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Discussion of diagnostics for linear regression models have become indispensable 

chapters or sections in most of the statistical textbooks.  However, survey literature has 

not given much attention to this problem.  Examples from real surveys show that 

sometimes the inclusion and exclusion of a small number of the sampled units can greatly 

change the regression parameter estimates, which indicates that techniques of identifying 

the influential units are necessary.  The goal of this research is to extend and adapt the 

conventional ordinary least squares influence diagnostics to complex survey data, and 

determine how they should be justified. 

We assume that an analyst is looking for a linear regression model that fits 

reasonably well for the bulk of the finite population and chooses to use the survey 

weighted regression estimator.  Diagnostic statistics such as DFBETAS, DFFITS, and 

modified Cook’s Distance are constructed to evaluate the effect on the regression 

coefficients of deleting a single observation.  As components of the diagnostic statistics, 



  

the estimated variances of the coefficients are obtained from design-consistent estimators 

which account for complex design features, e.g. clustering and stratification.  For survey 

data, sample weights, which are computed with the primary goal of estimating finite 

population statistics, are sources of influence besides the response variable and the 

predictor variables, and therefore need to be incorporated into influence measurement.  

The forward search method is also adapted to identify influential observations as a group 

when there is possible masked effect among the outlying observations. 

Two case studies and simulations are done in this dissertation to test the performance 

of the adapted diagnostic statistics.  We reach the conclusion that removing the 

identified influential observations from the model fitting can obtain less biased estimated 

coefficients.  The standard errors of the coefficients may be underestimated since the 

variation in the number of observations used in the regressions was not accounted for. 
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Chapter 1: Introduction  

1.1 Literature Review 

Several decades have passed since linear regression analysis became a widely 

employed statistical methodology that utilizes the relation between quantitative response 

and quantitative and qualitative covariates to make predictions and inferences.  

Regression attempts to model the relationship between two or more variables by fitting a 

linear equation to observed data.  When a regression model is considered for an 

application, researchers and analysts usually are not certain in advance whether a 

particular form of model is appropriate, especially with social science or epidemiological 

data.  It is therefore natural to raise questions before making inferences based on the 

particular data at hand.  A general question is: what type of model is appropriate – linear 

or nonlinear?  A more specific question is whether the fitted model is unduly affected by 

unusual points.  If so, what features of the data explain this affect?  Do collinear 

relationships exist among the data series used as predictors?  Do such problems degrade 

the parameter estimation?  Diagnostic techniques were gradually developed to find 

problems in model-fitting and to assess the quality and reliability of regression estimates.  

These concerns turned into an important area in regression theory intended to explore the 

characteristics of a fitted regression model for a given data set. 

Discussion of diagnostics for linear regression models are often indispensable 

chapters or sections in most of the statistical textbooks on linear models.  One of the 

most influential books on the topic was Regression Diagnostics: Identifying Influential 

Data and Sources of Collinearity by Belsley, Kuh, and Welsch (1980).  Diagnostic 

statistics are also included as standard options in many statistical packages, for instance, 

SAS®, SPSS®, Stata®, and R®, and are now readily available to analysts who want to 

diagnose influential points, detect collinearity, and more. 

Although techniques for regression diagnostics have been developed theoretically 

and methodologically for conventional linear regression models, diagnostics have not 

been extensively studied in survey sampling.  The diagnostic tools provided by current, 
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popular software are generally based on ordinary or weighted least squares (OLS or WLS) 

regression and do not account for stratification, clustering, and survey weights that are 

features of data sets collected in complex sample surveys.  The OLS/WLS diagnostics 

can mislead users either because survey weights are ignored, or the variances of model 

parameter estimates are estimated incorrectly by the standard procedures.  Hence, the 

goal of this research is to adapt and extend some of the standard regression diagnostics to 

the survey setting, and, where necessary, develop new ones. 

Survey literature has not given much attention to diagnostics for linear regression 

models.  Deville and Särndal (1992), and Potter (1990, 1993) discuss some possibilities 

for locating or trimming extreme survey weights when the goal is to estimate population 

totals and other simple descriptive statistics.  Hulliger (1995) and Moreno-Rebollo, et. al. 

(1999) address the effect of outliers on the Horvitz-Thompson estimator of a population 

total.  Smith (1987) demonstrates diagnostics based on case deletion and a form of the 

influence function.  Chambers (1986), Gwet and Rivest (1992), Welsh and Ronchetti 

(1998), and Duchesne (1999) conduct research on outlier robust estimation techniques for 

totals.  Elliott (2007) and Korn and Graubard (1999) are two of the few references 

which introduce techniques for the evaluation of the quality of regression on complex 

survey data. 

 

1.2 Uses of Survey Data 

The application of conventional techniques to survey data becomes less 

straightforward because of features of complex sampling designs like stratification, 

clustering, and weights.  Will standard diagnostic techniques still be useful after some 

modifications?  How should we deal with the survey weights associated with each 

sampled unit?  The use of survey data will be reviewed before we try to answer these 

questions. 

The uses of surveys can be roughly divided into two categories: analytic and 

descriptive (Skinner, Holt and Smith, 1989).  Descriptive uses of surveys usually 

involve the estimation of summary measures like means, totals, or quantiles of a finite 
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population based on samples taken according to a specific design.  Traditionally, the use 

of models is incidental in design-based sampling because inferences are made about the 

population with respect to the randomization distribution of the samples.  Curtailing the 

effects of unusual cases on the estimation of totals, means, and other descriptive statistics 

is done in the randomization approach by weight trimming or modification (e.g. see 

Potter 1990, Hidiroglou and Srinath 1981) or other informal methods.  The prediction 

approach to survey sampling (Valliant, Dorfman, and Royall 2000) is an alternative way 

of making inferences about finite population parameters.  This approach borrows 

strength from models established on the observed units and tries to accurately predict the 

unobservables in the population, and therefore is referred to as model-dependent.  The 

quantities predicted are random variables whose realizations depend on fixed but 

unknown model parameters.  Thus, the properties of estimators heavily rely on the 

quality of the model.  Chambers (1996) proposes a modified method of linear 

regression-based case-weighting intended to ensure model misspecification robustness. 

In contrast to the design-based approaches, analytic uses of surveys have essential 

involvement of model-building because investigators are interested in the properties 

(often causal relationships) of a wider “superpopulation” that the sampled population 

represents (Graubard and Korn, 2002).  Population units are regarded not as fixed values 

but as the realizations of random variables whose distributions can be modeled using 

available information.  It should be noted that clustering and stratification in the 

population, which are also reflected in a complex sampling design, cause the violation of 

standard model assumptions requiring independent and identical distribution of model 

errors.  This makes the interpretations of the stochastic components of the model more 

complicated.  Since models play a crucial role in the analysis of survey data, the 

diagnostics of model adequacy need to be carefully justified. 

 

1.3 The Subject of This Dissertation 

 The remainder of this dissertation is organized as follows.  Chapter 2 will introduce 

the linear regression estimators with and without survey weights.  The former is derived 

from the pseudo maximum likelihood method and used for the analysis of survey data, 



 4

while the latter is based on the traditional linear models and can be obtained by applying 

the ordinary least squares approach.  The comparison of the two will shed light on the 

possible differences between conventional regression diagnostics and those for survey 

data.  Chapter 3 and Chapter 4 will discuss influence assessment which is the core issue 

to be studied in this thesis.  Chapter 3 will focus on the identification of individual 

influential observations.  After reviewing some traditional techniques based on 

single-case deletion methods, diagnostic statistics such as DFBETAS, DFFITS, and 

Cook’s Distance will be modified and adapted to the survey setting.  Chapter 4 will use 

the same research methodology but will be devoted to locating influential groups.  The 

forward search approach will be described and extended to survey design involving 

stratification and clustering.  Chapter 5 consists of the application of newly-adapted 

statistics and approaches to real survey data and simulated data.  Analysis will be given 

on the effectiveness of identifying influential individual observations or groups of 

observations.  This study will conclude in Chapter 6 with a summary of limitations of 

the research and suggestions for future research to advance this work. 

 The new contributions in this dissertation are the adapted and modified diagnostic 

approaches which will be described in Chapter 3 and Chapter 4.  The development of 

these methods allows us to conduct influence analysis on linear regression using complex 

survey data. 
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Chapter 2: Linear Regression Analysis 

2.1 Traditional Linear Regression Model 

Generally, for a linear regression under the nonsurvey setting, the model is 

formulated as 

 Y = Xβ + ε  (2.1) 

where ( )1,..., T
nY YY = ， ( )1,...,T

nX = x x  with ( )1,...,
T

i i ipx xx = , ( )1,...,
T

pβ ββ = , 

and ( )1,..., T
nε ε=ε  are statistically independent error terms which are distributed with 

zero mean and constant variance 2σ .  Hence, the Gauss-Markov theorem states that the 

least squares estimators are unbiased and have minimum variance among all unbiased 

linear estimators.  The Ordinary Least Squares (OLS) estimator of parameter vector β  

is ( ) 1T T−
b = X X X Y .  If, in addition, the model errors are normally distributed, b  is 

also the maximum likelihood estimator. 

 

2.2 Linear Regression for Complex Survey Data 

Parameter estimators in linear regression using complex survey data are derived from 

the Pseudo Maximum Likelihood (PML) approach, outlined by Skinner et al. (1989), 

following ideas of Binder (1983).  The basic idea of this approach is that we could 

compute the likelihood and achieve consistent estimation by maximizing the likelihood if 

all population units were observed.  Suppose that the underlying structural model is a 

fixed-effects linear model:  

 ( )2,     ~ ind 0,T
i i i i iY N vε ε σ= +x β  (2.2) 

where iε ’s are independently normally distributed with mean 0 and variance 2
ivσ , 
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which is known except for the constant 2σ .  The likelihood for β  is 

( )2( ) ; , ,i i
i s

L f Y σ
∈

=∏β x β , 

where s  is the set of sample units and ( )2; , ,i if Y σx β  is the normal density with mean 

T
ix β  and variance 2

ivσ .  If the full population were in the sample, the log-likelihood 

would be ( )2log ( ) ; , ,i i
i U

L f Y σ
∈

= ∑β x β .  From this, the full population estimation 

equations are 
( )log ;i

i U

f Y

∈

⎡ ⎤∂ ⎣ ⎦ =
∂∑

β
0

β
.  These estimation equations are a type of finite 

population total for which a survey weighted estimator can be constructed.  Thus, the 

Pseudo Maximum Likelihood Estimator (PMLE) of β  is the solution to the set of 

estimation equations 
( )log ;i

i
i s

f Y
w

∈

⎡ ⎤∂ ⎣ ⎦ =
∂∑

β
0

β
, where iw  is the survey weight for unit 

i .  Survey weights, which in probability samples are usually inversely proportional to 

inclusion probabilities, are used in PMLE to account for an informative design in which 

sample distribution of the Y ’s is likely to differ from that of the finite population.  The 

estimation equations based on the normal probability density function can be simplified 

as 
T

i i
i i

ii s

Yw
v∈

−
=∑ x βx 0  or ( )1T − − =X WV Y Xβ 0  

with ( )1,..., ndiag v v=V  and ( )1,..., ndiag w w=W .  These equations can be solved 

explicitly as ( ) 11 1ˆ T T−− −=β X WV X X WV Y . 

 The regression estimator β̂  which incorporates the sample weights W  is 

approximately design unbiased for the finite population parameter 

( ) 11 1T T
N N N N N N

−− −=B X V X X V Y , where ( )1,..., T
N NY YY = , ( )1,...,N Ndiag v vV = , and 

( )1,...,T
N NX = x x  (Särndal, Swensson, and Wretman, 1992).  Approximate design 
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unbiasedness of β̂  means that its expectation over repeated sampling is approximately 

B  assuming that the weights iw ’s are constructed to produce design-unbiased estimates 

of finite population totals.  From the model-based perspective, this estimator is also 

unbiased for the superpopulation slope β  in model 281H(2.2), regardless of whether V  is 

specified correctly or not.  When the population is large, the finite population parameter 

B  should be close to the model parameter β  if model is correctly specified, and 

therefore a design-based estimator of B  should also estimate β .  If we assume =V I , 

model 282H(2.2) reduces to 283H(2.1) and the parameter estimator β̂  will consequently take the 

form of ( ) 1ˆ T T−
=β X WX X WY .  This estimator will be referred as Survey Weighted 

(SW) estimator in the following discussion and is the one usually computed by software 

packages that handle survey data.  Note that results for ( ) 11 1ˆ T T−− −=β X WV X X WV Y  

can be obtained by replacing W  in the SW estimator by * 1−=W WV . 

 Researchers who advocate model-based approaches may argue that the sample 

design should have no effect in regression estimation as long as the design is ignorable 

and the observations in the population really follow the model.  In that case, an OLS 

estimator or weighted least squares estimator that uses only 1−V  (not W ) can be used 

to infer about the model parameters.  However, with survey data a theoretically derived 

model rarely holds for all observations.  First, the model may not be appropriate for 

every subgroup in the population; second, some relevant explanatory variables may not 

be measured in the survey; third, the true relations among the variables may not be 

exactly linear.  In addition, informative nonresponse can distort the model relationship 

because of its dependency on variables of interest. 

 Using sampling weights in regression can provide a limited type of robustness to 

model misspecification.  From a model-based perspective, Rubin (1985), Smith (1988) 

and Little (1991) argue that the sampling weights are useful as summaries of covariates 

which describe the sampling mechanism.  Pfeffermann and Holmes (1985), DuMouchel 

and Duncan (1983), and Kott (1991) claim that the estimators using sampling weights are 

less likely to be affected if some independent variables are not included in the model.  
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Although both β̂  and the OLS estimator b  are model-biased estimators for β  when 

necessary covariates are omitted, the model bias of β̂  diminishes while the sample size 

increases, whereas b  is only asymptotically unbiased if the selection probabilities are 

not related to the variables that are left out of the model.  The advantage of using the 

weighted estimators is the ability to say we are estimating a population quantity with the 

price of generally larger estimated variances than for OLS.  If the working model is 

good, we expect that the point estimators β̂  and b  should be similar.  However, if the 

model is misspecified, survey-weighted and OLS estimates can be far apart as illustrated 

in Korn and Graubard (1995).  In this dissertation, I assume that analysts will use survey 

weights to estimate regression models.  The diagnostics to be developed account for the 

effects of these weights. 
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Chapter 3: Identification of Single Influential Observations 

3.1 Introduction 

Examples from real surveys show that there is a need for influence diagnostics since 

a small number of the sampled units with possible extreme values could play a crucial 

role in the estimation of statistics and their variances.  In 1986, the Joint Economic 

Committee of the U.S. Congress released a study indicating a sharp increase in the 

percentage of wealth held by the most affluent families in America.  The richest 0.5% of 

families was estimated to hold 35% of the wealth in 1983, whereas in 1963 this 

proportion was 25%.  The finding was proved to be wrong because a respondent with a 

very large weight was recorded to have $200 million in wealth attributed to him when the 

correct number was $2 million (Ericksen, 1988).  The estimated share of wealth by the 

richest 0.5% of families dropped to 27% after the figure was corrected. 

As in other statistical disciplines, outliers have been a well-known problem in 

design-based survey sampling (Lee, 1995).  Usually outliers feature extreme values that 

may be substantially different from the bulk of the data.  Chambers (1986) characterized 

outliers into two basic types: nonrepresentative and representative.  The former means 

the value for a sample unit is incorrect or the value is unique to a particular population 

unit, whereas the latter refers to cases in which the values are correct and there are others 

like them in the nonsample part of the population.  Sometimes the reported observations 

in sample surveys are named as influential because inclusion or exclusion of them can 

greatly change the parameter estimates.  There are diverse reasons for survey data 

containing influential observations, such as editing error, observation error, or simply a 

skewed population.  T. M. F. Smith (1987) pointed out, “individual values can be 

influential in randomization inference either when they are included in the sample or 

when they are not in the sample,” and “diagnostics are useful in the former case.”  A 

few nonsample, nonrepresentative outliers, for example, can have a large effect on the 

error of an estimated total but cannot be identified by diagnostics.  Extreme values and 
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influential values may not necessarily refer to the same observations due to sizes of 

sample weights.  The distinction of the two concepts has been noted by some survey 

researchers (see Gambino 1987, Srinath 1987, and Bruce 1991).  The premise in this 

research is that an analyst will be looking for a linear regression model that fits 

reasonably well for the bulk of the finite population.  We have in mind two general 

goals.  First, the influence diagnostics should allow the analyst to identify points that 

may not follow that model and have an influence on the size of estimated model 

parameters, or their estimated standard errors, or both.  Second, the diagnostics should 

identify points that are influential in PML estimation because of the way the sample was 

selected; in particular, because of the size of the survey weights.  These two goals 

sometimes conflict.  For example, a point that is influential in the population may not be 

influential in the sample if its weight is small.  The reverse is also true. 

 

3.2 Basic Idea in Influence Assessment 

Cook and Weisberg (1982) propose that the basic idea in influence analysis is to 

monitor how small perturbations change the outcome of the analysis when they are 

introduced in the data.  They mention three questions in designing methods for 

influence analysis: the perturbation scheme, the particular aspect of an analysis to 

monitor, and the method of measurement.  Different answers to these questions can lead 

to a variety of different diagnostics.  For example, if we consider only one perturbation 

scheme in which the data are modified by deletion of cases and we want to monitor how 

the deletion will affect the estimation of regression coefficients, we may formulate 

relevant statistics to measure the effect of deletion. 

Conventional model-based influence diagnostics mainly use the technique of row 

deletion, determining if the fitted regression function is dramatically changed when one 

or multiple observations are discarded.  The statistics which are widely adopted include 

DFBETAS, DFFITS, Cook’s Distance, COVRATIO, and so on (e.g. see 115HNeter, 116HKutner, 

117HNachtsheim, and 118HWasserman 1996). 

 These statistics do not have immediate application to randomization inference for 

sample surveys.  As Brewer and Särndal (1983) noted, the idea of robustness to 
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departures from an assumed model does not fit naturally into a purely design-based 

framework, because models are not used directly in inference.  However, the 

consideration of a model is needed to motivate the use of diagnostic statistics in finite 

population inference.  The goal of inference will be to develop procedures that permit 

“good” estimates of parameters for a model that fits reasonably well for most of a finite 

population.  By omitting influential points, ideally, a less design-biased and more stable 

estimates of underlying model parameters will result.  Even in the prediction approach, 

the inclusion of sampling weights and the application of robust variance estimation mean 

that standard diagnostics need adaptation. 

 

3.3 Sources of Influence in Survey Data 

The influence of observations on regression estimation under the survey setting may 

come from at least three sources: outlying Y  values, X  values, and sampling weights 

W .  Atypical or extreme values of any of these or combination of these can affect both 

parameter estimates and their estimated standard errors.  Unlike conventional 

model-based influence diagnostics which have been available in standard software for 

ordinary least squares, diagnostics for regression using complex survey data need to pay 

attention to the following:  

1. As a source of influence, survey weights, which are computed with the primary 

goal of estimating finite population statistics, need to be incorporated into the 

construction of influence measurement. 

2. The model assumptions which provide the basis of justification for conventional 

influence diagnostics are partially violated or completely ignored in the context 

of randomization inference. 

3. Given the large sample size in many surveys it would be important to set up 

some criteria to single out the influential units, or groups of units, instead of only 

reporting diagnostics for all units in the sample. 

A natural question is how large a particular measure of influence should be so that an 

observation should receive special treatment.  Belsley, Kuh and Welsch (1980) 

recommended choosing reasonable cutoffs by judgment and intuition, combining 
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empirical and theoretical arguments.  Under the survey setting, we may not be able to 

directly borrow the cutoffs for the conventional regression diagnostic statistics if they are 

not carefully justified.  New methods of determining the cutoffs need to be adapted to 

complex survey designs. 

 

3.4 Review of Traditional Techniques 

The conventional diagnostic techniques are developed to examine whether a given 

dataset is in accordance with the conditions of regression model 284H(2.1). 

3.4.1 Leverages and Residuals 

 In the conventional model diagnostics, the residuals, −e = Y Xb , and the hat matrix, 

( ) 1T T−
H = X X X X , are the measures used to identify the outlying Y  and X  values, 

respectively.  The diagonal element ( ) 1T T
ii i ih

−
= x X X x  of the hat matrix is called the 

leverage of the ith case which is the weight of observation iY  in determining the fitted 

value îY .  It has the following properties: (1) 0 1iih≤ ≤ ; (2) 
1

n

ii
i

h p
=

=∑ , where p is the 

number of columns in X  matrix.  A leverage value iih  is usually considered as large 

if it is more than twice their mean, ph
n

= .  The residuals are often rescaled relative to 

their standard errors.  The ratio of ie  to ( ) ( )2 1i iis e s h= − , where 2 2

1

1 n

i
i

s e
n p =

=
− ∑  

is the mean square error, is called the internally studentized residual and denoted by ir .  

Replacing 2s  with ( )2s i , the mean square error when the ith case is omitted in fitting 

the regression function, we obtain an externally studentized residual 
( )

*
1
i

i
ii

er
s i h

=
−

 

which follows the t distribution with 1n p− −  degrees of freedom assuming that model 
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285H(2.1) holds, including the assumption of normal errors. 

3.4.2 Influence on Regression Coefficients: DFBETA and DFBETAS 

DFBETA, the change in parameter estimates after deleting the ith observation, can be 

formulated and rewritten as ( )
1

1
i i

ii

eDFBETA i
h

−
≡ − =

−
A xb b , where TA = X X .  If we 

let ( ) ( )1T T
ji p n

c
−

×
=C = X X X , then the jth element of the DFBETA vector is 

( )
1

ji i
j j

ii

c e
b b i

h
− =

−
.  If the X ’s are uniformly bounded, then ( )1

jic O n−= .  Belsley, 

Kuh, and Welsch (1980) suggest that the changes in the estimated regression coefficients 

are often most usefully assessed relative to the variance of b .  A scaled measure of the 

change can be defined as the following: 

( )

( ) ( ) ( )1
2

1

1
1 1

j j ji i
ij nT ii ii

jkjj
k

b b i c eDFBETAS
s i h h

s i c
−

=

−
= =

− −
∑X X

, 

where ( ) 1T
jj

−
X X  is the (jj)th element of ( ) 1T −

X X .  The denominator of DFBETASij is 

analogous to the estimated standard error of b  with the sample standard error s  

replaced by the delete-one version ( )s i .  The DFBETAS statistic is the product of a 

quantity of order 1/ 2n− , a t distributed random variable, and a quantity that approaches 1 

(assuming 0iih → ).  Belsley, Kuh and Welsch (1980) propose a cutoff point of 2
n

 to 

identify influential cases.  Thus, if all the observations in the sample follow an 

underlying normal model, the X ’s are bounded, and the leverages are small, roughly 

95% of the observations will have a DFBETAS statistic less than 2
n

 in absolute value.  

In some samples, especially small or moderate size ones, this statement is less precise 

since iih  may not be negligible and the term involving jic  may not be near 1
n

.  
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DFBETAS is somewhat cumbersome to work with because an analyst must examine pn 

values.  For each observation i, there are p DFBETAS – one for each parameter. 

3.4.3 Influence on Fitted Values: DFFIT and DFFITS 

 DFFIT is a statistic that summarizes the change in predicted values when an 

observation is deleted, with the advantage that it does not depend on the particular 

coordinate system used to form the regression model.  Rescaling DFFIT by the 

estimated standard deviation of the predicted value, with the sample standard error s  

replaced by the delete-one version ( )s i , DFFITS can be expressed as the product of a t 

distributed random variable and a function of the leverage: 

( )
( )

( )( )
( ) ( )

1/ 2ˆ ˆ

1 1

T
ii i ii i

i
iiii ii ii

iY Y i h eDFFITS
hs i h s i h s i h

−− ⎛ ⎞
≡ = = ⎜ ⎟− −⎝ ⎠

x b b
. 

