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An open systems approach (OSA), especially when used in conjunction with 

modular architecture, reuse, and harnessing of existing (COTS or proprietary) 

technologies, is commonly associated with cost avoidances resulting from: more 

efficient design; increased competition among suppliers; more efficient innovation 

and technology insertion; and modularization of qualification. However, OSA 

strategies require investment and may increase risk exposure. To determine if 

openness should be pursued, and to what degree, a quantitative model assessing the 

costs associated with openness is required. 

Previous attempts to measure openness rely on qualitative measures, and 

cannot be used to estimate the life cycle cost impacts of openness. The model 

developed in this thesis quantitatively determines the effects of openness on life cycle 

cost. The life cycle cost difference between two implementations with differing levels 

of openness was calculated for a case study of an ARCI sonar system, providing 

insight into the value of openness.  The case study performed in this thesis provides 

the first known quantitative support for Abts’ COTS-LIMO hypothesis that increasing 

CFD increases cost avoidance. However, these results challenge Henderson’s implicit 

assumption that marginal openness is always positive (increasing openness is always 

beneficial).
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Chapter 1: Introduction 

1.1: Motivation 

Historically, when large, complex electronic systems1 were created, critical 

functionality was provided by bespoke components that were designed for the 

specific conditions and requirements. This was especially true for military systems, 

where state-of-the-art and high-performance components are necessary for the 

successful and safe completion of assignments (mission critical and safety critical) 

[1]. The use of custom-made components (hardware and software) results in long 

development times and high development costs, as significant effort is expended to 

recreate functionality that is, increasingly, commercially available [2, 3]. 

In the last few decades, technological advancement has proceeded at break-

neck pace, with computing power increasing exponentially, while hardware 

simultaneously shrinking in both size and weight. This has allowed electronics to 

become more general, so that hardware and software components can be designed 

once, and then used in many different applications [1, 4]. These advancements have 

                                                

1 Throughout this thesis, the term “system” will be used to mean any high-level “system of systems”, 
made up of some number of subsystems and components. A system may be a ship, airplane, or radar. 
The term “component” will be used to refer to any lowest-level part, be it hardware, software, or some 
combination of the two, which is designed or procured as a single unit. The term “enterprise” will be 
used to refer to any entity that defines and maintains a system design, and then employs one or more 
instances of that system to fulfill operational requirements. An enterprise may maintain designs and 
provide operational support for several types of systems at the same time with similar or diverging 
purposes. For example, Rolls Royce offers several types of aircraft engines, while General Dynamics 
designs aerospace, naval, and land-based systems. 



 

2 

increased the viability of using Open Systems Architectures (OSA) in general, and a 

Modular Open Systems Approach (MOSA) in particular [5, 6].2 

Generally, it is taken for granted that the use of OSA and MOSA principles is 

a way to decrease the total life cycle cost of a system. Leveraging existing, open 

technology, including commercial off-the-shelf (COTS) components, avoids much of 

the costs associated with designing a component from scratch, and the time required 

for development or refresh of the system can be greatly reduced [7]. This allows for 

faster, less expensive, and more frequent design refreshes, which helps mitigate the 

effects of obsolescence and can lengthen the life of the system. Frequent refreshes 

allow for the insertion of new or improved technologies, allowing incremental 

improvements to the system during its use. This is sometimes referred to as “spiral 

development” [6, 8]. Use of well-defined standards promotes smooth interfacing both 

within and between systems. Use of common component types fosters competition 

between suppliers, which can reduce the component’s procurement cost. Reuse of 

components (within and between systems) eliminates redundant components, and 

allows for economies of scale, further reducing costs.  

However, the use of an open methodology represents a tradeoff because there 

are costs associated with using an open methodology. For example, COTS 

components may not meet the required size, weight, or performance specifications; 

those that do may be prohibitively expensive. Further, use of commercial components 

                                                

2 OSA is sometimes used to mean Open Systems Approach, the set of principles, and the deployment 
thereof, used to design systems with an Open Systems Architecture. Likewise, MOSA is also used to 
mean a Modular Open Systems Architecture, an architecture that is designed in accordance with 
MOSA principles. 
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to build a subsystem may require the use of generalized components with unnecessary 

additional functionality, adding to the cost, size, and complexity of the subsystem. A 

specially designed subsystem may be simpler and less bulky. Additionally, 

unnecessary functionality and complexity increase the cost of qualifying the 

component and system, and could also increase the effective failure rate [9, 10].3  

Moreover, by using of commercial instead of proprietary components, the enterprise 

loses some control over the supply chain, unless the enterprise has a particularly large 

demand for the component [11]. COTS components are also more volatile than 

proprietary components, receiving minor4 updates more often, and becoming obsolete 

more quickly. This makes it desirable to refresh MOSA designs more frequently [12, 

13]. In addition to added refresh costs, refreshing more frequently may lead to an 

increase in the number of fielded configurations, with an accompanying increase in 

outlays for logistics to track and support each of these versions. These factors mean 

that there are situations in which a more open system could end up being more 

expensive than a “closed” one. It is therefore important to be able to quantify 

openness and to predict the total costs avoided and added due to its openness. 

 

                                                

3 For example, the initial flight of the Ariane 5 rocket suffered catastrophic failure due to unnecessary 
functionality in a software component that was reused from the Ariane 4 rocket [10]. 
4 A “minor” change or update is one, such as a bug fix or manufacturing process change, that does not 
significantly affect the use of the component. A “major” change affects the component’s use, such as 
an interface update or a change in technology, is modeled as an obsolescence event. 
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1.2: Modular Open Systems Approach (MOSA) 

MOSA is a combined business and engineering strategy that draws on a 

modular design and the use of open standards when developing a new system or 

updating an existing one [6]. Modular design is an approach in which a system’s 

required functionality is divided amongst its components or subsystems (modules), 

such that each module can be deployed independently. The United States Navy’s first 

attempts at using modular systems began with the Seas Systems Modification and 

Modernization by Modularity (SEAMOD) program in 1975 and the Ship Systems 

Engineering Standards (SSES) program in 1980. These efforts were not realized, in 

part because limitations on computing power, longer component procurement lives, 

and a lack of popular, well-defined open standards meant that there was little impetus 

or desire to challenge the status quo [14]. By 1994, these obstacles had been 

diminished, and the Open Systems Joint Task Force (OSJTF) was created to establish 

and encourage the use of MOSA. In 2003, the Department of Defense (DOD) 

published a directive, DODD 5000.1, which required that “a modular, open systems 

approach shall be employed, where feasible” [15, 7]. 

Design modularity takes many forms. Use of interchangeable parts dates back 

to at least the 18th century, when Honoré Blanc and then Eli Whitney demonstrated 

that by standardizing the dimensions of gun components to a strict tolerance, guns 

could be assembled and repaired with stocked components, instead of requiring a 

specially made component [16]. This insight, crucial to production during the 

industrial revolution, is the concept of maintenance modularity, which allows 

individual components or subassemblies to be interchangeable, regardless of their 
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manufacturer, the system they are installed in, or their location within that system. 

Closely related is the idea of production modularity.5  Production modularity allows 

for complex subsystems to be constructed and tested independently in specialized 

locations and then brought together for final assembly. This allows for shorter 

assembly time [14]. Mission modularity is achieved by designing interchangeable 

subsystems that serve different functions. The system can then be quickly 

reconfigured depending on the requirements of the current mission. This was used for 

the Littoral Combat Ship (LCS), so that it could complete diverse missions. Its 

dedicated mission modules include anti-submarine warfare (ASW), anti-surface 

warfare (SUW), and mine countermeasure (MCM) [5]. When the same component or 

specialized module is used in several different types of systems or platforms, it may 

be called component sharing. Component sharing reduces the number of component 

types used, simplifying logistics. 

The use of a modular, open systems approach is assumed to reduce costs by 

increasing the interoperability, maintainability, extensibility, composability, and 

reusability of the system [17]. Each of these goals is defined below. 

 

1.2.1: Interoperability 

IEEE defines interoperability as “the ability of two or more systems or 

components to exchange information and to use the information that has been 

exchanged” [18]. For example, different types of aircraft must all be able to interact 

                                                

5 Also called construction modularity 
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using the same radio and air-traffic control systems. The concept of interoperability 

can also be applied to different versions of the same component – if one workstation 

is upgraded to newer software, it should still be able to communicate properly with 

the other workstations. Interoperability is achieved by using standardized interface 

protocols in place of proprietary ones for both hardware and software [6, 19]. Well-

defined interface standards allow components that were designed separately to work 

harmoniously, even if one or both of them have been repurposed from a different 

application. Modularity is crucial to allow for the different components to be 

connected together in new configurations. An example of interoperability is the 

standardization of USB drives. USB drives are modular, so a computer with a USB 

drive connection is compatible with any USB device, and each USB device can be 

used with any computer (see also Composability). For the most part, this 

interoperability transcends the hardware, software, and operating system used. This 

reduces the number of specialized ports a computer needs, and allows for greater 

flexibility of setup and choice of components. Additionally, since USB is an open 

standard, anyone can design a USB device, and there are many vendors to choose 

from when purchasing a USB device. 

 

1.2.2: Maintainability 

Maintainability is the ability to easily locate (diagnose) and correct defects, 

and the ability to operate in a given environment and performance level without an 

undue number of failures. This applies to hardware and software at both the 
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component and system levels. Failed hardware should be easily replaceable – 

male/female ports or screw connections are preferable to soldered ones. For software, 

maintainability deals not only with the initial quality of the code, but the quality of 

improvements and updates made to it [20]. Additionally, software should not be 

hardware dependent. Middleware should be used handle and hardware-specific 

features. This allows the same software to run on many different hardware 

arrangements, with only superficial modifications [2]. In general, using open systems 

increases maintainability6 because widely used and accepted standards are usually 

well understood – any design issues have had time to be resolved (or at least 

documented) by the community using that standard. This knowledge base is 

invaluable, and can be used to help diagnose faulty components, or to identify 

components that, while theoretically interoperable, do not “play nicely” together. If 

new bugs are found, the speed and skill with which it will be resolved is improved, 

because there is a larger community supporting the standard [21]. Designing and 

using a proprietary system, on the other hand, necessitates going through the 

debugging and troubleshooting process from the beginning, without outside 

assistance. Modularity also helps improve maintainability, as it allows failed 

components to be quickly swapped out for operational ones with the same function, 

even if the new components are not the same as the original. For software, modularity 

allows a bug-ridden or inefficient subroutine to be replaced with a new one that is of 

                                                

6 Use of open components, particularly COTS components, may increase operation and support costs 
because of the need to license the IP, subscription fees for maintenance updates, and unforeseen 
incompatibilities between two components that must be resolved by selection of a new component or 
redesign of the interface between them [59]. 
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higher quality. Modularity is likewise useful for managing obsolescence and for 

allowing incremental upgrades. These ideas connect directly to the goals of 

Extensibility and Composability. 

 

1.2.3: Extensibility 

Extensibility measures the degree to which new technologies can be quickly 

and efficiently inserted into an existing system. The new technologies may allow for 

increased performance of an old function, or may introduce entirely new 

functionality. Extensibility is also closely related to scalability, the ability of the 

system to handle a greater work volume or a greater number of inputs. Scalability is 

effectively a measure of extensibility of performance, particularly when the added 

technology is further instances of the original subsystem. As explained above, 

extensibility can be accomplished through the use of standardized interfaces and 

modular architecture so that a new component with the same interface standard and 

similar form factor can replace an older component. Extensibility may be applied to 

individual components or a cohesive subsystem. An example of extensibility due to 

use of open standards is the ability to upgrade the DRAM module on a computer from 

1 GB to 2 GB. 

 

1.2.4: Composability 

Composability is the ability to use (and reuse) systems or subsystems 

independently of one another. In order for subsystems to be composable, they must be 
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modular and self-contained so that the subsystem can be deployed without any other 

accompanying items [22]. Additionally, the interface standard used must be well 

defined and consistent across all subsystems. Ideally, each component should act as a 

“black box” which has certain inputs and outputs as defined by its interface standard 

– the exact mechanics of its inner workings should be irrelevant to the surrounding 

components. Composability allows an enterprise to select from components from a 

library and assemble them into different configurations to create different systems 

that can fulfill unique sets of requirements [22].  

 

1.2.5: Reusability 

The capacity to take an old system and apply it to new uses is the measure of 

its reusability. Reusability applies within a single system design (using the same 

microprocessor or chip for all boards in System A); across unrelated designs (two or 

more independent systems designed and produced by the same enterprise); and even 

between enterprises [4, 23]. Like composability, reusability is facilitated by the use of 

open standards and modular architecture. Reuse allows for design requirements to be 

met with existing components, without the significant investment that would 

otherwise be required to create a new design, qualify a new component, or qualify a 

new vendor. Reuse also reduces the number of unique components that must be 

tracked and supported by an enterprise [24]. 

Modular, open architectures are made up of one or more subsystems that 

interact via a modular backbone. When possible, well-defined, publicly available 
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(open) standards are used, particularly for the system’s “key interfaces”. Key 

interfaces are interfaces that are used to pass the most important information between 

functionally adjacent components or subsystems [6, 17]. An interface may also be 

designated as a key interface if it connects a technologically volatile subsystem to a 

more stable one [7]. Defining standards for these interfaces helps to isolate them from 

one another, protecting against the ripple effect [25]. Modularity is a vital component 

of this strategy, because a modular architecture allows for the replacement or redesign 

of one subsystem with minimal impact on the surrounding subsystems (Figure 1). 

This enables subsystems to be re-qualified independently [26]. As such, refreshes 

Figure 1:  Subsystem 1 uses a modular architecture, and the components do not interact 
directly. A change to one component is therefore isolated to that component, which may be 
requalified independently. Subsystem 2 does not use a modular architecture, and a change 
to one component affects all components. Updating one component requires all 
components be updated and requalified. This is called the ripple effect. 
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may be conducted more frequently, which allows for improved performance and 

increased functionality. The modular architecture also increases the system’s 

scalability and extensibility, since new modules (or additional instances of existing 

ones) may be added more easily [27]. By utilizing open standards, an enterprise can 

leverage existing technology and harness commercial off-the-shelf (COTS) 

components, instead of developing and maintaining the technology itself [8, 2, 24, 3].  

 

1.3: Openness and Open Architecture 

1.3.1: Defining Openness 

The terms “open” and “openness” are used in a wide range of fields, and have 

a broad definition. In general, openness refers to the characteristics of availability, 

transparency, and not hiding or obstructing access to information. When applied to 

objects such as architectures, systems, or components, openness is a measure of the 

degree to which an object conforms to a set of defined standards, and the openness of 

those standards. A standard is a formal definition of the methodology and structure to 

be used by a component or system. An interface standard is a standard that focuses on 

how a component interacts with its surrounding components (as opposed to the 

internal operation of the component). 

The exact degree of openness of a standard or system depends on the context 

in which it is being used. The word “degree” is used because openness is a loosely 

defined metric that is best measured on a comparative scale. While idealized “fully 

open” and “fully closed” standards and systems may be conceived, most standards 
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fall somewhere in the middle of this range. Few, if any, completely open systems 

exist, because all real-world systems use architectures, components, and standards 

that are, at some level, based on the intellectual property of one or more enterprises 

that are not the product designer, manufacturer, or supporter. 

The relative openness of two different standards depends on the definition of 

openness used. Some definitions of openness put requirements on the method used to 

create the standard – open standards are those that are developed using a collaborative 

or quasi-public effort, where all parties who will use the standard have a say in its 

creation [28, 29]. By this definition, de-facto standards that were initially created by a 

single entity are mostly closed, even if all of the details were subsequently published 

and made available to the general public. 

Other definitions of openness focus on the “availability and accessibility” [21] 

or interoperability [30] of the standard. Hanratty, et al, for example, define openness 

as standards, systems, or components that can be “supported by the marketplace, 

rather than being supported by a single (or limited) set of suppliers” [9]. By these 

definitions, a de-facto standard may be made open by publishing its exact 

specifications, and making it available for use by the general public on reasonable and 

non-discriminatory (RAND) terms [31]. (Outside of the US, this type of license is 

commonly referred to as a fair, reasonable, and non-discriminatory, or FRAND 

license [32, 33].) Though licensing under RAND terms has legal implications, the 

terms “fair” and “reasonable” are amorphous and ill-defined. There is little legal 

precedent, and the meaning of these terms is heavily dependent on the organization 

and situation in which it is used [34, 32, 33, 35]. This means that although two 
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standards are both available under RAND licenses, they may have different levels of 

openness. 

Though reasonable royalties are generally a barrier to entry, some require the 

standard to be entirely free to use, without any royalties or licensing fees, in order to 

be considered accessible. This is primarily due to the influence of the “Open Source” 

software movement. Much open source software is developed and used by individuals 

or small private enterprises, where any fee, no matter how small creates a barrier that 

makes the standard inaccessible [21]. For the purposes of this thesis, where the 

primary focus is on systems designed and maintained by larger, more traditional 

enterprises, the former characterization is more useful. We will use the following 

definitions: 

 

 Definition of Open Standard 

An Open Standard is any well documented, publicly accessible, and 

unrestricted standard that is either: a) Royalty Free (RF), or in some cases b) may be 

licensed for a small fee (RAND).7 The openness of a standard may be increased by 

increasing the ease of access for external parties to access its definition. This may be 

done by publishing it, limiting or removing licensing requirements, and reducing 

associated fees. 

 

                                                

7 For simplicity, the term RF is used here to mean license that has no associated usage or IP fees, and 
RAND to mean licenses that have any type of fee, however minimal. In actuality, some RAND 
licenses allow for usage without fees. 



 

14 

 Definition of Open Architecture 

An Open Architecture is any architecture that predominantly or exclusively 

employs open standards to define the interfaces between its components. The 

openness of an architecture may be increased by switching to standards that are more 

open, and by utilizing fewer standards overall. 

 

To be considered well documented, the Standards Defining Organization 

(SDO) must provide enough detail of the specifications so that any other interested 

parties can use the standard to design competing interoperable components. This 

means that all details must be published, and no features hidden or withheld. 

Additionally, the SDO should provide a process for revising the standard to 

incorporate any fixes or emendations [36]. 

A publicly accessible standard is one that is equally available to anyone who 

wants to implement it. For fully open standards, no restrictions may be placed on the 

use of that standard, including limitations on its reuse, modification, or extension. 

However, the SDO may require that any modifications or extensions be published and 

licensed under the same terms as the original standard [37]. 

In order to increase the accessibility of the standard, and thereby foster 

competition, the standard must be available either for free, or for some minimal cost 

[38]. In recent years, many organizations have required standards to be completely 

free to distribute, implement, and utilize (RF licensing) in order to be considered 

open, and have excluded more general RAND licensed standards from their lists of 

open standards. Some have allowed nominal fees (to cover the cost of publishing) to 
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be charged for copies of the standard’s documentation, with the condition that the 

purchasing entity has full rights to copy and distribute it freely. Exception is also 

made for optional certification services, which the SDO may provide at any charge 

[37].  

Though the precise meaning of a RAND (or FRAND) license depends on the 

intent of the SDO, their general intent is apparent. The standard in question must be 

made available fairly, in a manner that is not anti-competitive. This includes 

prohibitions against practices that place undue limitations that could block an 

interested party from licensing the standard [39]. The license must be available for a 

reasonable royalty, where ‘reasonable’ is determined by several factors, including the 

cost to develop the standard, the value of the standard on the open market, the 

existence of alternative standards, and the royalties charged by other SDOs for 

comparable situations [40]. The royalty and license must also be non-discriminatory – 

the SDO may not, for any reason, charge different royalties to different groups, 

require unpaid licenses to others’ intellectual property (uncompensated grant-backs), 

or refuse to license any party that accepts the terms of the RAND license [40]. For 

our purposes, publicly published standards that use RAND licensing are still 

considered open, even though the licensing fees make them less accessible than RF 

licensed standards. 
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1.3.2: Open Source 

Care should be taken not to conflate openness or Open Architecture with the 

principles of Open Source. While the terminology and some of the underlying ideas 

are similar, the two are different things. Openness as defined previously is applied to 

both hardware and software components, and is measured on a scale from fully open 

to fully closed. While the many notions of openness agree in guiding principles, there 

is no single definition. As such, a Standard that was initially developed by a single 

entity and subsequently published for a minimal fee under a RAND license would 

receive a high openness score under our definition, but would score relatively poorly 

by another definition. 

The term “Open Source” was coined by Christine Peterson in 1998 after the 

release of Netscape’s source code and in conjunction with the formation of the Open 

Source Initiative (OSI) [41]. As such, the term refers almost exclusively to software,8 

and has been authoritatively defined by the Open Source Definition [42]: 

1. Free, unrestricted redistribution, including when the software is sold as 

part of a larger work 

2. The Source Code must be accessible and unobscured 

3. Modification and extensions must be allowed so long as they are 

distributed under the terms of the original software 

                                                

8 The Open Source philosophy predates the computer era, and is still present today in non-software 
fields. As a result of the proliferation of the Open Source movement, its terminology has begun to be 
applied to other fields.  
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4. The license may restrict modification of the source code on the 

condition that “patch files” which modify the code when it is compiled 

are allowed. Any extensions may be required to use a different name 

or version number. 

5. No discrimination of persons, groups, or fields of endeavor 

6. The license must be distributed with the software – anyone who 

receives the software are free to edit and distribute it without 

additional licensing 

7. The license must not be product specific 

8. The license must not restrict other software 

9. The license must be technology neutral 

According to this definition, a software item either qualifies as open source, or 

does not - there is no concept of “partially open”. This binary approach means that 

many standards that were once considered to be relatively open (using the definition 

of openness put forth in the previous section, and similar definitions) have been 

reclassified as not open, and has led many SDOs to make their definitions of 

openness more rigorous. A key example is the exclusion of standards that have any 

usage or IP fees. For traditional businesses, small fees are not a significant 

impediment, and so RAND licensed standards may be considered open. The Open 

Source community, on the other hand, is defined by the voluntary collaboration of 

many developers, and a final product that is offered to the public free of charge. In 

this situation, any fee, no matter how small, becomes an insurmountable barrier to 
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entry. However, the Open Source community does recognize a fee-to-use standard as 

open provided that its fees are waved for Open Source projects. 

 

1.3.3: COTS and Openness 

Though, as discussed, there are benefits inherent to using and open approach, 

an important benefit of using open standards is that it enables the enterprise to harness 

off-the-shelf items. Many of the benefits mentioned are enabled by the use of off-the-

shelf items. Other benefits, which exist without the use of off-the-shelf items, are still 

enhanced by this capability [6].  

Commercial Off-The-Shelf, or COTS, is a broad term used to describe 

commercially available, general-purpose hardware and software components. COTS 

components are, by their nature, open to some degree. Many COTS items are fully 

open – based on an open standard, with similar components available from multiple 

sources (USB based hardware and software, for example). Other COTS components, 

though based on proprietary standards, are also open to some degree, because the 

standard is made available for others to use. This is true of Apple’s proprietary 

connectors, for example the new “Lightning” connection port. Apple maintains sole 

control over the standard’s definition, and strictly regulates who is allowed to license 

it, under what terms, and for which products [43]. In such cases, the overall openness 

of the standard is correlated to its final availability and accessibility. The presence of 

COTS hardware or software is enough to indicate that a system is, to some degree, 
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open, because use of COTS components demonstrates that the system is not designed 

exclusively using inaccessible proprietary standards. 

 

1.4: Effects of Openness on Life Cycle Cost 

While the explicit goals of using MOSA are to increase the interoperability, 

maintainability, extensibility, composability, and reusability of the system, there are 

other benefits associated with using open architectures and open standards, including 

increased competition, increased innovation, improved quality, fewer issues due to 

obsolescence of system components, reduced risk, and reduced development time. 

Many of these benefits, which stem simply from the fact that other enterprises are 

using the same standards, are called network effects or network externalities [40]. 

Each of these benefits, which results in significant cost avoidance, has been observed 

by enterprises employing an OSA. However, several case studies have also noted that 

the use of OSA strategies has led to an increased support cost. The viability of an 

open systems approach depends not only on the architecture and components used, 

but on the number of fielded systems, obsolescence mitigation strategy, refresh plan, 

and the number of years the systems are to be supported. 

 

1.4.1: Increased Interoperability 

The use of open standards is crucial to fostering interoperability. It allows 

many different products to work together despite being created and used by different 
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enterprises [35]. One example of this is the NAVSTAR GPS system, where 

standardization and publication of the communication signal made it possible for 

numerous other enterprises, including private companies and foreign governments, to 

utilize the system. Similarly, standardization of the hardware and receiver interfaces 

made it easy to implement the system across more than 30 different aircraft platforms. 

This increased commonality also helped to decrease the number of fielded 

configurations, and reduce the logistics footprint, avoiding significant costs [44]. The 

benefits of interoperability were also seen by the Joint Precision Approach and 

Landing System (JPALS). In this case, standards were coordinated with the FAA and 

other international bodies to ensure that civilian and military aircraft from many 

different countries are able to know each other’s precise positioning, and land safely, 

all around the world [45]. This increases safety, supportability, and readiness, all 

while reducing costs.  

 

1.4.2: Increased Maintainability 

The use of open standards also increases the maintainability of a system by 

simplifying and normalizing maintenance procedures. When COTS components are 

used, some of the support responsibilities may be shifted to the component 

manufacturer [8]. This is especially true in the cases of software and throw-away 

hardware (or hardware covered by a warranty). The reuse of standards and 

components means that fewer manuals, less training, and less specialized test 

equipment are required [46]. Fewer types of spare components must be tracked, 
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purchased, and stocked, reducing the logistics footprint. This benefit of 

standardization was clearly during the design of the Virginia class of submarines. 

While previously designed classes of submarines had seen the number of parts 

proliferate, with the Trident class using 28,000 components, the Los Angeles class 

using 29,000 components, and the Seawolf class using 45,000 components, the 

Virginia class used only 15,00 components [24]. Standardization also allowed for a 

32% decrease in testing equipment, avoiding $50,000 in costs per ship. Overall, a $27 

million investment in openness and standardization was projected to avoid $789 

million in costs [24].  

