Figs. 6.11 and 6.12 causes

the roll rate response magnitude to decrease to 5dB above the aircraft response and
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remains insensitive to cable force. The pitch response magnitude decreases until it

falls below the isolated helicopter value except for the largest cable force (4000 lb).

Figure 6.9: Helicopter Roll Rate Response to Lateral Stick

Figure 6.10: Helicopter Pitch Rate Response to Longitudinal Stick
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Figure 6.11: Helicopter Roll Rate Response to Lateral Stick

Figure 6.12: Helicopter Pitch Rate Response to Longitudinal Stick

6.4.2 Effect of Rotor Flight Condition

The results in the previous section were obtained for hovering flight conditions.

During the tow mission, the helicopter operates in forward flight at 25 knots.
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Figure 6.13: Helicopter Roll Rate Response to Lateral Stick

Figure 6.14: Helicopter Pitch Rate Response to Longitudinal Stick

To simulate forward flight, the on-axis responses of a tethered helicopter are

studied with a 25-knot head wind at the previously investigated tether angle of

45◦. Figure 6.13 shows the helicopter on-axis response with a 25-knot head wind,

comparing an isolated helicopter to a tethered configuration. The magnitude of the
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isolated helicopter response increases with speed, from -35dB to -16dB while the

tow configuration response decreases slightly to -38dB. The combination of increase

in magnitude for the isolated helicopter and marginal reduction for the towed body

manifests as a relative decrease of the tow system response when going from hover

to forward flight. The pitch on-axis response with a 25-knot head wind is shown in

Figure 6.14. The low-frequency magnitudes remain unchanged with airspeed. How-

ever, the effects of cable force are reversed, and tether configurations with higher

trim tensions suffer larger reductions in the low-frequency response magnitude. Fig-

ure 6.15 shows that the helicopter yaw on-axis response is insensitive to increasing

cable force. In forward flight, pitch-yaw couplings manifest for the UH-60 through

the tail rotor, and the dynamic couplings are evident through the local minima in

the pitch and yaw on-axis responses between 0.5-0.6 rad/s.

Figure 6.15: Helicopter Yaw Rate Response to Pedal

242



6.4.3 Effect of Hook Offset

The previous results were obtained assuming that the cable was attached to

the helicopter CG. The effects of vertical downward translation of this attachment

point are investigated in this section.

Figure 6.16: Helicopter Roll Rate Response to Lateral Stick

Figure 6.17: Helicopter Pitch Rate Response to Longitudinal Stick
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Figure 6.16 shows the helicopter on-axis roll response for various vertical offsets

of the tow point from the CG in a 25 knot head wind. For increasing vertical offset

of the tow point, the magnitude of the roll response at low frequencies increases.

The magnitude of the pitch on-axis response initially increases with hook vertical

offset and then decreases as shown in Figure 6.17. This trend reversal is due to

conflicting contributions from the vertical and horizontal components of cable force,

which reduce and increase, respectively, the on-axis pitch response magnitude.

6.4.4 Effect of Cable Flexibility

All previous linearized analyses were performed using modal reduction with 2

cable modes. The final perturbation performed for the tethered helicopter configu-

ration is the introduction of cable flexibility.

Figure 6.18: Helicopter Roll Rate Response to Lateral Stick

Figure 6.18 shows the comparison of helicopter roll on-axis response for in-

elastic and flexible cables. A single cable frequency couples with the helicopter roll
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mode at 1.2 rad/s and changes the peak of the magnitude response from 0dB at 0.6

rad/s to 8 dB at 0.5 rad/s, but otherwise does not affect the helicopter response.

The helicopter on-axis pitch response exhibits multiple resonance points as shown

in Fig. 6.19.

Figure 6.19: Helicopter Pitch Rate Response to Longitudinal Stick

Figure 6.20: Helicopter Yaw Rate Response to Pedal

The on-axis yaw response exhibits a single cable resonance point at 1.2 rad/s,
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identical to the roll response. The reduction in magnitude at these cable reso-

nance frequencies may interfere with flight control systems when towing hydroplan-

ing sleds.

6.4.5 Comparison between Tethered and Tow Systems

The tethered helicopter system is trimmed to a cable force of 2000 lb at 45◦

to the horizontal, to mimic the cable shape under tow when ignoring cable drag at

25 knots. The helicopter on-axis roll response is shown in Fig. 6.21 for the isolated

helicopter, tethered system and tow system. The primary difference between the

tethered helicopter and tow configuration is the introduction of a free boundary

condition (i.e. submerged load) with hydrodynamic loads. The additional drag on

the towed body results in lowered response magnitude at low frequencies compared

to the isolated helicopter, similar to the response of the tethered helicopter.

Figure 6.21: Helicopter Roll Rate Response to Lateral Stick
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In the presence of hydrodynamic damping on the towed body, the sharp res-

onance peaks corresponding to cable vibration disappear, and are replaced by less

pronounced notches corresponding to cable vibration dipoles. The number of cable

resonance frequencies in the on-axis roll response reduces from five points at 1, 2.8,

3.1, 6.8 and 25 rad/s, to a single point at 3.6 rad/s.

An examination of the on-axis pitch response in Fig. 6.22 reveals that the

multiple resonance points at 1,2.8, 6.8, 10.2, 10.8 and 25 rad/s for the tethered

helicopter case disappear in the presence of towed body drag, with cable drag set

to zero. In the absence of cable drag, the on-axis pitch and yaw responses of the

helicopter tow platform at 25 knots are similar to the corresponding values for the

isolated helicopter case, as shown in Fig. 6.23. The yaw response for the tethered

helicopter exhibits four resonance points at 1, 2.8, 6.8 and 25 rad/s at 25 knots,

which are attenuated by hydrodynamic damping from towed body drag.

Figure 6.22: Helicopter Pitch Rate Response to Longitudinal Stick
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Figure 6.23: Helicopter Yaw Rate Response to Pedal

6.5 Effect of Cable Drag

Cable hydrodynamics provides damping to the purely oscillatory cable modes

that lie on the imaginary axis. The high density of water results in an overdamped

system for cable vibrations, and the dipole signature in the helicopter on-axis roll

response disappears, as shown in Fig. 6.24. The isolated helicopter response is also

shown as a reference. Cable drag also decreases the magnitude of the helicopter roll

response further in comparison to the case with only towed body drag, but does not

affect the frequency response above 1 rad/s.

Figure 6.25 shows the effect of cable drag on the helicopter on-axis pitch re-

sponse. Cable drag has a similar effect, and damps out cable oscillations (shown

as notches in the magnitude plot). The low-frequency magnitude of the pitch re-

sponse is reduced by 10dB in the presence of cable drag. The effects of cable drag
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on the yaw response are minimal, as shown in Fig. 6.26. In the presence of cable

drag, cable structural properties have no effect on the helicopter pitch, roll or yaw

responses since hydrodynamic drag results in an overdamped system and does not

allow steady-state oscillations to develop.

Figure 6.24: Helicopter Roll Rate Response to Lateral Stick

Figure 6.25: Helicopter Pitch Rate Response to Longitudinal Stick
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Figure 6.26: Helicopter Yaw Rate Response to Pedal

Predictions of helicopter Handling Qualities are based on characteristics of the

vehicle frequency response to pilot stick inputs. The effect of a sling load (carried in

air) is characteristic of a dipole - a reduction in the response magnitude and a sharp

reduction/recovery in the phase close to the load pendulum frequency. However,

the enormous damping afforded by water eliminates the dipole signature. The low-

frequency response magnitude reduces as a result of hook vertical offset below the

helicopter CG stabilizing the helicopter roll and pitch attitudes. In the absence of

cable drag, a dipole signature is present close to the natural frequency of the cable

under tension (3.5 rad/s). Therefore, bandwidth deformation parameters developed

for sling load operations are not applicable for the tow system.
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Table 6.2: Tow System Eigenvalues at 25 knots

Mode # Real part Imaginary part Mode # Real part Imaginary part

(rad/s) (rad/s) (rad/s) (rad/s)

1 0 0 2 0 0

3 0 0 4 0 0

5 -12.83 46.55 6 -131.33 0

7 -7.61 36.21 8 -36.8 0

9 -31.5 8.48 10 -5.63 20

11 -12.1 19.9 12 -15.1 22.28

13 -17.2 0 14 -16.48 0

15 -1.19 15.2 16 -1.66 14.83

17 -1.59 10.59 19 -1.79 10.31

18 -7.44 4.16 20 -3.02 7.12

21 -3.24 5.54 22 -3.58 5.15

23 -3.39 4.26 24 -0.53 5

25 -1.31 4.38 26 -6.6 4.49

27 -4.31 0.00 28 -2.85 0

29 -1.33 1.50 30 -1.77 0.00

31 -0.25 0.87 32 0.27 0.37

33 -0.18 0.31 34 -0.32 0

35 -0.27 0 36 -0.12 0

251



7 The Tear-Drop Maneuver

This chapter discusses unsteady time-marching simulations of the tow system.

