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Hydraulic residence time (HRT) is a critical factor that can be integrated into wetland 

restoration designs to promote nutrient retention, but HRT in the context of wetlands with 

storm-driven hydrology is not well understood. A model for nutrient retention 

optimization based on HRT was evaluated using three indicators of HRT and nutrient 

stocks in above-ground plant biomass. Results indicated that a commonly used indicator 

of HRT, the ratio of wetland to watershed area, may be insufficient, while nominal HRT 

provided an overestimate for wetlands receiving storm runoff. While there was little 

relationship between total nitrogen and HRT, results suggested that HRT may explain 

some variation in total phosphorus. Results also indicated that the studied wetland 

restorations were not designed to provide sufficient HRT to promote the retention of 

dissolved nutrients, and that staged outlets could be used to provide significant HRT’s for 

a range of storm events. 



 



 

 
 
 
 
 
 
 

EVALUATION OF THE EFFECTS OF WETLAND RESTORATION DESIGN ON 
HYDRAULIC RESIDENCE TIME AND NUTRIENT RETENTION 

 
 
 

By 
 
 

Stephen Victor Strano 
 

 
 
 
 
 

 
Thesis submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park in partial fulfillment 

of the requirements for the degree of 
M.S. Biological Resources Engineering 

2009 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Gary K. Felton, Chair 
Professor Andrew H. Baldwin 
Professor Adel Shirmohammadi 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Stephen Victor Strano 

2009 



 

 ii 

Acknowledgements 

This research would not have been possible without the cooperation of the owners of the 
wetland study sites, and their interests in wetlands, water quality, and scientific 
endeavors. Staff located in the Kent and Queen Anne’s County Soil Conservation District 
offices provided support for site selection and gathering data on wetland designs. The 
support provided by David Doss and Ginger Murphy, former State Conservationists in 
Maryland, and Anne Lynn, State Resource Conservationist in Maryland, is greatly 
appreciated. Especially significant was the support of Bruce Nichols, biologist, friend, 
and former District Conservationist in Worcester County, Maryland, who not only 
provided encouragement for me to pursue a graduate degree, but introduced me to 
applied wetland restoration and demonstrated a great appreciation for wetland 
ecosystems. I would also like to acknowledge the support of my friends and family, and 
of course, my parents, who always provided encouragement and belief in my abilities. 



 

 iii 



 

 iv 

Table of Contents 

List of Tables ..................................................................................................................... vi 
 
List of Figures .................................................................................................................. viii 
 
List of Abbreviations .......................................................................................................... x 
 
Chapter 1: Introduction ....................................................................................................... 1 

Hydrologic and Hydraulic Design .................................................................................. 3 

Plants as Indicators of Nutrient Retention .................................................................... 13 
 
Chapter 2: Review of Literature ....................................................................................... 17 
 
Chapter 3: Objectives ........................................................................................................ 25 
 
Chapter 4: Materials and Methods .................................................................................... 26 

Study Area .................................................................................................................... 26 

Site Selection ................................................................................................................ 27 

Data Collection ............................................................................................................. 28 

Hydrologic and Hydraulic Analysis .............................................................................. 32 

WinTR-20 Input ........................................................................................................ 32 

Calculations Based on WinTR-20 Output ................................................................ 39 

Statistical Analysis ........................................................................................................ 44 
 
Chapter 5: Results and Discussion .................................................................................... 46 

Hydrologic and Hydraulic Analysis .............................................................................. 46 

Wetland Design and HRT ......................................................................................... 46 

Relationship between MHRT, NHRT,  and RWW................................................... 54 

Biomass and Nutrient Analysis ..................................................................................... 58 

Relationship between HRT and Plant Biomass and Nutrients...................................... 62 

Relationship Based on ANOVA Results .................................................................. 62 

Correlation Analyses ................................................................................................. 63 

Regression Analyses ................................................................................................. 66 
 
Chapter 6: Conclusion....................................................................................................... 75 
 
Chapter 7: Suggestions for Further Study ......................................................................... 79 
 
Appendix A: Runoff Curve Number (CN) Data ............................................................... 81 
 
Appendix B: Time of Concentration (Tc) Data ................................................................. 86 
 
 



 

 v 

Appendix C: Stage-Discharge Rating Calculations and Outlet Descriptions ................... 87 
Formulas for Outlet Structure Discharge Rating Calculations ..................................... 87 

Stage-Discharge Ratings and Outlet Descriptions ........................................................ 88 

Site CON ................................................................................................................... 88 

Site GLP .................................................................................................................... 89 

Site GPT .................................................................................................................... 90 

Site SPF ..................................................................................................................... 91 

Site STN .................................................................................................................... 92 

Site STS .................................................................................................................... 93 

Site WDF .................................................................................................................. 94 
 
Appendix D: Stage-Storage Rating Calculation Data ....................................................... 97 
 
Appendix E: TR-20 Input Data ......................................................................................... 99 
 
Appendix F: TR-20 Output Data .................................................................................... 101 
 
Appendix G: Stage-Storage-Discharge Relationships .................................................... 106 
 
Appendix H: Additional Hydrologic and Hydraulic Analysis Results ........................... 109 
 
Appendix I: Results of Regression Analyses of HRT and RWW .................................. 111 
 
Appendix J: Results of Regression Analyses of Measured and Modeled Variables ...... 113 
 
Appendix K: Results of Tests for Normality .................................................................. 118 
 
Appendix L: Biomass Sample Collection and Handling ................................................ 123 
 
Appendix M: Dixon-Thompson Outlier Test on TP ....................................................... 124 
 
Appendix N: Study Site Photos ...................................................................................... 125 
 
Bibliography ................................................................................................................... 132 



 

 vi 

List of Tables 

Table 1. Storm stage and mean hydraulic residence time (MHRT) for 1-yr and 10-yr 24-
hr storm events modeled with TR-20, based on the same model as used for Figures 3a 
and 3b. ............................................................................................................................... 10 

Table 2. Characteristics of study sites............................................................................... 28 

Table 3. Results of analysis with WinTR-20 and other hydraulic characteristics for each 
site. .................................................................................................................................... 47 

Table 4. Spearman’s rho correlation coefficients (R) for MHRT and NHRT, and RWW 
and both MHRT and NHRT for six design storms. .......................................................... 55 

Table 5. General characterization of wetland vegetation at each site. .............................. 58 

Table 6. Means and comparisons of biomass, nutrient concentrations, and nutrient 
standing stocks. ................................................................................................................. 61 

Table 7. Spearman’s rho correlation coefficients (R) for measured variables (biomass, TN 
and TP) and MHRT and NHRT for six design storms. .................................................... 64 

Table 8. Spearman’s rho correlation coefficients (R) for measured variables (biomass, TN 
and TP) and RWW. ........................................................................................................... 64 

Table A1. Watershed land cover and soils data used for runoff curve number 
determination. ................................................................................................................... 81 

Table A2. Weighted runoff curve number (CN) calculation data .................................... 83 

Table B1. Time of concentration (Tc) calculation data ..................................................... 86 

Table C1. Stage-discharge rating for site CON. ............................................................... 88 

Table C2. Stage-discharge rating values for site GLP ...................................................... 89 

Table C3. Stage-discharge rating for site GPT. ................................................................ 90 

Table C4. Stage-discharge rating values for site SPF ....................................................... 91 

Table C5. Stage-discharge rating values for site STN ...................................................... 92 

Table C6. Stage-discharge rating for site STS .................................................................. 93 

Table C7. Stage-discharge rating values for site WDF..................................................... 94 



 

 vii 

Table C8. Structure values for Agri Drain water control structures at sites GLP, STN, and 
WDF .................................................................................................................................. 95 

Table D1. Values for calculating stage-storage relationship for sites. ............................. 97 

Table H1. Additional results of storm analysis with WinTR-20 and other hydraulic 
characteristics of sites ..................................................................................................... 109 

Table I1. HRT and RWW linear regression analysis goodness of fit statistics, with 
qualitative assessment of measurements. ........................................................................ 111 

Table I2. Hypothesis test on slope coefficient ................................................................ 111 

Table J1. Linear regression analysis goodness of fit statistics for TP versus hydrologic 
variables, with qualitative assessment of measurements ................................................ 113 

Table J2. Hypothesis test on slope coefficient ................................................................ 114 

Table K1. One-sample Kolmogorov-Smirnov tests for a normal distribution for MHRT, 
NHRT, and log-transformed values of both variables for each design storm for all sites
......................................................................................................................................... 118 

Table K2. One-sample Kolmogorov-Smirnov test for mean MHRT and NHRT, log-
transformed mean MHRT and NHRT, and RWW for each site ..................................... 119 

Table K3. One-Sample Kolmogorov-Smirnov Tests for paired differences in MHRT (hr) 
and NHRT (hr) at each site, as a precursor to paired samples T-test. ............................. 120 

Table K4. One-Sample Kolmogorov-Smirnov Tests for sample plot values of biomass, 
TN, TP, %N and %P at each site. ................................................................................... 120 

Table K5. One-sample Kolmogorov-Smirnov tests for mean values of biomass, TN, TP, 
%N, %P, and log-transformed mean values of biomass, TN, and TP for all sites ......... 122 

Table K6. One-sample Kolmogorov-Smirnov tests for mean values of biomass, TN, and 
TP, and values of RWW for all sites excluding site STN ............................................... 122 

Table L1. Biomass sample collection and handling for each study site ......................... 123 

Table M1. Data for Dixon-Thompson outier test on mean TP. ...................................... 124 

 



 

 viii 

List of Figures 

Figure 1. Profile and plan views of wetland at normal and storm stages ........................... 8 

Figure 2. Schematic of watershed as modeled in TR-20 .................................................... 9 

Figure 3. 10-yr 24-hr storm inflow and outflow hydrographs for a hypothetical 0.8-ha 
wetland with a 20.2-ha watershed modeled with TR-20 .................................................. 11 

Figure 4. Graphical representation of hypothesized relationship between nutrient 
retention and HRT............................................................................................................. 16 

Figure 5. Total N and P removal as a function of the proportion of wetland to watershed, 
based on Jordan (2007), where removal = 1 - e-kA ............................................................ 23 

Figure 6. Physiographic provinces of Maryland ............................................................... 27 

Figure 7. Diagrams of a wetland designed with both primary and emergency spillways 36 

Figure 8. Graphical representation of the relationship used to linearly interpolate storm 
storage from peak discharge ............................................................................................. 40 

Figure 9. Stage-storage-discharge relationships for sites GLP, GPT, and SPF, with 
overlays of storm event runoff volume and MHRT.......................................................... 52 

Figure 10. Scatter plot and linear regression for log-transformed MHRT versus log-
transformed NHRT for the means of design storms for each site..................................... 56 

Figure 11. Scatter plot and linear regression for the log-transformed MHRT of the 1-in 4-
hr ARC3 design storm versus RWW ................................................................................ 57 

Figure 12. Ranges of measured variables for this study compared to ranges for the same 
variables reported in Whigham et al. (2002) .................................................................... 60 

Figure 13. Scatter plots for biomass, TN, and TP versus MHRT for the 10-yr 24-hr ARC2 
design storm ...................................................................................................................... 71 

Figure 14. Scatter plots and linear regression for log-transformed TP versus the log-
transformed MHRT and NHRT for the 10-yr 24-hr ARC2 design storm ........................ 72 

Figure 15. Scatter plot and linear regression for TP versus the ratio of wetland area to 
watershed area ................................................................................................................... 73 

Figure 16. Scatter plots and linear regression for TP versus MHRT and NHRT for the 10-
yr 24-hr ARC2 design storm, excluding site STN ............................................................ 74 



 

 ix 

Figure C1. Diagram of Agri Drain inlet-style water control structure ............................. 95 

Figure C2. Photo of Agri Drain inlet-style water control structure. ................................. 96 

Figure G1. Stage-storage-discharge relationships for the seven study sites ................... 108 

Figure I1. Residual plots for regression analysis of the log-transformed mean MHRT 
versus the log-transformed mean NHRT and the log-transformed MHRT for the 1-in 4-hr 
ARC3 design storm versus RWW. ................................................................................. 112 

Figure J1. Graphs for analysis of residuals for regression of mean TP on HRT and RWW
......................................................................................................................................... 117 