 

1.4.3: Increased Extensibility 

Use of open standards allows a system to benefit from improvements and new 

innovations from the public marketplace without any up-front investment costs. 

These enhancements can then be adapted and installed much more quickly and 

efficiently than could be done for a proprietary system. By using the Weapons 

Systems Common Operating Environment (WSCOE) and Portable Operation System 

Interface (POSIX) defined by IEEE, the Weapon System Technical Architecture 

Working Group (WSTAWG) was able to augment the Predator Unmanned Arial 

Vehicle (UAV) for use with the Hellfire missile in just over one month. This was 

made possible by porting target tracking software from a Line-of-Sight Anti-Tank 

(LOSAT) missile. This reduced development time considerably, and avoided 75% of 

the typical software development costs [7]. 
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1.4.4: Increased Reuse 

Reuse within a design avoids costs by allowing for redundant components that 

serve similar purposes to be eliminated, reducing the number of unique components 

that must be qualified, purchased, and stocked in order to produce and maintain a 

system. Further cost avoidance is achieved by decreasing the logistical footprint of 

the system by reducing the number of components for which part libraries must be 

maintained, tooling and infrastructure supported, spares stocked, and technicians 

trained [4, 47]. Reuse between systems occurs when a component from an earlier 

application is integrated into the design of subsequent systems. This greatly reduces 

the time and cost to design the systems, and effectively lessens the over costs per 

system associated with qualifying components, maintaining component libraries, 

training technicians, sustaining maintenance and support operations, and other non-

recurring costs by amortizing them across several projects. This benefit was seen after 

designing the Virginia Class of submarines. 45% of the components used in the 

Virginia design were reused in creating the USS Jimmy Carter Multi-Mission 

Platform, and an additional 64% of the Virginia components were reused in designing 

the SSGN Class of submarines. Combined, this resulted in costs avoidances of over 

$150 million [24]. High levels of reuse also allows for maximum benefit due to the 

effects of learning and by leveraging economies of scale [48, 49]. 
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1.4.5: Increased Competition 

Open standards allow for many different suppliers to produce similar and even 

interchangeable components that can perform the same function. This empowers an 

enterprise designing a complex system to choose more freely between multiple 

suppliers. Since components from several sources are interoperable, the enterprise 

may switch between them without incurring significant cost. This would not be the 

case if proprietary standards were used, where the high costs to switch to a different 

standard would form a barrier, locking the enterprise into the original source. The 

freedom to switch between suppliers helps increase competition between them. If the 

enterprise can get a component with similar functionality from another source for 

lower cost, there is little to prevent the enterprise from switching sources. This 

incentivizes the different suppliers to offer their component for a lower cost, or to 

otherwise appeal to the enterprise by offering other benefits, such as increased levels 

or types of functionality, or an increased warranty [35]. The benefits of increased 

competition are apparent in many case studies, including the A-RCI sonar system [2], 

mechanically attached pipe fittings [50], and standardization of aircraft batteries and 

related components [49]. In this last case, it was estimated that the availability of 

more than one supply source reduced costs as much as 25 to 30%. 

 

1.4.6: Increased Innovation 

Open standards increase innovation for several reasons. First, increased 

competition, as mentioned previously, spurs component manufacturers to distinguish 
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their component from the rest of the field. This can be done by increasing its 

performance, decreasing its form-factor, or developing some new valuable 

functionality [35]. Additionally, for the SDOs and product suppliers to make a profit, 

the standard they promote must be long-lived, so that they will have sufficient time to 

recoup the initial development costs. This gives them incentive to produce new 

innovations that distinguish their standard from other available standards. In the case 

where one open standard controls most of the marketplace, innovation is still 

encouraged because the standard’s popularity guarantees its longevity, so developers 

see less risk in investing additional time and money to improve the standard or 

introduce a new product [35, 40]. This helped encourage the spread of the Internet 

and the World Wide Web, thanks to the open standards of TCP/IP and HTML 

respectively [21]. 

 

1.4.7: Improved Quality 

The definitions of many open standards are set by the SDO after consulting 

with many experts, and taking input from many of the key market players. This 

allows them to pool their experience, and produce a better standard than any one 

enterprise would have independently [35]. Use of open standards allows for higher 

quality by increasing competition between suppliers. The required functionality may 

even be provided by components designed and supplied by another enterprise that 

specializes in the functionality required. 
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1.4.8: Mitigating Obsolescence 

Diminishing Manufacturing Sources and Material Shortages (DMSMS) 

obsolescence occurs when components required to support a system become obsolete 

or are otherwise unprocurable. In the last few decades, DMSMS obsolescence has 

become a significant issue because of fast turnover and short procurement lives in the 

modern component market. This means that the support life of some systems is many 

times longer than the procurement lives of their constituent components [51, 26, 52]. 

If spare components are unavailable, it may be impossible to continue to support an 

existing system. This may cause a crisis for complex systems, since the long-

development cycle for such systems means DMSMS obsolescence issues may be 

present before the first system is even fielded. A stark example of this phenomena is a 

sonar system detailed in Singh and Sandborn [51], which faced obsolescence of 70% 

of its commercial components before it was initially deployed (Figure 2). 

Figure 2: COTS Obsolescence faced by a sonar system during the first decade of its life cycle (from [51]) 



 

26 

 

Historically, DMSMS issues have been treated reactively, by either refreshing 

the system design to use a non-obsolete component (replacement); bulk purchasing 

enough instances of the component immediately prior to its obsolescence to last until 

the system’s end of service (EOS) date, and then hoarding the components until they 

are used (life-of-type/lifetime buy, or LTB); or using some combination of these 

methods (bridge buy) [52, 26]. More recently, strategic DMSMS management 

techniques have been developed where the support plan for system includes pre-

defined refresh dates at which components that are obsolete or nearing obsolescence 

are designed out of the system [51, 53]. Each of these methods significantly adds to 

the total cost of ownership (TCO) of the system, and that cost increases as the number 

of obsolescence events and number of support years after obsolescence increases.9  

Additionally, obsolescence can be a symptom of a larger issue – the system 

uses outdated technology, which means that the system’s performance, functionality, 

and even form factor lag significantly behind the current state-of-the-art. This is an 

important consideration in commercial and consumer systems for remaining 

competitive and retaining market share; it may also be crucial in defense applications, 

because the technology used is both Mission Critical and Safety Critical issue; any 

enhancement could mean the difference between victory and defeat [8, 25]. In order 

to keep system technology current, it is necessary to perform frequent design 

                                                

9 The viability of each of these options depends on their relative costs, which are effected by a number 
of factors. As a rule of thumb, redesign is good in situations when qualification costs are low, holding 
costs are high, and when the EOS date is far away (or may be pushed back with little notice). LTB is 
good for situations when qualification costs are high, holding costs are low, and when the EOS date is 
near and unlikely to change.  
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refreshes. However, design refreshes are an expensive, time-intensive process. In 

some cases, a design refresh also requires a partial or complete requalification or 

recertification of the system to ensure it meets the requirements for performance and 

stability. The use of a modular open systems approach (MOSA) is seen as a way to 

decrease both the time and cost of design refreshes [8, 54, 2]. 

 

1.4.9: Reduced Risk 

Without an open standard, there is the danger that the enterprise can choose to 

use and invest in a technology that may become marginalized if the rest of the market 

moves in a different direction. When this occurs, the technology will quickly become 

obsolete [35]. Open standards, particularly those that are well-established, hold a 

large market share, and are not dominated by alternatives, are assured some amount 

of longevity. This allows an enterprise to invest in infrastructure and any required 

training with less risk. Additionally, by exploiting previously used, established 

components, many development risks may be reduced [47, 54].  

 

1.4.10: Reduced Development Time 

The use of open standards leads to reduced development time because it 

enables the use of unified platforms, increasing the efficiency of research and 

development [40]. Reuse of components and subsystems from previous systems saves 

the time (and cost) associated with developing those components. This was seen in 

the creation of the USS Jimmy Carter Multi-Mission Platform and the SSGN Class of 
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submarines, both of which reused considerable portions of the Virginia Class 

submarine design [40]. This benefit is also seen when using COTS components – 

even if the enterprise doesn’t have first-hand experience with them, they are able to 

integrate them into the system without designing them from scratch.  

 

1.4.11: Enterprise Benefits 

As noted above, interoperability and reuse allow an enterprise to repurpose 

components and subsystems designed for previous systems to increase design and 

maintenance efficiency, interoperability, and innovation. Beyond this, using an open 

systems approach across several projects allows an enterprise to increase its return on 

investment by allowing several projects to benefit from the same infrastructure. For 

example, the Army Materiel Command found that by consolidating all standards 

information into a single library, the quality and availability of the information could 

be improved while one third, or more than $1 million, of the costs could be avoided 

annually [55]. 

 

1.4.12: Increased Costs 

Increased cost due to openness may occur if the regulations governing the 

system’s support prevent the full benefits of openness from being realized. For 

example, using open systems and implementing a faster refresh cycle may not be 

practical in situations where recertification is expensive or partial recertification is not 

possible. Historically, this was sometimes the case for safety critical applications, 
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including military systems and nuclear plants. This must be addressed by appropriate 

regulatory changes. Additionally, while using commercial components removes much 

of the design and support burden, it also decreases the level of control the enterprise 

has over its specification and production. The enterprise may not be notified of minor 

product or process modifications, which may result in regulatory or certification 

issues. 

Use of existing (reused or COTS) components may also add cost. If a ‘perfect’ 

component does not already exist, it may be necessary to use a more expensive 

component with higher performance or greater functionality than required. This extra 

functionality could increase the cost and effective failure rate of the component. In 

other cases, it may be necessary to modify the COTS or reused component for use in 

the new environment. Possible modifications include physical modifications to a 

hardware package so it fits in the required space; uprating hardware components for 

operation beyond the manufacturer’s specifications [56]; burning-in a component to 

remove “infant mortality” failures and improve reliability [57]; and functional 

changes to software, either by altering the component itself, or through the use of a 

“wrapper” or API (Application Programming Interface).  

Other costs associated with implementing open designs include the costs of 

building and maintaining a component library for the product to be reused from, and 

from encouraging and enforcing the use of appropriately open design paradigms. 

Finally, while use of openness helps to prevent component obsolescence from 

occurring, and allowing for more affordable handling of obsolescence when it does 

occur, there is still a risk of standard obsolescence. If the enterprise selects the 



 

30 

“wrong” standard, and the market shifts away from the standard selected, significant 

costs must be incurred, not just to replace the standard, but to replace all the 

components which use the standard as well. These costs may outweigh all the other 

benefits gleaned from using open systems. Unlike the situation when using the 

enterprise’s own proprietary standard, the components and standard may become 

completely unsupportable, even by the enterprise or a third party, due to lack of 

access to the necessary IP. This risk may be mitigated by careful selection of the 

standards used performing a “market watch” to track market trends and be able to 

better predict obsolescence events or by only using completely open standards. 

However, great care should be taken in selecting standards to be used. In some 

scenarios, openness may not be the best option. Though open standards should be 

favored over proprietary ones, the final decision must be made based on maturity, 

acceptance, and the ability to adapt to meet future needs [6]. 

Knowledge of the principles and applications of MOSA allows for an 

understanding of the theoretical situations in which it is most valuable. However, it is 

also important to be able to ascertain the exact value of an open approach, and 

differentiate between situations when the use of open systems is beneficial, and 

situations in which it is detrimental. To answer this question, it must be possible to 

calculate the investment and the return associated with implementing an open design. 
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1.5: Measuring Openness and Life Cycle Costs: Existing Work 

While many previous efforts have been made to measure openness, almost all 

of these efforts make the implicit assumption that openness is always beneficial. 

Additionally, most rely on highly qualitative analysis of a system, which results in 

low accuracy and poor repeatability. Others are highly specialized tools, only 

applicable in specific situations, and not valid for more general cases. Finally, the 

results are often given as an intangible “openness score”, which leaves many 

questions unresolved. The metric can be used to tell which of two systems is more 

open, but does not provide enough information or resolution to make a business case. 

How much extra investment is necessary to achieve a higher level of openness? What 

is the expected return on this investment (ROI)? Should further openness be pursued, 

or is the current level sufficient? Does the number of fielded systems affect this 

return? Is there a minimum or maximum length of time that the systems need to be 

supported in order for openness to pay off? If so, is the result sensitive to life 

extension?10 These questions, largely unresolved, are vital to any enterprise 

considering an open approach. 

 

                                                

10 A life extension occurs when the end of support date is pushed back, and the system must be 
supported for more years than originally anticipated. Life extension may occur with only a few years 
of advance warning. This may result in shortages of obsolete (stockpiled) components. 



 

32 

1.5.1: MOSA and MOSA PART 

The Modular Open Systems Approach (MOSA) was initially developed by the 

Open Systems Joint Task Force (OSJTF), which was established by the Department 

of Defense (DoD) Office of the Undersecretary of Defense for Acquisition, 

Technology, and Logistics (OUSD (AT&L)). MOSA is a combined business and 

engineering strategy that calls for the use of widely supported commercial or open 

standards to be used when developing a new system or updating an existing one. In 

addition, the enterprise should design for change by using modularity and functional 

division. This enables spiral development [6]. 

The OSJTF suggested that enterprises apply MOSA using a five-part strategy 

[6, 17]: 

1. Establish an enabling environment. 

This refers to setting a tone, at the enterprise level, to support and 

encourage the use of open systems, and creating a MOSA roadmap. 

This could mean requiring a certain level of openness in designs, 

training managers and designers about MOSA principles, performing 

market research, and maintaining a component library. The enterprise 

should also actively work to remove any barriers to openness. 

2. Employ modular design. 

All designs should use a high level of functional division so that any 

design changes are compartmentalized. This prepares for future design 

changes, which are largely unavoidable. 



 

33 

3. Designate key interfaces. 

Designating key interfaces allows the enterprise to focus attention 

strategically, and concentrate on the most volatile, unreliable, or 

fundamental interfaces. 

4. Use open standards for key interfaces. 

While use of open standards may be valuable in general, their use for 

the key interfaces is vital to ensuring interoperability and 

interchangeability of components. 

5. Certify conformance. 

In addition to encouraging the use of MOSA, it is important to verify 

that the final design is, in fact, open. This includes confirming that the 

standards and COTS components selected are interchangeable and not 

vendor specific. 

To certify that both the system and enterprise have properly implemented 

MOSA principles, the OSJTF developed the MOSA Program Assessment and Rating 

Tool (PART). The MOSA PART was adapted from the Office of Management and 

Budget (OMB) PART questionnaire, which was created to evaluate and improve the 

performance of a wide array of programs across the federal government. 

The MOSA PART is a series of questions divided into two sections, business 

indicators (11 questions) and technical indicators (13 questions). Each question asks 

about the extent to which a certain principle, ability, or practice is used. The 

questions, included in Appendix A, are answered by 1) noting if the principle, ability, 

or practice is planned, already achieved, or not applicable; 2) selecting the extent to 
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which the principle, ability, or practice has been implemented (none, little extent, 

moderate extent, or large extent); 3) providing a rationale or explanation for that 

selection; and 4) supplying any supporting evidence or data, as appropriate. Once the 

questionnaire has been completed, an assessment of MOSA implementation is given, 

with each of the five principles (enabling environment, modular design, key 

interfaces, open standards, and conformance) given a score between 0 and 100%. A 

combined rating is also given. Scores between 80% and 100% are considered 

“exemplary”, between 60% and 80% “satisfactory”, and between 40% and 60% 

“marginal”. Scores below 40% are considered “unsatisfactory”. 

While the MOSA PART can be used to quickly give an approximation to a 

system’s openness, it lacks guidance on how to accurately evaluate the principles and 

practices it intends to measure. It is subjective and qualitative, and the final results 

may be highly dependent on the optimism with which the survey is completed. For 

example, consider the question “to what extent has the program designated key 

interfaces?” The tool and its documentation give no instruction on what constitutes a 

“moderate” level of designating key interfaces as opposed to “little”. Depending on 

the responder’s experience, outlook, expectation, or mood, the same evidence could 

be used to support either response, demonstrating a complete lack of inter-rater 

reliability. This is true of all 24 questions, and is no small issue – answering “little 

extent” for all questions results in a score of approximately 33% (unsatisfactory), 

while answering “moderate” across the board gives a score of about 67% 

(satisfactory). A borderline system could fall anywhere on this range, with the 

system’s final score effected more by the person or group filling the survey than by 
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the system itself. This lack of repeatability and precision calls the validity and 

accuracy of the analysis into question as well. 

The openness calculation itself is problematic. Each question is theoretically 

weighted equally, on a linear scale – a value of 1/3, 2/3, or 1, for little, moderate, or 

large extents, respectively. Each of the questions is correlated with a different one of 

the five principles, and the results of that question group averaged to give the score 

for that principle, with “planned” and “achieved” scores tabulated separately. The 

five principle scores are then averaged to give the combined rating. However, each 

question can be marked as “not applicable”, removing it from the calculations. 

Although in theory each question is weighted equally, in practice some questions hold 

more sway than others. The eleven business indicator questions are averaged to 

obtain the “enabling environment” score, while only two questions (“to what extent 

has the criteria for designating key interfaces been established?” and “to what extent 

has the program designated key interfaces?”) are used to calculate the “key 

interfaces” score. If one of these questions is marked as not applicable, due to lack of 

evidence, for example, the other question becomes the sole basis for the “key 

interfaces” score. Furthermore, that single question’s answer weighting increases 

such that it becomes 20% of the combined score. In comparison, questions in the 

business indicator are only weighted as 1.8% of the combined score. 

Finally, the assessment’s rough output, satisfactory or not, tells us nothing 

about the investment already committed to openness, or the costs to attain a higher 

MOSA score. Though it can measure conformance to the five MOSA principles, it 
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has no capacity whatsoever to capture the cost avoidances associated with using a 

MOSA approach. 

 

1.5.2: OAAM and OAAT 

The Naval Open Architecture Enterprise Team (OAET) initially developed 

the Open Architecture Assessment Model (OAAM) in 2005 to “define, measure, and 

illustrate the relative levels of openness” [17]. Like MOSA PART, the OAAM, 

described in Appendix B, measures the openness of a system using both business and 

technical characteristics. The resulting business and technical scores, a value between 

0 and 4 taken from the description that best matches with the system’s situation, are 

then plotted to attain the overall openness characterization, a value of low, medium or 

high. The OAAM is simple and straightforward, but lacks depth and resolution. The 

OAET therefore created the Open Architecture Assessment Tool (OAAT) to expand 

and build upon the OAAM. Initially, the OAAT took cues from MOSA PART, using 

a set of questions to assess the openness of a system. The OAAT was then revised to 

incorporate the MOSA PART questionnaire itself. 

Like MOSA PART, the OAAT uses a series of questions to evaluate an 

enterprise and system on both business and technical aspects. The business section, 

called the programmatic section by the OAAT, consists of two sections. The first 

section consists of eleven questions that are taken directly from the MOSA PART’s 

business indicators. The second section, with thirteen questions, covers OAAT 

specific items. 
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In addition to the MOSA PART technical indicators (thirteen questions), the 

OAAT technical section contains questions designed to align with the five goals of 

using an open systems approach: interoperability (six questions), maintainability (two 

questions), extensibility (three questions), composability (two questions), and 

reusability (four questions). All of these questions are detailed in Appendix A. 

The OAAT scoring algorithm is similar to, but more advanced than, that used 

for MOSA PART. Each response is given a score between zero and five. When the 

scores are averaged, however, not all questions are given equal weight. Important 

questions are designated as “key,” “litmus,” or both. “Key” questions are weighted 

between 3 and 4 times stronger than other questions, and an answer is required (the 

“not applicable” response is disabled). “Litmus” questions can limit the maximum 

score a system can receive, even if the responses to all other questions would suggest 

a higher score. This makes the OAAT less susceptible to large variations in results 

due only one factor. It also helps to ensure that results are a valid representation of 

reality, and are not misrepresented because of the answers to less important questions. 

Additionally, the OAAT specific questions come with guidelines for each question 

that define approximate values for  “limited extent”, “some extent”, “extensively”, 

and “very high extent”. This greatly improves inter-rater reliability, and improves the 

precision and repeatability of the results. However, these methodological 

improvements are only applied to the questions unique to OAAT. The questions taken 

from MOSA PART do not have “key” or “litmus” designation, and as before, the 

evaluator is given no guidance as to the definitions of “little,” “moderate,” or “large” 

extent. 
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Like MOSA PART, OAAT cannot account for the cost and investment 

associated with implementing and using an open systems approach, and is unable to 

measure the value of the benefits thereby attained. It cannot, therefore, be used to 

make a business case for the continued or expanded use of openness. 

 

1.5.3: AFRL/RYM Metrics Working Group 

In 2011 and 2012 there was collaboration between a number of parties, 

including the Air Force Research Laboratory’s (AFRL) RYM subgroup, MacAulay-

Brown, General Dynamics, and Lockheed Martin, to develop a set of metrics to 

evaluate and judge the openness of an architecture. Focus was given to selecting 

metrics that were broad enough to a general case, and quantifiable, so that the 

measurement would be highly repeatable and reliable. 

The result of their efforts was called the MOSA Metrics Calculator [58]. It 

asks a series of simple questions, which are given in MOSA Metrics Calculator, about 

each component in an architecture. The results are essentially averaged based on 

which of the five MOSA principles or tenets they are applicable to. The results are 

then presented on a radar plot showing how well each of these tenets is attained. A 

sample plot is shown below in Figure 3. 



 

39 

 

Figure 3: MOSA Tenet Scoring Chart. Example results from the MOSA Metrics Calculator [58] 

 

The MOSA Metrics Calculator improves upon the MOSA questionnaire by 

ensuring that all metrics are quantifiable, and by using a calculation methodology that 

is less susceptible to random fluctuation. However, like the previous measurement 

tools, it cannot be used to make a business case for previous or continued use of an 

open systems approach. 

 

1.5.4: Open PDQ MOSA Openness Metric 

Another approach to measuring openness comes from Peter Henderson, of 

PMH Systems and the University of Southampton. In several papers (and parts 

thereof) made available on his website, he goes through the definitions of MOSA and 
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openness, lists the benefits of and hindrances to attaining openness, and gives 

guidelines for architects or project managers who hope to implement an OSA. In 

making a case for open systems architectures [58], he uses a stochastic model to 

demonstrate that the development cost of a system or module can be reduced 

significantly by increasing its openness coefficient. The same is true of development 

time. Unlike many other analyses, he is able to give concrete estimates of the cost and 

time reductions due to the system’s openness. For example, increasing the openness 

coefficient from 0.2 to 0.4 avoids almost two thirds of the development cost [58]. In 

this case, the openness coefficient is defines as the fraction of interfaces that use open 

standards. The results of his model show that development time and cost decrease as 

openness increase. Further, it demonstrates the decreasing value of marginal openness 

– more is to be gained by increasing from an openness score of 0.2 to 0.3 than by 

increasing from a score of 0.6 to 0.8. In other words, the more closed a system is, the 

easier it is to benefit from implementation of an open systems approach. 

Unfortunately, the details of the model are vague. Henderson notes that the 

model is unverified, and still in development – the significance of the model 

presented is not the specific values presented, but in the trends and implications, 

which hold true for a range of input parameters [58]. 

Henderson’s work is valuable, as it uses an easily quantified metric to define 

openness. The model then translates this openness measure into an approximate 

benefit. Though the costs that must be invested to achieve a higher level of openness 

are unknown, this model begins to formulate a business case for the use of openness. 
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However, the model has a number of shortfalls. First, the openness metric is 

very basic, and cannot distinguish between standards with different levels of 

openness. In a more recent, still uncompleted work, Henderson defines a “fuzzy 

measure of openness” [59], in which the score for a given interface that is dependent 

on the number of companies that produce the interface and the number of companies 

that consume it. The number of producers and consumers are each rated on a 

high/medium/low scale, resulting in seven levels of openness – very low, low, 

medium low, medium, medium high, high, and very high. Combining these openness 

measures would improve the resolution and therefore the accuracy of his model. 

A second issue with Henderson’s model is its very limited scope. The model 

only covers the design phase. This ignores significant costs and avoidances later in 

the life cycle, such as those incurred during operation and support, and design refresh 

or technology insertion. While the benefits at design would be similar to those during 

refresh, the trend during the support phase would be reversed – higher openness 

means higher volatility, which increases support costs. As noted previously, it also 

leaves out the costs incurred to achieve a higher level of openness. Without these 

costs, the results of Henderson’s model are highly misleading. The plots produced by 

his model suggest that cost and time are both decreasing functions of openness. This 

would mean that no matter how open the system is, it stands to benefit from 

increasing the openness. In actuality, this is not the case. Decreasing marginal 

openness suggests that if one-step increases in openness require a constant cost 



 

42 

investment,11 the added investment will at some point outweigh the additional benefit. 

A more complete and comprehensive model is needed. 

 

1.5.5: The COCOMO Family of Models: COCOTS and COTS-LIMO 

Though our interest is in the broader topic of openness, a number of cost 

models have been developed to estimate the costs associated with developing and 

supporting COTS-based systems (CBS). These models, which only cover software, 

were created in response to the recent popularity of using CBS to try and reduce the 

time and cost to develop large software systems [60, 61]. Though like the PDQ 

model, some of them focus on integration costs alone [62], these models are valuable 

because they are able to translate usage of openness, or more specifically, the use of 

COTS software, into estimated costs. 