The objective is to obtain the helicopter swashplate inputs required to guide the

submerged load along a prescribed trajectory, shaped like a tear-drop as shown in

Fig. 7.1. Knowledge of the tow system dynamics is used to subdivide the trajectory

tracking problem for the towed body into two stages. In the first stage, the tow point

trajectory that guides the submerged load along the target path is determined using

an optimization process. In the second stage, a feedback control system is used to

determine the swashplate and tail rotor pitch angles that guide the helicopter along

the target tow point trajectory. The trajectory of the cable and towed body depend

on the motions of the tow point only, and are independent of the nature of the tow

system. If another tow platform is to be analyzed for the same maneuver, the results

from the first stage (i.e. motions of the tow point) would be identical, and only the

second stage needs to be analyzed for the new vehicle.

Figure 7.1: Schematic of a Tear-Drop Trajectory
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7.1 Mathematical Representation of the Tear-Drop Trajectory

A “tear-drop” trajectory is a typical maneuver executed with a helicopter-

based tow system. The objective is to guide the towed body along the tear-drop

shaped path shown in Fig. 7.1. The path can be broken down into the following

turn sequences, with steady forward flight represented as a special case with zero

heading change.

• Approach point 1 at steady level flight

• Heading change -∆ψ from 1-2 (nose-left)

• Heading change 180◦ + 2∆ψ from 2-3 (nose-right)

• Heading change -∆ψ from 3-4 (nose-left)

• Approach point 5 at steady level flight

Figure 7.2: Tear-Drop Sequences as Idealized Circular Arcs

The tear-drop trajectory is idealized as arcs of two circles of different radii, as shown

in Figure 7.2.
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7.1.1 Turn Sequence Characterization

During tow procedures, the tow point motions are assumed to be contained

in a horizontal plane parallel to the water surface, to allow the helicopter to remain

at constant altitude. Any reductions in altitude may compromise safety of flight by

encroaching further into the “avoid” regions of the height-velocity curve. Tow mis-

sions are executed on the boundaries of these avoid regions, where the combination

of low altitudes and reduced forward speeds precludes the possibility of safe auto-

rotation in case of single engine failures. Increasing helicopter altitude will reduce

the towed body depth, necessitating fin down-force which results in increased rotor

thrust requirements, elevated fuel consumption and reduced stall margins.

The altitude of the helicopter tow point is constrained from changing

by safety requirements on the lower side, and by efficiency of flight/rotor

stall margins on the higher side.

While multiple helicopter control input time histories may exist that each

achieve near-identical tear-drop trajectories, special focus is given in the present

work to the class of solutions that require the minimum necessary adjustments to

the controls as the helicopter transitions from one flight condition to another. Since

control input changes are unavoidable during transitions between turn sequences,

the problem then reduces to holding the controls nominally fixed for as long as

possible during a sequence (turn). Therefore, each sequence is further subdivided

into three sections as follows

• Maintain constant airspeed while increase turn rate smoothly
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• Maintain steady turn and increase airspeed, if required

• Maintain new airspeed and reduce turn rate smoothly

Figure 7.3: Variation of Turn Rate during a Sequence

Specifically, the build-up and reduction of turn rate are constructed using cubic

splines to ensure C0 and C1 continuity as shown in Fig. 7.3, necessary for consistent

ODE solutions. During the second section of a turn sequence, it may be necessary

to increase (or decrease) the helicopter speed in a turn. As seen in Chapter 5,

hydrodynamic drag on the towed body and cable cause the submerged load to

trim with a smaller turn radius (and hence lower translation speed) than the tow

point (helicopter). To compensate for this speed reduction, the helicopter may be

required to fly faster to maintain the same turn radius for the towed body. Since

the translational acceleration need not be differentiable but only continuous, a linear

variation of airspeed is assumed during the second section of each turn sequence, as

shown in Fig. 7.4.
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Figure 7.4: Variation of Airspeed during a Sequence

The following parameters are used to precisely define the variation of airspeed

and turn rate during each sequence :

• Allotted Time Ti - the total duration of each sequence, measured in seconds.

This is equal to the duration of the corresponding sequence in the target

trajectory.

• Time fraction fi - a non-dimensional measure of the time spent in a sequence

for entering and exiting a turn. If the value of fi is 0.3, it implies that 30% (100

fi) of the time interval Ti seconds in sequence #i is spent attaining a steady

rate of turn, 40% (100 - 200fi) of the sequence is spent holding a constant turn

rate and the last 30% (100 fi) is spent to transition back to steady forward

flight. The maximum allowable value of fi is 0.5, and the minimum value

is set to 0.1, based on the physical turn acceleration limits of the helicopter.

Since the turn rate is not constant throughout the sequence, the steady-state

turn rate is compensated to account for the spline ramps during first and third

sections. A larger time fraction fi implies a slower transition to steady-state
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turns and smaller turn accelerations, but a higher peak turn rate that may

influence the turn radius of the submerged load.

• Heading change ∆ψi - the total heading change during the sequence measured

in degrees. It is defined positive for nose-right turns and negative for nose-left

turns. The heading change of the helicopter (tow point) and the towed body

need not be necessarily equal, and so this parameter needs to be identified.

• Velocity change ∆Vi - the total airspeed change during a sequence, measured

in knots. It is positive for airspeed increases and negative for speed decreases.

The speed change occurs during the second section of a turn sequence, when

the turn rate is held steady between fi Ti and (1-fi) Ti. This is the second

parameter that needs to be identified.

The methodology used to determine the parameters ∆Vi and ∆ψi is described in

the following section.

7.1.2 Stage I : Definition of Optimization Problem

The tow point motions in each turn sequence are parameterized

using two quantities : the heading change within a sequence ∆ψi, and the

airspeed change ∆Vi. The turn sequence parameters that determine the motions

of the tow point

X
def
= (∆ψ1,∆V1, ∆ψ2,∆V2, · · · ∆ψN ,∆VN) (7.1)
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are determined using an optimization process. Here N is the number of sequences.

An optimization problem is formally defined as follows:

Find X such that F(X)→ min (7.2)

subject to : FC(X) ≤ 0 (7.3)

X is the vector of design variables defined in Eq. (7.1). FC(X) represents a set

of constraints specific to the design problem. Each design variable is constrained

with both lower and upper bounds. The upper bounds on the heading change in

sequence i, i.e. ∆ψi are given by

Fheading,U
C

(i) =


∆ψi −∆ψtarget

i −∆ψtol : ∆ψtarget
i > 0

∆ψi : ∆ψtarget
i < 0

∆ψi −∆ψtol : ∆ψtarget
i = 0

(7.4)

The corresponding lower bounds on ∆ψi are

Fheading,L
C

(i) =


−∆ψi : ∆ψtarget

i > 0

∆ψtarget
i −∆ψtol −∆ψi : ∆ψtarget

i < 0

−∆ψtol −∆ψi : ∆ψtarget
i = 0

(7.5)

Here, ∆ψtarget
i represents the heading change targets used to generate the desired

towed body trajectory, and ∆ψtol is a tolerance band that allows the tow point to

deviate from the target path for the submerged load. The value of ∆ψtol used is 25◦

for the first left turn sequence, and 45◦ for the other turn sequences. The upper and

lower bounds for the speed change in sequence i, i.e. ∆Vi dictate that the speed

change during a sequence be no more or less than two knots, and are given by

Fspeed,U
C

(i) = ∆Vi − 2 (7.6)
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Fspeed,L
C

(i) = −∆Vi − 2 (7.7)

The constraints are used to guide the analysis to physically meaningful solutions.