Figure L1. Photo of 1-m2 quadrat frame used for biomass sampling. ............................ 123 

Figure N1. Site CON aerial view with longest flow path, and wetland pool and watershed 
boundaries and ground-level photo. ................................................................................ 125 

Figure N2. Site GLP aerial view with longest flow path, and wetland pool and watershed 
boundaries and ground-level photo. ................................................................................ 126 

Figure N3. Site GPT aerial view with longest flow path, and wetland pool and watershed 
boundaries and ground-level photo. ................................................................................ 127 

Figure N4. Site SPF aerial view with longest flow path, and wetland pool and watershed 
boundaries. ...................................................................................................................... 128 

Figure N5. Site GPT aerial view with longest flow path, and wetland pool and watershed 
boundaries and ground-level photo. ................................................................................ 129 

Figure N6. Site STS aerial view with longest flow path, and wetland pool and watershed 
boundaries and ground-level photo. ................................................................................ 130 

Figure N7. Site WDF aerial view with longest flow path, and wetland pool and watershed 
boundaries and ground-level photo. ................................................................................ 131 

 



 

 x 

List of Abbreviations 

AB – aboveground biomass 

ANOVA – analysis of variance 

ARC1 – antecedent runoff condition I 

ARC2 – antecedent runoff condition II 

ARC3 – antecedent runoff condition III 

CI – constant intensity (storm) 

CN – runoff curve number 

C:N – carbon to nitrogen ratio 

C:P – carbon to phosphorus ratio 

CREP – Conservation Reserve Enhancement Program 

CSTR – continuously-stirred tank reactor 

DUH – dimensionless unit hydrograph 

DW – depth of wetland 

DRP – dissolved reactive phosphorus 

ES – emergency spillway 

FWA – flow-weighted average 

GIS – geographic information systems 

GOF – goodness-of-fit (statistics) 

GPS – global positioning system 

HLR – hydraulic loading rate 

hr – hour 

HRT – hydraulic residence time 

KS – Kolmogorov-Smirnov one-sample (test) 



 

 xi 

LIDAR – light detecting and ranging [remotely-sensed topographic data] 

LW – length of wetland 

MES – Maryland Eastern Shore 

MHRT – mean hydraulic residence time 

NHRT – nominal hydraulic residence time 

N:P – nitrogen to phosphorus ratio 

NPSP – nonpoint source pollution 

NRCS – U. S. Department of Agriculture, Natural Resources Conservation Service 

PP – particulate phosphorus 

RWW – ratio of wetland to watershed area 

T – duration of flow 

T2 – type II (storm) 

Tc – time of concentration 

TC – total carbon 

TN – total nitrogen 

TP – total phosphorus 

TR20 – Technical Release 20: Computer Program for Project Formulation Hydrology 

USGS – United States Geological Survey 

VR – volume of runoff entering the wetland 

VW – volume of the wetland 

WW – width of wetland 

WWT – wastewater treatment wetlands 

yr – year 

 



 

1 

Chapter 1: Introduction 

There has been much study on nutrient retention and cycling in wetlands, with the 

greatest focus on nitrogen and phosphorus, the two main nutrients in animal waste and 

agricultural runoff, and which are of most concern for their roles in eutrophication. The 

dynamics of nutrient retention in constructed wastewater treatment wetlands (WWT) are 

relatively well understood. Indeed, whole volumes have been written on the use of 

wetlands for the treatment of wastewater (Hammer 1989, Kadlec and Knight 1996). The 

understanding of constructed wetlands benefits from the relative ease and certainty with 

which nutrient and hydraulic loads can be predicted from wastewater. Although many of 

the fundamental principles related to nutrient removal apply to wetlands in agricultural 

landscapes, the variability in both nutrient concentrations and hydraulic loadings from 

nonpoint source pollution (NPSP) (Kadlec 1999; Crumpton 2001; Jordan et al. 2003; 

Reinhardt et al. 2005) makes it much more difficult to develop criteria for wetland 

design. The lack of any comprehensive resource for designing wetlands to treat NPSP in 

agricultural landscapes is evidence of this.  

 

A number of studies have attempted to elucidate the factors that determine nutrient 

retention in wetlands treating NPSP (Chescheir et al. 1991; Hammer 1992; Mitsch 1992; 

Kadlec and Hey 1994; Raisin and Mitchell 1995; Comin et al. 1997; Jordan et al. 2003; 

Raisin et al. 1997; Almendinger 1999; Spieles and Mitsch 2000; Casey and Klaine 2001; 

Crumpton 2001; Tweedy and Evans 2001; Fink and Mitsch 2004; Reinhardt et al. 2005). 

Some of these studies have provided guidance for optimizing nutrient retention from 
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NPSP in agricultural landscapes. Crumpton (2001) demonstrated the importance of site 

selection in designing wetland restorations. He determined that when sited appropriately, 

restored wetlands could remove approximately 35 percent of the annual nitrate load from 

agricultural watersheds in the corn belt, in contrast to only 4 percent when location was 

not explicitly considered. 

 

Few models have been developed to provide design guidance for treating NPSP with 

constructed wetlands. Of the published models (Almendinger 1999; Dorge 1994; 

Crumpton 2001; Lee et al. 2002), only Crumpton’s (2001) empirically-developed model 

has been put into practical use on a relatively large scale. Deterministic models have 

probably not been adopted for a number of reasons, such as a lack of applicability to real-

world situations with multiple objectives, difficulty of use, lack of input data availability, 

incomplete model validation, and perhaps a lack of appropriate technology transfer. 

Cultural issues in the context of practitioners, such as using the easiest and most 

commonly accepted modeling tools, may also play a role. Most wetland restorations are 

designed for a variety of objectives, and the nutrient and hydrologic loads are highly 

variable. Although deterministic models may be appropriate for treatment of specific 

pollutants in controlled environments, the variability in restored wetlands may be better 

addressed with empirical models. Most applicable may be an empirical model for treating 

NPSP that focuses specifically on the variables that are easily controllable within the 

current cultural and technical context of wetland restoration being conducted by 

practitioners, such as the U.S. Department of Agriculture – Natural Resources 

Conservation Service (NRCS). 
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HYDROLOGIC AND HYDRAULIC DESIGN 

One possible method of accounting for the high variability in NPSP is to develop an 

empirical model that incorporates the primary hydrologic mechanisms for nutrient 

retention – hydraulic loading rate and residence time – with evidence of nutrient retention 

in existing restored wetlands. Hydraulic residence time (HRT) is cited as one of the 

critical factors for nutrient retention in wetlands (Chescheir et al. 1991; Raisin and 

Mitchell 1995; Kadlec and Knight 1996; Cirmo and McDonnell 1997; Almendinger 

1999; Mitsch and Gosselink 2000; Fisher and Acreman 2004; Reinhardt et al. 2005). 

HRT is important because it increases the amount of time for biogeochemical 

transformation, adsorption, and absorption of nutrients within the wetland. Increased 

HRT also promotes the settling of suspended sediments, which are an important transport 

vectors for phosphorus. In treatment wetlands, HRT is one of the primary variables used 

in determining the design specifications of the wetland. Nominal HRT can be calculated 

as (Kadlec and Knight 1996; Almendinger 1999; Reinhardt et al. 2005; Toet et al. 2005): 

 
 VW LW x WW x DW (1) 
HRT  =  ———  =   ——————— 
 VRT-1

 VRT-1 

 
where  VW = volume of the wetland 

 VR = volume of runoff entering the wetland 

 T = duration of flow 

 LW = length of wetland 

 WW = width of wetland 

 DW = depth of wetland 
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In a WWT, the factors that determine HRT can be controlled with relative precision. VR 

can be easily estimated because it is typically the result of a standard process that occurs 

on a regular basis. In cases where flow variability exists, holding structures can be used 

to make VR more consistent. For example, in a dairy operation, waste is often sent to a 

solids separator prior to treatment of the wastewater, after which the wastewater can be 

released at a controlled rate. Because VR can be predetermined and kept relatively 

constant, a WWT can be sized to obtain an appropriate value of HRT for treatment. In 

sizing a WWT, the depth of runoff in the wetland can also be kept relatively constant, 

ensuring a high proportion of the runoff comes in contact with bioreactive surfaces.  

 

In contrast to the WWT scenario, in watersheds where NPSP is being treated, VR will 

vary considerably with storm event precipitation, seasonal climate changes, and drainage 

basin size, shape and land use. Theoretically, with long-term runoff data from a 

watershed, or predictive models of NPSP, wetlands could be sized to provide the 

appropriate HRT to treat NPSP for a majority of storm events. In reality, because land is 

a limited resource, it is not reasonable to expect to be able to construct wetlands of any 

size necessary for treatment. It follows that VW is often controlled by factors other than 

what is needed for treatment:  LW and WW are constrained by the area of land available 

for the wetland, and DW by the need for shallow water levels in wetlands. Assuming 

wetland area has uncontrolled variability, HRT needs to be addressed using the 

knowledge of the variability in VR and the limited flexibility in selecting DW.  
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Technical Release 20 (TR-20) is a model that was designed to determine storm runoff 

volume, peak rate of discharge, and hydrographs for the design of stormwater 

management structures (USDA-SCS 1983), and has been adapted for use in agricultural 

watersheds. TR-20 estimates watershed runoff volume based on the Soil Conservation 

Service (SCS) method, and develops runoff hydrographs based on the SCS curvilinear 

unit hydrograph. The runoff hydrographs are routed through channels and structures to 

create hydrographs that represent outflow from the watershed. An in-depth description of 

the TR-20 model can be found in McCuen (1998). The inputs for TR-20 consist of the 

following: 

 

• Runoff curve number (CN) – The watershed CN is determined by a weighted 

average of the CN for each land cover type (e.g., straight row crops with residue) 

and hydrologic soil group combination within the watershed. The CN is an 

empirically-derived value that represents a relationship between rainfall and 

runoff depth (Schwab et al. 1993). The highest value of CN, equal to 98, is 

applied to impervious surfaces, which have the highest rate of runoff. 

• Time of concentration (TC) – The TC is the amount of time required for runoff to 

flow from the most remote point in a watershed to the outlet. The TC is calculated 

based on flow path length, slope, surface cover type, and channel hydraulic 

characteristics, which are determined from field surveys and remotely sensed data 

(e.g. digital elevation models). The surface cover type and channel characteristics 

are used to calculate the flow velocity based on Manning’s equation. The flow 

segments can be of three types: sheet, shallow concentrated, and channel. The 
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times of travel for each segment are summed to obtain the TC for the watershed. A 

detailed description of the calculation of TC can be found in chapter 15 of the 

National Engineering Handbook, Part 630 (Kent 1972).  

• Storm reach – A storm reach represents the channel routing for runoff when it 

becomes concentrated. If the concentrated runoff does not flow through a channel, 

then the storm reach identifies the structure or outlet where the runoff 

concentrates.  

• Structure rating – The term “structure rating” in TR-20 is synonymous with the 

stage-storage-discharge rating. The structure rating is the relationship between the 

flow capacity (i.e., discharge) of the structure, the water surface elevation (i.e.,  

stage), and the storage volume upstream of the structure. The structure rating is 

determined with knowledge of the physical and hydraulic characteristics of the 

structure and topography of the upstream area. This relationship determines the 

rate of outflow (i.e., discharge) relative to the inflow (runoff). The stage is the 

depth of water relative to the normal pool elevation (Figure 1). When the stage is 

above the normal pool elevation, there is a hydraulic head (H) associated with the 

outlet structure. Also when the stage is above the normal pool, there is an area 

into which runoff can be temporarily stored. Since both the discharge and storage 

vary with the stage, a stage-storage-discharge relationship exists for each wetland 

site. The stage-storage-discharge relationship (or structure rating) provides the 

basis for routing runoff through a structure in TR-20.  



 

7 

• Storm analysis – The storm analysis represents the type of storm event that is 

modeled, and is defined by rainfall intensity, rainfall distribution type, and 

antecedent runoff condition (ARC). The rainfall distribution type (e.g., type II) 

characterizes the pattern of a storm event. For example, a storm may begin and 

end with low intensity rainfall, and be at maximum intensity in the middle of the 

event. The ARC represents the soil moisture conditions when the storm event 

begins, and is categorized as either dry (ARC1), average (ARC2), or wet (ARC3). 