Some of the best developed models are based on work by Christopher Abts 

and Barry Boehm at the University of Southern California. Boehm is well known for 

his work on the Constructive Cost Model, or COCOMO. COCMO, which was 

originally published in 1981, and updated in 2000,12 is an empirically-based 

parametric model that can be used to estimate the time, effort, and cost associated 

with developing a software system. It has several sub-models that allow for accurate 

                                                

11 Investment here includes any added costs due to openness at any point in the module’s life cycle, not 
just before or during design. It is possible that a marginal increase in openness would require 
increasing (not constant) levels of investment. 
12 The initial version of COCOMO will be referred to as COCOMO 81. The term COCOMO by itself 
is used to refer to the updated version, also called COCOMO II. Preliminary versions of COCOMO II 
were available as early as 1995. 
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assessment in different parts of the design process. These sub-models are called the 

Applications Composition, Early Design, and Post-architecture model, with the latter 

being the most detailed, calibrated, and verified of the three. However, the COCOMO 

model is explicitly designed for “traditional” system designs, and cannot be used in 

situations when COTS software is utilized [60]. 

Since the release of COCOMO, a number of extensions and special 

applications of the model have been published, including the USC-CSE COTS 

Integration Cost Calculator[63] (CICC). The CICC model was then expanded to 

create the Constructive COTS Cost Model, or COCOTS [60]. Like COCOMO, CICC 

and COCOTS make their estimations based on the size of the software, measured in 

thousands of lines of source code,13 or KSLOC, and user input about the type of 

project and its rating on various other attributes, or “cost drivers”. CICC and 

COCOTS can be used to estimate the costs incurred to integrate a COTS software 

component into a larger system during the design phase, but cannot be extended to 

other life cycle phases or to hardware [63]. Even without these later phases, Abts 

found evidence that the conventional wisdom of “more COTS is always better” was 

incorrect. Abts aptly explains, “‘not building’ [does] not mean ‘not developing’, only 

developing differently” [13]. When using a large number of COTS components, 

significant effort must be expended to ensure they are all compatible, fulfill the 

functional requirements, and to integrate them into the larger system. COTS 

components are more volatile, subject to frequent updates and shorter procurement 

                                                

13 A function point based analysis can be used as well, though a language table is used to convert the 
number of function points to approximate KSLOC. 
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lives. In general, increasing the number of COTS components increases risk and 

volatility, meaning that in some situations, a COTS-based system could have a shorter 

or more expensive life than a comparable proprietary system. 

Abts approached this issue by presenting the COTS Lifespan Model (COTS-

LIMO), where he argued that the important metric was not high use of COTS 

components, but high COTS Functional Density (CFD) [13]. In other words, the 

amount of system functionality provided by each COTS component should be 

increased, while the number of actual COTS components kept to a minimum. 

Because of the volatility of COTS components, Abts’ model suggests there is an 

equilibrium value for number of COTS components in a system. Below that 

equilibrium value increasing the CFD increases cost avoidance. Above the 

equilibrium value, high volatility and lack of supply line control take effect, and the 

system rapidly becomes unsupportable ( 

Figure 4). Unfortunately, though others have found data to support this 

proposition [12], the COTS-LIMO model was never completed. 

 

Figure 4: The COTS-LIMO hypothesis of COTS-based systems (from [13]) 
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1.5.6: SAIC Models 

Three models appear in the literature attributed to the Science Applications 

International Corporation (SAIC). The first, “An Economic Analysis Model for 

Determining Custom versus Commercial Software,” was developed by Karpowich, 

Sander, and Verge [60, 62]. It focuses on the costs associated with integrating a 

COTS software component, which it gives as [60]: 

ூ௡௧௘௚௥௔௧௜௢௡ݐݏ݋ܥ = ௅௜௖௘௡௦௜௡௚ݐݏ݋ܥ  ௅ܰ௜௖௘௡௦௘௦ + ௥௔௜௡௜௡௚்ݐݏ݋ܥ  +  ௟௨௘ ஼௢ௗ௘ீݐݏ݋ܥ 

Equation 1 

where: 

ூ௡௧௘௚௥௔௧௜௢௡ݐݏ݋ܥ  is the cost to integrate the component 

௅௜௖௘௡௦௜௡௚ݐݏ݋ܥ  is the cost of the COTS component license 

௅ܰ௜௖௘௡௦௘௦  is the number of COTS component licenses required 

 ௥௔௜௡௜௡௚ is the cost to train the end users of the component்ݐݏ݋ܥ

௟௨௘ ஼௢ௗ௘ீݐݏ݋ܥ  is the cost to create the interface or glue code 

The usefulness of this model is limited because it only covers design and 

integration, and only covers software. Additionally, it leaves ீݐݏ݋ܥ௟௨௘ ஼௢ௗ௘  as a given 

value, when determining how to calculate it is of significant interest. 

The second SAIC model is attributed to Stutzke [60]. Though this model was 

never completed, it proposed the following formula to measure the cost impacts due 

to COTS volatility: 

௏௢௟௔௧௜௟௜௧௬ݐݏ݋ܥ = ௌ௖௥௘௘௡௜௡௚ݐݏ݋ܥ)(݁ݖ݅ܵ)(݈݃݊݅݌ݑ݋ܥ)(ݕݐ݈݅݅ݐ݈ܽ݋ܸ) +  (஼௛௔௡௚௘௦ݐݏ݋ܥ

Equation 2 
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where: 

௏௢௟௔௧௜௟௜௧௬ݐݏ݋ܥ  is the added cost associated with the volatility of the 

component 

 is the number of expected releases of the COTS component ݕݐ݈݅݅ݐ݈ܽ݋ܸ

during the life of the system 

 is the number of other components with which the COTS ݈݃݊݅݌ݑ݋ܥ

component interacts 

 is the effective size of the component’s interface, based on the ݁ݖ݅ܵ

number of procedures or functions and number of arguments 

used to interact with it 

 ௌ௖௥௘௘௡௜௡௚ is the cost of screening all of the components (the COTSݐݏ݋ܥ

component, and all component affected) to ascertain the effects 

of the release of a new version of the COTS component 

஼௛௔௡௚௘௦ݐݏ݋ܥ  is the cost of implementing the changes to effected 

components 

This model is limited because it only deals with software, and only addresses 

volatility. However, it is still useful because much of the added cost incurred by using 

COTS components stems from their volatility. 

The third SAIC model, also by Stutzke [64], and an expansion of the previous 

model, also aims to quantify the costs associated with COTS volatility. In addition to 

the added effort needed to update interfaces after the release of a newer version of a 

component, which was included in the previous model, this model accounts for the 

efforts and costs associated with unneeded functionality, the risk of incompatibility of 
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the new component, and the risk of elimination of required functionality. The model 

argues that the effort required to integrate a new version of a component is given by 

[64]: 

ݐݎ݋݂݂ܧ = ஺௡௔௟௬௭௘൯ܧ൫(ܮ) + (ெ௢ௗ௜௙௬ܧ)(ܯ) + ൭
ܯ)ܯ − 1)

2 + ܰ)ܯ  ௘௦௧்ܧ൱(ܯ−

Equation 3 

where: 

L is the number of links the component has with other components 

஺௡௔௟௬௭௘ܧ  is the average effort to analyze a link to see if it needs 

modification 

M is the number of links that need to be modified (M ≤ L) 

ெ௢ௗ௜௙௬ܧ  is the average effort required to modify the effected link 

N is the number of components, custom and COTS, in the system 

 .௘௦௧ is the average effort to test the modified linkage்ܧ

The model then makes several simplifying assumptions to reduce the number 

of variables, and the complexity of calculations. However, the more complex 

formulation provides valuable insight into what costs may be expected due to the 

volatility of COTS components, and how to model them. 

 

1.5.7: Loral Federal Systems Model 

While he was at Loral Federal Systems, Tim Ellis helped develop a COTS 

software integration cost model based on Loral’s database of historical information. A 

key difference between this and other methodologies is that the data on past 
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experiences led Ellis to reject models based on SLOC, which he found led to 

inaccurate results [61]. Ellis’s model is instead based solely on function point 

analysis. Only new function points are counted – function points supplied by COTS 

software is omitted. Instead, the cost of integrating COTS software is estimated based 

on [61]: 

1) The number of COTS components 

2) The number of interfaces to be developed (COTS and non-COTS) 

3) The percentage of requirements that are fulfilled by COTS 

components 

4) A productivity factor based on the language used and staff experience 

5) A set of 17 COTS cost drivers: 
a. Product maturity 
b. Vendor maturity 
c. Configurability/customization 
d. Installation ease 
e. East to upgrade 
f. Vendor cooperation 
g. Product support services 
h. Product support quality 
i. Quality of documentation for user, administrator, and 

installation 
j. Ease of use for end user 
k. Ease of use for administrator 
l. Type and quality of training available for administrator and end 

user 
m. Administrative effort to maintain 
n. Portability between platforms 
o. Previous Product Experience 
p. Expected Release Frequency 
q. Application or System COTS package 

The number of components and interfaces to be developed is used to estimate 

the number of work units required for the project, taking into consideration the 
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expected complexity, number of function points, productivity factor, and the cost 

drivers. Each of the 17 cost drivers is weighted on an individual scale to give a cost 

factor, which is used to modify the labor estimate. The exact equations used in the 

calculation are proprietary, but the model was calibrated using six internal projects, 

and was able to predict those cases with a relatively high accuracy. Its accuracy for 

external projects is unavailable. 

 

1.5.8: SoCoEMo-COTS 

The Software Cost Estimation Model for COTS, or SoCoEMo-COTS, is an 

economic model for COTS Based Development that aims to produce an estimate of 

the ROI that can be expected when investing in COTS software components. This is 

done by defining investment costs (incurred in the first year), and periodic costs and 

benefits (incurred in all years after the first year) [65].  

Investments include a domain analysis cost, and the costs to develop any 

necessary reuse infrastructure. For each COTS component researched, there are the 

costs to assess, select, and certify the component for possible use, and the cost to 

insert the component into the component library. For each COTS component actually 

used, the investment costs include tailoring the COTS component for use in the 

specific application, developing any necessary glue code to integrate the COTS 

component, extra effort required for COTS due to their volatility. Investment also 

includes the costs to develop any required proprietary components.  
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Periodic costs include the costs to assess, select, and certify any new COTS 

components, and add them to the library, costs to reassess new releases of COTS 

components already in the library, and the costs to maintain the component library. 

Other periodic costs include: re-tailoring of COTS components that have a new 

version released; maintaining and updating glue code, including any extra effort due 

to COTS volatility; and the cost to maintain proprietary components. The primary 

periodic benefits are the maintenance and service costs avoided by using COTS 

components, since these are provided by the COTS manufacturer. 

The model as presented here14 provides a helpful insight into the benefits that 

can be attained not just by using COTS and open architecture for one project, but how 

an enterprise can increase those benefits by amortizing the initial investment and 

basic support costs across several projects. Unfortunately, the SoCoEMo-COTS 

model does not include any insight on how to calculate these costs – all of the cost 

inputs are to be “determined by expert judgment” [65]. 

 

1.5.9: RI3 

A final model of note is the Risk Identification: Integration & Ilities, or the 

RI3 model. Unlike the other models presented, this model does not aim to measure 

openness or life cycle costs. Instead, it focuses on the risks associated with using new, 

                                                

14 The paper presenting the SoCoEMo-COTS model organizes the listed costs and equations in a 
significantly different manner, dividing each of investment cost, recurring cost, and recurring benefits 
into three components: domain, application, and corporate. While their general approach is useful, 
their specific implementation, and presentation thereof, is poorly documented and explained. For this 
reason, a simplified, restructured version of their model is presented. 



 

51 

unproven technologies. The “ilities” are stability, complexity, reliability, 

maintainability, integrability, and testability. Use of unproven COTS components 

increases the risks of penalties and delays due to changes, unsolved bugs, and 

availability issues. RI3 assesses these risks for level of consequence and likelihood of 

occurrence based on responses to a questionnaire. The tool then demonstrates which 

components or modules are at the highest risk, and the cause of those risks, 

suggesting a best approach to reduce that risk. 

It is important to be cognizant of these risks, especially when trying to 

implement a system using COTS components. Reused and proprietary components 

will have lower risks than COTS components which receive major updates more 

frequently. These risks are related to the Technology Readiness Level (TRL) of the 

component. Components with low TRLs have higher risk. One of the benefits of 

using open and COTS-based systems is the ability to try and use newer technologies 

(lower TRL components) that have more and better functionality. However, using 

such components exposes the system to considerable risk of delays and penalties due 

to incompatibilities, unreliability, and unmaintainability. 

 

1.6: Problem Statement 

The use of a modular, open systems approach has the potential to decrease the 

total life cycle cost of complex systems. It can potentially simplify and accelerate 

system design, transfer many support responsibilities and costs to component 

suppliers, avoid obsolescence issues, and ease the insertion of new technologies. 
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However, there are costs and risks associated with using an open approach. Passing 

costs and responsibilities to component suppliers removes control over component 

selection, update schedules, and supply chains. Inserting new, immature technologies 

can lead to unforeseen compatibility issues. High volatility and frequent required 

updates may cause operation and maintenance costs to grow uncontrollably, and 

make the system unsupportable. In order to decide if openness should be pursued, 

and to what degree, a quantitative model that can measure both the costs and benefits 

associated with a system’s openness is needed. 

Though several models, such as MOSA PART and OAAT, have been 

proposed in an attempt to measure openness, they rely on qualitative measures, and 

tend to be very subjective. They also have no ability to measure the effects that 

openness has on life cycle cost. Other models, including COCOTS and SAIC, are 

able to estimate the life cycle cost associated with a system, and even take into 

account some of the effects of using COTS components, however, none of these 

models provide a complete picture of the situation. The Loral model only predicts the 

costs due to COTS volatility. Some models, like COCOTS and SAIC, only cover 

COTS integration costs, and cannot be used to analyze the rest of the life cycle. Other 

models, like COTS-LIMO and SoCoEMo-COTS, have been proposed, but not 

developed. None of these models provide a complete picture of openness, from 

proprietary to COTS to fully open. There is no model that can quantify all the cost 

affects of increasing the openness of a system over the course of its complete life 

cycle. 
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Many enterprises have assumed that increased openness is always beneficial. 

Evidence exists to demonstrate that this is not the case. While the use of an open 

approach can be beneficial, there are risks involved that must be taken into account. 

The model developed in this thesis provides an enterprise with insight into the value 

of an open systems approach, and a cogent business case for choosing whether or not 

to invest in increased openness. 

 

1.7: Research Tasks 

The following steps are necessary to create the proposed model: 

1.7.1: Task 1 

Identify relevant Openness Metrics and Cost Drivers, and formulate the 

connections between the two. This will be used to create a complete picture of the 

scope of openness impacts on electronic systems, and to guide model development. 

1.7.2: Task 2 

Develop a “Cost of Openness” model that calculates the cost impact of 

openness by comparing a specific system implementation to a reference architecture. 

The model must be dynamic (time dependent) and accommodate uncertainties in 

input parameters. 
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1.7.3: Task 3 

Use the model developed in Task 2 to conduct a case study and associated 

sensitivity analysis to demonstrate the application and usefulness of the model. 
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Chapter 2: Cost of Openness Model 

In order to assess the life cycle cost impacts of openness on electronic systems, 

the approach shown in Figure 5 has been used. 

 

The approach begins by selecting metrics that can be used to define and 

measure openness. Concurrently, the cost drivers that can be used to measure and 

predict life cycle cost are identified. The openness metrics must then be associated 

with the appropriate cost drivers, so that the connection between openness and life 

cycle cost may be ascertained. 

A list of possible openness metrics was created based on the definition of 

openness given in Section 1.3, and based on prior attempts at measuring openness 

including: MOSA PART, OAAT, and the AFRL/RYM Metrics Working Group. This 

Figure 5: The model is created by measuring openness with relevant metrics, and 
relating those metrics to cost drivers that can be used to predict life cycle cost. 
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list was refined by eliminating any metrics that could not be expressed in a clear, 

quantifiable way. Additionally, metrics were expressed in a general form, so that any 

component or system can be evaluated using the same metrics. Selected metrics 

include: market share; volatility; the number of years it has been in the commercial 

marketplace; enterprise experience; expected procurement life; number of 

competitors; and accessibility. Procurement and licensing costs are also used. Several 

other metrics, such as market outlook, number of vendors, and number of applications 

(a measure of generality and reusability),  could also have been selected, but this 

increases the complexity of the model, and requires more data for simulations to be 

run. Additionally, some of these overlap with metrics already included. For example, 

number of vendors may be related to market share and accessibility. All three of the 

unselected metrics mentioned play a role in the procurement life profile.15 The 

possible metrics were further limited to remove metric for which data would never be 

available. 

Similarly, cost drivers were selected based on previous works and experience. 

The life cycle costs are broken down into six categories, based on when and how the 

costs are incurred: initial design; non-recurring engineering (NRE) and qualification; 

recurring production; operation and support; refresh/redesign and implementation of 

upgrades; and enterprise. In the sections that follow, each of these categories is 

expanded into a set of cost drivers and then associated with the relevant openness 

metrics. Since each cost category is calculated separately using a cost-difference 

                                                

15 Procurement life is input as a distribution, and is used to predict when the component will become 
obsolete. This profile should represent increased risk of premature obsolescence due to market outlook, 
competing standards/components, and other factors. 
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methodology16 (Figure 6), cost drivers that are not impacted by the openness of the 

design can be eliminated.  

 

The breakdown of costs into the major categories is given by:  

௢௧௔௟்ܥ = ஽௘௦௜௚௡ܥ  + ேோாܥ  + ௉௥௢ௗ௨௖௧௜௢௡ܥ  + ை&ௌܥ   + ோ௘௙௥௘௦௛ܥ  + ா௡௧௘௥௣௥௜௦௘ܥ  

Equation 4 

 .௢௧௔௟ is the total cost incurred designing, building, operating, and retiring the system்ܥ

஽௘௦௜௚௡ܥ  are the costs associated with designing a new system that satisfies a set of 

requirements, and includes most of the costs incurred before the final design is 

selected, including the cost of designing the system used, as well as the costs of 

                                                

16 We are interested in the difference in cost between cases, not the absolute cost of cases. 

Figure 6:  The model takes in two (or more) proposed architectures and various parameters. The 
model is divided into six distinct cost models, which are then combined to give a total cost difference. 
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partial or other designs considered, but not implemented.17 Prototyping and any 

design overhead costs are also included in the design costs. The remaining pre-

productions costs fall into the category of ܥேோா , the Non-Recurring Engineering 

costs, the most significant of which are the testing and qualification costs to 

demonstrate that the standards, components, subsystems, and complete system meet 

the required design parameters for performance, reliability, security, etc. These costs 

may be significantly lower for enterprises that maintain a library of previously used 

and qualified components. ܥ௉௥௢ௗ௨௖௧௜௢௡ includes all costs to assemble and ship the 

system, including procurement, screening and/or burn-in of hardware components, 

assembly, and any recurring testing costs. All operation and support costs, including 

those associated with maintenance, sparing, obsolescence mitigation, and lack of 

availability fall under ܥை&ௌ. After the system has been in use for some period of time, 

it may be desirable (or necessary) to update or refresh the system to ensure it is still 

manufacturable and supportable.18 These costs, ܥோ௘௙௥௘௦௛ , are similar to those initially 

incurred in ܥ஽௘௦௜௚௡ and ܥேோா , except that there is a greater opportunity for design 

reuse, not only of some components or subsystems, but of the overall system 

architecture as well. The final general category of costs is ܥா௡௧௘௥௣௥௜௦௘ . These are costs 

that are incurred at the enterprise level, and are shared across all of the different types 

                                                

17 Not implemented, i.e., not used for the current system. The ability to repurpose a previously 
designed subsystem for a new application is an enterprise-level cost avoidance strategy that reduces 
duplicated and unnecessary effort. 
18 It is often desirable to update a system to add new functionality or improve performance. This is 
referred to a redesign to distinguish it from a design refresh. While refresh can be modeled with 
reasonable accuracy, redesign requires parameters and data that are unpredictable, difficult to measure, 
and, even in the best scenarios, may not exist. See Section 2.1.5 for more details.  
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of systems created by the enterprise. Examples are costs to maintain a part library, or 

any support infrastructure that is shared by more than one project. 

In the sections that follow, each of the cost categories described above will be 

further examined and broken into specific cost drivers. The equations for calculating 

each cost driver are expressed as a function of the openness metrics, system 

architecture, and other parameters, and are formulated as the cost for one system 

instance in one year. 

To evaluate the total life cycle costs of all instances of the system, the 

functions must be applied to each system instance in all years that that system 

instance is fielded. These functions allow the total cost of using a particular system 

design, open or closed, to be quantified. However, examining the total costs of one 

system instance does not demonstrate the costs incurred or avoided due to the 

system’s openness. In order to accurately assess the portion of the system costs that 

result from openness, a comparison between two architectures with the same 

functionality but different levels of openness will be used. This will both simplify and 

increase the accuracy of the cost calculations, because costs that are similar for both 

architectures are omitted from the calculations. This simplification reduces the 

epistemic uncertainty by limiting the effects caused by unknown factors. Aleatory 

uncertainty, on the other hand, is not reduced by this procedure. 

To handle uncertainty in the analysis, input parameters may be defined as a 

probability distribution. A Monte Carlo methodology can then be used to evaluate the 

likely outcome. The distributions are sampled, and the resulting parameter values are 

used to calculate the total life cycle cost difference between two designs. This process 
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is repeated for many trials, so that the probability of different outcomes may be 

obtained. 

 

2.1: Cost Drivers 

2.1.1: Design Costs 

The costs associated with ܥ஽௘௦௜௚௡  are given by: 

஽௘௦௜௚௡ܥ = ஽௘௦௜௚௡ ூ௡௙௥௔௦௧௥௨௖௧௨௥௘ܥ  + ஽௘௦௜௚௡ ஼௥௘௔௧௜௢௡ܥ  +  ஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ܥ 

Equation 5 

Each of these terms is explained below. 

 

 Design Infrastructure 

஽௘௦௜௚௡ ூ௡௙௥௔௦௧௥௨௖௧௨௥௘ܥ  are the costs associated with supporting, training, and 

maintaining a design team, and any other costs associated with the infrastructure 

required to produce designs and prototypes. This cost is highly enterprise dependent, 

and could depend on how much of the design is produced in-house as opposed to 

provided by external entities. However, except for extreme cases, the design 

infrastructure costs for two systems designed by the same enterprise will be roughly 

similar.19 This is particularly true in larger enterprises, when there are always multiple 

                                                

19 There are significant cost differences between using a COTS component and developing a 
proprietary component, but these costs are captured in NRE costs. 
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types of systems under development simultaneously. As such, the difference between 

the two values would be negligible, and can be treated as a wash.  

 

 Design Creation 

஽௘௦௜௚௡ ஼௥௘௔௧௜௢௡ܥ  is the cost of actually designing the system, including defining 

the functional requirements and other parameters. It is dependent on the size and 

complexity of the project, the number of functional requirements, and the intended 

usage environment, among other things. All of the systems involved in the analysis 

would be approximately the same in these regards, and the cost difference between 

would be negligible, and could be treated as a wash.  

 

 Design Implementation 

 ஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ are the later-stage design costs to finalize and qualifyܥ

the design. This includes defining component interconnections, finalizing the 

assembly process, debugging, defining minor modification procedures for procured 

components, and completing any necessary APIs20 or glue code. These costs are 

highly dependent on the architecture of the system, the design strategy, and the 

specific components used. A system designed from the ground up from mostly 

proprietary, purpose-built components will likely be more expensive than one formed 

                                                

20 Application Programming Interfaces 
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out of previously designed and reusable components and subsystems, be they COTS 

or proprietary. 

However, open-systems design does not necessarily correlate to lower 

implementation costs. This is because one of the main factors in implementation cost 

is how interoperable the components are – a system designed of COTS or reused 

components may work on paper, but parts may have unintended and unforeseen 

interactions. Additionally, from a debugging standpoint, in-house proprietary 

software components are more “open” than their COTS counterparts, because access 

to and experience dealing with the source code allows for faster localization and 

resolution of bugs.  

஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ܥ =  ෍ (௜ݐ݊݁݊݋݌݉݋ܥ)݁ݐܽݎ݃݁ݐ݊ܫ

ே಴೚೘೛೚೙೐೙೟ೞ

௜ୀଵ

 

Equation 6 

where: 

஼ܰ௢௠௣௢௡௘௡௧௦  is the total number of components used in the system, 

counting multiple instances or locations21 of the same 

component   

 is the cost to integrate the component for (௜ݐ݊݁݊݋݌݉݋ܥ)݁ݐܽݎ݃݁ݐ݊ܫ

use in location i. It depends on the accessibility and standard of 

the component being integrated. 

 

                                                

21 “Location” is used to mean the niche or slot in the system and functionality that the component is 
used to fill. 
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The cost to integrate a hardware component for use is given by: 

(௜ݐ݊݁݊݋݌݉݋ܥ)݁ݐܽݎ݃݁ݐ݊ܫ 

= ூ௡௧௘௚௥௔௧௘ ுௐܥܤ ,௜ݐ݊݁݊݋݌݉݋ܥூ௡௧௘௚௥௔௧௘ ுௐ൫ܨܥ  ூܰ௡௧௘௥௙௔௖௘௦൯ 

Equation 7 

where: 

 ூ௡௧௘௚௥௔௧௘ ுௐ is the base cost for adapting a hardware componentܥܤ

ூܰ௡௧௘௥௙௔௖௘௦ is the number of other components or subsystems that the 

component interacts with in location i. 

,௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௧௘௚௥௔௧௘ ுௐܨܥ ூܰ௡௧௘௥௙௔௖௘௦) is the overall cost factor 

associated with adapting the component for use in location i. It 

is a function of the number of interfaces, enterprise experience, 

and the popularity and accessibility of the component, among 

other factors. 