 A large value of DFFITS indicates that the observation is very influential in its 

neighborhood of the X  space.  A general cutoff to consider is 2; a size-adjusted cutoff 

recommended by Belsley, Kuh, and Welsch (1980) is 2 p
n

, where p
n

 is the mean 

leverage. 

3.4.4 Cook’s Distance 

 Cook’s distance provides an overall measure of the combined impact of an 

observation on all of the estimated regression coefficients b  (e.g. see Cook 1977 and 

Weisberg 1985).  It can be derived from the confidence region of β , which at level 

100(1 )%α−  is given by those values *b  satisfying 

( ) ( )
( )

* *

2 1 ; ,

T T

F p n p
ps

α
− −

≤ − −
b b X X b b

. 

Using the same structure, Cook’s distance measure iD  was proposed as 

( )( ) ( )( )
2

T T

i
i i

D
ps

− −
=

b b X X b b
. 
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This is a measure of the distance from ( )ib  to b .  If ( )ib  and b  are relatively far 

from each other, this means that unit i  has a substantial effect on the full sample 

estimate.  Large values of iD  indicate observations that are influential on joint 

inferences about all the parameters in the linear model.  It has been found useful to 

relate iD  to the percentile values of ( )1 ; ,F p n pα− −  distribution to make the 

judgment on influence.  For example, if the percentile value is less than about 10 or 20 

percent, the unit has little apparent influence on the regression coefficients.  On the 

other hand, if the percentile value is near 50 percent or more, the influence is potentially 

important. 

 A more convenient form for iD , without fitting a new regression function for each 

deletion, follows from substitution for DFBETA and yields 
2 2

2 2 1(1 )
i ii i ii

i
iiii

e h r hD
p hps h

= =
−−

, 

where 
1

i
i

ii

er
s h

=
−

 is the internally studentized residual.  Note from this expression 

that iD  depends on the size of the studentized residual and the leverage value.  

Atkinson (1982) suggested replacing 2s  by the deletion estimate ( )2s i , scaling the 

statistic by the average leverage p
n

, and then taking the square root to give a residual 

like quantity.  The resulting modified Cook statistic is 

( ) ( )

1/ 2 1/ 21/ 2 2
*

2 2 11
ii i ii

i i
iiii

h e hn p n pC r
p p hs ih

⎛ ⎞ ⎛ ⎞⎛ ⎞− −⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎝ ⎠ − ⎝ ⎠⎝ ⎠
, 

where *
ir  is the externally studentized residual.  It can be derived that, if n  is 

extremely large, the cutoff of the modified Cook’s distance is 2 because *
ir  is t 

distributed. 
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3.5 Variance Estimation Methods for Complex Survey Data 

An important issue in influence analysis is the cutoff value to be used in determining 

what points are influential.  In the case of OLS estimation, we have seen that some 

diagnostic statistics are formulated using variance estimates of β̂  and cutoff points are 

developed in terms of some distributions.  For example, the standard diagnostic 

DFBETA is scaled by dividing by an estimate of the model standard error of β̂ .  When 

the sample is associated with survey design features such as stratification, clustering, and 

other complexities, there are choices on how to construct diagnostic statistics.  We 

propose three options here, using DFBETAS as an illustration: 

(i) Ignore all design complexities and use the OLS construction to estimate both 

β  and DFBETAS.  This would be defensible if strictly model-based 

analysis were being done and the underlying model were 286H(2.1).  The design 

could be at least partially accounted for by incorporating design variables like 

stratum indicators in ix . 

(ii) Estimate β  using the Survey Weighted estimator.  Standardize DFBETA by 

dividing by a standard error that would be appropriate to estimate the 

design-based standard error of β̂  if the sample had been selected with 

varying probabilities and with replacement in singe-stage, unstratified, 

unclustered sampling.  Depending on how it is constructed, this type of 

variance estimator can be appropriate for a certain class of models. 

(iii) Estimate β  using the Survey Weighted estimator.  Standardize DFBETA by 

dividing by a standard error that would be appropriate to estimate the 

design-based standard error of β̂ , approximately accounting for stratification, 

clustering, and unequal weighting.  As in (ii), this type of variance estimator 

can also be appropriate for a certain class of models. 

Variance estimates for options (ii) and (iii) are discussed in more details below.  The 

following notations will be used throughout this Chapter: 
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 s : cluster sample, or unit sample for single-stage sampling; 

 is : unit sample in cluster i; 

 U : universe of clusters; 

 iU : universe of units in cluster i; 

 n : number of sample clusters, or number of sample units for single-stage sampling; 

 N : number of clusters in universe, or number of units in universe for single-stage 

sampling; 

 im : number of sample units in cluster i; 

 iM : number of population units in cluster i; 

 1,...,h H= : index of strata.  Subscript h  denotes the statistics for stratum h ; 

 , 1,...,i i n′ = : index of sample clusters, or sample units for single-stage sampling; 

 , 1,..., ik k m′ = : index of sample units in cluster i. 

Hence, hikw , hikx , and hikY , respectively, are the sample weight, the vector of auxiliary 

variables, and the value of the dependent variable for the k th unit within cluster i  of 

stratum h ; him  and hiM  are the number of units in cluster i of stratum h  in the 

sample and in the population; 

3.5.1 Asymptotic Framework 

In order to develop the distributional properties of the statistics such as DFBETAS, 

DFFITS, and so on, we need some assumptions for orders of magnitudes.  An 

asymptotic framework needs to be specified since, although the population in a survey 

problem may be very large, it is still finite (Shao, 1996).  We assume that the finite 

population under study is a member of a sequence of finite populations indexed by 
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1,2,...t = , but t  will be suppressed in order to simplify the notation.  The total number 

of first-stage sampled clusters or primary sampling units (PSUs), n , is assumed large, 

that is, h
h

n n= →∞∑  as t →∞ , where hn  is the number of sampled clusters within 

stratum h.  This includes two common situations in surveys: first, all the hn  are small 

(or bounded) but H  is large, e.g., an extreme case is the design of two PSUs per stratum; 

second, all the hn  are large but H  is bounded.  We assume that no survey weight is 

disproportionately large, or  

 ( )
, ,

1max hi hik

h i k

m w n O
N

=  (3.1) 

where him  is the number of sampled units in the ith cluster of stratum h.  If the 

sampling design is stratified two-stage sampling and simple random sampling is used in 

both stages of sampling, then h hi
hik

h hi

N Mw
n m

=  and 287H(3.1) reduces to  

 ( )
,

1max h hi

h i h

N M n O
n N

=  (3.2) 

where hiM  is the number of units in the ith cluster of stratum h in universe, and hN  is 

the number of clusters within stratum h in universe.  Condition 288H(3.2) becomes 

( )
,

1max h

h i h

N n O
n N

=  if hiM  is bounded.  The two common situations in surveys 

mentioned above satisfy this assumption about the survey weights.  More specifically, 

using 289H(3.2) as an example, the condition will be satisfied if as t →∞ , 

Case 1: H →∞ , h

h

N
n

 is bounded, N
H

 and n
H

 converge to constants. 

Case 2: H  is bounded, hn
n

 and hN
N

converge to positive constants. 

Based on the above assumptions and, again assuming the X ’s are bounded, we can 

derive the following orders of magnitude for several aggregate quantities: 

(1) ( )
h hi

T T
hik hik hik

h i s k s
w O N

∈ ∈
= = =∑∑ ∑A X WX x x , and ( )1 1O N− −=A , elementwise; 
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(2) ( )1 1T O n− −= =C A X W , elementwise; 

(3) ( )1 1T O n− −= = =H XA X W XC , elementwise.  

We take the equal signs in expressions (2) and (3) when him  are bounded. 

For single-stage sampling, assumption 290H(3.1) reduces to ( ) ( )max 1iw n N O= , where 

n and N are sample size and population size, respectively.  The three conditions above 

still hold.  Note that it may be possible to relax the assumption that X  is bounded (e.g., 

see Miller 1989) and still obtain (1)-(3) above. 

3.5.2 Variance Estimation for Single-Stage Sampling With Replacement 

Assume the working model is (2.1).  Treating the finite population as a sample of 

size N from that model, we estimate the model error variance 2σ  using 
2

2 iU
U

i U

e
N p

σ
∈

=
−∑ , where T

iU i ie Y= − x B .  Let ME  denote an expectation with respect 

to model 291H(2.1).  Since 

( ) ( )2 2 1 U
M iU iiE e hσ= − , where ( ) 1U T T

ii i N N ih
−

= x X X x , 

and ( )2 2 2U
M iU ii

i U i U
E e N h N pσ σ

∈ ∈

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ , 

2
Uσ  is an unbiased estimate of 2σ  with respect to the working model.  According to 

the pseudo maximum likelihood approach, we can obtain the design-based estimate of 

2
Uσ  from a sample of size n using an estimator 2 21ˆ ˆ i i

i s
w e

N
σ

∈
= ∑ , where ie  is the 

sample residual defined as ˆT
i i ie Y= − x β , 1ˆ ( )T T−=β X WX X WY , and ˆ

i
i s

N w
∈

=∑ .  

The statistic 2σ̂  is an approximately design unbiased estimator for 2
Uσ  and, if the 

working model is correctly specified, is also estimating 2σ .  In the following we sketch 

the reason for the approximate unbiasedness and suggest using a modified version, 
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 2 21ˆ ˆ i i
i s

w e
N p

σ
∈

=
− ∑ . (3.3) 

We have ˆ = +β B C  (Fuller 2002, Fuller and Isaki 1982) where ( )1pO n=C  

elementwise, ( )ˆ 1 1pN N O n= + , and let Eπ  denote expectation with respect to the 

sample design.  Then, we have 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2

2 2

2 2

2

1ˆ ˆ

1    2ˆ

ˆ 1 2 1    1 ˆ

1    1 .

i i
i s

T T T T
i i i i i i i

i s

T T T T
i i i i i i i i i

i s i s i s

T
i i i p

i s

N w e
NN

N w Y Y
NN

N N w Y w Y w
N N NN

w Y O n
N

σ
∈

∈

∈ ∈ ∈

∈

=

⎡ ⎤⎛ ⎞= − − − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞−
= + − − − +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎣ ⎦

= − +

∑

∑

∑ ∑ ∑

∑

x B x C x B x C

x B x C x B x C

x B

 

Under some technical conditions, the expectation of the ( )1pO n  term is itself 

( )1O n , e.g. if the ( )1pO n  term is uniformly integrable (see Serfling 1980, Thm. 

C, p.15).  Consequently, 

( ) ( )

( ) ( )

22 2 2

22 2

1ˆ ,

1ˆ .ˆ

T
i i U U

i U

T
M i M i i

i s

N pE Y
N N

E w E Y
N

π σ σ σ

σ σ

∈

∈

−
− =

−

∑

∑

x B

x B

� �

� �
 

Suppose that an analyst uses the Survey Weighted estimator β̂ , which can be rewritten 

as a weighted sum of the Y  values, 1

1

ˆ
n

i i i
i

w Y−

=
=∑β A x .  Its unknown model variance 

under 292H(2.1), 

 ( ) 2 1 2 1

1

ˆ
n

T
M i i i

i
V wσ − −

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑β A x x A , 

can be estimated as  
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 ( ) 2 1 2 1

1

ˆ ˆ
n

T
M i i i

i
v wσ − −

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑β A x x A . (3.4) 

 If model 293H(2.1) is misspecified, instead let us consider a model in which the iY ’s are 

independent but whose variances differ among the units: 

 ,  ~ (0, )T
i i i i iY indε ε ψ= +x β , (3.5) 

where iψ  is an unknown variance parameter.  The model variance of β̂  is 

 ( ) 1 1

1

ˆ
n

T
M i i i i i

i
V w wψ− −

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑β A x x A . (3.6) 

The associated residual for unit i  is ˆT
i i ie Y= − x β .  Under model 294H(3.5), the squared 

residual has the expectation 

( ) ( )22 21M i i ii ii i
i i

E e h hψ ψ′ ′
′≠

= − +∑  

with iih ′  being the ( ii′ )th element of the hat matrix 1 T−=H XA X W .  Under certain 

regularity conditions, asymptotically ( )2
M i iE e ψ≈  and therefore 2

ie  is an 

approximately model-unbiased estimator of iψ  (Valliant, Dorfman, and Royall 2000).  

By replacing the unknown variance elements iψ  in 295H(3.6) by the squares of the 

corresponding residuals 2
ie  based on the regression fit, the sandwich estimator of the 

unknown model variance is 

 ( ) 1 2 1 1 2 1

1

ˆ ( )
n

T T
W i i i i i i

i
v w e w diag e− − − −

=

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∑β A x x A A X W WXA . (3.7) 

Using ( )1 T
ji p n

c−
×

= =C A X W  as defined in Section 3.5.1, we have 2 2

1

ˆ( )
n

W j ji i
i

v c e
=

=∑β .  

This estimator is model robust against deviations from the constant variance structure as 

in model 296H(2.1).  It is also design consistent under a single-stage, unstratified and 

unclustered design where units are selected with probabilities 1/i iwπ =  with 

replacement. 
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Another useful variance estimator is the design-based linearization variance 

estimator.  The linear approximation of β̂  is  

 ( )1ˆ T
N i i i i i

i s i s
w Y−

∈ ∈
− − =∑ ∑β B A x x B z�  (3.8) 

where B  is the finite population regression parameter, T
N N N=A X X , and 

1 ( )T
i N i i i iw Y−= −z A x x B  (Fuller, 2002).  If the design can be approximated by 

single-stage with-replacement sampling, the linear substitute approach can be used to 

obtain the design consistent variance estimator 

( ) ( )( )* * * *

1

ˆ
1

n T
L i i

i

nv
n =

= − −
− ∑β z z z z  

where * 1
i i i iw e−=z A x  and * *1

i
sn

= ∑z z  (e.g., see the SUDAAN v.8 manual).  Like 

Wv , Lv  is model-robust since it is approximately unbiased under the general model 

297H(3.5).  Next, note that 

( ) ( )* 1 1 1 11 1 1ˆ ˆT T
i i i i i i i i i i i i i

s s s
w e w Y w Y w

n n n
− − − −= = − = − =∑ ∑ ∑z A x A x x β A x A x x β 0  

where we use the fact that T
i i i

s
w=∑A x x .  Then ( ) * *

1
ˆ

1
n T

L i ii
nv

n ==
− ∑β z z , implying 

that Lv  and Wv  are approximately the same when the sample size is large enough that 

1
1

n
n

≈
−

.   

If the design uses stratification, the notation above needs elaboration.  Let hix  be 

the vector of independent variables for unit i  in stratum h , hiw  be the weight for that 

unit, and ˆT
hi hi hie Y= − x β .  If stratum dummies are not part of the model, then  

( ) ( )( )* * * *ˆ
1

h

Th
L hi h hi h

hh i s

nv
n ∈

= − −
−∑ ∑β z z z z  

which uses * 1
hi hi hi hiw e−=z A x  and * *

h

h hi h
i s

n
∈

= ∑z z .  In that case, *
hz  is not 0 , but 
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( )*
M hE =z 0 .  The comparison of Lv  and Wv  in this case is discussed in more detail 

in Section 3.5.3 in the context of stratified cluster sampling. 

 3.5.3 Variance Estimation for Multistage Sampling Design 

For a multistage area probability sample, the design variance will be computed to 

account for the complexity of the design assuming the first-stage sample was selected 

with replacement.  The analogous model-based assumption is that units in different 

PSUs are independent under a model.  Suppose there are 1, ,i N= …  clusters in the 

population and 1, , ik M= …  units in cluster i.  Note that clustered samples often use 

multiple stages of selection, but users are typically provided only identifiers for one type 

of cluster.  As a result, considering only one level of clustering will match the level of 

detail available to most users.  Suppose that ikx  is a p-vector of explanatory variables 

for unit k in cluster i.  The linear model is 

 
( )

2

2

 +                 1, , ,    1, , ,

               ,

,              ,  .    
0                  ,

T
ik ik ik i

M ik i k

Y i N k M

i i k k

Cov i i k k
i i k k

ε

σ

ε ε σ ρ′ ′

= = =

⎧ ′ ′= =
⎪⎪ ′ ′= = ≠⎨
⎪ ′ ′≠ ≠⎪⎩

x β … …

 (3.9) 

This model posits that all units have a common variance and the intracluster correlation, 

ρ , is the same for all clusters.  Units in different clusters are uncorrelated.  In principle, 

ρ  in 298H(3.9) can be negative and has a lower bound of ( ) 11D −− −  where D  is defined 

below (Valliant, Dorfman, and Royall, 2000).  In practice, ρ  is usually positive and 

can be estimated using analysis of variance methods, as described in Section 5.3.2. 

In order to compute standardized residuals, we will need estimates of the parameters 

in 299H(3.9).  This model is restrictive but is used only to get cutoff values for diagnostic 

statistics in Section 3.6.2, 3.6.3, and 3.6.4.  For other analyses, we can use variance 

estimators for β̂  that do not depend on such a restrictive model. 

 In the clustered case, the survey weighted estimator of β  can be written as  
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1

1

ˆ

i

ik ik ik
i s k s

T
i i i

i s

w Y−

∈ ∈

−

∈

=

=

∑ ∑

∑

β A x

A X W Y
 

with ikw  and ikY  being the weight and dependent variable for unit (ik) and  

iX  = the im p×  matrix of explanatory variables, ikx ’s, for the im  sample 

units in cluster i, 1, ,i n= …  

iW  = the i im m×  diagonal matrix of survey weights, and  

iY  = the im -vector of ikY ’s. 

Using these definitions, A  can also be written as T
i i i

i s∈
=∑A X W X . 

 If we treat the finite population as a sample, under model 300H(3.9), the variance 

parameters are estimated as 

( )

( )

( )

2

2

2

1

/ 1

U

U

i
i U

P

Q P D

D M M M N

ρ σ

ρσ

+ +
∈

⎡ ⎤− =⎣ ⎦

⎡ ⎤ = −⎣ ⎦

⎛ ⎞
= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑

 

where 

( )21 1
1

i

U U
ik i

ii U k U
P e e

N M∈ ∈
= −

−∑ ∑  

( )21
1

U U
i i

i U
Q M e e

N ∈
= −

− ∑  

i
i

M M+ =∑  

U T
ik ik ike Y= − x B , /

i

U U
i ik i

k U
e e M

∈
= ∑ , /U U

i i
i

e e M M+=∑ . 

The notation [ ]Ui  means that the quantity in the brackets is a finite population 

parameter.  We have ( ) ( ) 21ME P ρ σ−�  and ( ) ( ) 2 21ME Q Dρ σ ρσ− + ⋅� .  Here 
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we assume that U
ike  is a good estimate of ikε  in model 301H(3.9).  Proofs refer to Valliant 

et al. (2000), p258. 

 As in the single-stage sampling case, our goal is to find the design-based estimates of 

( ) 21
U

ρ σ⎡ ⎤−⎣ ⎦  and 2
U

ρσ⎡ ⎤
⎣ ⎦ , or P , Q , and D  for the two-stage sampling design.  

Pfeffermann et al. (1998) proposed the probability-weighted iterative generalized least 

squares (PWIGLS) estimator to obtain consistent estimates of the variance parameters 

( ) 21
U

ρ σ⎡ ⎤−⎣ ⎦  and 2
U

ρσ⎡ ⎤
⎣ ⎦  from the two-level model.  The PWIGLS estimator, 

which assumes that the sampling probabilities for both stages iπ  and |k iπ , or 

equivalently, iw  and |k iw , are known, is adapted from the standard iterative generalized 

least squares (IGLS) by analogy with PML.  Alternative inflation-type estimators using 

the two-level sample weights have also been considered (Longford 1995, Graubard and 

Korn 1996).  However, Korn and Graubard (2003) later showed that these estimators 

can be badly biased when the sampling is informative.  They proposed a new set of 

approximately unbiased estimators for variance components regardless of the sampling 

design.  The limitation of these estimators is that they require the knowledge of 

second-order inclusion probabilities of the observations.  In many surveys, analysts will 

not know the value of iM , iw , |k iw , or the joint inclusion probabilities.  If so, the 

only workable approach is to use a purely model based estimator  

 ( )21 1ˆ
1

i

ik i
ii s k s

P e e
n m∈ ∈

= −
−∑ ∑  

( ) ( )2ˆ / 1i i
i s

Q m e e n
∈

= − −∑  

( )2ˆ / 1i
i s

D m m m n+ +
∈

⎛ ⎞
= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ , 

where i
i s

m m+
∈

=∑ , and the residuals are calculated from the OLS estimator without 

using the sample weights.  Using the estimates of P , Q , and D , we can formulate 
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estimators of ( ) 21
U

ρ σ⎡ ⎤−⎣ ⎦  and 2
U

ρσ⎡ ⎤
⎣ ⎦ , respectively, as  

( )n

n ( )

2

2

ˆ1

ˆ ˆ ˆ/

P

Q P D

ρ σ

ρσ

− =

= −
. 

Another alternative is to use analysis of variance or restricted maximum likelihood 

methods.  An application of this using SAS PROC VARCOMP (PROC MIXED can also 

be used) is discussed later in Section 5.3.2. 

When n2ρσ  and ( )n21 ρ σ−  (or P̂ , Q̂ , and D̂ ) are available, the estimated 

variance of β̂  under 302H(3.9) can be constructed as 

( ) ( )n n1 2 2 1ˆ 1
i i i

T T
M i i m m m i i

s
v ρ σ ρσ− −⎛ ⎞= − +⎜ ⎟

⎝ ⎠∑β A X W I 1 1 W X A . 

It follows that an estimate of ρ  is  

 
n

( )n n
2

2 2
ˆ

1

ρσρ
ρ σ ρσ

=
− +

 or 
1ˆ ˆ

ˆ 1ˆ ˆ
PD

Q P
ρ

−
⎡ ⎤

= +⎢ ⎥
⎣ ⎦-

. (3.10) 

This estimator is highly dependent on the working model and is not robust to departures 

from that model.  Note that ρ̂  is not necessarily confined to ( ) 11 ,1D −⎡ ⎤− −⎣ ⎦  when 

analysis of variance methods are used to estimate 2ρσ  and ( ) 21 ρ σ− .  If ρ̂  in 303H(3.10) 

is outside ( ) 11 ,1D −⎡ ⎤− −⎣ ⎦ , the usual procedure is to assign it the nearest boundary value. 

As in the case of estimation under the single-stage sampling model, we can construct 

a simple sandwich estimator that is consistent under a reasonably general variance 

specification.  Consider the model: 

 
( )
( )

                1, , ,   1, ,

, 0            

T
M ik ik i

M ik i k

E Y i N k M

Cov Y Y i i′ ′

= = =

′= ≠

x β … …
.  (3.11) 

Within a cluster, each pair of units could have a different correlation.  The variance 

estimator will be derived using the cluster-level residuals and have the sandwich form.  

