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Atlantic hurricane activity has increased in recent decades leading to extensive 

investigation of its links with rising greenhouse gases (GHG). The International Panel on 

Climate Change (IPCC) is investigating how global-regional climate will change in the 

21st century (21C) in response to GHG emissions but the deployed climate model grids 

are too coarse to resolve hurricanes. Projections of hurricane activity must thus be 

obtained, indirectly, from regional downscaling of climate using statistical and dynamical 

approaches; the former is adopted here. 

Hurricane counts are reconstructed in 20C and projected in 21C from statistical 

modeling with Atlantic Sea-Surface Temperature (SST), static-stability, and zonal-wind 

shear as predictors. Optimal predictor definitions, including geographical domains, are 

identified from observational analysis (1958-2005). The viability of the statistical 

approach is demonstrated from the successful reconstruction of hurricane counts in both 



 

training and independent periods, with reconstruction-observation correlations (0.72-

0.86) higher than Kim and Webster’s (2010; the best statistical model to date). 

Statistical models for counts were also developed for each of the five analyzed 

IPCC- the-fifth-Assessment (AR5) models, based on their 1958-2005 simulations. The 

long-term trend in counts was modeled using multivariate linear regression with 

predictors from the ensemble-mean simulation. On the other hand, predictors from 

several ensemble members were used via the best subset regression technique when 

modeling the interannual-to-decadal count variability. Focusing on the observationally 

rich 1958-2005 period provided critical evaluation and a basis for selection of a credible 

model-subset. The 21C projections of hurricane counts by this model subset will be 

deemed more trustworthy than the average of all AR5-based models.   

Modeling of Atlantic hurricane activity with IPCC-AR5 predictors shows a 

stronger count-trend in the 21C, principally, from increasing SSTs; AR5-models disagree 

on the trend in zonal-wind shear which is a less influential predictor in the AR5-based 

models compared to observations.  

Decadal predictions of hurricane activity for the independent but observations-

available 2006-2010 period show the promise of the best subset regression models, 

especially with predictors from the IPCC-Decadal (2005 ocean-initialized) experiments. 

According to this model, the 2013 hurricane season will be slightly more active (+1 

count) but not as much as NOAA’s forecast (+3 counts).  
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Chapter 1: Introduction 

 

1.1 Background 

 Hurricane is the term used in the Western hemisphere for one of the general 

classes of strong tropical cyclones (TCs), including western Pacific typhoons and similar 

systems, which are known simply as cyclones in the Indian and southern Pacific Oceans 

(Marks 2003). Over the past two centuries, TCs have been responsible for the deaths of 

about 1.9 million people worldwide (Shultz et al. 2005). On average, the Gulf and east 

coasts of the United States suffer approximately US $5 billion (1995 US $) in cyclone 

damage every year (Burroughs 2007). A tropical cyclone with the maximum sustained 

winds of at least 64 knots (74 mph) is referred to as a hurricane in the Atlantic or East 

Pacific. The Saffir–Simpson scale categorizes hurricanes on a scale from 1 to 5, with 1 as 

the weakest and 5 as the most intense. Major hurricanes correspond to categories 3 and 

higher (Table 1.1). 

 Mark (2003) reached some general conclusions from the global distribution of 

tropical cyclone locations. TC formation is confined to a region between approximately 

30°N and 30°S, with 87% of cyclones located within 20° of the Equator (Figure 1.1). 

From previous studies, some general conclusions can be drawn about the environmental 

conditions favorable for TC development: 

 Warm sea surface temperature (SST) and large mixed-layer depth (defined as the 

depth of the sharp temperature inversion-thermocline between the cooler bottom 
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water and the warmer near surface water): Surface to 60 meter ocean 

temperatures above 26ºC (Gary 1979). 

 Low vertical shear of the horizontal winds: High vertical wind shear inhibits 

tropical cyclone formation due to the detrainment of heat from the disturbance. 

Interference in formation due to wind shear would make it difficult for the 

storm’s required thermal energy to become concentrated at its core (Gray 1968; 

Gray 1979). Vertical shear has also been shown to negatively impact cyclone 

genesis and growth through vertical stability (DeMaria 1996) and secondary 

circulation effects (Bender 1997). 

 Low atmospheric static stability: Static stability is a measure of the fluid’s ability 

to resist vertical motion when the hydrostatic equilibrium between its density 

structure and gravity is perturbed. A low resistance can lead to the fluid 

becoming turbulent (statically unstable) or laminar (statically stable) due to the 

effects of buoyancy only, without all other inertial effects of motion. The 

troposphere must be potentially unstable to sustain convection for an extended 

period (Marks 2003).  

 High values of low-mid level tropospheric relative humidity: As dry air is 

entrained into convecting parcels, evaporative cooling occurs that can cause 

buoyancy loss. Sufficiently high levels of relative humidity would prevent such 

effects (Lighthill et al. 1994). Larger values of relative humidity make the 

tropospheric column more conductive to deep convection and enhance the 

surface to mid-level vertical coupling (Gray 1979). 
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 A large enough Coriolis parameter for large-scale rotation: The latitudinal 

distance from the equator is generally a minimum of 5º to allow for a sufficient 

Coriolis force to generate cyclonic rotation (Gray 1979; Lighthill et al. 1994). 

Tropical cyclones do not form within 3º of the Equator. The Coriolis parameter 

vanishes at the Equator and increases to extremes at the poles. Hence, a threshold 

value of Earth vorticity ( f ) must exist for a tropical cyclone to form. 

In addition to the favorable conditions listed, an initial pre-existing disturbance is also 

necessary (Emanuel 1989; Rotunno and Emanuel 1987). Given an initial tropical 

disturbance with high values of concentrated vorticity, a low-level wind surge must 

penetrate for tropical cyclogenesis to be favorable (Gray 1998; Zehr 1992). 

 The presence of favorable conditions greatly depends on the large-scale flow. 

The conditions for tropical cyclogenesis have been found to be affected by large-scale 

variability such as the El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal 

Oscillation (AMO), the North Atlantic Oscillation (NAO), and the Atlantic Meridional 

Mode (AMM). Research has shown strong associations between North Atlantic TC 

activity, which corresponds to intensity and frequency of TC, and atmosphere-ocean 

variability on different timescales, including the multidecadal scale (Landsea et al. 1999). 

On the interannual timescale, major land-falling hurricanes increase almost threefold 

during La Niña events relative to El Niño events (Gray 1984; Bove et al. 1998). During 

El Niño seasons, upper-level winds from the west increase the wind shear over the 

Atlantic Main Development Region (6°–18°N, 20°–60°W; Goldenberg and Shapiro 

1996), thus making conditions less favorable for both TC genesis and intensification. The 

potential impact of the multidecadal modes of SST variability on Atlantic TC activity 
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also complicates the detection of global warming signals due to the coinciding of the 

recent increase in Atlantic TC activity with a natural shift in the Atlantic Multidecadal 

Oscillation (Goldenberg et al. 2001; Kossin and Vimont 2007; Guan and Nigam 2009; 

Nigam and Guan 2011). Klotzbach and Gray (2008) found that during the positive phase 

of the AMO, approximately twice as many major hurricanes occur. The AMO is one of 

three interrelated Atlantic atmosphere-ocean modes with variability in the multidecadal 

spectrum in addition to shorter-term variations, next to the North Atlantic Oscillation and 

the Atlantic Meridional Mode (Marshall et al. 2001; Kossin and Vimont 2007; 

Grossmann and Klotzbach 2009). During the positive AMO and AMM phases, the North 

Atlantic warms relative to the rest of the tropics. Since potential intensity (PI) of TCs 

depends on the difference between local SSTs and tropical mean atmospheric 

temperatures (Vecchi and Soden 2007a; Swanson 2008), this localized warming causes 

greater PI increases than would be the case for a uniform warming of the tropics. This 

may explain the large magnitude of the observed recent changes in TC activity relative to 

the changes projected to occur with global warming (Vecchi and Soden 2007a; Swanson 

2008). 

 

1.2 Statement of the Problem and Significance 

A comprehensive consensus statement on the global warming impact on TCs 

emerged from the World Meteorological Organization’s 6th International Workshop on 

TCs in 2006. It stated that a firm conclusion on the existence of an anthropogenic signal 

in TC activity could not be drawn, but that some increase in TC intensity with global 

warming is likely, while changes in TC frequency (and the sign of those changes) remain 
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uncertain (World Meteorological Organization 2006). Working Group I of the 

Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC-AR4) 

concludes that an increase in global peak TC intensities is likely according to high-

resolution models, while a global decrease in TC numbers and a possible increase in the 

North Atlantic is expected with medium confidence according to high and low resolution 

models (Meehl et al. 2007; their Table 11.2). 

 As to the cause of the increase in Atlantic TC activity, there are intense debates 

in context of climate change. Some studies (e.g., Goldenberg et al. 2001; Zhang and 

Delworth 2006, Nigam and Guan 2011) suggest that increased TC activity is related to 

the natural variability of Atlantic sea surface temperatures (SSTs), especially the Atlantic 

Multidecadal Oscillation (AMO; Enfield et al. 2001; Delworth and Mann 2000; Guan and 

Nigam 2009), while others attribute the increase in activity to anthropogenic climate 

change (Webster et al. 2005; Trenberth and Shea 2006; Mann and Emanuel 2006; 

Holland and Webster 2007). The attribution of heightened TC activity to natural 

variations and/or secular change of climate thus remains challenging, especially in view 

of the short length of the observational record and its uneven quality (Landsea 2007; 

Mann et al. 2007; Chang and Guo 2007; Vecchi and Knutson 2008; Landsea et al. 2010), 

and the modest simulation skill of current climate models; leaving much to debate. 

 There is extensive discussion of the role of the North Atlantic SST in driving TC 

activity in previous studies (Landsea et al. 1999; Zhang and Delworth, 2006; Trenberth 

and Shea, 2006). More than half of the decadal time-scale variance in the annual Atlantic 

TC count can be explained by SST variations in the main development region (MDR; 

Mann and Emanuel 2006). The nonlocal SSTs, i.e., the ones outside the MDR, are also 
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influential as indicated by analyses that show the MDR SST variations relative to the 

global tropical average to be more pertinent (Emanuel 2005; Swanson 2008;Vecchi et al. 

2008; Vecchi and Soden 2007; Nigam and Guan 2011), and studies that document the 

impact of the Pacific SST on tropospheric circulation (vertical shear and stability) over 

the tropical-subtropical Atlantic (e.g., Elsner et al. 2001; Aiyyer and Thorncroft 2006; 

Camargo et al. 2007; Nigam and Guan 2011).  

 A number of studies have indicated that vertical shear of the horizontal (zonal) 

wind over the tropical Atlantic is a notably influential environmental variable, impacting 

tropical cyclone activity (Gray 1968; DeMaria 1996; Goldenberg et al. 2001; Camargo et 

al. 2007). Large vertical shear is detrimental to cyclone formation (Pielke and Landsea, 

1999; Goldenberg et al., 2001; Emanuel and Nolan, 2004; Camargo et al., 2007) as well 

as intensification (Zehr, 1992; DeMaria, 1996; Frank and Ritchie, 2001). Wind shear acts 

to disturb the structure of the TC, making the TC more susceptible to other interferences 

and less efficient at using ocean heat. During El Niño seasons, upper-level winds from 

the west increase wind shear over the Atlantic MDR (Goldenberg and Shapiro 1996), 

thus making conditions less favorable for both TC genesis and intensification. In a 

warmer climate, shear may increase in the Atlantic and East Pacific and decrease in the 

West Pacific (Vecchi and Soden 2007b, Nigam and Guan 2011).  

 The above discussion highlights the challenges in detection of a possible climate 

change signal in the Atlantic TC activity from the background noise generated by 

interannual-to-multidecadal natural variability. The challenge is compounded by the short 

length of the observational records vis-à-vis the multidecadal variability timescales, and 

by the inability of the current class (IPCC-AR5) of climate system models to simulate the 
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large-scale structure of 20th century climate variability and change, let alone the tropical 

cyclone structure and distributions. The 21st century projections and decadal predictions 

of TC activity are likewise hindered by the uncertainties in evolution of multidecadal 

natural variability in the Atlantic and Pacific basins, and the related and unrelated 

changes in regional climate and the large scale environment, and by the model-resolution 

limitation imposed by the current-day computational infrastructure.  

 

1.3 Motivation and Scientific Questions 

 Several recent modeling studies and related analyses project a reduction in TC 

activity in the 21st century, based largely on the significantly increased wind-shear over 

MDR in the IPCC-AR4 projections (Garner et al., 2009; Vecchi and Soden, 2007b; 

Gualdi et al., 2008; Bengtsson et al., 2007; Zhao et al., 2009). Vecchi and Soden (2007b) 

projected a 10% increase in wind shear over the Caribbean for each degree of global 

warming, from analysis of an 18-member multi-model ensemble of 21st century IPCC-

AR4 projections (SRES A1B scenario). Garner et al. (2009) also stated that vertical 

wind-shear was the main driver in the projected reduction of TC activity. However, many 

of these studies analyze only the IPCC 21st century projections, and not the 20th century 

simulations that can provide a reading on the projecting models’ performance. 

 Although popular, multi-model assessments of the change in Atlantic TC activity 

in IPCC-AR4 climate projections (e.g., Vecchi and Soden, 2007) are developed generally 

without consideration of the projecting models’ simulation potential; not factoring for the 

model performance can skew multi-model based assessment. Note, the model 

performance can be evaluated as the same AR4 coupled models were also used to 
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simulate the climate of the 20th century, a period for which validating 

observational/reanalysis records exist; for instance, the simulation of the zonal-wind 

shear trend can be assessed. 

 Not only that, the IPCC simulations of 20th century climate are generally 

challenged in the simulation of regional circulation and hydroclimate features over both 

continental (Ruiz-Barradas and Nigam 2010) and oceanic regions (e.g., Kavvada et al. 

2013). Unfortunately, it is the regional features, such as zonal wind shear over the 

tropical western-central Atlantic and SST over the Main Development Region in the 

tropical Atlantic, that emerge as key statistical predictors of the Atlantic TC counts in 

observational analyses. As such, directly using the variations in these features to infer 

changes in Atlantic TC activity (e.g., as through multi-model ensemble based 

composites) is potentially problematic. At a minimum, there is need to re-weigh the 

importance of the key predictors in context of the IPCC simulations; we refrain from 

choosing new predictors, in the interest of keeping the statistical model rooted in 

physicality. 

 This research is motivated by the need to use the IPCC-AR4 and AR5 

simulations and projections as effectively as possible to infer the changes in Atlantic TC 

activity in both the near-term (i.e., decadal) and long-term (i.e., centennial) climate 

projections. As noted before, the AR5 model resolution remains too coarse to resolve 

tropical cyclone, especially in the incipient stage, and dynamic downscaling remains 

prohibitively expensive, computationally, on account of long integrations and several 

ensemble members. Statistical models are thus an important tool in the interim for 

drawing inference regarding potential changes in cyclone activity.  
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 From this point of view, the undertaken study seeks to address the following 

scientific questions: 

 Is there compelling evidence from observational analyses and climate modeling 

experiments for increasing vertical wind shear (i.e., ∂U/∂z) over the tropical 

Atlantic with increasing greenhouse warming of the planet? Is there a secular 

increase in shear manifest in the 20th century observational record? Do the 

IPCC-AR4 and AR5 climate system models indicate an unequivocal shear 

increase? Shouldn’t wind shear projections for the 21st century be weighted by 

the skill of the same models in simulating 20th century wind shear variability?   

 What is the relative significance of vertical wind shear, SSTs (local and remote), 

and regional atmospheric static stability in influencing Atlantic TC counts? 

Which – SSTs or vertical wind shear – is more influential? Is the significance of 

the three factors in the IPCC climate simulations similar to that manifest in the 

20th century observations? 

 Can the Atlantic TC counts be statistically reconstructed using observed vertical 

wind shear, SSTs, and atmospheric static stability? How effectively can TC 

counts be reconstructed using IPCC AR4 and AR5 simulations of 20th century 

climate?  

 Is the optimal reconstruction of TC counts with the IPCC simulation datasets 

obtained from the ensemble-mean simulation or from use of multiple ensemble 

members of a given model?   

 What is the efficacy of the statistical reconstruction model in the hindcast 

prediction of TC counts, i.e., in an earlier period that is independent of the model 
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training period, but one for which validating TC count observations exists? Does 

the hindcast prediction skill of the statistical model vary among IPCC-AR5 

simulations, and between observations and these simulations?  

 Finally, what inference can be drawn from the statistical model regarding 

changes in Atlantic TC activity in both the near-term (i.e., decadal) and long-

term (i.e., centennial) climate projections? How does this guidance compare with 

that obtained from dynamical downscaling and other related analyses? 