For software cost estimation, many models, including all of the models in the 

COCOMO family, use lines of source code (SLOC or KSLOC) to estimate a base 

effort or cost. Other models, like the Loral Federal model, are based on a function 

point analysis (FPA). KSLOC and FPA based estimation techniques have their own 

advantages and disadvantages.22 However, the number of function points and size in 

KSLOC or a software component are correlated, so conversion between the two is 

                                                

22 Counting lines of code is faster and simpler than counting function points, but care must be taken to 
standardize the counting method – are blank or commented lines counted? The number of lines of code 
could also depend on the developer who wrote the code. FPA analysis is slower, more expensive, and 
more subjective than counting lines of code. Additionally, FPA analysis may not properly account for 
complexity “hidden” in the inner workings of a component [71]. 
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theoretically possible. 23 In this model, effort is estimated using the KSLOC method 

because it is simpler to calculate. Lines of code will be counted using the same rules 

used by COCOMO. Use of KSLOC estimation is also beneficial because it allows 

data from the CICC (and other COCOMO models) to be easily integrated into the 

model. 

The CICC [62, 63] provides a methodology for estimating the costs to 

integrate COTS software component into a larger system. This model will utilize the 

following simplification of the CICC:24 

(௜ݐ݊݁݊݋݌݉݋ܥ)݁ݐܽݎ݃݁ݐ݊ܫ

= ூ௡௧௘௚௥௔௧௘ ௌௐܥܤ (௜ݐ݊݁݊݋݌݉݋ܥ)௝ܨܥ஺෍((௜ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ) 
ହ

௝ୀଵ

 

Equation 8 

where: 

ூ௡௧௘௚௥௔௧௘ ௌௐܥܤ  is the base cost to adapt a software component 

 is the size (in KSLOC) of the component (௜ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ

  is a nonlinear architectural scale factor ܣ

                                                

23 The conversion from KSLOC to function points, and vice versa, depends on the language used, 
among other factors. Typically, KSLOC or FPA is used to estimate the effort required, and that effort 
is then used to estimate cost. As such, switching between the methodologies necessitates a change in 
base effort calculation, but should not significantly affect the cost adjustment factors (which may need 
recalibration), or change the general trends of the results. 
24 The CICC measures 14 different cost drivers, each of which is rated on a scale of very low, low, 
nominal, high, and very high. These ratings are used to calculate a cost factor to predict the effect the 
cost driver has on integration costs. 5 of these cost drivers, which are relevant to openness, were 
incorporated. The remainder were omitted both for simplicity, and because the necessary data may not 
be available.  This is valid because in the CICC model a “nominal” rating always gives a cost factor of 
1, ensuring that the model can be used accurately even without complete data.  
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 is the jth cost factor associated with designing (௜ݐ݊݁݊݋݌݉݋ܥ)௝ܨܥ

 ௜. The five factors are: enterprise experience withݐ݊݁݊݋݌݉݋ܥ

the standard, enterprise experience with the component, and the 

longevity, accessibility, and volatility of the component. 

 

2.1.2: Non-Recurring Engineering Costs 

The non-recurring engineering costs are given by: 

ேோாܥ = ௌ௨௣௣௟௜௘௥ܥ  + ௌ௧௔௡ௗ௔௥ௗܥ + ஼௢௠௣௢௡௘௡௧ܥ  +  ௌ௬௦௧௘௠ܥ 

Equation 9 

 

 Supplier NRE 

ௌ௨௣௣௟௜௘௥ܥ  is the cost to qualify a supplier or vendor as a source for one or more 

required components. This cost is assumed to be approximately independent of the 

supplier, so the total system cost for vendor qualification can expressed as: 

ௌ௨௣௣௟௜௘௥ݐݏ݋ܥ = ௌ௨௣௣௟௜௘௥ ேோாܥܤ ෍ (௜ݎ݈݁݅݌݌ݑܵ)ܨܥ

ேೄೠ೛೛೗೔೐ೝೞ

௜ୀଵ

 

Equation 10 

where: 

ௌ௨௣௣௟௜௘௥ ேோாܥܤ  is the base cost of qualifying one supplier 

ௌܰ௨௣௣௟௜௘௥௦  is the number of suppliers to be qualified 
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 ,is the overall cost factor associated with supplier i (௜ݎ݈݁݅݌݌ݑܵ)ܨܥ

which is primarily a function of the number of projects for 

which the supplier provides components.25 

The ௌܰ௨௣ depends on the number of different types of components used in the 

system, the number of sources desired per component,26 and the ability of certain 

suppliers to provide more than one necessary component. Use of pre-approved 

suppliers that have already been qualified by the enterprise as sources for other 

projects may significantly reduce this cost, especially in larger enterprises that 

maintain a “library” of approved suppliers. For many cases, the number of new 

suppliers needed would be similar for the systems being compared.27 

 

 Standard NRE 

 ௌ௧௔௡ௗ௔௥ௗ is the cost to assess and select an interface standard for use in theܥ

system. While no costs are directly incurred by using one standard or another, each 

standard used must be evaluated to ensure that it meets the performance, reliability, 

and security requirements for the system. If the enterprise maintains a library of 

known standards, these investigative costs are reduced, though the enterprise must 

                                                

25 If the supplier provides the enterprise with components for more than project, the cost may be 
amortized across all of those projects. Alternatively, the full cost may be attributed to the first project, 
with later projects being able to use the approved vendor without having to pay any qualification fees. 
26 While, in theory, having one source for each component is enough, it is often desirable to have 
multiple sources to help avoid lead-time delays and increase availability. 
27 This is not always a valid assumption, particularly in cases where the enterprise is trying to decide 
whether or not to alter their design paradigm. Switching from mostly closed, proprietary designs to 
open, COTS-based ones, for example, would require qualifying many new suppliers. For large 
enterprises, however, the cost of this shift would be amortized over many projects or considered a one-
time investment, and can so be assumed to play a negligible role in any given system. 



 

67 

pay to maintain and add to the library as necessary. The NRE costs for each standard 

used can be expressed as: 

ௌ௧௔௡ௗ௔௥ௗܥ = ௌ௧௔௡ௗ௔௥ௗ ேோாܥܤ ෍ (௜݀ݎܽ݀݊ܽݐܵ)ܨܥ
௡ೄ೟ೌ೙೏ೌೝ೏ೞ

௜ୀଵ

 

Equation 11 

where: 

ௌ௧௔௡ௗ௔௥ௗ ேோாܥܤ  is the base cost of qualifying one standard 

݊ௌ௧௔௡ௗ௔௥ௗ௦  is the number of standards to be qualified 

 ,is the overall cost factor associated with standard i (௜݀ݎܽ݀݊ܽݐܵ)ܨܥ

which is a function of the complexity, accessibility, longevity, 

and market share of the standard, among other factors. The 

number of projects under the enterprise that use the standard 

also plays a roll. 

 

 Component NRE 

 ,஼௢௠௣௢௡௘௡௧ is the cost to assess, select (or, for proprietary componentsܥ

design), and certify a component for use in the system. This includes developing any 

necessary acceptance tests, and the purchase of any testing infrastructure required. 

Purchase of the technical data package (TDP)28, if applicable, also falls in this 

                                                

28 A technical data package (TDP) is a technical description of the component, and may include 
(among other items): engineering drawings; specifications; performance, reliability, and quality 
statistics; and product definition data, which “denotes the totality of data elements required to 
completely define a product… [including] geometry, topology, relationships, tolerances, attributes, and 
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category. If the enterprise has previous experience with the component, or component 

is already in the enterprise’s component library, these costs are significantly reduced. 

The total cost per system for component NRE costs can be expressed as: 

஼௢௠௣௢௡௘௡௧ܥ = ෍ ቌܥܤ஽௘௦௜௚௡ (௜ݐ݊݁݊݋݌݉݋ܥ)஽௘௦௜௚௡ܨܥ 

௡಴೚೘೛೚೙೐೙೟ೞ

௜ୀଵ

+ ,௜ݐ݊݁݊݋݌݉݋ܥ)ܨܥ஼௢௠௣௢௡௘௡௧ ேோா෍ܥܤ ݋݅ݐܽܿ݋ܮ ௝݊)
ே೔

௝ୀଵ

ቍ 

Equation 12 

where: 

݊஼௢௠௣௢௡௘௡௧௦  is the number of unique components to be qualified 

஽௘௦௜௚௡ܥܤ  is the base cost to create a component 

 is the overall cost factor associated with (௜ݐ݊݁݊݋݌݉݋ܥ)஽௘௦௜௚௡ܨܥ

designing ݐ݊݁݊݋݌݉݋ܥ௜. It is a function of the enterprise, the 

standard used, the size of the component, and the number and 

difficulty of the functional requirements, among other factors. 

஼௢௠௣௢௡௘௡௧ ேோாܥܤ  is the base cost of qualifying the component for use 

in one location 

௜ܰ is the number of instances (locations) of ݐ݊݁݊݋݌݉݋ܥ௜ 

,௜ݐ݊݁݊݋݌݉݋ܥ)ܨܥ ݋݅ݐܽܿ݋ܮ ௝݊) is the overall cost factor associated with 

qualifying ݐ݊݁݊݋݌݉݋ܥ௜ for use in ݋݅ݐܽܿ݋ܮ ௝݊, which is a 

                                                                                                                                      

features necessary to completely define a component part or an assembly of parts for the purpose of 
design, analysis, manufacture, test, and inspection” [73]. 
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function of the size, accessibility, interface standard, market 

share, longevity, and volatility of the component. The difficulty 

of the system’s functional requirements, enterprise experience, 

and the type and extent of any necessary modifications also 

play a roll. ܥேோா  costs are incurred per component instance, not 

component type, because if a component is used in more than 

one location, it must be qualified for use in each of those 

situations.29 

 

 System NRE 

ௌ௬௦௧௘௠ܥ  is the cost to qualify the final system design, and develop any 

necessary outgoing tests to verify it is functioning properly before it is shipped. This 

cost is a function of the system complexity, number and types of components and 

interface standards used in the system, required system reliability, and other relevant 

metrics. This cost can be expressed as: 

ௌ௬௦௧௘௠ܥ = ௌ௬௦௧௘௠ ேோாܥܤ  (݉݁ݐݏݕܵ)ܨܥ 

Equation 13 

where: 

ௌ௬௦௧௘௠ ேோாܥܤ  is the base cost of qualifying any system 

                                                

29 In cases where a subsystem is reused (or, analogously, a component is reused for the same purpose 
in different locations), the use of the component in that subsystem may only need to be qualified once.  
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 ,is the overall cost factor associated with the system (݉݁ݐݏݕܵ)ܨܥ

which is a function of system complexity, the number, types, 

and accessibilities of the components and interface standards 

used, enterprise experience with those components and 

standards, and required system reliability 

 

2.1.3: Production Costs 

Production costs are incurred in each year that a new instance of the system is 

produced. All production costs are incurred at the beginning of the year. The 

production costs are given by: 

௉௥௢ௗ௨௖௧௜௢௡ܥ = ௉௥௢௖௨௥௘௠௘௡௧ܥ  + ௉௔௥௧ ௉௥௘௣௔௥௔௧௜௢௡ܥ  + ஺௦௦௘௠௕௟௬ܥ  +  ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܥ 

Equation 14 

 

 Procurement 

 ௉௥௢௖௨௥௘௠௘௡௧ is the cost to purchase all the components required to build oneܥ

instance of the system. This can be expressed as: 

௉௥௢௖௨௥௘௠௘௡௧ܥ = ෍ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ
ேಹೈ

௜ୀଵ

+ ෍ ,௝ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ ௝ܰ)
௡ೄೈ

௝ୀଵ

 

Equation 15 

where: 
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ܰுௐ is the total number of hardware components in the system, 

including multiple instances (locations) of the same 

component, and any consumable components  

 ௜ݐ݊݁݊݋݌݉݋ܥ is the cost of purchasing (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

݊ௌௐ is the number of unique software component types in the system 

௝ܰ is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௝ in the system. 

,௝ݐ݊݁݊݋݌݉݋ܥ൫ݐݏ݋ܥ ௝ܰ൯ is the purchase cost30 for ௝ܰ instances of 

௝ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ ௝. The functionݐ݊݁݊݋݌݉݋ܥ , ௝ܰ) is used to 

reflect the fact that software purchasing costs are often 

nonlinear or non-continuous functions of the number of 

instances required. 

Consumable components are items such as fuel, fuses, filters, and batteries, or 

any other component that is used, and then replaced, at a constant rate. Hardware 

components that have a constant failure rate or that are replaced prior to failure 

(preventative maintenance) may also be modeled as consumable components. 

 

 Part Preparation 

௉௔௥௧ ௉௥௘௣௔௥௔௧௜௢௡ܥ  is the per-instance cost of acceptance testing components to 

ensure they meet requirements, as well as the cost of any part modification, uprating, 

                                                

30 The purchase cost is a one-time fee incurred when the software is initially procured. Recurring 
licensing or subscription fees are covered in operation and support. 
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or burn-in, when applicable. This cost only applies to hardware and consumable 

components. 

௉௔௥௧ ௉௥௘௣௔௥௔௧௜௢௡ܥ = ෍ (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ
ேಹೈ

௜ୀଵ

 

Equation 16 

where: 

ܰுௐ is the total number of hardware components in the system, 

including multiple instances of the same component, and any 

consumable components 

 is the cost of modifying, uprating, and (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ

burning-in  ݐ݊݁݊݋݌݉݋ܥ௜. If components are rejected during 

the screening process, the costs associated with purchasing, 

screening, and disposing of rejected components should be 

included here [66]. 

 

 Assembly 

஺௦௦௘௠௕௟௬ܥ  is the cost of assembling one instance of the system from its 

constituent components. For hardware (and consumable) components, the cost to 

place a component into the system is assumed to be proportional to the purchase cost. 

For software, it is assumed to proportional to its size. This can be expressed as: 
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஺௦௦௘௠௕௟௬ܥ = ூ௡௦௧௔௟௟ ுௐܴܥ ෍ (௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ுௐܨܥ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ
ேಹೈ

௜ୀଵ

+ ூ௡௦௧௔௟௟ ௌௐܥܤ ෍ (௝ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ௌௐܨܥ ௝൯ݐ݊݁݊݋݌݉݋ܥ൫݁ݖ݅ܵ
ேೄೈ

௝ୀଵ

 

Equation 17 

where: 

 ூ௡௦௧௔௟௟ ுௐ is the cost ratio to install hardware. It is used to define theܴܥ

proportion of a component’s purchase cost that is incurred for 

installation. It is dependent on the enterprise. 

ܰுௐ is the total number of hardware components in the system, 

including multiple instances of the same component, and any 

consumable components  

 ௜ݐ݊݁݊݋݌݉݋ܥ is the cost of purchasing hardware (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

 is the overall cost factor associated with (௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ுௐܨܥ

installing one instance of hardware ݐ݊݁݊݋݌݉݋ܥ௜. It is a 

function of several factors, including the number of 

components and different standards affected, the level of 

coupling, and enterprise experience. 

 ூ௡௦௧௔௟௟ ௌௐ is the base cost to install a software component 1 KSLOCܥܤ

in size 

ௌܰௐ is the total number of software components in the system, 

including multiple instances (locations) of the same component 

 ௝, in KSLOCݐ݊݁݊݋݌݉݋ܥ is the size of software (௝ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ
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 ௝൯ is the overall cost factor associated withݐ݊݁݊݋݌݉݋ܥூ௡௦௧௔௟௟ ௌௐ൫ܨܥ

installing an instance of the software component ݐ݊݁݊݋݌݉݋ܥ௝. 

It is a function of the number of components and different 

standards affected, the level of coupling, and enterprise 

experience, among other factors. 

This model uses KSLOC to estimate the size of any proprietary software or 

glue code, and calculate the effort and cost associated with that software. Function 

points could also be used, with appropriate changes to the definition of 

 .and any relevant cost factors (௝ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ

 

 Recurring Test  

 ோ௘௖௨௥௥௜௡௚ ்௘௦௧ is the cost of verifying that an assembled system is fullyܥ

operational and ready to be shipped. It is primarily a function of the number of 

interface standards used the complexity of the system. It may be calculated as: 

ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܥ = ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܥܤ  (݉݁ݐݏݕܵ)ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܨܥ 

Equation 18 

where: 

 .ோ௘௖௨௥௥௜௡௚ ்௘௦௧ is the base cost of testing one instance of one systemܥܤ

It is dependent on the enterprise, and defined by user input. 

 is the overall cost factor associated with (݉݁ݐݏݕܵ)ோ௘௖௨௥௥௜௡௚ ்௘௦௧ܨܥ

testing the system, which is a function of the number and types 
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of interfaces standards, the number and types of components, 

and the complexity of the system. 

 

2.1.4: Operation and Support Costs 

The costs associated with Operation and Support are: 

ை&ௌܥ = ை௣௘௥௔௧௜௢௡ܥ  + ெ௔௜௡௧௘௡௔௡௖௘ܥ  + ஼௢௡௙௜௚௨௥௔௧௜௢௡ܥ + ை௕௦௢௟௘௦௖௘௡௖௘ܥ   

Equation 19 

Each of these terms is explained below.  

 Operation  

ை௣௘௥௔௧௜௢௡ܥ  is the annual cost of operating the system. This includes relevant 

labor costs, 31 and the cost of consumable items such as batteries or fuel, where 

applicable. This cost driver also covers any annually recurring licensing or 

subscription fees that are incurred for the use of software or other IP. The costs 

associated with replacing (hardware) components that have relatively high or 

consistent failure rates, or that are replaced on regular basis (preventative 

maintenance) can also be included here.32 

                                                

31 A system that requires more operators or a higher level of skill/more training to operate will be more 
expensive to operate each year. If the same amount of labor is required for each instance of the system 
in each year, the labor may be modeled as a consumable item. 
32 For example, a fuse that fails approximately 7 times per year, or an air filter that must be replaced 
every four months. These costs may also be placed under the “sparing” section (see later in this 
section). When appropriate, modeling hardware failures as a consumable item in this fashion is 
desirable because it simplifies calculations and decreases computational time. 
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ை௣௘௥௔௧௜௢௡ܥ = ෍ ቀ݃݊݅ݏ݊݁ܿ݅ܮ(ݐ݊݁݊݋݌݉݋ܥ௜)

ே಴೚೘೛೚೙೐೙೟ೞ

௜ୀଵ

+ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ௜ ൫݀݊ܽ݉݁ܦ + (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ  

+   ൯ቁ(௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ 

Equation 20 

where: 

஼ܰ௢௠௣௢௡௘௡௧௦  is the total number of components in the system, 

including multiple instances (locations) of the same component 

 is the annual licensing or usage fees (௜ݐ݊݁݊݋݌݉݋ܥ)݃݊݅ݏ݊݁ܿ݅ܮ

associated with ݐ݊݁݊݋݌݉݋ܥ௜. When the same component is 

used in multiple locations, this may be the same for each 

location, incurred once for all locations together, or different in 

each location, depending on the licensing terms.33 

 ௜ is the number of instances of the component required݀݊ܽ݉݁ܦ

annually for location i. For non-consumable items, ݀݊ܽ݉݁ܦ௜ = 

0. 

 ௜ݐ݊݁݊݋݌݉݋ܥ is the cost of purchasing (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

 is the cost of modifying, uprating, and (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ

burning-in an instance of ݐ݊݁݊݋݌݉݋ܥ௜. If components are 

rejected during the screening process, this includes the costs 

                                                

33 For some components, including most hardware, ݃݊݅ݏ݊݁ܿ݅ܮ(ݐ݊݁݊݋݌݉݋ܥ௝) = 0. This may occur if 
no licensing fee is incurred, or if the licensing fee is only incurred for the first instance (location) of the 
component. 
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associated with purchasing, screening, and disposing of 

rejected components [66]. 

 is the cost of installing one instance of the (௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ

component, as given by: 

(௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ

= ூ௡௦௧௔௟௟ ுௐܴܥ   (௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ுௐܨܥ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ 

Equation 21 

where: 

 ூ௡௦௧௔௟௟ ுௐ is the cost ratio for installing hardware, which is used toܴܥ

define the proportion of the component’s purchase cost that is 

incurred for installation. It is dependent on the enterprise, and 

taken as an input. 

 is the overall cost factor associated with (௜ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ுௐܨܥ

installing an instance of hardware component ݐ݊݁݊݋݌݉݋ܥ௜. It 

is a function of the component’s complexity, standard, level of 

coupling. 

 

 Maintenance  

ெ௔௜௡௧௘௡௔௡௖௘ܥ  is the cost to maintain the system and keep it in working order. 

For hardware, the maintenance costs include: the costs of performing reactive 

maintenance, including repairing damaged components; purchasing and installing 

spares, including the costs associated with ordering, receiving, and holding procured 



 

78 

components; collateral damage mitigation; and the cost of downtime. The cost of 

repairing a component depends on the component’s complexity, failure mode, and the 

repairer’s experience. The amount of life remaining in the component after repair is 

also an important factor. However, this model will assume that 100% throwaway is 

used, and that no components are repaired or harvested for future use. Likewise, 

collateral damage and downtime penalties are assumed to be zero. Using these 

assumptions, the hardware maintenance costs become: 

ெ௔௜௡௧௘௡௔௡௖௘ ுௐܥ

= ෍ ቀ݀݊ܽ݉݁ܦ௜ ൫ݐݏ݋ܥ(ݐ݊݁݊݋݌݉݋ܥ௜)
ேಹೈ

௜ୀଵ

+ (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ +   ൯ቁ(௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ

Equation 22 

where: 

ܰுௐ is the total number of hardware components in the system, 

including multiple instances of the same component (i.e., the 

total number of locations) 

 ,௜ is the number of spares required annually for location i݀݊ܽ݉݁ܦ

which is dependent on the component’s failure rate 

 is the cost of purchasing one instance of (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

 ௜ݐ݊݁݊݋݌݉݋ܥ

 is the cost of modifying, uprating, and (௜ݐ݊݁݊݋݌݉݋ܥ)݊݋݅ݐ݂ܽܿ݅݅݀݋ܯ

burning-in an instance of ݐ݊݁݊݋݌݉݋ܥ௜. If components are 

rejected during the screening process, this includes the costs 
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associated with purchasing, screening, and disposing of 

rejected components [66] 

 is the cost of installing one instance of the (௜ݐ݊݁݊݋݌݉݋ܥ)݈݈ܽݐݏ݊ܫ

component, as given above (see ܥை௣௘௥௔௧௜௢௡) 

 

For software, maintenance includes debugging and providing minor updates 

as necessary. This cost is a function of the size and complexity of the software, the 

level of coupling, and maintainer experience. For proprietary software components, 

all of the code must be maintained by the enterprise, while for COTS and similar 

software components that are maintained by a third party, the enterprise is only 

responsible for maintaining the glue code or APIs necessary to integrate the 

component into the system. In either case, software maintenance costs include the 

cost of implementing the upgrade – sending the updated code to units in the field. The 

cost to implement is incurred every time a fielded component is updated. The update 

frequency depends on the enterprise’s strategy, and the urgency of the update. For 

low priority updates, common schedules include monthly, semi-monthly, and annual 

updates. High priority updates may be implemented as they become available, which 

depends on the update schedule and security of the component. The cost for software 

maintenance in each year can be written: 
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ெ௔௜௡௧௘௡௔௡௖௘ ௌௐܥ

=  ෍ ቌ݃ݑܾ݁ܦ൫ݐ݊݁݊݋݌݉݋ܥ௝൯
 ௡ೄೈ

௝ୀଵ

+ ෍݃ݑܾ݁ܦ൫݀݋ܥ݁ݑ݈ܩ ௝݁,௞൯ + ௝,௞൯ݐ݊݁݊݋݌݉݋ܥ൫ݐ݈݊݁݉݁݌݉ܫ

ேೕ

௞ୀଵ

ቍ  

Equation 23 

where: 

݊ௌௐ is the number of unique software components in the system. In 

this case, ‘unique’ means that modified versions of the same 

software should be counted separately (with the possible 

exception of some superficial modifications). 

 is the cost of debugging software associated (௝ݐ݊݁݊݋݌݉݋ܥ)݃ݑܾ݁ܦ

with ݐ݊݁݊݋݌݉݋ܥ௝. This is only incurred for proprietary 

components. For COTS components, debugging is provided by 

the supplier, and any associated maintenance or subscription 

fees should be included under operational costs. Debugging 

costs are a function of the size, accessibility, interface standard, 

and complexity of the component. 

௝ܰ is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௝ in the system 

݀݋ܥ݁ݑ݈ܩ)݃ݑܾ݁ܦ ௝݁,௞) is the cost of debugging the APIs or glue code 

associated with ݐ݊݁݊݋݌݉݋ܥ௝ in location k. 
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 is the cost of installing the updated (௝,௞ݐ݊݁݊݋݌݉݋ܥ)ݐ݈݊݁݉݁݌݉ܫ

 ௝ code to location k in a fielded system. It is givenݐ݊݁݊݋݌݉݋ܥ

by: 

௝,௞൯ݐ݊݁݊݋݌݉݋ܥ൫ݐ݈݊݁݉݁݌݉ܫ

= ூ௠௣௟௘௠௘௡௧ܥܤ  ௝,௞ݐ݊݁݊݋݌݉݋ܥூ௡௦௧௔௟௟ ௌௐ൫ܨܥ ௝ݕܿ݊݁ݑݍ݁ݎܨ ௝൯ݐ݊݁݊݋݌݉݋ܥ൫݁ݖ݅ܵ   ൯ 

Equation 24 

ூ௠௣௟௘௠௘௡௧ܥܤ  is the base cost for implementing a software update. 

 ௝, in KSLOCݐ݊݁݊݋݌݉݋ܥ is the size of (௝ݐ݊݁݊݋݌݉݋ܥ)݁ݖ݅ܵ

 ௝ is the expected number of updates per year toݕܿ݊݁ݑݍ݁ݎܨ

 ௝ݐ݊݁݊݋݌݉݋ܥ

 is the overall cost factor associated with (௝,௞ݐ݊݁݊݋݌݉݋ܥ)ூ௡௦௧௔௟௟ ௌௐܨܥ

installing an updated version of ݐ݊݁݊݋݌݉݋ܥ௝ in ݊݋݅ݐܽܿ݋ܮ௞. It 

is a function of the size, accessibility, and interface standards 

used by the component and the components with which it 

interacts. 