The vector of sample residuals for cluster i is ˆ
i i i= −e Y X β , and the residual for sample 
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unit (ik) is ˆT
ik ik ike Y= − x β .  Define the hat matrix as 

1 1
1 1 1 1

1

1 1
1 1

  
                                 

  

T T
n n

T

T T
n n n n

− −

−

− −

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

X A X W X A X W
H XA X W

X A X W X A X W

"
# #

"

 

and let 1 T
ii i i i

−
′ ′ ′=H X A X W .  Then the vector of residuals for sample cluster i is 

( )ii i ii i m ii i ii i
i s i i

′ ′ ′ ′
′ ′∈ ≠

= − = − −∑ ∑e Y H Y I H Y H Y .  We have  

 ( ) ( ) ( )( ) ( )
i i

TT T
M i i m ii M i m ii ii M i ii

i i
E V V′ ′

′≠
= − − +∑e e I H Y I H H Y H .  (3.12) 

If ( )1 1O N− −=A , and the sample sizes im  are bounded, then ( )1
ii O n−′ =H .  Thus, 

as the number of sampled PSUs becomes large, or n →∞ , ( ) ( )T
M i i M iE V≅e e Y , and, 

consequently, the sandwich variance estimator is 

 ( ) ( )1 1ˆ T T
W i i i i i i

i s
v − −

∈
=∑β A X W e e W X A .  (3.13) 

 Assuming the first-stage sample was selected with replacement, expression 304H(3.8) 

becomes 

 1ˆ ( )
i

T
N ik ik ik ik i

i s k s i s
w Y−

∈ ∈ ∈
− − =∑ ∑ ∑β B A x x B z� , (3.14) 

where 1 ( )T
i N i i i i

−= −z A X W Y X B .  A design-based linearization estimator is given as  

 ( ) * * * *
1

ˆ
1

n T T
L i ii

nv n
n =

⎡ ⎤= −⎢ ⎥⎣ ⎦− ∑β z z z z , (3.15) 

where * 1 1 ˆ( )T T
i i i i i i i i

− −= = −z A X W e A X W Y X β  is a vector of p elements computed from 

PSU i and estimates iz .  Note that  

( ) ( )* 1 1 11 1ˆ ˆT T T
i i i i i i i i i

s sn n
− − −= − = − =∑ ∑z A X W Y X β A X W Y A X WX β 0  

using T
i i i

i s∈
=∑A X W X .  Then the model-based variance estimator Wv  and the 

design-based variance estimator Lv  would be approximately the same when the number 



 28

of sampled clusters is large. 

There are multiple ways to account for stratification in the modeling, depending on 

different model assumptions.  We consider two cases here.  First a simple model that 

reflects common intercepts and slopes among strata is 

 
( )
( )

              1,..., ,    1, , ,    1, ,

, 0            

T
M hik hik hi

M hik hi k

E Y h H i N k M

Cov Y Y i i′ ′

= = = =

′= ≠

x β … …
. (3.16) 

Since clusters are assumed to be independently selected between and within strata, the 

regression estimator and its estimated variance would be similar to the ones derived from 

model 305H(3.11) except that they include stratification and are expressed as sums over all 

clusters which are nested in strata.  The survey weighted estimator of β  is 

1ˆ

h

T
hi hi hi

h i s

−

∈
=∑∑β A X W Y  

where the subscript hi  refers to sample units in cluster i, stratum h, hs  is the set of 

sample clusters in stratum h , hiX  is the him p×  matrix of auxiliaries for sample 

cluster i  in stratum h  with him  being the number of sample units from cluster ( )hi .  

The components hiW  and hiY  are defined by analogy to iW  and iY  given earlier in 

this section.  The model-based sandwich variance estimator is 

( ) 1 1

,

ˆ ( )
h

T T
W hi hi hi hi hi hi

h i s
v − −

∈
= ∑β A X W e e W X A  

where ˆ
hi hi hi= −e Y X β . 

After accounting for stratification, expression 306H(3.14) becomes 
1ˆ ( )

h h

T
N hi hi hi hi hi

h i s h i s

−

∈ ∈
− − =∑∑ ∑∑β B A X W Y X B z�  

and the linearization variance estimator in this case is  

( ) ( )( )* * * *

* * * *

ˆ
1

         
1

h

h

Th
L hi h hi h

hh i s

T Th
hi hi h h h

hh i s

nv
n

n n
n

∈

∈

⎡ ⎤
⎢ ⎥= − −

− ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= −

− ⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

β z z z z

z z z z
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where hn  is the number of sample clusters in stratum h, * 1 T
hi hi hi hi

−=z A X W e , and 

* *1

h

h hi
h i sn ∈

= ∑z z .  This expression reduces to the formula for a single stage stratified 

design in Section 3.5.2 when the PSU sizes are all 1hin = .  Like the sandwich estimator 

Wv , Lv  is also approximately model unbiased for the variance of β̂ , ( )ˆ
MV β .  The 

proof is illustrated as follows: 

 ( )hihi m hii hi hii hi
i i

′ ′
′≠

= − −∑e I H Y H Y  (3.17) 

where 1 T
hii hi hi hi

−
′ ′ ′=H X A X W .  Let ( )hi M hiV=Ψ Y , and assume ( )1

ii O n−′ =H , 

hi
NO
n

⎛ ⎞= ⎜ ⎟
⎝ ⎠

W  and ( )O N=A .  Then 

( ) ( ) ( ) ( )1 .
hi hi

TT T
M hi hi m hii hi m hii hii hi hii hi

i i
E O n−′ ′ ′

′≠
= − − + = +∑e e I H Ψ I H H Ψ H Ψ  

Using 307H(3.17) and ( ) ( ),T T
M hi hi M hi hiE Cov′ ′=e e e e , we have 

( ) ( ) ( )

( )
,

1                   .

hi hi
T T T T

M hi hi m hii hi hi i m hi hi hii hii hi hi i
i i i

E

O n

′′ ′ ′ ′ ′ ′′ ′′ ′ ′′
′′ ′≠

−

= − − − − +

=

∑e e I H Ψ H I H Ψ H H Ψ H
 

Then, 

( ) ( )
( )( ) ( ) ( )

( ) ( ) ( )

* * 1 1

1 1 1 3 2

* * 1 1 3

                  

T T T
M hi hi hi hi M hi hi hi hi

T
hi hi hi hi hi hi

T T T
M hi hi hi hi M hi hi hi hi

E E

O n O n O n

E E O n

− −

− − − − −

− − −
′ ′ ′ ′

=

= + = + =

= =

z z A X W e e W X A

A X W Ψ W X A T

z z A X W e e W X A

, 

where 1 1T
hi hi hi hi hi hi

− −=T A X W Ψ W X A .  Hence we have 
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( )

( ) ( )

( )

* * * *
2

* * * *
2 2

3
2

1

1 1                    

1                    .

h h

h h

h

T T
M h h M hi hi

i s i sh

T T
M hi hi M hi hi

i s i s i ih h

hi
i sh

E E
n

E E
n n

O n
n

∈ ∈

′
′∈ ∈ ≠

−

∈

⎛ ⎞
⎜ ⎟=
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⎝ ⎠

= +

= +

∑ ∑

∑ ∑∑

∑

z z z z

z z z z

T

 

Let us consider the two cases mentioned in Section 3.5.1.  If hn  is bounded,  

( )* *
2

1

h

T
M h h hi

i sh
E

n ∈
∑z z T� , and 

( ) ( ) ( )

( )

* * * *

2

1

1            
1

            

ˆ            .

h h

h

T Th
M L M hi hi h M h h

hh

h
hi h hi

hh i s i sh

hi
h i s

M

nE v E n E
n

n n
n n

V

∈ ∈

∈

⎡ ⎤= −⎢ ⎥⎣ ⎦−

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟−

⎜ ⎟− ⎢ ⎥⎝ ⎠⎣ ⎦
=

=

∑

∑ ∑ ∑

∑∑

z z z z

T T

T

β

�
 

The second term in brackets in ( )ˆ
Lv β  above 308H(3.17) is * *T

h h hn z z .  If hn
n

 converges to 

a constant, ( ) ( )* * 2T
h M h hn E O n−=z z  is negligible compared to 

h

hi
i s∈
∑ T , and 

( ) ( )ˆ
1

h h

h
M L hi hi M

hh i s h i s

nE v Var
n ∈ ∈

=
−∑ ∑ ∑∑T T β� � . 

Another way to account for stratification is to assume different linear models, or 

different slope parameters hβ , in each stratum. 

( )              1,...,    1, ,    1, , .T
M hik hik h iE Y h H i N k M= = = =x β … …  

Then, within each stratum, the estimation of regression parameters and their variances is 

the same as that for model 309H(3.11). 
1ˆ

h

T
h h hi hi hi

i s

−

∈
= ∑β A X W Y ,  
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( ) ( )1 1ˆ

h

T T
W h h hi hi hi hi hi hi h

i s
v − −

∈
= ∑β A X W e e W X A  

where 
h

T
h hi hi hi

i s∈
= ∑A X W X , and ˆ

hi hi hi h= −e Y X β .  The design based linearization 

variance estimator of ˆ
hβ  is similar to 310H(3.15), but with a stratum subscript: 

( ) ( )( )* * * * * *ˆ
1 1

h h

T Th h
L h hi h hi h hi hi

h hi s i s

n nv
n n∈ ∈

= − − =
− −∑ ∑β z z z z z z . 

When hn  is large Wv  and Lv  are approximately the same.  The analysis of 

influence diagnostics will be conducted independently within each stratum for this 

setting. 

 

3.6 Adaptations of Traditional Techniques to Regression on Complex 

Survey Data 

In this section adapt the analysis of residuals, leverages, DFBETAS, DFFITS, and 

Cook’s distance for use with complex survey data.  Although some versions of these 

statistics are available in software that will fit weighted least squares regressions, the 

interpretation of them differs for survey data.  Also, diagnostics that incorporate 

variance estimators must account for complex sample designs.  Cutoff values must also 

be derived for the adapted statistics. 

3.6.1 Residuals and Leverages 

When survey weights are used in the regression, the predicted values become 

ˆ =Y HY  and the residuals are ( )ˆ= − = −e Y Y I H Y , where the hat matrix includes the 

survey weights and, as in previous sections, is defined as  

 ( ) 1 1T T T− −= =H X X WX X W XA X W   

with T=A X WX .  The leverages on the diagonal of the hat matrix are 1T
ii i i ih w−= x A x .  

In this formulation, it is assumed that the analyst does not incorporate a V  matrix, see 
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model 311H(2.2), in the regression.  However, results below can be modified to incorporate 

V  simply by using * 1−=W WV  rather than W .  If we use the notations for 

single-stage sampling, the survey weighted hat matrix has the following properties: 

1) =HX X ; ( )T − =X W I H 0 ; 

2) 0 1iih≤ ≤ ;  

3) 
1

n

ii
i

h p
=

=∑ , where p is the number of columns in X  matrix, and n is the total 

number of sample units; 

(see Valliant et. al. (2000) for the proof of above properties.) 

4) 1 T T− =WH = WXA X W H W ; 

5) 1T
i i i i i i i i iiw h w w w h−
′ ′ ′ ′ ′= =x A x , 

6) =HH H , and 1 1 1T T T
ii i i i i i i i i i i i ii

i i
h h w w w h− − −
′ ′ ′ ′ ′

′ ′
= = =∑ ∑x A x x A x x A x . 

A large leverage may be caused by outlying X  values, an outlying weight, or both.  

Similarly, a large residual may result from an outlying iY  or iw . 

(1) Decomposition of Leverages 

Leverages can be decomposed into components that separate the effect of the weight 

and the X  values for a unit.  We begin with a simple illustration.  Suppose we have a 

simple model ,i i iy xβ ε= +  ( )2~ 0,i ixε σ .  The WLS estimate of β  is /s sb y x=  

where we use 1/ 1/i iv x=  as the weight for this example.  If we use superscript U  to 

indicate the unweighted statistics, the WLS hat matrix is written as 1 1U T− −=H XA X V , 

where 1T −=A X V X , ( )i n ndiag x ×=V , and ( )1,..., T
nx x=X .  The leverage of the ith 

observation is  
1 1

1    

    

U
ii i i i

i
i

s i

i

s

h x A x v
x x

nx x
x

nx

− −=

=

=

, 
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since ( ) ( )( )1 1,..., 1/ ,..., T
n i n sx x diag x x x nx= =A . 

The parameter estimator accounting for survey weights is 1 1ˆ T
Wβ − −= A X WV Y , 

where 1T
W

−=A X WV X  and ( )i n ndiag w ×=W .  The WA  matrix can be simplified 

as follows,  

1 1( ,..., ) ( ) (1/ )( ,..., )

     

ˆ     

T
W n i i n

i i
s

W

x x diag w diag x x x

w x

Nx

=

=

=

∑
A

 

where ˆ
i

s
N w nw= =∑  and /W i i i

s s
x w x w=∑ ∑ .  The weighted hat matrix is  

( ) ( ) ( ) ( )

1 1

1
1 1

1 1 2 1 1

2 2 2

ˆ     ,..., ,..., /

  ... 
         ... 1     ˆ               
                    

W T
W

T
n W n i i

n

n

W

n n

x x Nx x x diag w x

w x w x w x
w x w x

Nx
w x

− −

−

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

H XA X WV

%

 

and the leverages on the diagonal of the hat matrix are defined as 

1
ˆ

W i i i i
ii

WW

w x w xh
n w xNx

= = . 

 Hence, the OLS leverage U
iih  can be large if i sx x� , whereas in the survey case 

the weighted leverage can be extreme if either iw w�  or i Wx x� . 

 Now let us extend the above analysis to a more general model 312H(2.1):  

,= +Y Xβ ε  ( )2~ 0,σε I . 

Assuming we have a model with intercept, let  

( )
1

1

1  
     

1  

T

T
n

⎛ ⎞
⎜ ⎟

= ≡⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

x
X 1 X

x

# # , and 
1

1

T

T
n

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

x
X

x

#  

where ( )1 , 1, ,T
i i i px x −=x …  are ( )1 1p× −  vectors, 1  is a 1n×  vector with all the 
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elements equal to 1, and 1X  is a ( )1n p× −  matrix.  The WA  matrix is computed as 

( ) 1
1

W11 1 1 1

ˆ ˆ     
 

ˆ    

T TT T
X

W T T T
X

N⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= = ≡

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

1 W1 1 WX1 t
A W 1 X

t AX X W1 X WX
 

where ˆXt  is a ( )1 1p − ×  vector with elements ˆXj i ij
i s

w x
∈

=∑t  and W1A  is a 

( ) ( )1 1p p− × −  matrix.  Using the inverse of a partitioned matrix,  

1 1

1

1 1

1 1

1 1

1

1 1 1 1ˆ ˆ ˆ   ˆ ˆ ˆ ˆ
1 ˆ                       ˆ

1    ˆ      
                

1   ˆ      
      

T T
X X X

W

X

T T
W W W

W

T
W

N N N N

N

N
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−
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− −

− −

−

⎛ ⎞+ −⎜ ⎟
⎜ ⎟=
⎜ ⎟−⎜ ⎟
⎝ ⎠
⎛ ⎞+ −⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠
⎛ ⎞ ⎛ ⎞−⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

t S t t S
A

S t S

x S x x S

S x S

0 x S
I0 0

( ) Wx I

 

where 
ˆ
ˆ
X

W N
=

tx  is a ( )1 1p − ×  vector and W1
1ˆ ˆ
ˆ

T
X X N

= −S A t t  is a ( ) ( )1 1p p− × −  

matrix.  Simplifying the hat matrix using the above inverse matrix, we obtain 

( ) ( )

( ) ( )

( )

1

1
1

1

1
1 1

1
1

1

1     ˆ        
      

1     ˆ

1          , ,ˆ

W T
W

TT
W

W T

T T T T
W W

T T
W

T
W n W

T T
n W

N

N

N

−

−

−

−

=

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞−⎪ ⎪⎜ ⎟ ⎜ ⎟= + −⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭
⎧ ⎫= + − − +⎨ ⎬
⎩ ⎭
⎧ ⎛ ⎞−
⎪ ⎜ ⎟⎪= + − −⎜ ⎟⎨

⎜ ⎟⎪ ⎜ ⎟−⎝ ⎠⎩

H XA X W

10 x1 X S x I W
I X0 0

11 X 1x S x 1 X W

x x
11 S x x x x

x x

# … .

⎫
⎪⎪
⎬
⎪

⎪ ⎪⎭

W

 

Then the leverage of ith observation, or the ith diagonal element of WH , is  
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( ) ( )

( ) ( )

1

1

ˆ1ˆ
1 ˆ     1 .

TW i
ii i W i W

Ti
i W i W

wh N
N

w N
n w

−

−

⎡ ⎤= + − −⎢ ⎥⎣ ⎦

⎡ ⎤= + − −⎢ ⎥⎣ ⎦

x x S x x

x x S x x
 

Note that ( ) ( )1T
i W i W

−− −x x S x x  is an ellipsoid centered at Wx  (e.g. see Weisberg 

1985),  and ( ) ( )1ˆ T
i W i WN −− −x x S x x  is the Mahalanobis distance from ix  to Wx .  

A leverage can be large if (1) iw  is large, especially relative to the average weight w ; 

or (2) ix  is far from the weighted average of the X’s, Wx . 

 If the error terms in the model have a general variance structure ( )2~ ,σε 0 V  with 

known V  and unknown 2σ , the hat matrix is then defined as 1 1WV T
W
− −=H XA X WV  

with 

1 1
1

1 1
1 1 1

/       /
   

  /    /

T
i i i i iT T

s s
WV T T T

i i i i i i i
s s

w v w v

w v w v

− −

− −

⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑

x
1 WV 1 1 WV X

A
X V W1 X WV X x x x

. 

A formula for 1
W
−A  like the one above applies with ˆ /XV i i i

s
w v=∑t x , ˆ /V i i

s
N w v=∑ , 

and 1
1 1

ˆˆ ˆ /T T
V XV XV VN−= −S X WV X t t .  If a general V  is used, ˆXVt  and ˆ

VN  no 

longer are design-based estimates of XT  and N but are estimates of 
1

/
N

XV i iv=∑T x  

and 
1

1/
N

V iN v=∑ .  The leverage of the ith observation under this general model is  

( ) ( )1ˆ1ˆ
TWV i

ii V i WV V i WV
i V

wh N
v N

−⎡ ⎤= + − −⎢ ⎥⎣ ⎦
x x S x x . 

 In some applications, the individual values of some X ’s may be available for all 

units on the sample frame.  This information could be helpful in deciding whether there 

are nonsample points with X ’s similar to high leverage points in the sample and in 

deciding whether such points should be removed when fitting the regression model. 
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(2) Residual Analysis  

Usually it is helpful to standardize the residuals for residual analysis.  In the OLS 

case, a residual is scaled either by MSE  or by its estimated standard error to obtain 

semi-studentized or studentized residual. 

Assuming single-stage sampling, under model 313H(2.1), the residual for unit i  is 

ˆT
i i ie Y= − x β  and its model variance is ( ) ( )22 2 21M i ii iii iE e h hσ ′′≠

⎡ ⎤= − +⎢ ⎥⎣ ⎦∑ .  Since 

( )1
iih O n−′ = , as we have demonstrated in Section 3.5.1, the term in the brackets has the 

form ( )1 1o+ , and 

 ( )2 2.M iE e σ�  (3.18) 

Replacing 2σ  by its estimate 2 21ˆ ˆ i i
i s

w e
N p

σ
∈

=
− ∑ , we can standardize the residual for 

unit i as 
ˆ
ie
σ

 and compare it with a standard normal random variable.  An ad hoc 

alternative would be use a t-distribution with n p−  degrees of freedom as the reference 

distribution for small or moderate size samples.  If ie  is not normal, the Gauss 

inequality (Pukelsheim 1994, Weisstein 2006) is useful for setting a cutoff value. 

Gauss Inequality: If a distribution has a single mode at 0μ , then 

{ }0 2
4

9
P x μ λτ

λ
− > ≤ , where ( )22 2

0τ σ μ μ≡ + − . 

According to the model the residual has a symmetric distribution with its mode and mean 

at zero.  The Gauss Inequality explains that the absolute value of a residual has 90% 

probability to be less than twice its standard deviation and 95% probability to be less than 

three times its standard deviation.  If we rescale the residuals by a consistent estimate of 

σ , we can use either 2 as a loose cutoff or 3 as a strict one to identify outlying residuals, 

depending on analysts’ preference.  Note that it is not feasible to standardize using the 

robust estimate of ( )M iV e  discussed in Section 3.5.2.  The robust estimate of ( )ise e  
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would be 2
ie , which would create a degenerate case for the standardized residual.  

For multistage sampling and its corresponding model 314H(3.9), the residual can still be 

justified after rescaled by its appropriately estimated standard error.  The residual vector 

for sample cluster i is i i ii i
i s

′ ′
′∈

= −∑e Y H Y  and its variance-covariance matrix is 315H(3.12).  

Within a cluster i, assume the residuals ie  are jointly normally distributed.  Then its 

kth element ike  is marginally normally distributed with mean zero and variance 

( ) 2
M i kk

V σ⎡ ⎤ ≅⎣ ⎦e  if model 316H(3.9) is correct.  After obtaining the estimates of ( ) 21 ρ σ−  

and 2ρσ  described in Section 3.5.3, we can divide ike  by 
ˆ ˆˆˆ ˆ

Q PP
D

σ −
= +  to 

standardize it, where P̂ , Q̂ , and D̂  are also defined in Section 3.5.3.  As for 

single-stage sampling, use of the robust estimate of ( )M iV Y  is not feasible for 

standardization because it involves only T
i ie e . 

It is not feasible to define the distribution of residuals from the design-based point of 

view, even asymptotically.  For example, in single-stage sampling, 

( )1i i ii ii i
i i s

e Y h h Y′ ′
′≠ ∈

= − + ∑ .  Although the second term, ii i
i i s

h Y′ ′
′≠ ∈
∑ , is a linear 

combination of the iY ′ ’s, the first, which is specific to unit i, is not.  Therefore, a large 

sample central limit result for repeated sampling does not apply to ie , the residual for a 

specific unit.  However, plots of residuals are helpful in highlighting data points 

suspected of unduly affecting the fit of regression.  For instance, plots of observed Y ’s 

or residuals against predicted values are still useful. 

The added variable plot, also known as partial regression leverage plot, provides a 

method of assessing the impact of individual observations on the estimate of a single 

parameter ˆ
jβ  in a multiple regression model.  This plot is useful for graphically 

detecting influential points and outliers, so that we can use it as a good alternative and 

supplement to DFBETAS, etc.  Korn and Graubard (1999) illustrated the use of these 
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plots with survey data.  Let ( )j−X  be ( )1n p× −  matrix formed from the data matrix, 

X , by removing its jth column jx .  Further let ju  and jv  be the residuals that 

result from regressing Y  and jx  on ( )j−X  using survey weights.  It is known that 

ˆ
jβ , the jth regression coefficient of a multiple regression model, is the same as the slope 

coefficient of the weighted two-variate regression of ju  on jv .  The added variable 

plot is defined as a scatter plot of ju  against jv  along with their simple linear 

regression line.  For survey data it can be drawn as a bubble plot with each bubble 

representing an observation and its area proportional to the sample weight. By itself the 

plot is not able to precisely measure how severely an observation is different from others, 

but when it is used as an extra tool to the adapted methodologies, it can directly tell us 

why some points are identified as outlying and toward which direction those points pull 

the weighted regression line. 

3.6.2 DFBETAS 

Taking the sampling weights W  into consideration, 

( )
1

ˆ ˆ
1

i i i
i

ii

e wDFBETA i
h

−
= − =

−
A xβ β  (see, e.g., Valliant, et al. 2000) 

with T=A X WX  for single-stage sampling, or 
1

,1
ik ik ik

ik
ik ik

e wDFBETA
h

−
=

−
A x  for 

clustered sampling, where 1
,

T
ik ik ik ik ikh w−= x A x , with subscript ik  indicating the kth 

unit within the ith cluster, is the kth diagonal element on the matrix 1 T
ii i i i

−=H X A X W  

(defined in Section 3.5.3).  Although the formulas for the DFBETA statistic look very 

much like the one in the OLS case, they have differences in both numerator and 

denominator because sample weights are involved in the leverages and residuals.  

However, the formulas have exactly the same form as the one for WLS with weights 

inversely proportional to model variances.  To create a complex sample version of 

DFBETAS, we need to divide DFBETA by an estimate of the standard error of β̂  that 
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accounts for unequal weighting, stratification, clustering, and other design complexities. 