F(X) is the objective function to be minimized, defined as follows:

F (X) =

Np∑
i=1

di (7.8)

Np is the number of points used to discretize the target and candidate trajecto-

ries. The ith distance function di between the candidate trajectory and the target

trajectory is defined as

di = min dn(i, j), j = i−∆i, i−∆i+ 1, · · · , i+ ∆i− 1, i+ ∆i (7.9)

Where dn(i, j) is normal distance from the ith point on the candidate trajectory

to the straight line joining points (j, j + 1) on the target trajectory. ∆i is an

integer parameter (5 in this case) that allows the candidate trajectory to be flown

slightly slower or faster in segments, and relaxes the criterion that that points on

the candidate and target trajectories match at every instant in time. A schematic

for ∆i=2 is shown in Fig. 7.5.

Figure 7.5: Computation of Distance Function

In summary,
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• Heading and velocity changes that describe the tow point motions

during each turn sequence are selected as the design variables. A

time marching simulation is performed with these prescribed tow

point motions, and the resulting towed body trajectory is obtained.

• The objective function is the aggregate normal distance between the

candidate and target trajectories, relaxed to allow slower or faster

completion of individual segments.

• Inequality constraints are imposed to limit the allowable heading

and velocity changes within a turn sequence to ± 30◦ and ± 2 knots

respectively, centered on the corresponding parameters that define

the target trajectory.

7.1.3 Approximate Optimization using Response Surfaces

Trajectory optimization problems suffer from multiple local minima (Ref. [107]),

which restrict the applicability of gradient-based optimizers that converge to differ-

ent local minima depending on the initial design. To circumvent these difficulties,

the approach of Ref. [108], (used in Ref. [109]) is adapted for the present problem.

The key idea is to avoid optimizing the “true” objective function (Eq. 7.8) which is

computationally expensive to simulate. Instead, optimizations are performed on an

approximate response surface, constructed by sampling the true objective function at

a few points, and continuously refined as the optimization proceeds. The sequence

of operations is as follows:
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1. Sample the true objective function over the design space : this is the

initialization step of the optimization process. An equispaced grid with three

points along each design variable coordinate is generated. At each of these

points, the true objective function is evaluated. This step is performed once,

and when completed, the number of precise function evaluations NF is equal

to N4
DV

. This step allows for construction of a global approximation of the

true objective function (response surface) prior to optimization.

2. Construct approximate response surface based on available precise

function evaluations : this is the first step in the convergence process used

for approximate optimizations. The response surface Fapp(X) is constructed

using multi-quadric radial basis functions as follows

Fapp(X) =

NF∑
i=1

λiφ(||X−Xp,i||) + p(X) (7.10)

NF is the number of precise function evaluations at designs (Xp,i, i = 1, 2, · · ·NF )

that are used to construct the approximate response surface. p(X) are lower-

order polynomial functions (here linear) that improve the representation of

the approximate objective function. The basis function φ is given by

φ(r, γ) =
√
r2 + γ2 (7.11)

γ is a predefined constant (here unity), and r is the N
DV

-dimensional distance

metric between the trial design X and the design Xp,i at which precise values

of the objective function are available, given by

r = ||X−Xp,i|| =

N
DV∑
j=1

(X(j)−Xp,i(j))
2 (7.12)

261



X(j), Xp,i(j) represent the jth entries in the vectors of design variables X,

Xp,i respectively. The coefficients λi are obtained by equating the values of

the approximate objective function Fapp(X) to their precise values F(X) at

designs Xp,i, effectively inverting a set of linear equations

Fapp(Xp,i) = F (Xp,i) (7.13)

3. Perform optimization on most recent response surface and deter-

mine approximate minimum : genetic algorithms offer distinct advantages

over gradient-based optimizers, such as the ability to identify global minima

even in the presence of multiple local minima, and are an excellent choice

for the present problem. Using MATLAB’s global optimization toolbox, an

initial population of 1000 designs is evaluated and propagated for 128 gen-

erations. Characteristic crossover and mutation are also implemented. The

crossover feature selects “genes” at random from the preceding generation of

designs (“parents”) and combines them to create “children”. “Mutations”

are introduced by adding pseudo-random numbers extracted from a Gaussian

distribution to the “genes”. An elite count of 2 is used to ensure that the

algorithm propagates the “best” 2 designs forward with each generation. Fi-

nally, the best design Xmin that represents the minimum of the approximate

objective function is obtained.

4. Obtain precise function evaluation at approximation minimum ob-

tained in previous step : this step is similar to the first, and consists of the

following sequence of operations
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• Generate the trajectory of the tow point from the design variables

• Numerically integrate the equations of motion governing the cable and

towed body dynamics forward for the duration of the maneuver to obtain

the candidate trajectory of the submerged load

• Use the candidate trajectory to obtain the precise value of the objective

function given in Eq. (7.8)

5. Compare optimum of the approximate response surface between it-

erations : when the distance between Xmin falls below a threshold δopt and

the design space has been sufficiently sampled (i.e. empty regions of the de-

sign space have been sampled a minimum number of times), the optimization

process is terminated. If not, steps 2-6 are repeated until convergence.

7.1.4 Adaptation for Tear-Drop Maneuvers

The computational cost of evaluating the response surface using radial basis

functions scales as N2
F , where NF is the number of data points at which the precise

value of the objective function is available. With an increasing number of design

variables, the number of these data points required for an accurate representation

increases, and the computational cost of the optimization algorithm approaches that

of the objective function. As the optimization proceeds, the number of available

data points increases and the cost escalates as the response surface improves in

accuracy. Further, the parameters corresponding to later turn sequences do not

affect the trajectory until that sequence is initiated. For this reason, it is valid (and
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computationally efficient) to restrict the optimization process to two sequences at a

time, as shown in Fig. 7.6. In the first stage, the design variables are assigned to

the heading and velocity changes corresponding to the first two sequences, i.e.

X1 = (∆ψ1,∆V1,∆ψ2,∆V2) (7.14)

The optimization problem is solved numerically until an optimal solution for the

hook motion parameters corresponding to the first two sequences are obtained. The

parameters for the first sequence are frozen at their optimal values, and the second

stage is initiated. In the second stage, the design variables are assigned to the

heading and velocity changes for the second and third sequence, i.e.

X2 = (∆ψ2,∆V2,∆ψ3,∆V3) (7.15)

Figure 7.6: Trajectory Optimization Stages

This “leap-frogging” process is repeated as many times as necessary, optimizing

the trajectory over two turn sequences after freezing the preceding sequence until

the maneuver is complete. Thus, the effect of a turn sequence on the trajectory

over the succeeding sequence is taken into account during the optimization process
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without elevating computational costs to impractical levels.

7.1.5 Results : Trajectory Optimization

Two different optimization techniques were evaluated using the RBF-based

response surfaces. The first method uses a gradient-based optimizer that yields

valid solutions and requires the least computational effort, but is extremely sensitive

to both the initial condition and the constraints. The second method utilizes a

genetic algorithm, and is computationally expensive but is relatively immune to

local minima. The parameters used to construct the target path of the towed body

are given in Table 7.1.

Table 7.1: Towed Body Target Path Parameters

Sequence Time Time Fraction Heading Change Speed Change

(seconds) f ∆ψi(deg) ∆Vi(knots)

1 16 0.3 -40.0 0.0

2 48 0.1 -260.0 0.0

3 16 0.3 -40.0 -0.0

4 08 0.2 0.0 0.0

The best trajectories obtained using the gradient-based optimizer and the

genetic algorithm are shown in Figs. 7.7 and 7.8 respectively.
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Figure 7.7: Top View of Best Path : Gradient-Based Optimizer

Figure 7.8: Top View of Best Path : Genetic Algorithm

The heading and velocity change targets for the helicopter tow point in Ta-

bles 7.2 and 7.3 are obtained using the gradient-based optimizer and the genetic
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algorithm respectively.

