

ABSTRACT

Title of Document: A MODEL FOR ESTIMATING THE COST TRADEOFFS
ASSOCIATED WITH OPEN ELECTRONIC SYSTEMS

 Zev Schramm, Master of Science, 2013

Directed By: Dr. Peter Sandborn, Professor of Mechanical Engineering

An open systems approach (OSA), especially when used in conjunction with

modular architecture, reuse, and harnessing of existing (COTS or proprietary)

technologies, is commonly associated with cost avoidances resulting from: more

efficient design; increased competition among suppliers; more efficient innovation

and technology insertion; and modularization of qualification. However, OSA

strategies require investment and may increase risk exposure. To determine if

openness should be pursued, and to what degree, a quantitative model assessing the

costs associated with openness is required.

Previous attempts to measure openness rely on qualitative measures, and

cannot be used to estimate the life cycle cost impacts of openness. The model

developed in this thesis quantitatively determines the effects of openness on life cycle

cost. The life cycle cost difference between two implementations with differing levels

of openness was calculated for a case study of an ARCI sonar system, providing

insight into the value of openness. The case study performed in this thesis provides

the first known quantitative support for Abts’ COTS-LIMO hypothesis that increasing

CFD increases cost avoidance. However, these results challenge Henderson’s implicit

assumption that marginal openness is always positive (increasing openness is always

beneficial).

A MODEL FOR ESTIMATING THE COST TRADEOFFS ASSOCIATED

WITH OPEN ELECTRONIC SYSTEMS

By

Zev Schramm

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Masters of Science

2013

Advisory Committee:
Dr. Peter Sandborn, Chair
Dr. Linda Schmidt
Dr. Patrick McCluskey

© Copyright by
Zev Schramm

2013

ii

Acknowledgements

This thesis would not have been possible without the gracious support of

many individuals. First and foremost, I would like to thank my mentor and advisor,

Dr. Peter Sandborn, who has spent countless hours patiently providing advice,

direction, and encouragement. I have great appreciation for Gregory Twaites, Nathan

Hastad, and the entire General Dynamics team, who have helped by sponsoring my

research and by acting as a sounding board for my ideas.

I would also like to thank Dr. Linda Schmidt and Dr. Patrick McCluskey, for

taking the time to serve on my thesis committee (and Dr. Bilal Ayyub for offering to

do so). Additionally, I must express my gratitude to Mrs. Terry Island and Mr.

Amarildo Damata for their help throughout my undergraduate and graduate studies at

the University of Maryland.

Finally, I would like to thank my wife, Michele, for her love, support, and

understanding these last several months and years. Michele, you are my angel and my

inspiration. You give me hope and strength in times of adversity and of success. I

love you very much.

iii

Table of Contents
ABSTRACT .. 1
Acknowledgements ..ii
Table of Contents ... iii
List of Tables .. vi
List of Figures .. vii
Chapter 1: Introduction .. 1

1.1: Motivation ... 1
1.2: Modular Open Systems Approach (MOSA) ... 4

1.2.1: Interoperability.. 5
1.2.2: Maintainability .. 6
1.2.3: Extensibility .. 8
1.2.4: Composability ... 8
1.2.5: Reusability .. 9

1.3: Openness and Open Architecture ... 11

1.3.1: Defining Openness .. 11
1.3.2: Open Source ... 16
1.3.3: COTS and Openness ... 18

1.4: Effects of Openness on Life Cycle Cost ... 19

1.4.1: Increased Interoperability .. 19
1.4.2: Increased Maintainability .. 20
1.4.3: Increased Extensibility .. 21
1.4.4: Increased Reuse .. 22
1.4.5: Increased Competition... 23
1.4.6: Increased Innovation ... 23
1.4.7: Improved Quality .. 24
1.4.8: Mitigating Obsolescence ... 25
1.4.9: Reduced Risk .. 27
1.4.10: Reduced Development Time ... 27
1.4.11: Enterprise Benefits .. 28
1.4.12: Increased Costs ... 28

1.5: Measuring Openness and Life Cycle Costs: Existing Work 31

1.5.1: MOSA and MOSA PART ... 32
1.5.2: OAAM and OAAT.. 36
1.5.3: AFRL/RYM Metrics Working Group .. 38
1.5.4: Open PDQ MOSA Openness Metric ... 39
1.5.5: The COCOMO Family of Models: COCOTS and COTS-LIMO . 42
1.5.6: SAIC Models .. 45
1.5.7: Loral Federal Systems Model .. 47
1.5.8: SoCoEMo-COTS .. 49
1.5.9: RI3 50

iv

1.6: Problem Statement .. 51
1.7: Research Tasks .. 53

1.7.1: Task 1 ... 53
1.7.2: Task 2 ... 53
1.7.3: Task 3 ... 54

Chapter 2: Cost of Openness Model ... 55

2.1: Cost Drivers .. 60

2.1.1: Design Costs ... 60
2.1.2: Non-Recurring Engineering Costs ... 65
2.1.3: Production Costs ... 70
2.1.4: Operation and Support Costs ... 75
2.1.5: Design Refresh Costs .. 89
2.1.6: Enterprise Costs .. 91

2.2: Model Outputs... 92
2.3: Model Implementation .. 93

2.3.1: Design Costs ... 96
2.3.2: Non-Recurring Engineering Costs ... 97
2.3.3: Production Costs ... 99
2.3.4: Operation and Support Costs ... 101
2.3.5: Design Refresh Costs .. 102
2.3.6: Enterprise Costs .. 104

Chapter 3: Case Study .. 105

3.1: Architecture Definitions .. 105

3.1.1: Standards .. 106
3.1.2: Components .. 109
3.1.3: Architectures ... 114
3.1.4: Parameters .. 118
3.1.5: Simulation Control Parameters .. 118
3.1.6: Example Model Result .. 119

3.2: Life Cycle Cost Analysis ... 123
3.3: COTS-LIMO Hypothesis .. 130
3.4: Life Extensions ... 131

Chapter 4: Conclusions .. 135

4.1: Summary ... 135
4.2: Contributions... 136

4.2.1: Formulation of the first quantitative model for assessing the cost
impacts of openness .. 137

4.2.2: Demonstrated that more openness is not always better 137
4.2.3: Established that the value of openness depends on several external

factors ... 137

v

4.3: Future Work .. 138

4.3.1: Capture more benefits of reuse .. 138
4.3.2: Collect data for calibration and validation 138
4.3.3: Capture the risks associated with early adoption 139
4.3.4: Further test Abts’ and Henderson’s Hypotheses 139

Appendix A: OAAT (and MOSA PART) Questionnaire 140
Appendix B: OAAM Version 1.0 ... 148
Appendix C: MOSA Metrics Calculator ... 149
Appendix D: Cost of Openness Tool: Quick-Start Guide 150
Glossary ... 166
References ... 170

vi

List of Tables
Table 1: Definitions of standards used in the case study ___ 108

Table 2: Definition of components used in the case study __ 113

Table 3: Accessibility scores for individual components __ 115

Table 4: Definition of ARCI-1 Architecture ___ 117

Table 5: Definition of ARCI-2 Architecture ___ 117

Table 6: Parameter values used in the case study __ 118

vii

List of Figures
Figure 1: Depiction of Modularity ... 10

Figure 2: Obsolescence in a sonar system during the first decade of its life cycle (from [51]) 25

Figure 3: MOSA Tenet Scoring Chart, from the MOSA Metrics Calculator [58] ... 39

Figure 4: The COTS-LIMO hypothesis of COTS-based systems (from [13]) ... 44

Figure 5: Connecting openness metrics and cost drivers to predict life cycle cost. 55

Figure 6: Model inputs and outputs... 57

Figure 7: Example model results: costs in each operational year. ... 119

Figure 8: Example model results: cumulative costs by EOS year. ... 121

Figure 9: Example model results: histogram of the total cumulative cost difference.............................. 122

Figure 10: Total life cycle cost difference between ARCI-2 and ARCI-1 for the support of 20 system

instances using a lifetime buy methodology. .. 124

Figure 11: Histogram of outcomes in year 30 for the case in figure 10. ... 124

Figure 12: Total life cycle cost difference between ARCI-1 and ARCI-2 for the support of 20 system

instances using a bridge buy methodology .. 125

Figure 13: Histogram of outcomes in year 30 for the case in Figure 12. .. 126

Figure 14: Average contributions, by category, to total life cycle costs. ... 127

Figure 15: Total life cycle cost difference between ARCI2 and ARCI1 for the support of 20 system

instances using different support methodologies. .. 128

Figure 16: Effects of supporting ARCI2 with different refresh periods.. 129

Figure 17: Effects of different number of fielded instances. .. 130

Figure 18: Effect of COTS Functional Density (CFD) on average total life cycle cost. 131

Figure 19: Effects of life-extension when using a lifetime buy methodology .. 134

Figure 20: Effects of life-extension when using a bridge buy methodology. ... 134

1

Chapter 1: Introduction

1.1: Motivation

Historically, when large, complex electronic systems1 were created, critical

functionality was provided by bespoke components that were designed for the

specific conditions and requirements. This was especially true for military systems,

where state-of-the-art and high-performance components are necessary for the

successful and safe completion of assignments (mission critical and safety critical)

[1]. The use of custom-made components (hardware and software) results in long

development times and high development costs, as significant effort is expended to

recreate functionality that is, increasingly, commercially available [2, 3].

In the last few decades, technological advancement has proceeded at break-

neck pace, with computing power increasing exponentially, while hardware

simultaneously shrinking in both size and weight. This has allowed electronics to

become more general, so that hardware and software components can be designed

once, and then used in many different applications [1, 4]. These advancements have

1 Throughout this thesis, the term “system” will be used to mean any high-level “system of systems”,
made up of some number of subsystems and components. A system may be a ship, airplane, or radar.
The term “component” will be used to refer to any lowest-level part, be it hardware, software, or some
combination of the two, which is designed or procured as a single unit. The term “enterprise” will be
used to refer to any entity that defines and maintains a system design, and then employs one or more
instances of that system to fulfill operational requirements. An enterprise may maintain designs and
provide operational support for several types of systems at the same time with similar or diverging
purposes. For example, Rolls Royce offers several types of aircraft engines, while General Dynamics
designs aerospace, naval, and land-based systems.

2

increased the viability of using Open Systems Architectures (OSA) in general, and a

Modular Open Systems Approach (MOSA) in particular [5, 6].2

Generally, it is taken for granted that the use of OSA and MOSA principles is

a way to decrease the total life cycle cost of a system. Leveraging existing, open

technology, including commercial off-the-shelf (COTS) components, avoids much of

the costs associated with designing a component from scratch, and the time required

for development or refresh of the system can be greatly reduced [7]. This allows for

faster, less expensive, and more frequent design refreshes, which helps mitigate the

effects of obsolescence and can lengthen the life of the system. Frequent refreshes

allow for the insertion of new or improved technologies, allowing incremental

improvements to the system during its use. This is sometimes referred to as “spiral

development” [6, 8]. Use of well-defined standards promotes smooth interfacing both

within and between systems. Use of common component types fosters competition

between suppliers, which can reduce the component’s procurement cost. Reuse of

components (within and between systems) eliminates redundant components, and

allows for economies of scale, further reducing costs.

However, the use of an open methodology represents a tradeoff because there

are costs associated with using an open methodology. For example, COTS

components may not meet the required size, weight, or performance specifications;

those that do may be prohibitively expensive. Further, use of commercial components

2 OSA is sometimes used to mean Open Systems Approach, the set of principles, and the deployment
thereof, used to design systems with an Open Systems Architecture. Likewise, MOSA is also used to
mean a Modular Open Systems Architecture, an architecture that is designed in accordance with
MOSA principles.

3

to build a subsystem may require the use of generalized components with unnecessary

additional functionality, adding to the cost, size, and complexity of the subsystem. A

specially designed subsystem may be simpler and less bulky. Additionally,

unnecessary functionality and complexity increase the cost of qualifying the

component and system, and could also increase the effective failure rate [9, 10].3

Moreover, by using of commercial instead of proprietary components, the enterprise

loses some control over the supply chain, unless the enterprise has a particularly large

demand for the component [11]. COTS components are also more volatile than

proprietary components, receiving minor4 updates more often, and becoming obsolete

more quickly. This makes it desirable to refresh MOSA designs more frequently [12,

13]. In addition to added refresh costs, refreshing more frequently may lead to an

increase in the number of fielded configurations, with an accompanying increase in

outlays for logistics to track and support each of these versions. These factors mean

that there are situations in which a more open system could end up being more

expensive than a “closed” one. It is therefore important to be able to quantify

openness and to predict the total costs avoided and added due to its openness.

3 For example, the initial flight of the Ariane 5 rocket suffered catastrophic failure due to unnecessary
functionality in a software component that was reused from the Ariane 4 rocket [10].
4 A “minor” change or update is one, such as a bug fix or manufacturing process change, that does not
significantly affect the use of the component. A “major” change affects the component’s use, such as
an interface update or a change in technology, is modeled as an obsolescence event.

4

1.2: Modular Open Systems Approach (MOSA)

MOSA is a combined business and engineering strategy that draws on a

modular design and the use of open standards when developing a new system or

updating an existing one [6]. Modular design is an approach in which a system’s

required functionality is divided amongst its components or subsystems (modules),

such that each module can be deployed independently. The United States Navy’s first

attempts at using modular systems began with the Seas Systems Modification and

Modernization by Modularity (SEAMOD) program in 1975 and the Ship Systems

Engineering Standards (SSES) program in 1980. These efforts were not realized, in

part because limitations on computing power, longer component procurement lives,

and a lack of popular, well-defined open standards meant that there was little impetus

or desire to challenge the status quo [14]. By 1994, these obstacles had been

diminished, and the Open Systems Joint Task Force (OSJTF) was created to establish

and encourage the use of MOSA. In 2003, the Department of Defense (DOD)

published a directive, DODD 5000.1, which required that “a modular, open systems

approach shall be employed, where feasible” [15, 7].

Design modularity takes many forms. Use of interchangeable parts dates back

to at least the 18th century, when Honoré Blanc and then Eli Whitney demonstrated

that by standardizing the dimensions of gun components to a strict tolerance, guns

could be assembled and repaired with stocked components, instead of requiring a

specially made component [16]. This insight, crucial to production during the

industrial revolution, is the concept of maintenance modularity, which allows

individual components or subassemblies to be interchangeable, regardless of their

5

manufacturer, the system they are installed in, or their location within that system.

Closely related is the idea of production modularity.5 Production modularity allows

for complex subsystems to be constructed and tested independently in specialized

locations and then brought together for final assembly. This allows for shorter

assembly time [14]. Mission modularity is achieved by designing interchangeable

subsystems that serve different functions. The system can then be quickly

reconfigured depending on the requirements of the current mission. This was used for

the Littoral Combat Ship (LCS), so that it could complete diverse missions. Its

dedicated mission modules include anti-submarine warfare (ASW), anti-surface

warfare (SUW), and mine countermeasure (MCM) [5]. When the same component or

specialized module is used in several different types of systems or platforms, it may

be called component sharing. Component sharing reduces the number of component

types used, simplifying logistics.

The use of a modular, open systems approach is assumed to reduce costs by

increasing the interoperability, maintainability, extensibility, composability, and

reusability of the system [17]. Each of these goals is defined below.

1.2.1: Interoperability

IEEE defines interoperability as “the ability of two or more systems or

components to exchange information and to use the information that has been

exchanged” [18]. For example, different types of aircraft must all be able to interact

5 Also called construction modularity

6

using the same radio and air-traffic control systems. The concept of interoperability

can also be applied to different versions of the same component – if one workstation

is upgraded to newer software, it should still be able to communicate properly with

the other workstations. Interoperability is achieved by using standardized interface

protocols in place of proprietary ones for both hardware and software [6, 19]. Well-

defined interface standards allow components that were designed separately to work

harmoniously, even if one or both of them have been repurposed from a different

application. Modularity is crucial to allow for the different components to be

connected together in new configurations. An example of interoperability is the

standardization of USB drives. USB drives are modular, so a computer with a USB

drive connection is compatible with any USB device, and each USB device can be

used with any computer (see also Composability). For the most part, this

interoperability transcends the hardware, software, and operating system used. This

reduces the number of specialized ports a computer needs, and allows for greater

flexibility of setup and choice of components. Additionally, since USB is an open

standard, anyone can design a USB device, and there are many vendors to choose

from when purchasing a USB device.

1.2.2: Maintainability

Maintainability is the ability to easily locate (diagnose) and correct defects,

and the ability to operate in a given environment and performance level without an

undue number of failures. This applies to hardware and software at both the

7

component and system levels. Failed hardware should be easily replaceable –

male/female ports or screw connections are preferable to soldered ones. For software,

maintainability deals not only with the initial quality of the code, but the quality of

improvements and updates made to it [20]. Additionally, software should not be

hardware dependent. Middleware should be used handle and hardware-specific

features. This allows the same software to run on many different hardware

arrangements, with only superficial modifications [2]. In general, using open systems

increases maintainability6 because widely used and accepted standards are usually

well understood – any design issues have had time to be resolved (or at least

documented) by the community using that standard. This knowledge base is

invaluable, and can be used to help diagnose faulty components, or to identify

components that, while theoretically interoperable, do not “play nicely” together. If

new bugs are found, the speed and skill with which it will be resolved is improved,

because there is a larger community supporting the standard [21]. Designing and

using a proprietary system, on the other hand, necessitates going through the

debugging and troubleshooting process from the beginning, without outside

assistance. Modularity also helps improve maintainability, as it allows failed

components to be quickly swapped out for operational ones with the same function,

even if the new components are not the same as the original. For software, modularity

allows a bug-ridden or inefficient subroutine to be replaced with a new one that is of

6 Use of open components, particularly COTS components, may increase operation and support costs
because of the need to license the IP, subscription fees for maintenance updates, and unforeseen
incompatibilities between two components that must be resolved by selection of a new component or
redesign of the interface between them [59].

8

higher quality. Modularity is likewise useful for managing obsolescence and for

allowing incremental upgrades. These ideas connect directly to the goals of

Extensibility and Composability.

1.2.3: Extensibility

Extensibility measures the degree to which new technologies can be quickly

and efficiently inserted into an existing system. The new technologies may allow for

increased performance of an old function, or may introduce entirely new

functionality. Extensibility is also closely related to scalability, the ability of the

system to handle a greater work volume or a greater number of inputs. Scalability is

effectively a measure of extensibility of performance, particularly when the added

technology is further instances of the original subsystem. As explained above,

extensibility can be accomplished through the use of standardized interfaces and

modular architecture so that a new component with the same interface standard and

similar form factor can replace an older component. Extensibility may be applied to

individual components or a cohesive subsystem. An example of extensibility due to

use of open standards is the ability to upgrade the DRAM module on a computer from

1 GB to 2 GB.

1.2.4: Composability

Composability is the ability to use (and reuse) systems or subsystems

independently of one another. In order for subsystems to be composable, they must be

9

modular and self-contained so that the subsystem can be deployed without any other

accompanying items [22]. Additionally, the interface standard used must be well

defined and consistent across all subsystems. Ideally, each component should act as a

“black box” which has certain inputs and outputs as defined by its interface standard

– the exact mechanics of its inner workings should be irrelevant to the surrounding

components. Composability allows an enterprise to select from components from a

library and assemble them into different configurations to create different systems

that can fulfill unique sets of requirements [22].

1.2.5: Reusability

The capacity to take an old system and apply it to new uses is the measure of

its reusability. Reusability applies within a single system design (using the same

microprocessor or chip for all boards in System A); across unrelated designs (two or

more independent systems designed and produced by the same enterprise); and even

between enterprises [4, 23]. Like composability, reusability is facilitated by the use of

open standards and modular architecture. Reuse allows for design requirements to be

met with existing components, without the significant investment that would

otherwise be required to create a new design, qualify a new component, or qualify a

new vendor. Reuse also reduces the number of unique components that must be

tracked and supported by an enterprise [24].

Modular, open architectures are made up of one or more subsystems that

interact via a modular backbone. When possible, well-defined, publicly available

10

(open) standards are used, particularly for the system’s “key interfaces”. Key

interfaces are interfaces that are used to pass the most important information between

functionally adjacent components or subsystems [6, 17]. An interface may also be

designated as a key interface if it connects a technologically volatile subsystem to a

more stable one [7]. Defining standards for these interfaces helps to isolate them from

one another, protecting against the ripple effect [25]. Modularity is a vital component

of this strategy, because a modular architecture allows for the replacement or redesign

of one subsystem with minimal impact on the surrounding subsystems (Figure 1).

This enables subsystems to be re-qualified independently [26]. As such, refreshes

Figure 1: Subsystem 1 uses a modular architecture, and the components do not interact
directly. A change to one component is therefore isolated to that component, which may be
requalified independently. Subsystem 2 does not use a modular architecture, and a change
to one component affects all components. Updating one component requires all
components be updated and requalified. This is called the ripple effect.

11

may be conducted more frequently, which allows for improved performance and

increased functionality. The modular architecture also increases the system’s

scalability and extensibility, since new modules (or additional instances of existing

ones) may be added more easily [27]. By utilizing open standards, an enterprise can

leverage existing technology and harness commercial off-the-shelf (COTS)

components, instead of developing and maintaining the technology itself [8, 2, 24, 3].

1.3: Openness and Open Architecture

1.3.1: Defining Openness

The terms “open” and “openness” are used in a wide range of fields, and have

a broad definition. In general, openness refers to the characteristics of availability,

transparency, and not hiding or obstructing access to information. When applied to

objects such as architectures, systems, or components, openness is a measure of the

degree to which an object conforms to a set of defined standards, and the openness of

those standards. A standard is a formal definition of the methodology and structure to

be used by a component or system. An interface standard is a standard that focuses on

how a component interacts with its surrounding components (as opposed to the

internal operation of the component).

The exact degree of openness of a standard or system depends on the context

in which it is being used. The word “degree” is used because openness is a loosely

defined metric that is best measured on a comparative scale. While idealized “fully

open” and “fully closed” standards and systems may be conceived, most standards

12

fall somewhere in the middle of this range. Few, if any, completely open systems

exist, because all real-world systems use architectures, components, and standards

that are, at some level, based on the intellectual property of one or more enterprises

that are not the product designer, manufacturer, or supporter.

The relative openness of two different standards depends on the definition of

openness used. Some definitions of openness put requirements on the method used to

create the standard – open standards are those that are developed using a collaborative

or quasi-public effort, where all parties who will use the standard have a say in its

creation [28, 29]. By this definition, de-facto standards that were initially created by a

single entity are mostly closed, even if all of the details were subsequently published

and made available to the general public.

Other definitions of openness focus on the “availability and accessibility” [21]

or interoperability [30] of the standard. Hanratty, et al, for example, define openness

as standards, systems, or components that can be “supported by the marketplace,

rather than being supported by a single (or limited) set of suppliers” [9]. By these

definitions, a de-facto standard may be made open by publishing its exact

specifications, and making it available for use by the general public on reasonable and

non-discriminatory (RAND) terms [31]. (Outside of the US, this type of license is

commonly referred to as a fair, reasonable, and non-discriminatory, or FRAND

license [32, 33].) Though licensing under RAND terms has legal implications, the

terms “fair” and “reasonable” are amorphous and ill-defined. There is little legal

precedent, and the meaning of these terms is heavily dependent on the organization

and situation in which it is used [34, 32, 33, 35]. This means that although two

13

standards are both available under RAND licenses, they may have different levels of

openness.

Though reasonable royalties are generally a barrier to entry, some require the

standard to be entirely free to use, without any royalties or licensing fees, in order to

be considered accessible. This is primarily due to the influence of the “Open Source”

software movement. Much open source software is developed and used by individuals

or small private enterprises, where any fee, no matter how small creates a barrier that

makes the standard inaccessible [21]. For the purposes of this thesis, where the

primary focus is on systems designed and maintained by larger, more traditional

enterprises, the former characterization is more useful. We will use the following

definitions:

 Definition of Open Standard

An Open Standard is any well documented, publicly accessible, and

unrestricted standard that is either: a) Royalty Free (RF), or in some cases b) may be

licensed for a small fee (RAND).7 The openness of a standard may be increased by

increasing the ease of access for external parties to access its definition. This may be

done by publishing it, limiting or removing licensing requirements, and reducing

associated fees.

7 For simplicity, the term RF is used here to mean license that has no associated usage or IP fees, and
RAND to mean licenses that have any type of fee, however minimal. In actuality, some RAND
licenses allow for usage without fees.

14

 Definition of Open Architecture

An Open Architecture is any architecture that predominantly or exclusively

employs open standards to define the interfaces between its components. The

openness of an architecture may be increased by switching to standards that are more

open, and by utilizing fewer standards overall.

To be considered well documented, the Standards Defining Organization

(SDO) must provide enough detail of the specifications so that any other interested

parties can use the standard to design competing interoperable components. This

means that all details must be published, and no features hidden or withheld.

Additionally, the SDO should provide a process for revising the standard to

incorporate any fixes or emendations [36].

A publicly accessible standard is one that is equally available to anyone who

wants to implement it. For fully open standards, no restrictions may be placed on the

use of that standard, including limitations on its reuse, modification, or extension.

However, the SDO may require that any modifications or extensions be published and

licensed under the same terms as the original standard [37].

In order to increase the accessibility of the standard, and thereby foster

competition, the standard must be available either for free, or for some minimal cost

[38]. In recent years, many organizations have required standards to be completely

free to distribute, implement, and utilize (RF licensing) in order to be considered

open, and have excluded more general RAND licensed standards from their lists of

open standards. Some have allowed nominal fees (to cover the cost of publishing) to

15

be charged for copies of the standard’s documentation, with the condition that the

purchasing entity has full rights to copy and distribute it freely. Exception is also

made for optional certification services, which the SDO may provide at any charge

[37].

Though the precise meaning of a RAND (or FRAND) license depends on the

intent of the SDO, their general intent is apparent. The standard in question must be

made available fairly, in a manner that is not anti-competitive. This includes

prohibitions against practices that place undue limitations that could block an

interested party from licensing the standard [39]. The license must be available for a

reasonable royalty, where ‘reasonable’ is determined by several factors, including the

cost to develop the standard, the value of the standard on the open market, the

existence of alternative standards, and the royalties charged by other SDOs for

comparable situations [40]. The royalty and license must also be non-discriminatory –

the SDO may not, for any reason, charge different royalties to different groups,

require unpaid licenses to others’ intellectual property (uncompensated grant-backs),

or refuse to license any party that accepts the terms of the RAND license [40]. For

our purposes, publicly published standards that use RAND licensing are still

considered open, even though the licensing fees make them less accessible than RF

licensed standards.

16

1.3.2: Open Source

Care should be taken not to conflate openness or Open Architecture with the

principles of Open Source. While the terminology and some of the underlying ideas

are similar, the two are different things. Openness as defined previously is applied to

both hardware and software components, and is measured on a scale from fully open

to fully closed. While the many notions of openness agree in guiding principles, there

is no single definition. As such, a Standard that was initially developed by a single

entity and subsequently published for a minimal fee under a RAND license would

receive a high openness score under our definition, but would score relatively poorly

by another definition.

The term “Open Source” was coined by Christine Peterson in 1998 after the

release of Netscape’s source code and in conjunction with the formation of the Open

Source Initiative (OSI) [41]. As such, the term refers almost exclusively to software,8

and has been authoritatively defined by the Open Source Definition [42]:

1. Free, unrestricted redistribution, including when the software is sold as

part of a larger work

2. The Source Code must be accessible and unobscured

3. Modification and extensions must be allowed so long as they are

distributed under the terms of the original software

8 The Open Source philosophy predates the computer era, and is still present today in non-software
fields. As a result of the proliferation of the Open Source movement, its terminology has begun to be
applied to other fields.

17

4. The license may restrict modification of the source code on the

condition that “patch files” which modify the code when it is compiled

are allowed. Any extensions may be required to use a different name

or version number.