 

(1) Single Stage Sampling 

By knowing 
( )1

1 1

i i i j ji i
ij

ii ii

e w c e
DFBETA

h h

−

= =
− −

A x
 and the variance estimator of ˆ

jβ , 

( ) 2 1 2 1 2 2

1 1

ˆ ˆ ˆ
n n

T
M j i i i ji

i ijj

v w cβ σ σ− −
′ ′ ′ ′

′ ′= =

⎡ ⎤⎛ ⎞
= =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑A x x A  where jic ′  is an element of 

matrix C  defined in Section 3.5.1, under model 317H(2.1), we are able to construct a scaled 

statistic DFBETAS as in the OLS case.  We propose a specification of DFBETAS 

statistic as follows: 

( )

( )

2

1

1

ˆ

1                   . .
ˆ 1

                   

ji i ii
ij

M j

ji i
n ii

ji
i

c e h
DFBETAS

v

c e
h

c

β

σ
′

′=

−
=

= ⋅
−

∑
 

Using the order conditions ( )1
jkc O n−=  and ( )1

iih O n−= , we rewrite the DFBETAS 

statistic as the approximate product of two terms, ( ) ( )1/ 2 0,1ijDFBETAS O n N− ⋅� .  

The first term, with an order of 1/ 2n− , can be approximated by 1/ 2n−  when the 

sampled units have similar X  values and weights.  An observation i  may be 

identified as influential on the estimation of ˆ
jβ  if 2

ijDFBETAS
n

≥ .  Moreover, the 

model robust sandwich estimator ( )ˆ
W jv β  and the linearization estimator ( )ˆ

L jv β  can 

be used to replace ( )ˆ
M jv β  to guard against the possibility that the underlying model 

deviates from the working model.  An ad hoc alternative would be to use a cutoff of 

( )0.025t n p n−  where ( )0.025t n p−  is the 97.5 percentile of the t-distribution with 
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n p−  degree of freedom.  We can also use 3
ijDFBETAS

n
≥  as a more generous 

criterion if the normality of the residuals does not hold. 

 

(2) Multiple Stage Sampling 

 In the case of a multi-stage complex sampling design, the DFBETAS statistic is 

constructed in a similar way as the one in the case of single-stage sampling, except that 

the variance estimator of ˆ
jβ  needs to be replaced by ( )ˆ

M jv β  from model 318H(3.9).  

Since  

( ) ( )n n

( )

1 2 2 1

2

ˆ 1

ˆ ˆˆ           1

i i i

i i i

T T
M i i m m m i i

s
T T

i m m m i
s

v ρ σ ρσ

σ ρ ρ

− −⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎡ ⎤= − +⎣ ⎦

∑

∑

β A X W I 1 1 W X A

C I 1 1 C
 

where iC  is a ip m×  submatrix of C  and defined as 1
i i i

−=C A X W  with (jk)th 

element ,j ikc  ( 1, , ; 1, , ij p k m= =… … ), we have 

( ) ( ) ( )2
, 1 , , 1 ,

2 2
, , ,

1

ˆ1        
ˆ ˆ    

ˆ        1

ˆˆ            .

i i

i i

T
M j j i j im j i j im

s

m m

j ik j ik j ik
s k k k

v c c c c

c c c

ρ
σ

ρ

σ ρ ′
′= ≠

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑

∑ ∑ ∑

β … % …

 

The constructed DFBETAS statistic is specified as 

( ), ,
,

,

,2
, , ,

1

1

ˆ( )

1                   .
ˆ 1

ˆ

                   

i i

j ik ik ik ik
ik j

M j

j ik ik
m m ik ik

j ik j ik j il
s k k l

c e h
DFBETAS

v

c e
h

c c c

β

σ
ρ

= ≠

−
=

= ⋅
−⎛ ⎞

⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
. 

If the X  variables and the sample weights W  are approximately equal for units across 

the clusters and the sample sizes within each cluster do not vary to a large degree, the 
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first term in the above formula will be nearly the same as 
( )

1
ˆ1 1nm mρ⎡ ⎤+ −⎣ ⎦

 with 

1
i

s
m m

n
= ∑ .  Note that ( )ˆ1 1mρ+ −  is the estimated design effect (Kish, 1995).  We 

propose that the cutoff value for DFBETAS statistics can be set as 
( )

2
ˆ1 1nm mρ⎡ ⎤+ −⎣ ⎦

 

or 
( )

3
ˆ1 1nm mρ⎡ ⎤+ −⎣ ⎦

.  There are two options to obtain the ρ̂  in the above cutoffs: 1) 

Estimate ρ  using 319H(3.10); 2) Estimate ρ  from ( )
( )
( )
ˆ

ˆ1 1
ˆ

M j

SRS j

v
m

v

β
ρ

β
+ − = .  If an 

individual observation is greatly distinguished from the other observations in the sample, 

it might amplify the DFBETAS statistics and make it exceed the cutoff in two possible 

ways: 1) through an outlying residual; 2) through an outlying leverage.  Since the 

single-stage sampling can be viewed as a special case of the multistage complex 

sampling in which there is only unit within each sampled PSU, or 1m = , the above 

cutoff boils down to 2
n

 or 3
n

 with n  defined as the sample size, which 

corresponds to what we have obtained in case (1).  Note that the model based variance 

estimator Mv  can be replaced by the sandwich estimator Wv  and the linearization 

estimator Lv  to protect against the deviation from model 320H(3.9) and to facilitate design 

based interpretations.  This replacement can also be applied to the diagnostic statistics 

that will be discussed below. 

3.6.3 DFFITS 

Multiplying the DFBETA statistic by the T
ix  vector, we obtain the measure of 

change in the ith fitted values due to the deletion of the ith observation, 

( )ˆ ˆˆ ˆ ( ) ( )
1

T ii i
i i i i

ii

h eDFFIT Y Y i i
h

= − = − =
−

x β β  for the single-stage sampling.  The model 
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variance of îY  is ( ) ( )2 2 2ˆ T
M i iiii i

V Y hσ σ ′
′

= = ∑HH , which is estimated by 

( ) 2 2ˆ ˆM i ii
i

v Y hσ ′
′

= ∑ .  In OLS, 2
ii ii

i
h h′

′
=∑  because T =HH H  when T=A X X , but 

this simplification does not occur when H  contains the survey weights.  Under 

single-stage sampling and model 321H(2.1), DFFITi is divided by the square root of ( )ˆ
M iv Y  

and rearranged as follows: 

( )
( )

( )
2 2

2

1
ˆ

1
              

ˆ

1             .
ˆ1

ii i ii
i

M i

ii i ii

ii
i

ii i

ii ii
i

h e h
DFFITS

v Y

h e h

h

h e
h h

σ

σ

′
′

′
′

−
=

−
=

=
−

∑

∑

 

When the sample weights do not have a large variation, we have 2
ii ii

i
h h′

′
≈∑ .  Because 

the mean of the leverages is p
n

, we can set the cutoff value to be 2 p
n

 for using 

DFFITS to determine the influential observations. 

If a sample is drawn from a complex clustering design, or, the working model 

considers clustering, the DFFIT statistic becomes ,

,1
ik ik ik

ik
ik ik

h e
DFFIT

h
=

−
.  The variance of 

the predicted value is estimated as 

( ) ( ) ( )n n

( ) ( )n n ( )

1 2 2 1

2 2 2
, 1 , , 1 ,

2 2
, , ,

1

ˆˆ 1

ˆ           1

ˆˆ           

i i i

i i i i i

i

T T T T
M ik ik M ik ik i i m m m i i ik

s
TT

ik i ik i m m m m ik i ik i m
i s

m

ik i k ik i k ik i k
k

v Y v

h h h h

h h h

ρ σ ρσ

σ ρ σ ρσ

σ ρ

′ ′

′

− −

′ ′ ′ ′
′∈

′ ′ ′ ′ ′ ′′
′=

⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= +

∑

∑

∑

x β x x A X W I 1 1 W X A x

I 1 1" "

.
im

i s k k

′

′ ′′ ′∈ ≠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
. 
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Therefore, the DFFITS statistic is formulated as 

( )
( )

, ,

,

,2
, , ,

1

1

ˆ

1              
ˆ 1

ˆ
i i

ik ik ik ik ik
ik

M ik

ik ikik
m m ik ik

ik i k ik i k ik i k
i s k k k

h e h
DFFITS

v Y

he
h

h h h
σ

ρ
′ ′

′ ′ ′ ′ ′ ′′
′ ′ ′′ ′∈ = ≠

−
=

=
−⎛ ⎞

⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑ ∑ ∑

 

where 1
,

T
ik i k ik i k i kh w−

′ ′ ′ ′ ′ ′= x A x  is an element of 1 T
ii i i i

−
′ ′ ′=H X A X W .  We can make 

approximations analogous to the ones used for DFBETAS in order to justify a cutoff for 

DFFITS.  If X , W , and im  are similar across the clusters, 

( )2
, , , ,

1
ˆ ˆ1 1

i im m

ik i k ik i k ik i k ik ik
i s k k k

h h h m hρ ρ
′ ′

′ ′ ′ ′ ′ ′′
′ ′ ′′ ′∈ = ≠

⎛ ⎞
⎡ ⎤⎜ ⎟+ ≈ + −⎣ ⎦⎜ ⎟

⎝ ⎠
∑ ∑ ∑ . 

The cutoff for the DFFITS statistic is determined to be 
( )

2
ˆ1 1
p

nm mρ⎡ ⎤+ −⎣ ⎦
 when ρ  

is estimated appropriately.  Naturally, ( )ˆ
Mv β  in the formula can be replaced by 

( )ˆ
Wv β  from model 322H(3.11) or ( )ˆ

Lv β  to accommodate a general situation.  We can also 

consider 
( )

3
ˆ1 1
p

nm mρ⎡ ⎤+ −⎣ ⎦
 as a less strict cutoff. 

3.6.4 Distance Measure (Extended and Modified Cook’s Distance) 

Under model 323H(3.5) ( ),  ~ 0,i i i i iY indε ε ψ′= +x β , according to Theorem 3.17, 

Theorem 3.12, and Corollary 1.3 in Shao (1999), under some regularity conditions, we 

have ( ) ( )1/ 2 ˆ ,d N− − ⎯⎯→Σ β β 0 I , where ( )ˆ
MV=Σ β , as in expression 324H(3.6).  Since 

( )ˆ
Wv β  is a consistent estimator of ( )ˆ

MV β , the statistics constructed by replacing Σ  

by ( )ˆ
Wv β  have the same limiting distributions: 

( ) ( )1/ 2ˆ ˆ ( , )d
W pv N

−
⎡ ⎤ − ⎯⎯→⎣ ⎦β β β 0 I  
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 and ( ) ( ) ( )1 2ˆ ˆ ˆ ( )
T d

Wv pχ
−

⎡ ⎤− − ⎯⎯→⎣ ⎦β β β β β . (3.19) 

Under the linear model considering stratification and cluster samples, we can draw 

similar conclusions because 1 1

,

ˆ

h hi h

T
hik hik hik hi hi hi

h i s k s h i s
w Y− −

∈ ∈ ∈
= =∑∑ ∑ ∑β A x A X W Y , 

which is the sum of h
h

n∑  weighted cluster totals and the clusters are assumed to be 

independently selected.  In this case the sandwich variance estimator ( )ˆ
Wv β  is 

formulated as in 325H(3.7) to take account of the correlations within the clusters.  

Alternatively, ( )ˆ
Lv β  in 326H(3.15), which is asymptotically equivalent to ( )ˆ

Wv β , can be 

used.  Equations 327H(3.19) still hold if the true model parameter β  is replaced by the finite 

population parameter B  under some regularity conditions and some sampling designs 

(Fuller 1975, 2002). 

The classical Wald statistic, based on the second expression in 328H(3.19) which 

approaches a chi-square distribution, is often used to test a set of hypotheses about slope 

coefficients for multiple linear regression analyses.  The use of this statistic was also 

introduced for tests on regression coefficients of complex survey data.  For example, the 

Wald chi-square statistic for testing the hypothesis 0 0:H =B B  is 

( ) ( ) ( )1
0 0

ˆ ˆ ˆT
WD v

−
⎡ ⎤= − −⎣ ⎦β B β β B , 

where 0B  is the hypothesized value of the finite population parameter vector B  and 

( )ˆv β  is a consistent estimator of the covariance matrix of β̂ , computed by approaches 

such as balanced half-sample replication, Taylor series linearization estimator ( )ˆ
Lv β , or 

sandwich estimator ( )ˆ
Wv β .  Under 0 0:H =B B , WD  is asymptotically distributed as 

a chi-square random variable with p  degrees of freedom.  The Wald F statistic is 

obtained by dividing WD  by p : WF WD p= .  Under 0H , an ad hoc approach is to 

treat WF  as an F random variable with p  and r  degrees of freedom, where r  is the 

degrees of freedom associated with ( )ˆv β .  For multistage designs r  is usually taken 
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to be the number of PSU’s minus the number of first stage strata.  In order for the Wald 

statistic WD  to perform properly, ( )ˆv β  must be a consistent estimator of the true 

variance, ( )ˆV β .  This variance can be computed with respect to either a design or a 

model.  If an inconsistent variance estimator, e.g., the OLS variance estimator, is used, 

then WD  will not be 2
pχ  distributed even in large samples. 

Korn and Graubard (1990) demonstrate that an adjusted Wald F statistic, 

1
ADJWF

n pF WD
np
− +

= , can be a real improvement over the asymptotically correct 

chi-square distribution when the number of regression coefficients approaches the 

degrees of freedom available from the variance estimation.  The F statistic is distributed 

with p  and 1n p− +  degrees of freedom under 0H , where n  is the number of 

sample clusters.  Other alternatives are also available, such as Rao-Scott first-order and 

second-order corrections (Rao & Scott, 1980) and Fay’s replication approach (Fay, 1985). 

A measure of distance from ( )ˆ iβ  to β̂  for survey data can be constructed based on 

the Wald Statistic, depending on the regression model of interest and the sampling design 

for the survey data.  We propose a statistic based on the standard Cook’s Distance and 

name it the extended Cook’s Distance in our study.  The statistic is  

 ( )( ) ( ) ( )( )1ˆ ˆ ˆ ˆ ˆT
i WED i v i

−
⎡ ⎤= − −⎣ ⎦β β β β β . (3.20)  

Since the method of calibrating the Cook’s Distance is obtained by analogy to a 

confidence ellipsoid, the newly created statistic iED  can be mapped to a Chi-square 

distribution.  If iED  were exactly equal to the ( )1 100%α− ×  level of the Chi-square 

distribution with p degrees of freedom, then the deletion of the ith case would move the 

estimate of β  to the edge of a ( )1 100%α− ×  confidence ellipsoid based on the 

complete data.  A large value of this quadratic term indicates that the ith observation is 

likely to be influential in determining the joint inferences about all the parameters in the 

regression model.  The variance estimator ( )ˆ
Wv β  can be replaced by the linearization 

variance estimator ( )ˆ
Lv β  since both of them are design and model consistent.  
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Another formulation of the extended Cook’s Distance can be derived from the Wald F 

statistic as ( )( ) ( ) ( )( )11 ˆ ˆ ˆ ˆ ˆT
i W

n pED i v i
np

−− + ⎡ ⎤′ = − −⎣ ⎦β β β β β  and its value can be 

compared with an F distribution.  

Like the Cook’s Distance, the proposed extended Cook’s Distance statistic is related 

to the sample size in order of magnitude.  However, the F and Chi-square statistics do 

not change very much when the sample size exceeds 100 or more.  Therefore, very few 

observations can be identified to be influential in that case even if the small percentiles of 

F and Chi-square statistics are adopted as cutoffs.  Following Atkinson (1982), we 

modify the proposed extended Cook’s Distance to solve this problem. 

Suppose the sample is drawn from a single-stage design and the working model is 

329H(2.1).  Then  

 

( )( ) ( ) ( )( )

( )

( )

1

2 11 1 1 1
2

2 1

2

ˆ ˆ ˆ ˆ ˆ

1      
ˆ 1

1      .
ˆ 1

T
i M

T Ti
i i i i

ii

T Ti
i i i i

ii

ED i v i

e w w
h

e w w
h

σ

σ

−

−− − − −

−

⎡ ⎤= − −⎣ ⎦

⎛ ⎞ ⎡ ⎤= ⎜ ⎟ ⎣ ⎦⎝ ⎠ −

⎛ ⎞ ⎡ ⎤= ⎜ ⎟ ⎣ ⎦⎝ ⎠ −

β β β β β

x A A X WWXA A x

x X WWX x

 (3.21) 

Based on the assumptions in Section 3.5.1, we know that 

( )1 1T T
i i i iw w O n

− −⎡ ⎤ =⎣ ⎦x X WWX x , 

and this quantity has a mean of /p n .  Hence, we suggest that an analyst take the 

square root of the extended Cook’s D statistic and rescale the root by ( ) 1/ 2/n p − .  The 

modified statistic /i iMD nED p= , called the modified Cook’s D, can be judged in 

terms of a standard normal distribution, or in other words, we can use 2 as the cutoff 

value.  If the assumption of normality is violated, we can use a more generous cutoff, 3, 

in terms of Gauss Inequality. 

 For a cluster sample it is convenient to use ( ) 2ˆ ˆ T
Mv σ=β X WΦWX  rather than the 

equivalent form given in Section 3.6.2 and 3.6.3.  The matrix Φ  is block diagonal with 

1 on the diagonal and ρ  off the diagonal in each block (cluster).  The dimension of 
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block i is i im m× .  If we assume the working model is 330H(3.9), the modified Cook’s D 

statistic becomes 

 

( )( ) ( ) ( )( )

( )

1

2 1

2
,

ˆ ˆ ˆ ˆ ˆ

1       
ˆ 1

T
ik M

T Tik
ik ik ik ik

ik ik

ED ik v ik

e w w
hσ

−

−

⎡ ⎤= − −⎣ ⎦

⎛ ⎞ ⎡ ⎤= ⎜ ⎟ ⎣ ⎦⎝ ⎠ −

β β β β β

x X WΦWX x
 (3.22) 

where ( )ˆ ikβ  is the parameter estimate after deleting unit k in cluster i.  If the number 

of units within each sampled PSU, im , is bounded, 

( )1 1T T
ik ik ik ikw w O n

− −⎡ ⎤ =⎣ ⎦x X WΦWX x , 

where n  is the number of sampled PSUs (see proof below), and the value of this 

expression is approximately equal to ( )( ) 1ˆ1 1p nm mρ
−

⎡ ⎤+ −⎣ ⎦  when the auxiliary 

variables X  and survey weights W  do not vary dramatically.  Therefore, in the 

clustered sampling case we can compare the square root of ikED  with the cutoff value 

( )
2

ˆ1 1

p

nm mρ⎡ ⎤+ −⎣ ⎦
 or 

( )
3

ˆ1 1

p

nm mρ⎡ ⎤+ −⎣ ⎦
.  Also, we can define 

( ){ }ˆ1 1 /i iMD nm m ED pρ⎡ ⎤= + −⎣ ⎦  

and compare it to 2 or 3. 

The following is the proof of ( )1 1T T
ik ik ik ikw w O n

− −⎡ ⎤ =⎣ ⎦x X WΦWX x : 

We have 
1

 

n

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

X
X

X
# , 

1  0
  
0   n

NO
n

⎛ ⎞
⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

W
W

W
%  where iW  is a diagonal matrix of 

weights in cluster i, and ( )
1  01    

  1
   1 0   n

blkdiag O
ρ

ρ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = =⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Φ
Φ

Φ
% %  where 

1    
 

   1
i i

i

m m

ρ

ρ ×

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

Φ % , 1, ,i n= … . 
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Therefore,  

( )
1 1 1 1

1

2 2

2
1

  0   0   0
      

0   0   0   

                   

T T T
n

n n n n

n
T
i i i i i

i

N NO n O
nn=

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑

W Φ W X
X WΦWX X X

W Φ W X

X WΦ W X

" % % % #

, 

( )1 1
2

T T
ik ik ik ik

N n Nw w O O O O n
n nN

− −⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎝ ⎠
x X WΦWX x . 

3.6.5 Discussion 

Analysts can choose the diagnostic approaches and cutoff values in terms of different 

design features and model assumptions.  The model-based variance estimators in the 

diagnostic statistics can always be replaced by the sandwich variance estimator and the 

linearization variance estimator to obtain protection against model misspecification.  

Sometimes, if needed, we can also use the estimate of ( )( )ˆVar iβ  because it is sensitive 

to the deletion of observation i .  The same cutoffs can be applied since both 

( )( )ˆVar iβ  and ( )ˆVar β  are of the same order, 1n− . 

The proof of the above statements is as follows: 

We have 

( ) ( )
( )11 ˆ

ˆ ˆ ˆ
1 1

T TT i i i ii i i

ii ii

Y we wi i
h h

−− −
= + = +

− −

A x x βA xβ β β . 

Move the term including β̂  to the left hand side of the equation to obtain 

( )
1 1

ˆ ˆ
1 1

T T
i i i i i i

ii ii

w Y wi
h h

− −⎛ ⎞
+ = +⎜ ⎟⎜ ⎟− −⎝ ⎠

A x x A xI β β . 

Using the order of magnitude analysis, the above analysis can be simplified as  

( ) ( ) ( )1 1ˆ ˆ
iO n i O n Y− −⎡ ⎤+ = +⎢ ⎥⎣ ⎦

I β β . 
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Take the variances for both sides: 

( ) ( ) ( )( ) ( ) ( )( ) ( )2 2ˆ ˆ ˆ1 iO Var Var i O n Var i O nψ− −⋅ = + ⋅ = +β β β . 

Since ( ) ( )2 1

1

ˆ
n

jk i
k

Var c O nψ −

=
= =∑β , we conclude ( )( )ˆVar iβ  is of order 1n−  and their 

estimates should have the same orders, too. 

 
The determination of influential observations usually involves choosing reasonable 

cutoffs which are suitable for the problem at hand and guided by statistical theory.  

However, some diagnostic statistics such as leverages are not directly related to natural 

standard error scaling.  Moreover, under some occasions, deriving a design-based 

distribution for corresponding diagnostics does not appear to be possible.  There are 

some criteria seem useful for these cases.  What Belsley, Kuh, and Welsch (1980) refer 

to as internal scaling means to “define extreme values of a diagnostic measure relative to 

the weight of the evidence provided by the given diagnostic series itself.”  Suppose we 

generate a series of size n by calculating some diagnostic statistic, say leverages.  The 

interquartile range, defined as 3 1IQR Q Q≡ − , can be computed for that series and 

extreme leverages are indicated as those exceeding (7/2)IQR.  It is convenient to use 

interquartile range for influence identification in the absence of a more exact distribution 

theory since it provides a more robust estimate of spread, especially when the underlying 

distribution is non-Gaussian or highly skewed. 

Another useful and intuitive way of catching outliers is to pay attention to the gap 

which appears in the series of a diagnostic measure.  Usually, it is worthy of notice if the 

large majority of the elements in a diagnostic series have similar values, but small 

fractions of observations are noticeably larger or smaller than the others.  However, 

there is lack of theoretical support to determine the largeness of a gap. 

In summary, the influence analysis is based on theoretically justified diagnostic 

measures and their cutoffs, but sometimes the criteria can be flexible and case-specific. 
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Chapter 4: Identification of Influential Groups of 

Observations 

In Chapter 3, we have presented various diagnostic techniques for identifying 

influential observations that have been based on the deletion of a single unit.  However, 

such techniques will not always be successful.  Sometimes they may not be able to 

identify any influential cases since a single observation is less likely to have a significant 

effect on parameter estimation when the data set is large.  Even if some influential 

points are located, one outlier can mask the effect of another.  It is necessary, therefore, 

to develop techniques that examine the potentially influential effects of subsets or groups 

of observations.  This is especially important in a large survey data set where a few 

individual units may have a limited effect but a group of units may be more important.  

For example, in a clustered survey using geographic primary sampling units (PSUs) and 

personal interviews, common practice is to use one or two data collectors per PSU.  If 

an interviewer produces correlated data among units with a level different from the 

average, residuals for the units done by that interviewer may be consistently positive or 

negative and in some cases extreme. 