An ARC3 can be described as heavy rainfall or light rainfall with low 

temperatures within 5 d prior to a storm event (Schwab et al. 1993). 

• Dimensionless unit hydrograph (DUH) – The DUH represents the relationship 

between the runoff discharge and the runoff duration, and is independent of peak 

runoff. A standard curvilinear DUH was developed by the SCS for small 

watersheds (Schwab et al. 1993), and is the most commonly used DUH. For some 

locations, a special DUH was developed, as is the case for the Delmarva 

Peninsula. 
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Figure 1. Profile and plan views of wetland at normal and storm stages. The normal pool area is 
the area that is covered by water when the water level in the wetland is at the outlet elevation. For 
a specific storm event, there will be a peak water elevation (i.e., storm stage water level) and pool 
area (i.e., storm stage pool area). DW is the storage depth, assuming that the wetland is initially 
filled to the normal pool elevation. The area between the storm stage and normal pool in the 
profile view represents a cross-section of the storm storage volume. The flow is a function of the 
stage-storage relationship (i.e., outlet width, and storm stage level and area). Weir flow through 
the outlet is assumed in this figure. 
 
 
In a simple watershed runoff scenario, a structure can be placed at the outlet of the 

watershed (Figure 2). TR-20 will calculate the peak flow upstream and downstream of 

the structure, taking into account the storage area above the structure. The difference 

between the peak flow upstream and downstream of the structure is a function of the 

storage area and the structure capacity. If the storage area (LW x WW) is constant, a 

smaller capacity structure will result in a higher storm stage for the same storm event 

(VR). The difference in the outlet structure and storm stage elevations is the wetland 



 

9 

storage depth (DW), which, as demonstrated by Equation 1, is intricately linked to HRT 

(Figure 1). 

 

 
Figure 2. Schematic of watershed as modeled in TR-20. In this model, flow from subwatersheds 
A and B would be modeled as sheet and shallow concentrated flow, entering a stream channel at 
the upward end of the stream reach. Subwatershed C would be modeled as sheet and shallow 
concentrated flow going directly to the structure. TR-20 will report the peak flow upstream and 
downstream of the structure and outlet, which in this scenario are at the same location in the flow 
path. 
 

 

The relationship between DW and HRT can be demonstrated by modeling a hypothetical 

wetland with TR-20. The data for Table 1 and Figures 3a and 3b was developed using 

TR-20 to model a hypothetical 0.8-ha (2.0 ac) wetland with a 20.2-ha (50 ac) watershed 

and three outlet size scenarios. Figure 3a demonstrates the attenuation of the peak storm 

flow entering the wetland. Figure 3b displays the increased time that the storm flow 

volume takes to exit the wetland as the outlet size decreases. As shown in Table 1, HRT 

and storm stage (DW) increase as the outlet size decreases, with relatively small changes 

in storm stage resulting in significant changes in HRT. For example, for the 1-yr 24-hr 
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storm event, a change from a 3.05-m (10 ft) to a 1.83-m (6 ft) wide outlet results in an 

increase in storm stage of only 2.2 cm (0.07 ft), but provides an increase in mean HRT of 

0.8 hours.   

 

Table 1. Storm stage and mean hydraulic residence time (MHRT) for 1-yr and 10-yr 24-hr storm 
events modeled with TR-20, based on the same model as used for Figures 3a and 3b. Relatively 
small increases in storm stage can result in significant increases in mean residence time for both 
storm events. 

Weir 
Length 

(m) 

1-yr 24-hr Storm 10-yr 24-hr Storm 
Storm Stage 

(cm above normal pool) 
MHRT 

(hr) 
Storm Stage 

(cm above normal pool) 
MHRT 

(hr) 
4.27 18.6 0.9 43.0 0.8 
3.05 20.1 1.3 47.2 1.1 
1.83 22.3 2.1 53.6 1.7 
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Figure 3. 10-yr 24-hr storm inflow and outflow hydrographs for a hypothetical 0.8-ha wetland 
with a 20.2-ha watershed modeled with TR-20. Flow volumes represent the approximate volume 
entering and leaving the wetland for a constant time increment (Equation 11). The flows were 
modeled with three different outlet sizes (4.27-m, 3.05-m, and 1.83-m weirs). Notice in Figure 3a 
that the peak inflow is reduced significantly at the outlet, with the greatest reduction occurring 
with the smallest outlet. Figure 3b demonstrates the increase in retention time for the flow volume 
with decreasing outlet size. 
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A significant portion of the wetland restorations in agricultural areas are implemented 

with the assistance of the U. S. Department of Agriculture’s Natural Resource 

Conservation Service (NRCS) and its partners, because NRCS is the lead technical 

agency for delivery of Farm Bill conservation programs. In providing this assistance, 

NRCS and partner staff regularly use TR-55 (USDA-SCS 1986), a simpler version of 

TR-20, to design wetland restorations. The Maryland NRCS conservation practice 

standard for wetland restoration requires that outlets are sized to provide 15 cm (0.5 ft) of 

freeboard (Figure 1) above the 10-yr 24-hr design storm water level, and that the berm 

height is no greater than 1.22 m (4.0 ft) (USDA-NRCS 2006). Based on my experience, 

for farm scale watersheds on the Maryland Eastern Shore (MES), the 10-yr 24-hr storm 

will typically produce water levels from 6 to 30 cm (0.2 to 1.0 ft) above the normal pool 

elevation for typical watershed to wetland size ratios. Often, outlets are designed to 

produce a storm stage of 15 cm (0.5 ft), which requires that berms are 30 cm (1.0 ft) 

above the design normal pool. In some cases, both primary and emergency spillways are 

used. The primary spillway is often a riser-type structure with boards that allow water 

level management. The primary spillway usually carries a small portion of the design 

storm flow, and because the emergency spillway is at a higher elevation than the primary 

spillway, the primary spillway controls the normal pool level.  

 

This method of sizing outlets and berms is based on minimizing berm heights to reduce 

construction costs and meet the design criteria of the wetland restoration practice 

standard. As shown in Table 1, relatively small increases in storm stage can result in 

significant increases in HRT. During smaller, and more frequent storm events, outlet 
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sizing can result in even more significant increases in HRT. This is demonstrated by the 

greater increase in HRT per unit change in storm stage for the 1-yr 24-hr storm versus the 

10-yr 24-hr storm (dHRT/dDW of 20.0 versus 4.3), based on the data in Table 1. Thus, 

relatively subtle changes in design (i.e., berm height and outlet size) may provide 

significant water quality benefits. If guidance were available, designs could be improved 

to address nutrient retention. But the question that needs to be answered is, what increase 

in storm storage provides a change in HRT that significantly affects nutrient retention? 

One possible method to begin to answer this question is to compare modeled hydrologic 

and hydraulic variables with indicators of nutrient retention in existing restored wetlands.  

 

 

PLANTS AS INDICATORS OF NUTRIENT RETENTION 

Plants play an important role in nutrient retention and removal in wetlands. In a review, 

Fisher and Acreman (2004) identified vegetative processes as one of the most frequently 

reported significant factors for nutrient removal in wetlands. Studies have shown that 

plants can remove significant amounts of nutrients from water flowing into wetlands 

(Davis and van der Valk 1983; Howard-Williams 1985; Mitsch 1992; Comin et al. 1997; 

Silvan et al. 2004; Herr-Turoff and Zedler 2005). However, most studies have indicated 

that the many indirect effects of plants on nutrient retention are even more significant. 

Plants help to sustain nutrient retention by recycling nutrients. For example, Howard-

Williams (1985) demonstrated that internal cycling in wetland plants can account for half 

the annual flux of N and P in Phragmites australis, as nutrients are exchanged between 
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above and below-ground tissues. Plants promote the removal of nutrients from interstitial 

water by absorbing nutrients and making adsorption sites available (Davis and van der 

Valk 1983). Plants reduce flow velocities, which causes nutrient-laden sediments to 

accumulate in wetlands. The annual deposition of plant litter is one of the most important 

roles of plants in wetlands (Davis and van der Valk 1983). The carbon sequestered from 

the atmosphere and returned to the soil during the decay process is critical for 

microorganism production and consequent removal of N through denitrification. Plants 

also create aerobic zones in saturated soils when they release oxygen into the root zone 

(Hammer 1992; Brix 1997). The resulting association of aerobic and anaerobic zones 

facilitates the transformation of N compounds, including the process of denitrification 

(Reddy et al. 1989; Caffrey and Kemp 1992; Hammer 1992; Munch et al. 2005). Martin 

and Reddy (1997) showed that plants with high rates of evapotranspiration can affect the 

movement of NH4-N and NO3-N in the root zone, and consequently, promote 

denitrification. With plants playing such an important role in nutrient retention, cycling, 

and removal in wetlands, it follows that greater plant biomass production results in 

greater nutrient retention and removal (Davis and van der Valk 1983; Hammer 1992; 

Mitsch 1992; Silvan et al. 2004).  

 

Wetland vegetation has also been shown to be impacted by elevated nutrient levels in 

wetland soils and surface waters. Many studies have found higher assimilation of N and P 

in plant tissue in nutrient-enriched environments (Craft and Richardson 1993; Greenway 

1997; Miao and Sklar 1998; Craft et al. 2007; Kroger et al. 2007), which is often referred 

to as “luxury uptake”. Hence, plants are part of a biofeedback process in which they both 
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support nutrient retention and respond to elevated levels of primary nutrients with 

increased absorption. It follows that increased levels of nutrients in plant tissues will be 

found in wetlands where conditions enhance nutrient availability and assimilation. Such 

conditions would include longer hydraulic residence times, especially when the majority 

of nutrient loading occurs during storm events. 

 

The objective of this research was to evaluate the feasibility of a model for optimizing 

nutrient retention in restored wetlands based on the relationship between HRT and both 

plant biomass and standing nutrient stocks. Using HRT as the independent variable and 

plant biomass and nutrient standing stocks as the dependent variables, I expected the 

model to display a positive relationship. I also hypothesized that the relationship would 

display two inflection points, coinciding with the HRT at which nutrient retention begins 

to increase significantly, and the HRT at which nutrient retention becomes less 

significant (Figure 4). If this relationship held, the proposed model could be used to 

optimize nutrient retention by designing wetland restorations that have HRT’s that 

approach the second inflection point. HRT would be designed for by adjustment of the 

controlling variables, which include watershed/runoff effects, storm stage, and outlet size 

and type.  

 

The use of an empirical model provides the benefit of accounting for variability inherent 

in landscape level analyses (e.g. nutrient loadings, precipitation), variability due to 

landowner objectives, and variability due to ecological functions and limitations. Thus, 

the model would provide a set of criteria that are applicable to nontidal wetland 
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restorations implemented on the MES. Moreover, the model could easily be adapted to 

other important agricultural regions because it does not require long-term data, and it 

makes use of NRCS conservation practice standards and widely accepted hydrologic and 

hydraulic modeling tools. 

 

 
Figure 4. Graphical representation of hypothesized relationship between nutrient retention and 
HRT. The first inflection point is that at which increased HRT starts to show a significant 
increase in nutrient retention. The second inflection point is where increasing HRT begins to 
show diminished nutrient retention benefits, which occurs when the capacity of the wetland to 
achieve significantly greater biomass production and luxury uptake of nutrients has been reached. 
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Chapter 2: Review of Literature 

The objective of my research was to evaluate a hypothetical model for nutrient retention 

in restored wetlands based on factors that could be employed in the design of wetland 

restorations. Following is a review of the literature for which models were developed to 

address the wetland design requirements to treat NPSP in agricultural watersheds. Where 

applicable, I discuss the practical application of the model. A general discussion of 

models for nutrient removal in wetlands can be found in Chapter 1: Introduction. 

 

Almendinger (1999) developed a model to prioritize wetland restorations sites for water 

quality improvement for NPSP-affected areas in agricultural watersheds in Minnesota. 

Almendinger suggested combining the major variables in “function effectiveness” – 

hydraulic residence time, hydraulic flux, and wetland area, volume and average depth – 

into a single term (ε) that can provide an estimate of site potential. The term ε is reduced 

to a function of wetland area and the average annual flux of water through the wetland. 