5. No discrimination of persons, groups, or fields of endeavor

6. The license must be distributed with the software – anyone who

receives the software are free to edit and distribute it without

additional licensing

7. The license must not be product specific

8. The license must not restrict other software

9. The license must be technology neutral

According to this definition, a software item either qualifies as open source, or

does not - there is no concept of “partially open”. This binary approach means that

many standards that were once considered to be relatively open (using the definition

of openness put forth in the previous section, and similar definitions) have been

reclassified as not open, and has led many SDOs to make their definitions of

openness more rigorous. A key example is the exclusion of standards that have any

usage or IP fees. For traditional businesses, small fees are not a significant

impediment, and so RAND licensed standards may be considered open. The Open

Source community, on the other hand, is defined by the voluntary collaboration of

many developers, and a final product that is offered to the public free of charge. In

this situation, any fee, no matter how small, becomes an insurmountable barrier to

18

entry. However, the Open Source community does recognize a fee-to-use standard as

open provided that its fees are waved for Open Source projects.

1.3.3: COTS and Openness

Though, as discussed, there are benefits inherent to using and open approach,

an important benefit of using open standards is that it enables the enterprise to harness

off-the-shelf items. Many of the benefits mentioned are enabled by the use of off-the-

shelf items. Other benefits, which exist without the use of off-the-shelf items, are still

enhanced by this capability [6].

Commercial Off-The-Shelf, or COTS, is a broad term used to describe

commercially available, general-purpose hardware and software components. COTS

components are, by their nature, open to some degree. Many COTS items are fully

open – based on an open standard, with similar components available from multiple

sources (USB based hardware and software, for example). Other COTS components,

though based on proprietary standards, are also open to some degree, because the

standard is made available for others to use. This is true of Apple’s proprietary

connectors, for example the new “Lightning” connection port. Apple maintains sole

control over the standard’s definition, and strictly regulates who is allowed to license

it, under what terms, and for which products [43]. In such cases, the overall openness

of the standard is correlated to its final availability and accessibility. The presence of

COTS hardware or software is enough to indicate that a system is, to some degree,

19

open, because use of COTS components demonstrates that the system is not designed

exclusively using inaccessible proprietary standards.

1.4: Effects of Openness on Life Cycle Cost

While the explicit goals of using MOSA are to increase the interoperability,

maintainability, extensibility, composability, and reusability of the system, there are

other benefits associated with using open architectures and open standards, including

increased competition, increased innovation, improved quality, fewer issues due to

obsolescence of system components, reduced risk, and reduced development time.

Many of these benefits, which stem simply from the fact that other enterprises are

using the same standards, are called network effects or network externalities [40].

Each of these benefits, which results in significant cost avoidance, has been observed

by enterprises employing an OSA. However, several case studies have also noted that

the use of OSA strategies has led to an increased support cost. The viability of an

open systems approach depends not only on the architecture and components used,

but on the number of fielded systems, obsolescence mitigation strategy, refresh plan,

and the number of years the systems are to be supported.

1.4.1: Increased Interoperability

The use of open standards is crucial to fostering interoperability. It allows

many different products to work together despite being created and used by different

20

enterprises [35]. One example of this is the NAVSTAR GPS system, where

standardization and publication of the communication signal made it possible for

numerous other enterprises, including private companies and foreign governments, to

utilize the system. Similarly, standardization of the hardware and receiver interfaces

made it easy to implement the system across more than 30 different aircraft platforms.

This increased commonality also helped to decrease the number of fielded

configurations, and reduce the logistics footprint, avoiding significant costs [44]. The

benefits of interoperability were also seen by the Joint Precision Approach and

Landing System (JPALS). In this case, standards were coordinated with the FAA and

other international bodies to ensure that civilian and military aircraft from many

different countries are able to know each other’s precise positioning, and land safely,

all around the world [45]. This increases safety, supportability, and readiness, all

while reducing costs.

1.4.2: Increased Maintainability

The use of open standards also increases the maintainability of a system by

simplifying and normalizing maintenance procedures. When COTS components are

used, some of the support responsibilities may be shifted to the component

manufacturer [8]. This is especially true in the cases of software and throw-away

hardware (or hardware covered by a warranty). The reuse of standards and

components means that fewer manuals, less training, and less specialized test

equipment are required [46]. Fewer types of spare components must be tracked,

21

purchased, and stocked, reducing the logistics footprint. This benefit of

standardization was clearly during the design of the Virginia class of submarines.

While previously designed classes of submarines had seen the number of parts

proliferate, with the Trident class using 28,000 components, the Los Angeles class

using 29,000 components, and the Seawolf class using 45,000 components, the

Virginia class used only 15,00 components [24]. Standardization also allowed for a

32% decrease in testing equipment, avoiding $50,000 in costs per ship. Overall, a $27

million investment in openness and standardization was projected to avoid $789

million in costs [24].

1.4.3: Increased Extensibility

Use of open standards allows a system to benefit from improvements and new

innovations from the public marketplace without any up-front investment costs.

These enhancements can then be adapted and installed much more quickly and

efficiently than could be done for a proprietary system. By using the Weapons

Systems Common Operating Environment (WSCOE) and Portable Operation System

Interface (POSIX) defined by IEEE, the Weapon System Technical Architecture

Working Group (WSTAWG) was able to augment the Predator Unmanned Arial

Vehicle (UAV) for use with the Hellfire missile in just over one month. This was

made possible by porting target tracking software from a Line-of-Sight Anti-Tank

(LOSAT) missile. This reduced development time considerably, and avoided 75% of

the typical software development costs [7].

22

1.4.4: Increased Reuse

Reuse within a design avoids costs by allowing for redundant components that

serve similar purposes to be eliminated, reducing the number of unique components

that must be qualified, purchased, and stocked in order to produce and maintain a

system. Further cost avoidance is achieved by decreasing the logistical footprint of

the system by reducing the number of components for which part libraries must be

maintained, tooling and infrastructure supported, spares stocked, and technicians

trained [4, 47]. Reuse between systems occurs when a component from an earlier

application is integrated into the design of subsequent systems. This greatly reduces

the time and cost to design the systems, and effectively lessens the over costs per

system associated with qualifying components, maintaining component libraries,

training technicians, sustaining maintenance and support operations, and other non-

recurring costs by amortizing them across several projects. This benefit was seen after

designing the Virginia Class of submarines. 45% of the components used in the

Virginia design were reused in creating the USS Jimmy Carter Multi-Mission

Platform, and an additional 64% of the Virginia components were reused in designing

the SSGN Class of submarines. Combined, this resulted in costs avoidances of over

$150 million [24]. High levels of reuse also allows for maximum benefit due to the

effects of learning and by leveraging economies of scale [48, 49].

23

1.4.5: Increased Competition

Open standards allow for many different suppliers to produce similar and even

interchangeable components that can perform the same function. This empowers an

enterprise designing a complex system to choose more freely between multiple

suppliers. Since components from several sources are interoperable, the enterprise

may switch between them without incurring significant cost. This would not be the

case if proprietary standards were used, where the high costs to switch to a different

standard would form a barrier, locking the enterprise into the original source. The

freedom to switch between suppliers helps increase competition between them. If the

enterprise can get a component with similar functionality from another source for

lower cost, there is little to prevent the enterprise from switching sources. This

incentivizes the different suppliers to offer their component for a lower cost, or to

otherwise appeal to the enterprise by offering other benefits, such as increased levels

or types of functionality, or an increased warranty [35]. The benefits of increased

competition are apparent in many case studies, including the A-RCI sonar system [2],

mechanically attached pipe fittings [50], and standardization of aircraft batteries and

related components [49]. In this last case, it was estimated that the availability of

more than one supply source reduced costs as much as 25 to 30%.

1.4.6: Increased Innovation

Open standards increase innovation for several reasons. First, increased

competition, as mentioned previously, spurs component manufacturers to distinguish

24

their component from the rest of the field. This can be done by increasing its

performance, decreasing its form-factor, or developing some new valuable

functionality [35]. Additionally, for the SDOs and product suppliers to make a profit,

the standard they promote must be long-lived, so that they will have sufficient time to

recoup the initial development costs. This gives them incentive to produce new

innovations that distinguish their standard from other available standards. In the case

where one open standard controls most of the marketplace, innovation is still

encouraged because the standard’s popularity guarantees its longevity, so developers

see less risk in investing additional time and money to improve the standard or

introduce a new product [35, 40]. This helped encourage the spread of the Internet

and the World Wide Web, thanks to the open standards of TCP/IP and HTML

respectively [21].

1.4.7: Improved Quality

The definitions of many open standards are set by the SDO after consulting

with many experts, and taking input from many of the key market players. This

allows them to pool their experience, and produce a better standard than any one

enterprise would have independently [35]. Use of open standards allows for higher

quality by increasing competition between suppliers. The required functionality may

even be provided by components designed and supplied by another enterprise that

specializes in the functionality required.

25

1.4.8: Mitigating Obsolescence

Diminishing Manufacturing Sources and Material Shortages (DMSMS)

obsolescence occurs when components required to support a system become obsolete

or are otherwise unprocurable. In the last few decades, DMSMS obsolescence has

become a significant issue because of fast turnover and short procurement lives in the

modern component market. This means that the support life of some systems is many

times longer than the procurement lives of their constituent components [51, 26, 52].

If spare components are unavailable, it may be impossible to continue to support an

existing system. This may cause a crisis for complex systems, since the long-

development cycle for such systems means DMSMS obsolescence issues may be

present before the first system is even fielded. A stark example of this phenomena is a

sonar system detailed in Singh and Sandborn [51], which faced obsolescence of 70%

of its commercial components before it was initially deployed (Figure 2).

Figure 2: COTS Obsolescence faced by a sonar system during the first decade of its life cycle (from [51])

26

Historically, DMSMS issues have been treated reactively, by either refreshing

the system design to use a non-obsolete component (replacement); bulk purchasing

enough instances of the component immediately prior to its obsolescence to last until

the system’s end of service (EOS) date, and then hoarding the components until they

are used (life-of-type/lifetime buy, or LTB); or using some combination of these

methods (bridge buy) [52, 26]. More recently, strategic DMSMS management

techniques have been developed where the support plan for system includes pre-

defined refresh dates at which components that are obsolete or nearing obsolescence

are designed out of the system [51, 53]. Each of these methods significantly adds to

the total cost of ownership (TCO) of the system, and that cost increases as the number

of obsolescence events and number of support years after obsolescence increases.9

Additionally, obsolescence can be a symptom of a larger issue – the system

uses outdated technology, which means that the system’s performance, functionality,

and even form factor lag significantly behind the current state-of-the-art. This is an

important consideration in commercial and consumer systems for remaining

competitive and retaining market share; it may also be crucial in defense applications,

because the technology used is both Mission Critical and Safety Critical issue; any

enhancement could mean the difference between victory and defeat [8, 25]. In order

to keep system technology current, it is necessary to perform frequent design

9 The viability of each of these options depends on their relative costs, which are effected by a number
of factors. As a rule of thumb, redesign is good in situations when qualification costs are low, holding
costs are high, and when the EOS date is far away (or may be pushed back with little notice). LTB is
good for situations when qualification costs are high, holding costs are low, and when the EOS date is
near and unlikely to change.

27

refreshes. However, design refreshes are an expensive, time-intensive process. In

some cases, a design refresh also requires a partial or complete requalification or

recertification of the system to ensure it meets the requirements for performance and

stability. The use of a modular open systems approach (MOSA) is seen as a way to

decrease both the time and cost of design refreshes [8, 54, 2].

1.4.9: Reduced Risk

Without an open standard, there is the danger that the enterprise can choose to

use and invest in a technology that may become marginalized if the rest of the market

moves in a different direction. When this occurs, the technology will quickly become

obsolete [35]. Open standards, particularly those that are well-established, hold a

large market share, and are not dominated by alternatives, are assured some amount

of longevity. This allows an enterprise to invest in infrastructure and any required

training with less risk. Additionally, by exploiting previously used, established

components, many development risks may be reduced [47, 54].

1.4.10: Reduced Development Time

The use of open standards leads to reduced development time because it

enables the use of unified platforms, increasing the efficiency of research and

development [40]. Reuse of components and subsystems from previous systems saves

the time (and cost) associated with developing those components. This was seen in

the creation of the USS Jimmy Carter Multi-Mission Platform and the SSGN Class of

28

submarines, both of which reused considerable portions of the Virginia Class

submarine design [40]. This benefit is also seen when using COTS components –

even if the enterprise doesn’t have first-hand experience with them, they are able to

integrate them into the system without designing them from scratch.

1.4.11: Enterprise Benefits

As noted above, interoperability and reuse allow an enterprise to repurpose

components and subsystems designed for previous systems to increase design and

maintenance efficiency, interoperability, and innovation. Beyond this, using an open

systems approach across several projects allows an enterprise to increase its return on

investment by allowing several projects to benefit from the same infrastructure. For

example, the Army Materiel Command found that by consolidating all standards

information into a single library, the quality and availability of the information could

be improved while one third, or more than $1 million, of the costs could be avoided

annually [55].

1.4.12: Increased Costs

Increased cost due to openness may occur if the regulations governing the

system’s support prevent the full benefits of openness from being realized. For

example, using open systems and implementing a faster refresh cycle may not be

practical in situations where recertification is expensive or partial recertification is not

possible. Historically, this was sometimes the case for safety critical applications,

29

including military systems and nuclear plants. This must be addressed by appropriate

regulatory changes. Additionally, while using commercial components removes much

of the design and support burden, it also decreases the level of control the enterprise

has over its specification and production. The enterprise may not be notified of minor

product or process modifications, which may result in regulatory or certification

issues.

Use of existing (reused or COTS) components may also add cost. If a ‘perfect’

component does not already exist, it may be necessary to use a more expensive

component with higher performance or greater functionality than required. This extra

functionality could increase the cost and effective failure rate of the component. In

other cases, it may be necessary to modify the COTS or reused component for use in

the new environment. Possible modifications include physical modifications to a

hardware package so it fits in the required space; uprating hardware components for

operation beyond the manufacturer’s specifications [56]; burning-in a component to

remove “infant mortality” failures and improve reliability [57]; and functional

changes to software, either by altering the component itself, or through the use of a

“wrapper” or API (Application Programming Interface).

Other costs associated with implementing open designs include the costs of

building and maintaining a component library for the product to be reused from, and

from encouraging and enforcing the use of appropriately open design paradigms.

Finally, while use of openness helps to prevent component obsolescence from

occurring, and allowing for more affordable handling of obsolescence when it does

occur, there is still a risk of standard obsolescence. If the enterprise selects the

30

“wrong” standard, and the market shifts away from the standard selected, significant

costs must be incurred, not just to replace the standard, but to replace all the

components which use the standard as well. These costs may outweigh all the other

benefits gleaned from using open systems. Unlike the situation when using the

enterprise’s own proprietary standard, the components and standard may become

completely unsupportable, even by the enterprise or a third party, due to lack of

access to the necessary IP. This risk may be mitigated by careful selection of the

standards used performing a “market watch” to track market trends and be able to

better predict obsolescence events or by only using completely open standards.

However, great care should be taken in selecting standards to be used. In some

scenarios, openness may not be the best option. Though open standards should be

favored over proprietary ones, the final decision must be made based on maturity,

acceptance, and the ability to adapt to meet future needs [6].

Knowledge of the principles and applications of MOSA allows for an

understanding of the theoretical situations in which it is most valuable. However, it is

also important to be able to ascertain the exact value of an open approach, and

differentiate between situations when the use of open systems is beneficial, and

situations in which it is detrimental. To answer this question, it must be possible to

calculate the investment and the return associated with implementing an open design.

31

1.5: Measuring Openness and Life Cycle Costs: Existing Work

While many previous efforts have been made to measure openness, almost all

of these efforts make the implicit assumption that openness is always beneficial.

Additionally, most rely on highly qualitative analysis of a system, which results in

low accuracy and poor repeatability. Others are highly specialized tools, only

applicable in specific situations, and not valid for more general cases. Finally, the

results are often given as an intangible “openness score”, which leaves many

questions unresolved. The metric can be used to tell which of two systems is more

open, but does not provide enough information or resolution to make a business case.

How much extra investment is necessary to achieve a higher level of openness? What

is the expected return on this investment (ROI)? Should further openness be pursued,

or is the current level sufficient? Does the number of fielded systems affect this

return? Is there a minimum or maximum length of time that the systems need to be

supported in order for openness to pay off? If so, is the result sensitive to life

extension?10 These questions, largely unresolved, are vital to any enterprise

considering an open approach.

10 A life extension occurs when the end of support date is pushed back, and the system must be
supported for more years than originally anticipated. Life extension may occur with only a few years
of advance warning. This may result in shortages of obsolete (stockpiled) components.

32

1.5.1: MOSA and MOSA PART

The Modular Open Systems Approach (MOSA) was initially developed by the

Open Systems Joint Task Force (OSJTF), which was established by the Department

of Defense (DoD) Office of the Undersecretary of Defense for Acquisition,

Technology, and Logistics (OUSD (AT&L)). MOSA is a combined business and

engineering strategy that calls for the use of widely supported commercial or open

standards to be used when developing a new system or updating an existing one. In

addition, the enterprise should design for change by using modularity and functional

division. This enables spiral development [6].

The OSJTF suggested that enterprises apply MOSA using a five-part strategy

[6, 17]:

1. Establish an enabling environment.

This refers to setting a tone, at the enterprise level, to support and

encourage the use of open systems, and creating a MOSA roadmap.

This could mean requiring a certain level of openness in designs,

training managers and designers about MOSA principles, performing

market research, and maintaining a component library. The enterprise

should also actively work to remove any barriers to openness.

2. Employ modular design.

All designs should use a high level of functional division so that any

design changes are compartmentalized. This prepares for future design

changes, which are largely unavoidable.

33

3. Designate key interfaces.

Designating key interfaces allows the enterprise to focus attention

strategically, and concentrate on the most volatile, unreliable, or

fundamental interfaces.

4. Use open standards for key interfaces.

While use of open standards may be valuable in general, their use for

the key interfaces is vital to ensuring interoperability and

interchangeability of components.

5. Certify conformance.

In addition to encouraging the use of MOSA, it is important to verify

that the final design is, in fact, open. This includes confirming that the

standards and COTS components selected are interchangeable and not

vendor specific.

To certify that both the system and enterprise have properly implemented

MOSA principles, the OSJTF developed the MOSA Program Assessment and Rating

Tool (PART). The MOSA PART was adapted from the Office of Management and

Budget (OMB) PART questionnaire, which was created to evaluate and improve the

performance of a wide array of programs across the federal government.

The MOSA PART is a series of questions divided into two sections, business

indicators (11 questions) and technical indicators (13 questions). Each question asks

about the extent to which a certain principle, ability, or practice is used. The

questions, included in Appendix A, are answered by 1) noting if the principle, ability,

or practice is planned, already achieved, or not applicable; 2) selecting the extent to

34

which the principle, ability, or practice has been implemented (none, little extent,

moderate extent, or large extent); 3) providing a rationale or explanation for that

selection; and 4) supplying any supporting evidence or data, as appropriate. Once the

questionnaire has been completed, an assessment of MOSA implementation is given,

with each of the five principles (enabling environment, modular design, key

interfaces, open standards, and conformance) given a score between 0 and 100%. A

combined rating is also given. Scores between 80% and 100% are considered

“exemplary”, between 60% and 80% “satisfactory”, and between 40% and 60%

“marginal”. Scores below 40% are considered “unsatisfactory”.

While the MOSA PART can be used to quickly give an approximation to a

system’s openness, it lacks guidance on how to accurately evaluate the principles and

practices it intends to measure. It is subjective and qualitative, and the final results

may be highly dependent on the optimism with which the survey is completed. For

example, consider the question “to what extent has the program designated key

interfaces?” The tool and its documentation give no instruction on what constitutes a

“moderate” level of designating key interfaces as opposed to “little”. Depending on

the responder’s experience, outlook, expectation, or mood, the same evidence could

be used to support either response, demonstrating a complete lack of inter-rater

reliability. This is true of all 24 questions, and is no small issue – answering “little

extent” for all questions results in a score of approximately 33% (unsatisfactory),

while answering “moderate” across the board gives a score of about 67%

(satisfactory). A borderline system could fall anywhere on this range, with the

system’s final score effected more by the person or group filling the survey than by

35

the system itself. This lack of repeatability and precision calls the validity and

accuracy of the analysis into question as well.

The openness calculation itself is problematic. Each question is theoretically

weighted equally, on a linear scale – a value of 1/3, 2/3, or 1, for little, moderate, or

large extents, respectively. Each of the questions is correlated with a different one of

the five principles, and the results of that question group averaged to give the score

for that principle, with “planned” and “achieved” scores tabulated separately. The

five principle scores are then averaged to give the combined rating. However, each

question can be marked as “not applicable”, removing it from the calculations.

Although in theory each question is weighted equally, in practice some questions hold

more sway than others. The eleven business indicator questions are averaged to

obtain the “enabling environment” score, while only two questions (“to what extent

has the criteria for designating key interfaces been established?” and “to what extent

has the program designated key interfaces?”) are used to calculate the “key

interfaces” score. If one of these questions is marked as not applicable, due to lack of

evidence, for example, the other question becomes the sole basis for the “key

interfaces” score. Furthermore, that single question’s answer weighting increases

such that it becomes 20% of the combined score. In comparison, questions in the

business indicator are only weighted as 1.8% of the combined score.

Finally, the assessment’s rough output, satisfactory or not, tells us nothing

about the investment already committed to openness, or the costs to attain a higher

MOSA score. Though it can measure conformance to the five MOSA principles, it

36

has no capacity whatsoever to capture the cost avoidances associated with using a

MOSA approach.

1.5.2: OAAM and OAAT

The Naval Open Architecture Enterprise Team (OAET) initially developed

the Open Architecture Assessment Model (OAAM) in 2005 to “define, measure, and

illustrate the relative levels of openness” [17]. Like MOSA PART, the OAAM,

described in Appendix B, measures the openness of a system using both business and

technical characteristics. The resulting business and technical scores, a value between

0 and 4 taken from the description that best matches with the system’s situation, are

then plotted to attain the overall openness characterization, a value of low, medium or

high. The OAAM is simple and straightforward, but lacks depth and resolution. The

OAET therefore created the Open Architecture Assessment Tool (OAAT) to expand

and build upon the OAAM. Initially, the OAAT took cues from MOSA PART, using

a set of questions to assess the openness of a system. The OAAT was then revised to

incorporate the MOSA PART questionnaire itself.

Like MOSA PART, the OAAT uses a series of questions to evaluate an

enterprise and system on both business and technical aspects. The business section,

called the programmatic section by the OAAT, consists of two sections. The first

section consists of eleven questions that are taken directly from the MOSA PART’s

business indicators. The second section, with thirteen questions, covers OAAT

specific items.

37

In addition to the MOSA PART technical indicators (thirteen questions), the

OAAT technical section contains questions designed to align with the five goals of

using an open systems approach: interoperability (six questions), maintainability (two

questions), extensibility (three questions), composability (two questions), and

reusability (four questions). All of these questions are detailed in Appendix A.

The OAAT scoring algorithm is similar to, but more advanced than, that used

for MOSA PART. Each response is given a score between zero and five. When the

scores are averaged, however, not all questions are given equal weight. Important

questions are designated as “key,” “litmus,” or both. “Key” questions are weighted

between 3 and 4 times stronger than other questions, and an answer is required (the

“not applicable” response is disabled). “Litmus” questions can limit the maximum

score a system can receive, even if the responses to all other questions would suggest

a higher score. This makes the OAAT less susceptible to large variations in results

due only one factor. It also helps to ensure that results are a valid representation of

reality, and are not misrepresented because of the answers to less important questions.

Additionally, the OAAT specific questions come with guidelines for each question

that define approximate values for “limited extent”, “some extent”, “extensively”,

and “very high extent”. This greatly improves inter-rater reliability, and improves the

precision and repeatability of the results. However, these methodological

improvements are only applied to the questions unique to OAAT. The questions taken

from MOSA PART do not have “key” or “litmus” designation, and as before, the

evaluator is given no guidance as to the definitions of “little,” “moderate,” or “large”

extent.

38

Like MOSA PART, OAAT cannot account for the cost and investment

associated with implementing and using an open systems approach, and is unable to

measure the value of the benefits thereby attained. It cannot, therefore, be used to

make a business case for the continued or expanded use of openness.

1.5.3: AFRL/RYM Metrics Working Group

In 2011 and 2012 there was collaboration between a number of parties,

including the Air Force Research Laboratory’s (AFRL) RYM subgroup, MacAulay-

Brown, General Dynamics, and Lockheed Martin, to develop a set of metrics to

evaluate and judge the openness of an architecture. Focus was given to selecting

metrics that were broad enough to a general case, and quantifiable, so that the

measurement would be highly repeatable and reliable.

The result of their efforts was called the MOSA Metrics Calculator [58]. It

asks a series of simple questions, which are given in MOSA Metrics Calculator, about

each component in an architecture. The results are essentially averaged based on

which of the five MOSA principles or tenets they are applicable to. The results are

then presented on a radar plot showing how well each of these tenets is attained. A

sample plot is shown below in Figure 3.

39

Figure 3: MOSA Tenet Scoring Chart. Example results from the MOSA Metrics Calculator [58]

The MOSA Metrics Calculator improves upon the MOSA questionnaire by

ensuring that all metrics are quantifiable, and by using a calculation methodology that

is less susceptible to random fluctuation. However, like the previous measurement

tools, it cannot be used to make a business case for previous or continued use of an

open systems approach.

1.5.4: Open PDQ MOSA Openness Metric

Another approach to measuring openness comes from Peter Henderson, of

PMH Systems and the University of Southampton. In several papers (and parts

thereof) made available on his website, he goes through the definitions of MOSA and

40

openness, lists the benefits of and hindrances to attaining openness, and gives

guidelines for architects or project managers who hope to implement an OSA. In

making a case for open systems architectures [58], he uses a stochastic model to

demonstrate that the development cost of a system or module can be reduced

significantly by increasing its openness coefficient. The same is true of development

time. Unlike many other analyses, he is able to give concrete estimates of the cost and

time reductions due to the system’s openness. For example, increasing the openness

coefficient from 0.2 to 0.4 avoids almost two thirds of the development cost [58]. In

this case, the openness coefficient is defines as the fraction of interfaces that use open

standards. The results of his model show that development time and cost decrease as

openness increase. Further, it demonstrates the decreasing value of marginal openness

– more is to be gained by increasing from an openness score of 0.2 to 0.3 than by

increasing from a score of 0.6 to 0.8. In other words, the more closed a system is, the

easier it is to benefit from implementation of an open systems approach.

Unfortunately, the details of the model are vague. Henderson notes that the

model is unverified, and still in development – the significance of the model

presented is not the specific values presented, but in the trends and implications,

which hold true for a range of input parameters [58].

Henderson’s work is valuable, as it uses an easily quantified metric to define

openness. The model then translates this openness measure into an approximate

benefit. Though the costs that must be invested to achieve a higher level of openness

are unknown, this model begins to formulate a business case for the use of openness.

41

However, the model has a number of shortfalls. First, the openness metric is

very basic, and cannot distinguish between standards with different levels of

openness. In a more recent, still uncompleted work, Henderson defines a “fuzzy

measure of openness” [59], in which the score for a given interface that is dependent

on the number of companies that produce the interface and the number of companies

that consume it. The number of producers and consumers are each rated on a

high/medium/low scale, resulting in seven levels of openness – very low, low,

medium low, medium, medium high, high, and very high. Combining these openness

measures would improve the resolution and therefore the accuracy of his model.

A second issue with Henderson’s model is its very limited scope. The model

only covers the design phase. This ignores significant costs and avoidances later in

the life cycle, such as those incurred during operation and support, and design refresh

or technology insertion. While the benefits at design would be similar to those during

refresh, the trend during the support phase would be reversed – higher openness

means higher volatility, which increases support costs. As noted previously, it also

leaves out the costs incurred to achieve a higher level of openness. Without these

costs, the results of Henderson’s model are highly misleading. The plots produced by

his model suggest that cost and time are both decreasing functions of openness. This

would mean that no matter how open the system is, it stands to benefit from

increasing the openness. In actuality, this is not the case. Decreasing marginal

openness suggests that if one-step increases in openness require a constant cost

42

investment,11 the added investment will at some point outweigh the additional benefit.