 

4.1 Multiple-Case Deletion 

In the conventional diagnostics, Belsley, Kuh, and Welsch (1980) presented examples 

of a natural multiple-row generalization of DFBETA and DFFIT.  For example, a 
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measure of the change in coefficients, 
( )

scale
j j m−b b D

, where mD  is a deletion set of 

size m , and “scale” indicates some appropriate measure of standard error.  If the fitted 

values are of interest, the appropriate measure becomes 
( )

scale
i m⎡ ⎤−⎣ ⎦x b b D

, where ix  is 

the vector of covariates for unit i .  To avoid multiple computational tasks for each 

deletion set, the quadratic form ( ) ( )T
m mMDFFIT ⎡ ⎤ ⎡ ⎤≡ − −⎣ ⎦ ⎣ ⎦

Tb b D X X b b D  can be 

considered as a summary measure.  Meanwhile, they pointed out that as m becomes 

large, the heavy computational burden and the difficulty of finding the starting subset will 

tend to limit the applications of those techniques.  They suggested that a stepwise 

approach can provide useful information at relatively low cost. 

The stepwise approach starts by forming the initial subset mD  of size m, say 2m = , 

using the observations with the two largest DFFIT  or DFFITS  computed using the 

delete-one method.  If the two largest values of ( )i m⎡ ⎤−⎣ ⎦x b b D , where i s∈ , the full 

sample, do not have their indexes i contained in 2D , 2D  is reconstructed consisting of 

the indexes for the two largest.  This procedure proceeds until the indexes of the two 

observations in 2D  coincide with the two largest values of ( )k m⎡ ⎤−⎣ ⎦x b b D .  Then a 

starting set 3D  is found using the three largest values of ( )k m⎡ ⎤−⎣ ⎦x b b D  from the 

previous iteration for 2m = .  And the overall process continues until the subset size 

reaches the desired m.  For large datasets, Belsley, Kuh, and Welsch (1980) recommend 

a single-row deletion analysis coupled with the partial-regression leverage plots and 

stepwise multiple-row methods to enhance efficiency and effectiveness. 
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Some of the single-row deletion diagnostics for survey data generalized to their 

multiple-row deletion versions are summarized as follows: 

(1) ( ) ( ) 11ˆ ˆ T
D D D D DDDFBETA −−≡ − = −β β A X W I H e ; 

(2) ( )( ) ( ) ( )1 11ˆ ˆ T
D D D D D D D D D DDDFFIT − −−≡ − = − = −X β β X A X W I H e H I H e ; 

(3) ( )( ) ( ) ( ) ( )( )( )
ˆ ˆ ˆ ˆT T

D DD D D DMDFFIT ≡ − −β β X W X β β  

 ( ) ( ) ( )( ) 1
                      T T T

D D D D D DD D D
−

= e W X X W X X W e ; 

(4) ( )( ) ( ) ( )( )1ˆ ˆ ˆ ˆ ˆT
D D DED v

−
⎡ ⎤≡ − −⎣ ⎦β β β β β , called the extended Cook’s Distance 

here as it was in Chapter 3; 

where D is a set of indices which denote the observations that will be deleted from the 

regression, so that we have  

( ) ,  T
D i i D= ∈X x ; 

( ) ,  D idiag w i D= ∈W ; 

( ) ,  T
D ie i D= ∈e ; 

1 T
D D D D

−=H X A X W , 

where T=A X WX  as in Chapter 3, and  

( ) ( ) ,  T
iD i D= ∉X x ; 

( ) ( ) ,  iD diag w i D= ∉W ; 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1ˆ T T

D D D D D D D
−

=β X W X X W Y . 

The derivations of (1) and (3) are given below.  Shao (1988) also covers the idea of 
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deleting a group of units when using the jackknife.  His article does address regression, 

but the development below is new and covers the problems that are specifically of 

interest here. 

Since it is not easy to determine the distribution-based cutoff values for above 

generalized statistics, they can be evaluated using the scaled measures relative to their 

maxima, instead.  The extended Cook’s Distance can be evaluated using the variance 

estimate for ( )
ˆ

Dβ  instead of β̂  because it may be sensitive to the exclusion of the 

influential group when the size of the deletion group is relatively large. 

 

Proofs of (1) and (3): 

(1) ( ) 11 T
D D D D DDFBETA −−= −A X W I H e  

To verify this formula, we use the result from Schott (1997, Theorem 1.7) that for 

conformable matrices A , B , C , and D , 

( ) ( ) 11 1 1 1 1 1−− − − − − −+ = − +A CBD A A C B DA C DA , 

assuming 1−A  and 1−B  exist.  With T=A X WX , =B I , T
D D= −C X W , and 

D=D X , we have 

 ( ) ( ) ( )( ) ( ) ( )
1 1 11 1 1T T T T

D D D D D D DD D D
− − −− − −= − = + −X W X X WX X W X A A X W I H X A

 (4.1) 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )( )
( )

1

11 1 1

1 11 1 1

11

11

ˆ

      

ˆ ˆ      

ˆ ˆ      

ˆ      .

T T
D D D D D D D

T T T
D D D D D D D

T T T T
D D D D D D D D D D D D

T
D D D D D D D D

T
D D D D

−

−− − −

− −− − −

−−

−−

=

⎡ ⎤= + − −⎢ ⎥⎣ ⎦

= + − − − −

= + − − − −

= − −

β X W X X W Y

A A X W I H X A X WY X W Y

β A X W I H X β A X W Y A X W I H H Y

β A X W I H Y I H Y H Y

β A X W I H e

 

(3) ( ) ( ) ( )( ) 1
.T T T

D D D D D D DD D DMDFFIT
−

= e W X X W X X W e  

Using the expression for ( )
ˆ ˆ

D−β β  implied by DDFBETA , DMDFFIT  can be rewritten 

as 

( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

( )

1 11 1

1 11

1 1 1

ˆ ˆ ˆ ˆ

                

                

                    

T T
D D D D D D

TT T T
D D D D D D D D D D D

TT T
D D D D D D D D

TT T
D D D D D D D

MDFFIT

− −− −

− −−

− − −

≡ − −

⎡ ⎤= − − −⎢ ⎥⎣ ⎦

⎡ ⎤= − −⎢ ⎥⎣ ⎦

⎡ ⎤− −⎢ ⎥⎣ ⎦

β β X W X β β

e I H W X A A X W X A X W I H e

e I H W X A X W I H e

e I H W X A X W X A ( )

( ) ( )

( ) ( )

( )

1

1 1

1 1

1

                

                   

                .

T
D D D D

TT
D D D D D D

TT
D D D D D D D

TT
D D D D D

−

− −

− −

−

−

⎡ ⎤= − −⎢ ⎥⎣ ⎦

⎡ ⎤− − −⎢ ⎥⎣ ⎦

⎡ ⎤= −⎢ ⎥⎣ ⎦

X W I H e

e I H W H I H e

e I H W H H I H e

e I H W H e

 

Next, transposing the expression above and using the facts that 

( ) ( )1 1
D D D

− −− = + −I H I I H H  and T
D D D D=W H H W , we have 
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( )

( )

( )

( ) ( ) ( )( )

1

1

11 1 1

1

                

                

                .

T
D D D D D D

T
D D D D D D

T T T T
D D D D D D D D D D

T T T
D D D D D DD D D

MDFFIT −

−

−− − −

−

= −

⎡ ⎤= + −⎢ ⎥⎣ ⎦
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

=

e W H I H e

e W H I I H H e

e W X A A X W I H X A X W e

e W X X W X X W e

 

 The formulation of the deletion set D remains a problem when we try to apply the 

multiple-row deletion approach to the survey data.  In this study we suggest the 

construction of the deletion set should depend on the sample design.  If the sample is 

collected from a single stage sampling design and of a moderate sample size, a stepwise 

approach like the one proposed by Belsley, Kuh, and Welsch (1980) can be used to filter 

influential groups. If, on the other hand, the sample comes from a multi-stage complex 

design and is very large, we can use sampled PSUs or some specific characteristic group 

as the possible deletion sets or conduct a “forward” searching process.  We will address 

this in next two sections. 

 

4.2 Deletion of Specific Characteristic Groups 

Large sample size is usually a feature of survey data, which will naturally cause 

computational difficulties in the process of influence analysis.  The deletion groups 

discussed in Section 4.1 can be linked to characteristics of individuals, such as gender, 

race and age.  In a household survey, units from certain demographic groups may be 

influential when their Y  values, X  values, or weights are distinct from those of other 

groups. 

 In some surveys, entire PSUs of units may be candidates for deletion.  Consider a 



 56

household interview survey in which two PSUs are sampled per stratum.  As noted 

above, if one data collector does all interviewing in a PSU, data for all sample units in the 

PSU may be affected.  If one PSU is deleted, it can be treated as deleting a unit in a 

single-stage sample while each PSU is equivalent to an individual unit.  The diagnostic 

statistics for single-stage samples, which were described in Chapter 3, are also suitable in 

this case, but the cutoff values should be related to the total number of PSUs, but not the 

total number of observations in the sample.  By cycling through all sample PSUs, a set 

of group-deletion diagnostics can be obtained for judging the influence of individual 

PSUs.  If some specific characteristic groups are suspected of being influential and they 

are across the PSUs, we may have to determine the cutoffs by intuition and empirical 

judgment, instead of directly borrowing cutoffs from the single-case deletion methods. 

 

4.3 Forward Search 

4.3.1 Introduction 

In large datasets the effect of groups of influential points can be masked when the 

entire dataset is used for model fitting.  Atkinson and Riani (2000) introduced an 

effective and robust method of identifying such masked outliers, “the forward search”, 

which seeks to divide the data into two parts, a large “clean” part and the outliers.  Their 

emphasis, similar to DFBETA and Cook’s distance, is on the change in parameter 

estimation once some of the data, including the outliers, have been removed.  Unlike the 

backward search, which applies the single-case deletion diagnostics repeatedly and 

therefore suffers from the combinatorial explosion of the number of cases, the forward 
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search starts by fitting a model using the robust method of least median of squares (LMS).  

The initial subset, recommended by Rousseeuw (1984), is determined to be the one, 

among a large number of randomly chosen subsamples of size m p= , where p  is the 

number of regressors, yielding the parameter estimate b  which minimizes the median of 

the squared residuals 2( )ie b .  The squared residuals are therefore calculated for all n  

observations in the original sample using b  and ordered.  The 1m +  units with the 

smallest squared residuals are chosen to be the new larger subset.  The search repeats 

and the values of b  are recorded at each step.  In the absence of the outliers, the 

parameter estimates and the plots of scaled residuals are likely to be stable and smooth.  

If there are outliers, they will enter at the end of the search often causing noticeable 

jumps in 2s , but not necessarily in b .  The core feature of the forward search is that 

masked outliers are not included in the initial subset.  The least median of squares 

criterion can be replaced by that of least trimmed squares (LTS), which minimizes the 

sum of the smallest *n  squared residuals for some *n  with *[( 1) / 2]n p n n+ + ≤ ≤ .  

LTS estimates have a faster rate of convergence when the sample size is very large. 

Since LMS procedures on estimate of β  are unaffected by sample outliers, an 

obvious question is: why not simply use LMS on the full sample for model fitting?  For 

one thing LMS does not identify particular observations as influencing the regression fit.  

Thus, that detailed information would be lost to an analyst.  Also, LMS has not been 

adapted for use with survey weights and, thus, has no obvious design-based interpretation.  

Modifying LMS to fit more into design-based analysis could be a future research topic. 
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4.3.2 Adaptation to Survey Data 

The forward search method is intriguing for survey data analysis because of its 

robustness for identifying a group of outliers and its computational feasibility.  In this 

research we modify Atkinson and Riani’s method and make it implementable to survey 

data.  Before modification, the method allows observations other than the masked 

outliers to enter and leave the subset used for model fitting, uses the squared residuals as 

the filtering criterion, and tracks the mean squared error 2s  for outlier monitoring.  For 

complex survey data, 2s  may not be reasonably estimable if the underlying model 

deviates from 331H(2.1).  Therefore, we consider other statistics for filtering and monitoring 

outliers.  Here is a general description of how the forward search method may be 

modified and implemented in a single-stage sample. 

(1) Select a “clean” initial subset of size m from the sample, which is assumed not 

to include any outlier. 

(2) From the rest of n m−  observations, add one observation at a time to construct 

a new subset of size 1m + , and calculate the key statistic which measures the 

change in regression parameters if this observation were removed from the 

subset. 

(3) Retain the observation with the minimum key statistic, or in other words, retain 

the observation which causes the smallest change in regression if it were 

removed from the subset of size 1m + . 

(4) Repeat steps (2)-(3) until all observations are included in the regression. 

By tracking the values of the parameter estimates and the key statistics, this 

algorithm should identify the point or points most influential in the model fitting.  As 
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the algorithm proceeds sequentially through the points, outlying values will enter last.  

Therefore, the key statistic is expected to indicate abrupt changes in parameter estimates 

when the outliers begin to be introduced into the regression. 

There are three important issues for this algorithm to function appropriately.  The 

first is the choice of the initial subset.  The initial subset should be free of outliers and 

have a desirably small sample size.  To avoid the inclusion of outliers in the starting 

subset, we may select points from the pool of observations which are not identified by 

any of the single-case deletion approaches.  We either keep the points among those 

having the smaller leverages, residuals, DFBETAS, DFFITS, and modified Cook’s 

Distance, or keep a group with the minimum median of squared residuals (LMS).  Both 

the single-case deletion diagnostic statistics and the LMS algorithm can be helpful for 

finding an outlier-free initial subset.  Choosing the key statistics is the second important 

issue.  During the forward searching process, the key statistics are used to monitor the 

changes in the regression while new observations come into the subset.  Diagnostic 

statistics based on single-case deletion are possible candidates for the key statistics, 

among which modified Cook’s Distance is more suitable because it summarizes the 

changes in all regression parameters and has stable performance.  Other statistics, 

including the multiple-case deletion versions of DFBETA and DFFIT, can also be tracked 

to facilitate the judgment.  The third issue is to draw a line between the outliers and the 

non-outliers.  The cutoff value for the key statistic remains a problem in the forward 

search process.  An analyst may simply use a fixed cutoff, such as 2 or 3, developed in 

Chapter 3.  However, we suggest making a case-by-case judgment in which the analyst 

can account for the changing trends of both the key statistic and other available statistics.  
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A line may be drawn at the point after which the monitoring statistics have abrupt 

increases. 

Once again, it is crucial to emphasize the importance of starting the searching 

process with a subset free of outliers in the modified forward search method.  The 

method should not be sensitive to the choice of initial subset, provided outliers are not 

included at the start.  Hence, we recommend that different initial subsets and various 

key statistics be applied to complete multiple searching processes so that we can confirm 

that same group of outliers will enter into the subset at the last several steps.  Moreover, 

the selection of the initial subset must consider the characteristics of the survey design, 

for example, clustering and stratification in order to produce correct estimates of 

regression parameters.  Assuming a two-stage stratified clustering design, at each stage 

of model fitting, the set of units used needs to provide an estimate of the full population 

parameter.  This implies that the initial set used for robust estimation must cover all 

strata and at least one PSU in each stratum.  For example, at least 2 units need to be 

selected from at least one sample PSU in each sample stratum.  If only one PSU is 

represented from a stratum in the initial set, special variance estimation procedures will 

be needed as described in Wolter (1985).  For that reason it will typically be more 

convenient to select units for the initial set from two or more PSUs per stratum, assuming 

that design has multiple PSUs in each stratum. 
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Chapter 5: Application of Diagnostic Techniques for 

Influence Analysis 

5.1 Introduction 

This Chapter will document the performance of the proposed and modified statistics 

in Chapter 3 and Chapter 4.  In order to verify and justify the effectiveness of these 

statistics on identifying influential observations, a logical approach is to apply them to 

real survey data and then conduct appropriate evaluations.  I will employ two survey 

data sets in Section 5.2 and 5.3: the 1998 Survey of Mental Health Organizations (SMHO) 

and the 1999-2002 National Health and Nutrition Examination Survey (NHANES).  

Both of the surveys contain a variety of variables that are suitable for linear regression 

analysis. 

The 1998 SMHO collected data on approximately 1,530 specialty mental health care 

organizations and general hospital mental health care services, with an objective to 

develop national and state level estimates for total expenditure, full time equivalent staff, 

bed count, and total caseload by type of organization.  The universe of mental health 

care organizations not only includes large sample units such as the state and county 

mental health hospitals, private psychiatric hospitals, multi-service mental health 

organizations, Department of Veteran Affairs medical centers, and nonfederal government 

hospitals with separate psychiatric services, but also includes some small units such as 

residential treatment centers, free standing outpatient clinics, and partial-care 

organizations.  The sample for this survey was based on a stratified single-stage design 

with probability proportional to size (PPS) sampling.  The primary strata were defined 

on the basis of type of organization, ownership type, and type of setting.  The varying 

sizes of the mental health care organizations result in the values of collected variables in 

the sample having wide ranges, which may cause some observations to have relatively 

large influence on the parameter estimates of a linear regression. 

The NHANES survey is conducted by the National Center for Health Statistics, 

Centers for Disease Control.  There are several of these data sets publicly available, 
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including the most recent ones, 1999-2000, 2001-2002, and 2003-2004.  This survey is a 

rich source of quantitative and qualitative variables which are designed to assess the 

health and nutritional status of adults and children in the United States through interviews 

and direct physical examinations.  NHANES uses a complex, multistage, probability 

sampling design.  Oversampling of certain population subgroups is done to increase the 

reliability and precision of health status indicator estimates for these groups.  The data 

set used in our study is a subset of 1999-2002 data composed of Mexican-American 

women aged 20-29.  Due to oversampling of Mexican-Americans, the final weights in 

our sample range from 698.39 to 103,831.17.  This is a ratio of 149:1 for the largest 

weight to the smallest.  

The two surveys have different design features and variables with different properties.  

Therefore, two case studies will be conducted in this Chapter, using SMHO and 

NHANES data.  While both case studies will examine the performance of the 

single-case deletion statistics proposed and modified in Chapter 3, they emphasize 

different survey designs and adopt different variance estimation methods and cutoff 

values.  Section 5.2 will present the first case study using SMHO data, whereas the 

results from the second case study using NHANES data will be demonstrated in Section 

5.3.  In Section 5.4 simulations are used to study the performance of the diagnostics in a 

more controlled setting.  A pseudo population will be constructed from SMHO data, 

based on which we will evaluate and compare the application of single-case deletion 

techniques to the regression estimation.  In Section 5.5 and Section 5.6 we will revisit 

the two case studies and the simulation by employing the forward search method which is 

designed to identify influential groups.  Computational and graphical work in this 

dissertation was mainly done by R software. 

5.2 Identifying Single Influential Observations: Case Study 1 

5.2.1 Summary of SMHO Data Set 

The model of interest in this study is to regress the total expenditure of a health 

organization on the number of beds set up and staffed for use and the number of additions 

of patients or clients during the reporting year.  The total expenditure was defined as the 
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sum of salary and contract personnel expenses, other contract and operating expenses, 

and depreciation expenses, and then divided by 1000.  The number of beds accounted 

for hospital bed count and residential bed count.  Similarly, the number of additions 

included hospital additions count and residential additions count.  Scatterplots of 

expenditures versus beds and additions are shown in Figure 5.4 later in this Chapter.  We 

ignored the stratification and substratification in the sampling design and treated the 

sample as selected from a single-stage sampling with varying selection probabilities.  

The effect of stratification and clustering on the variance estimation and the statistics 

used to identify influential observations will be addressed in the second case study.  A 

total of 875 observations were used in the above regression due to missing values in the 

independent and dependent variables. 

 Table 5.1 gives a summary of the quantile values of the variables involved in the 

regression, including the survey weights.  The total expenditure has a maximum of 

519,863.27, which is almost 30,000 times the minimum, 16.6.  Although not as 

tremendous as the total expenditure, the number of beds and the number of additions also 

have significant differences between their maxima and minima.  Because the sample 

was selected from a PPS design, the sample weights were associated with the sizes of the 

mental health organizations, with a range from 0.99 to 158.86.  Since the ranges of 

expenditures, beds, and additions are large, an option would be to transform, e.g., by 

taking logs, before fitting a model.  We have not pursued that here. 

 

Table 5.1. Quantiles of Variables in SMHO Regression. 
 Quantiles 

Variables 0% 25% 50% 75% 100% 
Expenditure 

(1000’s) 16.6 2,932.5 6,240.5 11,842.6 519,863.3 

# of Beds 0 6.5 36 93 2405 
# of Additions 0 558.5 1410 2406 79808 

Weights 0.99 1.42 2.48 7.76 158.86 
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5.2.2 Parameter Estimation 

The identification of single influential points will be compared under two different 

settings.  One is to assume the sample is selected from a simple random sampling (SRS) 

design and analyzed by conventional OLS regression estimators.  This approach might 

be used by an analyst who elected to ignore all design features.  The other is to assume a 

single-stage sampling with varying sample weights which will be incorporated into the 

regression estimation.  The estimated coefficients and their standard errors are reported 

in Table 5.2, with SW denoting survey weighted estimates.  The intercept and slope 

coefficients all have discrepancies between the two methods, and the estimated intercept 

even changes from negative to positive and from significant to insignificant.  The 

relative size of the differences between the OLS and SW estimates is much greater for the 

intercept than the slopes.  Analysts are often more focused on the slope estimates.  The 

effect of survey weights on coefficient estimation signals that survey weights could play a 

crucial role in influence analysis on this regression.  Figure 5.1 shows scatterplots of the 

OLS and SW residuals versus the two auxiliary variables.  Bubble plots were drawn for 

the SW regressions, in which areas of the bubbles are proportional to the sizes of sample 

weights.A few observations with extreme X  values also have large residuals and 

therefore could be possible influential units that greatly affect the parameter estimates.  

The OLS and SW residuals have similar patterns but the values can be quite different, for 

instance, the SW residual of the point in the upper right corner of each scatterplot is 

larger than the corresponding OLS residual. 

 

Table 5.2. OLS and SW Parameter Estimates of SMHO Regression of 
Expenditures on Beds and Additions. 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept -1201.73 526.19 -2.28 514.08 1157.71 0.44 
# of Beds 94.16 3.03 31.08 81.23 13.14 6.18 

# of Additions 2.31 0.13 18.50 1.84 0.76 2.43 
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Figure 5.1. OLS and SW residuals versus Two Auxiliary Variables for SMHO Data. 
The red lines were drawn at residuals equal to zero. 
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From the next section on, the results of applying the diagnostic approaches will be 

displayed in tables and plots.  In the plots reference lines will be drawn at the cutoff 

values where appropriate.  For the SW diagnostics, a loose criterion, 3, was used to 

construct cutoffs.  For example, the cutoff of DFBETAS is 3
n

, and the cutoff of 

DFFITS is 3 p
n

.  However, dotted lines will also be drawn at the cutoff values 

constructed on the stricter criterion, 2.  As in Figure 5.1, bubble plots were drawn for the 

SW regressions and diagnostics. 

5.2.3 Diagnostics by Leverages and Residuals 

Figure 5.2, on the left, shows a scatterplot of leverages calculated using two methods 

with and without sample weights.  Outlying points, with leverages greater than twice 
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their mean, were identified to be the ones beyond the two reference lines.  The 27 

outlying observations identified by the SW but not by the OLS diagnostics, represented 

by relatively large bubbles in area A, are associated with large sample weights ranging 

from 7.44 to 158.86; whereas the 14 outlying observations identified by the OLS only, 

represented by small bubbles in area B, have small weights ranging from 0.99 to 2.62.  

The bubbles in the upper right square, with moderate sizes, stand for the points identified 

by both methods.  The small dot in the upper right corner is an observation with 

extremely large total expenditure, number of beds, number of additions, but a small 

sample weight.  Later we will show that it is always associated with large diagnostic 

statistics. 