Table 7.2: Tow Point Targets : Gradient-Based Optimizer

Sequence Time Time Fraction Heading Change Speed Change

(seconds) f ∆ψi(deg) ∆Vi(knots)

1 16 0.3 -40.0 1.42

2 48 0.1 264.7 1.17

3 16 0.3 -54.7 -0.66

4 08 0.2 42.4 0.97

Table 7.3: Tow Point Targets : Genetic Algorithm

Sequence Time Time Fraction Heading Change Speed Change

(seconds) f ∆ψi(deg) ∆Vi(knots)

1 16 0.3 -40.0 1.59

2 48 0.1 265.4 1.14

3 16 0.3 -55.1 -0.80

4 08 0.2 14.7 -1.82

Based on the optimal trajectories, the following conclusions can be drawn

• The optimal tow point motions obtained using the two algorithms

are near-identical for the first three turn sequences. Sampling the

true objective function prior to optimization is essential for the gradient-based

optimizer to converge to a valid solution. While this pre-processing step is not
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strictly required for the genetic algorithm, it allows for faster convergence of

the response surface.

• The helicopter must move incrementally faster, and turn along a

path whose radius is larger than that of the towed body. Since the

turn rate changes sign across sequences, the path of the helicopter and towed

body cross multiple times.

• The helicopter must lead the towed body during the entire maneu-

ver. Further, the tow point speed must increase slightly for the first two turn

sequences, over-shoot the nose-right turn by 4-5 degrees and over-shoot the

second nose-left turn by 15◦.

• The gradient-based optimizer is trapped inside a local minimum

during the fourth sequence (departure from tear-drop) and erroneously over-

predicts the heading change required to correct the overshoot from the third

turn sequence. This error leads to 32◦ of residual nose-right heading overshoot

and 3 knots of speed gain. The genetic algorithm identifies a gentler end to the

tear-drop maneuver as begin “optimal”, with 3◦ of residual nose-right heading

overshoot and 0.1 knots of total speed change.

7.2 Stage II : Helicopter Simulation

The breakdown of a maneuver into sequences, and sequences into sections is

particularly useful for the tear-drop maneuver, which has multiple changes in the

268



sign of the turn rate. The end-points of each section within a sequence correspond to

equilibrium (trim) conditions, obtained using the techniques described in Chapter

3. The trim variables corresponding to these equilibrium solutions are interpolated

smoothly using cubic splines between trim states, and assigned as targets for the

feedback controller. The maneuver is simulated with a 350-ft cable and the baseline

towed body using the targets given in Table 7.3. Based on these inputs, the total

maneuver time is 80 seconds. Two optional seconds of lead buffer are introduced to

eliminate transients that may arise when starting from a trim solution. The trajec-

tories obtained with dynamic inflow are discussed first, followed by an investigation

of blade flexibility effects. These results are re-examined with the free-wake inflow

model.

Simultaneous tracking of all three linear velocities and fuselage attitudes is es-

sential for three-dimensional trajectory following using control systems. The relative

LQR weights for states and controls must be chosen carefully to ensure smooth and

bounded controls, together with accurate state tracking. A top-down view (XG−YG

plane) of the resulting tear-drop trajectory is shown in Fig. 7.9, together with the

path of the helicopter over the entire maneuver and target path for the submerged

load.

The corresponding helicopter attitudes are shown in Fig. 7.10. The airframe

roll overshoots the target during the transition between the first two sequences. The

maximum pitch tracking error is less than 1◦, and the helicopter heading lags the

target value by 1 second.
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Figure 7.9: Closed-loop tear-drop simulation at 25 kts. The total depth change over

the duration of the maneuver is 15 ft, less than 0.5% of the total distance traveled.

Figure 7.10: Helicopter Attitudes in Degrees
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Figure 7.11: Helicopter Angular Velocities in Degrees/s

Figure 7.12: Helicopter Body-Axes Velocities in ft/s

The helicopter body-axes angular velocities are shown in Fig. 7.11. All three
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rates show excellent tracking, with less than 1◦/s error. The near-zero lateral veloc-

ity v indicates that the maneuver is executed with negligible sideslip. The maximum

turn rate for the helicopter is 5.5◦/s, less than the peak turn rate of 9◦/s as deter-

mined by the cable length. The body-axes velocity components are shown in Fig.

7.12. The tracking for translation velocities is excellent with negligible error.

Figure 7.13: Submerged Load Attitudes in Degrees

The attitudes of the submerged load are shown in Fig. 7.13. The load heading

lags that of the helicopter by 5 seconds. Hydrodynamic forces in water result in

overdamped dynamics for the submerged load, resulting in perceptible delays be-

tween tow point motion and towed body response. The pitch attitude of the towed

body varies by less than 2◦ over the entire maneuver, and is near-constant over the

steady section of the nose-right turn (40-60 seconds). The towed body rolls left

between 10-16 seconds (nose-left turn) and then to the right between 22-70 seconds

during the nose-right turn. The overshoot for the third turn sequence (nose-left)
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results in additional left roll at 80 seconds.

Figure 7.14: Cable Force

Fig. 7.14 shows the variation of cable force over the duration of the tear-

drop maneuver. The time durations for each of the turn sequences at 16,64 and 80

seconds are indicated on the plot. For the first turn sequence (left turn), the cable

force initially decreases as the tow system enters the left turn and then increases with

hydrodynamic drag as the helicopter speed increases from 25 to 26.6 knots. During

the transition to the second sequence (nose-right turn), the cable force initially

reduces due to reduction in hydrodynamic drag with turn radius of the submerged

load. As the helicopter airspeed increases, the hydrodynamic drag on the tow cable

and submerged load increases, resulting in increasing cable force from 30-60 seconds.

When the helicopter transitions back to forward flight before the third turn sequence,

the towed body turn radius and speed increase, transmitting larger cable forces. As

the helicopter enters the third turn sequence, the combination of turn radius and
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speed reduction result in smaller cable forces. Finally, as the turn rate reduces from

75-80 seconds during the transition to the fourth turn sequence, the cable force

increases with hydrodynamic drag. The reduction of helicopter airspeed causes a

corresponding drop in hydrodynamic drag and cable force.

Figure 7.15: Main Rotor Thrust

Figure 7.16: Main Rotor Power
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The corresponding rotor thrust and power time histories are shown in Figs.

7.15 and 7.16 respectively. The local peaks correspond to changes in the helicopter

turn rate, when the hydrodynamic drag of the towed body fluctuates with turn

radius and helicopter airspeed. The effects of blade flexibility on cable force and

rotor thrust are not apparent, with the 6-mode solution being near-identical to

the 2-mode solution. With the dynamic inflow model, the rotor power shows no

sensitivity to blade flexibility.

Swashplate Controls

The 4/rev vibratory loads signal from the rotor causes high-frequency heli-

copter oscillations (especially in roll). To avoid spurious feedback based on rotor

vibrations, a low-pass filter is applied to the helicopter rigid-body states prior to

computing the control inputs. This filtering ensures that higher-harmonic (of the

order of the rotor frequency) control inputs are avoided, and the input time histories

are smooth.

The trends in the rotor collective pitch inputs reflect those present in the

thrust, as shown in Fig. 7.17. The effects of blade flexibility manifest in the main

rotor collective pitch input angles. When elastic twist is ignored, the pitch angle

distribution along the span of the rotor blade is higher, requiring smaller collective

inputs for rigid blades. When blade torsion is included, the structural response

includes a nose-down twist angle and the root collective must increase to maintain

the same thrust.
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Figure 7.17: Main Rotor Collective Pitch

Figure 7.18: Main Rotor Longitudinal Cyclic Pitch
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Figure 7.19: Main Rotor Lateral Cyclic Pitch

Figure 7.20: Tail Rotor Collective Pitch

Blade twist also modifies the required longitudinal cyclic pitch inputs, as shown

277



in Fig. 7.18. With elastic twist, the 1/rev torsional response results in 0.6◦ of

additional cyclic. The lateral cyclic is unaffected, as shown in Fig. 7.19. The tail

rotor collective is a measure of anti-torque required to maintain yawing moment

equilibrium. Since dynamic inflow predicts identical solutions for the main rotor

torque, the tail rotor collective pitch inputs are identical between 2 blade modes

and 6 blade modes, as shown in Fig. 7.20.