A more complete and comprehensive model is needed.

1.5.5: The COCOMO Family of Models: COCOTS and COTS-LIMO

Though our interest is in the broader topic of openness, a number of cost

models have been developed to estimate the costs associated with developing and

supporting COTS-based systems (CBS). These models, which only cover software,

were created in response to the recent popularity of using CBS to try and reduce the

time and cost to develop large software systems [60, 61]. Though like the PDQ

model, some of them focus on integration costs alone [62], these models are valuable

because they are able to translate usage of openness, or more specifically, the use of

COTS software, into estimated costs.

Some of the best developed models are based on work by Christopher Abts

and Barry Boehm at the University of Southern California. Boehm is well known for

his work on the Constructive Cost Model, or COCOMO. COCMO, which was

originally published in 1981, and updated in 2000,12 is an empirically-based

parametric model that can be used to estimate the time, effort, and cost associated

with developing a software system. It has several sub-models that allow for accurate

11 Investment here includes any added costs due to openness at any point in the module’s life cycle, not
just before or during design. It is possible that a marginal increase in openness would require
increasing (not constant) levels of investment.
12 The initial version of COCOMO will be referred to as COCOMO 81. The term COCOMO by itself
is used to refer to the updated version, also called COCOMO II. Preliminary versions of COCOMO II
were available as early as 1995.

43

assessment in different parts of the design process. These sub-models are called the

Applications Composition, Early Design, and Post-architecture model, with the latter

being the most detailed, calibrated, and verified of the three. However, the COCOMO

model is explicitly designed for “traditional” system designs, and cannot be used in

situations when COTS software is utilized [60].

Since the release of COCOMO, a number of extensions and special

applications of the model have been published, including the USC-CSE COTS

Integration Cost Calculator[63] (CICC). The CICC model was then expanded to

create the Constructive COTS Cost Model, or COCOTS [60]. Like COCOMO, CICC

and COCOTS make their estimations based on the size of the software, measured in

thousands of lines of source code,13 or KSLOC, and user input about the type of

project and its rating on various other attributes, or “cost drivers”. CICC and

COCOTS can be used to estimate the costs incurred to integrate a COTS software

component into a larger system during the design phase, but cannot be extended to

other life cycle phases or to hardware [63]. Even without these later phases, Abts

found evidence that the conventional wisdom of “more COTS is always better” was

incorrect. Abts aptly explains, “‘not building’ [does] not mean ‘not developing’, only

developing differently” [13]. When using a large number of COTS components,

significant effort must be expended to ensure they are all compatible, fulfill the

functional requirements, and to integrate them into the larger system. COTS

components are more volatile, subject to frequent updates and shorter procurement

13 A function point based analysis can be used as well, though a language table is used to convert the
number of function points to approximate KSLOC.

44

lives. In general, increasing the number of COTS components increases risk and

volatility, meaning that in some situations, a COTS-based system could have a shorter

or more expensive life than a comparable proprietary system.

Abts approached this issue by presenting the COTS Lifespan Model (COTS-

LIMO), where he argued that the important metric was not high use of COTS

components, but high COTS Functional Density (CFD) [13]. In other words, the

amount of system functionality provided by each COTS component should be

increased, while the number of actual COTS components kept to a minimum.

Because of the volatility of COTS components, Abts’ model suggests there is an

equilibrium value for number of COTS components in a system. Below that

equilibrium value increasing the CFD increases cost avoidance. Above the

equilibrium value, high volatility and lack of supply line control take effect, and the

system rapidly becomes unsupportable (

Figure 4). Unfortunately, though others have found data to support this

proposition [12], the COTS-LIMO model was never completed.

Figure 4: The COTS-LIMO hypothesis of COTS-based systems (from [13])

45

1.5.6: SAIC Models

Three models appear in the literature attributed to the Science Applications

International Corporation (SAIC). The first, “An Economic Analysis Model for

Determining Custom versus Commercial Software,” was developed by Karpowich,

Sander, and Verge [60, 62]. It focuses on the costs associated with integrating a

COTS software component, which it gives as [60]:

ூ௡௧௘௚௥௔௧௜௢௡ݐݏ݋ܥ = ௅௜௖௘௡௦௜௡௚ݐݏ݋ܥ ௅ܰ௜௖௘௡௦௘௦ + ௥௔௜௡௜௡௚்ݐݏ݋ܥ + ௟௨௘ ஼௢ௗ௘ீݐݏ݋ܥ

Equation 1

where:

ூ௡௧௘௚௥௔௧௜௢௡ݐݏ݋ܥ is the cost to integrate the component

௅௜௖௘௡௦௜௡௚ݐݏ݋ܥ is the cost of the COTS component license

௅ܰ௜௖௘௡௦௘௦ is the number of COTS component licenses required

 ௥௔௜௡௜௡௚ is the cost to train the end users of the component்ݐݏ݋ܥ

௟௨௘ ஼௢ௗ௘ீݐݏ݋ܥ is the cost to create the interface or glue code

The usefulness of this model is limited because it only covers design and

integration, and only covers software. Additionally, it leaves ீݐݏ݋ܥ௟௨௘ ஼௢ௗ௘ as a given

value, when determining how to calculate it is of significant interest.

The second SAIC model is attributed to Stutzke [60]. Though this model was

never completed, it proposed the following formula to measure the cost impacts due

to COTS volatility:

௏௢௟௔௧௜௟௜௧௬ݐݏ݋ܥ = ௌ௖௥௘௘௡௜௡௚ݐݏ݋ܥ)(݁ݖ݅ܵ)(݈݃݊݅݌ݑ݋ܥ)(ݕݐ݈݅݅ݐ݈ܽ݋ܸ) + (஼௛௔௡௚௘௦ݐݏ݋ܥ

Equation 2

46

where:

௏௢௟௔௧௜௟௜௧௬ݐݏ݋ܥ is the added cost associated with the volatility of the

component

 is the number of expected releases of the COTS component ݕݐ݈݅݅ݐ݈ܽ݋ܸ

during the life of the system

 is the number of other components with which the COTS ݈݃݊݅݌ݑ݋ܥ

component interacts

 is the effective size of the component’s interface, based on the ݁ݖ݅ܵ

number of procedures or functions and number of arguments

used to interact with it

 ௌ௖௥௘௘௡௜௡௚ is the cost of screening all of the components (the COTSݐݏ݋ܥ

component, and all component affected) to ascertain the effects

of the release of a new version of the COTS component

஼௛௔௡௚௘௦ݐݏ݋ܥ is the cost of implementing the changes to effected

components

This model is limited because it only deals with software, and only addresses

volatility. However, it is still useful because much of the added cost incurred by using

COTS components stems from their volatility.

The third SAIC model, also by Stutzke [64], and an expansion of the previous

model, also aims to quantify the costs associated with COTS volatility. In addition to

the added effort needed to update interfaces after the release of a newer version of a

component, which was included in the previous model, this model accounts for the

efforts and costs associated with unneeded functionality, the risk of incompatibility of

47

the new component, and the risk of elimination of required functionality. The model

argues that the effort required to integrate a new version of a component is given by

[64]:

ݐݎ݋݂݂ܧ = ஺௡௔௟௬௭௘൯ܧ൫(ܮ) + (ெ௢ௗ௜௙௬ܧ)(ܯ) + ൭
ܯ)ܯ − 1)

2 + ܰ)ܯ ௘௦௧்ܧ൱(ܯ−

Equation 3

where:

L is the number of links the component has with other components

஺௡௔௟௬௭௘ܧ is the average effort to analyze a link to see if it needs

modification

M is the number of links that need to be modified (M ≤ L)

ெ௢ௗ௜௙௬ܧ is the average effort required to modify the effected link

N is the number of components, custom and COTS, in the system

 .௘௦௧ is the average effort to test the modified linkage்ܧ

The model then makes several simplifying assumptions to reduce the number

of variables, and the complexity of calculations. However, the more complex

formulation provides valuable insight into what costs may be expected due to the

volatility of COTS components, and how to model them.

1.5.7: Loral Federal Systems Model

While he was at Loral Federal Systems, Tim Ellis helped develop a COTS

software integration cost model based on Loral’s database of historical information. A

key difference between this and other methodologies is that the data on past

48

experiences led Ellis to reject models based on SLOC, which he found led to

inaccurate results [61]. Ellis’s model is instead based solely on function point

analysis. Only new function points are counted – function points supplied by COTS

software is omitted. Instead, the cost of integrating COTS software is estimated based

on [61]:

1) The number of COTS components

2) The number of interfaces to be developed (COTS and non-COTS)

3) The percentage of requirements that are fulfilled by COTS

components

4) A productivity factor based on the language used and staff experience

5) A set of 17 COTS cost drivers:
a. Product maturity
b. Vendor maturity
c. Configurability/customization
d. Installation ease
e. East to upgrade
f. Vendor cooperation
g. Product support services
h. Product support quality
i. Quality of documentation for user, administrator, and

installation
j. Ease of use for end user
k. Ease of use for administrator
l. Type and quality of training available for administrator and end

user
m. Administrative effort to maintain
n. Portability between platforms
o. Previous Product Experience
p. Expected Release Frequency
q. Application or System COTS package

The number of components and interfaces to be developed is used to estimate

the number of work units required for the project, taking into consideration the

49

expected complexity, number of function points, productivity factor, and the cost

drivers. Each of the 17 cost drivers is weighted on an individual scale to give a cost

factor, which is used to modify the labor estimate. The exact equations used in the

calculation are proprietary, but the model was calibrated using six internal projects,

and was able to predict those cases with a relatively high accuracy. Its accuracy for

external projects is unavailable.

1.5.8: SoCoEMo-COTS

The Software Cost Estimation Model for COTS, or SoCoEMo-COTS, is an

economic model for COTS Based Development that aims to produce an estimate of

the ROI that can be expected when investing in COTS software components. This is

done by defining investment costs (incurred in the first year), and periodic costs and

benefits (incurred in all years after the first year) [65].

Investments include a domain analysis cost, and the costs to develop any

necessary reuse infrastructure. For each COTS component researched, there are the

costs to assess, select, and certify the component for possible use, and the cost to

insert the component into the component library. For each COTS component actually

used, the investment costs include tailoring the COTS component for use in the

specific application, developing any necessary glue code to integrate the COTS

component, extra effort required for COTS due to their volatility. Investment also

includes the costs to develop any required proprietary components.

50

Periodic costs include the costs to assess, select, and certify any new COTS

components, and add them to the library, costs to reassess new releases of COTS

components already in the library, and the costs to maintain the component library.

Other periodic costs include: re-tailoring of COTS components that have a new

version released; maintaining and updating glue code, including any extra effort due

to COTS volatility; and the cost to maintain proprietary components. The primary

periodic benefits are the maintenance and service costs avoided by using COTS

components, since these are provided by the COTS manufacturer.

The model as presented here14 provides a helpful insight into the benefits that

can be attained not just by using COTS and open architecture for one project, but how

an enterprise can increase those benefits by amortizing the initial investment and

basic support costs across several projects. Unfortunately, the SoCoEMo-COTS

model does not include any insight on how to calculate these costs – all of the cost

inputs are to be “determined by expert judgment” [65].

1.5.9: RI3

A final model of note is the Risk Identification: Integration & Ilities, or the

RI3 model. Unlike the other models presented, this model does not aim to measure

openness or life cycle costs. Instead, it focuses on the risks associated with using new,

14 The paper presenting the SoCoEMo-COTS model organizes the listed costs and equations in a
significantly different manner, dividing each of investment cost, recurring cost, and recurring benefits
into three components: domain, application, and corporate. While their general approach is useful,
their specific implementation, and presentation thereof, is poorly documented and explained. For this
reason, a simplified, restructured version of their model is presented.

51

unproven technologies. The “ilities” are stability, complexity, reliability,

maintainability, integrability, and testability. Use of unproven COTS components

increases the risks of penalties and delays due to changes, unsolved bugs, and

availability issues. RI3 assesses these risks for level of consequence and likelihood of

occurrence based on responses to a questionnaire. The tool then demonstrates which

components or modules are at the highest risk, and the cause of those risks,

suggesting a best approach to reduce that risk.

It is important to be cognizant of these risks, especially when trying to

implement a system using COTS components. Reused and proprietary components

will have lower risks than COTS components which receive major updates more

frequently. These risks are related to the Technology Readiness Level (TRL) of the

component. Components with low TRLs have higher risk. One of the benefits of

using open and COTS-based systems is the ability to try and use newer technologies

(lower TRL components) that have more and better functionality. However, using

such components exposes the system to considerable risk of delays and penalties due

to incompatibilities, unreliability, and unmaintainability.

1.6: Problem Statement

The use of a modular, open systems approach has the potential to decrease the

total life cycle cost of complex systems. It can potentially simplify and accelerate

system design, transfer many support responsibilities and costs to component

suppliers, avoid obsolescence issues, and ease the insertion of new technologies.

52

However, there are costs and risks associated with using an open approach. Passing

costs and responsibilities to component suppliers removes control over component

selection, update schedules, and supply chains. Inserting new, immature technologies

can lead to unforeseen compatibility issues. High volatility and frequent required

updates may cause operation and maintenance costs to grow uncontrollably, and

make the system unsupportable. In order to decide if openness should be pursued,

and to what degree, a quantitative model that can measure both the costs and benefits

associated with a system’s openness is needed.

Though several models, such as MOSA PART and OAAT, have been

proposed in an attempt to measure openness, they rely on qualitative measures, and

tend to be very subjective. They also have no ability to measure the effects that

openness has on life cycle cost. Other models, including COCOTS and SAIC, are

able to estimate the life cycle cost associated with a system, and even take into

account some of the effects of using COTS components, however, none of these

models provide a complete picture of the situation. The Loral model only predicts the

costs due to COTS volatility. Some models, like COCOTS and SAIC, only cover

COTS integration costs, and cannot be used to analyze the rest of the life cycle. Other

models, like COTS-LIMO and SoCoEMo-COTS, have been proposed, but not

developed. None of these models provide a complete picture of openness, from

proprietary to COTS to fully open. There is no model that can quantify all the cost

affects of increasing the openness of a system over the course of its complete life

cycle.

53

Many enterprises have assumed that increased openness is always beneficial.

Evidence exists to demonstrate that this is not the case. While the use of an open

approach can be beneficial, there are risks involved that must be taken into account.

The model developed in this thesis provides an enterprise with insight into the value

of an open systems approach, and a cogent business case for choosing whether or not

to invest in increased openness.

1.7: Research Tasks

The following steps are necessary to create the proposed model:

1.7.1: Task 1

Identify relevant Openness Metrics and Cost Drivers, and formulate the

connections between the two. This will be used to create a complete picture of the

scope of openness impacts on electronic systems, and to guide model development.

1.7.2: Task 2

Develop a “Cost of Openness” model that calculates the cost impact of

openness by comparing a specific system implementation to a reference architecture.

The model must be dynamic (time dependent) and accommodate uncertainties in

input parameters.

54

1.7.3: Task 3

Use the model developed in Task 2 to conduct a case study and associated

sensitivity analysis to demonstrate the application and usefulness of the model.

55

Chapter 2: Cost of Openness Model

In order to assess the life cycle cost impacts of openness on electronic systems,

the approach shown in Figure 5 has been used.

The approach begins by selecting metrics that can be used to define and

measure openness. Concurrently, the cost drivers that can be used to measure and

predict life cycle cost are identified. The openness metrics must then be associated

with the appropriate cost drivers, so that the connection between openness and life

cycle cost may be ascertained.

A list of possible openness metrics was created based on the definition of

openness given in Section 1.3, and based on prior attempts at measuring openness

including: MOSA PART, OAAT, and the AFRL/RYM Metrics Working Group. This

Figure 5: The model is created by measuring openness with relevant metrics, and
relating those metrics to cost drivers that can be used to predict life cycle cost.

56

list was refined by eliminating any metrics that could not be expressed in a clear,

quantifiable way. Additionally, metrics were expressed in a general form, so that any

component or system can be evaluated using the same metrics. Selected metrics

include: market share; volatility; the number of years it has been in the commercial

marketplace; enterprise experience; expected procurement life; number of

competitors; and accessibility. Procurement and licensing costs are also used. Several

other metrics, such as market outlook, number of vendors, and number of applications

(a measure of generality and reusability), could also have been selected, but this

increases the complexity of the model, and requires more data for simulations to be

run. Additionally, some of these overlap with metrics already included. For example,

number of vendors may be related to market share and accessibility. All three of the

unselected metrics mentioned play a role in the procurement life profile.15 The

possible metrics were further limited to remove metric for which data would never be

available.

Similarly, cost drivers were selected based on previous works and experience.

The life cycle costs are broken down into six categories, based on when and how the

costs are incurred: initial design; non-recurring engineering (NRE) and qualification;

recurring production; operation and support; refresh/redesign and implementation of

upgrades; and enterprise. In the sections that follow, each of these categories is

expanded into a set of cost drivers and then associated with the relevant openness

metrics. Since each cost category is calculated separately using a cost-difference

15 Procurement life is input as a distribution, and is used to predict when the component will become
obsolete. This profile should represent increased risk of premature obsolescence due to market outlook,
competing standards/components, and other factors.

57

methodology16 (Figure 6), cost drivers that are not impacted by the openness of the

design can be eliminated.

The breakdown of costs into the major categories is given by:

௢௧௔௟்ܥ = ஽௘௦௜௚௡ܥ + ேோாܥ + ௉௥௢ௗ௨௖௧௜௢௡ܥ + ை&ௌܥ + ோ௘௙௥௘௦௛ܥ + ா௡௧௘௥௣௥௜௦௘ܥ

Equation 4

 .௢௧௔௟ is the total cost incurred designing, building, operating, and retiring the system்ܥ

஽௘௦௜௚௡ܥ are the costs associated with designing a new system that satisfies a set of

requirements, and includes most of the costs incurred before the final design is

selected, including the cost of designing the system used, as well as the costs of

16 We are interested in the difference in cost between cases, not the absolute cost of cases.

Figure 6: The model takes in two (or more) proposed architectures and various parameters. The
model is divided into six distinct cost models, which are then combined to give a total cost difference.

58

partial or other designs considered, but not implemented.17 Prototyping and any

design overhead costs are also included in the design costs. The remaining pre-

productions costs fall into the category of ܥேோா , the Non-Recurring Engineering

costs, the most significant of which are the testing and qualification costs to

demonstrate that the standards, components, subsystems, and complete system meet

the required design parameters for performance, reliability, security, etc. These costs

may be significantly lower for enterprises that maintain a library of previously used

and qualified components. ܥ௉௥௢ௗ௨௖௧௜௢௡ includes all costs to assemble and ship the

system, including procurement, screening and/or burn-in of hardware components,

assembly, and any recurring testing costs. All operation and support costs, including

those associated with maintenance, sparing, obsolescence mitigation, and lack of

availability fall under ܥை&ௌ. After the system has been in use for some period of time,

it may be desirable (or necessary) to update or refresh the system to ensure it is still

manufacturable and supportable.18 These costs, ܥோ௘௙௥௘௦௛ , are similar to those initially

incurred in ܥ஽௘௦௜௚௡ and ܥேோா , except that there is a greater opportunity for design

reuse, not only of some components or subsystems, but of the overall system

architecture as well. The final general category of costs is ܥா௡௧௘௥௣௥௜௦௘ . These are costs

that are incurred at the enterprise level, and are shared across all of the different types

17 Not implemented, i.e., not used for the current system. The ability to repurpose a previously
designed subsystem for a new application is an enterprise-level cost avoidance strategy that reduces
duplicated and unnecessary effort.
18 It is often desirable to update a system to add new functionality or improve performance. This is
referred to a redesign to distinguish it from a design refresh. While refresh can be modeled with
reasonable accuracy, redesign requires parameters and data that are unpredictable, difficult to measure,
and, even in the best scenarios, may not exist. See Section 2.1.5 for more details.

59

of systems created by the enterprise. Examples are costs to maintain a part library, or

any support infrastructure that is shared by more than one project.

In the sections that follow, each of the cost categories described above will be

further examined and broken into specific cost drivers. The equations for calculating

each cost driver are expressed as a function of the openness metrics, system

architecture, and other parameters, and are formulated as the cost for one system

instance in one year.

To evaluate the total life cycle costs of all instances of the system, the

functions must be applied to each system instance in all years that that system

instance is fielded. These functions allow the total cost of using a particular system

design, open or closed, to be quantified. However, examining the total costs of one

system instance does not demonstrate the costs incurred or avoided due to the

system’s openness. In order to accurately assess the portion of the system costs that

result from openness, a comparison between two architectures with the same

functionality but different levels of openness will be used. This will both simplify and

increase the accuracy of the cost calculations, because costs that are similar for both

architectures are omitted from the calculations. This simplification reduces the

epistemic uncertainty by limiting the effects caused by unknown factors. Aleatory

uncertainty, on the other hand, is not reduced by this procedure.

To handle uncertainty in the analysis, input parameters may be defined as a

probability distribution. A Monte Carlo methodology can then be used to evaluate the

likely outcome. The distributions are sampled, and the resulting parameter values are

used to calculate the total life cycle cost difference between two designs. This process

60

is repeated for many trials, so that the probability of different outcomes may be

obtained.

2.1: Cost Drivers

2.1.1: Design Costs

The costs associated with ܥ஽௘௦௜௚௡ are given by:

஽௘௦௜௚௡ܥ = ஽௘௦௜௚௡ ூ௡௙௥௔௦௧௥௨௖௧௨௥௘ܥ + ஽௘௦௜௚௡ ஼௥௘௔௧௜௢௡ܥ + ஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ܥ

Equation 5

Each of these terms is explained below.

 Design Infrastructure

஽௘௦௜௚௡ ூ௡௙௥௔௦௧௥௨௖௧௨௥௘ܥ are the costs associated with supporting, training, and

maintaining a design team, and any other costs associated with the infrastructure

required to produce designs and prototypes. This cost is highly enterprise dependent,

and could depend on how much of the design is produced in-house as opposed to

provided by external entities. However, except for extreme cases, the design

infrastructure costs for two systems designed by the same enterprise will be roughly

similar.19 This is particularly true in larger enterprises, when there are always multiple

19 There are significant cost differences between using a COTS component and developing a
proprietary component, but these costs are captured in NRE costs.

61

types of systems under development simultaneously. As such, the difference between

the two values would be negligible, and can be treated as a wash.

 Design Creation

஽௘௦௜௚௡ ஼௥௘௔௧௜௢௡ܥ is the cost of actually designing the system, including defining

the functional requirements and other parameters. It is dependent on the size and

complexity of the project, the number of functional requirements, and the intended

usage environment, among other things. All of the systems involved in the analysis

would be approximately the same in these regards, and the cost difference between

would be negligible, and could be treated as a wash.

 Design Implementation

 ஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ are the later-stage design costs to finalize and qualifyܥ

the design. This includes defining component interconnections, finalizing the

assembly process, debugging, defining minor modification procedures for procured

components, and completing any necessary APIs20 or glue code. These costs are

highly dependent on the architecture of the system, the design strategy, and the

specific components used. A system designed from the ground up from mostly

proprietary, purpose-built components will likely be more expensive than one formed

20 Application Programming Interfaces

62

out of previously designed and reusable components and subsystems, be they COTS

or proprietary.

However, open-systems design does not necessarily correlate to lower

implementation costs. This is because one of the main factors in implementation cost

is how interoperable the components are – a system designed of COTS or reused

components may work on paper, but parts may have unintended and unforeseen

interactions. Additionally, from a debugging standpoint, in-house proprietary

software components are more “open” than their COTS counterparts, because access

to and experience dealing with the source code allows for faster localization and

resolution of bugs.

஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ܥ = ෍ (௜ݐ݊݁݊݋݌݉݋ܥ)݁ݐܽݎ݃݁ݐ݊ܫ

ே಴೚೘೛೚೙೐೙೟ೞ

௜ୀଵ

Equation 6

where:

஼ܰ௢௠௣௢௡௘௡௧௦ is the total number of components used in the system,

counting multiple instances or locations21 of the same

component

 is the cost to integrate the component for (௜ݐ݊݁݊݋݌݉݋ܥ)݁ݐܽݎ݃݁ݐ݊ܫ

use in location i. It depends on the accessibility and standard of

the component being integrated.

21 “Location” is used to mean the niche or slot in the system and functionality that the component is
used to fill.

63

The cost to integrate a hardware component for use is given by:

(௜ݐ݊݁݊݋݌݉݋ܥ)݁ݐܽݎ݃݁ݐ݊ܫ

= ூ௡௧௘௚௥௔௧௘ ுௐܥܤ ,௜ݐ݊݁݊݋݌݉݋ܥூ௡௧௘௚௥௔௧௘ ுௐ൫ܨܥ ூܰ௡௧௘௥௙௔௖௘௦൯

Equation 7

where:

 ூ௡௧௘௚௥௔௧௘ ுௐ is the base cost for adapting a hardware componentܥܤ

ூܰ௡௧௘௥௙௔௖௘௦ is the number of other components or subsystems that the

component interacts with in location i.

,௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௧௘௚௥௔௧௘ ுௐܨܥ ூܰ௡௧௘௥௙௔௖௘௦) is the overall cost factor

associated with adapting the component for use in location i. It

is a function of the number of interfaces, enterprise experience,

and the popularity and accessibility of the component, among

other factors.

For software cost estimation, many models, including all of the models in the

COCOMO family, use lines of source code (SLOC or KSLOC) to estimate a base

effort or cost. Other models, like the Loral Federal model, are based on a function

point analysis (FPA). KSLOC and FPA based estimation techniques have their own

advantages and disadvantages.22 However, the number of function points and size in

KSLOC or a software component are correlated, so conversion between the two is

22 Counting lines of code is faster and simpler than counting function points, but care must be taken to
standardize the counting method – are blank or commented lines counted? The number of lines of code
could also depend on the developer who wrote the code. FPA analysis is slower, more expensive, and
more subjective than counting lines of code. Additionally, FPA analysis may not properly account for
complexity “hidden” in the inner workings of a component [71].

64

theoretically possible. 23 In this model, effort is estimated using the KSLOC method

because it is simpler to calculate. Lines of code will be counted using the same rules

used by COCOMO. Use of KSLOC estimation is also beneficial because it allows

data from the CICC (and other COCOMO models) to be easily integrated into the

model.

The CICC [62, 63] provides a methodology for estimating the costs to

integrate COTS software component into a larger system. This model will utilize the

following simplification of the CICC:24

(௜ݐ݊݁݊݋݌݉݋ܥ)݁ݐܽݎ݃݁ݐ݊ܫ

= ூ௡௧௘௚௥௔௧௘ ௌௐܥܤ (௜ݐ݊݁݊݋݌݉݋ܥ)௝ܨܥ஺෍((௜ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ)
ହ

௝ୀଵ

Equation 8

where:

ூ௡௧௘௚௥௔௧௘ ௌௐܥܤ is the base cost to adapt a software component

 is the size (in KSLOC) of the component (௜ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ

 is a nonlinear architectural scale factor ܣ

23 The conversion from KSLOC to function points, and vice versa, depends on the language used,
among other factors. Typically, KSLOC or FPA is used to estimate the effort required, and that effort
is then used to estimate cost. As such, switching between the methodologies necessitates a change in
base effort calculation, but should not significantly affect the cost adjustment factors (which may need
recalibration), or change the general trends of the results.
24 The CICC measures 14 different cost drivers, each of which is rated on a scale of very low, low,
nominal, high, and very high. These ratings are used to calculate a cost factor to predict the effect the
cost driver has on integration costs. 5 of these cost drivers, which are relevant to openness, were
incorporated. The remainder were omitted both for simplicity, and because the necessary data may not
be available. This is valid because in the CICC model a “nominal” rating always gives a cost factor of
1, ensuring that the model can be used accurately even without complete data.