 

1.4 Objectives 

The thesis objective is to systematically seek answers to the above questions, 

from statistical downscaling, while drawing on our knowledge of climate dynamics to 

gain insights into the obtained findings. The major goals of this work are to: 

 Investigate and characterize the change in environmental factors such as wind 

shear, SST, and static stability in the 20th and 21st centuries; 

 Advance our understanding of the influence of these environmental factors on 

Atlantic hurricane activity, especially under a warming climate; 

 Develop a statistical model to reconstruct and predict Atlantic TC counts based 

on the Atlantic wind shear, SST, and static stability. The model will be 

developed separately for the observed (reanalysis) and simulated 20th century 

SST, circulation, and temperature records  

 Use the model to infer the change in Atlantic hurricane activity in the 21st 

century and the predictability of Atlantic hurricane activity in the near future. 
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1.5 Thesis Outline 

An observational analysis of the change in Atlantic wind shear in various 

reanalyses of 20th century atmospheric circulation, and the linear trend in vertical wind-

shear over the tropical Atlantic in both 20th century climate simulations and 21st century 

climate projections (SRES A1B scenario) of five IPCC-AR4 models are analyzed in 

Chapter 2. In Chapter 3, the analysis is extended to the role of wind shear and SST on the 

change of Atlantic hurricane counts, as well as to critically examine and discuss the 

change of the Atlantic hurricane counts in 21st century prediction through statistical 

modeling based on IPCC-AR5. Chapter 4 presents the predictability of Atlantic hurricane 

activity through statistical modeling based on wind shear, SST, and static stability of 

IPCC-AR5 simulations and projections as dynamic and thermodynamic variables. 

Finally, the summary and concluding remarks follow in Chapter 5. 
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1.6 Tables 

Table-1.1: Saffir–Simpson scale of hurricane intensity is available at the web site of 
(http://www.aoml.noaa.gov/hrd/tcfaq/D1.html). 

Category 
Maximum sustained wind speed 

mph ms-1 kts 

1  74-95  33-42 64-82 

2 96-110  43-49  83-95 

3 (Major) 111-129  50-58  96-112 

4 (Major) 130-156  59-69 113-136 

5 (Major) ≥157 ≥70 ≥137 
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1.7 Figures 

 

Figure 1.1: (a) Counts of tropical cyclones per 100 years within 140km of any point. Solid 
triangles indicate maxima, with values shown. Period of record is shown in boxes for each basin. 
(b) Annual sea surface temperature distribution (°C) (Marks 2003). 
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Chapter 2: The Change of Tropical Atlantic Wind Shear in IPCC-

AR4 Projections 

 

2.1 Introduction 

Climate model integrations undertaken for the Intergovernmental Panel on 

Climate Change 4th Assessment Report (IPCC-AR4) project changes in tropical cyclone 

(TC) activity in a warmer climate, indirectly, through SST-change in the cyclone 

development region of the tropical Atlantic (thermodynamic control) and vertical wind-

shear change over the same region (environment control); the coarse model resolutions 

do not permit direct projections of cyclone activity.  

Vertical shear of the horizontal (zonal) wind over the tropical Atlantic is widely 

viewed as an influential environmental variable, impacting both cyclone intensity and 

frequency. Large vertical shear is detrimental to cyclone formation (Pielke and Landsea, 

1999; Goldenberg et al., 2001; Emanuel and Nolan, 2004; Camargo et al., 2007) as well 

as intensification (Zehr, 1992; DeMaria, 1996; Frank and Ritchie, 2001). Saunders and 

Lea (2008) claimed that wind shear explains more variance in Atlantic TC activity than 

SST in the 1965-2005 period.  

Nigam and Guan (2011) find the increased westerly wind shear related with the 

secular but non-uniform warming of the oceans (including tropical Atlantic) important in 

limiting the impact of ocean warming on Atlantic TC activity in their 20th century 

observational analysis; the dynamical (shear-related) impact offsetting the 

thermodynamic (SST-related) one. These authors also show Pacific decadal SST 
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variability to be influential on Atlantic TC counts, in part, through vertical wind shear 

variations over the main development region (MDR; Mann and Emanuel 2006 6°–18°N, 

20°–60°W) of the tropical Atlantic. 

Recent modeling studies suggest that Atlantic TC frequency could decrease as 

the climate warms (Garner et al., 2009; Vecchi and Soden, 2007b; Gualdi et al., 2008; 

Bengtsson et al., 2007; Zhao et al., 2009). The decrease is mostly attributed to the 

increased wind shear over MDR. Vecchi and Soden (2007b) project a 10% increase in 

wind shear over the Caribbean for each degree of global warming, from analysis of an 

18-member multi-model ensemble of 21st century IPCC-AR4 projections (SRES A1B 

scenario). Garner et al. (2009) also found vertical wind-shear to be the main driver in the 

projected reduction of TC activity.  

Although popular, multi-model assessments of the change in Atlantic TC activity 

in IPCC-AR4 climate projections are developed generally without consideration of the 

projecting models’ simulation potential (e.g., Vecchi and Soden, 2007); not factoring for 

the model performance can skew the multi-model based assessment. Note, model 

performance can be evaluated as the same AR4 coupled models were also used to 

simulate the climate of the 20th century, a period for which validating 

observational/reanalysis records exist; for instance, simulations of the vertical wind shear 

trend can be assessed, as here. 

This chapter focuses on a widely analyzed subset of IPCC-AR4 simulations and 

projections, analyzing all available ensemble members for each model. A performance 

context (20th century wind shear simulation) for each model is provided when discussing 

its projection of vertical wind shear over the tropical Atlantic. Data sets and the analysis 
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technique are briefly discussed in section 2.2, model performance in section 2.3, and 

model projections in section 2.4. 

 

2.2 Data and Methodology 

Monthly-mean zonal and meridional winds at the 150 hPa and 700 hPa vertical 

levels were obtained from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) 40-Year Re-Analysis dataset (ERA-40; 1958-2001; Uppala et al. 2005; ), 

NOAA’s NCEP Reanalysis (1949-onwards; Kalnay et al., 1996), and NOAA’s 20th 

Century Reanalysis (20CR; 1891-2008; Compo et al., 2011). The 20CR dataset was 

developed from short-term forecasts generated from assimilation of synoptic surface/sea-

level pressure and monthly SST and sea-ice boundary conditions.   

 The linear trend in vertical wind-shear was analyzed in five IPCC-AR4 20th 

century simulations and 21st century projections (with SRES A1B scenario); the gridded 

monthly-averaged data was downloaded from the Program for Climate Model Diagnosis 

and Intercomparison. The analyzed models are from the US National Center for 

Atmospheric Research (NCAR-CCSM3.0), NOAA’s Geophysical Fluid Dynamics 

Laboratory (GFDL-CM2.1), U.K. Meteorological Office’s Hadley Center (HadCM3.0), 

Japan’s Meteorological Research Institute (MRI-CGCM2.3.2a), and Germany’s Max 

Planck Institute (ECHAM5). 

 The vertical wind shear was defined as the magnitude of the vector difference of 

the monthly 150 and 700 hPa winds (=ห	 ሬܸԦଵହ଴	୦୔ୟ െ	 ሬܸԦ଻଴଴	୦୔ୟห). These levels were chosen 

instead of the commonly used 200 and 850 hPa levels (e.g., Goldenberg et al., 2001; 
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Zhang and Delworth 2006; Vecchi and Soden 2007b) following Vecchi and Soden’s 

recommendation. The choice is apt as seen later from the displayed vertical wind 

structure (Figs. 2.1b-d and 2.2). 

 

2.3 Changes of Tropical Atlantic Wind Shear in IPCC-AR4 

2.3.1 Atmospheric reanalyses 

 The vertical wind-shear trend is evaluated across two 20th century periods: For 

the first (1949-2008), In this recent 60-year period reanalysis from NOAA’s 20CR and 

NCEP, the shear trend is +6.53 and +8.73 m/s/century, respectively, yielding a mean 

trend of +7.63 and standard deviation (SD) of ±1.10 m/s/century, as indicated in Table-

2.1. The individual trends in zonal and meridional wind shear, also listed in the Table, 

show the former to be dominant. For the second period (1958-2001), three reanalysis-

based estimates are available: +7.15 (20CR), +14.65 (NCEP), and +8.77 m/s/century 

(ERA-40); yielding a mean trend of +10.19 and SD of ±3.22 m/s/century.  

Zonal-wind shear, which again dominates wind-shear trends, is displayed in Fig. 

2.1a. In the second-half of the 20th century, all three reanalyses show positive trend up to 

1980s and a negative one since, albeit with varying magnitude. The decreasing shear in 

recent decades is consistent with the pronounced increase in Atlantic TC activity in the 

same period (Kossin et al., 2007; Emanuel, 2005a; Emanuel, 2007; Holland and Webster, 

2007; Wu and Wang, 2008; Nigam and Guan 2011). The variation of zonal wind-shear 

across the full 20th century (from NOAA’s 20CR reanalysis) is also shown in Fig. 2.1a, 

for context; the 1901-2008 period trend (blue dashed line) is slightly negative (−0.24 
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m/s/century), i.e., very different from the steep positive trend in the latter part of the 

century (+6.53 m/s/century).   

The vertical profile of the fall-season (June to October: JASO) zonal wind (and 

its linear trend), averaged over MDR, is shown in Figs. 2.1b-d to assess the relative role 

of the upper and lower troposphere in generation of the zonal-wind shear trend. As 

apparent, the shear trend arises, largely, from the upper-level where zonal wind and its 

trend are both positive.  

2.3.2 IPCC-AR4 Simulations of 20th Century 

 The vertical wind-shear trend in IPCC-AR4 simulations of 20th century (1901-

1999) climate are noted in Table-2.1. The ensemble-mean trend is positive and 

statistically significant in 2 of the 5 model simulations: GFDL-CM2.1 (+1.16 ±0.45 

m/s/century based on a 3-member ensemble) and HadCM3.0 (+0.65 ±0.21 m/s/century 

based on 2-member ensemble); zonal wind shear dominates the trend, as in observations. 

In the other simulations (CCSM3.0, ECHAM5, and MRI-CGCM), the SD of the intra-

ensemble trends is 2-3 times larger than the ensemble-mean, leading to statistically 

insignificant wind-shear trends.  

The ensemble-mean vertical profile of the MDR-averaged fall zonal wind (and 

related linear trend) is shown for three 20th century simulations in Figs. 2.2a-c. In both 

GFDL-CM2.1 and HadCM3.0, upper-levels exhibit larger trends, as in observations; only 

the GFDL profile exhibits a negative trend (albeit weak) at the lower level, like 

observations (Figs. 2.1b-d). The HadCM3.0 profile is essentially unchanged at lower-

levels while the CCSM3.0 one is likewise at all levels.   
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 Based on similar sign of the statistically-significant vertical wind-shear trend and 

the similar vertical profile of zonal-wind trends in the GFDL-CM2.1 and HadCM3.0 20th 

century simulations and corresponding observations/reanalyses, these two models are, to 

an extent, deemed credible in their 21st century projections of these quantities; our 

working hypothesis. 

2.3.3 IPCC-AR4 projections of 21th Century 

Several recent modeling studies (and related analysis) project a reduction in TC 

activity in the 21st century, based largely on the significantly increased wind-shear over 

MDR in the IPCC-AR4 projections (Garner et al., 2009; Vecchi and Soden, 2007b; 

Gualdi et al., 2008; Bengtsson et al., 2007; Zhao et al., 2009). As noted earlier, many of 

these studies analyze only the IPCC 21st century projections, and not 20th century 

simulations that can provide a reading on model performance. Table-2.1 shows the 21st 

century vertical wind-shear trends from all 5 model projections, using all publicly 

available ensemble members.  

The fall wind-shear trend is negative in 3 of the 5 projections: −2.42 ±0.36 

(CCSM3.0); −0.40 ±0.55 (GFDL-CM2.1); and −0.05 ± 1.11 m/s/century (MRI-CGCM). 

The trend is however statistically significant only in CCSM 3.0 where SD of the intra-

ensemble trends is smaller than the ensemble-mean; not so, in the other two. The GFDL 

trend can be viewed as marginally significant as the zonal and meridional wind-shear 

trends are, individually, significant by the above measure (cf. Table-2.1).1 In contrast, 

the trend is positive and statistically significant in the ECHAM5 projections (+1.67 ±0.95 

                                          
1And because 2 of the 3 ensemble members exhibit negative wind-shear trends (−1.11,−0.30), like the 
ensemble-mean (−0.40 m/s/century) which, of course, did not clear the significance test, as noted above.  
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m/s/century). HadCM3.0 exhibits a much stronger positive trend (+7.69 m/s/century) but 

its statistical significance cannot be assessed on account of its 1-member ensemble. 

 If 21st century shear trend projections are weighted by 20th century model 

performance (from simulation-observation intercomparison), only two projections stand 

out: GFDL-CM2.1 and HadCM3.0. The CM2.1 projects a negative zonal-shear tendency 

(−0.99 ±0.84 m/s/century) based on a 3-member ensemble, while the 1-member 

HadCM3.0 ensemble projects a positive tendency (+7.67 m/s/century); the ensemble-

mean, fall-season MDR zonal wind profiles (and related linear trend) are shown in Figs. 

2.2d-f. 

Given the discord, one can only conclude that there is no unequivocal evidence 

from the analyzed IPCC model projections for increasing wind-shear over MDR! As 

such, this analysis questions the widely reported findings based on indiscriminate multi-

model averaging; weighting all model projections equally may find resonance in ideals of 

the body politic, but a rational basis is needed for its practice in scientific analysis. 

 

2.4 Summary and Conclusions 

The evidence for a statistically-significant negative trend in MDR’s zonal wind-

shear in IPCC-AR4’s 21st century projections comes from 2 of the 5 analyzed climate 

projections. Only one of the 2 projecting models (GFDL-CM2.1) however passed our 

rudimentary model-performance check. As such this evidence must be considered 

preliminary. The other model that cleared the performance check (HadCM3), on the other 

hand, projects a positive wind-shear trend but its statistical significance remains to be 

ascertained. Regardless of the significance outcome, a compelling case for an increasing 
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vertical wind-shear over MDR cannot be made from analysis of the five leading IPCC-

AR4 simulations and projections – in contrast with reported claims based on 

indiscriminate multi-model averaging.   

Should analysis of additional AR4 (and soon-to-be-available AR5) simulations and 

projections indicate negative wind-shear trends over MDR, it would dampen prospects of 

a dynamical offset of the effects of anthropogenic SST warming on Atlantic hurricane 

activity. Negative wind-shear trend should, in fact, exacerbate the thermodynamic 

influence of rising SSTs on the hurricane activity. An analysis of the simulated and 

projected SSTs is underway.  
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2.5 Tables 

Table-2.1: The linear trend in vertical shear of the seasonal zonal, meridional, and vector wind 
over the Main Development Region (6°–18°N, 20°60°W) of the tropical cyclones in the Atlantic 
basin. The fall linear trend in (u150−u700), (v150−v700), and	ห	 ሬܸԦଵହ଴	 െ 	 ሬܸԦ଻଴଴	ห is noted in units of 
m/s/century; the standard deviation (SD) is noted in parenthesis when multiple estimates are 
available. The first row documents the observed shear trend in two recent periods (1949-2008, 
1958-2001) from atmospheric reanalysis (NOAA 20CR, NOAA NCEP, ECMWF ERA40); the 
mean trend and related SD are noted when more than one reanalysis estimate is available. The 
second row documents the linear shear-trend in the 20th century climate simulations (1901-
1999) from five IPCC AR4 models (NCAR-CCSM3.0, GFDL-CM2.1, HADCM3.0, ECHAM5, 
and MRI-CGCM2.3.2a), with varying number of ensemble members (also noted), while the third 
row does the same for the 21st century climate projections (2001-2099) obtained from the same 
models. Trends deemed statistically significant (i.e., when ensemble-mean is larger than SD) are 
bold-faced; positive trends are in red. The result from Vecchi and Soden’s (2007) analysis of 21st 
century projections is noted in the bottom sub-row, for context.  
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2.6 Figures 

 

Figure 2.1: (a) Fall-season zonal wind shear (u150hPa – u700hPa) over the Main Development 
Region of the tropical cyclones in the Atlantic basin in three atmospheric reanalyses: NOAA 
20CR (1901-2008, blue); NOAA NCEP (1949-2008, black); and ECMWF ERA40 (1958-2001, 
red). Colored dashed lines depict the linear trend in zonal wind shear; the trend period and value 
is noted in the legend. For NOAA 20CR, the trend is computed for the full period as well as the 
NCEP reanalysis period (1949-2008). (b)-(d) Vertical profiles of the MDR-averaged zonal wind 
(and linear trend) are intercompared in the common reanalysis period (1958-2001): The 44-year 
climatological fall-season profile is shown in black; the corresponding profile with the linear 
trend (over the 44-year period) applied for a century is shown in red; a century-long application 
was used to highlight the trend structure.   
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Figure 2.2: As in Figure 1 but for ensemble-mean profiles from the IPCC AR4 20th Century 
climate simulations (1901-1999; upper panels, a-c) and 21st century climate projections (2001-
2099; lower panels, d-f). Results from three commonly analyzed models are shown in both cases: 
GFDL-CM2.1 (a,d); HADCM3.0 (b,d); and NCAR-CCSM3.0 (c,f).  
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Chapter 3: Statistical Modeling of Atlantic Hurricane Counts from 

Wind Shear and SST Variations in 20th Century Observations, and 

the IPCC-AR5 Simulations and Projections 

 

3.1 Introduction 

In statistical modeling of the Atlantic tropical cyclone (or TC) counts, the 

tropical Pacific and Atlantic SSTs as well as the vertical shear of the horizontal wind over 

the tropical Atlantic basin are key predictors (e.g., Kim and Webster 2010), representing 

the combined effects of large-scale and regional dynamics, and local thermodynamics. 