Hub Loads

The hub in-plane forces are shown in Figs. 7.21 and 7.22, and the rolling and

pitching moments are shown in Figs. 7.23 and 7.24. During the nose-left turn over

the 8-16 second interval, the helicopter airspeed increases by 1.6 knots, and the

individual hub loads change in the following manner

• The hub lateral force decreases (i.e. more force towards port) to counter the

centrifugal forces in a nose-left turn. The hub rolling moment increases (i.e.

more left roll moment) to counter the rolling moment induced by the lateral

component of cable force on the helicopter.

• The hub longitudinal force increases (i.e. more force towards the tail) in

conjunction with nose-down body pitch of 1◦ to maintain the same airspeed.

The hub pitching moment is nose-down (with respect to the trim value) to

compensate for the helicopter pitch attitude and the reduced pitching moments

from the cable when the towed body enters a turn and travels along a smaller

turn radius.
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The second sequence consists of three sections : transition from steady forward

flight to a nose-right turn (16-20 seconds), steady turn rate with slight increase in

airspeed (20-60 seconds) and transition back to steady forward flight (60-64 seconds).

• During the transition from steady forward flight to a steady right turn, the hub

lateral force increases (i.e. more force towards starboard) to initiate the turn

and maintain the force component required to counter centrifugal force. The

hub rolling moment decreases (i.e. roll-right moment) to counter the moments

induced by the lateral component of cable forces and maintain equilibrium in

turning flight.

• The hub longitudinal force is near-constant over the steady right turn. The

pitching moment variation reflects the trends in longitudinal cyclic, and in-

creases slightly (more nose-up moments) to counter the pitching moments

induced by the cable and towed body with increasing tow speed.

The third turn sequence consists of a nose-left turn (faster than sequence 1)

and the helicopter overshoots the towed body target path.

• The hub rolling moment increases (roll-left) above the peak value for the first

sequence, since the turn rate is higher. The lateral force reduces (i.e. more

force towards port) to counter centrifugal forces in a turn.

• The hub longitudinal force decreases (i.e. more force towards the nose) to

compensate for the increased cable drag as the towed body transitions from

a right-handed turn to a left-handed turn. During the steady nose-left turn,
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the hub longitudinal force decreases (more force towards the tail) to reduce

the helicopter airspeed by 0.8 knots. As the tip-path-plane tilts aft, the hub

pitching moment increases (i.e. nose-up).

The fourth and final turn sequence consists of a nose-right turn with an air-

speed reduction of 1.8 knots.

• The hub lateral force increases (i.e. more force towards starboard) to compen-

sate for centrifugal loads, and the rolling moment decreases (i.e. rotor induces

roll-right moments) as a result of tip-path-plane tilt into the turn.

• The hub longitudinal force decreases (i.e. more forces towards the tail) to

decelerate the vehicle, and the hub pitching moments increase (i.e. more nose-

up moments) as a result of aft tilt of the tip-path-plane.

Figure 7.21: Hub In-Plane Longitudinal Force
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Figure 7.22: Hub In-Plane Lateral Force

Figure 7.23: Hub Rolling Moment
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Figure 7.24: Hub Pitching Moment

7.2.1 Predictions with Free-Vortex Wake

The following strategies were employed to couple the wake and flight dynamics

models for time integration. The Conventional Serial Staggered (CSS) approach ex-

changes information between flight dynamics and aerodynamics at every time step.

The flight dynamics solution is advanced forward in time with the structural dy-

namics frozen, and the flowfield is advanced assuming the structural dynamics are

frozen. No problems exist while simulating the closed-loop flight dynamics with

a frozen flowfield or advancing the flowfield with frozen blade motions. The fol-

lowing approaches were evaluated in simulating the closed-loop coupled aero-flight

dynamics solution, all with limited or no success:

• Tight coupling - The CSS scheme is numerically unstable both at hover and
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25 knots (the maneuver speed of interest) with the LQR controller. While this

approach was used by Ref. [20] for simulating open-loop simulations with pre-

scribed controls, it was not evaluated for closed-loop simulations with feedback

control. Absolute and relative errors across time steps could not be preserved

after 15 seconds of simulation time, and the integration process terminated

prematurely. When the trim solution is provided as an initial condition and

the maneuver targets are assigned to the trim states, the solutions for the first

10-20 revolutions displayed oscillations in rotor power of the order of 1000

Hp. These oscillations were traced back to a 0.5/rev fluctuation in the trim

induced velocities, a result of operating in transition flight. If the low-pass

filter is used to filter out signals at this frequency, the associated delays result

in a destabilized system. If the low-pass filter is not used, these fluctuations

permeate into the feedback controls and magnify the wake strength variations

over successive revolutions.

• Information is exchanged every quarter, half or full revolution instead of at

every time step. However, this method suffers from the same (in)stability

issues as the CSS scheme, and similar power fluctuations were observed.

• Relaxation : The time history of differences in the induced velocities from

free-vortex wake and dynamic inflow are stored, applied as “delta” corrections

and updated over successive maneuvers. However, this method is also numer-

ically unstable and settles into limit-cycle oscillations with a steady vertical

descent after 15 seconds of simulation time.
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The feedback controller for the closed-loop system is built assuming the structure of

a certain (dynamic) inflow model. When that model is replaced with a vortex wake

representation of the flowfield and the rotor is operated at low speeds, the coupled

closed-loop linearized dynamics are not stable. To circumvent these instabilities and

obtain a first-order effect of the vortex wake, a static “delta” correction to the inflow

is applied as follows:

• At each of the equilibrium points used to determine the target states for the

maneuver, the “delta” inflows between dynamic inflow and free wake are ob-

tained in trim. At these points, the controller is expected to establish equi-

librium, and the delta-corrected inflows will be exactly equal to the free-flight

inflows instantaneously

• The trim states at the equilibrium points as obtained using the free wake

model are used to construct the target states

• The delta inflow is applied as a correction to the induced velocities given by

the dynamic inflow model, and the system A, B matrices are obtained

• The controller is formulated with these A, B matrices (as obtained with delta

inflows) at 25 knots

• The delta inflows are interpolated linearly between the trim points and applied

as corrections at every time step to the original dynamic inflow model over

the duration of the maneuver
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Results with Delta-Corrected Inflow

For the same helicopter tow point motions, the cable force, towed body trajec-

tory and attitudes are identical. However, non-uniformities in the free wake induced

velocities cause fluctuating loads on the rotor which excite vehicle roll and pitch

motions. These oscillations result in small deviations of the towed body motions

from the target trajectory as shown in Fig. 7.25. The tow point motions exhibit

oscillations at the rotor frequencies, which introduces oscillations in the cable forces.

Changes in the rotor inflow distribution introduce oscillations in the cable forces as

shown in Fig. 7.26. The effect of blade flexibility on cable force is minimal, indicat-

ing that rigid-body motions excited by the first two rotor modes (rigid blade flap

and lag) are sufficient for predicting the cable loads.

Figure 7.25: Top-View of Towed Body Trajectory. The total depth reduction over

the 80-second maneuver is 20 ft, less than 0.5% of the total distance traveled.
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Figure 7.26: Cable Forces

Figure 7.27: Rotor Thrust
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Figure 7.28: Main Rotor Power Required

The rotor thrust over the duration of the maneuver is shown in Fig. 7.27 for

2,4 and 6 rotor blade modes. The non-vibratory thrust component is unchanged for

all three cases, and the effects of blade flexibility are not apparent since the con-

troller modifies the collective and cyclic pitch inputs to maintain the required thrust

mangnitude and direction. The effects of blade flexibility are apparent in the pre-

dictions of main rotor power, shown in Fig. 7.28. When blade flexibility is neglected

(2 modes), the elastic twist is ignored and rotor power is over-predicted by 5.5%.