The points in the residual plot on the right show the residuals scaled by the estimated 

standard error σ̂  of model 332H(2.1), where σ̂  was estimated by the OLS estimator for the 

OLS scaled residuals and by the SW formula 333H(3.3) for the SW scaled residuals.  With a 

few exceptions, the weighted and unweighted diagnostics identified similar extreme 

residuals.  The residual analysis mainly filters out the observations with outlying Y  

values, but not necessarily those with outlying weights. 
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Figure 5.2. Leverage and Residual Diagnostic Plots for SMHO Data. In the leverage 
plot on the left, area A includes points identified as outlying by the SW diagnostic only, 
whereas area B includes points identified by the OLS diagnostic only. In the residual plot 
on the right, areas A and B include points identified by SW only, whereas areas C and D 
include points identified by OLS only. The red line was drawn at 45 degrees. 
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Table 5.3 and Table 5.4 list the coefficient estimates on the reduced samples 

excluding the identified outlying observations.  Qualitatively, the conclusion would be 

the same whether one uses OLS or SW diagnostics – all three parameter estimates are 

significantly different from zero.  A more quantitative measure of difference is obtained 

by comparing predicted values calculated after excluding units identified by the OLS and 

SW diagnostics.  Figure 5.3 displays the resultant fitted values versus those from the full 

samples.  The slope coefficients decreased when the outliers were not used in the 

regressions, which accordingly resulted in smaller fitted values.  In Figure 5.3 we 

observe that some outliers tend to be associated with larger changes in the prediction of 

Y  between including and excluding them in the sample.  The OLS and the SW 

parameter estimates from the reduced samples may be quite different from each other, as 

we can see in Table 5.3 and 5.4.  As a result, the OLS and the SW fitted values 

computed using those estimated parameters can also be far apart.  In the two scatterplots 

in the third row of Figure 5.3, it is shown that by applying leverage diagnostics the SW 

estimator produced larger slope estimates and therefore larger fitted values, whereas the 

OLS estimator yielded relatively big predictions in expenditures when residuals were 
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used to identify outliers. 

Table 5.3. OLS and SW Parameter Estimates after Deleting Observations with 
Large Leverages from SMHO Regression. 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept 2987.55 490.54 6.09 1993.86 353.71 5.64 
# of Beds 69.27 4.347 15.94 75.82 6.75 11.23 

# of Additions 0.947 0.201 4.71 0.997 0.211 4.73 
 

Table 5.4. OLS and SW Parameter Estimates after Deleting Observations with 
Large Residuals from SMHO Regression. 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept 645.83 311.63 2.07 1674.66 386.27 4.34 
# of Beds 84.48 1.98 42.67 76.19 5.28 14.43 

# of Additions 1.531 0.103 14.86 0.932 0.217 4.29 
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Figure 5.3. Fitted Values Plots After Applying Leverage and Residual Diagnostics 
to SMHO Data. In the first two rows are the fitted values from the regression on sample 
deleting observations with large leverages or large residuals versus those from the 
regression on full sample, both OLS and SW. Points in grey are ones not identified by the 
diagnostics; points in black are ones identified as influential. In the third row are the OLS 
fitted values versus the SW fitted values from the regression on sample excluding outliers 
identified by OLS and SW. A 45 degrees line is drawn in each panel. 
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5.2.4 Diagnostics by DFBETAS 

The diagnostic results of the DFBETAS statistics for number of beds and number of 

additions are graphically presented in Figure 5.4.  It conveys similar messages as the 

leverage diagnostics in Figure 5.2.  It is clearly shown, especially in the partially 

enlarged graphs at the second row, that points identified only by the OLS method have 

small weights symbolized by the bubbles of small sizes.  Using the SW formula of 

DFBETAS, we singled out a few points associated with moderate sampling weights 

though almost all of them were also identified by OLS.  Figure 5.5 includes scatterplots 

of total expenditure versus the two auxiliary variables, which indicate the positions of the 

identified cases relative to the scatterplot smoothing lines.  In the OLS case this line was 

fitted using the lowess function in R STATS package, whereas in the SW case it was done 

by the svysmooth function in R SURVEY package.  It is worth attention that there is an 

extremely outlying point located at the upper right corner of each graph.  This point 

corresponds to the hospital with the largest number of beds and additions and largest 

value of expenditure in the example.  We expect the parameter estimates are likely to 

become smaller, to different extents, if this point were eliminated. 
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Figure 5.4. DFBETAS Plots for SMHO Data. Areas A and B include points identified 
only by the SW diagnostics whereas areas C and D include points identified by the OLS 
diagnostics only. The partially enlarged graphs are presented below the originals. 
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Figure 5.5. Scatterplots with OLS (top) and SW (bottom) Smoothing for SMHO 
Data. The dark dots symbolize the points identified as influential by the OLS or SW 
DFBETAS statistics. 
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Another way to show how the deletion of an observation affects each coefficient 

estimate is to draw an added variable plot, as we introduced in Section 3.6.1.  Figure 5.6 

displays two sets of added variables for two auxiliary variables and for the OLS and the 

SW regressions, respectively.  In the OLS plots, the identified influential points labeled 

as dark are scattered around the corners where they deviate further from the middle of the 

regression line than the unidentified points.  However, in the SW plots, the dark dots are 

not necessarily the furthest away from the center of the regression line if they are 

associated with very large sampling weights.  There are even some points which stray 

greatly from the rest but are not identified because their weights are too small. 
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Figure 5.6. OLS and SW Added Variable Plots for SMHO Data. The dark dots 
indicate the influential observations identified by OLS and SW DFBETAS statistics. The 
lines are OLS (top row) regression fits or WLS (bottom row) regression fits which have 
the same slope as the parameter estimate for beds (or additions) in full sample. 
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Tables 5.5 through Table 5.7 report the estimated coefficients and their standard 

errors when the identified outliers were removed from the sample.  Excluding the 

observations with large DFBETAS for number of beds, we obtained a slightly larger SW 

slope estimate for number of beds, meanwhile the estimated slope for number of 

additions greatly dropped to 1.03.  For the OLS estimates, both slopes moderately 

decreased.  Hence, the OLS fitted values became smaller but the SW ones were less 

affected (See graphs at the first row of Figure 5.7).  When deleting the cases with large 

DFBETAS of number of additions, the parameter estimates declined for both OLS and 

SW, but the OLS estimates have larger changes.  The estimated slope of number of 

additions even dropped from 2.31 to 0.79, which resulted in smaller fitted values in the 

OLS graph at the second row of Figure 5.7.  Still, the fitted values from the SW 

regression only changed to a small extent.  Table 5.7 and the last two graphs in Figure 
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5.7 show the regression estimates and the fitted values after deleting the observations 

with either large DFBETAS of number of beds or large DFBETAS of number of 

additions.  The estimates were in between the results from deleting only one kind of 

outliers.  Note that the SW SEs in Tables 5.5, 5.6, and 5.7 are substantially smaller than 

the SEs in Table 5.2 where all points were used.  This is expected because the points that 

are deleted are much different from those that are retained. 

 

Table 5.5. OLS and SW Parameter Estimates after Deleting Observations with 
Large DFBETAS of Beds for SMHO Data. 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept 704.97 364.98 1.93 1654.12 436.53 3.79 
# of Beds 83.06 2.91 28.54 82.73 4.53 18.26 

# of Additions 1.841 0.128 14.38 1.034 0.321 3.22 
 

Table 5.6. OLS and SW Parameter Estimates after Deleting Observations with 
Large DFBETAS of Adds for SMHO Data. 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept 2463.11 403.57 6.10 1565.4 444.39 3.52 
# of Beds 80.47 2.54 31.68 75 6.61 11.34 

# of Additions 0.79 0.17 4.65 1.382 0.275 5.03 
 

Table 5.7. OLS and SW Parameter Estimates after Deleting Observations with 
Large DFBETAS of either Beds or Adds for SMHO Data. 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept 2044.54 353.01 5.79 1485.03 425.83 3.49 
# of Beds 82.36 2.61 31.55 81.72 4.49 18.19 

# of Additions 0.96 0.15 6.42 1.27 0.28 4.59 
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Figure 5.7. Fitted Values Plots After Applying DFBETAS Diagnostics to SMHO 
Data. The OLS and SW fitted values are from regressions on sample deleting 
observations with large DFBETAS for beds, DFBETAS for additions, or either. The red 
lines are drawn at 45 degrees. 
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 The OLS diagnostics identified too many points as being influential compared to the 

SW diagnostics.  This led to systematic reductions in predicted values for OLS 

predictions when these points were omitted.  The SW analysis omits fewer points and 
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has less of an effect on predictions.  Thus, if an analyst takes the position that the 

sample design is ignorable, does not use weights, and applies OLS diagnostics, 

substantially different predictions would be obtained in this case. 

5.2.5 Diagnostics by DFFITS and Modified Cook’s Distance 

Both DFFITS and modified Cook’s Distance statistics summarize the effect of 

deleting a specific unit on the overall parameter estimation.  There were 3 influential 

observations identified by the SW DFFITS but not by the OLS diagnostics in Figure 5.8, 

with their weights ranging from 37.8 to 158.86.  There are 39 influential observations 

identified by the OLS DFFITS only.  Their weights were relatively small, ranging from 

0.99, which is the smallest weight in the sample, to 5.5.  The SW modified Cook’s 

Distance exclusively identified 4 cases with weights from 11.38 to 158.86, whereas the 

OLS Cook’s Distance only uniquely detected 38 points with weights that range from 0.99 

to 5.5.  None of the cases with large weights were identified by the OLS Cook’s 

Distance. 
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Figure 5.8. DFFITS and Modified Cook’s Distance Plots for SMHO Data. Areas A 
and B in the DFFITS plot and area A in the Cook’s Distance plot include points identified 
only by the SW diagnostics, whereas areas C and D in the DFFITS plot and area B in the 
Cook’s Distance plot include points identified by the OLS diagnostics only. The partially 
enlarged graphs are presented below the originals. 
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 There was only one observation identified by the OLS modified Cook’s Distance but 

not by the OLS DFFITS.  Therefore, the parameter estimates based on the samples 

without the identified outliers are very similar for these two cases.  The estimated slopes 

dropped moderately compared to the ones from full sample, which correspondingly 

caused smaller fitted values.  Most of the outliers are associated with relatively large 

changes in fitted values.  For the SW diagnostics, the two statistics also have 

comparable performance.  Since fewer outliers were picked from the sample by the SW 

DFFITS and the SW modified Cook’s Distance, Table 5.8 and Table 5.9 illustrate that the 

SW estimates from the reduced samples changed less than the OLS ones.  Comparing to 

Table 5.2, we see that the SEs again decrease substantially after deleting cases, 
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particularly for SW.  Figure 5.9 shows that the fitted values did not deviate very much 

from those on the full sample when the SW diagnostics are used to determine which 

points to eliminate. 

 

Table 5.8. OLS and SW Parameter Estimates after Deleting Observations with 
Large DFFITS for SMHO Data. 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept 1617.67 335.38 4.82 1028.71 360.46 2.85 
# of Beds 81.45 2.44 33.38 82.94 5.72 14.50 

# of Additions 1.20 0.12 9.77 1.40 0.27 5.27 
 

Table 5.9. OLS and SW Parameter Estimates after Deleting Observations with 
Large Modified Cook’s Distance for SMHO Data. 

Independent OLS Estimation SW Estimation 
Variables Coefficient SE t Coefficient SE t 
Intercept 1660.45 335.54 4.95 932.43 345.86 2.70 
# of Beds 80.92 2.44 33.16 82.83 5.72 14.48 

# of Additions 1.19 0.12 9.66 1.43 0.26 5.43 
 



 79

Figure 5.9. Fitted Values Plots After Applying DFFITS and Cook’s D Diagnostics 
to SMHO Data. The OLS and SW fitted values are from regressions on sample deleting 
observations with large DFFITS and Modified Cook’s Distance. The red lines are drawn 
at 45 degrees. 

0e+00 1e+05 2e+05 3e+05 4e+05

0
10

00
00

20
00

00
30

00
00

OLS Yhat: all obs

O
LS

 Y
ha

t: 
de

le
te

 o
bs

 w
/ l

ar
ge

 D
FF

IT
S

0e+00 1e+05 2e+05 3e+05

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

SW Yhat: all obs

S
W

 Y
ha

t: 
de

le
te

 o
bs

 w
/ l

ar
ge

 D
FF

IT
S

0e+00 1e+05 2e+05 3e+05 4e+05

0
10

00
00

20
00

00
30

00
00

OlS Yhat: all obs

O
LS

 Y
ha

t: 
de

le
te

 o
bs

 w
/ l

ar
ge

 C
oo

k'
s 

D

0e+00 1e+05 2e+05 3e+05

0e
+0

0
1e

+0
5

2e
+0

5
3e

+0
5

SW Yhat: all obs

S
W

 Y
ha

t: 
de

le
te

 o
bs

 w
/ l

ar
ge

 C
oo

k'
s 

D

 

5.2.6 Discussion   

The conventional OLS influence diagnostics were adapted in previous chapters to be 

used for survey data.  The cutoff values for the adapted statistics were determined and 

justified in terms of model distributions and the order of magnitude of survey weights and 

other sample quantities.  Based on the comparison of the OLS and the SW influence 

analysis on the SMHO sample, we conclude that the SW diagnostics, including leverages, 

residuals, DFBETAS, DFFITS, and modified Cook’s Distance, identify different points 

than the OLS diagnostics as being influential.  This is because in the SW regressions, 

points can be influential due to outlying sample weights besides extreme Y  and X  

values.  Different diagnostic approaches identify different sets of influential 

observations because they focus on measuring diverse kinds of changes in the regression 

estimation after a point is deleted from the sample.  Therefore, a researcher should apply 
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appropriate diagnostic statistics to the analysis depending on what types of outliers he 

intends to detect. 

Note that there can be situations where points with large weights, residuals, or X  

values would be important in identifying whether a model is correctly specified.  For 

example, if Y  were quadratically related to an x  and units with large X ’s were 

deleted because of large weights or large residuals, the ability could be lost to recognize 

that the model should be quadratic.  Thus, the diagnostics studied here should be applied 

with care. 

5.3 Identifying Single Influential Observations: Case Study 2 

 5.3.1 Summary of NHANES Data Set 

In the second case study we examined a regression of systolic blood pressure on the 

logarithm of blood lead level, age, and body mass index using a subset from NHANES 

1999-2002.  A similar linear regression analysis has been done with a different sample 

by Korn and Graubard (1999), and the regression results are presented in Chapter 6 of 

their book.  The subset used in this study has a sample size of 810, consisting of 

Mexican-American females aged 20 to 29.  Unlike Case Study 1, this sample does not 

have very skewed Y  and X  values, but involves clustering and stratification in the 

sampling design with a set of large and greatly varying sample weights.  There are 

57n =  PSUs nested in 28H =  strata, most of the strata having 2 PSUs.  The average 

cluster size m  is 14.21 persons.  When applied to a clustered data set, the variance 

estimators in the SW diagnostic statistics need to take the design into account and the 

cutoffs for some of the statistics contain an estimate of ρ , which in model 334H(3.9) 

describes the correlation between the observations within the same cluster.  The 

illustrative calculations in this study do not account for the fact that Mexican-American 

females are a domain within the full population.  This will tend to make SW variance 

estimates smaller than they would be if the domain feature was accounted for. 

Table 5.10 gives the quantile values of the variables and sample weights used in the 

regression.  Besides demonstrating the skewness and large magnitude of sample weights, 
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it also shows that BMI and the logarithm of the blood lead are skewed to the right of their 

distributions, but the skewness is much smaller than that of the sample weights.  Since 

the minimum of the originally measured blood lead level is as small as 1, we added 1 to 

blood lead level before took the logarithm to generate positive transformed values 

(Adding 1 is often done to avoid taking the log of zero; this step was not strictly 

necessary here).  Note that using the untransformed value of blood lead would have 

resulted in more extreme X  values.  However, this type of modeling has previously 

been done using the log transformation (see, Korn and Graubard 1999), and we follow 

that precedent here.  Figures 10 and 11 respectively display plots of systolic blood 

pressure and residuals versus the three auxiliary variables.  Table 5.11 reports the 

parameter estimates of the regressions with and without weights.  The SW estimators 

produced slightly larger intercept and slightly smaller slope of BMI than the OLS ones.  

Both methods agreed that age and blood lead do not have significant effects in 

determining the systolic blood pressure.  Therefore, in the following diagnostic analysis, 

we will only focus on the changes in the estimated coefficient of BMI. 

 

Table 5.10. Quantiles of Variables in NHANES Regression of Systolic Blood 
Pressure on Age, BMI, and Blood Lead. 

 Quantiles 
Variables 0% 25% 50% 75% 100% 

Systolic BP 82 102 108 114 146 
Age 20 22 24 27 29 
BMI 14.42 22.84 26.43 31.62 61.68 

Log(Lead+1) 0.18 0.47 0.64 0.83 3.75 
Weight 698.39 3576.69 11467.06 31094.18 103831.17 

 

Table 5.11. OLS and SW Parameter Estimates from NHANES Regression. 
Independent OLS Estimation SW Estimation 

Variables Coefficient SE t Coefficient SE t 
Intercept 94.91*** 3.11 30.55 99.79*** 4.72 21.16 

Age 0.02 0.11 0.14 -0.15 0.17 -0.87 
BMI 0.45*** 0.05 9.23 0.44*** 0.07 5.88 

Log(Lead+1) 1.03 0.99 1.04 0.89 1.28 0.70 
*** significant at level 0.000 
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Figure 5.10. Bubble Plots of Systolic Blood Pressure versus Three Auxiliary 
Variables for NHANES Data. The sizes of bubbles are proportional to sample weights. 
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Figure 5.11. OLS and SW residuals versus Three Auxiliary Variables for NHANES 
Data. The red lines were drawn at residuals equal to zero. 
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5.3.2 Diagnostic Results 

Similar to Case Study 1, we applied both the OLS and the SW diagnostic statistics, 

such as leverage, residuals, DFBETAS, DFFITS, and modified Cook’s Distance to the 

regression estimation.  Since the sample weights were not separately provided at cluster 
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level and at unit level, the parameters ρ  and 2σ  in model 335H(3.9) can only be estimated 

using the purely model based estimator in Section 3.5.3.  Utilizing the VARCOMP 

procedure in SAS, we obtained ˆ 0.033ρ =  and 2ˆ 82.09σ = .  The design effect was 

estimated as ( )ˆ1 1 1.2mρ+ − = .  For the SW diagnostics, a strict criterion, 2, was used 

to construct cutoffs.  For example, the cutoff of DFBETAS is 
( )

2
ˆ1 1nm mρ⎡ ⎤+ −⎣ ⎦

.  

The solid reference lines in the subsequent figures were drawn at the cutoff values, and 

the dotted reference lines constructed using the loose criterion, 3, were also drawn in the 

same graphs. 

Figure 5.12 through 5.14 display the comparisons between the OLS and the SW 

diagnostic statistics.  The NHANES data set has widely-spread sample weights.  Hence 

the SW diagnostics tend to identify more influential observations with large weights, 

whereas the OLS diagnostics tend to detect more points with small weights.  The 

leverage plot, DFBETAS plot, and the modified Cook’s Distance plot clearly show that 

the “identified by SW only” areas contain many big bubbles, but the “identified by OLS 

only” areas are filled with small dots.  The residual plot is an exception in which the 

OLS and the SW residuals are very similar.  This is mainly because the Y  and X  

values in the data set are not extremely outlying. 
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Figure 5.12. Leverage and Residual Plots for NHANES Data. 
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Figure 5.13. DFBETAS Plot and Added Variable Plots of BMI for NHANES Data. 
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Figure 5.14. DFFITS Plot and Modified Cook’s Distance Plot for NHANES Data. 
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 Table 5.12 numerically reports the weight discrepancies between the observations 

uniquely identified by either OLS or SW diagnostics.  The leverage and modified 

Cook’s Distance are more sensitive to extreme sample weights, compared to other 

diagnostic statistics.  They tend to detect more influential points for survey data than the 

OLS approaches.  Analysts may consider properly raising the cutoff values for these 

statistics in their research in order not to over-identify influential points. 

Table 5.12. Number of Outliers Identified and Associated Weight Ranges for 
NHANES Data. 

Diagnostic Outliers Identified by OLS only Outliers Identified by SW only 
Statistics Counts Weight Range Counts Weight Range 
Leverage 24 (875.5, 13085.8) 85 (16929.6, 103831.2) 
Residual 1 (2730.1, 2730.1) 8 (1791.1, 36955.3) 

DFBETAS(BMI) 25 (1773.5, 23677.5) 12 (32451.1, 103831.2) 
DFFITS 21 (994.9, 17366.9) 28 (29617.1, 103831.2) 

Modified Cook’s D 21 (994.9, 17366.9) 35 (21194.0 103831.2) 
 
 The parameter estimates after outliers were removed are listed in Table 5.13.  The 

difference between the OLS and SW estimates and the two diagnostic schemes is trivial.  

The removal of observations with large DFBETAS of BMI causes the largest change in 

the estimated slope of BMI.  The SW estimates seem to be less affected by the removal 

of influential points than the OLS ones.  Unlike the SMHO data, the NHANES data set 

does not contain extremely distinct points and the outliers are spread evenly at both sides 

of the regression line.  Hence the deletion of the identified outliers does not move the 
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regression line dramatically. 

 

Table 5.13. Estimated Slopes of BMI from Full Sample and Reduced Samples by 
Different Diagnostic Approaches for NHANES Data. 

 OLS Estimation SW Estimation 
 BMI SE t BMI SE t 

Full sample 0.45*** 0.05 9.23 0.44*** 0.07 5.88 
Leverages 0.39*** 0.06 6.86 0.43*** 0.08 5.23 
Residuals 0.47*** 0.04 10.50 0.47*** 0.06 8.19 

DFBETAS$BMI 0.49*** 0.05 9.51 0.46*** 0.05 8.83 
DFFITS 0.47*** 0.05 9.76 0.45*** 0.05 8.51 

Modified Cook’s D 0.47*** 0.05 9.76 0.44*** 0.05 8.74 
*** significant at level 0.000 
 

5.4 Simulation 

A difficulty with the analysis in the previous section is that the best underlying 

population model is unknown.  As a result, we cannot be sure whether removing 

influential points improves estimates or actually make them worse.  Thus, it is important 

to study the proposed methods in a situation where the underlying model is known.  To 

evaluate the performance of the diagnostic approaches proposed and modified in Chapter 

3, we also conducted a simulation study and examined whether the methods of influence 

detection can be used to estimate the regression parameters better than the estimates that 

simply use all units.  When influential points are identified, there may be several 

reasons and remedies.  The particular situation considered in the simulation was one in 

which unusual, extreme values (in Y , X , or W ) cause observations to be influential.  

We generated a population in which the underlying model was known and then injected 

outlying observations in various ways.  Thus, the correct “core” model is known, and it 

is possible to evaluate how well that model is estimated after identifying and deleting 

influential cases. 

5.4.1 Description of Study Population and Sample Design 

 The population used in the simulation was created from the 1998 SMHO data file, 
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which was used for case study 1 in Section 5.2.  The SMHO population has 875N =  

observations and two auxiliary variables, number of beds and number of additions.  To 

construct the “core” part of the study population, first we excluded observations with 

outlying number of beds or number of additions.  The remaining 543 cases have number 

of beds between 10 and 300 and number of additions between 10 and 7000.  A Y  

vector was then generated based on the two auxiliary variables using Gamma 

distributions ( ),iY Gamma s a∼ , with shape parameter 2 T
is σ= x β  and scale parameter 

( )2 2T
ia σ= x β , ix  is a vector including intercept, number of beds, and number of 

additions, ( )5000,80,4 T=β , and 2 68 10σ = × .  Then iY  has a mean T
ix β  and a 

constant variance 2σ . 