For both ݐ݊݁݊݋݌݉݋ܥ௝ and ݀݋ܥ݁ݑ݈ܩ ௝݁,௞ , the debugging function can be 

expressed as: 

(݁ݎܽݓݐ݂݋ܵ)݃ݑܾ݁ܦ = ஽௘௕௨௚ ௌௐܥܤ  (݁ݎܽݓݐ݂݋ܵ)ܹܵ ݃ݑܾ݁ܦܨܥ (݁ݎܽݓݐ݂݋ܵ)݁ݖ݅ܵ 

Equation 25 

where: 

஽௘௕௨௚ ௌௐܥܤ  is the base cost to maintain 1 KSLOC of software 

 in KSLOC ,݁ݎܽݓݐ݂݋ܵ is the size of (݁ݎܽݓݐ݂݋ܵ)݁ݖ݅ܵ
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 is the overall cost factor associated with (݁ݎܽݓݐ݂݋ܵ)஽௘௕௨௚ ௌௐܨܥ

maintaining ܵ݁ݎܽݓݐ݂݋. It is a function of the size, stability, 

and complexity of the software, maintainer experience, and 

other factors. 

 

 Configuration 

஼௢௡௙௜௚௨௥௔௧௜௢௡ܥ  is the cost to track all the different fielded versions of the 

system. A system version in this case is any unique set of hardware and/or software. 

Initially, all systems should be identical (though sometimes there are multiple 

production versions). Over time, however, as hardware components become obsolete 

and failures are replaced with spares of a newer version of the component, and as 

software is updated, the number of system configurations grows. For proprietary 

systems, this growth is relatively slow, but for COTS intensive systems, the high 

volatility and short procurement lives of the components means that the number of 

configurations can grow quickly over time, until every fielded system is slightly 

different from all the others. Configuration tracking is important because it allows 

error tracking to identify problematic component combinations. It also allows the 

enterprise to track all the different components in the field, and enables better 

scheduling and prioritization of preventative maintenance and upgrades.  

One way to prevent configuration proliferation is to require fielded systems that 

experience a failure to be repaired using the same version of the component that they 

were using previously. Newer versions are only introduced when the entire system is 
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updated to the most recent iteration of the design. This increases support costs 

because a larger number of components will need to be stockpiled when obsolescence 

occurs. However, it reduces the number of possible configurations to the number of 

design refreshes that have occurred. Additionally, it reduces qualification costs 

associated with requiring refreshed components to be completely backwards-

compatible with all current and previous versions of the components with which it 

interacts. The configuration costs are given by: 

஼௢௡௙௜௚௨௥௔௧௜௢௡ܥ = ஼௢௡௙௜௚௨௥௔௧௜௢௡ܥܤ ,݉݁ݐݏݕܵ)஼௢௡௙௜௚௨௥௔௧௜௢௡ܨܥ  ݊஼௢௡௙௜௚௨௥௔௧௜௢௡௦) 

Equation 26 

where: 

஼௢௡௙௜௚௨௥௔௧௜௢௡ܥܤ  is the base cost to manage one configuration. It is 

dependent on the enterprise, and taken as an input. 

݊஼௢௡௙௜௚௨௥௔௧௜௢௡௦  is the number of system configurations 

஼௢௡௙௜௚௨௥௔௧௜௢௡ܨܥ  is the overall cost factor associated with maintaining 

multiple configurations of system. It is a function of the 

system, the number of fielded configurations, and the upgrade 

and support strategies used by the enterprise. 

 

 Obsolescence 

ை௕௦௢௟௘௦௖௘௡௖௘ܥ  is the cost of mitigating the obsolescence of procured 

components. The form of mitigation used may depend on the enterprise, the type of 

component, and the type of obsolescence encountered. 
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For hardware, one option is to make use of ‘secondary sources,’ including 

aftermarket parts, though this increases the risk of counterfeit components 

significantly. A better option is to use a life-of-type or lifetime buy strategy, wherein 

all components that will be required between the obsolescence and EOS dates are 

purchased immediately before the component goes obsolete. An annual holding cost 

that is proportional to the purchase price of the component and the number of 

instances held is incurred. When a lifetime buy purchase is to be made, the number of 

required spares is estimated, and that amount, plus an additional pre-defined buffer, is 

purchased. A penalty is assessed for component shortages (an under-buy penalty), to 

simulate the additional cost incurred to obtain the component from a second source. If 

a component surplus occurs, a separate (smaller) penalty for overbuying is charged 

for disposal of the unneeded component.34 Both of these penalties are proportional to 

the component’s initial purchase price. 

Another mitigation strategy is to find a not obsolete component that can be 

used in place of the obsolete one. This can be an expensive, since the new component 

will have to be qualified and tested (see ܥோ௘௙௥௘௦௛). However, it is often a good option 

for long-term support, because it avoids the costs associated with making an up-front 

bulk purchase of components, stocking those components for long periods, and 

overbuying or under-buying the component. 

                                                

34 In many cases, this penalty can be omitted, as it will be negligible compared to the purchase and 
holding costs already assessed. Alternatively, unnecessarily paying to purchase and hold a component 
in inventory is its own penalty. 
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In many cases, a combination of these two strategies, called a bridge buy, may 

also be used. This entails purchasing components to last until a pre-defined refresh 

date, when the design is refreshed and several components are replaced at once. This 

involves less logistics and support than performing lifetime buys, while reducing the 

total refresh cost and number of configurations in the field compared to a refresh-only 

approach. For both an immediate refresh and bridge buy approach, an upgrade period 

must also be defined. The upgrade period is the maximum amount of time allowable 

before all fielded systems are retrofitted, so that they no longer use the obsolete 

component. Frequently, the upgrade period is equal to or double the refresh period. In 

the former case, all systems are updated before the next refresh occurs, so at most two 

fielded configurations are possible. In the latter, systems may “miss” an upgrade (for 

example, skip from design revision 1 to design revision 3), and at most three 

configurations are fielded at a time. However, any integer value may be used.35 The 

obsolescence mitigation costs, assessed at the end of each year, can be written:  

ை௕௦௢௟௘௦௖௘௡௖௘ ுௐܥ

= ෍ ൫ (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ ௜ܰುೠೝ೎೓ೌೞ೐ + ௜ܰೄ೟೚೎ೖ ݈݃݊݅݀݋ܪ 
ேಹೈ

௜ୀଵ

+ ௜ܰೀೡ೐ೝ ݕݑܾݎ݁ݒܱ  + ௜ܰೆ೙೏೐ೝ    (ݕݑܾݎܷ݁݀݊ 

Equation 27 

where: 

                                                

35 Very short upgrade periods may be impractical, but long upgrade periods increase the number of 
fielded configurations and increase support costs. 
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ܰுௐ is the total number of hardware components in the system, 

including multiple instances (locations) of the same component 

 ௜ݐ݊݁݊݋݌݉݋ܥ is the cost of purchasing (௜ݐ݊݁݊݋݌݉݋ܥ)ݐݏ݋ܥ

௜ܰುೠೝ೎೓ೌೞ೐  is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௜ purchased to 

create a stockpile for after the component becomes obsolete36 

௜ܰೄ೟೚೎ೖ is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௜ being held in 

inventory at the end of the year 

 is the proportion of the initial purchase cost paid to support ݈݃݊݅݀݋ܪ

one instance of the component in inventory for one year. It is 

dependent on the enterprise, and taken as an input 

௜ܰೀೡ೐ೝ is the number of extra instances of ݐ݊݁݊݋݌݉݋ܥ௜ left over in 

inventory at the end of the year that must be disposed of 

 is the proportion of the initial purchase cost paid to dispose ݕݑܾݎ݁ݒܱ

of one unneeded instance of a component. It is primarily 

dependent on the enterprise, and taken as an input 

௜ܰೆ೙೏೐ೝ is the number of instances of ݐ݊݁݊݋݌݉݋ܥ௜ that were needed in 

the current year but were unavailable because the component 

was obsolete, and no instances remained in the stockpile 

 is the proportion of the initial purchase cost paid to acquire ݕݑܾݎܷ݁݀݊

one instance of an obsolete component. It is a function of the 

enterprise, and taken as an input 

                                                

36 Incurred in the year immediately prior to obsolescence 
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In any given year, at most one of ௜ܰುೠೝ೎೓ೌೞ೐ , ௜ܰೀೡ೐ೝ, and ௜ܰೆ೙೏೐ೝ  will be larger 

than zero. ௜ܰುೠೝ೎೓ೌೞ೐  is only larger than zero in ݐ݊݁݊݋݌݉݋ܥ௜’s last year before 

obsolescence, when a stockpile ( ௜ܰೄ೟೚೎ೖ) is purchased. ௜ܰೀೡ೐ೝ and ௜ܰೆ೙೏೐ೝ can only be 

larger than zero after the component has been obsolete for some amount of time. 

௜ܰೆ೙೏೐ೝ larger than zero occurs if the stockpile has been depleted, but additional 

instances of the component are required. ௜ܰೀೡ೐ೝ larger than zero only occurs after a 

refresh or after the systems’ EOS date, when any instances of  ݐ݊݁݊݋݌݉݋ܥ௜ 

remaining in inventory are no longer needed. 

This equation implicitly assumes that all component purchases, including 

stockpiling, occurs at the beginning of the year, and that holding costs are assessed at 

the end of the year. No holding costs are paid for components used during the current 

year, regardless of when during the year they are used. Additionally, all costs 

associated with procuring the component from a second source are assumed to be 

included in the underbuy penalty. In particular, it is assumed that all counterfeits37 are 

detected during acceptance and screening, and so no counterfeit components are 

actually fielded. The added cost of purchasing, detecting, and rejecting counterfeit 

components is included in the underbuy penalty [66]. 

Software obsolescence must be handled differently than hardware 

obsolescence. Depending on the licensing agreement (no annual licensing fee), it may 

be possible for the enterprise to continue using the software, unsupported, 

indefinitely. In other cases (when there is an annual licensing fee), “down licensing” 

                                                

37 Counterfeit components include used (salvaged) instances of the correct component that are passed 
off as new components. 
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may be required, where the enterprise pays the licensing fees for the newer software 

version, and is allowed to continue using the old version of the software, unsupported. 

Using unsupported software is generally not a viable long-term solution. As changes 

in the surrounding system are made and new bugs in the software are encountered, 

the software may become unusable. 

For longer support periods, the rights to the software’s source code can sometimes, 

but not always, be purchased and maintained by the enterprise, or placed in escrow 

for support by a third party. Maintaining source code in this manner, either internally 

(within the enterprise) or by a third party, increases the cost of bug fixes and 

decreases the speed with which errors can be fixed. If this option is not available, 

replacement software must be found, which must be qualified and tested (see 

   .(ோ௘௙௥௘௦௛ܥ

ை௕௦௢௟௘௦௖௘௡௖௘ ௌௐܥ = ெ௔௜௡௧௘௡௔௡௖௘ ௌௐܥ )݁ܿ݊݁ܿݏ݈݁݋ݏܾܱ  ௬ܰ௘௔௥௦) 

Equation 28 

where: 

ெ௔௜௡௧௘௡௔௡௖௘ ௌௐܥ  is the cost to maintain software, as given above, 

applied to non-proprietary, obsolete software 

௬ܰ௘௔௥௦ is the number of years that the component has been obsolete 

)݁ܿ݊݁ܿݏ݈݁݋ݏܾܱ ௬ܰ௘௔௥௦) is the proportion (≥1) of the maintenance cost 

paid as a penalty to maintain software ௬ܰ௘௔௥௦ after its 

obsolescence 

 



 

89 

2.1.5: Design Refresh Costs 

A design refresh changes the components in the system in order to keep the 

system manufacturable and/or supportable. While many of the activities and costs are 

the same, this is different than a redesign or technology insertion, where individual 

components or subsystems are changed with the primary goal of improving 

performance or adding functionality. 

The total cost to update a system to use new technology depends on the rate of 

technological advancement, the TRL of the technology to be implemented, limitations 

on the new technology imposed by other components,38 the value of the added 

performance or functionality, and many other factors. The number and variability of 

these factors make modeling the cost of redesign difficult and inaccurate. However, 

this model assumes that using a MOSA approach will affect the ability to perform a 

refresh or a redesign in the same way – a system that is easier to refresh is easier to 

redesign, and the benefits of having an up-to-date system are similar to the costs 

avoided by having a more supportable system. Additionally, the benefit of increased 

functionality in a redesigned system should be similar to the costs avoided in a 

refreshed system, where new, less expensive components replace older ones with the 

same performance. Therefore, though the advantages of redesign cannot be directly 

quantified, the same information can be achieved by modeling refresh alone. 

The cost of performing a design refresh is given by: 

                                                

38 For example, improved processor speed is not as valuable if there is not enough RAM or high 
enough bus speed. Similarly, the advantages of moving to a dual or quad core processor will not be 
realized if the software does not allow for multithreading. 
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ோ௘௙௥௘௦௛ܥ = ூ௡௜௧௜௔௧௘ܥ  + ஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ܥ + ேோாܥ  + ௎௣௚௥௔ௗ௘ܥ   

Equation 29 

 

Initiating a Design Refresh 

ூ௡௜௧௜௔௧௘ܥ  are overhead costs associated with performing a design refresh that 

are not directly related to any specific component. These costs are similar to those in 

஽௘௦௜௚௡ ூ௡௙௥௔௦௧௥௨௖௧௨௥௘ܥ  and ܥ஽௘௦௜௚௡ ஼௥௘௔௧௜௢௡ , and are related to  supporting, training, and 

maintaining a refresh team, determining which components are candidates for refresh, 

and scheduling the timing of refreshes. ܥூ௡௜௧௜௔௧௘  can be modeled as: 

ூ௡௜௧௜௔௧௘ܥ =  (݉݁ݐݏݕܵ)ூ௠௣௟௘௠௘௡௧ ோ௘௙௥௘௦௛ܨܥூ௠௣௟௘௠௘௡௧ ோ௘௙௥௘௦௛ܥܤ

where: 

 ூ௠௣௟௘௠௘௡௧ ோ௘௙௥௘௦௛ is the base cost to initiate a refreshܥܤ

 is the overall cost factor associated with (݉݁ݐݏݕܵ)ூ௠௣௟௘௠௘௡௧ ோ௘௙௥௘௦௛ܨܥ

implementing a refresh of ܵ݉݁ݐݏݕ. It is dependent on the 

number of component types and standards used, and the 

modularity of the system, among other factors. 

 

 Design Implementation 

The costs associated with ܥ஽௘௦௜௚௡ ூ௠௣௟௘௠௘௡௧௔௧௜௢௡ are the same as those 

explained above. However, these costs are only incurred for the components and 

subsystems that are affected by the design refresh. 
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 NRE 

ேோாܥ  is defined as previously, though the costs are only incurred for the 

components and subsystems that are affected by the design refresh. 

 

 Upgrade  

୙୮୥୰ୟୢୣܥ  are the costs associated with deploying a design refresh to fielded 

systems. This cost is highly dependent on the configuration management and upgrade 

strategy used by the enterprise. Due to the time and cost of reequipping fielded 

systems, system upgrades are generally spread over several years. Depending on the 

refresh schedule, some systems may skip an upgrade cycle.39 ܥ୙୮୥୰ୟୢୣ  costs are the 

same as those in ܥ௉௥௢ௗ௨௖௧௜௢௡, though only applied to the components and subsystems 

that are affected by the design refresh. 

 

2.1.6: Enterprise Costs 

The enterprise costs are any costs that are incurred once at the enterprise level, 

but the benefits of which apply across several products or projects. These costs 

include the cost of maintaining a library of pre-qualified components, licensing or 

                                                

39 For example, if refreshes are conducted every two years, and each fielded system is updated every 
fourth year. A system will then receive version updates 1, 3, and 5, (in years 4, 8, and 12) but skip 
updates 2 and 4. 
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purchase costs for tools and databases that are used across the design and support of 

multiple systems, any common maintenance support infrastructure or staff, training of 

staff, incentive programs to encourage the use of library components, and the 

development of architectures based on industry reference models. Other enterprise 

level costs include the cost of researching components and standards that aren’t used 

in any system. 

 

2.2: Model Outputs 

The primary output of the model is the total life cycle cost difference between 

two system designs. The costs associated with each cost category are tabulated 

separately, allowing for a better understanding of where the extra costs are incurred. 

However, total cost for each system is not calculated. This model cannot be used to 

predict the total life cycle cost of either system, nor can it be used to determine which 

cost categories will have the largest absolute expenditures over the life of the 

system.40 

As noted, many of the less well defined parameters are input as probability 

distributions. A Monte Carlo approach is used, so the total costs are also expressed as 

distributions. The mean of this output distribution can be interpreted as the “likely” 

                                                

40 For example, say the design cost for two competing systems are $1.8M (for System A) and $1.7M 
(for System B), while operation and support costs are $1.5M and $1.1M respectively. This model 
would only be able to report a cost difference of $0.1M for design and $0.4M for operation and 
support. More money is spent on design, but the biggest effect the design changes have on cost fall 
under operation and support. 
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outcome, while the spread of the distribution is a measure of both the uncertainty in 

input parameters, and the risk associated with a design.41 

In addition to the total life cycle cost difference between two designs, each 

architecture design is given an accessibility score and a modularity score. These are 

primarily used to give a quick estimate of the overall accessibility and modularity of 

the architecture so that some context can be provided for cost differences between 

architectures. The accessibility score measures the average accessibility of all the 

components used in the architecture. The modularity score takes into account the 

number of interfaces each component has, the number of standards used, the 

interdependency of specific components, and the ability of subsystems to be re-

qualified independently. Both scores are measured on a scale between 0 and 1, with 

higher values corresponding to greater accessibility/modularity.  

 

2.3: Model Implementation 

The following sections detail the equations and simplifying assumptions that 

are specific to the current implementation of the model, used to produce the case 

study in Chapter 3. 

As explained previously, this model is intended to compare two or more 

possible designs of an electronic system late in the design stage. Comparing multiple 

systems helps to reduce epistemic uncertainty by reducing the impact of unknown or 

                                                

41 Consider two system architectures compared to a baseline, where the mean savings associated with 
System A are slightly greater but more widely distributed than those associated with System B. Using 
System A could provide for greater cost avoidances, but could also result in far more costs incurred. 
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unknowable factors. Costs, both known and unknown, that are the same for both 

designs cancel out, and are not considered in the analysis. Additionally, since this 

analysis will be conducted after the initial design phase has been completed with the 

goal of determining which of two systems is the better long-term investment, some of 

the early design and development costs may be treated as “sunk costs,” and omitted 

from the calculations.42 This assumption helps to reduce both epistemic and aleatory 

uncertainty.  

Many of the equations presented previously use a cost factor that is a function 

of the openness metrics to help predict various life cycle costs. This methodology is a 

common approach in cost modeling. It is used by many models, including the Loral 

Federal Systems model and all models in the COCOMO family. In all such models, a 

base effort or cost is estimated and then adjusted using one or more cost factors. In 

this model, all of the individual cost factors are assumed to be independent, and have 

a multiplicative relationship to form the overall cost factor. In other words, the overall 

cost factor may be given by: 

ை௩௘௥௔௟௟ܨܥ = ෑܨܥ௜(ܱܯ௜, (ݏݐℎ݃݅݁ݓ
ேೀಾ

௜ୀଵ

 

Equation 30 

where: 

 ை௩௘௥௔௟௟ is the overall cost factorܨܥ

                                                

42 An alternate goal is to use previous experience and data to predict what type of system or what level-
of-openness is the most cost effective to design, as well as build and operate, in order to establish an 
enterprise-level design strategy for future projects. In such a case, design and other early costs should 
be accounted for because they play an important role in the overall cost of future systems. 
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ܰைெ is the number of openness metrics (and individual cost factors) 

associated with the current ܨܥை௩௘௥௔௟௟ 

 ௜ is the ith openness metricܯܱ

 are a set of input parameters that define the scale used to ݏݐℎ݃݅݁ݓ

measure ܱܯ௜ 

,௜ܯܱ)௜ܨܥ  is the ith individual cost factor, which is (ݏݐℎ݃݅݁ݓ

calculated by measuring the value of ܱܯ௜ on a scale defined by 

 ௜ may beܨܥ ,Depending on the metric and location .ݏݐℎ݃݅݁ݓ

calculated using one of the following: 

௜ܨܥ = ,௜ܯܱ)ݎܽ݁݊݅ܮ  (ݏݐℎ݃݅݁ݓ

௜ܨܥ = ,௜ܯܱ)ܿ݅ݐݏ݅݃݋ܮ  (ݏݐℎ݃݅݁ݓ

௜ܨܥ = ,௜ܯܱ)ܿ݅ݐ݋ݐ݌݉ݕݏܣ  (ݏݐℎ݃݅݁ݓ

Equation 31 

,௜ܯܥ)ݎܽ݁݊݅ܮ  is a function that weights the value of metric i (ݏݐℎ݃݅݁ݓ

on a linear scale between a minimum and maximum value 

,௜ܯܥ)ܿ݅ݐݏ݅݃݋ܮ  is a function that weights the value of metric (ݏݐℎ݃݅݁ݓ

i on a logistic or “S” shaped curve, similar to those used in 

modeling population growth. These curves are characterized by 

slow initial growth starting from a minimum value, followed 

by a period of exponential growth, and then slowing growth as 

a maximum value is approached. 

,௜ܯܥ)ܿ݅ݐ݋ݐ݌݉ݕݏܣ  is a function that weights the value of (ݏݐℎ݃݅݁ݓ

metric i on an asymptotically increasing curve. This curve is 
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characterized by fast initial growth from an initial minimum 

value. The speed of the growth diminishes as the maximum 

value is approached. 

 are the lower and upper values of the curve, and the metric ݏݐℎ݃݅݁ݓ

values to which those bounds correspond. These values depend 

on the specific metric, and are used to help tune and calibrate 

the model. 

 

2.3.1: Design Costs  

 Design Infrastructure 

Design infrastructure costs are dependent on the enterprise. Since the same 

enterprise is designing both systems, these costs will be approximately equal and can 

therefore be treated as a wash. Additionally, these costs would be incurred early in the 

design process, so they may be considered sunk costs for this analysis. As such, they 

are excluded from this implementation of the model. 

 

 Design Creation  

At the time this analysis is conducted, the two (or more) prospective designs 

will already have been created. However, for the purposes of this model, the design of 

both options considered can be considered sunk costs.  
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 Design Implementation 

The implicit assumption is made that all components selected for integration 

are suitable for their intended location, and that once they are integrated and 

qualified, interacting components behave properly. All issues associated with 

architectural mismatch or other incompatibilities are assumed to be included in the 

selection and implementation costs. Additionally, when calculating integration costs, 

all standards and components are assumed to have interfaces of similar difficulty. 

For the purposes of this model, it is assumed that the cost analysis is taking 

place after both designs have been created, but not fully implemented. The nonlinear 

scale factor A in the CICC-based model for COTS software integration is therefore 

taken as the “nominal” value of 1.04 [63].  

 

2.3.2: Non-Recurring Engineering Costs 

 Supplier NRE 

In many cases, the number of suppliers needed would be similar for the two 

systems being compared, so supplier qualification costs may be treated as a wash. 43 

Additionally, in large enterprises, the same suppliers will be used to supply 

components for multiple types of systems, so many of the suppliers will already have 

                                                

43 This is not always a valid assumption, particularly in cases where the enterprise is trying to decide 
whether or not to alter their design paradigm. Switching from mostly closed, proprietary designs to 
open, COTS-based ones, for example, would require qualifying many new suppliers. For large 
enterprises, however, the cost of this shift would be amortized over many projects or considered a one-
time investment, and can so be assumed to play a negligible role in any given system. 
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been qualified. In such cases, supplier qualification costs may also be treated as a 

sunk cost. For the purposes of this implementation, one or both of these are assumed 

to apply, so supplier qualification costs are omitted from the calculations. 

 

 Standard NRE  

In practice, when an enterprise is selecting an interface standard for use in a 

system, it will research several possibilities, and select the one most appropriate for 

the current situation. The cost of researching unused standards should also be 

included. This model will assume that these costs would be similar in all cases, and 

that these costs are included in the base cost of selecting a standard. If an in-house, 

proprietary standard specific to the enterprise is to be used, it is assumed that the 

standard already exists – costs to develop new standards are not included in the 

model. 

 

 Component NRE  

Similar to the process used when selecting a standard, an enterprise will 

generally investigate several potential components, including COTS or proprietary 

options, before deciding which component will be used. The costs associated with 

considering other components are assumed to be roughly independent of the final 

selection, and are therefore included in the base cost of selecting a component. 
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2.3.3: Production Costs 

 Procurement  

In this model, procurement costs are assumed to independent of the number 

and size of purchase orders made. This is true for initial production, maintenance, and 

sparing during the life of the system, and for updates made to existing systems. 

Additionally, all ordered components are assumed to arrive just before they are 

needed, so no holding costs are incurred. All components needed for production in 

the current year are ordered and delivered at the beginning of the year. 

The cost to procure each instance of a component is assumed to be constant 

over the course of its procurement life. When a component is refreshed, it is replaced 

with a newer version of similar functionality. Since the cost of a constant 

functionality level decreases over time, the procurement cost of the replacement 

component is expected to be less than that of the original. Abel, Berndt, and White, 

for example, found that between 1993 and 2001, the cost for software declined 4.26% 

annually, on average, while simultaneously receiving improvements and additional 

functionality [67]. During the same period, general prices increased 2% annually. 

 

 Part Preparation 

Acceptance tests and modification processes generally have a non-zero failure 

rate, and some components are rejected. Depending on the supplier and the 

purchasing terms, some COTS components may be covered under a warranty. 

Otherwise, in addition to the components actually used, the enterprise must pay for 
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the purchasing and testing of inadequate components that are rejected during the 

testing process, even though they are not used in the final system. For this model, it is 

assumed that all components that fail acceptance tests are covered under warranty, 

and any costs associated with components damaged by uprating or modification are 

amortized over approved components, and included in the part preparation cost.  

 

 Assembly 

All systems are produced at the beginning of the year. This means that no 

holding costs are incurred for the components used to produce the system. 

Additionally, each system must be supported for the full year in which it is created. 