The over-predictions of power are especially relevant for the UH-60 Blackhawk, with

an MCP (Maximum Continuous Power) rating of 1900 Hp. The variations of rotor

power over the duration of the maneuver do not entirely reflect the trends of rotor

thrust or cable force. Rotor induced power increases with cable force, increases when

entering a turn and reduces when transitioning back to steady forward flight. The
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resulting power requirements exhibit low-frequency oscillations during transitions

between turn sequences. The magnitude of these oscillations scales with the trim

rotor torque which depends on elastic torsion of the blade.

Swashplate Controls

The effects of blade flexibility are apparent in the rotor control inputs especially

for the collective pitch, shown in Fig. 7.29. When blade torsion is ignored, the

collective pitch input is underpredicted by 5◦ in trim, and persist over the entire

maneuver. The trends in collective variation with time reflect those in rotor thrust

and cable force, discussed earlier.

The longitudinal cyclic input time histories are shown in Fig. 7.30. The use

of rigid blades results in an under-prediction of 0.4◦, and under-predicts the peak

control inputs during transients between turn sequences by 0.5◦. The lateral cyclic

inputs are shown in Fig. 7.30. Neglecting blade torsion results in 1◦ over-prediction

of cyclic inputs. When the elastic twist response is included in the predictions,

the required peak-to-peak cyclic range reduces from 1.4◦ to 1◦. The predictions

of tail rotor collective pitch input reflects the trends in rotor power variation over

the duration of the maneuver. When blade flexibility is ignored, the tail rotor

collective pitch is over-predicted by 0.5◦. Neglecting blade flexibility introduces

maximum error in the rotor collective and lateral cyclic.

288



Figure 7.29: Main Rotor Collective Pitch

Figure 7.30: Main Rotor Longitudinal Cyclic Pitch
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Figure 7.31: Main Rotor Lateral Cyclic Pitch

Figure 7.32: Tail Rotor Collective Pitch
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Hub Loads : Effect of Blade Flexibility

The hub longitudinal force is shown in Fig. 7.33 for the tear-drop maneuver

with 2, 4 and 6 blade modes. The predictions for 2 modes and 6 modes are very

close. However, this is not an indication that blade flexibility is unimportant. The

lateral hub forces, shown in Fig. 7.34, are near-identical for the 2 and 4 blade modes

cases. However, the 6 blade modes case shows that elastic twist alters the hub lateral

force by 50 lb.

With increasing fidelity in modeling the blade flexibility, the low-frequency

components of the hub moment time histories remain unaltered, as shown in Figs.

7.35 and 7.36. However, predictions of the vibratory component of the hub

moments is reduced when flexible blade models are used. The dominant

contribution to the fixed-frame hub moments from an articulated rotor blade is from

the azimuthal distribution of vertical hub shear (aerodynamic pitching moments and

blade torsional oscillations play a secondary role in determination of fixed-frame hub

loads). When blade elasticity is ignored, error is introduced into predictions of both

aerodynamic lift and rotor response (flap motions and inertial loads), resulting in

larger azimuthal variations of total forces at the hinge. Thus, rotor blades behave

as vibration absorbers by virtue of their elasticity. These predictions are valid

within the realm of applicability of the quasi-steady rotor aerodynamic model, and

a quantitatively accurate analysis of vibratory loads requires the use of unsteady

aerodynamic models.
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Figure 7.33: Main Rotor Hub Longitudinal Force

Figure 7.34: Main Rotor Hub Lateral Force
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Figure 7.35: Main Rotor Hub Roll Moment

Figure 7.36: Main Rotor Hub Pitch Moment
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8 Summary and Conclusions

8.1 Summary

This document has described the formulation of a coupled helicopter wake-

rotor-airframe-cable-towed body flight dynamic model with flexible blades, rigid

airframe, free-vortex wake, curved cables and a rigid submerged load. The coupled

flexible body dynamics of the rotor and cable, and the rigid-body dynamics of

the airframe and towed body are preserved in state-space form. The airframe and

submerged load are treated as rigid bodies, while the flexible structures (rotor blades

and cable) are modeled using a fully numerical geometrically exact quasi-multibody

rotating beam dynamics formulation developed in this work. This beam model does

not require ordering schemes and is not subject to small-angle or moderate-rotation

restrictions, and is valid up to 90◦ of transverse bending slope. All flap-lag-torsion

couplings are accounted for, including the kinematic integral twist and axial fore-

shortening without expansion/truncation of trigonometric functions. While a modal

coordinate transformation is applied to rotor blades to reduce computational effort,

the cable nodal degrees of freedom are preserved in their original form to accurately

capture the loading discontinuity at the water/air free surface.

Boundary conditions coupling the motions of the helicopter, cable and towed
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body are formulated for spherical bearings that transmit zero moments. The present

formulation may be extended in a straightforward manner to apply additional con-

straints at the ends of the cable. Trim conditions in a steady ascending/descending

helical turn are formulated for two different cable models : an axially flexible straight

cable, and an axially inextensible curved cable and serve as cross-validations for

each other. For the straight cable, explicit expressions are derived assuming that

the towed body maintains a constant separation from the helicopter. For the curved

cable, the towed body is treated as a tip mass, and the root motions are obtained

from helicopter hook motions. The only necessary condition for the curved cable

to maintain trim in turning flight is that its transverse deflections as defined in a

rotating reference frame aligned with the helicopter heading remain constant. This

formulation accounts for centrifugal accelerations on the cable and towed body nu-

merically without resorting to analytical expansions.

The swashplate controls required to guide the towed body along a target gentle

maneuver are obtained using a two-stage process. In the first stage, the tow point

(helicopter) motions are parameterized and identified using an optimization process.

The tow point motions are converted to target states in stage II, and an LQR

controller is used with a low-pass filter to obtain smoothly varying controls that guide

the helicopter along the target tow point path obtained in stage I. Induced inflow

from the vortex wake model is applied as a “delta” correction to the dynamic inflow

model at select equilibrium points and interpolated to yield a more representative

variation of inflow over the duration of the tear-drop maneuver.
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8.2 Conclusions

• The CG-EA offset of the UH-60 blade couples the second flap bending mode

to the elastic twist. Accurate modeling of rotor blade elastic twist and its

effect on the near-wake is the key to accurate rotor power predictions.

• The use of ordering schemes and small-angle assumptions in the rotor dy-

namics may result in negligible error when individual third-order terms are

neglected. However, when all third-order terms are neglected, it results in

0.8-1.5% error in inertial loads, and 3-4% error in the aerodynamic loads. The

error in inertial loads scales with the steady value of the blade root lag angle.

• The profile drag of the blade spar in the root cut-out region and inclusion

of fuselage drag additions to flight test instrumentation plays a major role in

accuracy of forward flight performance predictions.

• Trim longitudinal dynamics of the submerged load results in the towed body

trimming with nose-down pitch attitude and creating a down-force on the

cable. This down-force manifests as an apparent increase in weight for the he-

licopter, increasing thrust and power requirements. The dominant parameters

that govern the magnitude of this down-force are the cable attachment point

on the towed body and longitudinal placement of the fins.

• Hydrodynamic drag on the towed body and cable manifest as apparent in-

creases in the equivalent flat-plate area for the tow system, and result in the

helicopter trimming to nose-down pitch attitudes in excess of -6◦. These pitch
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attitudes can be reduced by aft offset of the tow point and using longer cables

with fin pitching to regulate depth.

• When the fin pitch is positive, the down-force is alleviated and longer sections

of the cable raise out of the water as the longitudinal trail angle increases.

Coupled with the alignment of cable cross-sections parallel to the flow, the

reduction in total cable drag outweighs the reduction in buoyancy, resulting in

more efficient operations for tracking the same depth with longer cables and

up-force than shorter cables and down-force.