This chapter focuses on the observational record for the second half of the 20th century, 

the IPCC-AR5 climate simulations for the 20th century, and the IPCC-AR5 climate 

projections for the 21st century. The simulations and projections from the five leading 

IPCC-AR5 climate system models (NCAR-CCSM4.0, GFDL-CM3.0, HadCM3.0, MPI-

ESMLR, and MRI-CGCM3.0) are analyzed, including all available ensemble members 

from each model. As the horizontal resolution of these models is too coarse for capturing 

tropical cyclone development, any inference about the changing statistics of tropical 

cyclone counts and/or intensity can only be drawn by statistical and/or dynamical 

downscaling of the century-long climate simulations and projections.  

Dynamical downscaling can yield improved simulation and projection of 

regional circulation and hydroclimate from the higher-resolution representation of 

physical (orography, coastlines, vegetation, lakes, etc.) and dynamical (fronts, meso-scale 

convective complexes or MCS) features, and their interaction with the imposed large-
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scale horizontal flow at the lateral boundaries of the region. But these models are, 

computationally, no less burdensome, especially in context of downscaling the century-

long IPCC-AR5 simulations and projections from multiple models, each with several 

ensemble members. The benefits of dynamical downscaling are moreover, seldom, fully 

realized as the prism being used is still a complex weather forecasting model with 

numerous parameterizations of physical processes. 

An alternate to dynamical downscaling is statistical downscaling of regional 

circulation and hydroclimate. The goal is still the same – a more contextual 

representation of regional flow and precipitation, consistent with the regional terrain, 

land-surface types, coastlines, and other physical attributes of the lower boundary – but 

with the methodology used in connecting the larger-scale flow variations to regional 

climate circumventing the complex weather forecasting models. The larger-to-regional 

scale links are instead provided by a statistical model that is developed using existing 

observations. An important premise of this approach is that the observational record used 

in statistical model development be ‘rich’ in spatiotemporal complexity so that the 

obtained statistical model remains relevant with independent data (in observations and 

IPCC-AR5 simulations and projections). 

Multivariate linear regression models for the Atlantic tropical cyclone counts are 

developed in this chapter using the zonal-wind shear and Atlantic SST as predictors. 

Optimal predictors (e.g., the spatial domain used for defining the zonal-wind shear 

anomalies) were first selected based on extensive univariate correlation analysis of the 

observed Atlantic TC counts with atmospheric observations (reanalysis data). A 

multivariate linear regression model for TC counts was then developed, separately, for 
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the second-half of the 20th century climate observations and climate model simulations. 

The reconstruction of TC counts with the statistical models in the training period 

provides a baseline evaluation of the models’ performance, and an assessment of the 

relative roles of zonal-wind shear and SST anomalies in influencing TC counts in the 

observed and simulated climates. Such benchmarking would seem important when using 

these statistical models to infer changes in TC counts in 21st century climate projections.  

The data sets and the analysis technique are briefly discussed in section 3.2; the 

statistical modeling of Atlantic hurricane counts using wind-shear and SST observations 

in section 3.3; the reconstruction of hurricane counts from the IPCC-AR5 model 

simulations of wind-shear and SST in section 3.4; and the projection of hurricane counts 

from the IPCC-AR5 model projections of regional wind-shear and SST in section 3.5. 

 

3.2 Data sets and Methodology 

Monthly-mean zonal winds at the 200 hPa and 850 hPa vertical levels were 

obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis dataset (ERA-40; Uppala et al. 2005) for a 41-year (1958-1988) period, ERA 

interim (Berrisford et al., 2009) for a 21-year (1989-2009) period, and NOAA’s NCEP 

Reanalysis (Kalnay et al., 1996) for a 9-year (1949-1957) period. Monthly-mean Sea 

Surface Temperature (SST) was from the Extended Reconstructed Sea Surface 

Temperature Version 3 (ERSSTv3; Smith et al., 2008) for a 61-year (1949-2009) period. 

The hurricane data for Saffir-Simpson category storms 1 to 5 for a 61-year (1949-2009) 

period was downloaded from the NOAA Hurricane Best Track Database. 
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 The wind shear, SST, and the Atlantic hurricane counts were analyzed in five 

IPCC-AR5 20th century simulations (i.e., climate system model integrations for the 20th 

century with the observed time-dependent greenhouse gas concentrations) and 21st 

century projections with a medium mitigation scenario of Representative Concentration 

Pathway 4.5 (RCP4.5), where carbon dioxide concentrations stabilize at 650 ppmv near 

the year 2100, but eventually reach a value of 1350 ppmv. The gridded monthly-averaged 

data was downloaded from the Program for Climate Model Diagnosis and 

Intercomparison. The analyzed models are from the US National Center for Atmospheric 

Research (NCAR-CCSM4.0), NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL-

CM3.0), U.K. Meteorological Office’s Hadley Center (HadCM3.0), Germany’s Max 

Planck Institute (MPI-ESMLR), and Japan’s Meteorological Research Institute (MRI-

CGCM3.0). 

 The vertical wind shear was defined as the difference of the monthly 200 and 

850 hPa winds (=U200 hPa−U850 hPa) following the commonly used levels (Goldenberg et 

al., 2001; Zhang and Delworth 2006; Vecchi and Soden 2007b) and compared with the 

vertical wind shear defined using the adjacent 150 hPa and 700 hPa levels (U150 hPa−U700 

hPa), and also with the magnitude of the vertical wind shear of the difference of 200 and 

850 hPa winds (|U200 hPa−U850 hPa|). 

 Statistical analysis was used to select the best predictor regions for Atlantic wind 

shear and SST, using correlations with Atlantic hurricane counts as the metric. The 

robustness of the linear trend in wind shear, SST, and reconstructed hurricane counts 

(from a multi-linear regression model) was assessed using the student’s t-test at 95% 

significance level. 
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3.3 Statistical Modeling of Atlantic hurricane counts from wind-shear and 

SST observations  

 Statistical modeling of Atlantic hurricane activity is based on three representative 

methods: the first uses empirical relationships between observed hurricane activity and 

the vertical wind-shear (related to large scale atmospheric dynamics) and SST (related to 

oceanic thermodynamics) variations; the second downscales dynamical information from 

a climate system model using a high resolution regional climate model; while the third 

uses both of the above approaches.  For instance, to forecast hurricane activity, 

Klotzbach (2007) uses indices of the ENSO phase, SST over the east Atlantic, and of sea 

level pressure (SLP) over the tropical Atlantic along with statistics of the storms in the 

prior season to issue an outlook forecast for hurricanes. On the other hand, Vitart et al. 

(2007) utilized dynamical information from coupled ocean-atmosphere climate models 

directly for seasonal hurricane prediction. In contrast, Kim and Webster (2010) 

developed a hybrid forecast model for seasonal hurricane activity in the North Atlantic, 

based on a dynamical coupled ocean-atmosphere model forecast of seasonal circulation 

(wind-shear specifically) and empirical prediction models. 

3.3.1 Sensitivity experiment 

Kim and Webster (2010) identified zonal-wind shear in the Main Development 

Region (MDR; 260ºE-320ºE,10ºN-20ºN) of the tropical Atlantic (referred as KW-

MDRUz), and SSTs in the North Atlantic basin (referred as KW-NATLSST) as optimal 

predictors of hurricane activity. The authors showed that additional consideration of SST 

variability in a slightly different MDR region (280ºE-310ºE, 5ºN-15ºN) and the Niño 3 
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region (210ºE-270ºE, 5ºS-5ºN) did not increase the skill score significantly, suggesting 

that this additional information may be redundant on account of it being already included 

in the vertical wind shear.  

To assess optimality of predictors, sensitivity experiments are conducted for 

identifying the strongest zonal-wind shear and SST correlations of Atlantic hurricane 

counts over the Atlantic region. For sensitivity experiments, three wind shears are 

considered: the zonal wind difference at the level of 200 and 850 hPa, and 150 and 700 

hPa ((U200 hPa−U850 hPa, U150 hPa−U700 hPa: only shown in Table-3.1), and the magnitude of 

the zonal wind difference at the level of 200 and 850 hPa (|U200 hPa−U850 hPa|). The 

influence of averaged wind shear in four regions is evaluated; here and in the SST box 

definitions, ‘KW’ refers to Kim and Webster (2010), ‘KN’ to Kim and Nigam, and ‘VS’ 

to Vecchi and Soden (2007b). The regions are marked in Fig. 3.1. 

 KW-MDRUz:  260ºE-320ºE, 10ºN-20ºN (also defined earlier) 

 KN-MDRUz:   270ºE-300ºE, 10ºN-20ºN 

 VS-MDRUz:  300ºE-340ºE, 8ºN-15ºN 

 VS-SERUz:  270ºE-320ºE,13ºN-25ºN  

Likewise, the influence of SST variability in four regions of the Atlantic is assessed. The 

regions sample SST variability in both the tropical and extratropical basins, and are 

marked in Fig. 3.1 

 KN-MDRSST: 270ºE-313ºE, 7ºN-16ºN  (tropical SST box) 

 KW-MDRSST: 280ºE-310ºE, 5ºN-15ºN  (tropical SST box) 

 KW-NATLSST: 330ºE-350ºE, 35ºN-45ºN (also defined earlier; extratropical) 

 KN-NATLSST: 330ºE-350ºE, 38ºN-47ºN (extratropical box) 
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The influence of wind shear and SST on hurricane counts is examined in two 

periods: 1981-2009, for comparison with Kim and Webster’s (2010) analysis, and 1958-

2005, the target analysis period (the common period between NCEP reanalyses and 

IPCC-AR5 model simulations). To compare results as closely as possible with Kim and 

Webster’s in the 1981-2009 period, the wind shear and SST indices are constructed 

exactly as in their analysis: wind shear from ERA40 from 1981 to 1988, and from ERA-

interim from 1989 to 2009; SSTs from ERSSTv3 from 1981 to 2009.  

Figure 3.1 depicts the spatial distribution of correlation coefficient between both 

wind shear and SST over the Atlantic and the observed hurricane numbers. The vertical 

wind shear (U200hPa−U850hPa), following our definition, has a wide and significant 

negative-correlation (overall, R<−0.7) with the hurricane numbers from the tropical East 

Pacific to the tropical Atlantic (Fig. 3.1a). While the shear of the magnitude of the zonal 

wind difference at the level of 200 and 850 hPa (=|U200hPa−U850hPa|), following Kim and 

Webster (2010)’s definition, has a relatively lower negative correlation (overall, R<−0.6) 

distributed mainly over the tropical Atlantic (Fig. 3.1b). For SST, the correlation structure 

(Figs. 3.1d-e, especially panel d) resembles the Atlantic Meridional Mode (AMM) which 

was shown to be significantly linked to the Atlantic hurricane activity (Kossin and 

Vimont 2007, Vimont and Kossin 2007); Saunders and Lea (2008) have also argued for a 

link between Atlantic warming and the increasing hurricane counts in that basin. The SST 

correlations also exhibit close resemblance with the Atlantic Multidecadal Oscillation’s 

SST structure (Guan and Nigam 2009), consistent with the known link between AMO 

and Atlantic TC counts (e.g., Nigam and Guan 2011).  
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For the more extended 1958-2005 period, the magnitude of the wind shear and 

SST correlation coefficients is smaller, not surprisingly, as reflected also in some 

shrinkage of the shaded areas. Interestingly, the direct linkage of Atlantic hurricane 

counts with eastern tropical Pacific SSTs is greatly reduced in the extended period 

analysis. This is not necessarily an indication of reduced ENSO influence in the longer 

period but just a reflection of more energetic ENSO activity in recent decades. As noted 

earlier, ENSO’s influence on Atlantic TC counts is likely exerted through modulation of 

wind shear over the MDR region of the tropical Atlantic. All correlation coefficients 

remain still statistically significant at 95% significance level (p < 0.05).  

Table-3.1 shows the 200-850 hPa vertical wind shear (U200 hPa−U850 hPa) to have 

the best correlation coefficient values (−0.826 and −0.695, shown in blue) for both 

periods, while the 150-700 hPa zonal wind shear (U150 hPa−U700 hPa) has the lowest 

correlations of the three. The magnitude of the 200-850 hPa wind shear, |U200 hPa−U850 

hPa|, is shown to have a marginally lower correlation than the highest one in all areas 

excepting the VS−MDR region. In the shorter period, the highest wind shear correlations 

are found in the KN−MDRUz region, and the highest SST ones in the KN-NATLSST 

region. These correlations are slightly higher than those for the corresponding regions in 

Kim and Webster (2010), and the wind-shear ones considerably higher than those noted 

in Vecchi and Soden (2007b). Also, and interestingly, SSTs in the midlatitude Atlantic 

basin are more strongly connected with Atlantic TC counts than those in the tropical 

Atlantic itself; at some odds with expectations rooted in dominance of the 

thermodynamic control of regional SSTs.  
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In the longer period (1958-2005) analysis, the 200-850 hPa wind shear is again 

most strongly correlated but in the Kim and Webster identified region in the tropical 

Atlantic; these authors, of course, considered not the shear, but its magnitude which is not 

as strongly correlated (cf. Table 3.1). In the longer period analysis, SSTs in the tropical 

Atlantic exert considerably more influence on TC counts than those in the midlatitude 

basin, consistent with canonical understanding.    

Table-3.2 provides the results of the sensitivity of the Atlantic TC count 

reconstruction to various spatial averaging regions for the wind shear and SSTs in both 

the recent and extended analysis periods. The sensitivity is indicated using the correlation 

coefficient between the observed and reconstructed TC counts, and from the Root Mean 

Square Errorr (RMSE) between the two time series.  

In the shorter recent period (1981-2009), the closest reconstruction is obtained 

from the MDR wind shear (KN-MDRUz) and midlatitude basin SSTs (KN-NATLSST); the 

correlation coefficient is 0.86 and a RMSE of 1.5. In the longer period (1958-2005), the 

highest correlation (0.74) and smallest RMSE (1.77) are obtained with the MDR wind 

shear (albeit in a slightly different domain, KW-MDRUz) and MDR SSTs (KN-MDRSST). 

It is interesting that almost all choices of averaging regions for wind shear and SSTs yield 

high correlations and low RMSE; for instance, in the extended period, correlations range 

from 0.732 to 0.741, while RMSE are in the 1.769-1.795 range. 

3.3.2 Statistical modeling of Atlantic TC Counts 

Based on the sensitivity experiments, two multi-linear regression models are 

built using best predictor-combinations of wind shear and SST in each period, which are 

KN-MDRUz and KN-NATLSST, and KW-MDRUz and KN-MDRSST in the shorter and 
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longer periods, respectively. The TC count variations generated by the statistical models 

are shown in Figure 3.2. The reconstruction by KN-MDRUz and KN-NATLSST (dashed 

red line), the best predictor-combination in the 1981-2009 period, well captures the 

observed hurricane numbers except in the years of 2001, 2005, and 2006. The same 

predictors (solid red line) are however not as effective in the extended period, as evident 

from the misfit in the earlier period (1958-1980). The optimal predictors in the extended 

period – KW-MDRUz and KN-MDRSST – the best combination of predictors in the period 

1958-2005 lead to closer reconstruction, as evident from the higher correlation (0.741 vs. 

0.717) and lower RMSE (1.769 vs. 1.839), noted in the Fig. 3.2 legend.  

The statistical models constructed for Atlantic TC counts are tested in an 

independent past-period (1949-1957). This period is among the earliest for which upper-

air data was collected, predating the International Geophysical Year (1958) when 

coordinated upper-air observations became more common and routine. This independent 

sub-period is thus one with potentially more data uncertainties than any other in the 

analyzed record, especially in context of the 200-850 hPa wind shear. Notwithstanding 

this drawback, the TC counts reconstructed in this independent sub-period are compared 

with the observed counts in Fig. 3.3. The zonal wind shear used in the reconstruction 

comes from NOAA’s NCEP reanalyses since the ERA40 data commences in 1958. The 

hindcast/reconstruction by the regression model using KN-MDRUz and KN-NATLSST has 

a higher correlation of 0.769 (and also a higher RMSE of 3.006) with the observed counts 

than the one based on KW-MDRUz and KN-MDRSST. Both models will be used to 

reconstruct TC counts from the IPCC-AR5 simulations of the 20th century climate, as one 
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model leads to higher correlations while the other to lower RMSE in the independent sub-

period. 