The model lacks any indicators of water quality improvement, and presumably, for this 

reason, the author suggests the use of site monitoring to assess and enhance model 

effectiveness. A weakness of the model is the use of average annual flux for the hydraulic 

loading because NPSP is primarily event-driven (Raisin et al. 1997; Braskerud et al. 

2000).   

 

Dorge (1994) describes a deterministic model, MIKE 11 WET, for nitrogen removal and 

retention in wetlands from agricultural runoff. The model describes water flow and 
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nitrogen cycling in the surface and root zone of freshwater temperate wetlands. Because 

the model is deterministic, it requires many assumptions, including constant saturation in 

the wetland soil, no nitrogen limitations for plant production, and a nitrogen cycle that is 

independent of P and carbon. The model also requires knowledge of local N loads, which 

would be difficult to develop for all potential wetland restorations. The model is useful 

for assessing the effectiveness of existing wetlands, rather than planned wetlands.  

 

Lee et al. (2002) developed and evaluated a model (WETLAND) to enhance wetland 

design for NPSP control. WETLAND models both subsurface and free-water surface 

flow wetlands by simulating the hydrologic, nitrogen, carbon, dissolved oxygen, 

bacterial, vegetative, phosphorus, and sediment cycles. The model requires daily input 

values for hydrologic and nutrient parameters, which according to the authors, can be 

derived from measured data, NPSP models (e.g. ANSWERS), or calculation of daily 

runoff values using the SCS curve number method and nutrient runoff coefficients. The 

model was calibrated using a municipal wastewater treatment wetland, rather than a 

wetland that received NPSP. A model simulation provided results comparable to those 

reported in the literature, but the efficacy of the model has not been tested with real-world 

wetlands. The authors suggest that more rigorous testing is required for validation, and no 

follow-up validation of the model was found in the literature. 

 

Crumpton (2001) applied a temperature-dependent first-order nitrate removal equation, 

which was developed for treatment wetlands and is described in Kadlec and Knight 

(1996), to a continuously-stirred tank reactor (CSTR) in-series mass balance model to 
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simulate nitrate removal in two hypothetical restored wetlands in the corn belt of the 

U.S.A. In the first scenario, referred to as the conventional approach, the restored wetland 

intercepted 4 percent of the total drainage from the watershed. In the second scenario, 

referred to as the watershed approach, the wetland intercepted 50 percent of the total 

drainage. The difference between the conventional and watershed approaches was that 

the importance of  wetland landscape position in relation to water quality was explicitly 

recognized in the latter. Therefore, in the watershed approach, the wetland was sited to 

have a larger wetland to watershed ratio (i.e. 50 percent) (Crumpton 2001). In both 

scenarios, the restored wetlands occupied 10 percent of a 2,550 ha watershed. Model 

coefficients were estimated from experimental and mesocosm wetland studies. Hydraulic 

loading rates (HLR) and temperature were estimated from measured values in a typical 

watershed. Results of the model indicated that the conventional approach would have 

little effect on nitrate concentrations, resulting in less than 4 percent removal of the 

annual nitrate load. In contrast, the model indicated the watershed approach would 

substantially reduce nitrate concentrations, resulting in removal of approximately 35 

percent of the annual nitrate load. Unlike the previously described models, Crumpton’s 

model has achieved practical application. The model forms the basis for the Iowa 

Conservation Reserve Enhancement Program (CREP) (Crumpton et al. 2006), which 

provides financial incentives for landowners to implement targeted wetland restoration. 

Technical eligibility criteria for the Iowa CREP is based upon the research findings of 

Crumpton (2001), and requires that: (1) Restored wetlands are located below a tile 

drainage system with a watershed that includes at least 200 ha of cropland; (2) The 

wetland area is between 0.5 and 2 percent of the drainage area; (3) At least 75 percent of 
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the wetland pool is less than 0.9 m deep; and (4) The wetlands are designed to maintain 

drainage for upstream landowners. As of December 2006, 20 wetlands have been restored 

through the Iowa CREP, ranging in size from 1.4 to 7.5 ha, and intercepting drainage 

from watersheds ranging from 208 to 1,478 ha (Crumpton et al. 2006). Crumpton et al. 

(2006) conducted further analysis of predicted nitrate removal by wetlands using 

measurement data from 3 CREP sites and 12 experimental wetland sites in Ohio, Illinois, 

and Iowa. Results indicated that 94 percent of the variability in mass removal rates of 

nitrate could be explained by a model that considers HLR and flow-weighted average 

(FWA) nitrate concentration. Inherent in the wetland performance model is the variability 

in HLR and FWA nitrate concentrations, so site-specific values of HLR and FWA are 

needed for model reliability. Crumpton et al. (2006) used the wetland performance model 

in combination with a geographic information systems (GIS) model of nitrate loadings 

based on land-use, gage station, and climatic data, to determine the potential reduction of 

nitrate loads in the Upper Mississippi River and Ohio River basins. Results indicated that 

a 30 percent reduction in nitrate load to the basins could be expected if 210,000 to 

450,000 ha of wetlands were constructed in the areas with the highest nitrate loads.  

 

Although the Crumpton (2001) model may be appropriate for the corn belt region, 

landscape scale factors and the difference in predominant drainage practices (i.e., tile 

drainage versus surface drainage) limit the transferability of the model to the MES. On 

the large scale that the model was applied, and with tile drainage systems as the primary 

means of water conveyance, these watersheds are likely to be much less storm-driven 

than smaller watersheds with surface drainage. Consequently, the large tile-drained 
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watersheds should produce less variability in HLR, which is an important factor for 

maximizing HRT (Jordan et al. 2003) in wetlands. This is implied by the fact that the 

wetland performance model is based on a nitrate removal equation that assumes plug 

flow, in which the nitrate-loaded water follows a linear pathway from inlet to outlet, 

maximizing contact time (i.e., residence time) with bioreactive surfaces. The difference 

between the large tile-drained watersheds and smaller surface-drained watersheds of the 

MES is somewhat akin to the data presented in Crumpton et al. (2006), where the Iowa 

CREP wetland with the lower nitrate removal rates had greater variability in nitrate 

concentrations, and the response to high flows was much more similar between inflow 

and outflow nitrate rates. Crumpton suggested that this may have been related to 

differences in soils, topography, and/or drainage systems, but further investigation had 

not been conducted. Presumably, these explanations are all related to hydrologic 

pathways, since soils, topography, and drainage systems can affect the path through 

which excess water travels. Heavy soils, steep topography, and surface drainage will tend 

to support surface runoff as compared to sandy soils, flat topography, and tile drainage, 

which will promote infiltration. Since water movement through soil is slower than flow 

across the surface, it can be assumed that the surface pathway will result in shorter 

concentration times, higher peak flows, greater flow variability, shorter residence times, 

and subsequently, lower nitrogen removal rates. 

 

Jordan (2007) developed a nutrient removal model based on a limited review of existing 

published data on treatment of agricultural NPSP. The purpose of the model was to 

provide nutrient reduction efficiencies of wetland restorations for use in the Chesapeake 
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Bay Program watershed model. The model was based on the assumption that nutrient 

removal rates generally follow first-order kinetics, where the rate of removal is 

proportional to the concentration of the substance in the water, and is dependent on the 

amount of time the water is retained (i.e., retention time) in the wetland. The assumption 

was also made that retention time is proportional to the percentage of the catchment 

occupied by the wetland. Thus, assuming watershed discharge is similar for watersheds 

of equal size, a larger ratio of wetland area to watershed area would result in greater 

retention time. The model, based on these assumptions, follows: 

 

Removal = 1 - e-kA,  (2) 

 where, removal = the proportion of the input removed by the wetland; 

 A = the proportion of the watershed occupied by the wetland; and 

 k = the rate constant, fitted from experimental data 

 

Values of k were determined for total N and P removal by applying non-linear regression 

to annual removal data from 15 published articles. For total N, k = 7.90, with lower and 

upper 95 percent confidence intervals of 4.56 and 11.2. For total P, k = 16.4, with lower 

and upper 95 percent confidence intervals of 8.74 and 24.0. Plots based on these values 

can be seen in Figure 5. 
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Figure 5. Total N (left) and P (right) removal as a function of the proportion of wetland to 
watershed, based on Jordan (2007), where removal = 1 - e-kA. Dashed lines represent lower and 
upper 95 percent confidence intervals. 
 

Jordan cautions that wetland age, flow paths, flow variability, landscape, and wetland 

maintenance are all factors that can affect removal rates, but are not accounted for by the 

model. An issue with the model is that much of the data used to determine the k values 

comes from studies where wetlands were constructed specifically for treatment of NPSP, 

which could result in higher removal rates than would be attained in wetlands constructed 

for multiple objectives. Also, because all but one of the studies from which the model 

was extracted were conducted outside of the MES, the rate constants may not be 

applicable to the region. 

 

The substitution of the ratio of wetland to watershed area (RWW) for retention time 

poses some significant problems. As noted by Jordan (2007), flow paths, flow variability, 

landscape, and wetland volume are all factors that can create significant variability in 

removal rates. In developing the model, Jordan omitted data where only negative removal 

rates had been reported, and used average data where a combination of positive and 

negative removal rates were reported from the same study. Negative removal rates are 

most likely a result of storm-driven flow variability. In Jordan et al. (2003), from which 
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data was used for the model, total N and P removal was positive in the first year, but not 

significantly different from zero in the second year of the study. This was partly due to 

the wetter summer conditions in the second year, which resulted in higher wetland water 

levels, and subsequently, shorter residence times during runoff events. Jordan et al. 

(2003) demonstrated that retention times were much less over shorter time scales. For 

example, retention times calculated over the first and second years of the study were 19 

and 12 d, respectively, while the retention time for the day with the highest loading rate 

was only 0.51 d. This demonstrates the importance of considering storm-based hydraulic 

loading in assessing nutrient removal in wetlands receiving unregulated inflows.    
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Chapter 3: Objectives 

The primary objectives of this study were to: 

 

1. Evaluate a hypothetical model for nutrient retention in restored wetlands based on 

plant nutrient stocks and HRT. 

 

2. Evaluate the effects of typical wetland restoration design on HRT and nutrient 

retention in agricultural areas of the Maryland Eastern Shore. 

 

3. Provide design recommendations for optimizing HRT within the existing 

framework for restoring wetlands in agricultural areas of the Maryland Eastern 

Shore. 
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Chapter 4: Materials and Methods 

STUDY AREA 

The MES is generally considered to be all the land in the State of Maryland that is east of 

the Chesapeake Bay. Part of the coastal plain physiographic province (Figure 6), the 

MES is relatively flat, and is an area of intensive commodity crop and poultry production. 

Agricultural field slopes range up to 10 percent in the northwest, and generally trend to 5 

percent or less towards the southeast, where much of the land has slopes of less than 2 

percent. Typical agricultural soils range from loamy sands to silty clay loams, and 

excessively drained to very poorly drained. Approximately 50 percent of the soils on the 

lower MES are hydric. The movement towards intensive grain crop production on the 

MES over the last 50 to 60 years has resulted in the establishment of a vast network of 

artificial drainage ditches and channelized streams to allow for enhanced crop production 

on former wetlands. Of the hydric soils that are farmed, the sandy loams tend to be more 

desirable, as indicated by their capability class under drained conditions (USDA-NRCS 

2007). The fine-textured silty and clayey hydric soils, although often productive, can be 

difficult to work, and can cause stress to crops because of surface water ponding and low 

hydraulic conductivity. Although precipitation is fairly constant throughout the year, 

precipitation exceeds evapotranspiration in the winter and early spring prior to leaf-out. 

Much of the cropland in the lower portion of the MES has very high phosphorus levels 

due to decades of land application of poultry litter. 
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Figure 6. Physiographic provinces of Maryland (Maryland Geologic Survey 2001). The 
subdivision labeled Delmarva Peninsula Region is synonymous with the Eastern Shore of 
Maryland. 
 