• Neglecting cable drag can result in 42% error in predictions of tow tension for

the longest cable, while neglecting curvature results in 5% prediction error in

rotor power for the shortest cable.

• In turning flight, hydrodynamic drag on the cable and towed body result in the

submerged load turning with a consistently smaller radius than the helicopter.

The power requirements reduce with increasing turn rate as the load moves

closer to the center of the turn, and this tendency increases with cable length.

As the turn rate increases and the turn radius approaches the length of the

cable, the variation of trim attitudes is no longer linear and the towed body

increasingly “lags” behind the helicopter (in turn azimuth) as it approaches the

center of the turn. Peak turn rates are limited by cable length, and maximum

tow speeds are limited by available cable length and engine power.

• Depth variation with turn rate increases with the length of the cable. Fin
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pitch actuation in turning flight is not as effective as in forward flight due to

cable drag countering the effects of fin down-force in modifying the load trim

depth and turn radius.

• Cable flexural stiffness does not significantly influence the steady-state per-

formance, indicating that the dominant source of stiffening is from the tensile

forces.

• Analysis of linearized models indicates that the helicopter frequency response

to pilot stick inputs is unchanged above 1 rad/s when the cable and towed

body are attached to the airframe. At low frequencies (below 0.3 rad/s), the

magnitude of the aircraft response reduces with increasing hydrodynamic drag

on the cable and towed body, and is unaffected by cable structural properties

due to over-damped stabilization afforded by hydrodynamics.

• The 2-stage approach yields smooth controls that guide the towed body along

the desired path. The variation of towed body depth over the duration of the

maneuver is 20 ft, less than 0.5% of the total distance traveled.

• Blade elastic torsion plays an important role in determining the steady-state

performance and low-frequency variation of hub loads, while flap bending elas-

ticity acts as a vibration absorber to attenuate the oscillatory airloads trans-

mitted to the hub.
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8.3 Recommendations for Future Work

This section suggests a few areas of related research areas that will result in

a significant improvement in understanding the dynamics of the tow system. In

particular,

1. The effects of rotor-wake-airframe interaction at this low flight speed is an

area with great potential for in-depth exploration, especially when operating

at large nose-down pitch attitudes and elevated rotor thrust levels. Recent

advancements in hardware and software solutions for accelerated computing

(GPUs and multicore CPUs) may be exploited to solve larger-scale problems

in an efficient manner to understand the fundamental aerodynamics of rotor-

wake-airframe interaction at this speed.

2. Towing of hydroplaning sleds with time-varying immersion depths represents

a numerically challenging task. Integrating the relatively large system of equa-

tions forward in time while introducing a time-varying free-surface boundary

condition is another potential problem, the solution of which will push the

envelope of state-of-the-art in flight dynamic simulations.

3. The flight dynamic model may be coupled with CFD for the rotor, airframe,

cable, towed body and optionally ship air wake to study trim configurations

and maneuvering flight. The presence of different time and length scales of

fluid flow over the blades, airframes and hydrofoils presents a challenging sim-

ulation task. Progress towards this goal will promote the development of
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universal fluid dynamic solvers that can handle multi-phase flow phenomena,

including the effects of the free-surface.

4. Full-fledged trajectory optimization using inverse simulation with free-vortex

wake methods is a computationally intensive process, with an estimate of 1

year and 3 months of computational time to obtain a good approximation

to the objective function. Recasting the entire solver, including airframe and

rotor dynamics to execute on GPUs, together with CPU-GPU load balancing

has the potential to reduce run times by a factor of 50, and represents a

worthwhile initial investment for the potential long-term gains.

5. The cable resonance frequencies are pertinent for missions involving towing

of hydroplaning sleds, where hydrodynamic damping on the cable is absent.

The coupling between vehicle flight dynamics and cable/towed body motions

creates resonance frequencies at which the pilot inputs can excite transverse

vibrations of the tow cable. This phenomenon occurs at flight dynamic fre-

quencies of interest, may interact adversely with the flight control system and

requires further analysis to determine the nature of the interaction (unstable

divergent or limit-cycle).
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A Time Derivatives of Euler Angles

The rigid-body angular states that are conventionally used are the Euler angles

ψ,θ,φ and the body-axis angular rates p,q,r. Using consistency equations, the time

derivatives of the Euler angles can be found as follows.

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (A.1)

θ̇ = q cosφ− r sinφ (A.2)

ψ̇ = (q sinφ+ r cosφ) sec θ (A.3)

Differentiating Eq. (A.1) once with respect to time, we obtain

φ̈ = ṗ+(q̇ sinφ+ ṙ cosφ) tan θ+(q sinφ+ r cosφ) θ̇ sec2 θ+(q cosφ− r sinφ) φ̇ tan θ

Substituting from Eqs. (A.2) and (A.3), we obtain

φ̈ = ṗ+ (q̇ sinφ+ ṙ cosφ) tan θ + θ̇ sec θ
(
ψ̇ + φ̇ sin θ

)
(A.4)

Differentiating Eq. (A.2) once with respect to time, we obtain

θ̈ = q̇ cosφ− ṙ sinφ+ φ̇ (−q sinφ− r cosφ)

Substituting from Eq. (A.3), we obtain

θ̈ = q̇ cosφ− ṙ sinφ− φ̇ψ̇ cos θ (A.5)
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Differentiating Eq. (A.3) once with respect to time, we obtain

ψ̈ = (q̇ sinφ+ ṙ cosφ) sec θ+(q sinφ+ r cosφ) θ̇ sec θ tan θ+(q cosφ− r sinφ) φ̇ sec θ

Substituting from Eqs. (A.2) and (A.3), we obtain

ψ̈ = (q̇ sinφ+ ṙ cosφ) sec θ + θ̇ sec θ
(
ψ̇ sin θ + φ̇

)
(A.6)
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B Parallelization

Recent advancements in parallel computing have been used to accelerate the

simulations using existing multi-core CPUs and NVIDIA Graphics Processing Units

(GPUs). The nature of the rotorcraft analysis is such that the complete dynamics

can be partitioned into contributions from multiple components which interact se-

lectively with each other. Parallel computing can be applied in these situations, but

care must be taken to minimize the time delays (overhead) incurred by transferring

information across processors.

Consider first the structural/flight dynamics. At a given time instant, the

loads on the rotor blades, airframe, empennage, tail rotor, cable and towed body

can be calculated simultaneously. Applying a code profiler revealed that computa-

tion of blade loads and beam equation residuals creates a speed bottleneck. Given

that the number of blades for a helicopter are typically 4-8 (in this case 4), CPU

parallelization is applied using OPENMP directives. The loads on each of the blades

are computed using independent parallel threads. It is also possible to implement

GPU parallelization for the rotor dynamics. However, since the solver routines are

executed on the CPU, any potential speed-ups must take into account the time delay

overhead due to back-and-forth transfers across devices at each time step.
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The free-vortex wake analysis requires approximately 750,000 simultaneous in-

duced velocity computations at every time instant when using 6 wake turns with 10◦

discretization. The scale of the problem is ideal for the use of CUDA-Fortran GPU

parallelization. At every time step, the locations and vortex strengths of each wake

marker are transferred from CPU to GPU. Using multi-stage parallelized binary

reduction trees, the total induced velocity on each wake marker is computed on the

GPU, and transferred back to the CPU. Even with the transfer overhead, 20-25x

speed is obtained using an Nvidia 560Ti GPU compared to a serial implementation

on an Intel Core i7 3.2GHz processor. The specific speedup depends on the number

of wake turns and discretization chosen. As the number of wake markers increases,

the speedup offered by this implementation increases, since the transfer overhead

(scaling with N, the number of particles) diminishes in comparison to the cost of

induced velocity computations (scaling with N2). Additional savings may be ob-

tained, depending on the problem size, by using shared memory storage to reduce

memory access latency.
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C Implementation Details - Beam Theory