 

3.4 Reconstruction of Atlantic hurricane counts from IPCC-AR5 simulations 

of 20th century SST and wind shear  

The predictors identified from analyses of observations for the second half of the 

20th century are used in this section to reconstruct hurricane counts from simulated values 

of SST and wind shear; the averaging domain for these variables remain the same as 

before, i.e., remains based on prior observational analysis. Using the same two sets of 

predictors (and predictor definitions), different multivariate regression models are 

constructed for the IPCC-AR5 climate system models: One regression model for each 

IPCC-AR5 model, totaling ten regression models (2 statistical models x 5 IPCC-AR5 

simulations).  

In the IPCC archives, there exist several 20th century simulations from each AR5 

climate system model, i.e., an ensemble of simulations, with the number of ensemble 

members range from 3 in case of the MPIESMLR and 10 for the HADCM3 model. The 

availability of several ensemble simulations from each model provides interesting 

investigative opportunities: For example,  

 Analysis of the ensemble-mean simulation allows one to focus on the long-term 

trend since averaging across ensemble members leads to suppression of 

interannual-to-multidecadal variability as each ensemble member – a coupled 

ocean-atmosphere-land-surface-cryosphere simulation – is potentially in a 
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different phase of natural variability. The ensemble-mean simulations are used in 

developing the statistical models for Atlantic TC counts in this chapter (Chapter 

3), in view of our interest in investigating the long-term trend in hurricane 

counts. These statistical models will this be unable to represent count variations 

on interannual-to-multidecadal timescale, of course, by design.  

 On the other hand, use of all the ensemble members in statistical reconstruction 

of TC counts should allow for a modeled temporal structure rich in interannual-

to-multidecadal variability. This approach is adopted in Chapter 4 where decadal 

forecast of TC counts is of primary interest.  

 

In the following, the ensemble-mean simulation of 20th century climate – 

specifically, 200-850 hPa wind shear and SSTs during the 1958-2005 period – produced 

by each IPCC-AR5 model is used to develop a statistical model for TC counts. As 

climate simulations from five IPCC-AR5 models are analyzed, 5 statistical models are 

developed for each predictor set. Figure 3.4 shows the performance of the statistical 

models for both predictor sets, by first showing the unweighted, multi-model average of 

the reconstructed counts in the 1958-2005 period. The reconstructed counts are devoid of 

interannual-to-multidecadal variations, not unexpectedly; they however do reflect, 

reasonably, the observed long-term trend in counts. Both predictor sets (thick red and 

blue lines) yield qualitatively similar results but with the optimal predictors for the latter 

period (thick red line) yielding a slightly weaker increasing linear trend in counts, as 

indicated in the figure legend. The linear trend in modeled TC counts is further 

investigated in Figure 3.7. 
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Specifically, the KN-MDRUz and KN-NATLSST based count reconstruction is 

correlated at 0.460 with observations (with RMSE of 2.446) while the model based on 

KW-MDRUz and KN-MDRSST is correlated at 0.392 (with RMSE of 2.440), in accord 

with the earlier analysis. These correlations are notably less than those of the statistical 

models based on the single record of wind shear and SST observations (~0.7), which 

allows the latter models to represent both the long-term trend as well as interannual-to-

multidecadal variability in counts.  

It is of some interest to examine the basis of TC count reconstruction using the 

IPCC-AR5 ensemble-mean climate simulations. Figure 3.5a-e shows low correlations (|R| 

< 0.3) for the wind shear predictor; even positive correlation in one case (MRI-CGCM3). 

Again, this likely reflects, not weakness of the models, but the important role of 

interannual-to-multidecadal variability in generating correlations between TC counts and 

Atlantic wind shear, such as those manifest in Fig. 3.1a-c. The SST correlations in the 

ensemble-mean simulations are shown in Fig. 3.5f-j, and are notable for the absence of 

strong correlations in the western tropical Atlantic basin, especially the Caribbean Seas 

(as in observations, cf. Fig. 3.1d-e).   

The statistical models developed from ensemble-mean simulations of wind shear 

and SST are compactly shown using the scatter-plot in Figure 3.6; the 5 red and 5 blue 

dots depict the regression coefficients of the two optimal predictors in the recent and 

extended period, respectively; concentric circles denote the mean regression coefficients 

(the average of 5 dots). The regression coefficients of the observationally-rooted models 

are indicated by solid red and blue squares. All regression models – observation as well 

as the IPCC simulation based – exhibit +ve coefficients for the SST predictors (KN-
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NATL and KN-MDR), indicating that warmer SSTs in these regions lead to increased 

Atlantic TC counts. The sensitivity to SSTs ranges from being near-zero in the 

MPIESMLR model to phenomenal in the MRICGCM3; the sensitivity to local (i.e., 

MDR) SSTs is, understandably, larger.  

In contrast with the accord on the sign of the SST regression coefficient, the 

wind shear coefficient exhibits considerable scatter across both the y>0 and y<0 right 

quadrants. This scatter leads to the weakly positive regression coefficients on average, in 

both analysis periods – in contrast with the significantly negative wind shear regression 

coefficients in observation-based models. This sign-disparity could result from the 

suppression of interannual-to-multidecadal variability during construction of statistical 

models based on IPCC simulations; this would have to be ruled out before the disparity is 

attributed to the coupled model simulation deficiencies.  

In summary, the regression models for Atlantic TC counts based on the IPCC-

AR5 simulations show a statistically significant correlation (0.460 and 0.392: both p-

value<0.05) with the observed counts, especially the model constructed with the KN-

MDRUz and KN-NATLSST predictors. This model (red dots and concentric circle) is 

physically closer to the observation based statistical model in the Uz –SST phase space 

(cf. Fig. 3.6).  

The linear trend in the TC counts reconstructed from the IPCC-AR5 simulations 

is shown in Fig. 3.7; the KN-MDRUz and KN-NATLSST predictor set is used for this 

analysis. For each AR5 model, the statistical TC count model is based on the ensemble-

mean simulation of wind shear and SST, as noted earlier. To provide an estimate of 

uncertainty, the ‘fixed’ statistical model is used to construct TC counts from all ensemble 
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members of this AR5 model’s 20th century simulation. The spread between the maximum 

and minimum hurricane counts predicted by the statistical model is shaded in yellow, 

with the yellow ribbon visually denoting the uncertainty in TC counts. The red line 

denotes the ensemble-mean counts, and the dashed red line the linear trend in TC counts. 

  

Three of the five TC count models based on the IPCC-AR5 simulations generate 

statistically significant, positive, and ‘realistic’ linear trends in the 1958-2005 period (cf. 

Table 3.3); the model based counts are plotted in the left column of Figure 3.7: 

 CCSM4 (with 6 ensemble members):   5.04±1.27 counts/century 

 GFDLCM3 (with 5 ensemble members): 3.72±1.48 counts/century 

 HADCM3 (with10 ensemble members): 3.79±1.42 counts/century 

These trends should be compared with observational estimates:  

 Trend in observed TC count data: +4.88±5.32 counts/century 

 Trend in observation-based statistical model: 4.01±3.77 counts/century  

 

All three models showing statistically significant trends in TC counts indicate 

increasing trend in the 1958-2005 period, with similar count-spread. The remaining two 

statistical models generate weakly positive trends but do not pass the statistical 

significance test.  

Further inspection of Table-3.3 reveals that in almost all cases, including the 

reanalysis record, the linear trend in wind shear (KN-MDRUz) cannot be estimated with 

confidence. The trend in extratropical Atlantic SST (KN-NATLSST), on the other hand, is 

almost always estimable at the 95% significance level, and it is this predictor that allows 
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for the estimation of the statistically significant linear trend in TC counts in most cases; 

the SST predictor exerts greater influence (cf. Fig 3.6). 

 

3.5 Projection of Atlantic hurricane counts based on IPCC-AR5 model 

projections of wind shear and SSTs  

Several recent modeling studies (and related analysis) project a reduction in TC 

activity in the 21st century, based largely on the significantly increased wind-shear over 

MDR in the IPCC-AR4 projections (Garner et al., 2009; Vecchi and Soden, 2007b; 

Gualdi et al., 2008; Bengtsson et al., 2007; Zhao et al., 2009). As noted earlier, many of 

these studies analyze only the IPCC 21st century projections, and not 20th century 

simulations that can provide a reading on model performance. Our Table-3.3 shows the 

20th and 21st century trends of vertical wind-shear (KN-MDRUz), SST (KN-NATLSST), 

and the reconstructed and projected hurricane counts from all 5 model simulations and 

projections using all publicly available ensemble members.The statistical significance of 

the trend in hurricane counts was evaluated using the student’s t-test and the 95% 

significance level; the trends that passed the t-test are depicted in bold face: red for 

positive, blue for negative trends, and the rest in black.  

The analysis now seeks to address the seminal question in hurricane modeling 

under global warming: Will TC counts in the Atlantic basin increase with increasing 

greenhouse gas concentrations, and related warming of the planet? The statistical models 

for TC counts were, in fact, constructed to directly address this question, by using the 

ensemble-mean simulations of wind shear and SSTs as predictors. Moreover, by 
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examining the performance of these models in the 1958-2005 period, this study will 

allow us to consider some projections with more confidence than others.  

 For the IPCC-AR5 21st century (2006-2100) projections, in the third row of 

Table-3.3), the wind-shear trend is statistically significant in only two cases (CCSM4 and 

MPIESMLR), and positive in both of those. The wind shear is negative in 2 of the 5 

projections, but insignificant: −1.70 ±1.71 (GFDL-CM3.0) and −0.07 ±4.77 (HadCM3.0). 

HadCM3 – the only model exhibiting statistically-significant and correct-signed wind 

shear in the 20th century – does not show a significant wind shear trend in the 21st century 

projections. In contrast, the SST trend in all five climate projections is positive and 

statistically significant, with the average trend being +1.99 ±0.16 ºC/century. 

The 21st century trend in TC counts inferred from the IPCC projections of wind 

shear and SST are shown in Table-3.3 (third row). Four of the five projected count-trends 

are statistically significant, and all positive. If the 21st century projections of the trend in 

TC counts are sub-selected based on the 20th century model performance (Table-3.3 

second row; model-observation intercomparison), only three projections survive: 

CCSM4.0, GFDL-CM3.0, and HadCM3.0. The mean 21st century TC-count trend from 

this subset is +4.77 ±0.50 counts /century, and results largely from the SST warming 

trend. For these 3 models, the wind-shear trend is significant in only one (CCSM4.0), and 

positive. The increasing trend in counts must therefore result from the dominance of the 

SST effect. The sub-selection of statistically significant results based on the 

corresponding models performance in producing realistic and correctly signed count-

trends in the 1958-2005 period, increasing confidence in the projected count trends. 
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From these results, one can conclude that there is no unequivocal evidence from 

the five analyzed IPCC model projections for the 21st century for increasing wind-shear 

over MDR! In contrast, there is sufficient evidence for increasing TC counts based on the 

increasing trend in Atlantic SSTs in the IPCC-AR5 21st century projections under 

RCP4.5 scenario. This analysis argues against equal weighting of all model projections. 

 

3.6 Summary and Concluding Remarks 

 Atlantic Tropical Cyclone (TC) counts are reconstructed in the 20th century and 

projected in the 21st century from statistical modeling with SST and vertical shear of the 

zonal wind in the Atlantic basin as predictors. The predictors are obtained from both 

observations and IPCC-AR5 simulations of 20th century climate, and from the IPCC-

AR5 projections of 21st century climate. The need for statistical modeling of tropical 

cyclone counts (or the costlier and more challenging dynamical downscaling) is patent as 

the IPCC-class climate system models cannot realistically model regional hydroclimate, 

let alone tropical cyclones, in part, due to the coarse horizontal resolution of the 

component atmospheric models. 

The principal findings in this chapter are 

 Modified definition of zonal wind shear – actual value rather absolute value of 

U200-U850 and a slightly different geographical averaging area – results in it 

becoming a more effective predictor of Atlantic hurricane counts. Focusing on 

the actual rather than absolute value of the shear (as in Kim and Webster 2010) is 

key to this improvement.  
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 Modified predictor definitions/averaging domains led to remarkable 

reconstruction of Atlantic hurricane counts in both the training and independent 

periods; more closely than ever before, as revealed from comparison with Kim 

and Webster’s (2010) analysis.  

 Statistical models for hurricane counts constructed using predictors from the 

IPCC-AR5 ensemble-mean simulations of 20th century climate exhibit similar 

sensitivity to Atlantic SSTs but, often, weaker and opposite-signed sensitivity to 

the tropical Atlantic wind-shear as the observations based statistical models.  

 Modeling of Atlantic hurricane activity with IPCC-AR5 predictors shows a 

stronger count-trend in the 21st century (RPC4.5 scenarios) than in 20th century, 

principally, from the increasing SSTs.  

 The AR5 models disagree on the sign and magnitude of the 21st century trend in 

zonal-wind shear. As such, there is no unequivocal evidence for an increasing 

zonal wind shear in the 21st century projections, and thus limited potential for 

off-setting the count-increase from SST effects. 
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3.7 Tables 

Table-3.1: Correlation coefficients between the time series of zonal wind shear and SST of 
reanalyses and the Atlantic Hurricanes observation; the area averaged wind shear and SST are 
averaged from July to October (JASO) for the periods 1981-2009 (the second row) and 1958-
2005 (the third row). Colored numbers depict the name of averaged area and the highest 
correlation coefficient among the designated areas for sensitivity experiment in two periods; blue 
is for zonal wind shear and red is for SST. 

Period Variable Area 

1981-2009 

 KN-MDRUz KW-MDRUz VS-MDR VS-SER 

U200 hPa-U850 hPa -0.826 -0.808 -0.658 -0.741 

| U200 hPa-U850 hPa | -0.821 -0.807 -0.721 -0.737 

U150 hPa-U700 hPa -0.787 -0.764 -0.595 -0.718 

     

SST 
KN-MDRSST KW-MDRSST KN-NATLSST KW-NATLSST 

0.639 0.624 0.681 0.667 

1958-2005 

 KN-MDRUz KW-MDRUz VS-MDR VS-SER 

U200 hPa-U850 hPa -0.687 -0.695 -0.521 -0.628 

| U200 hPa-U850 hPa | -0.657 -0.670 -0.560 -0.629 

U150 hPa-U700 hPa -0.661 -0.667 -0.434 -0.613 

     

SST 
KN-MDRSST KW-MDRSST KN-NATLSST KW-NATLSST 

0.686 0.675 0.526 0.500 
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Table-3.2: Correlation coefficients and RMSE between the time series of the observed Atlantic 
hurricanes and the reconstruction by reanalyses; the wind shear and SST are averaged from July 
to October (JASO) over the periods 1981-2009 and 1958-2005. 

1981-2009 
Predictors 

KN-MDRUz  

+ 
KN-NATLsst 

KN-MDRUz 

+ 
KW-NATLSST 

KW-MDRUz 

+ 
KN-NATLSST 

KW-MDRUz 

+ 
KW-NATLSST 

CORR(RMSE) 0.861 (1.496) 0.852 (1.541) 0.853 (1.538) 0.836 (1.615) 

1958-2005 
Predictors 

KN-MDRUz  

+ 
KN-MDRsst 

KN-MDRUz 

+ 
KW-MDRSST 

KW-MDRUz 

+ 
KN-MDRSST 

KW-MDRUz 

+ 
KW-MDRSST 

CORR(RMSE) 0.737 (1.781) 0.732 (1.795) 0.741 (1.769) 0.737 (1.781) 

* KN-MDRUz + KN-NATLSST in 1958-2005 : 0.717 (1.839) 
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Table-3.3: The linear trend in vertical shear of the seasonal zonal wind over KN-MDR Region of 
the tropical cyclones in the Atlantic basin, SST over KN-NATL in the North Atlantic basin, and 
reconstructed hurricanes in the period of 1958-2005. The seasonal (JASO) linear trend in the 
shear SST, and reconstructed hurricanes, noted in units of m/s/century, ºC/century, and 
number/century, respectively; the 95% confidence interval (CI) is noted in parenthesis. The first 
row documents the observed shear trend in recent periods (1958-2005) from reanalysis (ECMWF 
ERA40 and ERA-INTERIM for zonal wind shear and NOAA ERSSTv3 for SST). The second 
row documents the linear shear-trend in the historical climate simulations (1958-2005) from 
five IPCC-AR5 models (NCAR-CCSM4.0, GFDL-CM3.0, HadCM3.0, MPI-ESMLR, and MRI-
CGCM3.0), with varying number of ensemble members (also noted), while the third row does the 
same for the rcp4.5 climate projections (2006-2100) obtained from the same models. Trends 
deemed statistically significant (i.e., when it passes student’s t-test at 95% of significance level) 
are bold-faced; positive (negative) trends are in red (blue). 