 

SITE SELECTION 

Seven wetland restoration sites with characteristics typical of wetland restorations on the 

MES were selected for evaluation (Table 2). To ensure the potential for agriculturally-

related NPSP to enter the wetland, selected sites had a watershed that included land in 

agricultural production. The watersheds of all the sites were relatively small (≤ 17 ha), 

and provided only emphemeral flows to the wetlands. To reduce variability related to soil 

nutrient concentrations prior to restoration, sites were limited to those that were in crop 

production within five years of the time of restoration. To reduce variability related to the 

initial development of wetland functions, selected sites had been restored for a minimum 
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of three years. All sites were nontidal, located on hydric soils, and had similar soil map 

units with a soil texture of silt loam, except for one site with sandy loam soils. 

 

Table 2. Characteristics of study sites. 

 Restored Wetland Watershed 

RWW† 
Buffer 
Width‡ 

(m) Site 
Size 
(ha) 

Age 
(yr) 

Mapped Soil Soil Texture 
Size 
(ha) 

Percent 
Cropland 

Weighted 
Curve 

Number 

CON 1.5 7 Hurlock Sandy loam 15.3 80 76 0.09 20 

GLP 0.4 11 Whitemarsh Silt loam 10.5 96 78 0.04 5 

GPT 0.1 5 Whitemarsh Silt loam 4.5 48 68 0.03 60 

SPF 5.8 7 
Fallsington, 
Mattapex, Othello 

Sandy loam, 
loam, silt loam 

17.0 33 76 0.34 80 

STN 1.4 9 Whitemarsh Silt loam 5.7 66 72 0.24 5 

STS 2.2 8 
Carmichael, 
Kentuck 

Loam, mucky 
silt loam 

15.3 46 74 0.14 25 

WDF 2.1 3 
Carmichael, Othello, 
Whitemarsh 

Silt loam 8.5 14 69 0.25 30 

† RWW = ratio of wetland area to watershed area 
‡ Buffer width measured along concentrated flow path from where it enters buffer to where it enters 

wetland. Flow paths shown in Appendix N. 
 
 

DATA COLLECTION 

Restoration project information for each site, including plans, topographic surveys, 

designs, and as-built surveys were collected from soil conservation district files. Designs 

were not available on one site (i.e. site CON), so elevation relationships between wetland 

and outlet were determined on-site and remotely, using light detecting and ranging 

(LIDAR) elevation data. Topographic surveys developed for the original site design and 

LIDAR elevation data were used to determine stage-storage relationships. Watershed 

information, including watershed size, land use, and flow path, were evaluated in the 



 

29 

field, and remotely using geographic information systems (GIS), with supporting data 

such as LIDAR, topographic maps, aerial photography, and soil surveys. 

 

Data on biomass was collected in ten 1-m2 quadrats at each site, by the methods 

described below. Sampling locations were restricted to areas with emergent wetland 

vegetation. Prior to sampling, the size and shape of the wetland area containing emergent 

vegetation was estimated using GIS. An X-Y coordinate system was fitted to the wetland, 

and pairs of random numbers within the range of the X-Y coordinate system were 

developed for each site using Microsoft Excel. Starting at the beginning of the list, 

random X-Y coordinates were evaluated to determine if they fell within the estimated 

boundary of emergent wetland vegetation, and the process was continued until ten valid 

random locations were selected. 

 

On-site, the origin of the coordinate system was estimated, and the random coordinates 

were paced out. A 1-m2 frame made from ¾-in PVC pipe was dropped from head height 

over the vegetation. Stake flags were placed inside the frame at two opposite corners. 

Along the inner boundary of the frame, vegetation was determined as being “in” or “out” 

by where the stem emerged from the ground. Standing live and dead biomass was clipped 

at the ground and collected in labeled 30-gal trash bags. Using a laser level and survey 

rod, the elevation of the surface of the sample plot was measured relative to an on-site 

benchmark, such as a water control structure or other permanent type of structure. All 

samples were returned to an ambient indoor air-temperature storage location. Eventually, 

all biomass samples were transferred from plastic garbage bags to 30-gal paper lawn and 
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leaf bags. The biomass samples were placed in environmental chambers, standing upright 

and open, at the University of Maryland College Park. Samples remained in the 

environmental chambers until they could be dried and prepared for analysis. Due to 

logistics, there was some variation in handling of samples amongst sites. See Appendix L 

for specific handling information. 

 

Each biomass sample was weighed with the paper bag on a Toledo 500 g scale 

immediately prior to placement in the drying oven. Biomass samples were oven-dried at 

55° C for a minimum of 7 d. The majority of samples were dried to a constant weight. 

However, some samples were weighed only once post-drying, after having been in the 

drying ovens for a period of 17 d. The dry sample weight was calculated by subtracting 

the empty dry bag weight from the weight of the final dry sample and bag. Dried biomass 

was ground in a No. 3 Wiley Mill with a 2 mm mesh screen. To ensure that a 

representative and well-mixed ground sample was obtained, biomass was pulled from 

various locations in the unground sample. The ground sample material was placed in 

labeled 1-gal Ziploc bags. If the amount of biomass was more than could fit in a 1-gal 

bag, the remainder of the sample was discarded. The mill, screen, and collection box was 

cleaned after each sample was ground. The paper sample bags were checked to ensure 

they were empty, and were weighed immediately after grinding.  

 

Part of each sample was further ground in a coffee grinder to a particle size that was 

acceptable (1 mm or less) for carbon- hydrogen-nitrogen (C-H-N) analysis by 

combustion. To ensure a representative sample, three subsamples were pulled from 
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different locations of each 1-gal bag using a stainless steel measuring cup. The subsample 

was placed into the coffee grinder and leveled off by lightly shaking the grinder. A piece 

of cardboard was placed on top of the material in the grinder to keep the material near the 

grinding blade in the base of the grinder cup. The lid was placed on the grinder and the 

grinder was activated for a minimum of 15 s. The lid and cardboard was removed, and 

the material was mixed gently with a knife blade and leveled out. The cardboard and lid 

were replaced and the material was ground again for another period of at least 15 s. The 

lid and cardboard were removed, and the sample was emptied into a stainless steel 

measuring cup. The fine-ground sample was removed from the measuring cup using a 

steel measuring spoon and placed into labeled Whirl-pak sample bags. Any remaining 

fine-ground material in the measuring cup was disposed of prior to pulling another 

subsample. After fine-grinding the three subsamples, all implements were thoroughly 

cleaned using a brush. The coffee grinder was run without a lid, facing down into the 

rotoclone dust collection system, to aide in removing residue. The fine-ground samples 

were stored, and the remaining 2-mm ground material was left in the 1-gal bags and 

stored. Tissue samples were analyzed for percent total carbon, hydrogen, and nitrogen by 

combustion (Campbell 1992) at the University of Maryland Soils Laboratory using a 

LECO CHN-2000. Tissue samples were analyzed for total phosphorus (TP) at the Penn 

State Analytical Laboratory by standard dry ash sample digestion and ICP spectrometer 

methods (Miller 1998). Nutrient standing stocks were determined by multiplying the 

percent of each nutrient by the dry weight of each biomass sample. Because plant tissue 

was analyzed for total nutrient content, the nutrient standing stocks were assumed to 
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represent the total carbon (TC), total nitrogen (TN), and total phosphorus (TP) in the 

above-ground plant biomass. 

 

 

HYDROLOGIC AND HYDRAULIC ANALYSIS 

WinTR-20 Input 

Standard input data for the hydrologic analysis, including land use details, flow paths, 

structures, and storm storage were gathered from the original engineering designs and 

final construction surveys, site visits, and GIS analysis of aerial photography, USGS- and 

LIDAR-based digital elevation models, and NRCS soil surveys. Hydrographs were 

developed for all sites using the WinTR-20 model (USDA-NRCS 2004a).  

 

Runoff Curve Number 

The weighted runoff curve number (CN) was calculated based on the SCS Runoff Curve 

Number method (USDA-SCS 1986), using the following equation: 

 

CN = ∑ ( CNi,j x Ai,j ) / ∑ Ai,j (3) 

where  i = surface cover type 

 j = hydrologic soil group 

 CNi,j =  the runoff curve number for the land in the watershed with surface 
cover type i and hydrologic soil group j 

 Ai,j =  area of watershed with surface cover type i and hydrologic soil 
group j (ha) 
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See Appendix A for CN calculation data. 

 
Time of Concentration 

The time of concentration (Tc) was calculated based on the SCS method (USDA-SCS 

1986). Input data for determing Tc was derived from remote sensing with GIS using 

aerial photography and USGS- and LIDAR-based digital elevation models. The 

following equations were used to calculate Tc: 

 

Tc = Tt(SF) + Tt(SCF) (4) 

where  Tt(SF) = the travel time for sheet flow (hr) 

 Tt(SCF) = the travel time for shallow concentrated flow (hr) 

 
Tt(SF) was calculated based on the following equation: 
 

Tt(SF)  = ( 0.091 x (nL)0.8 ) / ( P2
0.5 x S0.4 ) (5) 

 
where  n = Manning’s roughness coefficient 

L = flow length (m) 

P2 = 2-year, 24-hour rainfall (mm) 

S = land slope (m/m) 

 
using the following values: 
 
 n = 0.17 for cultivated land > 20% residue (USDA-NRCS 2004b) 

 n = 0.24 for dense grass cover (USDA-NRCS 2004b) 

 P2 = 84 mm 

 
Tt(SCF) was calculated based on the following equation: 
 

Tt(SCF) = L / ( V x 3600 ) (6) 
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where  L = flow length (m) 

V = average velocity (m/s), based on Manning’s equation: 

 
V = ( r2/3 x S1/2 ) / n 
 
where  n = Manning’s coefficient 

r = hydraulic radius (m) 

S = watercourse slope (m/m) 

 
using the following values: 
 

n = 0.05 (shallow concentrated flow on an unpaved surface) 
(USDA-NRCS 2004b) 

r = 0.12 m (USDA-NRCS 2004b) 

 
See Appendix B for Tc calculation data. 

 

Stage-Storage-Discharge Ratings 

The stage-discharge and stage-storage ratings were calculated for the same representative 

stage values, and together they provided the stage-storage-discharge rating for a site. 

 

Stage-Discharge Ratings. The stage-discharge ratings were determined by calculating 

discharge (Q) through the outlet structures at representative storm stages. For sites with 

multiple outlet structures, the Q was calculated for each structure at the selected storm 

stage values, and the individual Q values were summed. When a site had multiple outlets 

set at different elevations, the total Q was determined at the storm stage that was equal in 

elevation to the higher spillway (i.e., at just the point before flow would occur through 

the spillway set at the higher level), and again at the storm stage 3.05 cm (0.1 ft) above 
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the higher spillway. This ensured a smooth transition in the rating curve when discharge 

would change from flowing through a single structure to flowing through two structures.  

 

Sites with only a single outlet had either a broad-crested earthen weir or discharged over 

natural ground. Sites with multiple outlets typically had a water control structure (WCS) 

as the primary spillway, and a broad-crested earthen weir or natural ground as an 

emergency spillway (ES). An illustration of a site with a WCS and an ES is provided in 

Figure 7. 

 

Discharge through a broad-crested weir or natural ground was calculated using the weir 

flow formula. Discharge capacity through a WCS can be controlled by weir flow, pipe 

flow, or orifice flow. The Qmax for each type of flow was calculated using the applicable 

flow equations, with the representative storm stage (D) as the basis for the hydraulic 

head. The lowest Qmax value was assumed to be the discharge at the specific storm stage. 

See Appendix C for stage-discharge rating calculations, flow formulas, and outlet 

descriptions. 
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(a)  

(b)  
Figure 7. Diagrams of a wetland designed with both primary and emergency spillways. The 
“riser” and attached “outlet pipe” function as the primary spillway. The emergency spillway is 



 

37 

often earthen or rock-lined. In (a), the storm stage level causes flow through the primary spillway 
only. In (b), the higher storm stage causes flow through both spillways.  
Stage-Storage Ratings. The stage-storage rating was determined by assuming a linear 

relationship between the surface area of the wetland at the normal pool elevation and the 

surface area of the wetland at a defined elevation above normal pool. The surface areas 

and elevations were determined from engineering designs and construction surveys and 

verified with GIS using contours developed from LIDAR. For each corresponding storm 

stage in the stage-discharge rating, the storage volume was determined by averaging the 

surface areas at the selected storm stage and normal pool elevations, and multiplying the 

average by the storm stage. Assuming that the change in surface area was proportional to 

the change in stage, the following equation was used to calculate the storage volume at 

each representative storm stage: 

 
Storage Volume = [ (A0+A) / 2 ] D (7) 
 

where,  A = SD + A0 

 D = representative storm stage (m) 

 S = (A1 - A0) / D1 

 S = change in surface area per unit change in stage (ha/m) 

 A = wetland surface area at storm stage (ha) 

 A0 = wetland surface area at normal pool elevation (ha) 

 A1 = wetland surface area at defined elevation above normal pool (ha) 

 D1 = defined elevation above normal pool (m) 

 

See Appendix D for stage-storage rating calculation data. 
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Design Storms 

Six storm events were modeled using the Delmarva dimensionless unit hydrograph. 