The third Euler angle θ1 used to determine the TDU matrix is given by

θ1 = θt + φ −
∫ r

0

ξ+
1 w+ dr

• θt represents the beam geometric twist, obtained from the input data from

table look-up

• φ is the elastic twist of the beam and w+ the spatial derivative of the flap

deflection, obtained from the shape functions and nodal degrees of freedom

• ξ+
1 is obtained as follows from Eqs. (2.35)

w+ = sin β1

⇒ β+
1 =

w++

cos β1

v+ = sin ξ1 cos β1

⇒ v++ = cos ξ1 cos β1 ξ
+
1 − sin ξ1 sin β1 β

+
1

ξ+
1 =

v++ + sin ξ1 sin β1 β
+
1

cos ξ1 cos β1

Differentiate Eq. (2.44) once with respect to time to obtain

θ̇1 = φ̇ −
∫ r

0

(
ξ+

1 ẇ+ + ξ̇+
1 w+

)
dr
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The time derivatives ξ̇+
1 can be obtained by differentiating the expression for β+

1

and ξ+ above once with respect to time

β̇+
1 =

ẇ++ + β+
1 β̇1 sin β1

cos β1

ξ̇+
1 =

1

cos ξ1 cos β1

[
v̇++ + β̇+

1 sin ξ1 sin β1 + sin ξ1 cos β1

(
β+

1 β̇1 + ξ+
1 ξ̇1

)
+ cos ξ1 sin β1

(
β+

1 ξ̇1 + ξ+
1 β̇1

)]
Differentiate Eq. (2.44) twice with respect to time to obtain

θ̈1 = φ̈ −
∫ r

0

(
ξ+

1 ẅ+ + ξ̈+
1 w+ + 2 ξ̇+

1 ẇ+
)
dr

The term ξ̈+
1 is obtained by differentiating the expressions for β̇+

1 and ξ̇+
1 once with

respect to time to obtain

β̈+
1 =

ẅ++ + β+
1 β̈1 sin β1 + 2 β̇1 β̇

+
1 sin β1 + β+

1 β̇2
1 cos β1

cos β1

ξ̈+
1 =

1

cos ξ1 cos β1

[
v̈++ + sin ξ1 cos β1

(
2 ξ̇1 ξ̇

+
1 + 2 β̇1 β̇

+
1 + β̈1 β

+
1 + ξ̈1 ξ

+
1

)
+ cos ξ1 sin β1

(
2 β̇1 ξ̇

+
1 + 2 ξ̇1 β̇

+
1 + ξ̈1 β

+
1 + β̈1 ξ

+
1

)
+ sin ξ1 sin β1

(
β̈+

1 − β̇2
1 β

+
1 − 2 β̇1ξ

+
1 ξ̇1 − β+

1 ξ̇2
1

)
+ cos ξ1 cos β1

(
2 β̇1 ξ̇1 β

+
1 + ξ̇2

1 ξ
+
1 + β̇2

1 ξ
+
1

)]
Finally, β̇1, β̈1, ξ̇1 and ξ̈1 are obtained by differentiating the expressions for w+ and

v+ with respect to time

β̇1 =
ẇ+

cos β1

ξ̇1 =
v̇+ + sin ξ1 sin β1 β̇1

cos ξ1 cos β1

β̈1 =
ẅ+ + β̇2

1 sin β1

cos β1

ξ̈1 =
v̈+ + sin ξ1 cos β1

(
ξ̇2

1 + β̇2
1

)
+ 2 ξ̇1 β̇1 cos ξ1 sin β1 + β̈1 sin ξ1 sin β1

cos ξ1 cos β1
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Numerical Integration

The external loads on rotating and non-rotating beams are integrated numeri-

cally along the span of the blades to determine the forces and moments transmitted

to the hub. These integrals are computed numerically using Gaussian Quadrature

using weighted summation of the integrand values at specific points along the span.

I =

∫
f(r) dr

I denotes the integral, f the integrand and r the spanwise coordinate along the

deformed elastic axis. Using numerical quadrature,

I ≈
n∑
i=1

wi f(ri)

The points ri are the zeros of the Legendre polynomials, which obey some recurrence

relations. The first relation is known as Bonnet’s recursion formula, given by

n Pn(x) = (2n− 1) x Pn−1(x) − (n− 1) Pn−2(x)

Pn(x) is a Legendre polynomial of order “n”, given by Rodrigues’ formula

Pn(x) =
1

2n n!

dn

dxn
[(
x2 − 1

)n]
Another recurrence relation is

x2 − 1

n

dPn(x)

dx
= (2n+ 1) x Pn(x) − n Pn−1(x)

n is the user-specified number of quadrature points. The Gauss-Legendre quadrature

weights corresponding to each of the locations is given by (Ref. [110])

wi =
2

( 1 − x2
i ) [Pn′(xi)]

2
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Using iterative convergence, the quadrature locations and the slope of the Legendre

polynomial may be identified by using the recurrence relations, starting from an

initial guess given by

xi = cos

[
π

4i− 1

4n+ 2

]
i = 1, 2, 3, · · · , n

These locations are generated assuming that the integration range is [−1, 1]. The

quadrature locations and weights may be transformed for use over other limits using

a change of coordinates along x.

Intermediate Quadrature

The simulation of beam dynamics requires the computation of the accumulated

external loads, from the tip to a certain location of interest. Additionally, the axial

fore-shortening u and the Euler rotation angle θ1 require the accumulated values

of certain integrations from the root value to the radial location at which these

quantities are evaluated. These “intermediate” integrals (so labelled because the

limits lie between nodes of finite elements) are evaluated by fitting a polynomial to

the sampled values of the integrand within the finite element, and integrating the

fitted polynomial to reduce computational cost.

Assume that the integrand f is sampled at n points x1, x2, · · · , xn. Let the

corresponding values of f at these points be f1, f2, · · · , fn. Let the approximate

integrand g(x) be represented using a polynomial, given by

f(x) ≈ g(x) =
n∑
i=1

ai−1 x
i−1
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The coefficients ai, i= 1, 2, · · · , n are determined from the sampled values of the true

integrand f(x) at locations xi using polynomial interpolation. If the approximate

integrand matches the true integrand at (x1, x2, · · · , xn) then

f(x1)

f(x2)

·

·

f(xn)



=



1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

· · · · ·

· · · · ·

1 xn x2
n · · · xn−1

n





a0

a1

·

·

an−1


This system of linear equations may be written as a matrix-vector product

f = C a

C is invertible as long as all quadrature locations are unique. The polynomial

coefficients a are obtained by inverting C to yield

a = C−1 f

The approximate integrand may be integrated along the span of the element using

different limits, depending on the quantity of interest. For displacement quantities

(Euler rotation θ1 and axial fore-shortening u) the integration limits are from the

left end of the element to the quadrature point of interest. The integrated value is

Iinboard(x1) =

∫ r1

0

g(r1) dr1 =
dr

dx

n∑
i=1

ai−1
xi1
i

dr
dx

represents the scale factor between the non-dimensional coordinate x and the di-

mensional coordinate r. The summation may be written as a matrix-vector product
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Iinboard(x1) =
dr

dx

{
x1

1
2
x2

1 · · · 1
n−1

xn−1
1

}



a0

a1

·

·

an−1


Using the same notation for the integrals at the other quadrature points, we obtain

I(x1)

I(x2)

·

·

I(xn)


inboard

=
dr

dx



x1
1
2
x2

1 · · · 1
n−1

xn−1
1

x2
1
2
x2

2 · · · 1
n−1

xn−1
2

· · · ·

· · · ·

xn
1
2
x2
n · · · 1

n−1
xn−1
n





a0

a1

·

·

an−1


The vector of integrals I may be written as another matrix vector product as

Iinboard =
dr

dx
E a =

dr

dx
E C−1 f

Similarly, the vector of integrals with limits from the current radial position to the

outboard end of the finite element is

Ioutboard =
dr

dx
F C−1 f

The entries in row i and column j of E and F are

E(i, j) = Eij =
1

j
x j
i and F (i, j) = Fij =

1

j

(
1− x j

i

)
The matrices E C−1 and F C−1 are independent of loads and can be pre-computed.

The term dr
dx

is the dimensional length of the finite element le.
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