 

 Recurring Test 

Recurring test fees are those associated with ensuring that all components and 

subsystems of outgoing systems are functioning properly. In any real-world system, 

some percentage of units will fail these tests, and require rework. This model 

implicitly assumes that there is a 100% pass rate. Alternatively, the costs of 

components that fail quality control may be included in the base cost.44 

 

                                                

44 A methodology for calculating the added costs due to these failures is given in [65]. Though not 
implemented in the current model, the pass/fail rate of a system could be used in the cost factor 
function to account for these costs explicitly. 
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2.3.4: Operation and Support Costs 

 Operation 

Software components are assumed to have no direct operational expenses, 

with the exception of costs associated with staffing or labor costs. If these costs are to 

be incurred, they should be modeled separately as a consumable item. 

 

 Maintenance  

While components are not obsolete, all spares are assumed to be purchased 

and paid for at the beginning of the year. Sparing and delivery schedules are assumed 

to be perfect – no unneeded spares are purchased, and spares are delivered at exact 

time and place at which they are needed. This means that holding costs and downtime 

costs are minimal, and can be neglected. 

Production and upgrade events occur at the beginning of each year, and 

retirement events at the end of each year. Systems must be supported for each year of 

their use, including the years they are produced and retired. 

 

 Obsolescence  

In the year before a component becomes obsolete, the number that will be 

required post-obsolescence is estimated. This quantity, with an additional fraction as 

a buffer, is purchased at the beginning of the year. Components used in that year are 

drawn from this inventory without incurring any holding fees. At the end of the year, 
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and at the end of each subsequent year, holding costs are paid for any components 

remaining in inventory. Required spares are assumed to be delivered to the system at 

the exact time they are needed, so no downtime penalties are assessed. 

For this implementation of the model, it is assumed that the enterprise uses the 

same strategy for all components. The possible strategies are lifetime buy, bridge buy, 

or replacement. For bridge buy, a predefined refresh period may be input, or the 

optimum refresh period may be calculated using a design refresh planning (DRP) 

model [53].45 

In some situations, a component’s interface standard may become obsolete 

before the component itself. This is interpreted as a phasing-out of the interface 

standard in favor of newer, more capable standards. After this point, the standard 

itself may no longer be supported, and no new components using the standard will be 

released. However, existing components utilizing the standard will remain available 

until their own obsolescence date. 

 

2.3.5: Design Refresh Costs 

 Design Implementation  

When a design refresh occurs, all obsolete components (with the exclusion of 

components that are explicitly excluded) are refreshed. If a component’s interface 

                                                

45 Tools such as the Mitigation of Obsolescence Cost Analysis (MOCA) and the Multi-part Multi-event 
(MpMe) models may be used to perform this optimization. 



 

103 

standard is obsolete, the component is refreshed, even if the component itself is still 

procurable. 

The implicit assumption is made that all components selected for integration 

are suitable for their intended location, and that once they are integrated and 

qualified, interacting components behave properly. All issues associated with 

architectural mismatch or other incompatibilities are assumed to be included in the 

selection and implementation costs. Additionally, it is assumed that the nonlinear 

scale factor A in the CICC-based model for COTS software integration is still the 

“nominal” value of 1.04 [63].  

 

 Non-Recurring Engineering Costs 

It is assumed that the assumptions made previously still apply. 

 

 Upgrade  

Upgrade costs are assumed to be independent of the number of systems 

upgraded per year. Once an update is performed, all new production is based on the 

newer design. Like production, all system updates occur at the beginning of the year. 

This means that in the year that a system is updated it must be supported with the new 

version of the component. 

An “upgrade period” is used to define the number of years after a refresh 

occurs, by which point all existing systems must be updated to the most recent design. 

If the refresh period is shorter than the upgrade period, the upgrade period is the 
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maximum amount of time a fielded system can operate without receiving an update. 

Updates (and retirements) are done on a “first in, first out” basis, so that all systems 

are updated once before the first system receives a second update. However, if a 

system is scheduled to be retired (reach EOS) before the end of the upgrade period, it 

is not upgraded. 

After a refresh has been performed, fielded systems may be supported by 

replacing failed components with stockpiled instances of the obsolete component or 

with an instance of the newer version. Using a newer version requires planning during 

the refresh process to provide complete backwards compatibility and to limit 

architectural changes to prevent mismatch. 

 

2.3.6: Enterprise Costs 

Some of these benefits may be captured in the previous sections, particularly 

when the metric of ‘Enterprise Experience’ is used in the calculation of the cost 

factor. Many of these benefits, however, cannot easily be quantified. For the purposes 

of this model, the rest of these costs and benefits will be considered “sunk”, and not 

enumerated. 
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Chapter 3: Case Study 

The model discussed in Chapter 2 was implemented in Microsoft Excel in the 

form of a Cost of Openness Tool (COT) – see Appendix D for a description of the 

tool. The tool contains separate worksheets that allow for the definition of the 

standards, components, parameters, parameter weights, simulation settings, and 

architectures being examined. Some inputs may be defined as probability 

distributions. A simulation consists of a predefined number of trials (defined in the 

simulation settings), during which distributions are sampled. The resulting range of 

cost differences represents the likely outcomes.  

In the sections that follow, two sample architectures based on the US Navy 

ARCI sonar system are presented. These are used to demonstrate the impacts that the 

use of MOSA has on a system’s life cycle cost, and how investing in an open strategy 

may affect an enterprise’s design and support methodologies. 

 

3.1: Architecture Definitions 

When comparing architectures, it is important that they are of similar 

functionality and described at the same level of detail. This ensures that the cost 

difference results obtained from the model are primarily due to the difference in 

openness and the related metrics. Two architectures, based on the first two 

implementation phases of the Acoustic-Rapid COTS Insertion (ARCI) sonar system 

as described in [1], with additional information from the AFRL/RYM Interconnect 



 

106 

Trade Study [69], were used to perform the case study. These systems will be referred 

to as ARCI-1 and ARCI-2 respectively. The baseline metric inputs for the standards 

and components used, as well as the architectures themselves, are described in 

Sections 3.1.1 through 3.1.4.  

 

3.1.1: Standards 

Every standard used in the model is required to have:  

A procurement life, which represents the time between the standard’s 

introduction and obsolescence. This may be described using a 

probability distribution. 

A life code, which indicates where the standard is in its life cycle. A 

value between 1 and 6 is used, where 1 denotes introduction 

phase, and 6 denotes obsolescence. 

Other information about the standard may also be used, including:  

Market share, the percentage of the relevant market that uses the 

standard 

The volatility of the standard, measured in expected number of minor 

changes or updates per year 

The years of use, or how long the standard has been available 

 Enterprise experience, the length of time, in years, that the enterprise 

has used the standard 

“Standard Defined By”, selected from: 
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 “In-house proprietary standard”: a proprietary standard that is 

maintained by the enterprise itself 

“Defined by a single entity or group, with restrictions”: a 

proprietary standard belonging to an external entity 

“Defined by single entity, no licensing restrictions”: typical 

classification of a de facto standard 

“Defined by group, no licensing restrictions”: an open standard 

 

The definitions of the standards used in the case study are given in Table 1.



 

108 

Table 1: Definitions of standards used in the case study 

Name Procurement Life 
(years) 

Life 
Code 

Market 
Share Volatility Years of 

Use 

Enterprise 
Experience 
(years) 

Standard Defined By 

Ethernet Normal(30, 5) 3 60% 0.5 25 0 Defined by group, no licensing restrictions 
Infiniband Normal(25, 5) 3 20% 0.5 15 2 Defined by group, no licensing restrictions 
DDS Normal(30, 5) 3 30% 0.5 10 0 Defined by group, no licensing restrictions 
MTM Normal(25, 5) 3 10% 1 15 2 Defined by entity or group, with licensing restrictions 
SPARC Normal(50, 5) 3 30% 0 10 2 Defined by entity or group, with licensing restrictions 
SHARC Normal(50, 5) 3 30% 0 10 2 Defined by entity or group, with licensing restrictions 
RISC-1 Normal(50, 5) 3 30% 0 10 2 Defined by entity or group, with licensing restrictions 
RISC-2 Normal(50, 5) 3 30% 0 10 2 Defined by single entity, no licensing restrictions 
 

“Normal(X, Y)” indicates a normal probability distribution with mean X and standard deviation Y. The procurement life of 

each standard is assumed to be normally distributed. Other distributions could also be selected. 

An “entity” is a single enterprise or other body that defines a standard. A “group” is a consortium of two or more enterprises or 

other entities that cooperate to formulate and maintain a standard.
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3.1.2: Components 

 Each component is required to have:  

A type – Hardware, Software, or Consumable. Consumables are 

treated as hardware, except that a constant failure/replacement 

rate is assumed, instead of sampling from a failure distribution. 

An Interface Standard, selected from those defined for the Standards  

A Procurement cost (which can be a distribution) 

A time-to-failure distribution 

A procurement life, which indicates the time between the component’s 

introduction and obsolescence (modeled as a distribution) 

A life code, which indicates where the component is in its life cycle. A 

value between 1 and 6 is used, where 1 denotes introduction 

phase, and 6 denotes obsolescence. 

Accessibility of the component’s technical data package (TDP) and 

product definition, selected from: 

“Component designed in-house”: A component that is designed 

and maintained by the enterprise itself. This is an option 

for components that use an in-house or open 

(unrestricted) standard. 

“Limited access (Proprietary/COTS)”: A component designed 

and maintained by an external entity. This may be a 

component that is created by a contractor for this 
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specific purpose (proprietary), or a COTS component. 

In either case, the component is treated as a “black box” 

– the enterprise cannot access internal specifications or 

workings of the component for debugging or 

modification purposes. This option cannot be used if 

the component uses an “in-house” standard. 

“Full access (COTS/Open Source)”: A component that is 

designed and maintained by an external entity, but to 

which the enterprise has access to the TDP and internal 

workings of the component, facilitating debugging, and 

allowing for some modifications. This may be used for 

components that use “unrestricted” standards. 

A Design Refresh Plan (DRP) option, selected from: 

“Included in DRP”: Components that are included in design 

refresh planning. 

“Excluded from DRP”: Components that are excluded from 

design refresh planning, but which are refreshed at the 

first opportunity after obsolescence. 

“Not refreshable”: Components that are excluded entirely from 

refresh planning and implementation – if the 

component becomes obsolete, a lifetime buy strategy is 

used, regardless of the strategy used for the rest of the 

system. 
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Other information about the component may also be relevant, including:  

Cost of annual licensing, where applicable (typically only applicable to 

some software) 

Software size, given in thousands of lines of source code (KSLOC) 

The number of competing components 

The volatility of the component, measured in expected number of 

minor changes or updates per year 

The length of use, or how long the component has been available 

 Enterprise experience, the length of time, in years, that the enterprise 

has used the component 

Definitions of the components used in the case study are shown in Table 2. 

For all of the components shown, annual licensing costs are assumed to be $0. All 

hardware components are assumed to have a time-to-failure distribution that can be 

modeled using a Weibull distribution with shape parameter of 1.75 and scale 

parameter of 2 years. Weibull distributions are often used to model component failure 

because selecting an appropriate shape parameter allows for modeling of all three 

portions of the reliability bathtub curve - infant mortality, random failure, and wear-

out. A shape parameter of 1.75 and scale parameter of 2 years gives a positively-

skewed distribution with mean of 1.75 years, and variance of 1.10 years, 

corresponding to wear-out failures. Each of the software components measures 100 

KSLOC. Additionally, all components are included in DRP calculations. Since all 

standards and components used are COTS and therefore at least nominally open, the 
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data used reflects the assumption that components and standards with higher 

openness will have greater market share, longer procurement lives, and lower costs. 

The procurement life and cost of each component are assumed to be normally 

distributed. Other distributions could also be used.
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Table 2: Definition of components used in the case study 
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Ethernet NIC Hardware Ethernet Normal(75, 10) Normal(5, 1) 3 10 1 10 0 Full access (COTS/Open Source) 
Infiniband HCA Hardware Infiniband Normal(125, 10) Normal(3, 1) 3 5 0.5 5 2 Limited access (Proprietary/COTS) 
DDS Stack Software DDS Normal(50, 5) Normal(5, 1) 3 10 1 3 0 Full access (COTS/Open Source) 
MTM Stack Software MTM Normal(50, 5) Normal(3, 1) 3 2 0.5 5 2 Limited access (Proprietary/COTS) 
SPARC Card Hardware SPARC Normal(90, 5) Normal(5, 1) 3 5 1 2 2 Limited access (Proprietary/COTS) 
AD21062 Card Hardware SHARC Normal(90, 5) Normal(5, 1) 3 3 1 2 2 Limited access (Proprietary/COTS) 
i860 Card Hardware RISC-1 Normal(55, 5) Normal(3, 1) 3 5 1 2 2 Limited access (Proprietary/COTS) 
Quad i860 Hardware RISC-1 Normal(200, 10) Normal(3, 1) 3 5 1 2 2 Limited access (Proprietary/COTS) 
PowerPC Card Hardware RISC-2 Normal(55, 5) Normal(5, 1) 3 5 1 2 2 Full access (COTS/Open Source) 
Quad PowerPC Hardware RISC-2 Normal(200, 10) Normal(5, 1) 3 5 1 2 2 Full access (COTS/Open Source) 
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3.1.3: Architectures 

An architecture is defined by a hierarchy of subsystems and components. Each 

layer in the hierarchy is given a level number and a number of instances. Low-level 

subsystems are made up of higher level (more detailed) subsystems and components. 

The instance number tells how many times the subsystem appears in the architecture. 

The lowest (outermost) subsystem (the zero-level) represents one system instance 

Additional data that is specific to the application of the component that may 

be used includes: 

The up-rating and modification costs per unit (hardware components) 

The amount of glue code required to integrate the component 

(software components) 

The percentage of the total functionality used 

The number of functional interfaces the component has, both with 

components in the current subsystem, and with components in 

other subsystems. 

If two (or more) components are interdependent, such that the refresh 

of one necessitates refresh of the others. 

The ability of one or more specific subsystems to be requalified 

independently, without requalifying the design of the entire 

system. This depends on the modularity of the design and any 

regulations affecting the system) 
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Each architecture is given an accessibility score and a modularity score, 

measured on a scale between 0 and 1, to allow for a quick approximation of the 

relative openness and modularity of different architecture designs. The accessibility 

score is the arithmetic mean of the accessibility scores of each individual component 

used in an architecture. The accessibility score for a component depends on its 

accessibility, as well as the governing body which defines the standard it uses. The 

possible combinations and ratings are given in Table 3. 

Table 3: Accessibility scores for individual components 

Standard defined by: Accessibility of TDP: Score: 
In-house proprietary standard Component designed in-house 0 
Defined by entity or group, with licensing restrictions Limited Access (Proprietary/COTS) 0.14 
Defined by single entity, no licensing restrictions Component designed in-house 0.29 
Defined by group, no licensing restrictions Component designed in-house 0.43 
Defined by single entity, no licensing restrictions Limited Access (Proprietary/COTS) 0.57 
Defined by group, no licensing restrictions Limited Access (Proprietary/COTS) 0.71 
Defined by single entity, no licensing restrictions Full access (COTS/Open Source) 0.86 
Defined by group, no licensing restrictions Full access (COTS/Open Source) 1 

 

The modularity of a component is defined as the multiplicative inverse of the 

component’s number of interfaces (1/interfaces). The modularity score for each 

subsystem is the average modularity of the encapsulated subsystems and components, 

with small penalties for components that are interdependent and subsystems that 

cannot be requalified independently. At the architectural level, a weighting is used to 

reduce architectures that utilize a larger number of standards. 

The architectures for ARCI-1 and ARCI-2, which were used in the case study, 

are shown in Table 4 and Table 5. ARCI-1 received an accessibility score of 0.2245 

and a modularity score of 0.7079. ARCI-2 scored higher on both measures, receiving 

an accessibility score of 0.8929 and a modularity score of 0.8091. 
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The architectures reflect the assumption that the more open design (ARCI2) 

incorporates greater reuse (and uses only three standards and four unique component 

types, compared to ARCI1’s five standards and five component types), while the less 

open system uses more specialized components, allowing for greater design 

efficiency (each system using the ARCI1 architecture is made up of 7 components, 

while each ARCI2 is made up of 11 components).
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Table 4: Definition of ARCI-1 Architecture 
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0 ARCI-1  TRUE 1      FALSE 
   1 MPP Module  TRUE 1      FALSE 
      2 Signal Conditioner  FALSE 1      FALSE 
         3 SPARC Card TRUE FALSE 1 SPARC 0 0 100% 1  
           
      2 Allocatable Drawer  FALSE 1      FALSE 
         3 AD21062 Card TRUE FALSE 1 SHARC 0 0 100% 1  
         3 Quad i860 TRUE FALSE 2 RISC-1 0 0 100% 1  
         3 SPARC Card TRUE FALSE 1 SPARC 0 0 100% 1  
           
      2 Infiniband HCA TRUE FALSE 1 Infiniband 0 0 100% 1  
      2 MTM Stack TRUE FALSE 1 MTM 0 0 100% 1  
 

Table 5: Definition of ARCI-2 Architecture 

0 ARCI-2  TRUE 1      FALSE 
   1 MPP Module  TRUE 1      FALSE 
      2 Signal Conditioner  TRUE 1      FALSE 
         3 PowerPC Card TRUE FALSE 2 RISC-2 0 0 100% 1  
           
      2 Allocatable Drawer  TRUE 1      FALSE 
         3 Quad PowerPC TRUE FALSE 5 RISC-2 0 0 100% 1  
         3 PowerPC Card TRUE FALSE 2 RISC-2 0 0 100% 1  
           
      2 Ethernet NIC TRUE FALSE 1 Ethernet 0 0 100% 1  
      2 DDS Stack TRUE FALSE 1 DDS 0 0 100% 1  
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3.1.4: Parameters 

The parameters used to conduct the case study are shown in Table 6. 

Table 6: Parameter values used in the case study 

Base Cost to qualify a standard: $500 
Base Cost to qualify a HW component: $500 
Base Cost to qualify a SW Component  (/KSLOC): $50 
Base Cost to qualify system design: $500 
Base Cost of outgoing test: $500 
  
Hardware replacement/installation cost ratio: 0.25 
  
Base Cost to install SW update (/KSLOC): $50 
Base Cost to maintain proprietary SW (/KSLOC): $200 
Software update implementation frequency (/year) 1 
  
Base Cost to manage one system configuration $100 
  
Annual Discount Rate 7.00% 
Inventory Support Cost Ratio 0.3 
Spares Overbuy Fraction 0.25 
Spares Overbuy Penalty Ratio 0.25 
Spares Underbuy Penalty Ratio 1.5 
Software Obsolescence Penalty Ratio 1.5 
  
Base cost to initialize a design refresh: $500 
Base cost to design proprietary HW component: $500 
Base cost to design proprietary SW component (/KSLOC): $50 
Base cost to integrate a HW component: $500 
Base cost to integrate a SW component (/KSLOC): $50 
Life code for replacement components 3 
Life code for replacement standards 3 

 

3.1.5: Simulation Control Parameters 

The simulations described in this chapter were run using between 10 and 100 

trials. Each trial models twenty system instances produced at the rate of four per year 

for the first five years of the simulation. No system retirement dates are specified, so 

all systems are retired at the final end of service (EOS) date. The discount rate is used 
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to translate all costs and avoidances into year 0 dollars. The effects of varying the 

EOS date and other parameters are examined in the sections that follow. 

 

3.1.6: Example Model Result 

The model is used to find the cost difference in each cost category between 

two architectures in each year that the systems are deployed. The results from each 

category may be summed to give the total cost in each year. The cumulative cost in 

each year is found by summing the total costs from year 1 up to the year of interest. 

This enables an enterprise to see when the primary cost differences are incurred. An 

example of this is shown in Figure 7. 

The total cumulative cost difference, the final cumulative cost difference 

observed in the EOS year, is an important figure in making a business case for 

Figure 7: Cumulative total cost difference between ARCI2 and ARCI1 in each operational year, for a 
support lifetime of 22 years. Each of the five trials is shown in purple, blue shows average result. 
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choosing one architecture over another, so it is the primary indicator examined in the 

analysis in the following sections.  

Since some of the input data are described by probability distributions, a 

single iteration or “trial” of the modeling procedure results in one possible outcome, 

though it may not be the most likely outcome. Repeating the procedure several times 

gives a range of results representing the possible outcomes that can be statistically 

analyzed. The final end of service date is also an important factor because, as will be 

demonstrated, the decision to invest in a more open architecture depends on the 

number of years of system use. The results of each simulation will therefore be 

calculated for a range of EOS dates. 

An example output from the model is shown in Figure 8. In this case five 

individual trials were conducted, and variables sampled in each trial were used to 

calculate the total life cycle cost difference for EOS dates between 20 and 25 years 

after system introduction. Each solid pink line shows the results of one trial, and the 

dashed yellow line shows the average result in each year. 
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The difference, ARCI-2 minus ARCI-1, is positive in years 20 and 21, 

indicating that ARCI-2 is more expensive than ARCI-1 for support lifetimes of 20 or 

21 years. The overall behavior of the different trials depends on the nature of the 

architectures, components, and management techniques being examined. Higher 

variability in the input distributions will lead to higher variability in the results. Some 

results, especially those involving lifetime buy management (which is highly 

dependent on the initial components’ price and procurement life), may be observed to 

diverge for longer EOS dates. Other results, such as those involving bridge buy 

management (which implements a periodic design refresh), may give results that 

demonstrate periodic behavior over a range of EOS dates. 

 

Figure 8: Example model results. Each solid pink line represents a single trial. The values sampled in each 
trial are used to estimate the total life cycle cost difference for support until each possible EOS year. The 

dashed blue line is the average outcome. 
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The range and distribution of the results can be used to express the expected 

outcome and its confidence. For example, Figure 9 shows a histogram of 50 results of 

total cumulative cost difference for support until an EOS date of year 22 for the ARCI 

architectures using different support strategies. This histogram can be used to 

estimate the probability of a result falling in a particular range. The average result is a 

cost difference of approximately $87,000, with a standard deviation of $100,000. The 

ARCI2 architecture is more expensive than ARCI1 in 80% of the results. 

 

Figure 9: Histogram of the total cumulative cost difference (ARCI2 minus ARCI1) results from 50 trials 
for support until an EOS date of 22. ARCI1 is less expensive 80% of the time (shown in red) 
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3.2: Life Cycle Cost Analysis 

When the ARCI-1 and ARCI-2 architectures described in Section 3.1.1 

through 3.1.4 are sustained using a lifetime buy methodology, the less open ARCI-1 

architecture usually costs less46. When a lifetime buy methodology is used, a bulk 

purchase of a component is made just before that component becomes obsolete. This 

stockpile is used to produce new systems, and support existing ones. This stockpile is 

ideally as close as possible to the number actually needed to support all systems 

through the EOS date. Figure 15 shows the results for EOS dates between year 10 and 

year 30. Though generally the more open system is expected to be less expensive to 

maintain, a lifetime buy methodology does not allow for many of the benefits of 

openness to be realized.  

                                                

46 The difference Cost(ARCI-2) –Cost(ARCI-1) is positive. 



 

124 

Figure 11: Probability of different outcomes for total cost difference between ARCI-2 and ARCI-1 
architectures. Costs calculated for 50 trials of 20 system instances supported for 30 years using a 

lifetime buy methodology. 

 

 
 
 
 
 
 

  

Figure 10: Total life cycle cost difference between ARCI-2 and ARCI-1 for the support of 20 system 
instances, using a lifetime buy methodology, for support lives between 10 and 30 years. Solid pink lines 

show individual trials, dashed yellow line shows average. 
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As Figure 10 shows, there is a large variability in the possible results. This 

variability is one of the weaknesses of relying on a lifetime buy approach to 

obsolescence mitigation – the result is highly dependent on the actual procurement 

lives of the components and standards. A small change in procurement life can result 

in a large overall cost difference. Despite this variability, the ARCI-1 architecture is 

expected to be less expensive than ARCI-2. Figure 11 shows a histogram of outcomes 

observed in year 30. The average cost difference was $1.1M, with a standard 

deviation of $575,000. 

When a bridge buy methodology is used in conjunction with design refreshes, 

however, the value of ARCI-2’s openness is observed. Figure 12 shows that for 

twenty system instances supported using a bridge buy methodology, where the design 

is updated every two years, and each system instance is updated every four years, the 

Figure 12: Total life cycle cost difference between ARCI-1 and ARCI-2 for the support of 20 system instances, 
using a bridge buy methodology, for support lives between 10 and 30 years. Design refresh occurs every two 

years, with systems upgraded every four years. Solid pink lines show individual trials, dashed yellow line 
shows average. 
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ARCI-2 design is less expensive (the difference Cost(ARCI-2) – Cost(ARCI-1) is 

negative). 

Using a bridge buy methodology helps limit the variability in cost due to 

obsolescence. This is especially true when a short refresh period is used, as in case 

shown in Figure 12 and Figure 13, because obsolete components are replaced 

relatively soon after obsolescence. In year 30, the average cost difference is negative 

$335,000 and the standard deviation is $44,000. For longer periods between 

refreshes, the shapes of the results curves are similar to the ones in Figure 12, though 

the variability is increased and the cost difference grows more slowly as the EOS date 

increases. As long as the support life is several times longer than the refresh and 

upgrade periods, the more open ARCI-2 architecture is less expensive than ARCI-1. 

Figure 13: Probability of different outcomes for total cost difference between ARCI-2 and ARCI-1 
architectures. Costs calculated for the case shown in Figure 12 - 50 trials of 20 system instances 

supported for 30 years using a bridge buy methodology. 
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When a lifetime buy approach is used, the largest contributions to the overall 

cost difference come from operation and support. When bridge buys are used, the 

refresh category is the largest contributor, because performing design refreshes is an 

expensive process (see Figure 14). In many scenarios, refreshing a system every two 

years may not be economically feasible nor the preferable approach to obsolescence 

mitigation. This is particularly true for systems with relatively short support lives, 

because obsolescence plays a smaller role in such systems.47 This is shown in Figure 

15, where the same ARCI-1 and ARCI-2 architectures are compared using different 

support methodologies. ARCI-1 uses lifetime buy, and ARCI-2 uses a bridge buy.48  

                                                

47 For earlier EOS dates, obsolescence is less likely to be encountered and requires smaller component 
inventories when lifetime buys are made. 
48 As before, the refresh period is 2 years and the upgrade period is 4 years. 