Three of the storm events, the ½-in 1-hr, 1-in 1-hr, and 1-in 4-hr storms, were modeled as 

constant intensity storms with antecedent runoff condition (ARC) 3, which represents the 

wetter pre-storm watershed condition in TR-20. These storms were used because it is 

often assumed that flooding is commonly caused by short-duration, high-intensity storms, 

where storm duration is equal to the time of concentration for the watershed (McCuen 

1998). The ARC3 was used because runoff from high intensity storms can decrease 

infiltration as a result of the destructive action on soil surface structure (Schwab, et al. 

1993). Subsequently, high intensity storms can create conditions similar to those defined 

as having an ARC3. Furthermore, surface runoff is more frequent during the winter and 

spring months, due to climatic and soil conditions (e.g., low evaporation and 

evapotranspiration rates, less vegetative cover on agricultural fields, higher water tables), 

at the same time when nutrients are most available for removal by surface runoff.  The 

other three modeled storms were based on the NRCS type II storm event and NRCS 

rainfall data: 1-yr 24-hr ARC2, 1-yr 24-hr ARC3, and 10-yr 24-hr ARC2. An ARC of 2 

represents an “average” condition. The 1-yr 24-hr and 10-yr 24-hr storms are commonly 

modeled design storm events. The 10-yr 24-hr ARC2 storm event is typically used as the 

design storm for structures in agricultural landscapes. For all storm events, the wetlands 

were assumed to be filled to the normal pool stage at the beginning of the storm event. As 

a result, the difference between the start of inflow and outflow was minimal. See 

Appendix E for WinTR-20 input data, as entered into the WinTR-20 model. 
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Calculations Based on WinTR-20 Output 

The output of WinTR-20 (see Appendix F for sample output) provided runoff depths, and 

peak flows and hydrographs for both the inflow (i.e., runoff upstream of the wetland 

outlet) and outflow. The hydrograph output was represented by instantaneous flow values 

at constant time intervals, for the duration of runoff and outflow. Time intervals were 

determined by the WinTR-20 model, and were typically in hundredths of an hour.  

 

Calculation of Peak Storm Stage and Storage Volume 

The storm stage (D) and storm storage volume (VW) for each design storm for each site 

were calculated from the stage-storage-discharge rating, using linear interpolation, based 

on the following equations: 

 
 (D(j) – D(i))  (8) 
D  =   ———————  (Qpout – Qpout(i)) + D(i)      
 (Qpout(j) – Qpout(i))  

 
 
 (VW(j) – VW(i))  (9) 
VW  =  ———————  (Qpout – Qpout(i)) + VW(i)      
 (Qpout(j) – Qpout(i))  

 
 

where  D(j) =  the stage (m) at or above D in the discharge-storage relationship 

D(i) =  the stage (m) below D in the discharge-storage relationship 

 VW(j) =  the storage volume (ha-m) at or above VW in the discharge-
storage relationship 

VW(i) =  the storage volume (ha-m) below VW in the discharge-storage 
relationship 

Qpout = the peak discharge (m3/s) flowing out of the wetland for the 
design storm 
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Qpout(j) =  the peak discharge (m3/s) at or above Qpout in the discharge-
storage relationship 

Qpout(i) =  the peak discharge (m3/s) below Qpout in the discharge-storage 
relationship 

 

Figure 8 provides a graphical representation of the relationship used to determine the 

storm storage from the peak discharge. The stage-storage-discharge relationships for each 

site are in Appendix G. 

 

 
Figure 8. Graphical representation of the relationship used to linearly interpolate storm storage 
from peak discharge. The slope line represents a single segment in the discharge-storage rating. 
By replacing Vw with D, the figure would represent the relationship used to calculate storm stage. 
 
 
 
Calculation of Hydraulic Residence Time 

The inflow and outflow hydrographs were transferred from WinTR-20 to Microsoft 

Excel and transformed into two columns of data. Hydraulic residence times (HRT) were 

calculated for each storm event at each site by two methods.  

 



 

41 

Nominal Hydraulic Residence Time. The nominal HRT (NHRT) was calculated based 

on the following equation: 

 
 VW  (10) 
HRT  =  ———      
 VRT-1

  

 
where  VW =  the storm storage volume (ha-m), which is the volume of water in 

the wetland between the normal pool elevation and the peak storm 
stage (Figure 1)  

 VR = the total runoff volume from the design storm (ha-m) 

T = duration of flow, which is the time from the initiation to the cessation 
of flow at the wetland outlet (hr) 

 

The runoff volume (VR) was calculated as the product of the runoff depth provided by 

WinTR-20 and the watershed area. The duration of flow (T) was calculated as the 

difference between the beginning and end times of the WinTR-20 outflow hydrograph. 

 

Mean Hydraulic Residence Time. The mean HRT (MHRT) provides a more precise 

estimate of HRT than the NHRT. The MHRT was calculated from the WinTR-20 output 

using a weighted average method, as shown in Equation 11, based on an average of 

residence times for increments of flow. Both the inflow and outflow volumes were 

calculated for each time increment of the hydrograph by taking the average of two 

consecutive instantaneous flow values and multiplying it by the hydrograph constant time 

increment, as shown in Equations 12a and 12b. The residence time for an incremental 

flow volume was calculated as the difference in inflow and outflow time for the volume 

(Equation 13). The residence time was multiplied by the incremental flow volume to 

provide a volume-weighted residence time. The weighted incremental residence times 

were summed and divided by the total outflow volume to determine the MHRT.  
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The incremental flow volume differed between inflow and outflow because the outflow 

rate was often lower than the inflow rate. This meant that the time of inflow for a 

particular outflow volume could not be directly obtained from the hydrograph output. 

Instead, it was necessary to determine the two inflow time increments between which the 

outflow incremental volume had entered the wetland. The inflow time was then linearly 

interpolated from the two time increments based on the proportion of the corresponding 

inflow incremental volumes that was represented by the outflow incremental volume.  

 
  n 

MHRT = [ ∑ [V j x ∆Tj] ] / Vcum,j=n (11) 
  j=2 

 
where Vi = [(Qi – Qi-∆t) / 2] x (Ti – Ti-∆t) x 60 min/hr x 60 s/min (12a) 

 Vj = [(Qj – Qj-∆t) / 2] x (Tj – Tj-∆t) x 60 min/hr x 60 s/min (12b) 

 ∆Tj = Tj – Ti(Vcum,j) (13) 

 Ti(Vcum,j) = m x Vcum,j + b (13a) 

 m = (Ti – Ti-∆t) / (Vcum,i – Vcum,i-∆t) (13b) 

 b = Tavg – mVavg = [(Ti + Ti-∆t) / 2] – (Vcum,i + Vcum,i-∆t) (13c) 

 Vcum,i = Vi + Vcum,i-∆t (14a) 

 Vcum,j = Vj + Vcum,j-∆t (14b) 

 

 where MHRT = mean hydraulic residence time (hr) 

T = time of flow (hr) 

Q = instantaneous flow from hydrograph (m3/s) 

V = flow volume between time increments of hydrograph (m3) 

∆T = time increment between instantaneous flow values of hydrograph 
(hr) 

i = inflow time increment 

j = outflow time increment 

n = number of time increments (∆t) for duration of outflow 
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  Vj = volume of outflow between Tj and Tj- ∆t 

  Vi = volume of outflow between Ti and Ti- ∆t 

∆Tj = the approximate amount of time between when a specific volume 
flowed into and out of the wetland 

Vcum = cumulative flow volume (m3) 

Ti(Vcum,j) =  inflow time for a specific cumulative volume of outflow, 
determined by linear interpolation 

 

Note: Calculations were made in English units and converted to SI units. 

  

Ratio of Wetland to Watershed Area. A third representation of HRT was calculated 

based on the assumption that HRT is proportional to the ratio of wetland to watershed 

area (RWW) (Jordan 2007). 
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STATISTICAL ANALYSIS 

Statistical analyses were performed using SPSS 14.0 for Windows Student Version 

(SPSS, Inc. 2006). Descriptive statistics were determined from the plot sample data for 

each site. One-way ANOVA was performed to determine if the means of sample data 

amongst sites were significantly different from each other. Correlation and bivariate 

regression (when appropriate) analysis were performed to evaluate the relationships 

between the following: 

 

• MHRT vs. NHRT; 

• MHRT vs. RWW; 

• NHRT vs. RWW; 

• Aboveground plant biomass vs. MHRT; 

• Aboveground plant biomass vs. NHRT; 

• Total N standing stock vs. MHRT; 

• Total N standing stock vs. NHRT; 

• Total P standing stock vs. MHRT; 

• Total P standing stock vs. NHRT. 

 

Prior to conducting ANOVA, the Kolmogorov-Smirnov one-sample (KS) test (Ayyub 

and McCuen 2003) was used on sets of data to determine if the data could be considered 

to be from a normal distribution. If the KS test suggested the data were not from a normal 

distribution, the data were log-transformed to perform ANOVA. Levene’s test for 
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homogeneity of variances (SPSS, Inc. 2005) was used to determine if variances could be 

assumed to be equal. In cases where variances were assumed equal, the Tukeys HSD test 

(SPSS, Inc. 2005) was used to determine if the means between sites were significantly 

different (p ≤ 0.05). The Dunnett T3 test assuming unequal variances (SPSS, Inc. 2005) 

was used to determine significance (p ≤ 0.05) where equal variances could not be 

assumed. 

 

Correlation analyses were conducted using the nonparametric Spearman’s rho correlation 

to provide better consistency for comparison, because the distribution of variables was 

not consistent. Values of MHRT, NHRT, biomass, TN and TP were log-transformed 

prior to conducting regression analyses. The KS test was used to determine if it was 

reasonable to treat the data as if they were from a normal distribution. Measures of 

regression accuracy and strength, standardized residual normal probability plots, and 

plots of standardized residuals versus standardized predicted values were also used. 

(Regression measures are in Appendices I and J, and results of KS tests are in Appendix 

K). 

 

Paired sample tests were used to determine if the means of MHRT and NHRT for a site 

were significantly different (p ≤ 0.05). 
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Chapter 5: Results and Discussion 

HYDROLOGIC AND HYDRAULIC ANALYSIS 

Table 3 shows the results of the WinTR-20 analysis, along with additional hydraulic 

characteristics, of each site (additional results in Appendix H). All calculations assume 

that the wetland is at the normal pool stage when the storm event occurs. The MHRT and 

NHRT are the calculated mean and nominal hydraulic residence times as described in the 

methods section. Runoff depth is the amount of runoff produced by the storm event over 

the entire watershed. Runoff volume is the product of the runoff depth and area of the 

watershed. Qpin and Qpout are the WinTR-20 determined peak flows entering and leaving 

the wetland, respectively. Storm stage is the maximum height of the water surface above 

the normal pool during the specified storm event.  

 

Wetland Design and HRT 

As shown in Table 3, there was a lack of significant difference between sites for variables 

related to the watershed (i.e., runoff depth, runoff volume, and Qpin), suggesting that the 

watersheds were relatively similar to each other in hydrology and hydraulics, and 

therefore suitable for comparison. Site STN had the greatest values of HRT, and the 

values were significantly (p ≤ 0.05) greater than for all other sites. Site WDF had the next 

greatest values of HRT, which were significantly greater than the other five sites. The  
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Table 3. Results of analysis with WinTR-20 and other hydraulic characteristics for each site 
(across top). Storm abbreviations: CI = constant intensity; T2 = Type II; ARC = Antecedent 
runoff condition. Storms are listed in order of increasing peak inflow (Qpin). Means with 
dissimilar superscripts are significantly different at p ≤ 0.05 based on ANOVA and Tukey HSD.  