Atmospheric 
Reanalyses 
(1958-2005) 

KN-MDRUz -3.31(±5.62) 

KN-NATLSST 1.47(±0.75) 

RECON. 4.01(±3.77) 

IPCC 
AR5 

Models 
(1958-2005) 

 CCSM4 GFDLCM3 HADCM3 MPIESMLR MRICGCM3 
Ensemble 

Mean 

# of Ensemble 
members 

6 5 10 3 5  

KN-MDRUz 1.77(±1.93) -0.70(±2.72) 2.84(±2.39) 3.63(±5.15) -0.95(±1.87) 1.32(±1.40)

KN-NATLSST 1.56(±0.42) 1.56(±0.60) 0.94(±0.43) 0.82(±0.64) 0.71(±0.56) 1.12(±0.27)

RECON. 5.04(±1.27) 3.72(±1.48) 3.79(±1.42) 0.01(±0.18) 0.81(±1.70) 2.67(±0.71)

IPCC 
AR5 

Models 
(2006-2100) 

# of Ensemble 
members 

6 1 10 3 1  

KN-MDRUz 1.53(±0.76) -1.70(±1.71) -0.07(±4.77) 3.81(±1.90) 0.96(±1.60) -0.98(±0.74)

KN-NATLSST 0.84(±0.16) 2.94(±0.37) 1.43(±0.73) 0.91(±0.27) 1.77(±0.41) 1.99(±0.16)

FCST. 2.85(±0.49) 7.08(±0.99) 5.11(±2.73) 0.02(±0.08) 4.19(±1.20) 3.21(±0.39)
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3.8 Figures 

 

Figure 3.1: The spatial distribution of correlation coefficients between the observed number of 
Atlantic hurricane and (left) zonal-wind shear and (right) SST of reanalyses: (a) Uz200-850 (U200 hPa-
U850 hPa), (b) |Uz200-850| (|U200 hPa-U850 hPa|) are over the period 1981-2009, (c) Uz200-850 (U200 hPa-U850 

hPa) over the period 1958-2005, (d) SST over the period 1981-2009, (e) SST over the period 1958-
2005. All correlation coefficients are averaged from July to October over each period, and pass 
the significance test at 95% significance level (p<0.05). 
 
* The areas are; Kim and Webster (2010) defined MDR for zonal-wind shear, MDR for SST, and 
the North Atlantic for SST as the area of 260ºE-320ºE and 10ºN-20ºN (hereafter, KW-MDRUz , 
red box in b), 280ºE-310ºE, 5ºN-15ºN (hereafter, KW-MDRSST, red box in d), 330ºE-350ºE, 
35ºN-45ºN (hereafter, KW-NATLSST, green box in d), respectively. Vecchi and Sodden, 2007b 
defined MDR and SER for zonal-wind shear as the area of 300ºE-340ºE, 8ºN-15ºN (hereafter, 
VS-MDRUz, brown box in b) and 270ºE-320ºE, 13ºN-25ºN (hereafter, VS-SERUz, yellow box in 
b). Kim and Nigam define MDR for zonal-wind shear, MDR for SST, and the North Atlantic for 
SST as the area of 270ºE-300ºE, 10ºN-20ºN (hereafter, KN-MDRUz, black box in a), 270ºE-
313ºE, 7ºN-16ºN (hereafter, KN-MDRSST, black box in d), and 330ºE-350ºE, 38ºN-47ºN 
(hereafter, KN-NATLSST, blue box in d), respectively.  
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Figure 3.2: The time series of the observed Atlantic hurricanes (black), the reconstructed 
hurricanes by KN-MDRUz and KN-NATLSST of reanalyses over the period 1981-2009 (red dash-
dotted), by KN-MDRUz and KN-NATLSST over the period 1958-2005 (red solid), and by KW-
MDRUz and KN-MDRSST over the period 1958-2005 (blue solid); the correlation coefficients and 
RMSE value are noted in the legend. 
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Figure 3.3: The time series of the observed Atlantic hurricanes (black) and the reconstructed 
hurricanes from reanalyses of NOAA’s NCEP for zonal wind shear and NOAA’s ERSST V3 for 
SST over the period 1949-1957: the reconstruction of KN-MDRUz and the KN-NATLSST is shown 
in red and of KW-MDRUz and KN-MDRSST is shown in blue; the correlation coefficients and 
RMSE value are noted in the legend. 
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Figure 3.4: The time series of the observed Atlantic hurricanes (black), reconstructed hurricanes 
from reanalyses, which is by KN-MDRUz and KN-NATLSST (red dashed) and by KW-MDRUz and 
KN-MDRSST (blue dashed), and ensemble mean of reconstructed hurricanes from five IPCC-AR5 
models (NCAR-CCSM4.0, GFDL-CM3.0, HadCM3.0, MPI-ESMLR, and MRI-CGCM3.0); the 
wind shear and SST are averaged over the area KN-MDRUz and KN-NATLSST (red solid) and 
KW-MDRUz and KN-MDRSST (blue solid) over the period 1958-2005, respectively. The 
correlation coefficients and RMSE value are noted in the legend. 
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Figure 3.5: The spatial distribution of correlation coefficients between the observed number of 
Atlantic hurricane and zonal-wind shear, Uz200-850 (U200 hPa-U850 hPa), and SST of five IPCC-AR5 
models (a, f) NCAR-CCSM4.0, (b, g) GFDL-CM3.0, (c, h) HadCM3.0, (d, i) MPI-ESMLR, and 
(e, j) MRI-CGCM3.0. All correlation coefficients are averaged from July to October over the 
period 1958-2005. 
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Figure 3.6: The scatter plot of Uz and SST coefficients of multi-regression model from 
reanalyses with KN-MDRUz—KN-NATLSST (red rectangle) and KW-MDRUz—KN-MDRSST (blue 
rectangle) and from five IPCC-AR5 models with KN-MDRUz—KN-NATLSST (red dot) and KW-
MDRUz—KN-MDRSST (blue dot) for the period 1958-2005, respectively. The mean regression 
coefficients of IPCC-AR5 models are shown in circle. 
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Figure 3.7: The time series the Atlantic hurricanes reconstructed by KN-MDRUz and KN-
NATLSST of five IPCC-AR5 models and the linear trends over the period 1958-2005. The 
ensemble mean of reconstructed hurricane numbers is shown in red-solid line and the 
corresponding linear trend and confidence interval are shown in red-dashed line in (a) CCSM4.0, 
(b) GFDL-CM3.0, (c) HadCM3.0, (d) MPI-ESMLR, and (e) MRI-CGCM3.0; the number of 
ensemble members and trend value are noted in the legend. The maximum and minimum of each 
model’s reconstructed hurricanes are shaded in yellow and enveloped grey-solid line. 

  



 

５４ 

Chapter 4: Improved Statistical Modeling of the Atlantic Hurricane 

Activity based on the IPCC-AR5 20th Century Simulations and 

21st Century Projections 

 

4.1 Introduction 

 TC activity depends on three representative dynamic and thermodynamic factors: 

(1) vertical wind shear, (2) thermal energy related to SST, and (3) moist static instability 

(Gray 1968, 1975). TCs intensify as air at low altitudes is drawn toward the low pressure 

at the center of the TC while absorbing heat and moisture from the ocean. This heat is 

subsequently released as the air rises in the eyewall (Gray 1975; Emanuel 1986). The 

resulting decrease of inner core pressure leads to further convergence and heat release. 

This process depends both on structural properties of the TC and on environmental 

properties of the above mentioned dynamic and thermodynamic factors.  

 The vertical wind shear induced asymmetry of hurricane structure is deadly for 

TC growth because it renders the concentration of heat through the entire troposphere 

quite difficult (Gray 1968). A significant amount of vertical tilt due to large wind shear 

makes a coupling of the upper- and lower-level cyclone, not the coupling of lower-level 

cyclone and the upper-level anticyclone (Wang and Holland 1996). Also, mid-level 

warming associated with the vortex tilt (making the coupling of the upper- and lower-

level cyclone) will not only lead to a decrease in convection near the low-level center, but 

it will also lead to increased convection outside the eyewall, which would further disrupt 
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storm symmetry and circulation (Jones 1994, DeMaria 1996 ). Furthermore, a large 

ventilation of heat away from the developing disturbance and the condensational heat 

released by the cumulus convection to the upper troposphere was quickly advected in a 

different direction relative to the heat released at lower levels (Gray 1968). The loss of 

heat in the core would lead to a weaker TC by increasing the inner core pressure (Frank 

and Ritchie 2001, Knaff et al. 2004). 

 The hurricane intensity in the Atlantic is closely related to SST variations in the 

MDR, where ocean waters above 26.5 ºC are generally required for TC formation (Gray 

1979). The North Atlantic SST plays an important role on driving TC intensity (Landsea 

et al., 1999; Knight et al., 2006; Zhang and Delworth, 2006; Trenberth and Shea, 2006). 

Saunders and Lea (2008) showed that a 0.5 ºC increase in SST is associated with a 40% 

increase in hurricane intensity and frequency. TC intensity changes to SST increases 

could be underestimated by an increase in category 4 and 5 TCs by about 80%, as 

indicated by the ensemble projection of CMIP3 models (Bender et al. 2010) 

 The effect of atmospheric static stability on hurricane activity has been 

considered somewhat minor compared to some other factors. Change of tropical 

atmospheric stability may, however, be relatively large in some climate scenarios (Shen 

et al. 2000). Static stability is the atmospheric, thermodynamic indicator of a fluid 

becoming unstable or stable due to the effects of buoyancy neglecting all other inertial 

effects of motion. The troposphere must be potentially unstable to sustain convection for 

an extended period. High static stability is an adverse influence on TC intensity (DeMaria 

et al. 2001; Shen et al. 2000), as it both suppresses deep convection during cyclogenesis 

and reduces the potential intensity (Emanuel 1986, Holland 1997). Shen et al. (2000) 
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stated that hurricane intensity is more sensitive to lapse rate and SST changes over a 

warmer region with a more unstable lapse rate than over a colder region with a less 

unstable lapse rate. 

This chapter focuses on the effect of static stability as well as zonal-wind shear 

and SST on Atlantic hurricane activity, especially on major hurricanes, development of 

advanced multi-variate regression models with a higher prediction performance than 

previously developed statistical hurricane prediction models, and the predictability for 

Atlantic hurricane activity with the five leading IPCC-AR5 models. Data sets are briefly 

discussed in section 4.2, development of statistical model in section 4.3, reconstruction of 

Atlantic hurricanes based on reanalyses and IPCC-AR5 model simulations in section 4.4, 

and the prediction of Atlantic hurricane activity by IPCC-AR5 model projections in 

section 4.5. 

 

4.2 Data sets 

Monthly-mean zonal winds at the 200 hPa and 850 hPa vertical levels and 

atmospheric temperature for calculating potential temperature and static stability were 

obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis dataset (ERA-40; Uppala et al. 2005) for a 41-year (1958-1988) period, and 

ERA interim (Berrisford et al., 2009) for a 21-year (1989-2010) period. Monthly-mean 

Sea Surface Temperature (SST) was from the Extended Reconstructed Sea Surface 

Temperature Version 3 (ERSSTv3; Smith et al., 2008) for a 61-year (1958-2010) period. 

The hurricane data for Saffir-Simpson category storms 1 to 5 for a 61-year (1949-2009) 

period were downloaded from the NOAA Hurricane Best Track Database. The bimonthly 
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Multivariate ENSO Index (MEI) data for a 48-year (1958-2005) period was downloaded 

from the NOAA MEI database. MEI is the measure of monitoring ENSO based on the six 

main observed variables over the tropical Pacific. These six variables are: sea-level 

pressure, zonal and meridional components of the surface wind, sea surface temperature, 

surface air temperature, and total cloudiness fraction of the sky (Wolter 1987; Wolter and 

Timlin 1993). 

 The shear, SST, static stability and the Atlantic hurricane counts were analyzed 

in five IPCC-AR5 20th century simulations with historical runs – a 20th century 

experiment with all forcings and a 21st century projections with a medium mitigation 

scenario of Representative Concentration Pathway 4.5 (RCP4.5) – carbon dioxide 

concentrations stabilize at 650 ppmv near the year 2100 (approximately a CO2 doubling 

at the end of the 21st century). Unlike the projection initialized from the end of freely 

evolving simulations of the historical period 1850-2005 and forced with specified CO2 

concentrations by RCP4.5 scenario, decadal prediction is initialized with observed ocean 

state in 2005 (decadal 2005) and no longer prescribed with CO2 concentrations for the 

10-year (2006-2015) integration, but forced with RCP4.5’s CO2 for the period 2016-

2035. The gridded monthly-averaged data of RCP4.5 and decadal2005 was downloaded 

from the Program for Climate Model Diagnosis and Intercomparison. The analyzed 

models are from the US National Center for Atmospheric Research (NCAR-CCSM4.0), 

NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL-CM3.0), U.K. Meteorological 

Office’s Hadley Center (HadCM3.0), Germany’s Max Planck Institute (MPI-ESMLR), 

and Japan’s Meteorological Research Institute (MRI-CGCM3.0). 
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 The vertical wind shear is defined as the difference of the monthly 200 and 850 

hPa winds (=U200 hPa−U850 hPa) following the commonly used levels (Goldenberg et al., 

2001; Zhang and Delworth 2006; Vecchi and Soden 2007b). The static stability 

parameter (Sp) is defined as the negative sign of atmospheric temperature multiply the 

partial derivative of potential temperature with respect to pressure (≡ −T∂lnθ/∂p), which 

is isobaric form of the thermodynamic equation. 

 

4.3 Development of Statistical Model 

4.3.1 Predictors 

 In chapter 3, the KN-MDR area for zonal-wind shear and KN-MDR or KN-

NATL area for SST were selected as the best predictors for the mult-variate regression 

model based on their empirical relationship with the observed number of Atlantic 

hurricanes. In this research, static stability parameter (Sp) is added as a new predictor for 

the reconstruction and forecast of Atlantic hurricanes. Sensitivity experiments to select a 

suitable pressure level and geographic averaging domain for Sp are conducted. The 

reconstruction of hurricane counts with the Sp effect is used to choose an optimal SST 

averaging domain (KN-MDR or KN-NATL).   

 The vertical profiles of Sp averaged for the areas of KN-MDR, KN-NATL, VS-

MDR, and VS-MDR-Wlat over the Atlantic for the period 1958-2005 are displayed in 

Fig. 4.1. All areas are defined in Figure. 3.1 and VS-MDR-Wlat (300ºE-340ºE, 10ºN-

20ºN) is the area having a somewhat wider latitudinal domain than the  VS-MDR area 

(300ºE-340ºE, 8ºN-15ºN). At the 850 and 200 hPa vertical levels, the KN-MDR region 
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static stability in years with more major hurricane (more than 5) is smaller than in years 

with fewer major hurricane (less than 2), indicating higher static instability in both the 

lower and upper troposphere is linked with intense hurricanes (Fig.4.1a). Note, low static 

stability is a necessary condition for TC intensification, as it sustains deep convection 

(DeMaria et al. 2001; Shen et al. 2000; Emanuel 1986; Holland 1997). As the 850 hPa 

static stability in the KN-MDR region is notably smaller than in the other three regions 

(KN-NATL, VS-MDR, and VS-MDR-Wlat; cf. Figs.4.1b-d), it seems reasonable to 

choose this pressure level and region as the optimal Sp predictor. The correlation 

coefficient (and p-value) between the time series of Sp from atmospheric reanalyses and 

the observed major Atlantic hurricane counts is noted in Table 4.1; the sensitivity 

analysis corroborates the predictor level and region choice as the 850 hPa Sp over the 

KN-MDR region has the strongest correlation ( –0.572, statistically significant at 95%).  

The reconstruction of major Atlantic hurricane counts with predictors from 

atmospheric reanalyses and SST data sets is shown in Table-4.2. The reconstruction 

sensitivity suggests that the KN-MDR SST (not KN-NATL SST) are more influential, 

both with and without the Sp influence. Inclusion of the Sp effect improves count 

reconstruction as evident from higher correlation and decreased RSME. Based on these 

sensitivity experiments, the KN-MDR Uz, KN-MDR SST, and KN-MDR Sp are selected 

as optimal predictors for the statistical modeling of Atlantic hurricane activity. 

4.3.2 Best Subset Regression 

 The reconstruction of Atlantic hurricanes in Chapter 3 targeted the long-term 

trend in hurricane counts, and as such, were based on the IPCC-AR5 ensemble-mean 

simulations and projections. Using predictors from the ensemble-mean 
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simulations/projections helped minimize the interannual-to-decadal fluctuations, and their 

potential aliasing of the long-term count trends. Not surprisingly, the correlation of 

reconstructed and observed counts was rather modest (0.46, RMSE 2.45), and markedly 

lower in comparison with those reconstructed from observation (0.72, RMSE 1.84); see 

Figure 3.4.  