 For an OLS linear regression, an influential point may be outlying or extreme with 

respect to its Y  value, its X  values, or both, and it may locate either above or below 

the regression line.  Figure 5.15 illustrates this for the case of regression with a single 

predictor variable.  Points in areas A and B in Figure 5.15 are likely to be influential in 

affecting the fit of the regression function and pull the regression line to the direction 

where they reside.  If the outliers are evenly and symmetrically scattered in the two 

areas, they may not change the coefficient estimates much but greatly affect the estimated 

standard errors.  Points in area C may not be too influential if their Y  values are 

consistent with the regression relation displayed by the nonextreme cases.  However, 

they can also be influential in determining the variance estimates if the Y  and X  

values are extremely different from other points in the data set. 
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Figure 5.15. Scatter Plot for Regression with One Predictor Variable Illustrating 

Outlying Cases. 
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Five possible influential points, analogous to those located in area A of Figure 5.15, 

were created and added to the “core” population.  The X  values for the 5 outliers were 

generated from two uniform distributions.  Number of beds was selected between 200 

and 300 and number of additions was chosen between 4000 and 8000.  The 

corresponding Y  values were created by ( )2, ~ ,N σ= +Y Xβ ε ε 0 I� � , where 

( )500,10,1 T=β� , and 2 310σ =� .  Therefore, the study population consists of three 

variables and has a size of 548.  Figure 5.16 displays the positions of the outlying units 

with respect to the “core” population, and illustrates that the generated outliers are likely 

to pull the potential “core” regression line downwards.  In Section 3.2 we have 

postulated that “the goal of inference is to develop procedures that permit good estimates 

of parameters for a model that fits reasonably well for most of a finite population.”  

According to this rule, we used the OLS estimates on the “core” population to be the 

“core” parameters.  Table 5.14 shows the parameter estimates from the regression of Y  

on number of beds and number of additions based on the “core” population and the full 

population, respectively.  The estimated coefficients based on the 543 “core” cases are 
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very close to the “core” model parameters.  However, when the generated outliers were 

included in the regression, the slope estimates substantially decreased to 56.72 and 3.5. 

 

Table 5.14. Parameter Estimations Based on “Core” Population and Full 
Population with 5 Outliers. 

Finite Population Parameters 
Core Full Independent 

Variables 

Underlying 
Core Model 
Parameters Coeff. SE t Coeff. SE t 

Intercept 5000 5056.62 239.57 21.11 7099.48 363.95 19.51 
# of Beds 80 76.01 2.48 30.66 56.72 3.78 15.00 

# of Additions 4 4.09 0.09 43.41 3.50 0.15 24.06 
 
Figure 5.16. Plots of Y versus Auxiliary Variables Including 5 Generated Outliers. 
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The samples were selected from the constructed population with probability 

proportional to size (PPS) and the measure of size being the 0.85 power of number of 

beds.  The created outliers in the population are associated with relatively large number 

of beds so that they are more likely to be selected and, if selected, have smaller sample 

weights.  In each sample, 100 units were drawn without replacement.  Sample weights 

were calculated based on the selection probabilities.  For each sample, there are four 

variables available for regression analysis: Y , number of beds, number of additions, and 

sample weight. 
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5.4.2 Diagnostic Scheme and Regression 

Since regressions will be run on both full samples and reduced samples without the 

identified influential cases, a scheme needs to be specified to describe which diagnostic 

approaches will be used and what cutoff values they will adopt.  Besides the comparison 

between the estimates from full samples and reduced samples, we are also interested in 

the difference between the OLS and the SW diagnostics.  Therefore, both the OLS and 

the SW diagnostics will be employed for each selected sample, and the diagnostic 

methods include leverages, residuals, DFBETAS, DFFITS, and modified Cook’s 

Distance.  For the SW diagnostic statistics, we used linearization variance estimators 

where needed, and a more strict criterion, 2, was used to construct cutoffs for DFBETAS, 

DFFITS, and modified Cook’s Distance.  When we utilized DFBETAS statistics to 

detect influential units, we examined 3 sets of units: (1) units with extreme DFBETAS of 

number of beds; (2) units with extreme DFBETAS of number of additions; and (3) units 

in either (1) or (2).  In addition, we also grouped units which were identified by at least 

two diagnostic methods described above.  In all, based on each selected sample, we 

were able to create 16 reduced samples (8 from the OLS diagnostics and 8 from the SW 

diagnostics).  The OLS and the SW regressions were run on full samples and the 

corresponding regressions were run on reduced samples.  We recorded 18 sets of 

coefficient estimates and their standard errors at each iteration of the simulation.  

5.4.3 Summary Statistics 

 The entire sampling, diagnostic, and regression process was repeated 5,000 times in 

the simulation.  Summary statistics across the simulation include: 

1) Average number of identified outliers and average number of correctly 

identified outliers (Correctly identified outliers refer to those that match the 

outliers created in the constructed population). 

2) The average parameter estimates and their relative biases compared to the finite 

population “core” model.  The relative bias was estimated by 

( ) ( ) ( )ˆ ˆ ˆrelbias bias= = −β β β β β β , where ( )5000

1

ˆ ˆ 5000i

i=
= ∑β β , ( )ˆ iβ  is the 
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estimate of the parameter vector from sample i , and 

( )5056.62,76.01,4.09 T=β  is the finite population “core” parameter vector.  

3) The estimated standard errors of model parameter estimates as compared to the 

empirical standard errors.  The average estimated standard error of β̂  was 

calculated as ( ) ( )( )ˆ ˆ 5000i
ise v= ∑β β , where ( )( )ˆ iv β  is the estimated 

variance of ( )ˆ iβ  which was calculated at the ith iteration, and 1,...,5000i = .  

The empirical standard error of β̂  was defined as 

( ) ( )( )2ˆ ˆ ˆ 5000i
iSe = −∑β β β . 

4) The percentages of intervals that include the finite population “core” parameters 

at the nominal 95 percent level.  The confidence intervals for ( )ˆ iβ  were 

computed as ( ) ( )( )ˆ ˆ1.96i iv±β β . 

These summary statistics were evaluated for each of the 18 estimate sets. 

5.4.4 Simulation Results 

This section presents the main results from the simulation.  Table 5.15 reports the 

average number of units that were identified and were correctly identified as influential 

by each diagnostic method, either OLS or SW.  By “correctly identified” we mean the 

influential points identified from the sample match the outliers created in the population.  

Out of the 2.9 population outliers that were sampled on average, all of them can be 

recognized using the OLS and the SW diagnostic techniques such as residuals, 

DFBETAS (either), DFFITS, and modified Cook’s distance.  On the other hand, the SW 

leverages only identified less than half of the sampled population outliers since the 

outliers in the population were associated with very small sample weights and hence less 

likely to be recognized.  Using residuals as the diagnostic technique, we identified fewer 

population non-outliers than other approaches because residual diagnostic intends to filter 

points that are outlying with respect to their Y  values.  The results of the SW 
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diagnostics showed that some points, which were not labeled as outlying in the 

population, but were associated with moderate or large sample weights, could still play a 

crucial role in the regression estimation and be identified as influential.  Those points 

were not counted as correctly identified outliers.  But, we expect that the elimination of 

them would perceptibly change the regression estimates. 

 

Table 5.15. Number of Influential Observations Identified and Correctly Identified 
in Population with 5 Outliers. 

Diagnostic Approaches Average # of  
Outliers Identified 

Average # of Outliers 
Correctly Identified 

OLS Leverages 10.6 2.7 
SW Leverages 9.1 1.4 

OLS Residuals 3.5 2.9 
SW Residuals 4.1 2.9 

OLS DFBETAS (beds) 5.7 2.7 
SW DFBETAS (beds) 4.6 2.8 

OLS DFBETAS (adds) 6.6 2.3 
SW DFBETAS (adds) 4.0 1.8 

OLS DFBETAS (either)  9.3 2.9 
SW DFBETAS (either) 5.9 2.9 

OLS DFFITS 6.2 2.9 
SW DFFITS 10.7 2.9 

OLS Cook's D 6.0 2.9 
SW Cook's D 6.7 2.9  

OLS >=2 methods 7.7 2.9 
SW >=2 methods 8.2 2.9 

Average # of Outliers Sampled: 2.9 
 

The average parameter estimates across the iterations and the relative biases, which 

are listed in Table 5.16 and graphed in Figure 5.17, are good indicators to gauge the 

effectiveness of the diagnostic methods.  They also confirm the analysis we presented 

above.  Diagnostic approaches are useful to reduce the biases in both the OLS and the 

SW full sample estimates with respect to the core parameters, especially when all of the 

population outliers were identified and deleted.  The relative biases were reduced to as 

low as almost less than 5% for the estimated slopes.  The three SW DFBETAS are more 
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successful in lessening the biases than the OLS DFBETAS for both slope estimates.  

This is likely because these statistics focus on the change in only one estimated parameter 

at a time and using sample weights in the construction of the statistic can accommodate 

for the effect of deleting a single unit on the rest of the estimated parameters.  Some 

diagnostic techniques performed better than the others, subjected to types and positions 

of the outliers in the population and samples.  It is expected that DFFITS and modified 

Cook’s Distance statistics should have more stable performance regardless of outlier 

features because they summarize the changes in all estimated parameters and incorporate 

both leverages and residuals. 

Table 5.16. Average Parameter Estimates and Relative Biases in Population with 5 
Outliers. 

 Average Parameter Estimates Over Iterations 
 Intercept RelBias(%) Beds RelBias(%) Adds RelBias(%)

Full Sample OLS 10624.7 110.1 42.0 -44.7 2.6 -36.6 
Full Sample SW 7132.2 41.0 57.3 -24.6 3.5 -15.5 

OLS Leverages 5453.6 7.9 70.9 -6.7 4.1 0.3 
SW Leverages 6556.3 29.7 62.3 -18.0 3.8 -7.4 

OLS Residuals 5156.6 2.0 74.9 -1.5 4.1 -0.1 
SW Residuals 5065.4 0.2 75.4 -0.8 4.1 -0.6 

OLS DFBETAS (beds) 5943.6 17.5 70.6 -7.2 3.8 -6.8 
SW DFBETAS (beds) 5393.9 6.7 75.2 -1.0 3.9 -3.8 

OLS DFBETAS (adds) 6642.2 31.4 63.5 -16.4 3.7 -8.4 
SW DFBETAS (adds) 5790.6 14.5 68.2 -10.3 3.9 -4.4 

OLS DFBETAS (either) 5534.6 9.5 71.4 -6.1 4.0 -2.1 
SW DFBETAS (either) 5330.4 5.4 75.3 -0.9 4.0 -2.6 

OLS DFFITS 5355.2 5.9 73.3 -3.6 4.0 -1.4 
SW DFFITS 5490.0 8.6 73.3 -3.6 4.0 -2.4 

OLS Cook's D 5342.7 5.7 73.4 -3.4 4.0 -1.3 
SW Cook's D 5451.7 7.8 74.6 -1.9 4.0 -2.9 

OLS >=2 methods 5356.9 5.9 72.8 -4.2 4.0 -1.0 
SW >=2 methods 5488.7 8.5 73.9 -2.8 4.0 -2.8 
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Figure 5.17. Dot Plot of Average Parameter Estimates and Relative Biases for OLS 
(+) Regressions and SW (•) Regressions in Population with 5 Outliers. In the upper 
panels the red vertical lines indicate the “core” parameter estimates. In the lower panels 
the red vertical lines were drawn at zero, which means unbiasedness. 
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Besides biases, it would also be interesting to examine the real coverage rates of the 

confidence intervals constructed from the parameter estimates and their estimated 

standard errors at some nominal confidence level, which are reported in Table 5.17.  The 

coverage rates in Table 5.17 were calculated at a nominal 95% level.  The confidence 

intervals based on the OLS full sample estimates have extremely low chances to cover 

the core model parameters.  When survey weights were accounted for, the coverage 

rates increased to more than 70%, but still 25% short of the nominal level.  After the 

influential observations were successfully recognized and excluded from the regressions, 

the real coverage rates rose to about 90% for the slope parameters.  
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Table 5.17. Coverage Rates of 95% Confidence Intervals in Population with 5 
Outliers. 

 Real Coverage Rate of the 95% CI 
 Intercept(%) Beds(%) Adds(%) 

Full Sample OLS 4 11 13 
Full Sample SW 73 71 78 

OLS Leverages 91 90 96 
SW Leverages 86 87 95 

OLS Residuals 96 96 97 
SW Residuals 92 91 90 

OLS DFBETAS (beds) 76 91 76 
SW DFBETAS (beds) 89 91 91 

OLS DFBETAS (adds) 58 56 88 
SW DFBETAS (adds) 88 93 87 

OLS DFBETAS (either) 90 89 95 
SW DFBETAS (either) 87 91 89 

OLS DFFITS 93 93 97 
SW DFFITS 80 86 88 

OLS Cook's D 94 93 97 
SW Cook's D 85 91 89 

OLS >=2 methods 93 92 97 
SW >=2 methods 84 90 90 

 

 Table 5.16 and 5.17 show that sometimes the SW estimates were less biased but had 

smaller coverage rates than the OLS estimates.  Therefore, it is helpful to understand 

this problem by investigating the standard errors of the estimated coefficients.  From 

Table 5.18 we conclude that some of the standard errors were underestimated for the 

regressions on the reduced samples.  The common reason of underestimating the SEs for 

OLS and SW regressions is that the variation in the number of observations used in the 

regressions was not accounted for.  This phenomenon of underestimation is similar to 

what occurs with standard error estimates in stepwise regression.  The standard variance 

estimates do not account for the possibility that the selected set of independent variables 

can differ from one sample to another, leading to underestimation (Hurvich and Tsai, 

1990; Zhang 1992).  For OLS regressions, including unidentified outliers in the model 

fitting can cause smaller estimated SEs than what they should be.  For SW regressions, 
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underestimation can be more severe if too many observations with large sample weights 

are detected as influential and eliminated from the sample. 
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Table 5.18. Empirical and Estimated Standard Errors of Parameter Estimates in Population with 5 Outliers. 
 Estimated and Empirical Standard Errors 
 Intercept Beds Adds 

 Est. Emp. 
Ratio 

(Est./Emp.) 
Est. Emp. 

Ratio 
(Est./Emp.) 

Est. Emp. 
Ratio 

(Est./Emp.) 

Full Sample OLS 1337.8 1819.9 0.74 10.7 11.6 0.92 0.4 0.6 0.71 
Full Sample SW 1344.7 1086.0 1.24 11.8 9.3 1.27 0.5 0.4 1.12 

OLS Leverages 789.0 942.6 0.84 6.9 7.8 0.89 0.3 0.3 1.08 
SW Leverages 1281.4 1141.0 1.12 11.4 9.4 1.22 0.4 0.3 1.17 

OLS Residuals 662.6 646.0 1.03 5.1 4.6 1.10 0.2 0.2 1.13 
SW Residuals 783.2 820.5 0.95 6.2 6.9 0.90 0.3 0.3 0.85 

OLS DFBETAS (beds) 781.8 1258.4 0.62 6.5 5.6 1.15 0.3 0.6 0.47 
SW DFBETAS (beds) 775.1 897.7 0.86 5.5 6.2 0.88 0.3 0.3 0.94 

OLS DFBETAS (adds) 943.0 1639.7 0.58 7.1 13.5 0.53 0.4 0.4 0.94 
SW DFBETAS (adds) 920.9 938.8 0.98 9.5 8.2 1.16 0.3 0.3 0.95 

OLS DFBETAS (either) 706.8 700.6 1.01 5.5 4.9 1.11 0.3 0.2 1.08 
SW DFBETAS (either) 689.0 821.6 0.84 5.4 6.1 0.89 0.2 0.2 0.93 

OLS DFFITS 692.8 691.2 1.00 5.3 5.1 1.05 0.2 0.2 1.13 
SW DFFITS 590.9 784.7 0.75 4.8 5.7 0.84 0.2 0.2 0.88 

OLS Cook's D 691.9 690.2 1.00 5.3 5.1 1.05 0.2 0.2 1.13 
SW Cook's D 645.5 786.8 0.82 5.2 5.8 0.89 0.2 0.2 0.92 

OLS >=2 methods 701.4 698.8 1.00 5.5 5.2 1.06 0.3 0.2 1.11 
SW >=2 methods 646.6 765.5 0.84 5.2 5.7 0.91 0.2 0.2 0.94 
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5.4.5 Possible Masked Effect among Outliers 

In Section 5.4.4 we have seen that all of the created population outliers can be fully 

identified when some OLS and SW diagnostic techniques were used.  A natural question is 

what if we bring in more outliers in the constructed population.  Will they mask the effects of 

each other and cause difficulties in influence analysis?  In order to answer this question we 

designed another simulation in which 25 outliers were created using the same approach as we 

described in Section 5.4.1, and were inserted to the same core population.  Figure 5.18 

displays the positions of the outliers.  Table 5.19 reports the estimated coefficients from the 

population with 25 outliers.  The estimated slopes decreased even more substantially to 21.09 

and 2.25 than those in Table 5.14. 
 
Figure 5.18. Plots of Y versus Auxiliary Variables Including 25 Generated Outliers. 
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Table 5.19. Parameter Estimation Based on Population with 25 Generated Outliers. 

Independent OLS Estimation 
Variables 

Core Model  
Parameters Coefficient SE T 

Intercept 5000 11070 486.4 22.76 
# of Beds 80 21.09 5.17 4.08 

# of Additions 4 2.25 0.20 11.18 

 

The same summary statistics, as those in Section 5.4.4, were calculated for the 

newly-created population and presented in the following tables.  As shown in Table 5.20, 

most of the diagnostic statistics failed to identify all outliers generated in the population.  

Some SW approaches, such as residuals and DFFITS, performed better than the others and 

detected as many as 12.4 and 10.9 population outliers out of the 12.5 outliers that were on 

average sampled.  The SW modified Cook’s Distance was greatly contaminated by the 

masked effects among the population outliers and can only identified very few of them.  We 

expect that, with the unidentified population outliers used in the regressions, the estimated 

coefficients would be negatively biased and the confidence intervals would have lower 

probabilities than nominal to cover the true parameters. 
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Table 5.20. Number of Influential Observations Identified and Correctly Identified in 
Population with 25 Outliers. 

Diagnostic Approaches Average # of  
Outliers Identified 

Average # of Outliers  
Correctly Identified 

OLS Leverages 11.4 6.0 
SW Leverages 7.4 0.6 

OLS Residuals 4.5 1.1 
SW Residuals 16.5 12.4 

OLS DFBETAS (beds) 7.9 3.5 
SW DFBETAS (beds) 7.6 4.1 

OLS DFBETAS (adds) 10.7 4.7 
SW DFBETAS (adds) 6.8 3.5 

OLS DFBETAS (either)  15.0 7.7 
SW DFBETAS (either) 12.0 6.9 

OLS DFFITS 12.3 7.3 
SW DFFITS 21.1 10.9 

OLS Cook's D 11.8 7.1 
SW Cook's D 5.1 0.9 

OLS >=2 methods 13.9 7.7 
SW >=2 methods 18.6 10.9 

Average # of Outliers Sampled: 12.5 

 

 Due to the incomplete identification of the population outliers, the SW diagnostics 

considerably reduced biases compared to OLS but did not remove them completely.  For 

example, the relative biases of Beds estimate in Table 5.21 are -46.2% with OLS DFFITS and 

-23.3% with SW DFFITS; for Adds the relative biases are -54.4% for OLS DFFITS and 

-18.4% for SW DFFITS.  The OLS reduced sample estimates are usually more biased 

because 1) more population outliers were not identified and hence stayed in the regression 

fitting; 2) population outliers have relatively small sample weights and they affect the OLS 

estimates more than the SW ones when used in the regressions. 
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Table 5.21. Average Parameter Estimates and Relative Biases in Population with 25 
Outliers. 

 Average Parameter Estimates Over Iterations 
 Intercept RelBias(%) Beds RelBias(%) Adds RelBias(%) 

Full Sample OLS 17004.9 236.3 6.9 -90.9 0.6 -85.6 
Full Sample SW 11179.0 121.1 22.6 -70.3 2.1 -47.9 

OLS Leverages 13058.3 158.2 23.1 -69.6 1.8 -54.9 
SW Leverages 12733.7 151.8 25.7 -66.2 1.4 -65.5 

OLS Residuals 16619.6 228.7 11.9 -84.3 0.4 -90.9 
SW Residuals 5307.8 5.0 73.4 -3.4 4.0 -2.2 

OLS DFBETAS (beds) 15255.6 201.7 25.8 -66.0 0.4 -90.2 
SW DFBETAS (beds) 10484.9 107.3 40.7 -46.4 2.0 -51.8 

OLS DFBETAS (adds) 15223.9 201.1 19.5 -74.3 0.6 -84.4 
SW DFBETAS (adds) 10393.9 105.5 36.8 -51.7 2.1 -49.6 

OLS DFBETAS (either) 12459.2 146.4 36.7 -51.7 1.4 -65.5 
SW DFBETAS (either) 9182.5 81.6 48.6 -36.1 2.5 -37.9 

OLS DFFITS 11509.2 127.6 40.9 -46.2 1.9 -54.4 
SW DFFITS 7807.4 54.4 58.3 -23.3 3.3 -18.4 

OLS Cook's D 11749.2 132.3 39.6 -47.9 1.8 -56.2 
SW Cook's D 12404.7 145.3 25.9 -65.9 1.6 -60.4 

OLS >=2 methods 11489.1 127.2 40.4 -46.8 1.9 -54.8 
SW >=2 methods 7253.7 43.4 61.5 -19.1 3.4 -16.3 

 
 

Applying the diagnostic methods in this population clearly does not eliminate the biases 

of the OLS and the SW full sample estimates.  Consequently, this may have an effect on the 

real coverage rates of the confidence intervals.  These are reported in Table 5.22.  The 

confidence intervals based on full sample estimates almost never cover the core parameters.  

The coverage rates did increase after the influential observations were removed from the 

regressions.  However, coverages with the SW diagnostics, though better than with the OLS 

methods, are not at a level that any analyst would consider acceptable.  For example, 

coverage of the Beds parameter is 33% with (OLS >=2 methods) but still only 68% with (SW 

>=2 methods).  This poor coverage is largely due to bias in the parameter estimates but also 
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to underestimation of standard errors as we discuss below.  The SW modified Cook’s 

Distance did not improve the coverages much because it failed to identify many population 

outliers. 
 

Table 5.22. Coverage Rates of 95% Confidence Intervals in Population with 25 Outliers. 

 Real Coverage Rate of the 95% CI 
 Intercept(%) Beds(%) Adds(%) 

Full Sample OLS 0 0 0 
Full Sample SW 0 1 7 

OLS Leverages 2 9 14 
SW Leverages 0 3 1 

OLS Residuals 5 7 5 
SW Residuals 91 91 88 

OLS DFBETAS (beds) 1 7 1 
SW DFBETAS (beds) 14 22 13 

OLS DFBETAS (adds) 1 2 2 
SW DFBETAS (adds) 7 9 7 

OLS DFBETAS (either) 12 19 15 
SW DFBETAS (either) 33 40 35 

OLS DFFITS 25 35 29 
SW DFFITS 47 57 65 

OLS Cook's D 24 34 27 
SW Cook's D 2 4 3 

OLS >=2 methods 24 33 28 
SW >=2 methods 62 68 71 

 
 Underestimation of the standard errors remains a problem for both OLS and SW 

regressions.  It becomes even more severe when more outliers were created in the population 

and some of them were not successfully identified, as we can see in Table 5.23.  In this 

simulation the standard errors of the OLS estimates were more underestimated than the SW 

ones possibly because OLS diagnostics recognized fewer population outliers than SW 

diagnostics. 
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Table 5.23. Empirical and Estimated Standard Errors of Parameter Estimates in Population with 25 Outliers. 
 Estimated and Empirical Standard Errors 
 Intercept Beds Adds 

 Est. Emp. 
Ratio 

(Est./Emp.) 
Est. Emp. 

Ratio 
(Est./Emp.) 

Est. Emp. 
Ratio 

(Est./Emp.) 