65

 is the jth cost factor associated with designing (௜ݐ݊݁݊݋݌݉݋ܥ)௝ܨܥ

 ௜. The five factors are: enterprise experience withݐ݊݁݊݋݌݉݋ܥ

the standard, enterprise experience with the component, and the

longevity, accessibility, and volatility of the component.

2.1.2: Non-Recurring Engineering Costs

The non-recurring engineering costs are given by:

ேோாܥ = ௌ௨௣௣௟௜௘௥ܥ + ௌ௧௔௡ௗ௔௥ௗܥ + ஼௢௠௣௢௡௘௡௧ܥ + ௌ௬௦௧௘௠ܥ

Equation 9

 Supplier NRE

ௌ௨௣௣௟௜௘௥ܥ is the cost to qualify a supplier or vendor as a source for one or more

required components. This cost is assumed to be approximately independent of the

supplier, so the total system cost for vendor qualification can expressed as:

ௌ௨௣௣௟௜௘௥ݐݏ݋ܥ = ௌ௨௣௣௟௜௘௥ ேோாܥܤ ෍ (௜ݎ݈݁݅݌݌ݑܵ)ܨܥ

ேೄೠ೛೛೗೔೐ೝೞ

௜ୀଵ

Equation 10

where:

ௌ௨௣௣௟௜௘௥ ேோாܥܤ is the base cost of qualifying one supplier

ௌܰ௨௣௣௟௜௘௥௦ is the number of suppliers to be qualified

66

 ,is the overall cost factor associated with supplier i (௜ݎ݈݁݅݌݌ݑܵ)ܨܥ

which is primarily a function of the number of projects for

which the supplier provides components.25

The ௌܰ௨௣ depends on the number of different types of components used in the

system, the number of sources desired per component,26 and the ability of certain

suppliers to provide more than one necessary component. Use of pre-approved

suppliers that have already been qualified by the enterprise as sources for other

projects may significantly reduce this cost, especially in larger enterprises that

maintain a “library” of approved suppliers. For many cases, the number of new

suppliers needed would be similar for the systems being compared.27

 Standard NRE

 ௌ௧௔௡ௗ௔௥ௗ is the cost to assess and select an interface standard for use in theܥ

system. While no costs are directly incurred by using one standard or another, each

standard used must be evaluated to ensure that it meets the performance, reliability,

and security requirements for the system. If the enterprise maintains a library of

known standards, these investigative costs are reduced, though the enterprise must

25 If the supplier provides the enterprise with components for more than project, the cost may be
amortized across all of those projects. Alternatively, the full cost may be attributed to the first project,
with later projects being able to use the approved vendor without having to pay any qualification fees.
26 While, in theory, having one source for each component is enough, it is often desirable to have
multiple sources to help avoid lead-time delays and increase availability.
27 This is not always a valid assumption, particularly in cases where the enterprise is trying to decide
whether or not to alter their design paradigm. Switching from mostly closed, proprietary designs to
open, COTS-based ones, for example, would require qualifying many new suppliers. For large
enterprises, however, the cost of this shift would be amortized over many projects or considered a one-
time investment, and can so be assumed to play a negligible role in any given system.

67

pay to maintain and add to the library as necessary. The NRE costs for each standard

used can be expressed as:

ௌ௧௔௡ௗ௔௥ௗܥ = ௌ௧௔௡ௗ௔௥ௗ ேோாܥܤ ෍ (௜݀ݎܽ݀݊ܽݐܵ)ܨܥ
௡ೄ೟ೌ೙೏ೌೝ೏ೞ

௜ୀଵ

Equation 11

where:

ௌ௧௔௡ௗ௔௥ௗ ேோாܥܤ is the base cost of qualifying one standard

݊ௌ௧௔௡ௗ௔௥ௗ௦ is the number of standards to be qualified

 ,is the overall cost factor associated with standard i (௜݀ݎܽ݀݊ܽݐܵ)ܨܥ

which is a function of the complexity, accessibility, longevity,

and market share of the standard, among other factors. The

number of projects under the enterprise that use the standard

also plays a roll.

 Component NRE

 ,஼௢௠௣௢௡௘௡௧ is the cost to assess, select (or, for proprietary componentsܥ

design), and certify a component for use in the system. This includes developing any

necessary acceptance tests, and the purchase of any testing infrastructure required.

Purchase of the technical data package (TDP)28, if applicable, also falls in this

28 A technical data package (TDP) is a technical description of the component, and may include
(among other items): engineering drawings; specifications; performance, reliability, and quality
statistics; and product definition data, which “denotes the totality of data elements required to
completely define a product… [including] geometry, topology, relationships, tolerances, attributes, and

68

category. If the enterprise has previous experience with the component, or component

is already in the enterprise’s component library, these costs are significantly reduced.

The total cost per system for component NRE costs can be expressed as:

஼௢௠௣௢௡௘௡௧ܥ = ෍ ቌܥܤ஽௘௦௜௚௡ (௜ݐ݊݁݊݋݌݉݋ܥ)஽௘௦௜௚௡ܨܥ

௡಴೚೘೛೚೙೐೙೟ೞ

௜ୀଵ

+ ,௜ݐ݊݁݊݋݌݉݋ܥ)ܨܥ஼௢௠௣௢௡௘௡௧ ேோா෍ܥܤ ݋݅ݐܽܿ݋ܮ ௝݊)
ே೔

௝ୀଵ

ቍ

Equation 12

where:

݊஼௢௠௣௢௡௘௡௧௦ is the number of unique components to be qualified

஽௘௦௜௚௡ܥܤ is the base cost to create a component

 is the overall cost factor associated with (௜ݐ݊݁݊݋݌݉݋ܥ)஽௘௦௜௚௡ܨܥ

designing ݐ݊݁݊݋݌݉݋ܥ௜. It is a function of the enterprise, the

standard used, the size of the component, and the number and

difficulty of the functional requirements, among other factors.

஼௢௠௣௢௡௘௡௧ ேோாܥܤ is the base cost of qualifying the component for use

in one location

௜ܰ is the number of instances (locations) of ݐ݊݁݊݋݌݉݋ܥ௜

,௜ݐ݊݁݊݋݌݉݋ܥ)ܨܥ ݋݅ݐܽܿ݋ܮ ௝݊) is the overall cost factor associated with

qualifying ݐ݊݁݊݋݌݉݋ܥ௜ for use in ݋݅ݐܽܿ݋ܮ ௝݊, which is a

features necessary to completely define a component part or an assembly of parts for the purpose of
design, analysis, manufacture, test, and inspection” [73].

69

function of the size, accessibility, interface standard, market

share, longevity, and volatility of the component. The difficulty

of the system’s functional requirements, enterprise experience,

and the type and extent of any necessary modifications also

play a roll. ܥேோா costs are incurred per component instance, not

component type, because if a component is used in more than

one location, it must be qualified for use in each of those

situations.29

 System NRE

ௌ௬௦௧௘௠ܥ is the cost to qualify the final system design, and develop any

necessary outgoing tests to verify it is functioning properly before it is shipped. This

cost is a function of the system complexity, number and types of components and

interface standards used in the system, required system reliability, and other relevant

metrics. This cost can be expressed as:

ௌ௬௦௧௘௠ܥ = ௌ௬௦௧௘௠ ேோாܥܤ (݉݁ݐݏݕܵ)ܨܥ

Equation 13

where:

ௌ௬௦௧௘௠ ேோாܥܤ is the base cost of qualifying any system

29 In cases where a subsystem is reused (or, analogously, a component is reused for the same purpose
in different locations), the use of the component in that subsystem may only need to be qualified once.

70

 ,is the overall cost factor associated with the system (݉݁ݐݏݕܵ)ܨܥ

which is a function of system complexity, the number, types,

and accessibilities of the components and interface standards

used, enterprise experience with those components and

standards, and required system reliability

2.1.3: Production Costs

Production costs are incurred in each year that a new instance of the system is

produced. All production costs are incurred at the beginning of the year. The

production costs are given by:

௉௥௢ௗ௨௖௧௜௢௡ܥ = ௉௥௢௖௨௥௘௠௘௡௧ܥ + ௉௔௥௧ ௉௥௘௣௔௥௔௧௜௢௡ܥ + ஺௦௦௘௠௕௟௬ܥ + ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܥ

Equation 14

 Procurement

 ௉௥௢௖௨௥௘௠௘௡௧ is the cost to purchase all the components required to build oneܥ

instance of the system. This can be expressed as:

௉௥௢௖௨௥௘௠௘௡௧ܥ = ෍ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ
ேಹೈ

௜ୀଵ

+ ෍ ,௝ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ ௝ܰ)
௡ೄೈ

௝ୀଵ

Equation 15

where:

71

ܰுௐ is the total number of hardware components in the system,

including multiple instances (locations) of the same

component, and any consumable components

 ௜ݐ݊݁݊݋݌݉݋ܥ is the cost of purchasing (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

݊ௌௐ is the number of unique software component types in the system

௝ܰ is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௝ in the system.

,௝ݐ݊݁݊݋݌݉݋ܥ൫ݐݏ݋ܥ ௝ܰ൯ is the purchase cost30 for ௝ܰ instances of

௝ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ ௝. The functionݐ݊݁݊݋݌݉݋ܥ , ௝ܰ) is used to

reflect the fact that software purchasing costs are often

nonlinear or non-continuous functions of the number of

instances required.

Consumable components are items such as fuel, fuses, filters, and batteries, or

any other component that is used, and then replaced, at a constant rate. Hardware

components that have a constant failure rate or that are replaced prior to failure

(preventative maintenance) may also be modeled as consumable components.

 Part Preparation

௉௔௥௧ ௉௥௘௣௔௥௔௧௜௢௡ܥ is the per-instance cost of acceptance testing components to

ensure they meet requirements, as well as the cost of any part modification, uprating,

30 The purchase cost is a one-time fee incurred when the software is initially procured. Recurring
licensing or subscription fees are covered in operation and support.

72

or burn-in, when applicable. This cost only applies to hardware and consumable

components.

௉௔௥௧ ௉௥௘௣௔௥௔௧௜௢௡ܥ = ෍ (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ
ேಹೈ

௜ୀଵ

Equation 16

where:

ܰுௐ is the total number of hardware components in the system,

including multiple instances of the same component, and any

consumable components

 is the cost of modifying, uprating, and (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ

burning-in ݐ݊݁݊݋݌݉݋ܥ௜. If components are rejected during

the screening process, the costs associated with purchasing,

screening, and disposing of rejected components should be

included here [66].

 Assembly

஺௦௦௘௠௕௟௬ܥ is the cost of assembling one instance of the system from its

constituent components. For hardware (and consumable) components, the cost to

place a component into the system is assumed to be proportional to the purchase cost.

For software, it is assumed to proportional to its size. This can be expressed as:

73

஺௦௦௘௠௕௟௬ܥ = ூ௡௦௧௔௟௟ ுௐܴܥ ෍ (௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ுௐܨܥ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ
ேಹೈ

௜ୀଵ

+ ூ௡௦௧௔௟௟ ௌௐܥܤ ෍ (௝ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ௌௐܨܥ ௝൯ݐ݊݁݊݋݌݉݋ܥ൫݁ݖ݅ܵ
ேೄೈ

௝ୀଵ

Equation 17

where:

 ூ௡௦௧௔௟௟ ுௐ is the cost ratio to install hardware. It is used to define theܴܥ

proportion of a component’s purchase cost that is incurred for

installation. It is dependent on the enterprise.

ܰுௐ is the total number of hardware components in the system,

including multiple instances of the same component, and any

consumable components

 ௜ݐ݊݁݊݋݌݉݋ܥ is the cost of purchasing hardware (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

 is the overall cost factor associated with (௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ுௐܨܥ

installing one instance of hardware ݐ݊݁݊݋݌݉݋ܥ௜. It is a

function of several factors, including the number of

components and different standards affected, the level of

coupling, and enterprise experience.

 ூ௡௦௧௔௟௟ ௌௐ is the base cost to install a software component 1 KSLOCܥܤ

in size

ௌܰௐ is the total number of software components in the system,

including multiple instances (locations) of the same component

 ௝, in KSLOCݐ݊݁݊݋݌݉݋ܥ is the size of software (௝ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ

74

 ௝൯ is the overall cost factor associated withݐ݊݁݊݋݌݉݋ܥூ௡௦௧௔௟௟ ௌௐ൫ܨܥ

installing an instance of the software component ݐ݊݁݊݋݌݉݋ܥ௝.

It is a function of the number of components and different

standards affected, the level of coupling, and enterprise

experience, among other factors.

This model uses KSLOC to estimate the size of any proprietary software or

glue code, and calculate the effort and cost associated with that software. Function

points could also be used, with appropriate changes to the definition of

 .and any relevant cost factors (௝ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ

 Recurring Test

 ோ௘௖௨௥௥௜௡௚ ்௘௦௧ is the cost of verifying that an assembled system is fullyܥ

operational and ready to be shipped. It is primarily a function of the number of

interface standards used the complexity of the system. It may be calculated as:

ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܥ = ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܥܤ (݉݁ݐݏݕܵ)ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܨܥ

Equation 18

where:

 .ோ௘௖௨௥௥௜௡௚ ்௘௦௧ is the base cost of testing one instance of one systemܥܤ

It is dependent on the enterprise, and defined by user input.

 is the overall cost factor associated with (݉݁ݐݏݕܵ)ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܨܥ

testing the system, which is a function of the number and types

75

of interfaces standards, the number and types of components,

and the complexity of the system.

2.1.4: Operation and Support Costs

The costs associated with Operation and Support are:

ை&ௌܥ = ை௣௘௥௔௧௜௢௡ܥ + ெ௔௜௡௧௘௡௔௡௖௘ܥ + ஼௢௡௙௜௚௨௥௔௧௜௢௡ܥ + ை௕௦௢௟௘௦௖௘௡௖௘ܥ

Equation 19

Each of these terms is explained below.

 Operation

ை௣௘௥௔௧௜௢௡ܥ is the annual cost of operating the system. This includes relevant

labor costs, 31 and the cost of consumable items such as batteries or fuel, where

applicable. This cost driver also covers any annually recurring licensing or

subscription fees that are incurred for the use of software or other IP. The costs

associated with replacing (hardware) components that have relatively high or

consistent failure rates, or that are replaced on regular basis (preventative

maintenance) can also be included here.32

31 A system that requires more operators or a higher level of skill/more training to operate will be more
expensive to operate each year. If the same amount of labor is required for each instance of the system
in each year, the labor may be modeled as a consumable item.
32 For example, a fuse that fails approximately 7 times per year, or an air filter that must be replaced
every four months. These costs may also be placed under the “sparing” section (see later in this
section). When appropriate, modeling hardware failures as a consumable item in this fashion is
desirable because it simplifies calculations and decreases computational time.

76

ை௣௘௥௔௧௜௢௡ܥ = ෍ ቀ݃݊݅ݏ݊݁ܿ݅ܮ(ݐ݊݁݊݋݌݉݋ܥ௜)

ே಴೚೘೛೚೙೐೙೟ೞ

௜ୀଵ

+ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ௜ ൫݀݊ܽ݉݁ܦ + (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ

+ ൯ቁ(௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ

Equation 20

where:

஼ܰ௢௠௣௢௡௘௡௧௦ is the total number of components in the system,

including multiple instances (locations) of the same component

 is the annual licensing or usage fees (௜ݐ݊݁݊݋݌݉݋ܥ)݃݊݅ݏ݊݁ܿ݅ܮ

associated with ݐ݊݁݊݋݌݉݋ܥ௜. When the same component is

used in multiple locations, this may be the same for each

location, incurred once for all locations together, or different in

each location, depending on the licensing terms.33

 ௜ is the number of instances of the component required݀݊ܽ݉݁ܦ

annually for location i. For non-consumable items, ݀݊ܽ݉݁ܦ௜ =

0.

 ௜ݐ݊݁݊݋݌݉݋ܥ is the cost of purchasing (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

 is the cost of modifying, uprating, and (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ

burning-in an instance of ݐ݊݁݊݋݌݉݋ܥ௜. If components are

rejected during the screening process, this includes the costs

33 For some components, including most hardware, ݃݊݅ݏ݊݁ܿ݅ܮ(ݐ݊݁݊݋݌݉݋ܥ௝) = 0. This may occur if
no licensing fee is incurred, or if the licensing fee is only incurred for the first instance (location) of the
component.

77

associated with purchasing, screening, and disposing of

rejected components [66].

 is the cost of installing one instance of the (௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ

component, as given by:

(௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ

= ூ௡௦௧௔௟௟ ுௐܴܥ (௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ுௐܨܥ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

Equation 21

where:

 ூ௡௦௧௔௟௟ ுௐ is the cost ratio for installing hardware, which is used toܴܥ

define the proportion of the component’s purchase cost that is

incurred for installation. It is dependent on the enterprise, and

taken as an input.

 is the overall cost factor associated with (௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ுௐܨܥ

installing an instance of hardware component ݐ݊݁݊݋݌݉݋ܥ௜. It

is a function of the component’s complexity, standard, level of

coupling.

 Maintenance

ெ௔௜௡௧௘௡௔௡௖௘ܥ is the cost to maintain the system and keep it in working order.

For hardware, the maintenance costs include: the costs of performing reactive

maintenance, including repairing damaged components; purchasing and installing

spares, including the costs associated with ordering, receiving, and holding procured

78

components; collateral damage mitigation; and the cost of downtime. The cost of

repairing a component depends on the component’s complexity, failure mode, and the

repairer’s experience. The amount of life remaining in the component after repair is

also an important factor. However, this model will assume that 100% throwaway is

used, and that no components are repaired or harvested for future use. Likewise,

collateral damage and downtime penalties are assumed to be zero. Using these

assumptions, the hardware maintenance costs become:

ெ௔௜௡௧௘௡௔௡௖௘ ுௐܥ

= ෍ ቀ݀݊ܽ݉݁ܦ௜ ൫ݐݏ݋ܥ(ݐ݊݁݊݋݌݉݋ܥ௜)
ேಹೈ

௜ୀଵ

+ (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ + ൯ቁ(௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ

Equation 22

where:

ܰுௐ is the total number of hardware components in the system,

including multiple instances of the same component (i.e., the

total number of locations)

 ,௜ is the number of spares required annually for location i݀݊ܽ݉݁ܦ

which is dependent on the component’s failure rate

 is the cost of purchasing one instance of (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

 ௜ݐ݊݁݊݋݌݉݋ܥ

 is the cost of modifying, uprating, and (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ

burning-in an instance of ݐ݊݁݊݋݌݉݋ܥ௜. If components are

rejected during the screening process, this includes the costs

79

associated with purchasing, screening, and disposing of

rejected components [66]

 is the cost of installing one instance of the (௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ

component, as given above (see ܥை௣௘௥௔௧௜௢௡)

For software, maintenance includes debugging and providing minor updates

as necessary. This cost is a function of the size and complexity of the software, the

level of coupling, and maintainer experience. For proprietary software components,

all of the code must be maintained by the enterprise, while for COTS and similar

software components that are maintained by a third party, the enterprise is only

responsible for maintaining the glue code or APIs necessary to integrate the

component into the system. In either case, software maintenance costs include the

cost of implementing the upgrade – sending the updated code to units in the field. The

cost to implement is incurred every time a fielded component is updated. The update

frequency depends on the enterprise’s strategy, and the urgency of the update. For

low priority updates, common schedules include monthly, semi-monthly, and annual

updates. High priority updates may be implemented as they become available, which

depends on the update schedule and security of the component. The cost for software

maintenance in each year can be written:

80

ெ௔௜௡௧௘௡௔௡௖௘ ௌௐܥ

= ෍ ቌ݃ݑܾ݁ܦ൫ݐ݊݁݊݋݌݉݋ܥ௝൯
 ௡ೄೈ

௝ୀଵ

+ ෍݃ݑܾ݁ܦ൫݀݋ܥ݁ݑ݈ܩ ௝݁,௞൯ + ௝,௞൯ݐ݊݁݊݋݌݉݋ܥ൫ݐ݈݊݁݉݁݌݉ܫ

ேೕ

௞ୀଵ

ቍ

Equation 23

where:

݊ௌௐ is the number of unique software components in the system. In

this case, ‘unique’ means that modified versions of the same

software should be counted separately (with the possible

exception of some superficial modifications).

 is the cost of debugging software associated (௝ݐ݊݁݊݋݌݉݋ܥ)݃ݑܾ݁ܦ

with ݐ݊݁݊݋݌݉݋ܥ௝. This is only incurred for proprietary

components. For COTS components, debugging is provided by

the supplier, and any associated maintenance or subscription

fees should be included under operational costs. Debugging

costs are a function of the size, accessibility, interface standard,

and complexity of the component.

௝ܰ is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௝ in the system

݀݋ܥ݁ݑ݈ܩ)݃ݑܾ݁ܦ ௝݁,௞) is the cost of debugging the APIs or glue code

associated with ݐ݊݁݊݋݌݉݋ܥ௝ in location k.

81

 is the cost of installing the updated (௝,௞ݐ݊݁݊݋݌݉݋ܥ)ݐ݈݊݁݉݁݌݉ܫ

 ௝ code to location k in a fielded system. It is givenݐ݊݁݊݋݌݉݋ܥ

by:

௝,௞൯ݐ݊݁݊݋݌݉݋ܥ൫ݐ݈݊݁݉݁݌݉ܫ

= ூ௠௣௟௘௠௘௡௧ܥܤ ௝,௞ݐ݊݁݊݋݌݉݋ܥூ௡௦௧௔௟௟ ௌௐ൫ܨܥ ௝ݕܿ݊݁ݑݍ݁ݎܨ ௝൯ݐ݊݁݊݋݌݉݋ܥ൫݁ݖ݅ܵ ൯

Equation 24

ூ௠௣௟௘௠௘௡௧ܥܤ is the base cost for implementing a software update.

 ௝, in KSLOCݐ݊݁݊݋݌݉݋ܥ is the size of (௝ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ

 ௝ is the expected number of updates per year toݕܿ݊݁ݑݍ݁ݎܨ

 ௝ݐ݊݁݊݋݌݉݋ܥ

 is the overall cost factor associated with (௝,௞ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ௌௐܨܥ

installing an updated version of ݐ݊݁݊݋݌݉݋ܥ௝ in ݊݋݅ݐܽܿ݋ܮ௞. It

is a function of the size, accessibility, and interface standards

used by the component and the components with which it

interacts.

For both ݐ݊݁݊݋݌݉݋ܥ௝ and ݀݋ܥ݁ݑ݈ܩ ௝݁,௞ , the debugging function can be

expressed as:

(݁ݎܽݓݐ݂݋ܵ)݃ݑܾ݁ܦ = ஽௘௕௨௚ ௌௐܥܤ (݁ݎܽݓݐ݂݋ܵ)ܹܵ ݃ݑܾ݁ܦܨܥ (݁ݎܽݓݐ݂݋ܵ)݁ݖ݅ܵ

Equation 25

where:

஽௘௕௨௚ ௌௐܥܤ is the base cost to maintain 1 KSLOC of software

 in KSLOC ,݁ݎܽݓݐ݂݋ܵ is the size of (݁ݎܽݓݐ݂݋ܵ)݁ݖ݅ܵ

82

 is the overall cost factor associated with (݁ݎܽݓݐ݂݋ܵ)஽௘௕௨௚ ௌௐܨܥ

maintaining ܵ݁ݎܽݓݐ݂݋. It is a function of the size, stability,

and complexity of the software, maintainer experience, and

other factors.

 Configuration

஼௢௡௙௜௚௨௥௔௧௜௢௡ܥ is the cost to track all the different fielded versions of the

system. A system version in this case is any unique set of hardware and/or software.

Initially, all systems should be identical (though sometimes there are multiple

production versions). Over time, however, as hardware components become obsolete

and failures are replaced with spares of a newer version of the component, and as

software is updated, the number of system configurations grows. For proprietary

systems, this growth is relatively slow, but for COTS intensive systems, the high

volatility and short procurement lives of the components means that the number of

configurations can grow quickly over time, until every fielded system is slightly

different from all the others. Configuration tracking is important because it allows

error tracking to identify problematic component combinations. It also allows the

enterprise to track all the different components in the field, and enables better

scheduling and prioritization of preventative maintenance and upgrades.

One way to prevent configuration proliferation is to require fielded systems that

experience a failure to be repaired using the same version of the component that they

were using previously. Newer versions are only introduced when the entire system is

83

updated to the most recent iteration of the design. This increases support costs

because a larger number of components will need to be stockpiled when obsolescence

occurs. However, it reduces the number of possible configurations to the number of

design refreshes that have occurred. Additionally, it reduces qualification costs

associated with requiring refreshed components to be completely backwards-

compatible with all current and previous versions of the components with which it

interacts. The configuration costs are given by:

஼௢௡௙௜௚௨௥௔௧௜௢௡ܥ = ஼௢௡௙௜௚௨௥௔௧௜௢௡ܥܤ ,݉݁ݐݏݕܵ)஼௢௡௙௜௚௨௥௔௧௜௢௡ܨܥ ݊஼௢௡௙௜௚௨௥௔௧௜௢௡௦)

Equation 26

where:

஼௢௡௙௜௚௨௥௔௧௜௢௡ܥܤ is the base cost to manage one configuration. It is

dependent on the enterprise, and taken as an input.

݊஼௢௡௙௜௚௨௥௔௧௜௢௡௦ is the number of system configurations

஼௢௡௙௜௚௨௥௔௧௜௢௡ܨܥ is the overall cost factor associated with maintaining

multiple configurations of system. It is a function of the

system, the number of fielded configurations, and the upgrade

and support strategies used by the enterprise.

 Obsolescence

ை௕௦௢௟௘௦௖௘௡௖௘ܥ is the cost of mitigating the obsolescence of procured

components. The form of mitigation used may depend on the enterprise, the type of

component, and the type of obsolescence encountered.

84

For hardware, one option is to make use of ‘secondary sources,’ including

aftermarket parts, though this increases the risk of counterfeit components

significantly. A better option is to use a life-of-type or lifetime buy strategy, wherein

all components that will be required between the obsolescence and EOS dates are

purchased immediately before the component goes obsolete. An annual holding cost

that is proportional to the purchase price of the component and the number of

instances held is incurred. When a lifetime buy purchase is to be made, the number of

required spares is estimated, and that amount, plus an additional pre-defined buffer, is

purchased. A penalty is assessed for component shortages (an under-buy penalty), to

simulate the additional cost incurred to obtain the component from a second source. If

a component surplus occurs, a separate (smaller) penalty for overbuying is charged

for disposal of the unneeded component.34 Both of these penalties are proportional to

the component’s initial purchase price.

Another mitigation strategy is to find a not obsolete component that can be

used in place of the obsolete one. This can be an expensive, since the new component

will have to be qualified and tested (see ܥோ௘௙௥௘௦௛). However, it is often a good option

for long-term support, because it avoids the costs associated with making an up-front

bulk purchase of components, stocking those components for long periods, and

overbuying or under-buying the component.

34 In many cases, this penalty can be omitted, as it will be negligible compared to the purchase and
holding costs already assessed. Alternatively, unnecessarily paying to purchase and hold a component
in inventory is its own penalty.

85

In many cases, a combination of these two strategies, called a bridge buy, may

also be used. This entails purchasing components to last until a pre-defined refresh

date, when the design is refreshed and several components are replaced at once. This

involves less logistics and support than performing lifetime buys, while reducing the

total refresh cost and number of configurations in the field compared to a refresh-only

approach. For both an immediate refresh and bridge buy approach, an upgrade period

must also be defined. The upgrade period is the maximum amount of time allowable

before all fielded systems are retrofitted, so that they no longer use the obsolete

component. Frequently, the upgrade period is equal to or double the refresh period. In

the former case, all systems are updated before the next refresh occurs, so at most two

fielded configurations are possible. In the latter, systems may “miss” an upgrade (for

example, skip from design revision 1 to design revision 3), and at most three

configurations are fielded at a time. However, any integer value may be used.35 The

obsolescence mitigation costs, assessed at the end of each year, can be written:

ை௕௦௢௟௘௦௖௘௡௖௘ ுௐܥ

= ෍ ൫ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ ௜ܰುೠೝ೎೓ೌೞ೐ + ௜ܰೄ೟೚೎ೖ ݈݃݊݅݀݋ܪ
ேಹೈ

௜ୀଵ

+ ௜ܰೀೡ೐ೝ ݕݑܾݎ݁ݒܱ + ௜ܰೆ೙೏೐ೝ (ݕݑܾݎܷ݁݀݊

Equation 27

where:

35 Very short upgrade periods may be impractical, but long upgrade periods increase the number of
fielded configurations and increase support costs.