Figure 14: Average contributions, by category, to total life cycle costs for the cases shown in Figure 10 (lifetime 
buy) and Figure 12 (bridge buy). Contributions are positive when ARCI-2 is more expensive, negative when 

ARCI-1 is more expensive. 
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The result in Figure 15 is important because it demonstrates that using the 

more open architecture is not always beneficial – there is a ‘break-even’ point that 

occurs, in this case at EOS dates of approximately 25 years. If the systems are to be 

supported for fewer than twenty-five years, the more closed ARCI-1 architecture is 

less expensive regardless of whether a lifetime buy or a 2-year bridge buy is used. 

The break-even EOS date depends on many factors. In addition to the 

architectures themselves, it is affected by the refresh period used for the bridge buy. 

As noted before, increasing the refresh period can, up to a point, decrease the total 

support costs.49 The affect of using a bridge buy strategy in conjunction with different 

refresh periods is shown in Figure 16.  

                                                

49 Finding the optimal refresh period is a fundamental problem in system support. See [53]. 

Figure 15: Total life cycle cost difference between ARCI-1 and ARCI-2 for the support of 20 system 
instances for support lives between 10 and 30 years. ARCI-1 uses lifetime buy, ARCI-2 uses a bridge buy 

with design refresh period of 2 years, and upgrade period of 4 years. Solid pink lines show individual 
trials, dashed yellow line shows average. 
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Additionally, the number of system instances being supported can play a role 

–the cost of stockpiling components grows linearly with the number of systems, while 

the cost of conducting a refresh stays roughly constant. If only a few system instances 

are to be fielded, the more closed architecture may be the less expensive option. This 

is shown in Figure 17. 

Figure 16: Effects of supporting ARCI2 with different refresh periods on the average total life cycle 
cost. In all cases, ARCI-1 uses a lifetime buy strategy. 
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3.3: COTS-LIMO Hypothesis 

This model can also be used to examine Abts’ COTS-LIMO hypothesis (see 

Section 1.5.5). Abts suggested the key factor in the life cycle cost of a COTS-based 

system (CBS) was not the amount of functionality provided by COTS components, 

but rather the COTS functional density (CFD). A CBS with low CFD, which uses 

more kinds of COTS components, is more expensive to maintain because of the 

higher likelihood of obsolescence and changes in its components. 

To test the COTS-LIMO hypothesis, modified versions of the ARCI2 

architecture were compared to the ARCI1 architecture. The only change made to the 

ARCI2 architecture was to split the functionality provided by the 5 Quad PowerPC 

boards among different versions of that component. The total number of components 

Figure 17: Effects of different number of fielded instances of the system on the average total life cycle cost 
difference for the ARCI architectures. ARCI-1 uses a lifetime buy strategy, ARCI-2 uses a two-year bridge buy.
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in each design are the same, and each version of the Quad PowerPC board had the 

same properties and distributions – the architectures are effectively the same, but with 

different CFDs. The effects of this modification can be seen in Figure 18. 

The result in Figure 18 provides support for Abts’ COTS-LIMO hypothesis 

because it demonstrates that decreasing ARCI2’s CFD increases its life cycle cost 

(ARCI2 – ARCI1 becomes less negative).This result also shows the value of 

component reuse. Extreme care must be taken when designing a system, because even 

seemingly superficial design changes can have a significant impact on life cycle cost. 

 

3.4: Life Extensions 

As shown in Section 3.2, a bridge buy strategy, in conjunction with periodic 

design refreshes, is beneficial when a design is to be supported until a known EOS 

date because it decreases both the total life cycle cost and the variability of that cost. 

Figure 18: Effect of COTS Functional Density (CFD) on average total life cycle cost. Both architectures are 
supported using a bridge buy, with a design refresh occurring every two years. CFD is calculated for the 
allocatable drawer in the ARCI2 architecture, with the assumption that the drawer fills three functions. 
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This allows cost forecasts and budgeting to be planned more accurately. Use of 

periodic design refresh can also be advantageous when the end of support date is 

unknown or uncertain. This is because the pattern of refreshing the design and 

updating fielded systems may simply be repeated until the extended EOS date is 

reached. In a similar scenario, use of a lifetime buy management technique creates 

significant logistical and financial difficulties. Purchasing and holding a stockpile of 

components is expensive, so when a component becomes obsolete and a lifetime buy 

is made, the number stockpiled is ideally as close as possible to the actual number of 

components required to support the fielded systems until EOS.50 If the system is life-

extended, the stockpiles of components on hand may be insufficient, and potentially 

difficult or impossible to replenish. 

To examine the effects of life-extension on total system cost, that the model 

starts by assuming that the system will be supported until a given default EOS date. 

Some number of years before the EOS date arrives, notice is given that the system is 

to be life-extended, and must be supported until a new (later) EOS date. Before the 

life extension warning, all support calculations, including stockpiling of components, 

are made until the original EOS date. After the notice of life extension has been 

received all calculations are made using the new EOS. 

The effects of life-extension were modeled using the ARCI-1 and ARCI-2 

architectures as described in Section 3.1, and the same production schedule used 

previously. The default EOS date was year 20, and notice of life extension was given 

                                                

50 In practice, the lifetime buy problem is an asymmetric newsvendor problem in which the penalty 
associated with running short of components is significantly greater than the penalty of having too 
many. As a result, a “buffer” is usually purchased on top of the actual demand estimate. 
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in year 15. Life extensions between 1 and 10 years were examined, corresponding to 

final EOS dates between year 21 and year 30. The overbuy ratio was 0.25. 

For the case shown in Figure 19, ARCI-1 is managed using a lifetime buy, and 

ARCI-2 is managed using a bridge buy with a refresh occurring every two years, as 

before. For the case in Figure 20, both architectures are managed using a two-year 

bridge buy.   

These figures demonstrate the large effect that life extension can have on life 

cycle cost, particularly when a lifetime buy support methodology is employed. The 

dashed green line overlaid in Figure 19 shows the average results attained in Section 

3.2, when the final EOS date is known from the beginning. In Figure 19, the averages 

initially coincide (a life extension of 0 years), and then quickly diverge, with an order 

of magnitude difference between them after only 10 years. The analogous dotted 

yellow line in Figure 20 shows that using a bridge buy methodology with 

prescheduled periodic refreshes can effectively neutralize the issues associated with 

life extension.  
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Figure 19: Total life cycle cost difference between ARCI-1 and ARCI-2 for life-extensions of up to 10 years 
from an initial (default) EOS date of year 20. ARCI-1 uses a lifetime buy, ARCI-2 uses a bridge buy. The 

solid pink lines show individual trials, dotted yellow line shows the average. The dashed blue line, overlaid 
from Figure 15, is the average total cost difference when the final EOS is known from year 0. 

Figure 20: Total life cycle cost difference between ARCI-1 and ARCI-2 for life-extensions of up to 10 
years from an initial (default) EOS date of year 20. Both architectures use a bridge buy. The solid pink 

lines show individual trials, and dotted yellow line shows the average. The dashed blue line, overlaid from 
Figure 12, is the average total cost difference when the final EOS is known from year 0. 
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Chapter 4: Conclusions 

4.1: Summary 

Openness is the characteristic of being accessible and available. For objects 

such as an architecture or a component, openness is a measure of how well the object 

conforms to well-known standards, and the openness or accessibility of those 

standards. The goals of openness are commonly expressed as interoperability, 

maintainability, extensibility, composability, and reusability. In general, these 

openness goals are attained using some combination of modular architecture, 

standardization of components and interfaces, use of open standards, use of COTS 

hardware and software, and design and component reuse. Openness, particularly 

when used in conjunction with modularity and reuse, is frequently associated with 

cost avoidances from several sources, including: more efficient design and design 

refresh; increased opportunity to multi-source parts; reductions in obsolescence, 

counterfeit, and other part supply chain disruption management overhead; more 

efficient innovation and technology insertion; and modularization of qualification. 

However, use of an open systems approach requires investment and increases risk 

exposure because the enterprise has little or no control over the definition and supply 

chain of COTS or open components, and these components by nature are more 

volatile and have short procurement lives.  

While the concept of openness is intuitively understood, quantifying a 

system’s degree of openness and placing a value on that openness is difficult. 



 

136 

Although several previous efforts have been initiated to assess and compare openness, 

they have generally relied on qualitative measures, and none address the issue of cost.  

The model developed in this thesis quantitatively determines the effects of 

openness on life cycle cost of electronic systems by identifying metrics to measure 

openness and cost drivers that can be used to predict life cycle cost. Connections 

between these were identified and a model for the life cycle cost difference between 

different designs/implementations was created. By comparing similar systems of 

disparate openness, this model can be used to determine the life cycle cost impact of 

openness. 

The model was applied to a case study of the U.S. Navy’s ARCI Sonar 

system. Simplified versions of two architectures with different openness levels, 

corresponding to different implementation phases of the ARCI system, were 

analyzed. The case study was conducted for support lives between 10 and 30 years. 

The study demonstrated that for support times longer than approximately 20 years, or 

in cases where the EOS date is uncertain, significant cost avoidance could be realized 

by implementing a more open design supported using a bridge buy and periodic 

design refreshes. However, for support lives shorter than 20 years, or in cases when a 

small number of system instances are to be deployed, the more closed architecture, 

managed using a lifetime but methodology, leads to greater cost avoidance.  

 

4.2: Contributions 

This section summarizes the contributions made by this thesis. 
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4.2.1: Formulation of the first quantitative model for assessing the cost impacts of 

openness 

The first quantitative model for assessing the cost impacts of openness was 

developed. Previous models are either qualitative or do not address cost impacts. The 

model is time-dependent, and able to handle uncertainty in input parameters. The 

model utilizes a novel cost-difference approach that minimizes the amount of data 

required and isolates the portion of cost avoidance that is directly attributable to the 

use of open systems. 

 

4.2.2: Demonstrated that more openness is not always better 

The model and ARCI case studies demonstrated that there are scenarios in 

which increasing the openness of an architecture will increase life cycle costs. The 

case study also provides the first known quantitative support for Abts’ COTS-LIMO 

hypothesis that increasing CFD increases cost avoidance. However, these results 

challenge Henderson’s implicit assumption that marginal openness is always positive 

(increasing openness is always beneficial). 

4.2.3: Established that the value of openness depends on several external factors 

The ARCI case study establishes that, in addition to the architecture itself, the 

value gleaned from using an open system depends on several external factors. 

Specifically, the number of system instances to be fielded, the number of years those 

systems are to be supported, and the likelihood of those systems to be life-extended. 
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4.3: Future Work 

The model developed and tested is the first of its kind. Many improvements to 

the model could be made: 

4.3.1: Capture more benefits of reuse 

The current model accounts for reuse of components within a design, but 

cannot account for cost savings due to reuse between different architectures, or for 

reuse at the subsystem level. 

 

4.3.2: Collect data for calibration and validation 

The current model depends on many cost parameters that are assumed to be 

enterprise dependent. Access to historical data would allow for more accurate 

calibration and validation of the model. 

Additionally, though the current model takes procurement life as an input 

distribution, this could be predicted from other input metrics, including market share, 

number of competing components, volatility, and years of use. This would require 

historical on each type of hardware and software component used. 
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4.3.3:  Capture the risks associated with early adoption 

When new technologies are first implemented, they tend to be more unstable, 

with more frequent and significant updates. While operating on the “bleeding edge” 

can help improve performance and add new functionalities, it also increases the risk 

of breakage, architectural mismatch, and expensive retrofits. 

 

4.3.4: Further test Abts’ and Henderson’s Hypotheses 

Further work is needed to test if COTS equilibrium value proposed by Abts’ 

COTS-LIMO model exists, and where. Subsequent analysis could focus on the effects 

of different CFD values for systems above and below the equilibrium point. A 

generalization of this model should be used to generate a continuous cost versus 

openness curve, which can be used to measure the utility of openness. 
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Appendix A: OAAT (and MOSA PART) Questionnaire  

Sections A.1 through A.9 below are taken from [17]. 

MOSA PART consists of the questions listed in section A.1 (MOSA PART 

Programmatic) and section A.3 (MOSA PART Technical). For MOSA PART, all 

questions are given equal weighting. 

The OAAT consists of all the questions below. Equal waiting is not given to 

all questions. “Key” questions are weighted between 3 and 4 times stronger than other 

questions, and an answer is required (the “not applicable” response is disabled). 

“Litmus” questions limit the maximum score, even if the responses to all other 

questions would suggest a higher score. 

 

A.1: MOSA PART: Programmatic 

A.1.1 To what extent is MOSA incorporated into the program’s acquisition 

planning? 

A.1.2 To what extent did the program plan for its implementation of MOSA? 

A.1.3 To what extent is the program’s MOSA implementation based on systems 

engineering principles and processes? 

A.1.4 To what extent are responsibilities assigned for implementing MOSA? 

A.1.5 To what extent is the program staff trained on, or have relevant experience in 

MOSA concepts and implementation? 

A.1.6 To what extent does the program’s configuration management process 

encompass changes to key interfaces and corresponding standards? 

A.1.7 To what extent have program requirements been analyzed, and refined as 

needed, to ensure that design-specific solutions are not imposed? 
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A.1.8 To what extent do the system level functional and performance specifications 

permit an open systems design? 

A.1.9 To what extent are modular, open system considerations included as part of 

alternative design analyses? 

A.1.10 To what extent are mechanisms established to migrate key interfaces that are 

proprietary or closed to key interfaces that are open? 

A.1.11 To what extent are MOSA principles reflected in the program’s performance 

measures? 

 

A.2: OAAT: Programmatic 

A.2.1  (KEY) To what extent does the program have policies and processes that 

control adding specifications, options, or extensions that limit the use of widely-

supported or openly available interface standards? 

A.2.2 (KEY) To what extent are Non-mission unique capabilities supplied using 

either components reused from other programs or available from the commercial 

market? 

A.2.3  (KEY) To what extent have the proprietary or unique non commercial 

elements been limited or well defined such that they do not hinder other developers 

from interfacing or developing any part of the system? 

A.2.4 NOTE: As of OAAT Version 1.1, the MOSA PART questions have been 

combined with the OAAT questions and this question has been obviated.  This 

question is no longer part of the OAAT question set. To what degree has the 

Modular Open Systems Approach (MOSA) been implemented in the programmatic 

and business aspects of the Program (organization)?  Enter the results from the 

Business Section of the OSJTF MOSA PART. 

A.2.5 To what extent is the Program complying with the Joint Capability Integration 

and Development System (JCIDS)? 

A.2.6 To what degree is the Program complying with the Interoperability and 

Supportability requirements for National Security Systems in references like CJCS 

6212.01C and DoDD 4630.5 and DoDI 4630.8? 
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A.2.7 To what extent does the Program plan, directive documentation and funding 

enable orderly migration of proprietary or program unique system modules to open 

system alternatives when capabilities are upgraded? 

A.2.8 To what extent is the program free of system components that have 

proprietary characteristics, restrictive licensing or prohibitive cost that could limit or 

preclude the reuse of the components in other Navy Systems or the competitive 

selection or re-assignment of those components to other vendors? 

A.2.9 To what extent has the Prime System Integrator established processes that 

facilitate flexibility of task assignment, competition of individual tasks, or re-

competition of tasks? 

A.2.10 (KEY) To what extent has the program established and maintained a 

repeatable, non-restrictive process that discloses in-process design documentation 

and software tools information directly to third party developers? 

A.2.11 To what extent is design documentation disclosed to interested parties from 

the beginning of the development effort? 

A.2.12 (KEY) To what extent does the Program documentation stress the use of 

widely-accepted and supported standards, such as those maintained by recognized 

organizations (e.g. IEEE), to define both internal and external interfaces? 

A.2.13 (KEY) Does the Program Plan and directive documentation include a data 

management strategy ensuring that when the Government exercises its intellectual 

property rights to obtain any developmental artifacts for anything it paid to develop 

with either complete or partial funding the Contractor can at most charge a nominal 

fee covering the marginal cost of the effort to provide that documentation? 

A.2.14 NOTE: As of OAAT Version 3.0, this question is no longer part of the 

OAAT question set. To what degree does the Program (Organization) planning and 

directive documentation (e.g. implementation road map, Acquisition strategy) 

implement and comply with FORCEnet policies, standards and definitions as 

indicated by FORCEnet Consolidated Compliance Checklist (FCCC) or other 

FORCEnet compliance metrics? 

A.2.15 To what extent does the program plan include Life cycle Support and Funding 

for OA elements? 
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A.2.16 To what extent has the program worked with the applicable Tech Warrant 

holder or equivalent authority to develop OA-specific metrics as part of its program 

management processes and reviews? 

A.2.17 (KEY) To what extent do the program's software selection criteria require 

that, other things being equal, priority be given to software 

components/modules/systems that have the least restrictive rights associated with 

them? 

A.2.18 (KEY) To what extent does the Program use MOSA- and OA-specific 

language or contractual provisions in its acquisition and development 

documentation? Examples of these types of document include RFI and RFP 

materials, Contracts, Acquisition Plan, System Engineering Plan, and Information 

Support Plan. 

A.2.19 To what extent does the Program use MOSA- and OA-specific language or 

contractual provisions in its acquisition and development documentation? Examples 

of these types of document include RFI and RFP materials, Contracts, Acquisition 

Plan, System Engineering Plan, and Information Support Plan. 

A.2.20 To what extent does the Program's documentation provide for cost-effective 

incremental upgrades without dependencies on a single source or the need to 

redesign large portions of the system? 

A.2.21 To what extent has the Program organization implemented a training program 

to educate their work force on OA related policy and concepts (e.g., OA/MOSA, 

FORCEnet, Interoperability, JCIDS and open systems concepts)? Ways to do this 

could include leveraging available courses, web-based materials, required reading, 

internal meetings/seminars, etc. 

A.2.22 To what extent has the Program used incentives to promote modular designs, 

commonality and component reuse? 

A.2.23 To what extent does the Program's configuration management process use 

integrated teams such as “communities of interest” to identify how individual 

changes impact the system’s interfaces and information exchange standards? 
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A.2.24 (KEY) To what extent are multiple third parties directly contracted to develop 

components of the System, giving the government the flexibility to compete or 

reassign component development? 

A.2.25 (KEY) To what extent do the Program's market research and selection 

processes use criteria that favor commercial, common enterprise wide, or generally 

accepted interface and information exchange standards? 

A.2.26 Does the Program’s Acquisition Strategy, contract language and funding 

profile facilitate subsequent assignment of major tasks and program roles to 

alternate providers at predetermined intervals? 

A.2.27 (KEY, LITMUS) To what extent are market research, community of interest 

teams, peer review groups, or alternative forums used to assess and select among 

available capability improvement options? 

A.2.28 To what extent does the program develop POM Issue Papers or other business 

planning documents (such as business case analyses) to address OA business and 

technical issues? 

A.2.29 (KEY) To what extent does the Program reuse components from other 

government programs? 

A.2.30 To what extent can the program accommodate software tools or other 

components from sources other than the prime system integrator or existing vendors 

without requiring significant modifications? 

  

A.3: MOSA PART: Technical 

The first section of the technical questionnaire consists of 13 questions 

adopted directly from the MOSA PART. 

A.3.1 To what extent is the system’s architecture based on related industry or other 

standard reference models and architectural frameworks? 

A.3.2 To what extent is an architectural description language used to define system 

modules and interfaces? 
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A.3.3 (KEY, LITMUS) To what extent does the system’s architecture exhibit 

modular design characteristics? 

A.3.4  (KEY) To what extent is the system’s architecture capable of adapting to 

evolving requirements and leveraging new technologies? 

A.3.5 To what extent has the criteria for designating key interfaces been 

established? 

A.3.6 To what extent has the program designated key interfaces? 

A.3.7 To what extent has the program assessed the feasibility of using open 

standards for key interfaces? 

A.3.8 To what extent have standards selection criteria been established that give 

preference to open interface standards? 

A.3.9  (KEY, LITMUS) To what extent are open standards selected for key 

interfaces? 

A.3.10 To what extent are validation and verification mechanisms established to 

assure that system components and selected commercial products conform to the 

selected interface standards? 

A.3.11 (KEY) To what extent do system components and selected commercial 

products conform to standards selected for system interfaces? 

A.3.12 To what extent do system components and selected commercial products 

avoid utilization of vendor-unique extensions to interface standards? 

A.3.13 (KEY, LITMUS) To what extent can system components be substituted with 

similar components from competitive sources? 

 

A.4: Design Tenet: Interoperability 

A.4.1 The Unit of Assessment predominantly complies with what type of 

interoperability standards? 

A.4.2 NOTE: As of OAAT Version 3.0, this question is no longer part of the OAAT 

question set.  (KEY) How standards-based is the Unit of Assessment’s data model? 

A.4.3 What is the scope of the data model that the Unit of Assessment uses to 

support interoperability with other systems? 
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A.4.4  (KEY) What is the scope of interoperability of the Unit of Assessment? 

A.4.5 To what extent does the Unit of Assessment use mechanisms to discover and 

invoke services? 

A.4.6 To what extent does the Unit of Assessment support mechanisms for service 

discovery and invocation? 

 

A.5: Design Tenet: Maintainability 

A.5.1  (KEY) What architectural characteristics address obsolescence and provide 

for timely technology refresh, fixes, and upgrades? 

A.5.2 Do the unit of Assessment’s technical artifacts provide sufficient detail and 

scope for maintenance? 

 

A.6: Design Tenet: Extensibility 

A.6.1 Does the program follow a well defined System Engineering process for 

implementing capability extension? 

A.6.2 (KEY) Will the technical infrastructure accommodate extensibility of the Unit 

of Assessment’s functionality? 

A.6.3 What is the scope of testing needed after new components are added to the 

Unit of Assessment? 

   

A.7: Design Tenet: Composability 

A.7.1 To what extent are the components of the Unit of Assessment implemented 

and independently deployable as packages? 

A.7.2 To what extent can the functional capabilities of the Unit of Assessment be re-

combined or re-arranged to support a modified process/workflow/mission? 

 

A.8: Design Tenet: Reusability 
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A.8.1 (KEY, LITMUS) What reuse strategy is used within the Unit of Assessment? 

A.8.2 What is the scope of the set of processes used to identify and evaluate reuse 

candidates for incorporation into the Unit of Assessment? 

A.8.3 (KEY) Which approach best describes the operational run-time infrastructure 

supporting the Unit of Assessment? 

A.8.4 Have the commonalties and variations of the Unit of Assessment been 

specified to facilitate reuse congruent with a broader Software Product Line? 

 

A.9: Design Tenet: OSJTF – MOSA 

A.9.1 NOTE: As of OAAT Version 1.1, the MOSA PART questions have been 

combined with the OAAT questions and this question has been obviated.  This 

question is no longer part of the OAAT question set. What is the level of MOSA 

compliance for the Unit of Assessment?
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Appendix B: OAAM Version 1.0 

Taken from [70] 

 Architecture and Technical
Characteristics

0 – Closed
• Proprietary Hardware or API (O/S or middleware)
• Predominant number of point to point legacy interfaces
• Highly integrated applications with integral middleware

1 – Layered
• Standards-based COTs Hardware & O/S
• Specialized middleware
• Highly integrated monolithic applications isolated from 
Computing environment
• Standard communications between layers
• Program has achieve “Marginal” level for MOSA 
technical indicators

2 – Layered & Open
• Computing Environment /  App. S/W independence
• Open published APIs
• Modular application components
• Facilitates technology insertion/replacement
• Standard communications between layers
• Exposes data to network via I/Fs to legacy 
system/subsystems
• Separates operator, application, and data
• Program has achieve “Satisfactory” level for MOSA 
technical indicators

3 – Common
• Discovers/publishes capability using standards (where 
applicable)
• Adheres to a common architecture across multiple 
programs
• Uses common services (such as security)
• Common semantics and data model
• Ability to Interact with GIG/FORCENet

4 – Enterprise
• Adheres to a common architecture across multiple 
domains
• Data exchange between domains via std interface
• Commercially accepted services or data model
• Uses core services (e.g., NCES, DIB)
• Exposes services and data to GIG/FORCENet
• Program has achieve “Exemplary” level for MOSA 
technical indicators

Business and Acquisition 
Characteristics

Business and Acquisition Strategy Characteristics
refer to the processes & documentation programs 
employ to acquire and manage systems; 

Architecture and Technical characteristics are the 
technical  features of computing environments and 
application software

0 – Isolated
• Exclusive use of closed sole source contracts
• Proprietary interface, no access to systems

1 – Connected
• Initial OA language in contracting and acq docs
• Program (gov’t/industry) educated on FORCEnet/OA
• Initial use of commercial standards and best practices
• Program has achieve “Marginal” level for MOSA business 
indicators

2 – Migrating to Openness
• Program has validated NR-KPP
• Transitioning to JCIDS capability needs documents
• Contracting approach maximizes cost competitiveness 
and innovation
• Use of commercial standards based COTS products
• Some market research employed to leverage commercial 
investment
• Completed FIBL Survey and verified information
• Program has achieve “Satisfactory” level for MOSA 
business indicators

3 – Common
• Spiral development/evolutionary acquisition employed to 
facilitate rapid technology insertion
• Applicable program acquisition and engineering 
documentation (AS, SEP, ISP, etc) includes OA language
• Integrated team approach to development involving 
requirements, resource, testing, user community members
• “Community of Interest” teams employed to develop 
system
• Program has robust FORCENet/OA implementation 
roadmap

4 – Open and Net-Centric
• OA compliance metrics part of PM processes and 
program reviews
• Extensive use of commercial standards and best 
practices across Enterprise
• Program conducts continuous market research
• Continuous process for FORCENet/OA improvement
• Program has achieve “Exemplary” level for MOSA 
business indicators
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documentation (AS, SEP, ISP, etc) includes OA language
• Integrated team approach to development involving 
requirements, resource, testing, user community members
• “Community of Interest” teams employed to develop 
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• Program has robust FORCENet/OA implementation 
roadmap

4 – Open and Net-Centric
• OA compliance metrics part of PM processes and 
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• Continuous process for FORCENet/OA improvement
• Program has achieve “Exemplary” level for MOSA 
business indicators

OA
Assessment Model

0

1

2

3

4

0 1 2 3 4
Technical

B
us

in
es

s

Low
Moderate

High

Openness
Characterization

Version 1.0  (8 March 2005)



 

149 

Appendix C: MOSA Metrics Calculator 

The following is adapted from the AFRL/RYM Metrics Working Groups’ 

MOSA Metrics Calculator [58]. 