In view of this chapter’s focus on the reconstruction and prediction of the interannual-to-

decadal variations of hurricane counts, it seeks to mine the rich temporal variability 

manifest in the ensemble members. The new statistical model (for each AR5 model) 

seeks an optimum set of predictors from all the ensemble simulations of that model, using 

the best subset technique. Best-subsets regression generates regression models using 

maximum R2 criterion – indicating how much variation in the response is explained by 

the model; the higher the R2, the better the model fits data – by first examining all one-

predictor regression models, and then investigating the two- predictor models giving the 

largest R2, and so on. This process continues until a model emerges yielding a high 

adjusted R2 and predicted R2, and a small standard error of the regression (S).  

Adjusted R2 accounts for the number of factors in the model and is useful for 

comparing models with different numbers of predictors. Predicted R2 indicates how well 

the model predicts responses for new observations; larger values of predicted R2 indicate 

greater predictive ability. S is used as a measure of model fit in regression and represents 

the standard distance of the data values from the regression line, or the standard deviation 

of the residuals. Additional information about statistical terms and formulae is provided 

in Appendix A.  
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4.3.3 Model Validation 

 In regression analysis, multicollinearity refers to the correlation among 

predictors. Moderate multicollinearity may not be problematic. However, severe 

multicollinearity is problematic because it can increase the variance of the regression 

coefficients, making them unstable and difficult to interpret. To measure mlticollinearity, 

the variance inflation factor (VIF) is examined, which measures how much the variance 

of an estimated regression coefficient increases if predictors are correlated. If the VIF is 

equal to 1, then there is no multicollinearity but if the VIF is more than 1 and less than 5, 

then predictors may be moderately correlated. When the VIF is more than 5, the 

regression coefficients are poorly estimated. 

 In choosing the best model between competing multiple regression models, 

Mallows' Cp (process capability statistic) provides a basis for selection, comparing the 

precision and bias of models with the best subset of predictors to the full model using all 

predictors. Mallow’s Cp is also helpful in model bias evaluation. A model with too many 

predictors can be relatively imprecise while one with too few can produce biased 

estimates. A Mallows' Cp value that is close to the number of predictors plus the constant 

indicates that the model is relatively precise and unbiased in estimating the true 

regression coefficients and predicting future responses. 

 If the statistical model will be used to make forecasts, cross-validation is needed. 

Cross-validation is a procedure to assess how well a prediction algorithm (whether or not 

it involves model selection) will do in forecasting the unknown future. The cross-

validation typically involves withholding a data segment, developing the algorithm on the 

remaining data, then using the algorithm to make a prediction for the withheld period. 
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The result is an estimate of the out-of-sample error that more closely represents the actual 

forecast error when the model is used in prediction mode.  

An additional issue needing consideration is overfitting of data. This generally 

occurs when a model is excessively complex, such as having too many predictors relative 

to the number of observations. A model that has been overfitted will generally have poor 

predictive performance, as it can exaggerate minor fluctuations in the data. A cross-

validation analysis is conducted to assess the degree of degradation from potential 

overfitting of the model. All values of correlation coefficients and linear trends are 

validated by student’s t-test at 95% significance level. Additional information about 

statistical terms and formulae is provided in Appendix A. 

 

4.4 Reconstruction of Atlantic Hurricane Activity based on IPCC-AR5 

Simulations 

 Based on correlation analysis, KN-MDR for the zonal-wind shear, KN-MDR for 

SST, and KN-MDR for Sp are chosen as optimal predictors for building the improved 

hurricane statistical model. The predictors are obtained from observational data 

(atmospheric reanalyses, SSTs) and three IPCC-AR5 models (CCSM4.0, HadCM3.0, and 

MPI-ESM-LR) in both the reconstruction/training period (1958-2005) and the 

independent forecast period (2006-2010); the GFDL-CM3.0 and MRI-CGCM3.0 data are 

available in the reconstruction period but not in the forecast period, and as such not used 

in subsequent analysis.   

 From the best subset regression analysis and statistical model validation, a best 

subset of predictors is identified for each AR5 model simulations; the number of selected 
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ensemble member predictors for each variable is noted for each IPCC-AR5 model in 

Table-4.3. It is reassuring that only a small number of ensemble predictors (less than one-

third of the available) are generally used in the statistical reconstructions of all-hurricane 

(AH) and major hurricane (MH) counts; the one exception in the reconstruction with the 

Sp effect, based off CCSM4.0 data. Note, a model with too many predictors (i.e., over-

fitting) can lead to poor predictions in the independent period. In reconstruction for AH 

and MH counts, the same predictor set (zonal-wind shear and SST) is used for 

reconstruction both with Sp (SP) and without the Sp (NOSP) effect, facilitating a clear 

analysis of the Sp effect on Atlantic hurricane counts.  

 The performance of the newly constructed statistical model (KN-SMNEW) is 

compared with that of the old model (KN-SMOLD) in Table-4.4. For both AH and MH, 

the KN-SMNEW model leads to notably improved reconstruction, i.e., higher correlation 

and smaller RMSE, in comparison with those from the KN-SMOLD model. On average 

(across 3 IPCC models), the KN-SMNEW does even better: improves the reconstruction-

observation count-correlation by 49.0% (52.3%) and decreases RMSE by 9.6% (11.8%) 

in the NOSP (SP) based reconstructions for AH (the second row). In addition, the KN-

SMNEW with SP more precisely simulates both AH and MH than the KN-SMNEW NOSP 

does, with an increase of correlation by 12.8% (8.0%) and a decrease of RMSE by 5.1% 

(2.9%) for AH (MH). 

 The time series of the Multivariate ENSO Index (MEI) and the Atlantic 

hurricane counts (AH and MH) are shown together with those constructed statistically 

from observational data and three IPCC-AR5 models in the reconstruction period (1958-

2005) in Figures 4.2 for AH and 4.3 for MH, respectively. In all reconstruction, the KN-
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MDR Uz, the KN-MDR SST, and the KN-MDR Sp are used as the predictors, and the 

KN-SMNEW is used on account of its improved performance (cf. Table-4.4). Both the 

reanalysis and IPCC-models based reconstructions successfully capture the variation of 

observed hurricane counts: the correlation and RMSE is 0.75 (1.76) for the observation 

based and 0.74 (1.76) for three IPCC models based AH reconstruction, and 0.77 (1.18) 

and by 0.67 (1.38) for MH reconstruction. The long-term linear trend in counts is 

however significantly steeper in the model based reconstruction: +7.52 for AH and +4.37 

for MH in comparison with observations (+4.88 for AH and +2.07 for MH); all in units 

of counts/century.   

 The linkage of MEI with the observed and reconstructed AH and MH counts 

highlights the counteracting relationship between ENSO and Atlantic hurricane activity. 

Note, major land-falling hurricanes increase almost three-fold during La Niña events 

relative to El Niño events (Gray 1984; Bove et al. 1998). During El Niño seasons, upper-

level winds from the west increase wind shear over the Atlantic MDR (Goldenberg and 

Shapiro 1996), making conditions less favorable for both TC genesis and intensification.  

 For the five strong El Niño years (1965-1966, 1972-1973, 1982-1983, 1991-

1992, and 1997-1998) depicted by MEI in the period 1958-2005, statistical count 

reconstruction from observations and IPCC models successfully models the 

strikingly below-normal AH and MH counts, but for the 1997-1998 event (which 

is above-normal in the KN-SMNEW reconstruction).  

 For five strong La Niña years (1973-1974, 1975-1976, 1988-1989, 1998-1999, 

and 1999-2000), AH counts are above-normal in only two of the five events 

(1998-1999 and 1999-2000) and MH counts above normal in four of the five 
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strong La Niña events (1975-1976, 1988-1989, 1998-1999, and 1999-2000). 

Count reconstruction from both observed and IPCC model based predictors well 

model the observed AH and MH count anomalies. 

 

4.5 Forecast of Atlantic Hurricane Activity based on IPCC-AR5 Projections 

 As noted earlier, the prediction skill of a statistical model is likely dependent on 

its performance in the reconstruction/training period. The improved statistical model, 

KN-SMNEW with predictors of zonal wind shear, SST, and Sp, was notably successful in 

reconstructing Atlantic hurricane counts in the training period 1958-2005. Atlantic 

hurricane activity is predicted for the 5-year (2006-2010) independent period with 

predictors from two different IPCC-AR5 data sets: the RCP4.5 projections and the 

Decadal 2005 predictions.  

Table-4.5 shows the 5-year (2006-2010) forecast performance for AH and MH 

counts for the KN-SMNEW based on both the RCP4.5 and Decadal 2005 (DEC2005) 

predictors. In both AH and MH predictions, the RCP4.5 based predictions are sub-par, 

i.e., poor forecast performance with low (and even negative) correlations (and high 

RMSE) with observed counts for two of three IPCC models: CCSM4 [–0.44 (4.54) for 

AH and –0.12 (2.31) for MH] and HADCM3 [0.10 (3.63) and –0.21 (2.33)]. In contrast, 

statistical forecasts based on predictors from the IPCC DEC2005 experiments (where the 

ocean state was initialized in 2005) exhibit high accuracy for both AH and MH counts in 

two IPCC models: CCSM4 [0.95 (3.01) for AH and 0.62 (2.29) for MH] and HADCM3 

[0.96 (2.63) and 0.99 (1.57)]. However, for the MPI-ESM-LR model, the RCP4.5 

forecast are slightly more accurate.  



 

６６ 

 As the forecasts based on RCP4.5 and DEC2005 predictors are generated from 

the same statistical model, the difference in prediction outcomes must necessarily result 

from predictor differences. As noted earlier, the ocean-state initialization in the DEC2005 

experiment must nudge the coupled climate system closer to its observed state in 

comparison with the RCP4.5 state where the only reference to real time is through 

external forcing specification (GHG concentrations, volcanoes etc.). On account of low-

frequency internal climate variability, the 2006-2010 climate state in the RCP4.5 

integration need not bear any resemblance to the observed state, making predictions 

based on the RCP4.5 state challenging. 

Note, RCP4.5 is initialized with the end year-state of the IPCC-AR5 historical 

simulations and forced with doubling carbon dioxide concentrations by the RCP4.5 

scenario, while DEC2005 is initialized with the observed ocean state in 2005 

(decadal2005) and with no further increases in GHG concentrations over the 10-year 

(2006-2015) integration  

 To investigate the possibility of additional prediction improvements for Atlantic 

hurricane counts, a weighted Multi-Model Ensemble (3-IPCC MME) is constructed from 

reconstruction results, and applied to the Atlantic hurricane counts predictions generated 

from the same IPCC models; the weighting coefficients for three IPCC models in 3-IPCC 

MME is thus the same in both reconstruction and prediction. Alll forecasted Atlantic 

hurricane counts are verified to be statistically significant through student t-test with a 

95% significance level.  

 The Atlantic hurricane count difference between the 2006-2010 pentad-mean and 

the 48-year climatology (1958-2005) is displayed in Figure 4.5. The pentad-mean AH 
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and MH count anomalies are positive (0.72 and 0.74, respectively) in the forecast period 

vis-à-vis the 48-year climatology. Overall, the pentad count prediction by the observation 

and IPCC-based statistical models show an increase in the pentad-mean hurricane counts, 

in accord with validating observations. In only one case (CCSM4), however, the pentad 

mean counts during the forecast period were decreased with negative anomalies in both 

RCP4.5 and DEC2005. It is noteworthy that the 3-IPCC MME more accurately captures 

the increase of observed Atlantic hurricane counts in both AH and MH during the 

forecast period than the observation based statistical model.  

 Table-4.6 provides a quantitative comparison of the KN-SMNEW hurricane count 

forecast with the 2002-2009 forecasts produced by other groups. The data for these other 

hurricane forecasts comes from Kim and Webster (2010): Kim and Webster 2010 (KW, 

statistical model driven by ECMWF seasonal forecasts of wind shear); Colorado State 

University (CSU, statistical model), NOAA (http://www.cpc. 

noaa.gov/products/outlooks/hurricane‐archive.shtml; statistical model); Tropical Storm 

Risk (TSR, http://www.tropicalstormrisk.com; statistical model); and ECMWF 

dynamical forecast for the 8 years from 2002 to 2009. The performance of the KN-

SMNEW model cannot be strictly compared as it produces forecasts for only 4 (2006-2009) 

of these 8 years; the remaining 4 are reconstructions. Notwithstanding this caveat, the 

KN-SMNEW appears competitive and promising given its high correlation (0.90) and low 

RMSE (1.70), respectively.  
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4.6 Summary and Concluding Remarks  

 Atlantic hurricane counts for the Saffir-Simpson category storms 1 to 5 (all 

hurricanes: AH) and 3 to 5 (major hurricanes: MH) has been modeled in the 

reconstruction/training period (1958-2005) and forecasted in the independent period 

(2006-2010) with the newly developed statistical model, KN-SMNEW. A new 

thermodynamic predictor, static stability parameter (Sp) in MDR region, was used to 

develop and improved statistical model for the Atlantic hurricane counts, both AH but 

MH counts. From the use of two (zonal wind shear and SST) and three (static stability, 

additionally) in statistical modeling, the considerable influence of Sp in count 

reconstruction is documented.   

The goal of this chapter was to move beyond the modeling of the long-term trend 

in hurricane counts (Chapter 3 objective) – to modeling the interannual-to-decadal 

variability in hurricane counts in order to advance decadal prediction of Atlantic 

hurricane counts. In addition to inclusion of the third predictor (Sp), an attempt was made 

to capitalize on the rich temporal variability of the three predictors in the IPCC-AR5 

ensemble members during statistical model development. This was accomplished through 

the use of the best subset regression technique which can, in principle, tap predictor 

values from all ensemble members; in practice, only a third were found useful in 

generating a credible model for both long-term trend, and interannual-to-decadal 

variability of counts. 

 The performance of the new 3-predictor, best subset regressions based 

statistical model (KN-SMNEW) was compared with the previously developed model and 
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the extent of improvement – substantial – documented. Atlantic hurricane forecasts for 

the independent period 2006-2010 were generated using the new model with predictors 

from both IPCC-AR5 21st century (RCP4.5) projections and Decadal 2005 decadal 

predictions. The new model’s performance was also compared with other group’s 

forecasts in the period 2002-2009. 

 Overall, the key results can be summarized as follow: 

 The atmospheric thermodynamic environment over KN-MDR area (270ºE-

313ºE, 7ºN-15ºN) is more unstable at the 850 hPa vertical level in years with 

more major hurricanes. The Sp value during the active years is discernibly 

smaller than during years with few major hurricanes.  

 The newly developed statistical model (3 predictors and best subset regressions) 

KN-SMNEW based on three leading IPCC-AR5 models significantly improves the 

reconstruction performance compared to the KN-SMOLD used in chapter 3 

(averaged for NOSP and SP, about 51% correlation increase and 11% RMSE 

decrease for AH reconstruction; about 64% correlation increase and 9% RMSE 

decrease for MH reconstruction). In addition, the Sp predictor plays an important 

role in enhancing the reconstruction performance by KN-SMNEW for both AH 

and MH (about 13% correlation increase and 5% RMSE decrease for AH 

reconstruction; about 8% correlation increase and 3% RMSE decrease for MH 

reconstruction). 

 For five strong El Niño years for the period 1958-2005, the reconstructions by 

KN-SMNEW successfully reconstructed the strikingly below normal anomalies of 

the observed AH and MH, excluding one event in the period 1997-1998. For five 
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strong La Niña years, the reconstructions based on the IPCC model predictors 

well reproduced the below-normal anomalies of the observed AH and MH.  

 In the 5-year (2006-2010) forecasts for AH and MH, the DEC2005 predictor 

based statistical model has superior forecast performance in two of three IPCC 

models (CCSM4 and HADCM3); with RCP4.5 predictors, the model 

performance was unsatisfactory. 

 The 3-IPCC Multi-Model Ensemble (MME) forecast for AH and MH counts, 

built from count forecasts from the IPCC RCP4.5 and DEC2005 predictors, is 

reasonably successful in predicting the increase of observed Atlantic hurricane 

counts in the independent period. The RCP4.5 based forecast overestimates while 

the DEC2005 one underestimates the counts in the forecast period 2006-2010.  

 The KN-SMNEW model’s skill in forecasting Atlantic hurricane counts in the 

2002-2009 period was compared with those of other groups. Although strict 

comparisons are not possible because the KN-SMNEW model produces forecasts 

for only 4 (2006-2009) of these 8 years (the remaining 4 are reconstructions), the 

KN-SMNEW appears competitive and promising given its high correlation (0.90) 

and low RMSE (1.70), respectively. 

 In conclusion, the newly developed statistical model, KN-SMNEW, significantly 

improves the reconstruction and forecast of not only all-hurricane counts but also major 

hurricane counts. 
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4.7 Tables 

Table-4.1: Correlation coefficients and p-value between the time series of Sp of reanalyses and 
the major Atlantic Hurricanes observation; the area averaged Sp is averaged from July to October 
(JASO) over the periods 1958-2005. The highest correlation coefficient and the lowest p-value 
are shown in red. The area and vertical level for Sp corresponding to the highest correlation are 
bold-faced. 