Full Sample OLS 1677.8 1382.5 1.21 14.4 12.3 1.17 0.6 0.6 1.02 
Full Sample SW 1466.2 1310.8 1.12 13.8 12.8 1.08 0.6 0.6 1.02 

OLS Leverages 1665.4 2548.3 0.65 16.3 18.1 0.90 0.7 0.9 0.75 
SW Leverages 1570.4 1683.0 0.93 13.8 13.1 1.05 0.7 0.6 1.10 

OLS Residuals 1472.4 3415.5 0.43 12.8 22.6 0.57 0.5 1.2 0.42 
SW Residuals 895.4 1023.6 0.87 7.0 8.3 0.84 0.3 0.4 0.79 

OLS DFBETAS (beds) 1579.8 2279.5 0.69 15.0 15.9 0.95 0.6 0.9 0.63 
SW DFBETAS (beds) 1433.1 2387.5 0.60 11.5 18.5 0.62 0.6 0.9 0.66 

OLS DFBETAS (adds) 1526.2 2446.0 0.62 13.4 15.7 0.86 0.6 1.0 0.61 
SW DFBETAS (adds) 1450.2 1862.7 0.78 12.3 13.0 0.95 0.6 0.8 0.73 

OLS DFBETAS (either) 1384.3 3880.5 0.36 12.2 20.3 0.60 0.6 1.5 0.36 
SW DFBETAS (either) 1356.6 2756.6 0.49 10.6 19.7 0.54 0.5 1.0 0.52 

OLS DFFITS 1328.3 4784.1 0.28 11.2 26.4 0.43 0.5 1.7 0.28 
SW DFFITS 1208.8 2347.0 0.52 9.1 17.0 0.53 0.4 0.8 0.57 

OLS Cook's D 1343.0 4780.1 0.28 11.4 26.5 0.43 0.5 1.7 0.29 
SW Cook's D 1417.6 2046.5 0.69 12.2 15.0 0.81 0.6 0.8 0.72 

OLS >=2 methods 1334.0 4586.9 0.29 11.6 25.5 0.45 0.5 1.7 0.30 
SW >=2 methods 1193.6 2131.8 0.56 9.0 16.0 0.56 0.4 0.7 0.61 
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5.4.5 Discussion 

The simulation verified the theoretical conclusion that using the SW estimator on samples 

without the influential cases identified by the SW diagnostic methods can obtain “better” 

parameter estimates than keeping those cases in the sample, where “better” means the 

parameter estimates are closer to the core parameters on the majority of the finite population.  

We anticipate that this conclusion will also hold for a multistage sampling design which may 

involve stratification and clustering.  We are able to make a general conclusion that the use of 

the SW diagnostics and estimators is generally more effective than using the OLS ones.  The 

SW diagnostics are more likely to identify the points with large sample weights.  If the 

outliers with moderate to large weights fail to be identified, then the SW estimates can be more 

affected than the OLS ones and have larger biases. On the other hand, if outliers with small 

weights are not detected, the OLS estimates can be more biased because the outliers have more 

power in determining the parameter estimates. 

Korn and Graubard (1995) demonstrate that the sample weights commonly affect the 

estimates of population means more than the estimates of association.  The OLS and the SW 

estimation methods can have similar performance if most of the outliers can be picked up.  

However, the OLS estimates may be greatly different from the SW ones if (1) the sampling is 

done at a very different rates depending upon the outcome variable (Korn and Graubard, 1995); 

or (2) the model is misspecified and the omitted variable has a strong interaction with the 

weights (Kott 1991).  Both estimators could be biased but the bias of the SW estimator 

decreases and may be ignored when the sample size is large. The SW regression estimator and 

diagnostics are recommended because they provide better protection against the model 

misspecification.  For the SW diagnostics the change towards reducing the biases is due to 

two reasons: (1) the use of sample weights W  which compensate for the unequal selection 

probabilities in the sample design; and (2) the removal of the units with distinct Y , X , or 

W  values makes the regression line move closer to the “core” model. 
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The coefficient estimates from the reduced samples without the identified outliers may 

still be quite biased if there are a few outliers still not recognized.  This is possibly due to the 

drawback of the single-case deletion methods, or more specifically, the masked effect between 

the outliers.  The effect of deleting a possible influential point may not be correctly evaluated 

since other outliers, especially outliers of the same type, are still included in the sample.  This 

problem is likely to be resolved or alleviated by using multiple-case deletion method which 

simultaneously removes an influential group.  The simulation will be revisited using the 

forward search algorithm in Section 5.6. 

Different SW diagnostic approaches emphasize different types of outliers and different 

influence measures on the regression.  For example, leverages identify observations with 

large X  values and weights, whereas residuals are more likely to detect cases with large Y  

values; DFBETAS statistics measure the effect of removing outliers on specific coefficients, 

whereas DFFITS and modified Cook’s Distance are overall statistics which summarize the 

changes in all coefficients.  It is important to scientifically and properly use one statistic or 

combination of statistics, choose appropriate cutoff values, and correctly define and deal with 

the identified outlying cases. 

 

5.5 Case Studies Revisited: Forward Search Method 

In Section 5.2 and 5.3 we have evaluated the single-case deletion diagnostic statistics by 

two case studies using SMHO and NHANES data sets.  In this section we will revisit the two 

case studies and try to identify groups of influential observations by the forward search 

method.  Individual outliers may mask each other in the sense that they will not be identified 

by the single-case deletion methods even though the group as a whole is influential.  Through 

the comparison between the single-case deletion and multiple-case deletion methods, we 

would be able to investigate that whether there are masked outliers in the data and how the 

deletion of them will change the regression estimates. 
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5.5.1 Case Study 1 Revisited: SMHO data 

(1) Selection of Initial Subsets 

Initial subsets of size 20m =  were selected among the observations which were not 

identified by any of the single-case deletion methods adapted and modified in Chapter 3, such 

as leverages, residuals, DFBETAS, DFFITS, and modified Cook’s distance.  As in Section 

5.2 the full sample includes 875 organizations.  Out of 775 never-identified cases, we 

randomly picked 5000 subsamples of size 20 and kept the one with minimum median squared 

residuals from the SW regression as the starting subset.  An additional subset of size 20 was 

chosen using the same approach from 5000 different subsamples.  Both subsets will be used 

to initiate the searching in order to verify that the initial subsets are outlier-free. 

 

(2) The Key Statistic and Other Measurements 

Starting with an initial subset, the forward searching process continues by adding one new 

observation at a time which causes the smallest change in the parameter estimates, measured 

by the key statistic, in this case the delete-one version modified Cook’s Distance, and ends 

when all units are included in the model fitting.  To lessen the computational burden, 

extended Cook’s Distance was calculated using ( )( ) ( )( ) ( )( )1ˆ ˆ ˆ ˆ ˆT
i LED i v i i

−
⎡ ⎤= − −⎣ ⎦β β β β β , 

where i  indicated the observation newly added to the subset.  During the process, MDFFIT 

and DED  were also recorded since they can be helpful with drawing a line between the 

outliers and the non-outliers.  In both statistics, the deletion set D  includes the observations 

other than those in the subset used for model fitting. 

 

(3) Results 

The results of applying the forward search method to the SMHO data are presented 

numerically and graphically.  Figure 5.19 shows the changes in the key statistic, single-case 

deletion version modified Cook’s Distance, as additional observations were entered into the 
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subset for regression fitting.  Note that the subset sizes start at 20 but the horizontal axis in 

the plots are truncated on the left to avoid showing the first 400 steps.  Since the key statistic 

measures the change in all of the estimated coefficients when an extra unit is added to the 

regression, the inclusion of an influential observation will be signaled by a easily noticeable 

increase in this statistic.  Although two independent forward search processes were separately 

conducted with different initial subsets, curves of the key statistic illustrate the same trend.  

After the subset size reached around 800, the modified Cook’s Distance began to increase 

gradually.  When the subset included more than about 850 observations, both curves rose 

dramatically.  Using two multiple-case deletion statistics, Figure 5.20 and 5.21 describe 

alternative measurements of changes in the parameter estimates while the outliers came into 

the regression, the group-deletion version extended Cook’s Distance DED  and MDFFIT as 

defined in Section 4.1.  Because these two statistics assess the difference between the 

estimates based on the subset and the estimates based on the full sample, we expect that they 

will be subjected to substantial fluctuations when some outliers begin to enter the regression 

and eventually have dramatic drop when all outliers come into the subset.  In Figure 5.20 the 

group-deletion version modified Cook’s Distance dropped quickly when subset size is beyond 

800.  Meanwhile, MDFFIT statistic tended to decrease fast but with occasional peaks in the 

curves.  The estimated intercept and slopes are graphically displayed in Figure 5.22.  

Although the curves have moderate fluctuations before the subset size is near 800, they 

demonstrate huge increases and decreases in the estimates when the outliers began to enter the 

subset.  
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Figure 5.19. Plots of Single-Case Deletion Based Modified Cook’s Distance from Forward 
Search with Two Different Initial Subsets in SMHO Data. 
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Figure 5.20. Plots of Multiple-Case Deletion Extended Cook’s Distance from Forward 
Search with Two Different Initial Subsets in SMHO Data. 
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Figure 5.21. Plots of MDFFIT from Forward Search with Two Different Initial Subsets in 
SMHO Data. 

400 500 600 700 800 900

0e
+0

0
1e

+1
0

2e
+1

0
3e

+1
0

4e
+1

0

Subset size

M
D

FF
IT

400 500 600 700 800 900

0e
+0

0
1e

+1
0

2e
+1

0
3e

+1
0

4e
+1

0

Subset size

M
D

FF
IT

 
 
Figure 5.22. Plots of Parameter Estimates from Forward Search with Two Different 
Initial Subsets in SMHO Data. 
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All the statistics indicate that the outliers were first introduced into the subset 

approximately within the last 100 searching steps.  The two forward searches with different 

starting subsets identified matching outliers after the subset size reached 792.  Therefore, we 

determined to define an influential group containing 83 observations, among which 20 were 

never identified by the single-case deletion methods. 
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Table 5.24 reports the SW parameter estimates after the influential group was excluded.  

The intercept increased from 514.08 to 1612.32 and became significant.  Both coefficients for 

number of beds and number of additions decreased radically, compared to those from the full 

sample.  The drop in the estimated slope of number of beds is even much greater than that 

from samples removing outliers identified by the single-case deletion modified Cook’s 

Distance. 

The scatterplots and added variable plots in Figure 5.23 are helpful to explain the huge 

declines in the estimated slopes.  In the plots there is an exceptionally outlying observation 

with extreme Y  and X  values in the upper right corner.  When it is included in the sample 

for model fitting, even with a relatively small sample weight, it has great power in determining 

the regression coefficients.  Moreover, it can mask the effects of the outliers above the 

regression line since this point itself also pulls the regression upward.  Therefore, in Figure 

5.5, few outliers above the regression line were identified.  On the contrary, many influential 

points were detected in Figure 5.23, which may cause the increase in coefficient estimates 

when they are included in the sample. 
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Figure 5.23. Scatterplots with SW Scatterplot Smoothing and SW Added Variable Plots 
with Dark Bubbles Symbolizing Influential Points Identified by Forward Search for 
SMHO Data. 
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Table 5.24. Parameter Estimates of SMHO Regression after Influential Group Identified 
by Forward Search was Deleted. 

SW full sample SW large Cook’s D SW Forward Search Independent 
Variables Coeff. SE t Coeff. SE t Coeff. SE t 
Intercept 514.08 1157.71 0.44 932.43 345.86 2.70 1612.32 181.29 8.89

Beds 81.23 13.14 6.18 82.83 5.72 14.48 52.06 2.50 20.86
Adds 1.842 0.758 2.43 1.43 0.26 5.43 1.33 0.11 12.57

 

(4) Discussion 

The forward search method is effective to separate the outliers from the non-outliers as a 
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group and avoid the masked effect among outliers.  It may identify a different influential set 

of observations and produce different parameter estimates after removing the identified 

influential group, compared to the single-case-deletion diagnostics.  Using intuitive judgment 

and empirical assessment may be better than using fixed cutoffs for the key statistics when we 

need to filter the outliers.  Different starting subsets, on one hand, are useful to verify the 

initial exclusion of the outliers; in addition, they are helpful in determining which points 

should be labeled as influential.  The single-case deletion diagnostics, though having their 

drawbacks, form the basis of the forward search method and contribute to the choice of the 

initial subset and the monitor of the searching process. 

5.5.2 Case Study 2 Revisited: NHANES data 

 The NHANES data are collected from a complex design involving stratification and 

clustering, which needs to be accounted for at the selection of the initial subset.  Among the 

units which were never identified by any single-case deletion method, we drew 5000 

subsamples of size 20 by randomly picking two observations from each of the 57 PSUs within 

the 28 strata.  As before, the subsample with the smallest median of squared residuals was 

chosen to the initial subset.  We generated two different initial subsets for the purpose of 

verification. 

 The changes in the regression were recorded by a few diagnostic statistics while new 

observations joined the subset.  Figure 5.24 shows the variation in the key statistic, 

single-case deletion modified Cook’s Distance.  The curves increased gradually with small to 

moderate rises and falls before the subset size reached around 700.  After that the fluctuations 

became stronger and rapidly increase when the subset size is larger than about 780.  The 

points in the NHANES data are not associated with extremely distant Y  and X  values and 

are almost symmetrically and evenly distributed around the regression line.  Therefore, the 

peaks and valleys in the Cook’s Distance curves were caused by points at different sides of the 

regression line alternatively entering into the model fitting.  Figure 5.25 and 5.26 show 
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abrupt decrease in group-deletion Cook’s Distance and dramatic fluctuations in MDFFIT when 

the subset size exceeds 780 or so. 
 
Figure 5.24. Plots of Single-Case Deletion Modified Cook’s Distance from Forward 
Search with Two Different Initial Subsets for NHANES data. 
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Figure 5.25. Plots of Multiple-Case Deletion extended Cook’s Distance from Forward 
Search with Two Different Initial Subsets for NHANES data. 
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Figure 5.26. Plots of MDFFIT from Forward Search with Two Different Initial Subsets 
for NHANES data. 
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 By summarizing the changes in the key statistic and other adjutant statistics, we defined 

an influential group of 41 points, which entered the subset at the last 41 steps during the 

forward searches using two different starting subsets.  Figure 5.27 displays the estimated 

slopes of BMI while the sample size was emerging.  After the outliers came into the 

regression, the parameter estimates tended to fluctuate around the full sample estimate, 0.45.  

This can be explained by the positions of the outliers relative to the regression line.  In Figure 

5.28, the scatterplot and the added variable plot of BMI illustrate that the effects of the outliers 

on the regression estimates are almost balanced out due to their distributions around the 

regression line.  The parameter estimates after the influential group was deleted are listed in 

Table 5.25.  They are similar to the estimation results from the full sample.  The intercept 

and the slope of BMI remain significant.  The point estimates are almost the same but the 

estimated standard errors become slightly smaller. 
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Figure 5.27. Plots of Estimated Slope of BMI from Forward Search with Two Different 
Initial Subsets for NHANES data. 
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Table 5.25. Parameter Estimates of NHANES Regression after Influential Group 
Identified by Forward Search was Deleted. 

SW full sample SW Forward Search Independent 
Variables Coeff SE t Coeff SE t 
Intercept 99.79 4.72 21.16 100.68 4.22 23.89 

Age -0.15 0.17 -0.87 -0.16 0.14 -1.15 
BMI 0.44 0.07 5.88 0.43 0.07 6.52 

Log(Lead+1) 0.89 1.28 0.70 0.35 0.49 0.63 

 
Figure 5.28. Scatterplot of Systolic Blood Pressure versus BMI with Scatterplot 
Smoothing and Added Variable Plot of BMI for NHANES data. The dark bubbles indicate 
points identified by the forward search method. 
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5.6 Simulation Revisited: Forward Search Method 

 The simulation in Section 5.4.5 will be revisited in this section using the forward search 

method because there are possibly masked effects among the outliers.  We expect to obtain 

more correctly identified population outliers and less biased parameter estimates by applying 

this group-deletion method.  The forward search was conducted similarly to the processes in 

the two case studies.  However, some issues need to be reconsidered when running 

simulations. 

(1) Selection of the initial subsets.  The LMS algorithm is not convenient for filtering a 

“clean” starting subsample because it causes heavy computational burden.  As a remedy, we 

applied a ranking approach.  After a sample was selected, among the points that were never 

detected by any single-case deletion method, we assigned ranks to each observation in terms 

of their values of the diagnostic statistics.  For example, if an observation has the smallest 

leverage and the second smallest residual, it is given a rank index 1 and a rank index 2.  The 

sum of the ranking indices was calculated and 20 units with the smallest summed ranks were 

chosen as the starting subset.  This remedial method may not enable us to acquire the best 

“clean” subsample of size 20, but it is likely to effectively avoid the inclusion of outliers in the 

selected subsample. 

(2) Recognition of outliers.  In the simulation we are not able to draw a line between 

outliers and non-outliers depending upon our case-by-case judgment and analysis.  According 

to the results from a few pilot studies, we determined to use a cutoff value of 2.3 and define 

the observations as outliers if they have modified Cook’s Distance larger than 2.3.  This fixed 

cutoff may depreciate the efficiency of the forward search method to some extent. 

The sampling and the diagnostics were repeated 1000 times.  As in Section 5.4, we 

recorded the estimated parameters and their standard errors at each iteration and summarize 

the simulation results using statistics such as relative bias, real coverage rate of the 95% CI, 

empirical and estimated standard errors.  These statistics were listed in Table 5.26.  The 

biases in the parameter estimates were significantly reduced after applying the forward search 
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diagnostics, compared to the modified Cook’s distance diagnostics in Table 5.16.  The bias of 

the intercept dropped from 145.3% to 8.4%, and the biases of the estimated slopes decreased 

from -65.9% and -60.4% to -4.5% and -4.2%, respectively.  The real coverage rates of the 

95% CIs rise to 75%-80%.  The standard errors were still underestimated.  The negatively 

biased SE estimates are the main reason for undercoverage of the confidence intervals when 

the forward search is used, rather than bias in the parameter estimates. 

By avoiding the masked effect among the outliers, the forward search method identifies 

the influential group more correctly.  Averaging over the iterations, it identified 18.1 

influential points from the sample of size 100, and filtered 12 population outliers out of 12.5 

on average sampled.  Unlike those single-case deletion methods, the forward search did not 

falsely remove many non-outliers in the population from the regression.  We expect the 

parameter estimates would be even less biased if we exercise more control over the selection 

of the initial subset and where to drop the line between the “clean” part and the outliers. 
 

Table 5.26. Summary Statistics for Simulation using Forward Search Method. 
SW large Cook’s D SW Forward Search  

Intercept Beds Adds Intercept Beds Adds 
Average Estimates 12404.7 25.9 1.6 5480.5 72.6 3.9 

Relbias (%) 145.3 -65.9 -60.4 8.4 -4.5 -4.2 
Coverage Rate (%) 2 4 3 75 80 78 

Empirical SE 2046.5 15.0 0.8 1190.1 10.0 0.4 
Estimated SE 1417.6 12.2 0.6 737.1 6.4 0.2 

Est SE/Emp SE 0.69 0.81 0.72 0.62 0.64 0.65 
Avg # of Outliers Sampled 12.5 12.5 
Avg # of Outliers Identified 5.1 18.1 

Avg # of Pop Outliers 
Identified 

0.9 12.0 
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Chapter 6 Conclusion 

When a few or a small group of observations are different in some way from the bulk of 

the data, the model fitting process may be greatly affected because all observations are forced 

into the same regression.  A premise of this research is that an analyst will be interested in 

estimating a model that describes the population structure reasonably well.  Observations that 

make estimates deviate from that structure should be identified and omitted from the model 

fitting.  In this thesis, we extended and developed a series of methods to detect and 

investigate observations that can be influential in determining estimates of the model 

parameters.  Besides identifying such points or subset of points that are systematically 

different from the majority, we are also interested in measuring their effect on parameter 

estimates and inferences about models. 

When using a linear regression model to analyze complex survey data, analysts usually 

choose the survey weighted estimator which appropriately accounts for sample weights.  

Hence, in survey weighted regressions, points can be influential due to combinations of 

outlying Y  values, outlying X  values, or extreme sample weights.  Whether points are 

influential or not is affected by the fact that surveys often have fairly large sample sizes.  

With the incorporation of survey weights and design features, we constructed survey weighted 

diagnostic statistics in a way similar to the conventional OLS diagnostics.  Based on the idea 

of case deletion, the diagnostic statistics compare the model fitting with and without possible 

influential points and measure the changes in the regression estimates from different aspects.  

Cutoff values for these statistics are determined in terms of order of magnitude analysis and 

distributional properties of the residuals.  For survey data, we relax the traditional model 

assumptions such as homogeneity and independence among individual units to accommodate 

the sample design and features of the finite population. 

Survey weighted diagnostics may identify different points than OLS diagnostics as being 

influential, as we have seen in the two case studies in Chapter 5.  An observation with 
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moderate Y  and x  values may not be identified as influential by OLS approaches, but may 

be recognized as influential by SW methods if it is assigned an extreme sample weight.  As 

shown numerically and graphically in Chapter 5, points identified by OLS diagnostics 

uniquely are usually associated with small sample weights, whereas points identified by SW 

diagnostics exclusively often have relatively large sample weights. 

Unfortunately, techniques based on single-case deletion may not function effectively when 

some outliers mask the effects of others.  This happens when a data set has a structure in 

which a group of outliers exert similar influence on the regression.  Unless the group is 

simultaneously removed, the change in the regression can not be correctly measured because 

some outliers are still included in the data used to estimate the parameters.  The modified 

forward search method is a partial solution to this problem since it can successfully identify 

the influential group and avoid masked effect among outliers.  It starts from a small, 

outlier-free subset, adds observations into the regression sequentially, and measures the 

fluctuations in the estimates during the search process.  The group of outliers is expected to 

enter the model fitting at the end of the search and cause abnormal increase or decrease to the 

measurements of influence.  The detection of outliers for this method does not completely 

depend on some fixed cutoff value for the statistic which monitors the change in the regression.  

Ideally, a decision should be made according to the trend of the statistic which is calculated at 

each searching step.  The advantage of making case-by-case judgments is that analysts can 

have better control over the identification procedure.  Meanwhile, it could have the drawback 

that the regression estimates from the reduced sample are sensitive to how many and which 

outliers an analyst wants to define.  The diagnostics can serve as a guide to which points may 

be unusual.  However, a diligent analyst should examine these points in detail to decide 

whether they are data entry errors, legitimate values that do not follow a core model, or can be 

explained in some other way like having extreme weights. 

Once influential observations or group are caught, a natural but not unique remedy is to 

remove them from the regression.  Dropping influential points and refitting models may 
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produce different parameter estimates from full sample estimates and therefore affect 

inferences about the population.  We expected that parameter estimates from the sample 

excluding the identified influential units should be less biased with respect to the core 

population parameters.  However, if too many or too few outliers are identified than 

appropriate, it can cause incomplete correction of bias, underestimation of variance, and as a 

result, the coverage rate of constructed confidence intervals will be less than nominal.  For 

survey weighted diagnostics, if too many points with large sample weights are identified as 

influential and deleted, variance of the estimated parameters can be seriously underestimated 

because the variance estimators we used do not account for the variation in number of 

observations used in the regression.  How to correct estimated standard errors to eliminate the 

underestimation is an open question that deserves additional research.  This is a well-known 

problem in the model-selection literature (e.g. see Chatfield 1995) but does not appear to be 

addressed in research on model diagnostics. 

When points are determined to be influential due to extreme survey weights, one option is 

to trim the weights.  Potter (1990, 1993), Hulliger (1995), and Lee(1995) discussed this 

approach for descriptive statistics.  Formal procedures for weight trimming when fitting 

regression models have not been explored. 

A final caveat to the use of the diagnostics studied here is that some points may appear to 

be influential because the regression model itself is misspecified.  For example, if a quadratic 

model is appropriate but a linear model fitted, some points may have large residuals and be 

identified as influential.  Deleting them would be a mistake if the ability is lost to recognize 

that the model should be quadratic.  Thus, good practice will require using more than just the 

diagnostics studied here. 
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