86

ܰுௐ is the total number of hardware components in the system,

including multiple instances (locations) of the same component

 ௜ݐ݊݁݊݋݌݉݋ܥ is the cost of purchasing (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

௜ܰುೠೝ೎೓ೌೞ೐ is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௜ purchased to

create a stockpile for after the component becomes obsolete36

௜ܰೄ೟೚೎ೖ is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௜ being held in

inventory at the end of the year

 is the proportion of the initial purchase cost paid to support ݈݃݊݅݀݋ܪ

one instance of the component in inventory for one year. It is

dependent on the enterprise, and taken as an input

௜ܰೀೡ೐ೝ is the number of extra instances of ݐ݊݁݊݋݌݉݋ܥ௜ left over in

inventory at the end of the year that must be disposed of

 is the proportion of the initial purchase cost paid to dispose ݕݑܾݎ݁ݒܱ

of one unneeded instance of a component. It is primarily

dependent on the enterprise, and taken as an input

௜ܰೆ೙೏೐ೝ is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௜ that were needed in

the current year but were unavailable because the component

was obsolete, and no instances remained in the stockpile

 is the proportion of the initial purchase cost paid to acquire ݕݑܾݎܷ݁݀݊

one instance of an obsolete component. It is a function of the

enterprise, and taken as an input

36 Incurred in the year immediately prior to obsolescence

87

In any given year, at most one of ௜ܰುೠೝ೎೓ೌೞ೐ , ௜ܰೀೡ೐ೝ, and ௜ܰೆ೙೏೐ೝ will be larger

than zero. ௜ܰುೠೝ೎೓ೌೞ೐ is only larger than zero in ݐ݊݁݊݋݌݉݋ܥ௜’s last year before

obsolescence, when a stockpile (௜ܰೄ೟೚೎ೖ) is purchased. ௜ܰೀೡ೐ೝ and ௜ܰೆ೙೏೐ೝ can only be

larger than zero after the component has been obsolete for some amount of time.

௜ܰೆ೙೏೐ೝ larger than zero occurs if the stockpile has been depleted, but additional

instances of the component are required. ௜ܰೀೡ೐ೝ larger than zero only occurs after a

refresh or after the systems’ EOS date, when any instances of ݐ݊݁݊݋݌݉݋ܥ௜

remaining in inventory are no longer needed.

This equation implicitly assumes that all component purchases, including

stockpiling, occurs at the beginning of the year, and that holding costs are assessed at

the end of the year. No holding costs are paid for components used during the current

year, regardless of when during the year they are used. Additionally, all costs

associated with procuring the component from a second source are assumed to be

included in the underbuy penalty. In particular, it is assumed that all counterfeits37 are

detected during acceptance and screening, and so no counterfeit components are

actually fielded. The added cost of purchasing, detecting, and rejecting counterfeit

components is included in the underbuy penalty [66].

Software obsolescence must be handled differently than hardware

obsolescence. Depending on the licensing agreement (no annual licensing fee), it may

be possible for the enterprise to continue using the software, unsupported,

indefinitely. In other cases (when there is an annual licensing fee), “down licensing”

37 Counterfeit components include used (salvaged) instances of the correct component that are passed
off as new components.

88

may be required, where the enterprise pays the licensing fees for the newer software

version, and is allowed to continue using the old version of the software, unsupported.

Using unsupported software is generally not a viable long-term solution. As changes

in the surrounding system are made and new bugs in the software are encountered,

the software may become unusable.

For longer support periods, the rights to the software’s source code can sometimes,

but not always, be purchased and maintained by the enterprise, or placed in escrow

for support by a third party. Maintaining source code in this manner, either internally

(within the enterprise) or by a third party, increases the cost of bug fixes and

decreases the speed with which errors can be fixed. If this option is not available,

replacement software must be found, which must be qualified and tested (see

 .(ோ௘௙௥௘௦௛ܥ

ை௕௦௢௟௘௦௖௘௡௖௘ ௌௐܥ = ெ௔௜௡௧௘௡௔௡௖௘ ௌௐܥ)݁ܿ݊݁ܿݏ݈݁݋ݏܾܱ ௬ܰ௘௔௥௦)

Equation 28

where:

ெ௔௜௡௧௘௡௔௡௖௘ ௌௐܥ is the cost to maintain software, as given above,

applied to non-proprietary, obsolete software

௬ܰ௘௔௥௦ is the number of years that the component has been obsolete

)݁ܿ݊݁ܿݏ݈݁݋ݏܾܱ ௬ܰ௘௔௥௦) is the proportion (≥1) of the maintenance cost

paid as a penalty to maintain software ௬ܰ௘௔௥௦ after its

obsolescence

89

2.1.5: Design Refresh Costs

A design refresh changes the components in the system in order to keep the

system manufacturable and/or supportable. While many of the activities and costs are

the same, this is different than a redesign or technology insertion, where individual

components or subsystems are changed with the primary goal of improving

performance or adding functionality.

The total cost to update a system to use new technology depends on the rate of

technological advancement, the TRL of the technology to be implemented, limitations

on the new technology imposed by other components,38 the value of the added

performance or functionality, and many other factors. The number and variability of

these factors make modeling the cost of redesign difficult and inaccurate. However,

this model assumes that using a MOSA approach will affect the ability to perform a

refresh or a redesign in the same way – a system that is easier to refresh is easier to

redesign, and the benefits of having an up-to-date system are similar to the costs

avoided by having a more supportable system. Additionally, the benefit of increased

functionality in a redesigned system should be similar to the costs avoided in a

refreshed system, where new, less expensive components replace older ones with the

same performance. Therefore, though the advantages of redesign cannot be directly

quantified, the same information can be achieved by modeling refresh alone.

The cost of performing a design refresh is given by:

38 For example, improved processor speed is not as valuable if there is not enough RAM or high
enough bus speed. Similarly, the advantages of moving to a dual or quad core processor will not be
realized if the software does not allow for multithreading.

90

ோ௘௙௥௘௦௛ܥ = ூ௡௜௧௜௔௧௘ܥ + ஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ܥ + ேோாܥ + ௎௣௚௥௔ௗ௘ܥ

Equation 29

Initiating a Design Refresh

ூ௡௜௧௜௔௧௘ܥ are overhead costs associated with performing a design refresh that

are not directly related to any specific component. These costs are similar to those in

஽௘௦௜௚௡ ூ௡௙௥௔௦௧௥௨௖௧௨௥௘ܥ and ܥ஽௘௦௜௚௡ ஼௥௘௔௧௜௢௡ , and are related to supporting, training, and

maintaining a refresh team, determining which components are candidates for refresh,

and scheduling the timing of refreshes. ܥூ௡௜௧௜௔௧௘ can be modeled as:

ூ௡௜௧௜௔௧௘ܥ = (݉݁ݐݏݕܵ)ூ௠௣௟௘௠௘௡௧ ோ௘௙௥௘௦௛ܨܥூ௠௣௟௘௠௘௡௧ ோ௘௙௥௘௦௛ܥܤ

where:

 ூ௠௣௟௘௠௘௡௧ ோ௘௙௥௘௦௛ is the base cost to initiate a refreshܥܤ

 is the overall cost factor associated with (݉݁ݐݏݕܵ)ூ௠௣௟௘௠௘௡௧ ோ௘௙௥௘௦௛ܨܥ

implementing a refresh of ܵ݉݁ݐݏݕ. It is dependent on the

number of component types and standards used, and the

modularity of the system, among other factors.

 Design Implementation

The costs associated with ܥ஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ are the same as those

explained above. However, these costs are only incurred for the components and

subsystems that are affected by the design refresh.

91

 NRE

ேோாܥ is defined as previously, though the costs are only incurred for the

components and subsystems that are affected by the design refresh.

 Upgrade

୙୮୥୰ୟୢୣܥ are the costs associated with deploying a design refresh to fielded

systems. This cost is highly dependent on the configuration management and upgrade

strategy used by the enterprise. Due to the time and cost of reequipping fielded

systems, system upgrades are generally spread over several years. Depending on the

refresh schedule, some systems may skip an upgrade cycle.39 ܥ୙୮୥୰ୟୢୣ costs are the

same as those in ܥ௉௥௢ௗ௨௖௧௜௢௡, though only applied to the components and subsystems

that are affected by the design refresh.

2.1.6: Enterprise Costs

The enterprise costs are any costs that are incurred once at the enterprise level,

but the benefits of which apply across several products or projects. These costs

include the cost of maintaining a library of pre-qualified components, licensing or

39 For example, if refreshes are conducted every two years, and each fielded system is updated every
fourth year. A system will then receive version updates 1, 3, and 5, (in years 4, 8, and 12) but skip
updates 2 and 4.

92

purchase costs for tools and databases that are used across the design and support of

multiple systems, any common maintenance support infrastructure or staff, training of

staff, incentive programs to encourage the use of library components, and the

development of architectures based on industry reference models. Other enterprise

level costs include the cost of researching components and standards that aren’t used

in any system.

2.2: Model Outputs

The primary output of the model is the total life cycle cost difference between

two system designs. The costs associated with each cost category are tabulated

separately, allowing for a better understanding of where the extra costs are incurred.

However, total cost for each system is not calculated. This model cannot be used to

predict the total life cycle cost of either system, nor can it be used to determine which

cost categories will have the largest absolute expenditures over the life of the

system.40

As noted, many of the less well defined parameters are input as probability

distributions. A Monte Carlo approach is used, so the total costs are also expressed as

distributions. The mean of this output distribution can be interpreted as the “likely”

40 For example, say the design cost for two competing systems are $1.8M (for System A) and $1.7M
(for System B), while operation and support costs are $1.5M and $1.1M respectively. This model
would only be able to report a cost difference of $0.1M for design and $0.4M for operation and
support. More money is spent on design, but the biggest effect the design changes have on cost fall
under operation and support.

93

outcome, while the spread of the distribution is a measure of both the uncertainty in

input parameters, and the risk associated with a design.41

In addition to the total life cycle cost difference between two designs, each

architecture design is given an accessibility score and a modularity score. These are

primarily used to give a quick estimate of the overall accessibility and modularity of

the architecture so that some context can be provided for cost differences between

architectures. The accessibility score measures the average accessibility of all the

components used in the architecture. The modularity score takes into account the

number of interfaces each component has, the number of standards used, the

interdependency of specific components, and the ability of subsystems to be re-

qualified independently. Both scores are measured on a scale between 0 and 1, with

higher values corresponding to greater accessibility/modularity.

2.3: Model Implementation

The following sections detail the equations and simplifying assumptions that

are specific to the current implementation of the model, used to produce the case

study in Chapter 3.

As explained previously, this model is intended to compare two or more

possible designs of an electronic system late in the design stage. Comparing multiple

systems helps to reduce epistemic uncertainty by reducing the impact of unknown or

41 Consider two system architectures compared to a baseline, where the mean savings associated with
System A are slightly greater but more widely distributed than those associated with System B. Using
System A could provide for greater cost avoidances, but could also result in far more costs incurred.

94

unknowable factors. Costs, both known and unknown, that are the same for both

designs cancel out, and are not considered in the analysis. Additionally, since this

analysis will be conducted after the initial design phase has been completed with the

goal of determining which of two systems is the better long-term investment, some of

the early design and development costs may be treated as “sunk costs,” and omitted

from the calculations.42 This assumption helps to reduce both epistemic and aleatory

uncertainty.

Many of the equations presented previously use a cost factor that is a function

of the openness metrics to help predict various life cycle costs. This methodology is a

common approach in cost modeling. It is used by many models, including the Loral

Federal Systems model and all models in the COCOMO family. In all such models, a

base effort or cost is estimated and then adjusted using one or more cost factors. In

this model, all of the individual cost factors are assumed to be independent, and have

a multiplicative relationship to form the overall cost factor. In other words, the overall

cost factor may be given by:

ை௩௘௥௔௟௟ܨܥ = ෑܨܥ௜(ܱܯ௜, (ݏݐℎ݃݅݁ݓ
ேೀಾ

௜ୀଵ

Equation 30

where:

 ை௩௘௥௔௟௟ is the overall cost factorܨܥ

42 An alternate goal is to use previous experience and data to predict what type of system or what level-
of-openness is the most cost effective to design, as well as build and operate, in order to establish an
enterprise-level design strategy for future projects. In such a case, design and other early costs should
be accounted for because they play an important role in the overall cost of future systems.

95

ܰைெ is the number of openness metrics (and individual cost factors)

associated with the current ܨܥை௩௘௥௔௟௟

 ௜ is the ith openness metricܯܱ

 are a set of input parameters that define the scale used to ݏݐℎ݃݅݁ݓ

measure ܱܯ௜

,௜ܯܱ)௜ܨܥ is the ith individual cost factor, which is (ݏݐℎ݃݅݁ݓ

calculated by measuring the value of ܱܯ௜ on a scale defined by

 ௜ may beܨܥ ,Depending on the metric and location .ݏݐℎ݃݅݁ݓ

calculated using one of the following:

௜ܨܥ = ,௜ܯܱ)ݎܽ݁݊݅ܮ (ݏݐℎ݃݅݁ݓ

௜ܨܥ = ,௜ܯܱ)ܿ݅ݐݏ݅݃݋ܮ (ݏݐℎ݃݅݁ݓ

௜ܨܥ = ,௜ܯܱ)ܿ݅ݐ݋ݐ݌݉ݕݏܣ (ݏݐℎ݃݅݁ݓ

Equation 31

,௜ܯܥ)ݎܽ݁݊݅ܮ is a function that weights the value of metric i (ݏݐℎ݃݅݁ݓ

on a linear scale between a minimum and maximum value

,௜ܯܥ)ܿ݅ݐݏ݅݃݋ܮ is a function that weights the value of metric (ݏݐℎ݃݅݁ݓ

i on a logistic or “S” shaped curve, similar to those used in

modeling population growth. These curves are characterized by

slow initial growth starting from a minimum value, followed

by a period of exponential growth, and then slowing growth as

a maximum value is approached.

,௜ܯܥ)ܿ݅ݐ݋ݐ݌݉ݕݏܣ is a function that weights the value of (ݏݐℎ݃݅݁ݓ

metric i on an asymptotically increasing curve. This curve is

96

characterized by fast initial growth from an initial minimum

value. The speed of the growth diminishes as the maximum

value is approached.

 are the lower and upper values of the curve, and the metric ݏݐℎ݃݅݁ݓ

values to which those bounds correspond. These values depend

on the specific metric, and are used to help tune and calibrate

the model.

2.3.1: Design Costs

 Design Infrastructure

Design infrastructure costs are dependent on the enterprise. Since the same

enterprise is designing both systems, these costs will be approximately equal and can

therefore be treated as a wash. Additionally, these costs would be incurred early in the

design process, so they may be considered sunk costs for this analysis. As such, they

are excluded from this implementation of the model.

 Design Creation

At the time this analysis is conducted, the two (or more) prospective designs

will already have been created. However, for the purposes of this model, the design of

both options considered can be considered sunk costs.

97

 Design Implementation

The implicit assumption is made that all components selected for integration

are suitable for their intended location, and that once they are integrated and

qualified, interacting components behave properly. All issues associated with

architectural mismatch or other incompatibilities are assumed to be included in the

selection and implementation costs. Additionally, when calculating integration costs,

all standards and components are assumed to have interfaces of similar difficulty.

For the purposes of this model, it is assumed that the cost analysis is taking

place after both designs have been created, but not fully implemented. The nonlinear

scale factor A in the CICC-based model for COTS software integration is therefore

taken as the “nominal” value of 1.04 [63].

2.3.2: Non-Recurring Engineering Costs

 Supplier NRE

In many cases, the number of suppliers needed would be similar for the two

systems being compared, so supplier qualification costs may be treated as a wash. 43

Additionally, in large enterprises, the same suppliers will be used to supply

components for multiple types of systems, so many of the suppliers will already have

43 This is not always a valid assumption, particularly in cases where the enterprise is trying to decide
whether or not to alter their design paradigm. Switching from mostly closed, proprietary designs to
open, COTS-based ones, for example, would require qualifying many new suppliers. For large
enterprises, however, the cost of this shift would be amortized over many projects or considered a one-
time investment, and can so be assumed to play a negligible role in any given system.

98

been qualified. In such cases, supplier qualification costs may also be treated as a

sunk cost. For the purposes of this implementation, one or both of these are assumed

to apply, so supplier qualification costs are omitted from the calculations.

 Standard NRE

In practice, when an enterprise is selecting an interface standard for use in a

system, it will research several possibilities, and select the one most appropriate for

the current situation. The cost of researching unused standards should also be

included. This model will assume that these costs would be similar in all cases, and

that these costs are included in the base cost of selecting a standard. If an in-house,

proprietary standard specific to the enterprise is to be used, it is assumed that the

standard already exists – costs to develop new standards are not included in the

model.

 Component NRE

Similar to the process used when selecting a standard, an enterprise will

generally investigate several potential components, including COTS or proprietary

options, before deciding which component will be used. The costs associated with

considering other components are assumed to be roughly independent of the final

selection, and are therefore included in the base cost of selecting a component.

99

2.3.3: Production Costs

 Procurement

In this model, procurement costs are assumed to independent of the number

and size of purchase orders made. This is true for initial production, maintenance, and

sparing during the life of the system, and for updates made to existing systems.

Additionally, all ordered components are assumed to arrive just before they are

needed, so no holding costs are incurred. All components needed for production in

the current year are ordered and delivered at the beginning of the year.

The cost to procure each instance of a component is assumed to be constant

over the course of its procurement life. When a component is refreshed, it is replaced

with a newer version of similar functionality. Since the cost of a constant

functionality level decreases over time, the procurement cost of the replacement

component is expected to be less than that of the original. Abel, Berndt, and White,

for example, found that between 1993 and 2001, the cost for software declined 4.26%

annually, on average, while simultaneously receiving improvements and additional

functionality [67]. During the same period, general prices increased 2% annually.

 Part Preparation

Acceptance tests and modification processes generally have a non-zero failure

rate, and some components are rejected. Depending on the supplier and the

purchasing terms, some COTS components may be covered under a warranty.

Otherwise, in addition to the components actually used, the enterprise must pay for

100

the purchasing and testing of inadequate components that are rejected during the

testing process, even though they are not used in the final system. For this model, it is

assumed that all components that fail acceptance tests are covered under warranty,

and any costs associated with components damaged by uprating or modification are

amortized over approved components, and included in the part preparation cost.

 Assembly

All systems are produced at the beginning of the year. This means that no

holding costs are incurred for the components used to produce the system.

Additionally, each system must be supported for the full year in which it is created.

 Recurring Test

Recurring test fees are those associated with ensuring that all components and

subsystems of outgoing systems are functioning properly. In any real-world system,

some percentage of units will fail these tests, and require rework. This model

implicitly assumes that there is a 100% pass rate. Alternatively, the costs of

components that fail quality control may be included in the base cost.44

44 A methodology for calculating the added costs due to these failures is given in [65]. Though not
implemented in the current model, the pass/fail rate of a system could be used in the cost factor
function to account for these costs explicitly.

101

2.3.4: Operation and Support Costs

 Operation

Software components are assumed to have no direct operational expenses,

with the exception of costs associated with staffing or labor costs. If these costs are to

be incurred, they should be modeled separately as a consumable item.

 Maintenance

While components are not obsolete, all spares are assumed to be purchased

and paid for at the beginning of the year. Sparing and delivery schedules are assumed

to be perfect – no unneeded spares are purchased, and spares are delivered at exact

time and place at which they are needed. This means that holding costs and downtime

costs are minimal, and can be neglected.

Production and upgrade events occur at the beginning of each year, and

retirement events at the end of each year. Systems must be supported for each year of

their use, including the years they are produced and retired.

 Obsolescence

In the year before a component becomes obsolete, the number that will be

required post-obsolescence is estimated. This quantity, with an additional fraction as

a buffer, is purchased at the beginning of the year. Components used in that year are

drawn from this inventory without incurring any holding fees. At the end of the year,

102

and at the end of each subsequent year, holding costs are paid for any components

remaining in inventory. Required spares are assumed to be delivered to the system at

the exact time they are needed, so no downtime penalties are assessed.

For this implementation of the model, it is assumed that the enterprise uses the

same strategy for all components. The possible strategies are lifetime buy, bridge buy,

or replacement. For bridge buy, a predefined refresh period may be input, or the

optimum refresh period may be calculated using a design refresh planning (DRP)

model [53].45

In some situations, a component’s interface standard may become obsolete

before the component itself. This is interpreted as a phasing-out of the interface

standard in favor of newer, more capable standards. After this point, the standard

itself may no longer be supported, and no new components using the standard will be

released. However, existing components utilizing the standard will remain available

until their own obsolescence date.

2.3.5: Design Refresh Costs

 Design Implementation

When a design refresh occurs, all obsolete components (with the exclusion of

components that are explicitly excluded) are refreshed. If a component’s interface

45 Tools such as the Mitigation of Obsolescence Cost Analysis (MOCA) and the Multi-part Multi-event
(MpMe) models may be used to perform this optimization.

103

standard is obsolete, the component is refreshed, even if the component itself is still

procurable.

The implicit assumption is made that all components selected for integration

are suitable for their intended location, and that once they are integrated and

qualified, interacting components behave properly. All issues associated with

architectural mismatch or other incompatibilities are assumed to be included in the

selection and implementation costs. Additionally, it is assumed that the nonlinear

scale factor A in the CICC-based model for COTS software integration is still the

“nominal” value of 1.04 [63].

 Non-Recurring Engineering Costs

It is assumed that the assumptions made previously still apply.

 Upgrade

Upgrade costs are assumed to be independent of the number of systems

upgraded per year. Once an update is performed, all new production is based on the

newer design. Like production, all system updates occur at the beginning of the year.

This means that in the year that a system is updated it must be supported with the new

version of the component.

An “upgrade period” is used to define the number of years after a refresh

occurs, by which point all existing systems must be updated to the most recent design.

If the refresh period is shorter than the upgrade period, the upgrade period is the

104

maximum amount of time a fielded system can operate without receiving an update.

Updates (and retirements) are done on a “first in, first out” basis, so that all systems

are updated once before the first system receives a second update. However, if a

system is scheduled to be retired (reach EOS) before the end of the upgrade period, it

is not upgraded.

After a refresh has been performed, fielded systems may be supported by

replacing failed components with stockpiled instances of the obsolete component or

with an instance of the newer version. Using a newer version requires planning during

the refresh process to provide complete backwards compatibility and to limit

architectural changes to prevent mismatch.

2.3.6: Enterprise Costs

Some of these benefits may be captured in the previous sections, particularly

when the metric of ‘Enterprise Experience’ is used in the calculation of the cost

factor. Many of these benefits, however, cannot easily be quantified. For the purposes

of this model, the rest of these costs and benefits will be considered “sunk”, and not

enumerated.

105

Chapter 3: Case Study

The model discussed in Chapter 2 was implemented in Microsoft Excel in the

form of a Cost of Openness Tool (COT) – see Appendix D for a description of the

tool. The tool contains separate worksheets that allow for the definition of the

standards, components, parameters, parameter weights, simulation settings, and

architectures being examined. Some inputs may be defined as probability

distributions. A simulation consists of a predefined number of trials (defined in the

simulation settings), during which distributions are sampled. The resulting range of

cost differences represents the likely outcomes.

In the sections that follow, two sample architectures based on the US Navy

ARCI sonar system are presented. These are used to demonstrate the impacts that the

use of MOSA has on a system’s life cycle cost, and how investing in an open strategy

may affect an enterprise’s design and support methodologies.

3.1: Architecture Definitions

When comparing architectures, it is important that they are of similar

functionality and described at the same level of detail. This ensures that the cost

difference results obtained from the model are primarily due to the difference in

openness and the related metrics. Two architectures, based on the first two

implementation phases of the Acoustic-Rapid COTS Insertion (ARCI) sonar system

as described in [1], with additional information from the AFRL/RYM Interconnect

106

Trade Study [69], were used to perform the case study. These systems will be referred

to as ARCI-1 and ARCI-2 respectively. The baseline metric inputs for the standards

and components used, as well as the architectures themselves, are described in

Sections 3.1.1 through 3.1.4.

3.1.1: Standards

Every standard used in the model is required to have:

A procurement life, which represents the time between the standard’s

introduction and obsolescence. This may be described using a

probability distribution.

A life code, which indicates where the standard is in its life cycle. A

value between 1 and 6 is used, where 1 denotes introduction

phase, and 6 denotes obsolescence.

Other information about the standard may also be used, including:

Market share, the percentage of the relevant market that uses the

standard

The volatility of the standard, measured in expected number of minor

changes or updates per year

The years of use, or how long the standard has been available

 Enterprise experience, the length of time, in years, that the enterprise

has used the standard

“Standard Defined By”, selected from:

107

 “In-house proprietary standard”: a proprietary standard that is

maintained by the enterprise itself

“Defined by a single entity or group, with restrictions”: a

proprietary standard belonging to an external entity

“Defined by single entity, no licensing restrictions”: typical

classification of a de facto standard

“Defined by group, no licensing restrictions”: an open standard

The definitions of the standards used in the case study are given in Table 1.

108

Table 1: Definitions of standards used in the case study

Name Procurement Life
(years)

Life
Code

Market
Share Volatility Years of

Use

Enterprise
Experience
(years)

Standard Defined By

Ethernet Normal(30, 5) 3 60% 0.5 25 0 Defined by group, no licensing restrictions
Infiniband Normal(25, 5) 3 20% 0.5 15 2 Defined by group, no licensing restrictions
DDS Normal(30, 5) 3 30% 0.5 10 0 Defined by group, no licensing restrictions
MTM Normal(25, 5) 3 10% 1 15 2 Defined by entity or group, with licensing restrictions
SPARC Normal(50, 5) 3 30% 0 10 2 Defined by entity or group, with licensing restrictions
SHARC Normal(50, 5) 3 30% 0 10 2 Defined by entity or group, with licensing restrictions
RISC-1 Normal(50, 5) 3 30% 0 10 2 Defined by entity or group, with licensing restrictions
RISC-2 Normal(50, 5) 3 30% 0 10 2 Defined by single entity, no licensing restrictions

“Normal(X, Y)” indicates a normal probability distribution with mean X and standard deviation Y. The procurement life of

each standard is assumed to be normally distributed. Other distributions could also be selected.

An “entity” is a single enterprise or other body that defines a standard. A “group” is a consortium of two or more enterprises or

other entities that cooperate to formulate and maintain a standard.

109

3.1.2: Components

 Each component is required to have:

A type – Hardware, Software, or Consumable. Consumables are

treated as hardware, except that a constant failure/replacement

rate is assumed, instead of sampling from a failure distribution.

An Interface Standard, selected from those defined for the Standards

A Procurement cost (which can be a distribution)

A time-to-failure distribution

A procurement life, which indicates the time between the component’s

introduction and obsolescence (modeled as a distribution)

A life code, which indicates where the component is in its life cycle. A

value between 1 and 6 is used, where 1 denotes introduction

phase, and 6 denotes obsolescence.

Accessibility of the component’s technical data package (TDP) and

product definition, selected from:

“Component designed in-house”: A component that is designed

and maintained by the enterprise itself. This is an option

for components that use an in-house or open

(unrestricted) standard.

“Limited access (Proprietary/COTS)”: A component designed

and maintained by an external entity. This may be a

component that is created by a contractor for this

110

specific purpose (proprietary), or a COTS component.