 Design Storm CON GLP GPT SPF STN STS WDF 
M

H
R

T
 (

hr
) 

½-in 1-hr CI  ARC3 0.2 6.0 0.3 9.1 23.6 1.4 18.7 

1-in 4-hr CI ARC3 0.2 5.7 0.3 9.3 33.3 1.4 30.6 

1-in 1-hr CI ARC3 0.2 5.8 0.3 9.3 33.3 1.4 30.6 

1-yr 24-hr T2 ARC2 0.2 8.7 0.3 9.3 31.8 1.4 15.9 

1-yr 24-hr T2 ARC3 0.2 8.1 0.3 7.7 25.7 1.2 7.8 

10-yr 24-hr T2 ARC2 0.2 5.4 0.2 6.3 22.0 1.1 5.2 

Mean a0.2 ab6.6 ab0.3 b8.5 d28.3 ab1.3 c18.1 

Se(1) 0.002 0.57 0.01 0.52 2.09 0.06 4.44 

N
H

R
T

 (
hr

) 

½-in 1-hr CI  ARC3 0.6 25.2 0.7 38.7 68.5 4.5 43.0 

1-in 4-hr CI ARC3 0.5 31.2 0.8 53.2 144.9 5.5 134.2 

1-in 1-hr CI ARC3 0.6 32.6 0.9 53.3 145.9 5.4 133.6 

1-yr 24-hr T2 ARC2 0.8 31.4 1.2 43.1 141.2 5.1 78.7 

1-yr 24-hr T2 ARC3 1.1 31.0 1.5 46.8 145.0 5.9 68.1 

10-yr 24-hr T2 ARC2 1.0 20.9 1.3 41.9 144.7 5.0 54.9 

Mean a0.8 ab28.7 a1.1 b46.2 d131.7 a5.2 c85.4 

Se(1) 0.1 1.9 0.1 2.5 12.7 0.2 16.1 

S
to

rm
 S

ta
ge

 (
cm

) 

½-in 1-hr CI  ARC3 0.1 2.7 0.1 0.2 0.2 0.2 0.1 

1-in 4-hr CI ARC3 0.4 13.9 1.5 1.6 1.9 1.6 1.4 

1-in 1-hr CI ARC3 0.5 14.8 2.3 1.6 1.9 1.8 1.4 
1-yr 24-hr T2 ARC2 0.7 29.9 2.7 3.2 4.7 2.8 2.5 
1-yr 24-hr T2 ARC3 1.7 45.3 7.0 6.3 9.3 5.9 5.2 

10-yr 24-hr T2 ARC2 2.9 51.3 9.1 9.4 15.0 8.5 7.1 

Mean a1.1 b26.3 a3.8 a3.7 a5.5 a3.5 a3.0 

Se(1) 0.4 7.9 1.4 1.4 2.3 1.3 1.1 

S
to

rm
 S

to
ra

ge
 (

ha
-m

) ½-in 1-hr CI  ARC3 0.001 0.011 0.0002 0.014 0.003 0.005 0.001 

1-in 4-hr CI ARC3 0.006 0.059 0.002 0.094 0.027 0.035 0.029 

1-in 1-hr CI ARC3 0.009 0.063 0.004 0.096 0.027 0.039 0.029 

1-yr 24-hr T2 ARC2 0.013 0.134 0.004 0.188 0.067 0.062 0.053 

1-yr 24-hr T2 ARC3 0.030 0.211 0.012 0.374 0.140 0.129 0.111 

10-yr 24-hr T2 ARC2 0.051 0.243 0.018 0.562 0.231 0.186 0.152 

Mean a0.018 ab0.120 a0.007 b0.221 ab0.083 ab0.076 ab0.063 

Se(1) 0.008 0.038 0.003 0.085 0.036 0.028 0.023 
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Table 3. (continued) 

 Design Storm CON GLP GPT SPF STN STS WDF 

R
un

of
f 

D
ep

th
 (

m
m

) 
½-in 1-hr CI  ARC3 1.1 1.4 0.2 1.1 0.4 0.8 0.2 

1-in 4-hr CI ARC3 7.2 8.1 3.9 7.2 5.0 6.4 3.9 

1-in 1-hr CI ARC3 7.2 8.1 3.9 7.2 5.0 6.4 3.9 

1-yr 24-hr T2 ARC2 20.8 23.4 12.2 20.8 16.2 18.4 13.1 

1-yr 24-hr T2 ARC3 41.4 43.5 32.3 41.4 35.8 39.5 32.3 

10-yr 24-hr T2 ARC2 70.7 75.4 53.2 70.7 61.7 66.2 55.3 

Mean a24.7 a26.7 a17.6 a24.7 a20.7 a23.0 a18.1 

Se(1) 10.9 11.5 8.5 10.9 9.7 10.3 8.8 

R
un

of
f 

V
ol

um
e 

(h
a-

m
) ½-in 1-hr CI  ARC3 0.017 0.015 0.001 0.019 0.002 0.012 0.002 

1-in 4-hr CI ARC3 0.111 0.085 0.017 0.123 0.029 0.099 0.033 

1-in 1-hr CI ARC3 0.111 0.085 0.017 0.123 0.029 0.099 0.033 

1-yr 24-hr T2 ARC2 0.319 0.245 0.055 0.354 0.093 0.282 0.111 

1-yr 24-hr T2 ARC3 0.635 0.456 0.145 0.706 0.206 0.605 0.275 

10-yr 24-hr T2 ARC2 1.085 0.790 0.239 1.205 0.355 1.015 0.470 

Mean a0.380 a0.279 a0.079 a0.422 a0.119 a0.352 a0.154 

Se(1) 0.168 0.121 0.038 0.186 0.056 0.158 0.075 

Q
p i

n 
(m

3 /s
) 

½-in 1-hr CI  ARC3 0.03 0.04 0.003 0.04 0.01 0.02 0.004 

1-in 4-hr CI ARC3 0.11 0.10 0.03 0.14 0.04 0.11 0.04 

1-in 1-hr CI ARC3 0.18 0.19 0.05 0.23 0.11 0.16 0.07 

1-yr 24-hr T2 ARC2 0.25 0.27 0.05 0.32 0.15 0.22 0.09 

1-yr 24-hr T2 ARC3 0.57 0.55 0.20 0.73 0.39 0.56 0.30 

10-yr 24-hr T2 ARC2 0.95 0.94 0.31 1.23 0.67 0.91 0.50 

Mean a0.35 a0.35 a0.11 a0.45 a0.23 a0.33 a0.17 

Se(1) 0.14 0.14 0.05 0.18 0.10 0.14 0.08 

Q
p o

ut
 (

m
3 /s

) 

½-in 1-hr CI  ARC3 0.026 0.005 0.002 0.004 0.0002 0.010 0.0001 

1-in 4-hr CI ARC3 0.11 0.02 0.02 0.03 0.002 0.07 0.003 

1-in 1-hr CI ARC3 0.17 0.03 0.04 0.03 0.002 0.08 0.003 

1-yr 24-hr T2 ARC2 0.24 0.03 0.04 0.06 0.007 0.13 0.02 

1-yr 24-hr T2 ARC3 0.54 0.22 0.17 0.17 0.019 0.37 0.12 

10-yr 24-hr T2 ARC2 0.91 0.61 0.28 0.36 0.037 0.66 0.24 

Mean a0.33 a0.15 a0.09 a0.11 a0.011 a0.22 a0.06 

Se(1) 0.14 0.10 0.05 0.06 0.006 0.10 0.04 

RWW 0.09 0.04 0.03 0.34 0.24 0.14 0.25 
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next greatest values of HRT were for sites SPF and GLP, which were not significantly 

different from each other. The lowest values of HRT were for sites CON, GPT, and STS,  

with mean NHRT values that were less than even some of the lowest reported values for 

constructed wetlands of 2.4 h (Arheimer and Wittgren 2002) and 11 h (Maynard et al. 

2009). Values of NHRT for the other sites in this study were within the ranges reported in 

studies of constructed wetlands (Arheimer and Wittgren 2002; Tuncsiper 2007), but less 

than some reported values, including values of 7 d (Coveney et al. 2002) and 12 d 

(Tuncsiper 2007). In a more comparable study that looked at a constructed wetland 

subject to flood events, Reinhardt et al. (2005) calculated theoretical residence times of 

0.9 to 50 d within the same wetland. 

 

The results illustrate, to a certain extent, the effects of outlet structure design on HRT.  

Three sites (GLP, STN, WDF) were designed with two-stage outlets, consisting of a riser 

and outlet pipe (i.e., water control structure) as the primary spillway and a broad-crested 

earthen weir as the emergency spillway. Four sites (CON, GPT, SPF, STS) were designed 

with single-stage outlets, using broad-crested earthen weirs or natural topography that 

functioned similarly to  broad-crested weirs. Three of the four sites with greatest values 

of HRT had two-stage outlets, and the two sites (STN and WDF) with the largest values 

of HRT had two-stage outlets. In contrast, the three sites (CON, GPT, STS) with the 

smallest values of HRT had one-stage outlets.  

 

In the two-stage design, the primary spillway was set at an elevation below that of the 

emergency spillway. With this design, some runoff events resulted in flow through only 
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the primary spillway, as illustrated in Figure 7a, while larger storm events resulted in 

flow through both spillways, as illustrated in Figure 7b. If a storm is large enough to 

result in flow through both the primary and emergency spillways, the rate of release will 

increase, and typically result in a decrease in HRT. In the single-stage design, the riser 

structure was either absent or set at an elevation above the broad-crested weir, and the 

broad-crested weir functioned as both the primary and emergency spillways. As a result, 

flow from all storm events occurred through only a broad-crested weir. Because the 

capacity of the broad-crested weir was large compared to that of the riser structure, 

inflow to the site was released at a greater rate, and the values of HRT tended to be 

smaller.  

 

Inherent in the design of the wetland is the influence of the stage-storage-discharge 

relationship. Inflow to a wetland (i.e., runoff) must be accommodated by outflow and/or 

storage. If the outlet capacity is designed for large storm events (e.g., the 10-yr 24-hr 

ARC2 design storm), then a greater portion of inflow will be accommodated by outflow 

rather than storage capacity. If the outlet capacity is small, storage will accommodate a 

greater portion of inflow, to the extent that storage volume is available. As long as the 

storage volume can accommodate the runoff volume, MHRT will increase with greater 

runoff. As runoff volume becomes greater than that which can be accommodated by 

storage volume, the increased runoff will be accommodated by the flow capacity of the 

outlet, and the MHRT will decrease.  
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This relationship is shown in Figure 9a, which shows the rating curves for discharge and 

storage, and the storm runoff volume and MHRT for site GLP, a site with a two-stage 

outlet. The rating curves represent the capacity of the site to store and discharge runoff. 