Area 
Static Stability Parameter 

Sp850 Sp700 Sp500 Sp200 

KN-MDRsst -0.572 (0.000) 0.039 (0.791) 0.357 (0.013) -0.440 (0.002) 

KN-NATLsst 0.057 (0.699) 0.179 (0.224) 0.170 (0.247) -0.094 (0.526) 

VS-MDRuz -0.312 (0.031) -0.100 (0.497) 0.306 (0.034) -0.301 (0.038) 

VS-MDR-Wlat -0.202 (0.168) -0.122 (0.407) 0.337 (0.019) -0.321 (0.026) 
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Table-4.2: Correlation coefficients, p-value, and RMSE between the time series of the observed 
major Atlantic hurricanes and the reconstruction from reanalyses; the predictors of wind shear, 
SST, and Sp are averaged from July to October (JASO) over the periods 1958-2005. The highest 
correlation coefficient and the corresponding p-value and RMSE are shown in red. The areas for 
predictors of zonal-wind shear, SST, Sp corresponding to the highest correlation coefficient are 
bold-faced. All correlation coefficients are statistically significant at 95% significance level (p-
value < 0.05). 

Predictors 
CORR (p-value) RMSE 

Uz SST Sp850 

KN-MDR 

KN-NATL 
NOSP 0.735 (0.000) 1.260 

KN-MDRSST 0.770 (0.000) 1.187 

KN-MDR 
NOSP 0.742 (0.000) 1.246 

KN-MDRSST 0.773 (0.000) 1.178 
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Table-4.3: Numbers of ensemble members of each IPCC-AR5 model used in the reconstruction 
of all Atlantic hurricanes (AH) and major hurricanes (MH) for the period 1958-2005. Numbers of 
all available ensemble members for each IPCC model are bold-faced; the members used in the 
reconstruction of AH (blue) and MH (red). The experiment including (excluding) Sp predictor is 
denoted by SP (NOSP).  

IPCC-AR5 
MODELS 

CC SM4.0 HADCM3.0 MPI-ESM-LR 

Predictor Uz SST Sp Tot Uz SST Sp Tot Uz SST Sp Tot

All Ensemble 
Members 

6 6 6 18 10 10 10 30 3 3 3 9 

All 
Hurricanes 

(AH) 

NOSP 3 3  6 1 3  4 1 1  2 

SP 3 3 4 10 1 3 1 5 1 1 1 3 

Major 
Hurricanes 

(MH) 

NOSP 1 4  5 1 3  4 1 1  2 

SP 1 4 1 6 1 3 1 5 1 1 1 3 
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Table-4.4: Correlation coefficients and RMSE between the time series of the reconstruction and 
observed all Atlantic hurricanes (AH, the second row) and major hurricanes (MH, the third row) 
from three IPCC-AR5 models over the period 1958-2005. The reconstruction by using the 
statistical model built earlier − based on the average of ensemble members − is denoted by KN-
SMOLD; and the models developed by best subset technique is marked by KN-SMNEW (blue). 
The percentile SP effect is calculated from the correlation and RMSE values between NOSP and 
SP within a homogeneous statistical model for AH and MH, respectively. The extent of 
improvement by KN-SMNEW is calculated from the correlation and RMSE values between KN-
SMOLD and KN-SMNEW within a homogeneous SP option for AH and MH, respectively (red). 

 EXP. SETS  CCSM4 HADCM3 MPI-ESM-LR AVERAGE

 
 

KN-SMOLD 

 

NOSP 
SP 

SP effect (%)

0.37 (2.45) 
0.37 (2.45) 

0.0 (0.0) 

0.35 (2.47) 
0.35 (2.47) 

0.0 (0.0) 

0.33 (2.49) 
0.48 (2.31) 
45.5 (-7.2) 

- 
- 

15.2 (-2.4) 

AH 
 

KN-SMNEW 
 

NOSP 
SP 

SP effect (%)

0.55 (2.20) 
0.67 (1.96) 
21.8 (-10.9)

0.62 (2.08) 
0.63 (2.06) 
1.6 (-1.0) 

0.40 (2.42) 
0.46 (2.34) 
15.0 (-3.3) 

- 
- 

12.8 (-5.1) 

 
KN-SMNEW 

Improvement (%) 
NOSP 

SP 
48.6 (-10.2)
81.1 (-20.0)

77.1 (-15.8)
80.0 (-16.6)

21.2 (-2.8) 
-4.2 (1.3) 

49.0 (-9.6) 
52.3 (-11.8)

 
 

KN-SMOLD 
 

NOSP 
SP 

SP effect (%)

0.30 (1.78) 
0.31 (1.77) 
3.3 (-0.6) 

0.34 (1.75) 
0.34 (1.75) 

0.0 (0.0) 

0.19 (1.82) 
0.38 (1.72) 
100 (-5.5) 

- 
- 

34.4 (-2.0) 

MH 
 

KN-SMNEW 
 

NOSP 
SP 

SP effect (%)

0.48 (1.64) 
0.54 (1.57) 
12.5 (-4.3) 

0.56 (1.54) 
0.61 (1.48) 
8.9 (-3.9) 

0.38 (1.72) 
0.39 (1.71) 
2.6 (-0.6) 

- 
- 

8.0 (-2.9) 

 
KN-SMNEW 

Improvement (%) 
NOSP 

SP 
60.0 (-7.9) 
74.2 (-11.3)

64.7 (-12.0)
79.4 (-15.4)

100.0 (-5.5) 
2.6 (-0.6) 

74.9 (-8.5) 
52.1 (-9.1) 

 

  



 

７５ 

Table-4.5: Correlation coefficients and RMSE between the time series of the forecast from three 
IPCC-AR5 models and observed Atlantic hurricanes (AH, the second row and MH, the third row) 
over the period 2006-2010. The forecast based on RCP4.5 is denoted by RCP4.5; and based on 
decadal experiment is marked by DEC2005 (blue).  

EXP. SET CCSM4 HADCM3 MPI-ESM-LR 

AH 
RCP4.5 -0.44 (4.54) 0.10 (3.62) 0.68 (2.67) 

DEC2005 0.95 (3.01) 0.96 (2.63) 0.24 (2.98) 

MH 
RCP4.5 -0.12 (2.31) -0.21 (2.33) 0.88 (1.04) 

DEC2005 0.62 (2.29) 0.99 (1.57) 0.49 (1.44) 
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Table-4.6: Comparison for the number of forecasted all Atlantic hurricane counts issued by 
several groups’ hurricane forecast model from 2002 to 2009*: Colorado State University (CSU), 
NOAA, NCEP’s Climate Forecast System (CFS), Tropical Storm Risk (TSR), and ECMWF. To 
compare the performance of forecast, correlation coefficients and RMSE for each model’s 
forecast with the observed Atlantic hurricane counts are calculated over the period. For NOAA 
forecast, an average of the minimum and maximum counts is used for the calculation of 
correlation coefficient and RMSE. 

Year Issue OBS KN-SMNEW KW CSU NOAA CFS TSR ECMWF

2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 

4 
7 
9 

15 
5 
6 
8 
3 

6 
6 

10 
12 
5 
6 
6 
5 

3 
7 
8 
9 
7 
7 
9 
5 

4 
8 
7 

10 
7 
8 
9 
4 

4-6 
7-9 
6-8 
9-11 
7-9 
7-9 

7-10 
3-6 

4 
7 
7 
11 
9 
9 
9 
5 

4 
7 
8 
11 
8 
8 

10 
7 

5 
8 
5 
8 
13 
7 
9 
4 

CORR 
RMSE 

 
 

0.90 
1.70 

0.75 
2.45 

0.80 
2.24 

0.73 
2.41 

0.73 
2.50 

0.76 
2.50 

0.15 
4.09 

*Numbers are rounded to the nearest integer. RMSE are on the bottom. 
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4.8 Figures 

 

 

Figure 4.1: Vertical profiles of static stability parameter (Sp) averaged over the area of (a) KN-
MDR SST, (b) KN-NATL SST, (c) VS-MDR Uz, and (d) VS-MDR-Wlat Uz. The 48-year (1958-
2005) climatological Sp profile is shown in black; the profile of Sp averaged for the years 
recorded more (less) than five (two) major Atlantic hurricane counts is shown in red (blue). All 
areas excluding VS-MDR-Wlat are defined as in Figure 3.1; VS-MDR-Wlat is defined over the 
area of 300ºE-340ºE, 10ºN-20ºN.  
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Figure 4.2: The time series of MEI and the anomaly of observed all atlantic hurricanes for the 
period 1958-2005 (black-solid), the reconstruction from reanalyses (blue-solid), and three IPCC-
AR5 models (red-solid); the corresponding correlation coefficients, RMSE, and linear trend 
values are noted in the legend. The above (below) normal MEI is displayed with pink bar (light 
blue bar) and the years of strong El Niño (La Niña) are denoted by red (light blue). Remarkably 
anomalous years corresponding to integer hurricane number more than +4 (less than -3) are 
depicted in balck-dot, blue-rectangle, and red-diamond. 
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Figure 4.3: As in Figure 4.2 but for the time series from major Atlantic hurricanes. Remarkably 
anomalous years corresponding to integer hurricane number more than +3 (less than -2 ) are 
depicted in balck-dot, blue-rectangle, and red-diamond. 

 

  



 

８０ 

 

 

Figure 4.4: The difference of Atlantic hurricane counts between 5-year average for the period 
2006-2010 and 48-year climatology for the period 1958-2005: for all hurricanes (a) AH SP (upper 
panel) and major hurricanes (b) MH SP (lower panel). Pentad prediction by the best subset 
regression model is from each of three IPCC models and a weighted multi-model ensemble of 
three IPCC models (3-IPCC MME). The counts difference corresponding to observation, 
reanalyses, RCP4.5, and DEC2005 is denoted with bars in black, green, red, and blue, 
respectively.  
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Chapter 5: Science Questions and Answers, and Future Work 

 

5.1 Science Questions and Answers 

 Does unequivocal evidence exists for increasing vertical wind-shear in the 

tropical Atlantic under climate warming scenario in 21st century? 

NO compelling case for a statistically significant positive vertical wind-shear 

over MDR in IPCC-AR4 and AR5 simulations/projections– in contrast with 

claims based on indiscriminate multi-model averaging (e.g., Vecchi and Soden 

2007). 

 Can the trend in Atlantic hurricane counts be modeled from variations in 

regional wind shear and SST? 

Yes, quite effectively. Optimal predictors for hurricane counts – definition and 

averaging domain – were determined from correlation and linear regression 

analyses: Uz, SST, and Sp. The long-term (1958-2005) trend in counts 

successfully modeled with both observations and IPCC-AR5 ensemble-mean 

simulation based predictors. 

 Can this modeling approach provide insights into the long-term trend in counts 

in the 20th and 21st century climate? Which variations (e.g., SST, wind shear) 

are more influential? 

Yes. Statistical modeling based on IPCC-AR5 20C simulations indicates the 

increasing trend in hurricane counts to arise primarily from the SST influence. 

Statistical models that generate realistic count-trends in the 20th century project a 



 

８２ 

somewhat stronger trend in counts with predictors from IPCC-AR5 21C 

projections. 

 Can the statistical model for Atlantic hurricane counts be improved to account 

for interannual-to-decadal count variations? 

Yes, from consideration of complex variability manifest in the IPCC-AR5 20C 

simulation ensembles, through the best subset regression approach. Best subset 

regression modeling yields correlations of 0.46-0.67 between reconstructed and 

observed counts; a weighted multi-model averaging of statistical reconstruction 

yields even higher correlation (0.74) and lower RMSE. 

 Can this improved statistical model be used for decadal prediction of counts? 

Perhaps, yes. There are not enough independent prediction periods with 

validating observations to make the assessment. Preliminary analysis of the 

2006-2010 annual and pentad predictions based on IPCC Decadal 2005 (ocean 

initialized) experiments indicates that the weighted multi model statistical 

predictions have some potential. 

 

5.2 Future Work 

 The outcome of this work, despite several known limitations, advance 

understanding and statistical modeling of Atlantic hurricane counts. In Chapter 4, the 

well-known link of Atlantic hurricane activity with ENSO was further analyzed, and 

reconstructed using related environmental fields. The relationship is of obvious interest 

since statistically based seasonal forecasts of tropical cyclone activity in the western 

North Pacific use ENSO as one of the main predictors (Chan et al. 1998; 2001).  
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Grounded in the link between ENSO and Atlantic/Pacific hurricane activity, and 

the empirical relationship between environmental variables and hurricane activity, and 

encouraged by the striking performance of the statistical model developed in this thesis, it 

would be of considerable interest to reconstruct and predict variations in western North 

Pacific Typhoon (WNP-TY) activity. Specifically, future research lines include: 

 Investigation of the change in environmental factors such as wind shear, SST, 

and static stability over WNP in the 20th and 21st centuries; 

 Analyze the linkage between MEI and WNP-TY in the 20th and 21st centuries; 

 Advance the understanding of how environmental factors and MEI affect WNP-

TY activity under a warming climate; 

 Develop a statistical WNP-TY prediction model based on empirical relationships 

with environmental factors ; and 

 Provide the evidence of the change of WNP-TY activity in the 21st century and 

its decadal predictability 
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Appendix A: Statistical Techniques and formulae 

 

A.1 R-Squared (R2) 

R-squared indicates how much variation in the response is explained by the 

model. The higher the R2, the better the model fits your data. The formula is:  
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Where, 

iy
= ith observed response value 

ˆiy
= ith fitted response 

iy
= mean response 

 

Percentage of response variable variation that is explained by its relationship 

with one or more predictor variables. In general, the higher the R2, the better the model 

fits your data. R2 is always between 0 and 100%. It is also known as the coefficient of 

determination or multiple determination (in multiple regression).  

 

A.2 Adjusted R-Squared (R2) 

Adjusted R2 accounts for the number of factors in your model and is useful for 

comparing models with different numbers of predictors. The formula is:  
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Where, 

iy
= ith observed response value 

ˆiy
= ith fitted response 

iy
= mean response 

N= number of observations 

P= number of terms in the model 

 

Percentage of response variable variation that is explained by its relationship 

with one or more predictor variables, adjusted for the number of predictors in the model. 

This adjustment is important because the R2 for any model will always increase when a 

new term is added. A model with more terms may appear to have a better fit simply 

because it has more terms. However, some increases in R2 may be due to chance alone. 

The adjusted R2 is a useful tool for comparing the explanatory power of models with 

different numbers of predictors. The adjusted R2 will increase only if the new term 

improves the model more than would be expected by chance. It will decrease when a 

predictor improves the model less than expected by chance. 

 

A.3 Predicted R-Squared (R2) 

Predicted R-squared indicates how well the model predicts responses for new 
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observations. Larger values of predicted R2 suggest models of greater predictive ability. 

The formula is: 
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, 

Where, 

ei = ith observed response value 

hi = ith diagonal element of X(X'X)-1X', X=predictor matrix, X'=transpose of X 

 

Predicted R-Squared is used in regression analysis to indicate how well the 

model predicts responses for new observations, whereas R2 indicates how well the model 

fits your data. Predicted R2 can prevent overfitting the model and can be more useful than 

adjusted R2 for comparing models because it is calculated using observations not 

included in model estimation. Overfitting refers to models that appear to explain the 

relationship between the predictor and response variables for the data set used for model 

calculation but fail to provide valid predictions for new observations. Predicted R2 is 

calculated by systematically removing each observation from the data set, estimating the 

regression equation, and determining how well the model predicts the removed 

observation. Predicted R2 ranges between 0 and 100% and is calculated from the PRESS 

statistic. Larger values of predicted R2 suggest models of greater predictive ability. 

 

A.4 Standard error of the regression (S) 

An estimate of s, the estimated standard deviation of the error in the model. Note 
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that s2 = Mean Square Error (MSE). 

2
2

ˆ( )

1
i iy y

S
n p




 
  

Where, 

iy
= ith observed response value 

ˆiy
= ith fitted response 

n= number of observations 

P= number of terms in the model 

 

Standard error of the regression (S) is used as a measure of model fit in regression and 

ANOVA. S is measured in the units of the response variable and represents the standard 

distance data values fall from the regression line, or the standard deviation of the 

residuals. For a given study, the better the equation predicts the response, the lower the 

value of S.  

 

A.5 Variance inflation factor (VIF) 

Variance inflation factor (VIF) is used to detect multicollinearity (correlated 

predictors). VIF measures how much the variance of an estimated regression coefficient 

increases if your predictors are correlated. Minitab calculates VIF by regressing each 

predictor on the remaining predictors and noting the R2 value. For predictor x1, the VIF 

is: 
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2
1

1

1 ( )
VIF

R x


   

VIF = 1, Not correlated 

1< VIF <5, Moderately correlated  

VIF > 5, Highly correlated 

 

VIF values greater than 10 may indicate multicollinearity is unduly influencing 

your regression results. In this case, you may want to reduce multicollinearity by 

removing unimportant predictors from your model. 