In either case, the component is treated as a “black box”

– the enterprise cannot access internal specifications or

workings of the component for debugging or

modification purposes. This option cannot be used if

the component uses an “in-house” standard.

“Full access (COTS/Open Source)”: A component that is

designed and maintained by an external entity, but to

which the enterprise has access to the TDP and internal

workings of the component, facilitating debugging, and

allowing for some modifications. This may be used for

components that use “unrestricted” standards.

A Design Refresh Plan (DRP) option, selected from:

“Included in DRP”: Components that are included in design

refresh planning.

“Excluded from DRP”: Components that are excluded from

design refresh planning, but which are refreshed at the

first opportunity after obsolescence.

“Not refreshable”: Components that are excluded entirely from

refresh planning and implementation – if the

component becomes obsolete, a lifetime buy strategy is

used, regardless of the strategy used for the rest of the

system.

111

Other information about the component may also be relevant, including:

Cost of annual licensing, where applicable (typically only applicable to

some software)

Software size, given in thousands of lines of source code (KSLOC)

The number of competing components

The volatility of the component, measured in expected number of

minor changes or updates per year

The length of use, or how long the component has been available

 Enterprise experience, the length of time, in years, that the enterprise

has used the component

Definitions of the components used in the case study are shown in Table 2.

For all of the components shown, annual licensing costs are assumed to be $0. All

hardware components are assumed to have a time-to-failure distribution that can be

modeled using a Weibull distribution with shape parameter of 1.75 and scale

parameter of 2 years. Weibull distributions are often used to model component failure

because selecting an appropriate shape parameter allows for modeling of all three

portions of the reliability bathtub curve - infant mortality, random failure, and wear-

out. A shape parameter of 1.75 and scale parameter of 2 years gives a positively-

skewed distribution with mean of 1.75 years, and variance of 1.10 years,

corresponding to wear-out failures. Each of the software components measures 100

KSLOC. Additionally, all components are included in DRP calculations. Since all

standards and components used are COTS and therefore at least nominally open, the

112

data used reflects the assumption that components and standards with higher

openness will have greater market share, longer procurement lives, and lower costs.

The procurement life and cost of each component are assumed to be normally

distributed. Other distributions could also be used.

113

Table 2: Definition of components used in the case study
N

am
e

Ty
pe

In
te

rfa
ce

St

an
da

rd

Pr
oc

ur
em

en
t

C
os

t (
$)

Pr
oc

ur
em

en
t

Li
fe

 (y
ea

rs
)

Li
fe

 C
od

e

C

om
pe

tin
g

V
ol

at
ili

ty

(c
ha

ng
es

/y
ea

r)

Y
ea

rs
 o

f U
se

En
te

rp
ris

e
Ex

pe
rie

nc
e

(y
ea

rs
)

A
cc

es
sib

ili
ty

of

 T
D

P

Ethernet NIC Hardware Ethernet Normal(75, 10) Normal(5, 1) 3 10 1 10 0 Full access (COTS/Open Source)
Infiniband HCA Hardware Infiniband Normal(125, 10) Normal(3, 1) 3 5 0.5 5 2 Limited access (Proprietary/COTS)
DDS Stack Software DDS Normal(50, 5) Normal(5, 1) 3 10 1 3 0 Full access (COTS/Open Source)
MTM Stack Software MTM Normal(50, 5) Normal(3, 1) 3 2 0.5 5 2 Limited access (Proprietary/COTS)
SPARC Card Hardware SPARC Normal(90, 5) Normal(5, 1) 3 5 1 2 2 Limited access (Proprietary/COTS)
AD21062 Card Hardware SHARC Normal(90, 5) Normal(5, 1) 3 3 1 2 2 Limited access (Proprietary/COTS)
i860 Card Hardware RISC-1 Normal(55, 5) Normal(3, 1) 3 5 1 2 2 Limited access (Proprietary/COTS)
Quad i860 Hardware RISC-1 Normal(200, 10) Normal(3, 1) 3 5 1 2 2 Limited access (Proprietary/COTS)
PowerPC Card Hardware RISC-2 Normal(55, 5) Normal(5, 1) 3 5 1 2 2 Full access (COTS/Open Source)
Quad PowerPC Hardware RISC-2 Normal(200, 10) Normal(5, 1) 3 5 1 2 2 Full access (COTS/Open Source)

114

3.1.3: Architectures

An architecture is defined by a hierarchy of subsystems and components. Each

layer in the hierarchy is given a level number and a number of instances. Low-level

subsystems are made up of higher level (more detailed) subsystems and components.

The instance number tells how many times the subsystem appears in the architecture.

The lowest (outermost) subsystem (the zero-level) represents one system instance

Additional data that is specific to the application of the component that may

be used includes:

The up-rating and modification costs per unit (hardware components)

The amount of glue code required to integrate the component

(software components)

The percentage of the total functionality used

The number of functional interfaces the component has, both with

components in the current subsystem, and with components in

other subsystems.

If two (or more) components are interdependent, such that the refresh

of one necessitates refresh of the others.

The ability of one or more specific subsystems to be requalified

independently, without requalifying the design of the entire

system. This depends on the modularity of the design and any

regulations affecting the system)

115

Each architecture is given an accessibility score and a modularity score,

measured on a scale between 0 and 1, to allow for a quick approximation of the

relative openness and modularity of different architecture designs. The accessibility

score is the arithmetic mean of the accessibility scores of each individual component

used in an architecture. The accessibility score for a component depends on its

accessibility, as well as the governing body which defines the standard it uses. The

possible combinations and ratings are given in Table 3.

Table 3: Accessibility scores for individual components

Standard defined by: Accessibility of TDP: Score:
In-house proprietary standard Component designed in-house 0
Defined by entity or group, with licensing restrictions Limited Access (Proprietary/COTS) 0.14
Defined by single entity, no licensing restrictions Component designed in-house 0.29
Defined by group, no licensing restrictions Component designed in-house 0.43
Defined by single entity, no licensing restrictions Limited Access (Proprietary/COTS) 0.57
Defined by group, no licensing restrictions Limited Access (Proprietary/COTS) 0.71
Defined by single entity, no licensing restrictions Full access (COTS/Open Source) 0.86
Defined by group, no licensing restrictions Full access (COTS/Open Source) 1

The modularity of a component is defined as the multiplicative inverse of the

component’s number of interfaces (1/interfaces). The modularity score for each

subsystem is the average modularity of the encapsulated subsystems and components,

with small penalties for components that are interdependent and subsystems that

cannot be requalified independently. At the architectural level, a weighting is used to

reduce architectures that utilize a larger number of standards.

The architectures for ARCI-1 and ARCI-2, which were used in the case study,

are shown in Table 4 and Table 5. ARCI-1 received an accessibility score of 0.2245

and a modularity score of 0.7079. ARCI-2 scored higher on both measures, receiving

an accessibility score of 0.8929 and a modularity score of 0.8091.

116

The architectures reflect the assumption that the more open design (ARCI2)

incorporates greater reuse (and uses only three standards and four unique component

types, compared to ARCI1’s five standards and five component types), while the less

open system uses more specialized components, allowing for greater design

efficiency (each system using the ARCI1 architecture is made up of 7 components,

while each ARCI2 is made up of 11 components).

117

Table 4: Definition of ARCI-1 Architecture

Le
ve

l

N
am

e

Is
 C

om
po

ne
nt

R
eq

ua
lif

ic
at

io
n

Po
ss

ib
le

In

sta
nc

es

St
an

da
rd

s T
yp

e

U
pr

at
in

g
/M

od
ifi

ca
tio

n
co

st
/u

ni
t (

H
W

)

K
SL

O
C

 o
f g

lu
e

co
de

 re
qu

ire
d

(S
W

)

%
 F

un
ct

io
na

lit
y

U
se

d

N
um

be
r o

f
In

te
rfa

ce
s

Su
bc

om
po

ne
nt

s
In

te
rd

ep
en

de
nt

0 ARCI-1 TRUE 1 FALSE
 1 MPP Module TRUE 1 FALSE
 2 Signal Conditioner FALSE 1 FALSE
 3 SPARC Card TRUE FALSE 1 SPARC 0 0 100% 1

 2 Allocatable Drawer FALSE 1 FALSE
 3 AD21062 Card TRUE FALSE 1 SHARC 0 0 100% 1
 3 Quad i860 TRUE FALSE 2 RISC-1 0 0 100% 1
 3 SPARC Card TRUE FALSE 1 SPARC 0 0 100% 1

 2 Infiniband HCA TRUE FALSE 1 Infiniband 0 0 100% 1
 2 MTM Stack TRUE FALSE 1 MTM 0 0 100% 1

Table 5: Definition of ARCI-2 Architecture

0 ARCI-2 TRUE 1 FALSE
 1 MPP Module TRUE 1 FALSE
 2 Signal Conditioner TRUE 1 FALSE
 3 PowerPC Card TRUE FALSE 2 RISC-2 0 0 100% 1

 2 Allocatable Drawer TRUE 1 FALSE
 3 Quad PowerPC TRUE FALSE 5 RISC-2 0 0 100% 1
 3 PowerPC Card TRUE FALSE 2 RISC-2 0 0 100% 1

 2 Ethernet NIC TRUE FALSE 1 Ethernet 0 0 100% 1
 2 DDS Stack TRUE FALSE 1 DDS 0 0 100% 1

118

3.1.4: Parameters

The parameters used to conduct the case study are shown in Table 6.

Table 6: Parameter values used in the case study

Base Cost to qualify a standard: $500
Base Cost to qualify a HW component: $500
Base Cost to qualify a SW Component (/KSLOC): $50
Base Cost to qualify system design: $500
Base Cost of outgoing test: $500

Hardware replacement/installation cost ratio: 0.25

Base Cost to install SW update (/KSLOC): $50
Base Cost to maintain proprietary SW (/KSLOC): $200
Software update implementation frequency (/year) 1

Base Cost to manage one system configuration $100

Annual Discount Rate 7.00%
Inventory Support Cost Ratio 0.3
Spares Overbuy Fraction 0.25
Spares Overbuy Penalty Ratio 0.25
Spares Underbuy Penalty Ratio 1.5
Software Obsolescence Penalty Ratio 1.5

Base cost to initialize a design refresh: $500
Base cost to design proprietary HW component: $500
Base cost to design proprietary SW component (/KSLOC): $50
Base cost to integrate a HW component: $500
Base cost to integrate a SW component (/KSLOC): $50
Life code for replacement components 3
Life code for replacement standards 3

3.1.5: Simulation Control Parameters

The simulations described in this chapter were run using between 10 and 100

trials. Each trial models twenty system instances produced at the rate of four per year

for the first five years of the simulation. No system retirement dates are specified, so

all systems are retired at the final end of service (EOS) date. The discount rate is used

119

to translate all costs and avoidances into year 0 dollars. The effects of varying the

EOS date and other parameters are examined in the sections that follow.

3.1.6: Example Model Result

The model is used to find the cost difference in each cost category between

two architectures in each year that the systems are deployed. The results from each

category may be summed to give the total cost in each year. The cumulative cost in

each year is found by summing the total costs from year 1 up to the year of interest.

This enables an enterprise to see when the primary cost differences are incurred. An

example of this is shown in Figure 7.

The total cumulative cost difference, the final cumulative cost difference

observed in the EOS year, is an important figure in making a business case for

Figure 7: Cumulative total cost difference between ARCI2 and ARCI1 in each operational year, for a
support lifetime of 22 years. Each of the five trials is shown in purple, blue shows average result.

120

choosing one architecture over another, so it is the primary indicator examined in the

analysis in the following sections.

Since some of the input data are described by probability distributions, a

single iteration or “trial” of the modeling procedure results in one possible outcome,

though it may not be the most likely outcome. Repeating the procedure several times

gives a range of results representing the possible outcomes that can be statistically

analyzed. The final end of service date is also an important factor because, as will be

demonstrated, the decision to invest in a more open architecture depends on the

number of years of system use. The results of each simulation will therefore be

calculated for a range of EOS dates.

An example output from the model is shown in Figure 8. In this case five

individual trials were conducted, and variables sampled in each trial were used to

calculate the total life cycle cost difference for EOS dates between 20 and 25 years

after system introduction. Each solid pink line shows the results of one trial, and the

dashed yellow line shows the average result in each year.

121

The difference, ARCI-2 minus ARCI-1, is positive in years 20 and 21,

indicating that ARCI-2 is more expensive than ARCI-1 for support lifetimes of 20 or

21 years. The overall behavior of the different trials depends on the nature of the

architectures, components, and management techniques being examined. Higher

variability in the input distributions will lead to higher variability in the results. Some

results, especially those involving lifetime buy management (which is highly

dependent on the initial components’ price and procurement life), may be observed to

diverge for longer EOS dates. Other results, such as those involving bridge buy

management (which implements a periodic design refresh), may give results that

demonstrate periodic behavior over a range of EOS dates.

Figure 8: Example model results. Each solid pink line represents a single trial. The values sampled in each
trial are used to estimate the total life cycle cost difference for support until each possible EOS year. The

dashed blue line is the average outcome.

122

The range and distribution of the results can be used to express the expected

outcome and its confidence. For example, Figure 9 shows a histogram of 50 results of

total cumulative cost difference for support until an EOS date of year 22 for the ARCI

architectures using different support strategies. This histogram can be used to

estimate the probability of a result falling in a particular range. The average result is a

cost difference of approximately $87,000, with a standard deviation of $100,000. The

ARCI2 architecture is more expensive than ARCI1 in 80% of the results.

Figure 9: Histogram of the total cumulative cost difference (ARCI2 minus ARCI1) results from 50 trials
for support until an EOS date of 22. ARCI1 is less expensive 80% of the time (shown in red)

123

3.2: Life Cycle Cost Analysis

When the ARCI-1 and ARCI-2 architectures described in Section 3.1.1

through 3.1.4 are sustained using a lifetime buy methodology, the less open ARCI-1

architecture usually costs less46. When a lifetime buy methodology is used, a bulk

purchase of a component is made just before that component becomes obsolete. This

stockpile is used to produce new systems, and support existing ones. This stockpile is

ideally as close as possible to the number actually needed to support all systems

through the EOS date. Figure 15 shows the results for EOS dates between year 10 and

year 30. Though generally the more open system is expected to be less expensive to

maintain, a lifetime buy methodology does not allow for many of the benefits of

openness to be realized.

46 The difference Cost(ARCI-2) –Cost(ARCI-1) is positive.

124

Figure 11: Probability of different outcomes for total cost difference between ARCI-2 and ARCI-1
architectures. Costs calculated for 50 trials of 20 system instances supported for 30 years using a

lifetime buy methodology.

Figure 10: Total life cycle cost difference between ARCI-2 and ARCI-1 for the support of 20 system
instances, using a lifetime buy methodology, for support lives between 10 and 30 years. Solid pink lines

show individual trials, dashed yellow line shows average.

125

As Figure 10 shows, there is a large variability in the possible results. This

variability is one of the weaknesses of relying on a lifetime buy approach to

obsolescence mitigation – the result is highly dependent on the actual procurement

lives of the components and standards. A small change in procurement life can result

in a large overall cost difference. Despite this variability, the ARCI-1 architecture is

expected to be less expensive than ARCI-2. Figure 11 shows a histogram of outcomes

observed in year 30. The average cost difference was $1.1M, with a standard

deviation of $575,000.

When a bridge buy methodology is used in conjunction with design refreshes,

however, the value of ARCI-2’s openness is observed. Figure 12 shows that for

twenty system instances supported using a bridge buy methodology, where the design

is updated every two years, and each system instance is updated every four years, the

Figure 12: Total life cycle cost difference between ARCI-1 and ARCI-2 for the support of 20 system instances,
using a bridge buy methodology, for support lives between 10 and 30 years. Design refresh occurs every two

years, with systems upgraded every four years. Solid pink lines show individual trials, dashed yellow line
shows average.

126

ARCI-2 design is less expensive (the difference Cost(ARCI-2) – Cost(ARCI-1) is

negative).

Using a bridge buy methodology helps limit the variability in cost due to

obsolescence. This is especially true when a short refresh period is used, as in case

shown in Figure 12 and Figure 13, because obsolete components are replaced

relatively soon after obsolescence. In year 30, the average cost difference is negative

$335,000 and the standard deviation is $44,000. For longer periods between

refreshes, the shapes of the results curves are similar to the ones in Figure 12, though

the variability is increased and the cost difference grows more slowly as the EOS date

increases. As long as the support life is several times longer than the refresh and

upgrade periods, the more open ARCI-2 architecture is less expensive than ARCI-1.

Figure 13: Probability of different outcomes for total cost difference between ARCI-2 and ARCI-1
architectures. Costs calculated for the case shown in Figure 12 - 50 trials of 20 system instances

supported for 30 years using a bridge buy methodology.

127

When a lifetime buy approach is used, the largest contributions to the overall

cost difference come from operation and support. When bridge buys are used, the

refresh category is the largest contributor, because performing design refreshes is an

expensive process (see Figure 14). In many scenarios, refreshing a system every two

years may not be economically feasible nor the preferable approach to obsolescence

mitigation. This is particularly true for systems with relatively short support lives,

because obsolescence plays a smaller role in such systems.47 This is shown in Figure

15, where the same ARCI-1 and ARCI-2 architectures are compared using different

support methodologies. ARCI-1 uses lifetime buy, and ARCI-2 uses a bridge buy.48

47 For earlier EOS dates, obsolescence is less likely to be encountered and requires smaller component
inventories when lifetime buys are made.
48 As before, the refresh period is 2 years and the upgrade period is 4 years.

Figure 14: Average contributions, by category, to total life cycle costs for the cases shown in Figure 10 (lifetime
buy) and Figure 12 (bridge buy). Contributions are positive when ARCI-2 is more expensive, negative when

ARCI-1 is more expensive.

128

The result in Figure 15 is important because it demonstrates that using the

more open architecture is not always beneficial – there is a ‘break-even’ point that

occurs, in this case at EOS dates of approximately 25 years. If the systems are to be

supported for fewer than twenty-five years, the more closed ARCI-1 architecture is

less expensive regardless of whether a lifetime buy or a 2-year bridge buy is used.

The break-even EOS date depends on many factors. In addition to the

architectures themselves, it is affected by the refresh period used for the bridge buy.

As noted before, increasing the refresh period can, up to a point, decrease the total

support costs.49 The affect of using a bridge buy strategy in conjunction with different

refresh periods is shown in Figure 16.

49 Finding the optimal refresh period is a fundamental problem in system support. See [53].

Figure 15: Total life cycle cost difference between ARCI-1 and ARCI-2 for the support of 20 system
instances for support lives between 10 and 30 years. ARCI-1 uses lifetime buy, ARCI-2 uses a bridge buy

with design refresh period of 2 years, and upgrade period of 4 years. Solid pink lines show individual
trials, dashed yellow line shows average.

129

Additionally, the number of system instances being supported can play a role

–the cost of stockpiling components grows linearly with the number of systems, while

the cost of conducting a refresh stays roughly constant. If only a few system instances

are to be fielded, the more closed architecture may be the less expensive option. This

is shown in Figure 17.

Figure 16: Effects of supporting ARCI2 with different refresh periods on the average total life cycle
cost. In all cases, ARCI-1 uses a lifetime buy strategy.

130

3.3: COTS-LIMO Hypothesis

This model can also be used to examine Abts’ COTS-LIMO hypothesis (see

Section 1.5.5). Abts suggested the key factor in the life cycle cost of a COTS-based

system (CBS) was not the amount of functionality provided by COTS components,

but rather the COTS functional density (CFD). A CBS with low CFD, which uses

more kinds of COTS components, is more expensive to maintain because of the

higher likelihood of obsolescence and changes in its components.

To test the COTS-LIMO hypothesis, modified versions of the ARCI2

architecture were compared to the ARCI1 architecture. The only change made to the

ARCI2 architecture was to split the functionality provided by the 5 Quad PowerPC

boards among different versions of that component. The total number of components

Figure 17: Effects of different number of fielded instances of the system on the average total life cycle cost
difference for the ARCI architectures. ARCI-1 uses a lifetime buy strategy, ARCI-2 uses a two-year bridge buy.

131

in each design are the same, and each version of the Quad PowerPC board had the

same properties and distributions – the architectures are effectively the same, but with

different CFDs. The effects of this modification can be seen in Figure 18.

The result in Figure 18 provides support for Abts’ COTS-LIMO hypothesis

because it demonstrates that decreasing ARCI2’s CFD increases its life cycle cost

(ARCI2 – ARCI1 becomes less negative).This result also shows the value of

component reuse. Extreme care must be taken when designing a system, because even

seemingly superficial design changes can have a significant impact on life cycle cost.

3.4: Life Extensions

As shown in Section 3.2, a bridge buy strategy, in conjunction with periodic

design refreshes, is beneficial when a design is to be supported until a known EOS

date because it decreases both the total life cycle cost and the variability of that cost.

Figure 18: Effect of COTS Functional Density (CFD) on average total life cycle cost. Both architectures are
supported using a bridge buy, with a design refresh occurring every two years. CFD is calculated for the
allocatable drawer in the ARCI2 architecture, with the assumption that the drawer fills three functions.

132

This allows cost forecasts and budgeting to be planned more accurately. Use of

periodic design refresh can also be advantageous when the end of support date is

unknown or uncertain. This is because the pattern of refreshing the design and

updating fielded systems may simply be repeated until the extended EOS date is

reached. In a similar scenario, use of a lifetime buy management technique creates

significant logistical and financial difficulties. Purchasing and holding a stockpile of

components is expensive, so when a component becomes obsolete and a lifetime buy

is made, the number stockpiled is ideally as close as possible to the actual number of

components required to support the fielded systems until EOS.50 If the system is life-

extended, the stockpiles of components on hand may be insufficient, and potentially

difficult or impossible to replenish.

To examine the effects of life-extension on total system cost, that the model

starts by assuming that the system will be supported until a given default EOS date.

Some number of years before the EOS date arrives, notice is given that the system is

to be life-extended, and must be supported until a new (later) EOS date. Before the

life extension warning, all support calculations, including stockpiling of components,

are made until the original EOS date. After the notice of life extension has been

received all calculations are made using the new EOS.

The effects of life-extension were modeled using the ARCI-1 and ARCI-2

architectures as described in Section 3.1, and the same production schedule used

previously. The default EOS date was year 20, and notice of life extension was given

50 In practice, the lifetime buy problem is an asymmetric newsvendor problem in which the penalty
associated with running short of components is significantly greater than the penalty of having too
many. As a result, a “buffer” is usually purchased on top of the actual demand estimate.

133

in year 15. Life extensions between 1 and 10 years were examined, corresponding to

final EOS dates between year 21 and year 30. The overbuy ratio was 0.25.

For the case shown in Figure 19, ARCI-1 is managed using a lifetime buy, and

ARCI-2 is managed using a bridge buy with a refresh occurring every two years, as

before. For the case in Figure 20, both architectures are managed using a two-year

bridge buy.

These figures demonstrate the large effect that life extension can have on life

cycle cost, particularly when a lifetime buy support methodology is employed. The

dashed green line overlaid in Figure 19 shows the average results attained in Section

3.2, when the final EOS date is known from the beginning. In Figure 19, the averages

initially coincide (a life extension of 0 years), and then quickly diverge, with an order

of magnitude difference between them after only 10 years. The analogous dotted

yellow line in Figure 20 shows that using a bridge buy methodology with

prescheduled periodic refreshes can effectively neutralize the issues associated with

life extension.

134

Figure 19: Total life cycle cost difference between ARCI-1 and ARCI-2 for life-extensions of up to 10 years
from an initial (default) EOS date of year 20. ARCI-1 uses a lifetime buy, ARCI-2 uses a bridge buy. The

solid pink lines show individual trials, dotted yellow line shows the average. The dashed blue line, overlaid
from Figure 15, is the average total cost difference when the final EOS is known from year 0.

Figure 20: Total life cycle cost difference between ARCI-1 and ARCI-2 for life-extensions of up to 10
years from an initial (default) EOS date of year 20. Both architectures use a bridge buy. The solid pink

lines show individual trials, and dotted yellow line shows the average. The dashed blue line, overlaid from
Figure 12, is the average total cost difference when the final EOS is known from year 0.

135

Chapter 4: Conclusions

4.1: Summary

Openness is the characteristic of being accessible and available. For objects

such as an architecture or a component, openness is a measure of how well the object

conforms to well-known standards, and the openness or accessibility of those

standards. The goals of openness are commonly expressed as interoperability,

maintainability, extensibility, composability, and reusability. In general, these

openness goals are attained using some combination of modular architecture,

standardization of components and interfaces, use of open standards, use of COTS

hardware and software, and design and component reuse. Openness, particularly

when used in conjunction with modularity and reuse, is frequently associated with

cost avoidances from several sources, including: more efficient design and design

refresh; increased opportunity to multi-source parts; reductions in obsolescence,

counterfeit, and other part supply chain disruption management overhead; more

efficient innovation and technology insertion; and modularization of qualification.

However, use of an open systems approach requires investment and increases risk

exposure because the enterprise has little or no control over the definition and supply

chain of COTS or open components, and these components by nature are more

volatile and have short procurement lives.

While the concept of openness is intuitively understood, quantifying a

system’s degree of openness and placing a value on that openness is difficult.

136

Although several previous efforts have been initiated to assess and compare openness,

they have generally relied on qualitative measures, and none address the issue of cost.

The model developed in this thesis quantitatively determines the effects of

openness on life cycle cost of electronic systems by identifying metrics to measure

openness and cost drivers that can be used to predict life cycle cost. Connections

between these were identified and a model for the life cycle cost difference between

different designs/implementations was created. By comparing similar systems of

disparate openness, this model can be used to determine the life cycle cost impact of

openness.

The model was applied to a case study of the U.S. Navy’s ARCI Sonar

system. Simplified versions of two architectures with different openness levels,

corresponding to different implementation phases of the ARCI system, were

analyzed. The case study was conducted for support lives between 10 and 30 years.

The study demonstrated that for support times longer than approximately 20 years, or

in cases where the EOS date is uncertain, significant cost avoidance could be realized

by implementing a more open design supported using a bridge buy and periodic

design refreshes. However, for support lives shorter than 20 years, or in cases when a

small number of system instances are to be deployed, the more closed architecture,

managed using a lifetime but methodology, leads to greater cost avoidance.

4.2: Contributions

This section summarizes the contributions made by this thesis.

137

4.2.1: Formulation of the first quantitative model for assessing the cost impacts of

openness

The first quantitative model for assessing the cost impacts of openness was

developed. Previous models are either qualitative or do not address cost impacts. The

model is time-dependent, and able to handle uncertainty in input parameters. The

model utilizes a novel cost-difference approach that minimizes the amount of data

required and isolates the portion of cost avoidance that is directly attributable to the

use of open systems.

4.2.2: Demonstrated that more openness is not always better

The model and ARCI case studies demonstrated that there are scenarios in

which increasing the openness of an architecture will increase life cycle costs. The

case study also provides the first known quantitative support for Abts’ COTS-LIMO

hypothesis that increasing CFD increases cost avoidance. However, these results

challenge Henderson’s implicit assumption that marginal openness is always positive

(increasing openness is always beneficial).

4.2.3: Established that the value of openness depends on several external factors

The ARCI case study establishes that, in addition to the architecture itself, the

value gleaned from using an open system depends on several external factors.

Specifically, the number of system instances to be fielded, the number of years those

systems are to be supported, and the likelihood of those systems to be life-extended.

138

4.3: Future Work

The model developed and tested is the first of its kind. Many improvements to

the model could be made:

4.3.1: Capture more benefits of reuse

The current model accounts for reuse of components within a design, but

cannot account for cost savings due to reuse between different architectures, or for

reuse at the subsystem level.

4.3.2: Collect data for calibration and validation

The current model depends on many cost parameters that are assumed to be

enterprise dependent. Access to historical data would allow for more accurate

calibration and validation of the model.

Additionally, though the current model takes procurement life as an input

distribution, this could be predicted from other input metrics, including market share,

number of competing components, volatility, and years of use. This would require

historical on each type of hardware and software component used.