C.1.1 Component Name: 

C.1.2 What is the component type? (Hardware or Software) 

C.1.3 Is the component scalable? (Yes/No) 

C.1.4 Is the component upgradeable? (Yes/No) 

C.1.5 Has the component’s extensibility been considered? (Fully/Somewhat/None) 

C.1.6 This component is part of which function? 

C.1.7 Is the component available from multiple vendors? (Yes/No) 

C.1.8 Is the component domestically produced? (Yes/No) 

C.1.9 Does the component have a plan for continued support through the life cycle 

of the system? (Yes/No) 

C.1.10 Does this component have a key interface? (Yes/No) 

C.1.11 Is a proprietary standard used for the key interface? (Yes/No) 

C.1.12 Is the standard used for the key interface well defined? (Yes/No) 

C.1.13 Does the component use a proprietary standard? (Fully proprietary/Partially 

open/Fully open) 

C.1.14 Does this component include a test plan? (Yes/No) 

C.1.15 What impact does the component have on information assurance? 

(Significant/Some/None) 
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Appendix D: Cost of Openness Tool: Quick-Start Guide 

The following manual is a brief introduction to the Cost of Openness Tool and its user 

interface. It covers all of the inputs to be entered by the user, and briefly discusses the 

functionality of the tool.  

The Cost of Openness Tool has been implemented in Microsoft Excel, using VBA and 

various form inputs. For best results, it should be used on a PC running Excel 2007 or later. The 

Cost of Openness Tool contains the following sheets: 

1. Standards 
2. Components 
3. One or more Architecture sheets 
4. Parameters 
5. Weights 
6. Simulation 
7. One or more Results sheets 

When setting up and running a simulation, these sheets should be completed in this order 

to ensure that the data is properly input into the model. Each sheet is further explained below. 

Important note about distributions: On the Standards and Components worksheets, some 

of the data is expected to be input as a distribution. In those cases, the affected cells are locked to 

prevent user input. To input the desired information, click on the “D” (for “Distribution”) button 

located on the right side of the appropriate cell. This will bring up a dialogue that can be used to 

define the distribution.  Select the desired distribution from the “Distribution Type” drop-down, 

and input the required parameters. Select “OK” to input the data, or “Cancel” to abort. Selecting 

the “None” distribution type allows a constant value to be used. 

D.1: Standards 
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Each row on the Standards sheet represents a standard that is to be used in one of the 

Architectures to be modeled. Extra, unused Standards may also be included on this list. New 

standards may be added by pressing the “Add Standard” button; old standards may be removed 

by pressing the corresponding “Remove” button. Each standard is required to have:  

1. A unique name 

2. A procurement life, which tells the time between the standard’s 

introduction and obsolescence (entered as a distribution) 

3. A life code, which tells where the standard is in its life cycle (a value 

between 1 and 6, 1 denoting introduction, 6 denoting obsolescence) 

 

Other information about the standard may also be input, including:  

4. Market share, the percentage of the relevant market that uses the standard 

5. The volatility of the standard, measured in expected number of minor 

changes or updates per year 

6. The years of use, or how long the standard has been available 

7. Enterprise Experience, the length of time, in years, that the enterprise has 

used the standard 

8. “Standard Defined By”, selected from: 

a) “In-house proprietary standard”: a proprietary standard that is 

maintained by the enterprise itself 

b) “Defined by a single entity or group, with restrictions”: a 

proprietary standard belonging to an external entity 

c) “Defined by single entity, no licensing restrictions”: typical 

classification of a de facto standard 
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d) “Defined by group, no licensing restrictions”: an open standard 

 

D.2: Components 

Each row on the Components sheet represents a component that is to be used in one of 

the Architectures to be modeled. Extra, unused components may also be included on this list. 

New components may be added by pressing the “Add Component” button; old components may 

be removed by pressing the corresponding “Remove” button. Each component is required to 

have:  

1. A unique name 

2. A type – Hardware, Software, or Consumable. Consumables are treated as 

hardware, except that a constant failure/replacement rate is assumed, 

instead of sampling from the failure distribution. 

3. An Interface Standard, selected from those defined on the Standards 

worksheet 

4. A Procurement cost (entered as a distribution) 

5. A time-to-failure distribution 

6. A procurement life, which tells the time between the component’s 

introduction and obsolescence (entered as a distribution) 

7. A life code, which tells where the component is in its life cycle (a value 

between 1 and 6, 1 denoting introduction, 6 denoting obsolescence) 

8. Accessibility of the component’s technical data package (TDP), selected 

from: 
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a) “Component designed in-house”: A component that is designed 

and maintained by the enterprise itself. This is an option for 

components that use an in-house or open (unrestricted) 

standard. 

b) “Limited access (Proprietary/COTS)”: A component designed 

and maintained by an external entity. This may be a component 

that is created by a contractor for this specific purpose 

(proprietary), or a COTS component. In either case, the 

component is treated as a “black box” – the enterprise cannot 

access internal specifications or workings of the component for 

debugging or modification purposes. This option cannot be 

selected if the component uses an “in-house” standard. 

c) “Full access (COTS/Open Source)”: A component that is 

designed and maintained by an external entity, but to which the 

enterprise has access to the TDP and internal workings of the 

component, facilitating debugging, and allowing for some 

modifications. This may be selected for components that use 

“unrestricted” standards. 

9. A Design Refresh Plan (DRP) option, selected from: 

a) “Included in DRP”: Components that are included in design 

refresh planning. 

b) “Excluded from DRP”: Components that are excluded from 

design refresh planning, but which are refreshed at the first 

opportunity after obsolescence. 

c) “Not refreshable”: Components that are excluded entirely from 

refresh planning and implementation – if the component 

becomes obsolete, a lifetime buy strategy is used, regardless of 

the strategy used for the rest of the system. 

 

Other information about the component may also be input, including:  
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10. Cost of annual licensing, where applicable (typically only applicable to 

some software) 

11. Software size, given in thousands of lines of source code (KSLOC) 

12. The number of competing components 

13. The volatility of the component, measured in expected number of minor 

changes or updates per year 

14. The years of use, or how long the component has been available 

15. Enterprise Experience, the length of time, in years, that the enterprise has 

used the component 

 

 

 

D.3: Architecture Worksheets 

The architecture worksheets contain the information about the actual architectures to be 

compared. While the model can be run with only one architecture sheet, typically two or more 

architecture sheets are necessary. Additional architecture sheets can be added by pressing the 

“Add New Architecture” button on the Simulation worksheet. This brings up a dialogue that 

allows the user to choose between adding a blank architecture and duplicating any existing one. 

Extra, unused architectures may be left in place while the tool is being used, or may be deleted 

by right-clicking the appropriate tab, and selecting “delete”. To ensure more accurate results, all 

architectures should be of similar functionality and described with the same level of detail.  
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An architecture is defined by a hierarchy of subsystems and components. Each layer in 

the hierarchy is given a level number and a number of instances. Low level subsystems are made 

up of higher level (more detailed) subsystems and components. The instance number tells how 

many times the subsystem appears in the architecture. The lowest (outermost) subsystem 

(typically the zero-level) must represent one instance of the system that the architecture is 

defining, and should thus have an instance number of 1. Extra empty lines may be inserted 

between subsystems for visual clarity. 

In addition to a level and instance number, each level is given a name. For subsystems, 

any useful identifying name may be used. For the zero level, this is typically the name of the 

architecture, while for other subsystems it may be the name of the functional group it represents. 

At the component level, this name must be the same as the name input on the components 

worksheet. When a name that matches a component defined on the “Components” worksheet is 

entered, the “Is Component” column will display “TRUE” and the appropriate interface standard 

will appear in the “Standards Type” column. Otherwise, these cells will remain blank. 

Once a component has been input, additional data specific to that application of the 

component may be input. These include: 

The up-rating and modification costs per unit (hardware components) 

The amount of glue code required to integrate the component (software components) 

The percentage of total functionality used 

The number of functional interfaces the component has, both with components in the 

current subsystem, and with components in other subsystems. 

Interdependent Components: Collections of components may be interdependent, such that 

when one becomes obsolete, they all need to be refreshed as a unit. This may be true in the case 
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of a specialized interface, or of a hardware-software pair that are interdependent. This is may be 

modeled by placing any interdependent components into the same subsystem,51 and setting the 

“Subcomponents Interdependent” option on the subsystem to “True”. 

Partial Requalification: On some architectures, refreshed components and subsystems 

may be re-qualified without needing to re-qualify the whole system. When this is the case, 

subsystems and components that may be re-qualified independently should be marked as such by 

setting the “Requalification Possible” option to “True”. The whole system (zero-level) should 

always be marked as “True”, though changing it to blank or “False” will not change the results 

obtained. (Architectures that absolutely may not be re-qualified should be run using the 

“Lifetime Buy” setting found on the “Simulation” worksheet. 

An example architecture is shown below. Note that the zero-level system is the 

architecture itself, and it has an instance number of 1. The architecture is made up of two 

cabinets, and each cabinet contains two drawers. Extra spaces are used in Cabinet 2 for visual 

clarity; these are optional, and may be omitted as they were in Cabinet 1. 

Weibull(1.75,2, 0) represents a Weibull distribution with shape parameter 1.75 and scale 

parameter of 2 units (years, in this case). Normal(5,1) represents a normal distribution with mean 

5 and standard deviation 1. 

 

 

  

                                                

51 And no other components. 
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Standards Sheet: 
 

 
 
 

Components Sheet: 

Name Type Interface 
Standard 

Procurement 
Cost ($) 

Annual 
Licensing 

Size in 
KSLOC 
(SW 
only) 

Time to Failure 
(years) 

Procurement 
Life (years) 

Life 
Code 

# 
Competing Volatility 

Years 
of 
Use 

Enterprise 
Experience 
(years) 

Accessibility of 
TDP 

DRP 
Calculations 

Component1 Hardware Standard1 100   Weibull(1.75,2,0) Normal(5,1) 3 2 1 5 5 Limited access 
(Proprietary/COTS) 

Included in 
DRP 

Component2 Software Standard1 150   Weibull(1.75,2,0) Normal(5,1) 3 2 1 5 5 Limited access 
(Proprietary/COTS) 

Included in 
DRP 

Component3 Hardware Standard2 125   Weibull(1.75,2,0) Normal(5,1) 3 3 1 10 1 
Full access 
(COTS/Open 
Source) 

Included in 
DRP 

Component4 Software Standard2 200   Weibull(1.75,2,0) Normal(5,1) 3 6 1 10 1 
Full access 
(COTS/Open 
Source) 

Included in 
DRP 

 
Architecture Sheet: 
Level Name Is Component Requalification 

Possible 
# Instances Standards Type Uprating /Modification 

cost/unit (HW) 
KSLOC of glue 
code required (SW) 

% Functionality Used Number of 
Interfaces 

Subcomponents 
Interdependent 

0 Arch 1 False True 1      False 
1 Cabinet  1 False True 1      False 
2 Drawer 1A False True 3      False 
3 Component1 True False 2 Standard1 0  75 1  
3 Component2 True False 1 Standard1 0  75 1  
2 Drawer 1B False True 2      False 
3 Component1 True True 1 Standard1 0  50 1 False 
           
1 Cabinet 2 False True 2      False 
2 Drawer 2A False False 1      False 
3 Component1 True False 1 Standard1 10  75 1  
           
2 Drawer 2B False False 2      True 
3 Component3 True False 2 Standard2 0  100 2  
3 Component4 True False 2 Standard2 0  100 2  

Name Procurement Life (years) Life Code Market Share Volatility Years of Use Enterprise Experience (years) Standard Defined By 
Standard1 Normal(25,5) 3 10.00% 1 5 5 Defined by entity or group, with licensing restrictions 
Standard2 Normal(25,5) 3 60.00% 1 10 1 Defined by group, no licensing restrictions 
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D.4: Parameters 

The parameters page is used to set many of the parameters and baseline costs 

used in the model. These are typically defined by the enterprise, so when running 

many simulations, they may often be set to the desired value, and then left alone. The 

input parameters are as follows: 

1. Base cost to qualify a standard for use by the enterprise 

2. Base cost to qualify a hardware component for use in a system 

3. Base cost to qualify a software component (per KSLOC) for used in a 

system 

4. Base cost to qualify an overall system design, to verify the architecture 

will perform as required 

5. Base cost of an outgoing test, to verify that the system is functioning 

properly 

6. Hardware diagnosis and replacement cost ratio – the cost to identify 

and replace a failed component, expressed as a proportion of the 

component cost. 

7. Base cost to install a software update (per KSLOC) 

8. Base cost to maintain software (proprietary component or glue code, 

per KSLOC) 

9. Software update implementation frequency (per year) – how often bug 

fixes are sent to the field 

10. Annual discount rate, used to move all cost calculations into year 0 

dollars 
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11. Inventory support cost ratio – the cost to support hardware spares in 

inventory for one year, expressed as a proportion of the component 

cost 

12. Spares overbuy percentage – the number of extra spares to stockpile in 

the event of obsolescence 

13. Spares overbuy penalty ratio – the cost to dispose of unneeded spares 

that remain in inventory 

14. Spares underbuy penalty ratio – the added cost to procure a component 

that has gone obsolete in the event that too few spares were purchased 

15. Base cost to initialize a design refresh 

16. Base cost to design a hardware component 

17. Base cost to design a software component 

18. Base cost to integrate a hardware component 

19. Base cost to integrate a software component (per KSLOC) 

20. Life Code for replacement Standards 

21. Life Code for replacement Components 

 

 

D.5: Weights 

The weights worksheet allows for easy re-weighting of the metrics, and can be used 

to fine-tune or calibrate the model. Once appropriate values are found, they should be 

left alone. If historical data is available, and used to calibrate the model, these 
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parameters should be locked down to avoid further changes. This can be done by 

hiding the sheet. 

Each of the openness metrics input on the Standards, Components, and 

architecture worksheets is represented on the weights worksheet. Each metric has five 

inputs, the minimum and maximum cost factor associated with the metric, the 

metric’s lower and upper bounds, and the nominal metric value. The minimum and 

maximum cost factors represent the lowest and highest possible values of cost factor 

(CF). The metric lower and upper bounds are used to shape the CF curve, and 

generally correspond to the smallest and largest expected value of the input metric 

itself. The metric may, at times, fall outside this range. The nominal value is the value 

used for the metric in the event that the input is left blank,52 and represents a typical 

value of the metric. 

Depending on the metric, the cost factor associated with an openness metric’s 

input value is obtained using either a linear, logistic, or asymptotic curve. Linear 

curves begin at the minimum value and increase at a constant rate until reaching the 

maximum value. Logistic curves (also called “S” curves) grow slowly at first, fastest 

in the middle, and then taper off again. Asymptotic curves begin at a minimum value, 

but maximum growth rate, and taper off until it reaches the maximum value (and 

minimum growth rate). 

 Some important notes: 

                                                

52 A blank and a value of zero are treated separately. 
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1. All openness metric values must be non-negative. Most are positive, 

though some may be zero. The nominal metric value, therefore, must 

also be non-negative. 

2. The metric lower bound, however, may be negative. 

3. In all cases, the cost factor (CF) is greater than zero. This means that 

the minimum CF and maximum CF must be strictly positive (>0). 

4. Metric values do not need to be between the lower and upper bounds 

(though they must be non-negative). 

5. Even if a metric value falls outside the range [lower bound, upper 

bound], the resulting CF value will fall in the range [minimum CF, 

maximum CF]. 

6. When the metric and the CF are positively correlated, metric values 

near the lower bound will give a CF close to the minimum value, and 

metric values near the upper bound will give a CF close to the 

maximum value. When the metric and the CF are inversely correlated 

metric values near the lower bound will give a CF close to the 

maximum value, and metric values near the upper bound will give a 

CF close to the minimum value. 

 

D.6: Simulation 

The simulation sheet is used to define the scenario to be used to run the 

simulation. These settings include the number of instances of the systems being 
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modeled, the number of trials to run, the number of years of service, and the 

production and retirement schedule. These inputs are explained below. 

1. Number of system instances: The number of systems to be modeled is 

a calculated value, and should not be entered directly. Instead, the 

production schedule should be altered to reflect the number of systems 

produced in each year of the simulation. The value in cell B2 will 

update automatically. 

2. Default end of service year: The number of years that the simulation is 

run. For the “Range” run type, this is the base year from which offsets 

are added/subtracted as appropriate. For the “Life Extended” run type, 

this is the base year from which the number of years of life extension 

is measured. Notice of life extension is given some number of years 

before the default end of service. 

3. Number of trials: The number of times the simulation is to be run. 

More trials take longer, but give a better picture of how the system is 

expected to behave. 

4. Retirement Offset (Min and Max): Used in the “Range” run type, to 

set the first and last year EOS year to be simulated. The values may be 

positive or negative, but the minimum value must be less than the 

maximum value. 

5. Maximum life extension: Used in the “Life Extended” run type to 

determine the maximum number of years that the system may be life 

extended. This must be a positive value. 
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6. Life extension notice: The number of years before the default EOS 

date at which the system is life extended. Before this point, all 

calculations assume the system is to be retired at the EOS date. 

Afterward, the life-extended EOS date is used. This must be a positive 

value. 

7. Production and retirement schedules: Used to tell how many systems 

are produced and retired in each year. Any unretired systems are 

supported until the EOS date. 

8. Number of system types: Used to run multiple simulations at once. 

Select a number between 2 and 5. 

9. System Name: A unique name given to each type of system 

(architecture and support methodology) being run. When different 

architectures are being compared, this may be the architecture name. 

10. System architecture: The architecture sheet that defines the system 

being modeled. Architectures to be compared should be of similar 

functionality, and described at the same level of detail. 

11. Obsolescence mitigation strategy: How obsolete components are 

supported. Options are to perform a Lifetime buy, a bridge buy (as 

defined by the user or by the DRP model), or to immediately find a 

replacement. 

12. Component refresh period: If bridge buy is selected, this tells how 

often design refreshes are conducted. 
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13. Upgrade period: After a design refresh, the deadline by which all 

active systems must be upgraded to the newest version. 

14. For repairs between refresh and upgrade: Once an obsolete component 

has been refreshed, failed instances of the obsolete component may be 

replaced by the old (obsolete, but stockpiled) component, or by the 

current version of the component. 

 

There are three run types. The first, most basic run type is the “Single EOS” 

run, where the simulation is run once for each trial, using the production and 

retirement schedules as given. This type of run gives an understanding of which 

architecture is more expensive to support, and how the difference in support costs 

between the two architectures changes over the life of the system. 

The “Range EOS” runs the simulation several times for each trial, using the 

production schedule as given, but using a range of end of service dates. For this type 

of run, the retirement schedule is shifted forward or backward by the number of years 

as defined by the retirement offsets. This gives a picture of how sensitive the relative 

support costs of the two architectures are to their support life. This type of run can be 

used to demonstrate that while one architecture is less expensive for relatively short 

support lives, the other architecture may be preferable if the support life exceeds 

some value. 

The final run type is the “Life Extended” run.  In a life extended run, the 

system is initially supported for retirement at the EOS dat. At some point (“Life 

Extension Notice” years before the EOS date), the system is life-extended, and must 
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be supported until a later date. This is used to examine the impact of life-extension on 

the total life cycle cost. While one architecture may be less expensive to support until 

the originally scheduled EOS date, it may be desirable to use a different architecture 

if there is a high likelihood that the EOS date will be pushed later during the support 

life. 

 

 

D.7: Results Sheets 

The Results sheets are where the results of the simulation are displayed. 

Currently, this is a graph that depends on the run type used. Single EOS gives a graph 

showing cumulative difference in cost over time, as well as a pie-graph categorizing 

the primary cost differences between the two systems. Range EOS and Life Extended 

runs give a graph that shows total cost difference for support until a given year. 

Histograms are available to give a cross-sectional view of the different trials. 

This can be used to determine the confidence that the cost difference will be greater 

or less than a specific value. 
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Glossary 
API – Application Programming Interface. Defines how software components interact 

with each other. 

ARCI – Acoustic Rapid COTS Insertion. An effort to modernize an improve a Navy 

sonar system through the use of COTS components 

CBS – COTS Based System. A system that employs COTS components to provide 

most, if not all, of its required functionality 

CFD – COTS Functional Density. The average percentage of functionality provided 

by each COTS component. 

COCOMO – Constructive Cost Model. An parametric model for software cost 

estimation developed by Barry Boehm (University of Southern California). 

Component – Any part, be it hardware, software, or a combination of the two, which 

is procured or designed as a single unit 

COTS – Commercial Off-The-Shelf 

De-facto Standard – A standard that has become popular or dominant after being 

selected by the market, as opposed to being officially approved. 

DMSMS – Diminishing Manufacturing Sources and Material Shortages 

DoD – Department of Defense 

DRP – Design Refresh Plan. A design refresh plan for a system details the number of 

refreshes to be conducted, the timing of those refreshes, and components 

effected by each refresh. 

Enterprise - An entity that defines and maintains a system design, and deploys one or 

more instances of that system to fulfill operational requirements. An 

enterprise may maintain designs and provide operational support for several 

types of systems at the same time with similar or diverging purposes. 

Interface Standard – a Standard that focuses on how a component interacts with its 

surrounding components, and not on the internal operation of the component.  
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Interoperability – The ability of systems and subsystems to work together 

IP – 1) Intellectual Property. 2)Internet Protocol 

Key Interface – Interfaces that pass the most important information between 

functionally adjacent components or subsystems, or an interface that connects 

a technologically volatile subsystem to a more stable one 

Mission Critical – components or capabilities that are necessary for the successful 

completion of a mission [51] 

MOCA – Mitigation of Obsolescence Cost Analysis. A methodology and 

accompanying software tool developed by Dr. Peter Sandborn and the Center 

for Advanced Life Cycle Engineering (CALCE) that can be used to model the 

effects of component obsolescence on a system’s sustainment costs. Can be 

used to determine the optimum design refresh plan (DRP) for the system. 

MOSA – Modular Open Systems Approach. Also used to mean Modular Open 

Systems Architecture, an architecture that is designed in accordance with 

MOSA principles. 

MOSA PART – MOSA Program Assessment and Rating Tool 

MpMe – Multi-Part Multi-Event. A simplified, less computationally expensive DRP 

model that can be used in place of MOCA. MpMe only considers DRPs that 

have a constant period. 

OA – Open Architecture. An Open Architecture is any architecture that 

predominantly or exclusively employs open standards to define the interfaces 

between its components, particularly at Key Interfaces. The openness of an 

architecture varies with the type and number of standards used, and with the 

number of interfaces which use each of those standards. The openness of an 

architecture may be increased by switching to standards that are more open, 

and by utilizing fewer standards overall. 

OAAM – Open Architecture Assessment Model. “The OAAM describes the business 

and technical characteristics of a program or system's open architecture 
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maturity. [It] is the precursor to the OA Assessment Tool (OAAT), which 

grew out of the need for a more rigorous assessment of program's openness 

than the OAAM could provide.” [68] 

OAAT – Open Architecture Assessment Tool. A software tool developed by the 

Naval Open Architecture Enterprise Team (OAET) to allow program 

managers to assess the level of openness of their program using. This 

assessment is done both in terms of technical openness, and the openness of 

the business plan. 

OAET – Open Architecture Enterprise Team 

Open Source – A philosophy and movement, particularly for software, based on the 

idea of universal free and unhindered access to a component’s definition, use, 

and redistribution. 

Open Standard – Well-documented, publicly accessible Standards that are either free 

to use, or licensed for a small fee or royalty. 

Open System – Systems that employ Open Standards. See Open Architecture (OA) 

OSA – Open Systems Architecture. See Open Architecture (OA). Also used to mean 

Open Systems Approach, a set of principles, and the deployment thereof, used 

to design systems with an Open Systems Architecture. 

OSJTF – Open Systems Joint Task Force 

Proprietary Standard – A standard defined and controlled by a private enteprise which 

places restrictions on its access and use. 

RAND – Reasonable and Non-Discriminatory: a system in which IP is made 

available for use to everyone equally, and for reasonable cost. Also called Fair 

Reasonable and Non-Discriminatory (FRAND). Considered a type of open IP 

license, though less open than RF licensing. 

RF – Royalty Free: a system in which IP is made available for use without any 

licensing fees or royalties. This is the most open type of IP license.  
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Safety Critical – Components or capabilities that are necessary to prevent human 

injury or loss-of-life 

SDO – Standards Defining Organization. Also SSO. 

SSO – Standards Setting Organization. Also SDO. 

Standard – Also called a technical standard, a specification (usually hardware) or a 

protocol (software). A Standard is a formally defined methodology or 

structure for use by any number of components, particularly for an interface or 

other external feature that interacts with other components. 

Subsystem – a combination of one or more components or lower-level subsystems 

that interact to perform a higher level of functionality. 

System Architecture – any high-level electronic “system of systems” made up of 

some number of subsystems or components. Architecture – a hierarchical 

breakdown that details the functional location and interactions of each 

component in a system 

TCO – Total Cost of Ownership 

TRL – Technology Readiness Level 
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