 

A.6 Mallows' Cp 

Mallow’s Cp (process capability) is a measure of goodness-of-prediction. The 

formula is: 

( / ) ( 2 )SSEp M SEm n p   

Where, 

2ˆ( )i iSSEp y y  , the sum of square error for the model under consideration, 

2ˆ( )

1
i iy y

MSEp
n p




 
 , the mean square error for the model with all predictors included, 

n = the number of observations, 

p = the number of terms in the model, including the constant. 
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In general, look for models where Mallows' Cp is small and close to p. A small 

Cp value indicates that the model is relatively precise (has small variance) in estimating 

the true regression coefficients and predicting future responses. Models poor predictive 

ability and bias have values of Cp larger than p. 

A statistic used as an aid in choosing between competing multiple regression 

models. Mallows' Cp compares the precision and bias of the full model to models with 

the best subsets of predictors. It helps you strike an important balance with the number of 

predictors in the model. A model with too many predictors can be relatively imprecise 

while one with too few can produce biased estimates. A Mallows' Cp value that is close to 

the number of predictors plus the constant indicates that the model is relatively precise 

and unbiased in estimating the true regression coefficients and predicting future 

responses.  

 

  



 

９０ 

Bibliography 

Aiyyer AR, Thorncroft C (2006) Climatology of vertical wind shear over the tropical Atlantic. J 

Climate 19:2969–2983. 

Aiyyer AR, Thorncroft C (2011) Interannual-to-multidecadal variability of vertical shear and 

tropical cyclone activity. J Climate 24: 2949–2962. 

Alves OG, Wang A, Zhong N, Smith G, Warren A, Marshall F, Tzeitkin, Schiller A (2002) 

POAMA: Bureau of Meteorology operational coupled model season forecast system. Proc. 

ECMWF Workshop on the Role of the Upper Ocean in Medium and Extended Range 

Forecasting, Reading, United Kingdom, ECMWF: 22–32. 

Bender MA (1997): The effect of relative flow on the asymmetric structure in the interior of 

hurricanes. J Atmos Sci 54, 703-724. 

Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, Held IM (2010) 

Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. 

Science 327, 454–458. 

Bengtsson L, Hodges KI, EschM, Keenlyside N, Kornblueh L, Luo JJ, Yamagata T (2007) How 

may tropical cyclones change in a warmer climate? Tellus 59A:539–561. 

Berrisford P, Dee D, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S (2009) The ERA‐

interim archive, ERA Rep. Ser. 1, Eur. Cent. for Medium‐Range Weather Forecasts, Reading, 

U. K. 

Burroughs WJ (2007) Climate change : a multidisciplinary approach. Cambridge: Cambridge 

University Press. ISBN 9780521870153 

Camargo SJ, Emanuel KA, Sobel AH (2007) Use of genesis potential index to diagnose ENSO 

effects upon tropical cyclone genesis, J Climate 20, 4819-4834. 

Chan JCL (1995) Tropical cyclone activity in the western North Pacific in relation to the 

stratospheric quasi-biennial oscillation. Mon Wea Rev 123, 2567–2571. 



 

９１ 

Chan JCL, Shi JE, Lam CM, Liu KS (2001) Improvements in the seasonal forecasting of tropical 

cyclone activity over the western North Pacific. Wea. Forecasting, 16, 491–498. 

Chang EKM, Guo Y (2007) Is the number of North Atlantic tropical cyclones significantly 

underestimated prior to the availability of satellite observations? Geophys Res Lett 34:14801 

Compo GP, Coauthors (2011), The Twentieth Century Reanalysis Project, Q. J. R. 211 Meteorol. 

Soc., 137, 1–28. DOI:10.1002/qj.776  

Chauvin F, Royer JF, Déqué M (2006) Response of hurricane-type vortices to global warming as 

simulated by ARPEGE-Climat at high resolution. Clim Dyn 27:377–399 

Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern 

Hemisphere. Clim Dyn 16:661–676 

DeMaria M (1996) The effect of vertical shear on tropical cyclone intensity change. J Atmos Sci 

53(14):2076–2087. 

DeMaria M, Knaff JA, Connell BH (2001) A tropical cyclone genesis parameter for the tropical 

Atlantic. Wea. Forecasting, 16: 219–233 

Elsner JB, Bossak BH, Niu XF (2001) Secular changes to the ENSO U.S. hurricane relationship. 

Geophy Res Lett 28:4123–4126 

Emanuel KA (1986) The maximum potential intensity of hurricanes. J Atmos Sci 45, 1143–1155 

Emanuel KA (1989) The finite-amplitude nature of tropical cyclogenesis. J Atmos Sci 46, 3431-

3456. 

Emanuel KA, Nolan DS (2004) Tropical cyclones and the global climate system, paper presented 

at 26th Conference on Hurricanes and Tropical Meteorology, Am. Meteorol. Soc., Miami 

Beach, Fla. 

Emanuel KA (2005) Divine Wind: The History and Science of Hurricanes. Oxford University 

Press, 285 pp. 

Emanuel KA (2007) Environmental factors affecting tropical cyclone power dissipation. J. Clim 

20:5497–5509. 



 

９２ 

Emanuel KA, Sundararajan R, Williams J (2008) Hurricanes and global warming: Results from 

downscaling IPCC-AR4 simulations. Bull Am Meteorol Soc 89:347–367 

Enfield DB, Mestaz-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its 

relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080 

Enfield DB, Cid-Serrano L (2010) Secular and multidecadal warmings in the North Atlantic and 

their relationships with major hurricane activity. Intl J Climatol 30, 174–184 

Frank WM, Ritchie EA (1999) Effects of environmental flow upon tropical cyclone structure. 

Mon Wea Rev 127: 2044-2061. 

Frank WM, Ritchie EA (2001) Effects of vertical wind shear on the intensity and structure of 

numerically simulated hurricanes, Mon Wea Rev 129: 2249–2269. 

Garner ST, Held IM, Knutson T, Sirutis J (2009) The roles of wind shear and thermal 

stratification in past and projected changes of Atlantic tropical cyclone activity. J Climate 

22:4723–4734. 

Goldenberg SB, Shapiro LJ (1996) Physical mechanisms for the association of El Niño and West 

African rainfall with Atlantic major hurricane activity. J Climate 9: 1169–1187. 

Goldenberg SB, Landsea C, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic 

hurricane activity, Science 293: 474– 479. 

Gray WM (1968) Global view of the origin of tropical disturbances and storms. Mon Wea Rev 

96: 969-700 

Gray WM (1979) Hurricanes: their formations, structure and likely role in the tropical circulation. 

Meteorology Over the Tropical Oceans, Royal Meteorological Society, James Glaisher House, 

Grenville Place, Bracknell, Berkshire, RG 12 1BX, D. B. Shaw, Ed., 155–218 

Gray WM (1984) Atlantic seasonal hurricane frequency. Part I: El Niño and 30-mb quasi-biennial 

oscillation influences. Mon Wea Rev 112: 1649–1668. 

Gray, WM (1998) The Formation of Tropical Cyclones. Meteorol. Atmos Phys 67, 37-69. 



 

９３ 

Grossmann I, Klotzbach P (2009) A review of North Atlantic modes of natural variability and 

their driving mechanisms. J Geophys Res 114:D24107 

Gualdi S, Scoccimarro E, Navarra A (2008) Changes in tropical cyclone activity due to global 

warming: results from a high-resolution coupled general circulation model. J Climate 

21(20):5204–5228. 

Guan B, Nigam S (2009) Analysis of Atlantic SST variability factoring inter-basin links and the 

secular trend: clarified S. Nigam, B. Guan: Atlantic tropical cyclones in the twentieth century 

123 structure of the Atlantic multidecadal oscillation. J Climate 22:4228–4240 

Holland G (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54: 2519–

2541 

Holland GJ, Webster PJ (2007) Heightened tropical cyclone activity in the North Atlantic: natural 

variability or climate trend? Philos Trans R Soc London Ser A 365:2695–2716. 

doi:10.1098/rsta.2007.2083 

Ji M, Kumar A, Leetmaa A (1994) Development of seasonal climate forecast system using 

coupled ocean-atmosphere model at National Meteorological Center. Bull Amer Meteor Soc 

75, 569–577. 

Jones SC (1995) The evolution of vortices in vertical shear. I: Initially barotropic vortices. Q.J.R. 

Met. Soc., 121: 821-851. 

Kalnay E et al. (1996) The NCEP/NCAR 40-Year Reanalysis Project, Bull. Am. Meteorol. Soc., 

77: 437–471. 

Kanamitsu MW, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) 

NCEP–DOE AMIP-II Reanalysis (R-2). Bull Amer Meteor Soc 83, 1631–1643. 

Kim HM, Webster PJ (2010) Extended-range seasonal hurricane forecasts for the North Atlantic 

with a hybrid dynamical-statistical model. Geophys Res Lett 37, L21705, 

doi:10.1029/2010GL044792. 

Klotzbach PJ (2007) Revised prediction of seasonal Atlantic basin tropical cyclone activity from 



 

９４ 

1 August, Weather Forecast., 22, 937–949, doi:10.1175/WAF1045.1. 

Klotzbach PJ, Gray WM (2008) Multidecadal variability in North Atlantic tropical cyclone 

activity. J. Clim 21:3929–3935 

Knaff JA, Seseske SA, DeMaria M, Demuth JL (2004) On the influences of vertical wind shear 

on symmetric tropical cyclone structure derived from AMSU. Mon Wea Rev 132: 2503-2510. 

Knutson TR, Tuleya RE (2004) Impacts of CO2-induced warming on simulated hurricane 

intensity and precipitation: sensitivity to the choice of climate model and convective 

parameterization. J Climate 17(18):3477–3495 

Knutson TR, Tuleya RE, Shen W, Ginis I (2001) Impacts of CO2-induced warming on hurricane 

intensities as simulated in a hurricane model with ocean coupling. J Climate 14:2458–2468  

Knutson TR, Sirutis JJ, Garner ST, Held IM, Tuleya RE (2007) Simulation of the 

recentmultidecadal increase of Atlantic hurricane activity using an 18-km-grid regional model. 

Bull Am Meteorol Soc 88(10):1549–1565 

Knutson TR, Sirutis JJ, Garner ST, Vecchi GA, Held IM (2008) Simulated reduction in Atlantic 

hurricane frequency under twenty-first-century warming conditions. Nature Geoscience 1:359–

364 

Kossin JP, Knapp JR, Vimont DJ, Murnane RJ, Harper BA (2007) A globally consistent 

reanalysis of hurricane variability and trends. Geophys Res Lett 34:L04815. 

Kossin JP, Vimont DJ (2007) A more general framework for understanding Atlantic hurricane 

variability and trends, Bull. Am. Meteorol. Soc., 88: 1767–1781, doi:10.1175/BAMS-88-11-

1767. 

Landsea CW, Pielke RA, Mestas-Nuñez AM, Knaff JA (1999) Atlantic basin hurricanes: Indices 

of climate changes, Clim. Change, 42: 89– 129. 

Landsea CW (2007) Counting Atlantic tropical cyclones back to 1900. Eos Trans. AGU 88(18): 

197–202 

Landsea CW, Vecchi GA, Bengtsson L, Knutson TR (2010) Impact of duration thresholds on 



 

９５ 

Atlantic tropical cyclone counts. J Climate 23:2508–2519 

Lighthill J, Holland GJ, Gray WM, Landsea C, Emanuel K, Craig C, Evans J, Kurihara Y, Guard 

CP (1994) Global climate change and tropical cyclones. Bull Amer Meteor Soc 75, 2147-2157. 

Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos Trans 

AGU 87(24):233–244. 

Mann ME, Emanuel KA, Holland GJ, Webster PJ (2007) Atlantic tropical cyclones revisited. Eos 

Trans AGU 88: doi:10.1029/2007EO360002 

Marks FD (2003) Hurricanes. Encyclopedia of Atmospheric Sciences, Elsevier Science Ltd., 

London, UK, 942-966. 

Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, 

Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and 

mechanisms. Int. J. Climatol 21(15):1863–1898 

Mason SJ, Goddard L, Graham NE, Yulaeva E, Sun L, Arkin PA (1999) The IRI seasonal climate 

prediction system and the 1997/98 El Niño event. Bull Amer Meteor Soc 80, 1853–1873. 

McDonald RE, Bleaken DG, Cresswell DR, Pope VD, Senior CA (2005) Tropical storms: 

representation and diagnosis in climate models and the impacts of climate change. Clim Dyn 

25:19–36 

Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, 

Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate 

projections. In: Climate change 2007, the physical science basis. Contributions of working 

group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. 

Nigam S, Guan B (2010) Atlantic tropical cyclones in the twentieth century: natural variability 

and secular change in cyclone count, Climate Dynamics, DOI 10. 1007/s00382-010-0908-x. 

Pielke RA, Landsea CW (1999) La Niña, El Niño, and Atlantic hurricane damages in the United 

States, Bull. Am. Meteorol. Soc., 80: 2027– 2033. 

Oouchi KJ, Yoshimura J, Yoshimura H, Mizuta R, Kusunoki S, Noda A (2006) Tropical cyclone 



 

９６ 

climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric 

model: frequency and wind intensity analysis. J Meteorol Soc Jpn 84(2):259–276 

Palmer TN, Coauthors (2004) Development of a European multimodel ensemble system for 

seasonal-to-interannual prediction (DEMETER). Bull Amer Meteor Soc 85, 853–872. 

Rotunno R, Emanuel KA (1987) An air-sea interaction theory for tropical cyclones. Part II: 

Evolutionary study using a non-hydrostatic axisymmetric numerical model. J Atmos Sci 44, 

542-561. 

Saunders MA, Lea AS (2008) Large contribution of sea surface warming to recent increase in 

Atlantic hurricane activity. Nature 451:557–561. 

Shen W, Tuleya RE, Ginis I, (2000) A sensitivity study of the thermodynamic environment on 

GFDL model hurricane intensity: Implications for global warming. J Climate 13: 109121 

Shultz JM., Russell J, Espinel Z (2005) Epidemiology of Tropical Cyclones: The Dynamics of 

Disaster, Disease, and Development. Epidemiologic Reviews 27 (1): 21–25 

Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997), J 

Climate 17, 2466–2477, doi:10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2 

Swanson KL (2008) Non-locality of Atlantic tropical cyclone intensities.Geochem Geophys 

Geosys. doi:10.1029/2007GC001844 

Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005, Geophys Res 

Lett 33, L12704, doi:10.1029/2006GL026894. 

Vecchi GA, Soden BJ (2007b) Increased tropical Atlantic wind shear in model projections of 

global warming. Geophys Res Lett 34:L08702. 

Vecchi GA, Knutson TR (2008) On estimates of historical North Atlantic tropical cyclone 

activity. J Climate 21:3580–3600 

Vimont DJ, Kossin JP (2007) The Atlantic meridional mode and hurricane activity, Geophys Res 

Lett 34, L07709, doi:10.1029/2007GL029683. 

Vitart F, Huddleston MR, Déqué M, Peake D, Palmer TN, Stockdale TN, Davey MK, Ineson S, 



 

９７ 

and Weisheimer A (2007) Dynamically‐based seasonal forecasts of Atlantic tropical storm 

activity issued in June by EUROSIP, Geophys Res Lett 34, L16815, 

doi:10.1029/2007GL030740. 

Wang H et al (2009) A Statistical forecast model for Atlantic seasonal hurricane activity based on 

the NCEP dynamical seasonal forecast, J Climate 22, 4481–4500, 

doi:10.1175/2009JCLI2753.1. 

Wolter K (1987) The Southern Oscillation in surface circulation and climate over the tropical 

Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J Climate Appl. 

Meteor., 26, 540-558. 

Wolter K, Timlin MS (1993) Monitoring ENSO in COADS with a seasonally adjusted principal 

component index. Proc. of the 17th Climate Diagnostics Workshop, Norman, OK, 

NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. 

of Oklahoma, 52-57 

Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, 

duration, and intensity in a warming environment. Science 309:1844–1846 

World Meteorological Organization (2006) Statement on tropical cyclones and climate change. 

WMO 6th International Workshop on Tropical Cyclones, San Jose 

Wu L, Wang B (2008) What has changed the proportion of intense hurricanes in the last 30 years. 

J Climate 21:1432–1439 

Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall 

and Atlantic hurricanes, Geophys Res Lett 33, L17712, doi:10.1029/2006GL026267. 

Zhao M, Held IM, Lin SJ, Vecchi GA (2009) Simulations of global hurricane climatology, 

interannual variability, and response to global warming using a 50 km resolution GCM. J 

Climate 22:6653–6678. 

Zehr RM (1992) Tropical cyclogenesis in the western North Pacific. NOAA Technical Report 

NESDIS 61. 