139

4.3.3: Capture the risks associated with early adoption

When new technologies are first implemented, they tend to be more unstable,

with more frequent and significant updates. While operating on the “bleeding edge”

can help improve performance and add new functionalities, it also increases the risk

of breakage, architectural mismatch, and expensive retrofits.

4.3.4: Further test Abts’ and Henderson’s Hypotheses

Further work is needed to test if COTS equilibrium value proposed by Abts’

COTS-LIMO model exists, and where. Subsequent analysis could focus on the effects

of different CFD values for systems above and below the equilibrium point. A

generalization of this model should be used to generate a continuous cost versus

openness curve, which can be used to measure the utility of openness.

140

Appendix A: OAAT (and MOSA PART) Questionnaire

Sections A.1 through A.9 below are taken from [17].

MOSA PART consists of the questions listed in section A.1 (MOSA PART

Programmatic) and section A.3 (MOSA PART Technical). For MOSA PART, all

questions are given equal weighting.

The OAAT consists of all the questions below. Equal waiting is not given to

all questions. “Key” questions are weighted between 3 and 4 times stronger than other

questions, and an answer is required (the “not applicable” response is disabled).

“Litmus” questions limit the maximum score, even if the responses to all other

questions would suggest a higher score.

A.1: MOSA PART: Programmatic

A.1.1 To what extent is MOSA incorporated into the program’s acquisition

planning?

A.1.2 To what extent did the program plan for its implementation of MOSA?

A.1.3 To what extent is the program’s MOSA implementation based on systems

engineering principles and processes?

A.1.4 To what extent are responsibilities assigned for implementing MOSA?

A.1.5 To what extent is the program staff trained on, or have relevant experience in

MOSA concepts and implementation?

A.1.6 To what extent does the program’s configuration management process

encompass changes to key interfaces and corresponding standards?

A.1.7 To what extent have program requirements been analyzed, and refined as

needed, to ensure that design-specific solutions are not imposed?

141

A.1.8 To what extent do the system level functional and performance specifications

permit an open systems design?

A.1.9 To what extent are modular, open system considerations included as part of

alternative design analyses?

A.1.10 To what extent are mechanisms established to migrate key interfaces that are

proprietary or closed to key interfaces that are open?

A.1.11 To what extent are MOSA principles reflected in the program’s performance

measures?

A.2: OAAT: Programmatic

A.2.1 (KEY) To what extent does the program have policies and processes that

control adding specifications, options, or extensions that limit the use of widely-

supported or openly available interface standards?

A.2.2 (KEY) To what extent are Non-mission unique capabilities supplied using

either components reused from other programs or available from the commercial

market?

A.2.3 (KEY) To what extent have the proprietary or unique non commercial

elements been limited or well defined such that they do not hinder other developers

from interfacing or developing any part of the system?

A.2.4 NOTE: As of OAAT Version 1.1, the MOSA PART questions have been

combined with the OAAT questions and this question has been obviated. This

question is no longer part of the OAAT question set. To what degree has the

Modular Open Systems Approach (MOSA) been implemented in the programmatic

and business aspects of the Program (organization)? Enter the results from the

Business Section of the OSJTF MOSA PART.

A.2.5 To what extent is the Program complying with the Joint Capability Integration

and Development System (JCIDS)?

A.2.6 To what degree is the Program complying with the Interoperability and

Supportability requirements for National Security Systems in references like CJCS

6212.01C and DoDD 4630.5 and DoDI 4630.8?

142

A.2.7 To what extent does the Program plan, directive documentation and funding

enable orderly migration of proprietary or program unique system modules to open

system alternatives when capabilities are upgraded?

A.2.8 To what extent is the program free of system components that have

proprietary characteristics, restrictive licensing or prohibitive cost that could limit or

preclude the reuse of the components in other Navy Systems or the competitive

selection or re-assignment of those components to other vendors?

A.2.9 To what extent has the Prime System Integrator established processes that

facilitate flexibility of task assignment, competition of individual tasks, or re-

competition of tasks?

A.2.10 (KEY) To what extent has the program established and maintained a

repeatable, non-restrictive process that discloses in-process design documentation

and software tools information directly to third party developers?

A.2.11 To what extent is design documentation disclosed to interested parties from

the beginning of the development effort?

A.2.12 (KEY) To what extent does the Program documentation stress the use of

widely-accepted and supported standards, such as those maintained by recognized

organizations (e.g. IEEE), to define both internal and external interfaces?

A.2.13 (KEY) Does the Program Plan and directive documentation include a data

management strategy ensuring that when the Government exercises its intellectual

property rights to obtain any developmental artifacts for anything it paid to develop

with either complete or partial funding the Contractor can at most charge a nominal

fee covering the marginal cost of the effort to provide that documentation?

A.2.14 NOTE: As of OAAT Version 3.0, this question is no longer part of the

OAAT question set. To what degree does the Program (Organization) planning and

directive documentation (e.g. implementation road map, Acquisition strategy)

implement and comply with FORCEnet policies, standards and definitions as

indicated by FORCEnet Consolidated Compliance Checklist (FCCC) or other

FORCEnet compliance metrics?

A.2.15 To what extent does the program plan include Life cycle Support and Funding

for OA elements?

143

A.2.16 To what extent has the program worked with the applicable Tech Warrant

holder or equivalent authority to develop OA-specific metrics as part of its program

management processes and reviews?

A.2.17 (KEY) To what extent do the program's software selection criteria require

that, other things being equal, priority be given to software

components/modules/systems that have the least restrictive rights associated with

them?

A.2.18 (KEY) To what extent does the Program use MOSA- and OA-specific

language or contractual provisions in its acquisition and development

documentation? Examples of these types of document include RFI and RFP

materials, Contracts, Acquisition Plan, System Engineering Plan, and Information

Support Plan.

A.2.19 To what extent does the Program use MOSA- and OA-specific language or

contractual provisions in its acquisition and development documentation? Examples

of these types of document include RFI and RFP materials, Contracts, Acquisition

Plan, System Engineering Plan, and Information Support Plan.

A.2.20 To what extent does the Program's documentation provide for cost-effective

incremental upgrades without dependencies on a single source or the need to

redesign large portions of the system?

A.2.21 To what extent has the Program organization implemented a training program

to educate their work force on OA related policy and concepts (e.g., OA/MOSA,

FORCEnet, Interoperability, JCIDS and open systems concepts)? Ways to do this

could include leveraging available courses, web-based materials, required reading,

internal meetings/seminars, etc.

A.2.22 To what extent has the Program used incentives to promote modular designs,

commonality and component reuse?

A.2.23 To what extent does the Program's configuration management process use

integrated teams such as “communities of interest” to identify how individual

changes impact the system’s interfaces and information exchange standards?

144

A.2.24 (KEY) To what extent are multiple third parties directly contracted to develop

components of the System, giving the government the flexibility to compete or

reassign component development?

A.2.25 (KEY) To what extent do the Program's market research and selection

processes use criteria that favor commercial, common enterprise wide, or generally

accepted interface and information exchange standards?

A.2.26 Does the Program’s Acquisition Strategy, contract language and funding

profile facilitate subsequent assignment of major tasks and program roles to

alternate providers at predetermined intervals?

A.2.27 (KEY, LITMUS) To what extent are market research, community of interest

teams, peer review groups, or alternative forums used to assess and select among

available capability improvement options?

A.2.28 To what extent does the program develop POM Issue Papers or other business

planning documents (such as business case analyses) to address OA business and

technical issues?

A.2.29 (KEY) To what extent does the Program reuse components from other

government programs?

A.2.30 To what extent can the program accommodate software tools or other

components from sources other than the prime system integrator or existing vendors

without requiring significant modifications?

A.3: MOSA PART: Technical

The first section of the technical questionnaire consists of 13 questions

adopted directly from the MOSA PART.

A.3.1 To what extent is the system’s architecture based on related industry or other

standard reference models and architectural frameworks?

A.3.2 To what extent is an architectural description language used to define system

modules and interfaces?

145

A.3.3 (KEY, LITMUS) To what extent does the system’s architecture exhibit

modular design characteristics?

A.3.4 (KEY) To what extent is the system’s architecture capable of adapting to

evolving requirements and leveraging new technologies?

A.3.5 To what extent has the criteria for designating key interfaces been

established?

A.3.6 To what extent has the program designated key interfaces?

A.3.7 To what extent has the program assessed the feasibility of using open

standards for key interfaces?

A.3.8 To what extent have standards selection criteria been established that give

preference to open interface standards?

A.3.9 (KEY, LITMUS) To what extent are open standards selected for key

interfaces?

A.3.10 To what extent are validation and verification mechanisms established to

assure that system components and selected commercial products conform to the

selected interface standards?

A.3.11 (KEY) To what extent do system components and selected commercial

products conform to standards selected for system interfaces?

A.3.12 To what extent do system components and selected commercial products

avoid utilization of vendor-unique extensions to interface standards?

A.3.13 (KEY, LITMUS) To what extent can system components be substituted with

similar components from competitive sources?

A.4: Design Tenet: Interoperability

A.4.1 The Unit of Assessment predominantly complies with what type of

interoperability standards?

A.4.2 NOTE: As of OAAT Version 3.0, this question is no longer part of the OAAT

question set. (KEY) How standards-based is the Unit of Assessment’s data model?

A.4.3 What is the scope of the data model that the Unit of Assessment uses to

support interoperability with other systems?

146

A.4.4 (KEY) What is the scope of interoperability of the Unit of Assessment?

A.4.5 To what extent does the Unit of Assessment use mechanisms to discover and

invoke services?

A.4.6 To what extent does the Unit of Assessment support mechanisms for service

discovery and invocation?

A.5: Design Tenet: Maintainability

A.5.1 (KEY) What architectural characteristics address obsolescence and provide

for timely technology refresh, fixes, and upgrades?

A.5.2 Do the unit of Assessment’s technical artifacts provide sufficient detail and

scope for maintenance?

A.6: Design Tenet: Extensibility

A.6.1 Does the program follow a well defined System Engineering process for

implementing capability extension?

A.6.2 (KEY) Will the technical infrastructure accommodate extensibility of the Unit

of Assessment’s functionality?

A.6.3 What is the scope of testing needed after new components are added to the

Unit of Assessment?

A.7: Design Tenet: Composability

A.7.1 To what extent are the components of the Unit of Assessment implemented

and independently deployable as packages?

A.7.2 To what extent can the functional capabilities of the Unit of Assessment be re-

combined or re-arranged to support a modified process/workflow/mission?

A.8: Design Tenet: Reusability

147

A.8.1 (KEY, LITMUS) What reuse strategy is used within the Unit of Assessment?

A.8.2 What is the scope of the set of processes used to identify and evaluate reuse

candidates for incorporation into the Unit of Assessment?

A.8.3 (KEY) Which approach best describes the operational run-time infrastructure

supporting the Unit of Assessment?

A.8.4 Have the commonalties and variations of the Unit of Assessment been

specified to facilitate reuse congruent with a broader Software Product Line?

A.9: Design Tenet: OSJTF – MOSA

A.9.1 NOTE: As of OAAT Version 1.1, the MOSA PART questions have been

combined with the OAAT questions and this question has been obviated. This

question is no longer part of the OAAT question set. What is the level of MOSA

compliance for the Unit of Assessment?

148

Appendix B: OAAM Version 1.0

Taken from [70]

 Architecture and Technical
Characteristics

0 – Closed
• Proprietary Hardware or API (O/S or middleware)
• Predominant number of point to point legacy interfaces
• Highly integrated applications with integral middleware

1 – Layered
• Standards-based COTs Hardware & O/S
• Specialized middleware
• Highly integrated monolithic applications isolated from
Computing environment
• Standard communications between layers
• Program has achieve “Marginal” level for MOSA
technical indicators

2 – Layered & Open
• Computing Environment / App. S/W independence
• Open published APIs
• Modular application components
• Facilitates technology insertion/replacement
• Standard communications between layers
• Exposes data to network via I/Fs to legacy
system/subsystems
• Separates operator, application, and data
• Program has achieve “Satisfactory” level for MOSA
technical indicators

3 – Common
• Discovers/publishes capability using standards (where
applicable)
• Adheres to a common architecture across multiple
programs
• Uses common services (such as security)
• Common semantics and data model
• Ability to Interact with GIG/FORCENet

4 – Enterprise
• Adheres to a common architecture across multiple
domains
• Data exchange between domains via std interface
• Commercially accepted services or data model
• Uses core services (e.g., NCES, DIB)
• Exposes services and data to GIG/FORCENet
• Program has achieve “Exemplary” level for MOSA
technical indicators

Business and Acquisition
Characteristics

Business and Acquisition Strategy Characteristics
refer to the processes & documentation programs
employ to acquire and manage systems;

Architecture and Technical characteristics are the
technical features of computing environments and
application software

0 – Isolated
• Exclusive use of closed sole source contracts
• Proprietary interface, no access to systems

1 – Connected
• Initial OA language in contracting and acq docs
• Program (gov’t/industry) educated on FORCEnet/OA
• Initial use of commercial standards and best practices
• Program has achieve “Marginal” level for MOSA business
indicators

2 – Migrating to Openness
• Program has validated NR-KPP
• Transitioning to JCIDS capability needs documents
• Contracting approach maximizes cost competitiveness
and innovation
• Use of commercial standards based COTS products
• Some market research employed to leverage commercial
investment
• Completed FIBL Survey and verified information
• Program has achieve “Satisfactory” level for MOSA
business indicators

3 – Common
• Spiral development/evolutionary acquisition employed to
facilitate rapid technology insertion
• Applicable program acquisition and engineering
documentation (AS, SEP, ISP, etc) includes OA language
• Integrated team approach to development involving
requirements, resource, testing, user community members
• “Community of Interest” teams employed to develop
system
• Program has robust FORCENet/OA implementation
roadmap

4 – Open and Net-Centric
• OA compliance metrics part of PM processes and
program reviews
• Extensive use of commercial standards and best
practices across Enterprise
• Program conducts continuous market research
• Continuous process for FORCENet/OA improvement
• Program has achieve “Exemplary” level for MOSA
business indicators

OA
Assessment Model

0

1

2

3

4

0 1 2 3 4
Technical

B
us

in
es

s

Low
Moderate

High

Openness
Characterization

Version 1.0 (8 March 2005)

Architecture and Technical
Characteristics

0 – Closed
• Proprietary Hardware or API (O/S or middleware)
• Predominant number of point to point legacy interfaces
• Highly integrated applications with integral middleware

1 – Layered
• Standards-based COTs Hardware & O/S
• Specialized middleware
• Highly integrated monolithic applications isolated from
Computing environment
• Standard communications between layers
• Program has achieve “Marginal” level for MOSA
technical indicators

2 – Layered & Open
• Computing Environment / App. S/W independence
• Open published APIs
• Modular application components
• Facilitates technology insertion/replacement
• Standard communications between layers
• Exposes data to network via I/Fs to legacy
system/subsystems
• Separates operator, application, and data
• Program has achieve “Satisfactory” level for MOSA
technical indicators

3 – Common
• Discovers/publishes capability using standards (where
applicable)
• Adheres to a common architecture across multiple
programs
• Uses common services (such as security)
• Common semantics and data model
• Ability to Interact with GIG/FORCENet

4 – Enterprise
• Adheres to a common architecture across multiple
domains
• Data exchange between domains via std interface
• Commercially accepted services or data model
• Uses core services (e.g., NCES, DIB)
• Exposes services and data to GIG/FORCENet
• Program has achieve “Exemplary” level for MOSA
technical indicators

Business and Acquisition
Characteristics

Business and Acquisition Strategy Characteristics
refer to the processes & documentation programs
employ to acquire and manage systems;

Architecture and Technical characteristics are the
technical features of computing environments and
application software

0 – Isolated
• Exclusive use of closed sole source contracts
• Proprietary interface, no access to systems

1 – Connected
• Initial OA language in contracting and acq docs
• Program (gov’t/industry) educated on FORCEnet/OA
• Initial use of commercial standards and best practices
• Program has achieve “Marginal” level for MOSA business
indicators

2 – Migrating to Openness
• Program has validated NR-KPP
• Transitioning to JCIDS capability needs documents
• Contracting approach maximizes cost competitiveness
and innovation
• Use of commercial standards based COTS products
• Some market research employed to leverage commercial
investment
• Completed FIBL Survey and verified information
• Program has achieve “Satisfactory” level for MOSA
business indicators

3 – Common
• Spiral development/evolutionary acquisition employed to
facilitate rapid technology insertion
• Applicable program acquisition and engineering
documentation (AS, SEP, ISP, etc) includes OA language
• Integrated team approach to development involving
requirements, resource, testing, user community members
• “Community of Interest” teams employed to develop
system
• Program has robust FORCENet/OA implementation
roadmap

4 – Open and Net-Centric
• OA compliance metrics part of PM processes and
program reviews
• Extensive use of commercial standards and best
practices across Enterprise
• Program conducts continuous market research
• Continuous process for FORCENet/OA improvement
• Program has achieve “Exemplary” level for MOSA
business indicators

OA
Assessment Model

0

1

2

3

4

0 1 2 3 4
Technical

B
us

in
es

s

Low
Moderate

High

Openness
Characterization

Version 1.0 (8 March 2005)

149

Appendix C: MOSA Metrics Calculator

The following is adapted from the AFRL/RYM Metrics Working Groups’

MOSA Metrics Calculator [58].

C.1.1 Component Name:

C.1.2 What is the component type? (Hardware or Software)

C.1.3 Is the component scalable? (Yes/No)

C.1.4 Is the component upgradeable? (Yes/No)

C.1.5 Has the component’s extensibility been considered? (Fully/Somewhat/None)

C.1.6 This component is part of which function?

C.1.7 Is the component available from multiple vendors? (Yes/No)

C.1.8 Is the component domestically produced? (Yes/No)

C.1.9 Does the component have a plan for continued support through the life cycle

of the system? (Yes/No)

C.1.10 Does this component have a key interface? (Yes/No)

C.1.11 Is a proprietary standard used for the key interface? (Yes/No)

C.1.12 Is the standard used for the key interface well defined? (Yes/No)

C.1.13 Does the component use a proprietary standard? (Fully proprietary/Partially

open/Fully open)

C.1.14 Does this component include a test plan? (Yes/No)

C.1.15 What impact does the component have on information assurance?

(Significant/Some/None)

150

Appendix D: Cost of Openness Tool: Quick-Start Guide

The following manual is a brief introduction to the Cost of Openness Tool and its user

interface. It covers all of the inputs to be entered by the user, and briefly discusses the

functionality of the tool.

The Cost of Openness Tool has been implemented in Microsoft Excel, using VBA and

various form inputs. For best results, it should be used on a PC running Excel 2007 or later. The

Cost of Openness Tool contains the following sheets:

1. Standards
2. Components
3. One or more Architecture sheets
4. Parameters
5. Weights
6. Simulation
7. One or more Results sheets

When setting up and running a simulation, these sheets should be completed in this order

to ensure that the data is properly input into the model. Each sheet is further explained below.

Important note about distributions: On the Standards and Components worksheets, some

of the data is expected to be input as a distribution. In those cases, the affected cells are locked to

prevent user input. To input the desired information, click on the “D” (for “Distribution”) button

located on the right side of the appropriate cell. This will bring up a dialogue that can be used to

define the distribution. Select the desired distribution from the “Distribution Type” drop-down,

and input the required parameters. Select “OK” to input the data, or “Cancel” to abort. Selecting

the “None” distribution type allows a constant value to be used.

D.1: Standards

151

Each row on the Standards sheet represents a standard that is to be used in one of the

Architectures to be modeled. Extra, unused Standards may also be included on this list. New

standards may be added by pressing the “Add Standard” button; old standards may be removed

by pressing the corresponding “Remove” button. Each standard is required to have:

1. A unique name

2. A procurement life, which tells the time between the standard’s

introduction and obsolescence (entered as a distribution)

3. A life code, which tells where the standard is in its life cycle (a value

between 1 and 6, 1 denoting introduction, 6 denoting obsolescence)

Other information about the standard may also be input, including:

4. Market share, the percentage of the relevant market that uses the standard

5. The volatility of the standard, measured in expected number of minor

changes or updates per year

6. The years of use, or how long the standard has been available

7. Enterprise Experience, the length of time, in years, that the enterprise has

used the standard

8. “Standard Defined By”, selected from:

a) “In-house proprietary standard”: a proprietary standard that is

maintained by the enterprise itself

b) “Defined by a single entity or group, with restrictions”: a

proprietary standard belonging to an external entity

c) “Defined by single entity, no licensing restrictions”: typical

classification of a de facto standard

152

d) “Defined by group, no licensing restrictions”: an open standard

D.2: Components

Each row on the Components sheet represents a component that is to be used in one of

the Architectures to be modeled. Extra, unused components may also be included on this list.

New components may be added by pressing the “Add Component” button; old components may

be removed by pressing the corresponding “Remove” button. Each component is required to

have:

1. A unique name

2. A type – Hardware, Software, or Consumable. Consumables are treated as

hardware, except that a constant failure/replacement rate is assumed,

instead of sampling from the failure distribution.

3. An Interface Standard, selected from those defined on the Standards

worksheet

4. A Procurement cost (entered as a distribution)

5. A time-to-failure distribution

6. A procurement life, which tells the time between the component’s

introduction and obsolescence (entered as a distribution)

7. A life code, which tells where the component is in its life cycle (a value

between 1 and 6, 1 denoting introduction, 6 denoting obsolescence)

8. Accessibility of the component’s technical data package (TDP), selected

from:

153

a) “Component designed in-house”: A component that is designed

and maintained by the enterprise itself. This is an option for

components that use an in-house or open (unrestricted)

standard.

b) “Limited access (Proprietary/COTS)”: A component designed

and maintained by an external entity. This may be a component

that is created by a contractor for this specific purpose

(proprietary), or a COTS component. In either case, the

component is treated as a “black box” – the enterprise cannot

access internal specifications or workings of the component for

debugging or modification purposes. This option cannot be

selected if the component uses an “in-house” standard.

c) “Full access (COTS/Open Source)”: A component that is

designed and maintained by an external entity, but to which the

enterprise has access to the TDP and internal workings of the

component, facilitating debugging, and allowing for some

modifications. This may be selected for components that use

“unrestricted” standards.

9. A Design Refresh Plan (DRP) option, selected from:

a) “Included in DRP”: Components that are included in design

refresh planning.

b) “Excluded from DRP”: Components that are excluded from

design refresh planning, but which are refreshed at the first

opportunity after obsolescence.

c) “Not refreshable”: Components that are excluded entirely from

refresh planning and implementation – if the component

becomes obsolete, a lifetime buy strategy is used, regardless of

the strategy used for the rest of the system.

Other information about the component may also be input, including:

154

10. Cost of annual licensing, where applicable (typically only applicable to

some software)

11. Software size, given in thousands of lines of source code (KSLOC)

12. The number of competing components

13. The volatility of the component, measured in expected number of minor

changes or updates per year

14. The years of use, or how long the component has been available

15. Enterprise Experience, the length of time, in years, that the enterprise has

used the component

D.3: Architecture Worksheets

The architecture worksheets contain the information about the actual architectures to be

compared. While the model can be run with only one architecture sheet, typically two or more

architecture sheets are necessary. Additional architecture sheets can be added by pressing the

“Add New Architecture” button on the Simulation worksheet. This brings up a dialogue that

allows the user to choose between adding a blank architecture and duplicating any existing one.

Extra, unused architectures may be left in place while the tool is being used, or may be deleted

by right-clicking the appropriate tab, and selecting “delete”. To ensure more accurate results, all

architectures should be of similar functionality and described with the same level of detail.

155

An architecture is defined by a hierarchy of subsystems and components. Each layer in

the hierarchy is given a level number and a number of instances. Low level subsystems are made

up of higher level (more detailed) subsystems and components. The instance number tells how

many times the subsystem appears in the architecture. The lowest (outermost) subsystem

(typically the zero-level) must represent one instance of the system that the architecture is

defining, and should thus have an instance number of 1. Extra empty lines may be inserted

between subsystems for visual clarity.

In addition to a level and instance number, each level is given a name. For subsystems,

any useful identifying name may be used. For the zero level, this is typically the name of the

architecture, while for other subsystems it may be the name of the functional group it represents.

At the component level, this name must be the same as the name input on the components

worksheet. When a name that matches a component defined on the “Components” worksheet is

entered, the “Is Component” column will display “TRUE” and the appropriate interface standard

will appear in the “Standards Type” column. Otherwise, these cells will remain blank.

Once a component has been input, additional data specific to that application of the

component may be input. These include:

The up-rating and modification costs per unit (hardware components)

The amount of glue code required to integrate the component (software components)

The percentage of total functionality used

The number of functional interfaces the component has, both with components in the

current subsystem, and with components in other subsystems.

Interdependent Components: Collections of components may be interdependent, such that

when one becomes obsolete, they all need to be refreshed as a unit. This may be true in the case

156

of a specialized interface, or of a hardware-software pair that are interdependent. This is may be

modeled by placing any interdependent components into the same subsystem,51 and setting the

“Subcomponents Interdependent” option on the subsystem to “True”.

Partial Requalification: On some architectures, refreshed components and subsystems

may be re-qualified without needing to re-qualify the whole system. When this is the case,

subsystems and components that may be re-qualified independently should be marked as such by

setting the “Requalification Possible” option to “True”. The whole system (zero-level) should

always be marked as “True”, though changing it to blank or “False” will not change the results

obtained. (Architectures that absolutely may not be re-qualified should be run using the

“Lifetime Buy” setting found on the “Simulation” worksheet.

An example architecture is shown below. Note that the zero-level system is the

architecture itself, and it has an instance number of 1. The architecture is made up of two

cabinets, and each cabinet contains two drawers. Extra spaces are used in Cabinet 2 for visual

clarity; these are optional, and may be omitted as they were in Cabinet 1.

Weibull(1.75,2, 0) represents a Weibull distribution with shape parameter 1.75 and scale

parameter of 2 units (years, in this case). Normal(5,1) represents a normal distribution with mean

5 and standard deviation 1.

51 And no other components.

157

Standards Sheet:

Components Sheet:

Name Type Interface
Standard

Procurement
Cost ($)

Annual
Licensing

Size in
KSLOC
(SW
only)

Time to Failure
(years)

Procurement
Life (years)

Life
Code

Competing Volatility

Years
of
Use

Enterprise
Experience
(years)

Accessibility of
TDP

DRP
Calculations

Component1 Hardware Standard1 100 Weibull(1.75,2,0) Normal(5,1) 3 2 1 5 5 Limited access
(Proprietary/COTS)

Included in
DRP

Component2 Software Standard1 150 Weibull(1.75,2,0) Normal(5,1) 3 2 1 5 5 Limited access
(Proprietary/COTS)

Included in
DRP

Component3 Hardware Standard2 125 Weibull(1.75,2,0) Normal(5,1) 3 3 1 10 1
Full access
(COTS/Open
Source)

Included in
DRP

Component4 Software Standard2 200 Weibull(1.75,2,0) Normal(5,1) 3 6 1 10 1
Full access
(COTS/Open
Source)

Included in
DRP

Architecture Sheet:
Level Name Is Component Requalification

Possible
Instances Standards Type Uprating /Modification

cost/unit (HW)
KSLOC of glue
code required (SW)

% Functionality Used Number of
Interfaces

Subcomponents
Interdependent

0 Arch 1 False True 1 False
1 Cabinet 1 False True 1 False
2 Drawer 1A False True 3 False
3 Component1 True False 2 Standard1 0 75 1
3 Component2 True False 1 Standard1 0 75 1
2 Drawer 1B False True 2 False
3 Component1 True True 1 Standard1 0 50 1 False

1 Cabinet 2 False True 2 False
2 Drawer 2A False False 1 False
3 Component1 True False 1 Standard1 10 75 1

2 Drawer 2B False False 2 True
3 Component3 True False 2 Standard2 0 100 2
3 Component4 True False 2 Standard2 0 100 2

Name Procurement Life (years) Life Code Market Share Volatility Years of Use Enterprise Experience (years) Standard Defined By
Standard1 Normal(25,5) 3 10.00% 1 5 5 Defined by entity or group, with licensing restrictions
Standard2 Normal(25,5) 3 60.00% 1 10 1 Defined by group, no licensing restrictions

158

D.4: Parameters

The parameters page is used to set many of the parameters and baseline costs

used in the model. These are typically defined by the enterprise, so when running

many simulations, they may often be set to the desired value, and then left alone. The

input parameters are as follows:

1. Base cost to qualify a standard for use by the enterprise

2. Base cost to qualify a hardware component for use in a system

3. Base cost to qualify a software component (per KSLOC) for used in a

system

4. Base cost to qualify an overall system design, to verify the architecture

will perform as required

5. Base cost of an outgoing test, to verify that the system is functioning

properly

6. Hardware diagnosis and replacement cost ratio – the cost to identify

and replace a failed component, expressed as a proportion of the

component cost.

7. Base cost to install a software update (per KSLOC)

8. Base cost to maintain software (proprietary component or glue code,

per KSLOC)

9. Software update implementation frequency (per year) – how often bug

fixes are sent to the field

10. Annual discount rate, used to move all cost calculations into year 0

dollars

159

11. Inventory support cost ratio – the cost to support hardware spares in

inventory for one year, expressed as a proportion of the component

cost

12. Spares overbuy percentage – the number of extra spares to stockpile in

the event of obsolescence

13. Spares overbuy penalty ratio – the cost to dispose of unneeded spares

that remain in inventory

14. Spares underbuy penalty ratio – the added cost to procure a component

that has gone obsolete in the event that too few spares were purchased

15. Base cost to initialize a design refresh

16. Base cost to design a hardware component

17. Base cost to design a software component

18. Base cost to integrate a hardware component

19. Base cost to integrate a software component (per KSLOC)

20. Life Code for replacement Standards

21. Life Code for replacement Components

D.5: Weights

The weights worksheet allows for easy re-weighting of the metrics, and can be used

to fine-tune or calibrate the model. Once appropriate values are found, they should be

left alone. If historical data is available, and used to calibrate the model, these

160

parameters should be locked down to avoid further changes. This can be done by

hiding the sheet.

Each of the openness metrics input on the Standards, Components, and

architecture worksheets is represented on the weights worksheet. Each metric has five

inputs, the minimum and maximum cost factor associated with the metric, the

metric’s lower and upper bounds, and the nominal metric value. The minimum and

maximum cost factors represent the lowest and highest possible values of cost factor

(CF). The metric lower and upper bounds are used to shape the CF curve, and

generally correspond to the smallest and largest expected value of the input metric

itself. The metric may, at times, fall outside this range. The nominal value is the value

used for the metric in the event that the input is left blank,52 and represents a typical

value of the metric.

Depending on the metric, the cost factor associated with an openness metric’s

input value is obtained using either a linear, logistic, or asymptotic curve. Linear

curves begin at the minimum value and increase at a constant rate until reaching the

maximum value. Logistic curves (also called “S” curves) grow slowly at first, fastest

in the middle, and then taper off again. Asymptotic curves begin at a minimum value,

but maximum growth rate, and taper off until it reaches the maximum value (and

minimum growth rate).

 Some important notes:

52 A blank and a value of zero are treated separately.

161

1. All openness metric values must be non-negative. Most are positive,

though some may be zero. The nominal metric value, therefore, must

also be non-negative.

2. The metric lower bound, however, may be negative.

3. In all cases, the cost factor (CF) is greater than zero. This means that

the minimum CF and maximum CF must be strictly positive (>0).

4. Metric values do not need to be between the lower and upper bounds

(though they must be non-negative).

5. Even if a metric value falls outside the range [lower bound, upper

bound], the resulting CF value will fall in the range [minimum CF,

maximum CF].

6. When the metric and the CF are positively correlated, metric values

near the lower bound will give a CF close to the minimum value, and

metric values near the upper bound will give a CF close to the

maximum value. When the metric and the CF are inversely correlated

metric values near the lower bound will give a CF close to the

maximum value, and metric values near the upper bound will give a

CF close to the minimum value.

D.6: Simulation

The simulation sheet is used to define the scenario to be used to run the

simulation. These settings include the number of instances of the systems being

162

modeled, the number of trials to run, the number of years of service, and the

production and retirement schedule. These inputs are explained below.

1. Number of system instances: The number of systems to be modeled is

a calculated value, and should not be entered directly. Instead, the

production schedule should be altered to reflect the number of systems

produced in each year of the simulation. The value in cell B2 will

update automatically.

2. Default end of service year: The number of years that the simulation is

run. For the “Range” run type, this is the base year from which offsets

are added/subtracted as appropriate. For the “Life Extended” run type,

this is the base year from which the number of years of life extension

is measured. Notice of life extension is given some number of years

before the default end of service.

3. Number of trials: The number of times the simulation is to be run.

More trials take longer, but give a better picture of how the system is

expected to behave.

4. Retirement Offset (Min and Max): Used in the “Range” run type, to

set the first and last year EOS year to be simulated. The values may be

positive or negative, but the minimum value must be less than the

maximum value.

5. Maximum life extension: Used in the “Life Extended” run type to

determine the maximum number of years that the system may be life

extended. This must be a positive value.

163

6. Life extension notice: The number of years before the default EOS

date at which the system is life extended. Before this point, all

calculations assume the system is to be retired at the EOS date.

Afterward, the life-extended EOS date is used. This must be a positive

value.

7. Production and retirement schedules: Used to tell how many systems

are produced and retired in each year. Any unretired systems are

supported until the EOS date.

8. Number of system types: Used to run multiple simulations at once.

Select a number between 2 and 5.

9. System Name: A unique name given to each type of system

(architecture and support methodology) being run. When different

architectures are being compared, this may be the architecture name.

10. System architecture: The architecture sheet that defines the system

being modeled. Architectures to be compared should be of similar

functionality, and described at the same level of detail.

11. Obsolescence mitigation strategy: How obsolete components are

supported. Options are to perform a Lifetime buy, a bridge buy (as

defined by the user or by the DRP model), or to immediately find a

replacement.

12. Component refresh period: If bridge buy is selected, this tells how

often design refreshes are conducted.

164

13. Upgrade period: After a design refresh, the deadline by which all

active systems must be upgraded to the newest version.

14. For repairs between refresh and upgrade: Once an obsolete component

has been refreshed, failed instances of the obsolete component may be

replaced by the old (obsolete, but stockpiled) component, or by the

current version of the component.

There are three run types. The first, most basic run type is the “Single EOS”

run, where the simulation is run once for each trial, using the production and

retirement schedules as given. This type of run gives an understanding of which

architecture is more expensive to support, and how the difference in support costs

between the two architectures changes over the life of the system.

The “Range EOS” runs the simulation several times for each trial, using the

production schedule as given, but using a range of end of service dates. For this type

of run, the retirement schedule is shifted forward or backward by the number of years

as defined by the retirement offsets. This gives a picture of how sensitive the relative

support costs of the two architectures are to their support life. This type of run can be

used to demonstrate that while one architecture is less expensive for relatively short

support lives, the other architecture may be preferable if the support life exceeds

some value.

The final run type is the “Life Extended” run. In a life extended run, the

system is initially supported for retirement at the EOS dat. At some point (“Life

Extension Notice” years before the EOS date), the system is life-extended, and must

165

be supported until a later date. This is used to examine the impact of life-extension on

the total life cycle cost. While one architecture may be less expensive to support until

the originally scheduled EOS date, it may be desirable to use a different architecture

if there is a high likelihood that the EOS date will be pushed later during the support

life.

D.7: Results Sheets

The Results sheets are where the results of the simulation are displayed.

Currently, this is a graph that depends on the run type used. Single EOS gives a graph

showing cumulative difference in cost over time, as well as a pie-graph categorizing

the primary cost differences between the two systems. Range EOS and Life Extended

runs give a graph that shows total cost difference for support until a given year.

Histograms are available to give a cross-sectional view of the different trials.

This can be used to determine the confidence that the cost difference will be greater

or less than a specific value.

166

Glossary
API – Application Programming Interface. Defines how software components interact

with each other.

ARCI – Acoustic Rapid COTS Insertion. An effort to modernize an improve a Navy

sonar system through the use of COTS components

CBS – COTS Based System. A system that employs COTS components to provide

most, if not all, of its required functionality

CFD – COTS Functional Density. The average percentage of functionality provided

by each COTS component.

COCOMO – Constructive Cost Model. An parametric model for software cost

estimation developed by Barry Boehm (University of Southern California).

Component – Any part, be it hardware, software, or a combination of the two, which

is procured or designed as a single unit

COTS – Commercial Off-The-Shelf

De-facto Standard – A standard that has become popular or dominant after being

selected by the market, as opposed to being officially approved.

DMSMS – Diminishing Manufacturing Sources and Material Shortages

DoD – Department of Defense

DRP – Design Refresh Plan. A design refresh plan for a system details the number of

refreshes to be conducted, the timing of those refreshes, and components

effected by each refresh.

Enterprise - An entity that defines and maintains a system design, and deploys one or

more instances of that system to fulfill operational requirements. An

enterprise may maintain designs and provide operational support for several

types of systems at the same time with similar or diverging purposes.

Interface Standard – a Standard that focuses on how a component interacts with its

surrounding components, and not on the internal operation of the component.

167

Interoperability – The ability of systems and subsystems to work together

IP – 1) Intellectual Property. 2)Internet Protocol

Key Interface – Interfaces that pass the most important information between

functionally adjacent components or subsystems, or an interface that connects

a technologically volatile subsystem to a more stable one

Mission Critical – components or capabilities that are necessary for the successful

completion of a mission [51]

MOCA – Mitigation of Obsolescence Cost Analysis. A methodology and

accompanying software tool developed by Dr. Peter Sandborn and the Center

for Advanced Life Cycle Engineering (CALCE) that can be used to model the

effects of component obsolescence on a system’s sustainment costs. Can be

used to determine the optimum design refresh plan (DRP) for the system.

MOSA – Modular Open Systems Approach. Also used to mean Modular Open

Systems Architecture, an architecture that is designed in accordance with

MOSA principles.

MOSA PART – MOSA Program Assessment and Rating Tool

MpMe – Multi-Part Multi-Event. A simplified, less computationally expensive DRP

model that can be used in place of MOCA. MpMe only considers DRPs that

have a constant period.

OA – Open Architecture. An Open Architecture is any architecture that

predominantly or exclusively employs open standards to define the interfaces

between its components, particularly at Key Interfaces. The openness of an

architecture varies with the type and number of standards used, and with the

number of interfaces which use each of those standards. The openness of an

architecture may be increased by switching to standards that are more open,

and by utilizing fewer standards overall.

OAAM – Open Architecture Assessment Model. “The OAAM describes the business

and technical characteristics of a program or system's open architecture

168

maturity. [It] is the precursor to the OA Assessment Tool (OAAT), which

grew out of the need for a more rigorous assessment of program's openness

than the OAAM could provide.” [68]

OAAT – Open Architecture Assessment Tool. A software tool developed by the

Naval Open Architecture Enterprise Team (OAET) to allow program

managers to assess the level of openness of their program using. This

assessment is done both in terms of technical openness, and the openness of

the business plan.

OAET – Open Architecture Enterprise Team

Open Source – A philosophy and movement, particularly for software, based on the

idea of universal free and unhindered access to a component’s definition, use,

and redistribution.

Open Standard – Well-documented, publicly accessible Standards that are either free

to use, or licensed for a small fee or royalty.

Open System – Systems that employ Open Standards. See Open Architecture (OA)

OSA – Open Systems Architecture. See Open Architecture (OA). Also used to mean

Open Systems Approach, a set of principles, and the deployment thereof, used

to design systems with an Open Systems Architecture.

OSJTF – Open Systems Joint Task Force

Proprietary Standard – A standard defined and controlled by a private enteprise which

places restrictions on its access and use.

RAND – Reasonable and Non-Discriminatory: a system in which IP is made

available for use to everyone equally, and for reasonable cost. Also called Fair

Reasonable and Non-Discriminatory (FRAND). Considered a type of open IP

license, though less open than RF licensing.

RF – Royalty Free: a system in which IP is made available for use without any

licensing fees or royalties. This is the most open type of IP license.

169

Safety Critical – Components or capabilities that are necessary to prevent human

injury or loss-of-life

SDO – Standards Defining Organization. Also SSO.

SSO – Standards Setting Organization. Also SDO.

Standard – Also called a technical standard, a specification (usually hardware) or a

protocol (software). A Standard is a formally defined methodology or

structure for use by any number of components, particularly for an interface or

other external feature that interacts with other components.

Subsystem – a combination of one or more components or lower-level subsystems

that interact to perform a higher level of functionality.

System Architecture – any high-level electronic “system of systems” made up of

some number of subsystems or components. Architecture – a hierarchical

breakdown that details the functional location and interactions of each

component in a system

TCO – Total Cost of Ownership

TRL – Technology Readiness Level

170

References

[1] N. H. Guertin and R. W. Miller, "A-RCI -- The Right Way to Submarine

Superiority," Naval Engineers Journal, vol. 110, no. 2, pp. 21-33, 1988.

[2] Defense Standardization Program Case Studies, "Acoustic-Rapic Commerical-

Off-The-Shelf Insertion," United States Department of Defense, Case Study 13

(DSP-CS-13), from http://www.dsp.dla.mil/, no date.

[3] Defense Standardization Program Case Studies, "Navy Self-Contained Breathing

Apparatus: Market Resarch Yields Significant Results," United States

Department of Defense, Case Study 1 (DSP-CS-1), from

http://www.dsp.dla.mil/, no date.

[4] Defense Standardization Program Case Studies, "Hull Mechanical and Electrical

Equipment Standardization Program," United States Department of Defense,

Case Study 8 (DSP-CS-8), from http://www.dsp.dla.mil/, no date.

[5] J. W. Abbott, A. Levine and J. Vasilakos, "Modular/Open Systems to Support

Ship Acquisition Strategies," in American Society of Naval Engineers Day 2008

Proceedings, Arlington, VA, 2008.

[6] Open Systems Joint Task Force, "Program Manager's Guide: A Modular Open

Systems Approach (MOSA) to Acquisition," United States Department of

Defense, Available online: http://www.acq.osd.mil/osjtf/pdf/PMG_04.pdf,

September 2004.

[7] G. T. Logan, "The Modular Open Systems Appraoch (MOSA)," OSJTF

presentation to the Executive Program Managers Course, from:

acc.dau.mil/CommunityBrowser.aspx?id=37585, May 2004.

[8] M. Boudreau, "Acoustic Rapid COTS Insertion: A Case Study in Modular Open

Systems Approach for Spiral Development," in International Conference on

Systems of Systems Engineering, pages 1-6, San Antonio, TX, 16-18 April, 2007.

171

[9] J. M. Hanratty, R. H. Lightsey and A. G. Larson, "Open Systems and the

Systems Engineering Process," Office of the Undersecretary of Defense,

Acquisition and Technology; Open Systems Joint Task Force, 2002.

[10] L. Bass, D. de Niz, J. Hansson, J. Hudak, P. Feiler, D. Firesmith, M. Klein, K.

Kontogianis, G. Lewis, M. Litoiu, D. Plakosh, Sc, S. Schuster, L. Sha, D. Smith

and K. Wallnau, "Results of SEI Independent Research and Development

Project," Software Engineering Institute, Carnegie Mellon University, (Technical

Report CMU/SEI-2008-TR-017) July 2008. Available from www.sei.cmu.edu.

[11] P. Lewis, P. Hyle, M. Parrington, E. Clark, B. Boehm, C. Abts and R. Manners,

"Lessons Learned in Developing Commercial Off-The-Shelf (COTS) Intensive

Software Systems," Federal Aviation Administration (FAA) Software

Engineering Resource Center (SERC) Report, 2000.

[12] B. Clark and B. Clark, "Added Source of Costs in Maintaining COTS-Intensive

Systems," Cross Talk, The Journal of Defense Software Engineering, vol. 20, no.

6, pp. 4-8, June 2007.

[13] C. Abts, "COTS Based Systems (CBS) Functional Density - A Heuristic for

Better CBS Design," in COTS-Based Software Systems, Orlando, FL, Springer

Berlin Heidelberg, 2002, pp. 1-9.

[14] J. W. Abbott, "The Evolution of Modular Open Systems in Naval Ship Design:

1975 - 2010," in ANSE Breakfast Seminar on Ship Design and Acquistion -

Lessons Learned, June 3, 2010.

[15] US Department of Defense, "The Defense Acquisition System," in US DoD

Directive Number 5000.1 (DODD 5000.1), United States Department of

Defense, 2003.

[16] J. H. Lienhard, "No. 1252: Interchangable Parts," [Online]. Available:

http://www.uh.edu/engines/epi1252.htm.

[17] Naval Open Architecture Enterprise Team, Open Architecture Assessment Tool,

172

Version 3.0, User's Guide, 2009.

[18] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard

Computer Glossaries, New York, NY: Institute of Electrical and Electronics

Engineers, 1990.

[19] C. Roark and B. Kiczuk, "Open Systems: A Process for Achieving

Affordability," IEEE Aerospace and Electronic Systems Magazine, vol. 11, no.

9, pp. 15-20, September, 1996.

[20] C. Jones, "Geriatric Issues of Aging Software," Cross Talk, The Journal of

Defense Software Engineering, vol. 20, no. 12, pp. 4-8, December 2007.

[21] E. Maxwell, "Open Standards, Open Source, and Open Innovation - Harnessing

the Benefits of Openness," Innovations: Technology, Governance, Globalization,

vol. 1, no. 3, pp. 119-176, 2006.

[22] M. D. Petty and E. W. Weisel, "A Composability Lexicon," Proceedings of the

Spring 2003 Simulation Interoperability Workshop, pp. 181-187, 2003.

[23] Defense Standardization Program Case Studies, "Joint Tactical Radio System,"

United States Department of Defense, Case Study 12 (DSP-CS-12), from

http://www.dsp.dla.mil/, no date.

[24] Defense Standardization Program Case Studies, "The Virginia Class Submarine

Program," United States Department of Defense, Case Study 15 (DSP-CS-15),

from http://www.dsp.dla.mil/, no date.

[25] M. Bourdreau, "Acoustic Rapid COTS Insertion: A Case Study in Spiral

Development," Naval Postgradate School Acquisition Research Program Case

Study, Monterey, CA, 2006. Available at: www.acquisitionresearch.org.

[26] H. Livingston, "GEB1: Diminishing Manufacturing Sources and Material

Shortages (DMSMS) Management Practices," in Proceedings of the DMSMS

Conference, Jacksonville, FL, August 21-24, 2000.

173

[27] P. Y. Chau and K. Y. Tam, "Factors Affecting the Adoption of Open Systems:

An Exploratory Study," Management Information Systems Quarterly, vol. 21,

no. 1, pp. 1-24, March 1997.

[28] K. Krechmer, "The Meaning of Open Standards," in 38th Annual Hawaii

International Conference on System Sciences, 2005.

[29] ITU-T, "Definition of "Open Standards"," 2010. [Online]. Available:

http://www.itu.int/en/ITU-T/ipr/Pages/open.aspx. [Accessed 10 2012].

[30] M. L. Marcus, C. W. Steinfield, R. T. Wigand and G. Minton, "Industry-Wide

Information Systems Standardization as Collective Action: the Case of the US

Residential Mortgage Industry," MIS Quarterly, vol. 30, no. Special Issue on

Standardization, pp. 439-465, 2006.

[31] N. Aggarwal, Q. Dai and E. Walden, "Are Open Standards Good Business?,"

Electron Markets, vol. 22, pp. 63-68, 1 2012.

[32] A. Layne-Farrar, A. J. Padilla and R. Schmalensee, "Pricing Patents for

Licensing in Standard-Setting-Organizations: Making Sense of FRAND

Commitments," in CEPR Discussion Paper No. 6025, January, 2007.

[33] D. Geradin, "Standardization and technological innovation: Some reflections on

ex-ante licensing, FRAND, and the proper means to reward innovators," in

Conference of Intellectual Property and Competition Law, Brussels, June 2006.

[34] M. A. Lemley, "Intellectual Propery Rights and Standard-Setting Organizations,"

California Law Review (online), vol. 90, 2002.

[35] P. Chappatte, "FRAND Commitments - The Case for Antitrust Intervention,"

European Competition Journal, vol. 5, no. 2, pp. 319-346, August, 2009.

[36] Open Source Initiative, "Open Standards Requirement for Software," [Online].

Available: http://opensource.org/osr.

[37] B. Perens, "Open Standards: Principles and Practice," [Online]. Available:

174

http://perens.com/OpenStandards/Definition.html.

[38] G. Hagan, Glossary of Defense Acquisition Acronyms and Terms, 13th Edition

ed., Fort Belvoir, VA: Defense Acquisition University, 2009.

[39] J. L. Contreras, "Rethinking RAND: SDO-Based Approaches to Patent

Licensing Commitments," in ITU Patent Roundtable, Geneva, October 10, 2012.

[40] M. Glader, "FRAND licensing obligations and industry standards," in Jevons

Institute for Competition Law and Economics Conference on Antitrust and

Intellectual Property, London, May 2007.

[41] Open Source Initiative, "History of the OSI," 9 2012. [Online]. Available:

http://opensource.org/history.

[42] B. Perens, "The Open Source Definition," [Online]. Available:

http://opensource.org/osd.

[43] B. X. Chen, "How Lightning Tightens Apple's Control Over Accessories," The

New York Times, 14 February 2013. [Online]. Available:

http://bits.blogs.nytimes.com/2013/02/14/lightning-apple/.

[44] Defense Standardization Program Case Studies, "NAVSTAR Global Positioning

System: A Military Standard Transforms Global Navigation," United States

Department of Defense, Case Study 6 (DSP-CS-6), from

http://www.dsp.dla.mil/, no date.

[45] Defense Standardization Program Case Studies, "Joint Precision Approach and

Landing System," United States Department of Defense, Case Study 11 (DSP-

CS-11), from http://www.dsp.dla.mil/, no date.

[46] Defense Standardization Program Case Studies, "Common Air Defense

Interrogator," United States Department of Defense, Case Study 16 (DSP-CS-

16), from http://www.dsp.dla.mil/, no date.

[47] Open Systems Joint Task Force, "Case Study of the U.S. Army's Intelligence and

175

Electronic Warfare Common Sensor (IEWCS)," November, 1996.

[48] Defense Standardization Program Case Studies, "Army Battery Standardization:

Rechargeable Batteries Power the Future Force," United States Department of

Defense, Case Study 7 (DSP-CS-7), from http://www.dsp.dla.mil/, no date.

[49] Defense Standardization Program Case Studies, "Aircraft Batteries and

Components: Design Improvements and Standardization Yield Savings and

Reliability," United States Department of Defense, Case Study 2 (DSP-CS-2),

from http://www.dsp.dla.mil/, no date.

[50] Defense Standardization Program Case Studies, "Mechanically Attached Pipe

Fittings: More Cost-Effective Pipe Fabrication Through Standardization," United

States Department of Defense, Case Study 5 (DSP-CS-5), from

http://www.dsp.dla.mil/, no date.

[51] P. Singh and P. Sandborn, "Obsolescence Driven Design Refresh Planning for

Sustainment-Dominated Systems," The Engineering Economist, vol. 51, no. 2,

pp. 115-139, April-June 2006.

[52] J. E. Devereaux, "Obsolescence: A Systems Engineering and Management

Approach for Complex Systems," February 2010.

[53] R. I. Nelson and P. Sandborn, "A New Cass of Multi-Event Models for

Determining the Optimum Refresh Frequency of Systems," in Proceedings

DMSMS Conference, Orlando, FL, November 2012.

[54] K. Emery, "Surface Navy Combat Systems Engineering Strategy," Program

Executive Office, Integrated Warfare Systems, 2010.

[55] Defense Standardization Program Case Studies, "Consolidated Acquisition of

Standards-Related Information," United States Department of Defense, Case

Study 17 (DSP-CS-17), from http://www.dsp.dla.mil/, no date.

[56] M. Wright, D. Humphrey and P. McCluskey, "Uprating Electronic Components

176

For Use Outside Their Temperature Specification Limits," IEEE Transactions on

Components, Packaging, and Manufacuturing Technology, Part A, vol. 20, no.

2, pp. 252-256, June 1997.

[57] F. Jensen and N. E. Petersen, Burn-in: An Engineering Approach to the Design

and Analysis of Burn-In Procedures, NewYork: Wiley, 1982.

[58] AFRL/RYM Metrics Working Group, MOSA Metrics Calculator, Unpublished

manuscript, 2012.

[59] P. Henderson, "The Case for Open Systems Architecture," 14 December 2009.

[Online]. Available: http://pmh-systems.co.uk/Papers/MOSACaseFor/.

[60] P. Henderson, "A Fuzzy Measure of Openness," 8 February 2012. [Online].

Available: http://pmh-systems.co.uk/Papers/MOSAopennessMetric/.

[61] C. Abts, Extending the COCOMO II Software Cost Model to Estimate Effort

and Schedule for Software Systems using Commercial-Off-the-Shelf (COTS)

Sofware Components: The COCOTS Model, Ann Arbor, Michigan: UMI

Microform, May, 2004.

[62] T. Ellis, "COTS Integration in Software Solutions: A Cost Model," in Systems

Engineering in the Global Marketplace, NCOSE International Symposium, St.

Louis, MO, July 1995.

[63] C. Abts and B. Boehm, "COTS Software Integration Cost Modeling Study,"

Univesrity of Southern California Center for Software Engineering, 1997.

[64] C. Abts and B. Boehm, "COTS/NDI Software Integration Cost Estimation &

USC-CSE COTS Integration Cost Calculator V2.0 User Guide," University of

Southern California Center for Software Engineering, September, 1997.

[65] R. Stutzke, "Quantifying the Costs of COTS Volatility," in Twelfth International

Forum on COCOMO and Software Cost Modeling, Los Angeles, October 1997.

[66] S. B. A. B. Lamine, L. L. Jilani and H. H. B. Ghezala, "SoCoEMo-COTS: A

177

Software Economic Model for Commerical Off-The-Shelf (COTS) Based

Software Development," in Proceedings of the International Conference on

software Engineering Research and Practice, & Conference on Programming

Languages and Compilers, SERP 2006, 2006.

[67] P. Sandborn, "Chapter 14: Burn-In Cost Modeling," in Cost Analysis of

Electronic Systems, World Scientific, 2013.

[68] J. Abel, E. Berndt and A. White, "Price Indexes for Microsoft's Personal

Computer Software Products," National Bureau of Economic Research,

Cambridge, Massachusetts, September 2003.

[69] AFRL/RYM MBE Project Team, Interconnect Trade Study, Unpublished

manuscript, 2011.

[70] Acquisition Community Connection (ACC) Defense Acquisition University

(DAU), "Open Architecture Assessment Model (OAAM)," 3 2005. [Online].

Available: https://acc.dau.mil/CommunityBrowser.aspx?id=31395.

[71] P. Sandborn and G. Plunkett, "The Other Half of the DMSMS Problem -

Software Obsolescence," DMSMS Knowledge Sharing Portal Newsletter, vol. 4,

no. 4, pp. 3,11, June 2006.

[72] A. Minkiewicz, "The Real Costs of COTS," Price Systems, L.L.C., March 2001.

[73] D. J. Repici, "Managing IT: The Return of the LOC Monster," Creativyst, 2009.

[Online]. Available:

http://creativyst.com/Doc/Articles/Mgt/LOCMonster/LOCMonster.htm.

[Accessed January 2013].

[74] B. Boehm, C. Abts and B. Clark, COCOMO II Model Definition Manual,

University of Southern California, 2000.

[75] Naval Systems Air Command, "Technical Data Packages (TDP): NAVAIR 6.0

Logistics and Industrial Operations," [Online]. Available:

178

http://www.navair.navy.mil/logistics/TechDataPack/index.html. [Accessed 5

2013].