The runoff volume and MHRT are calculated values, and are ordered from left to right by 

increasing runoff volume. The water control structure (WCS) capacity was relatively 

small. At the stage of the emergency spillway, the WCS could only carry 0.034 m3/s, 

which is about the same as the Qpin for the ½-in 1-hr ARC3 design storm (0.04 m3/s). For 

this design storm (Figure 9a, first marker on left), the runoff volume and storage volume 

were nearly equal, but for the next two storms, the runoff volume was greater than the 

storage volume. As a result, the MHRT was greater for the first storm than for the second 

two storms. For the fourth storm, the outlet capacity remained small, because the stage 

had not yet attained the stage of the emergency spillway, and outflow was constrained by 

the WCS. However, from the third to fourth storm event, the storage rating curve 

increased. Since the outlet capacity was small relative to the storage volume, the greater 

runoff volume for this storm was accommodated more by the storage volume, and 

subsequently, MHRT increased. At the fifth storm event, the runoff flow and volume 

were great enough to exceed the storm stage of the emergency spillway (as shown by the 

vertical line). Once outflow occurred through the emergency spillway, the discharge 

rating curve increased sharply and became more accommodating of the runoff volume 

than the storage volume. Subsequently, a reduction in MHRT from the fourth to fifth 

storm was seen. The same pattern existed for the sixth and largest storm event, at which 

the increased runoff volume was accommodated more by the outlet capacity than the 

storage volume, and resulted in an even smaller MHRT. 
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Figure 9. Stage-storage-discharge relationships for sites GLP, GPT, and SPF, with overlays of 
storm event runoff volume and MHRT. Markers represent storm events, in order from left to right 
of increasing storm runoff volume. MHRT increases as the runoff volume is more closely aligned 
to the stage-storage relationship, but decreases as runoff volume becomes more aligned with the 
stage-discharge relationship. Plots for all sites are in Appendix G. 
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In contrast to site GLP, sites with a one-stage outlet tended to show less variability in 

both MHRT and NHRT over the range of storm events. This can be seen in the stage-

storage-discharge relationship plot for site GPT (Figure 9b), in which the discharge rating 

curve more closely followed the runoff volume curve. Because the increase in flow with 

each storm event was accommodated by the increase in the outlet capacity, the MHRT 

remained essentially constant. Adding to the influence of the outlet capacity on MHRT 

was the relatively small storage volume. Consistency in HRT, however, came at a cost of 

low values of HRT for three out of the four sites with single-stage outlets. These three 

sites (CON, GPT, and STS) had the least variation in HRT across storms, and the lowest 

values of HRT for all sites (x�(MHRT) ≤ 1.3 hr; x�(NHRT) ≤ 5.2 hr).  

 

Although outlet design was a significant factor in HRT, other factors can produce 

significant effects on values of HRT. For example, values of HRT for sites GLP and SPF 

were similar, even though site GLP had a two stage-outlet and site SPF had a one-stage 

outlet. These two sites had similarly sized watersheds, but site SPF had a much greater 

RWW than site GLP. The RWW for site SPF exceeded the next greatest value for a site 

by 36 percent (Table 3), and exceeded the RWW for site GLP by 750 percent. The effect 

of a large RWW is that the wetland storage is large relative to the size of the watershed. 

This can be seen in the stage-storage-discharge relationship (Figure 9c) for site SPF, in 

which the storage rating curve remained above the discharge rating curve for all storm 

events. Thus, the large storage volume allowed site SPF to have values of HRT similar to 

that of site GLP, and significantly greater (p ≤ 0.05) than those for other sites with one-

stage outlets.  
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Values of HRT at site GLP were controlled, to a large extent, by the type and size of the 

outlet, while values of HRT at site SPF were controlled by the RWW. If the criteria for 

site design was to optimize HRT and minimize the amount of land area occupied by the 

wetland (i.e., RWW), then site SPF had a much less efficient design than site GLP. Use 

of a WCS at site SPF could have allowed for similar values of HRT with a much smaller 

RWW. However, the 10-yr 24-hr ARC2 design storm stage for site GLP was 

significantly greater than for site SPF (51.3 cm vs. 9.4 cm), and subsequently, site GLP 

would have required construction of a taller berm. This demonstrates the need to weigh 

design factors based upon multiple efficiencies, such as land area and berm heights.  

 

Relationship between MHRT, NHRT,  and RWW 

As seen in Table 4, correlations between MHRT and NHRT were very significant (p < 

0.003) for all storm events. Correlation between the means of all storms for each site 

were very significant at p < 0.001. Regression of the log-transformed values of mean 

MHRT and mean NHRT explained 99.8 percent of the variability in predicting mean 

MHRT (Figure 10 and Appendix I). The high correlation between MHRT and NHRT was 

expected because both were derived from the same data. Because of the high correlation, 

MHRT, which is a more precise estimate of HRT, could accurately be predicted from 

NHRT, which is easier to calculate. However, it is important to recognize that for 

individual sites, values of NHRT were significantly greater than MHRT (paired samples 

test, 2-tailed p ≤ 0.003) for all comparisons (Table 3). This suggests that NHRT, which is 

often used in wetland studies, is likely to provide an overestimate of the “true” HRT 

when flow is highly variable, as is the case with storm-driven hydrology. In these cases, it 
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would be preferable to use MHRT as the indicator of HRT. The greater precision of 

MHRT would also make it more useful for relation to studies involving mass balance 

analyses. 

 

Correlations between both MHRT and NHRT and RWW were similar. However, the 

correlations between MHRT and RWW were significant (p ≤ 0.05) for only four out of 

the six design storms, while correlations between NHRT and RWW were significant (p ≤ 

0.05) for all storm events. The better consistency in correlations between NHRT and 

RWW is expected because NHRT is calculated as a nominal average value based on a 

single duration (i.e., outflow duration), and consequently, is less sensitive to time than 

MHRT, which is calculated as a weighted average based on many relatively small, 

discrete time increments.  

 

Table 4. Spearman’s rho correlation coefficients (R) for MHRT and NHRT, and RWW and both 
MHRT and NHRT for six design storms. Significance level (p) of correlations (1-tailed) is also 
shown. Storm means are the mean HRT’s for all storms for each site. 

 
½-in 1-hr 

ARC3 
1-in 4-hr 
ARC3 

1-in 1-hr 
ARC3 

1-yr 24-hr 
ARC2 

1-yr 24-hr 
ARC3 

10-yr 24-
hr ARC2 

Storm 
Means 

MHRT 
and 

NHRT 

R **1.000 **1.000 **1.000 **1.000 **0.893 **0.893 **1.000 

p <0.001 <0.001 <0.001 <0.001 0.003 0.003 <.001 

MHRT 
and 

RWW 

R *0.679 *0.679 *0.679 *0.679 0.357 0.571  

p 0.047 0.047 0.047 0.047 0.216 0.090  

NHRT 
and 

RWW 

R *0.679 *0.679 *0.679 *0.679 *0.679 *0.679  

p 0.047 0.047 0.047 0.047 0.047 0.047  

*  Correlation significant at the 0.05 level (1-tailed). 
**  Correlation significant at the 0.01 level (1-tailed). 
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Figure 10. Scatter plot and linear regression for log-transformed MHRT versus log-transformed 
NHRT for the means of design storms for each site. The horizontal dashed line represents the 
mean. Upper and lower 95% confidence intervals on the mean of the line are also shown. Criteria 
for qualitative assessment (shown in parentheses) of GOF statistics are in Appendix I. 
 
 

While correlations between RWW and MHRT and RWW and NHRT were mostly 

significant (p ≤ 0.05 for 10 out of 12 correlations), linear regression analysis of the log-

transformed MHRT for the 1-in 4-hr design storm versus RWW (Figure 11) displayed 

relatively poor explanation of the variance (R2 = 0.475), and the Se/Sy of 0.793 suggests a 

poor improvement of the estimate with regression over use of the mean. (See Appendix I 

for full regression statistics.) The scatter plot in Figure 11 shows that sites with one-stage 

outlets fall below the regression line, while sites with two-stage outlets are all above the 

regression line. The scatter plot also shows that the two sites with the most similar values 

of MHRT, one of which had a single-stage outlet (SPF) and one of which had a two-stage 

outlet (GLP), had the second-greatest difference in RWW. These results suggest that 

R2 = 0.998 (good) 
Se/Sy = 0.052 (good) 
Se(b0)/b0 = 0.046 (good) 
Se(b1)/b1 = 0.021 (good) 
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RWW may be insufficient as an indicator of HRT, for which it is sometimes used (Jordan 

et al. 2003), because it does not account for variability in outlet design. 

 

  
Figure 11. Scatter plot and linear regression for the log-transformed MHRT of the 1-in 4-hr 
ARC3 design storm versus RWW. The horizontal dashed line represents the mean for all sites. 
Upper and lower 95% confidence intervals on the mean of the line are also shown. Criteria for 
qualitative assessment (shown in parentheses) of GOF statistics are in Appendix I. 

R2 = 0.475 (fair) 
Se/Sy = 0.793 (poor) 
Se(b0)/b0 = 1.324 (poor) 
Se(b1)/b1 = 0.470 (fair) 
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BIOMASS AND NUTRIENT ANALYSIS 

Values of mean standing above-ground biomass (AB) for the study sites (range of 395 – 

1,117 g/m2) were generally greater than the approximate range of 200 to 450 g/m2 

reported by Whigham et al. (2002) and the range of 200 to 570 g/m2 reported by 

Hoagland et al. (2001), but similar to the range (330 – 1,160 g/m2) found in emergent 

wetlands in the prairie pothole region by van der Valk and Davis (1978). Three out of the 

four sites with the highest mean AB were dominated by one species in four or more plots: 

Site CON was dominated by P. australis in 4 plots; site GPT was dominated by Typha 

spp. in 5 plots; and site STN was dominated by J. effusus in 5 plots. Sites STN and GPT 

had the highest and second-highest AB values, respectively. The dominant and common 

plant species found at each site are presented in Table 5.   

 

Table 5. General characterization of wetland vegetation at each site. Plant characterization was 
focused on identifying plots that were dominated by the clonal species Typha spp. and 
Phragmites australis. 
Site Species 
CON Phragmites australis dominant in 4 out of 10 plots; remainder of site composed of 

low-growing grasses and polygonum spp. 

GLP Predominant vegetation was Polygonum spp., Juncus effusus, Scirpus americanus 

GPT Typha spp. dominant in 5 out of 10 plots; Scirpus americanus was other dominant 

SPF Echinochloa crus-galli, Echinochloa esculenta, Panicum dichotomiflorum, sedge 
spp., Polygonum spp. 

STN Juncus effusus dominant at 5 out of 10 plots; other dominants were Sparganium 
americanum, Leersia oryzoides, Polygonum spp., Bidens spp. 

STS Echinochloa crus-galli, Echinochloa esculenta, sedge spp., Polygonum spp. 

WDF Typha spp. dominant at one plot; other common species were Bidens spp., Xanthium 
strumarium, Polygonum spp., Echinochloa crus-galli 
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Concentrations of N and P in AB were within the range for temporary and emergent 

wetland zones reported by Whigham et al. (2002) of approximately 0.75 to 1.45 % N and 

0.14 to 0.24 % P. Both % N and % P in this study (ranges of 0.54 – 0.93 % N and 0.07 – 

0.18 % P; also see Table 6) were towards the lower end of these (Whigham et al. 2002) 

ranges, and were generally within the approximate ranges for the temporary zone (0.75 - 

1.20 for % N and 0.14 - 0.18 for % P). As defined by Whigham et al. (2002), the 

temporary zone was the area of the wetland that was usually flooded only during the non-

growing season, and the emergent zone was the area between the temporary zone and the 

area that was usually permanently flooded. Although plots in my study were dominated 

by emergent wetland plants, drought conditions during the growing season prior to 

sampling may have resulted in conditions more similar to the temporary zone as defined 

in Whigham et al. (2000). Whigham et al. (2002) is a good study for comparison because 

the wetlands were located in the same region of the MES, and biomass and tissue samples 

were taken in autumn (mid to late October), about the same time as they were for this 

study. However, because AB in this study was generally higher (range of 395.4 – 1,116.5 

g/m2) than that reported in Whigham et al. (2002), ranges of both TN and TP were higher 

in this study. Comparisons between the studies of the ranges of all measured variables are 

in Figure 12.  

 

Both TN and TP were significantly different (p ≤ 0.05) between STN and all other sites, 

but not significantly different between the other six sites. The difference in TN and TP 

between STN and other sites was likely at least partially related to the high biomass 

production at site STN, since there was no significant difference in concentrations of N 
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and P between site STN and other sites. Only sites GPT and SPF differed significantly in 

N:P ratio, but all sites had N:P ratios well below 14:1, which suggests N-limiting 

conditions in emergent wetland vegetation (Koerselman and Meuleman 1996). 

 

1,2001,0008006004002000
 

1.41.21.00.80.6
 

10.08.06.04.02.0  

0.240.210.180.150.120.090.06
 

1.41.21.00.80.60.40.2

TP (g/m2)

 
Figure 12. Ranges of measured variables for this study compared to ranges for the same variables 
reported in Whigham et al. (2002)a. Ranges for % N and % P for both studies overlap, but 
biomass, TN, and TP values are generally greater than for the study by Whigham et al. 
 

 

This study 

Emergent and 
temporary zonesa 

Temporary zonea 

Biomass (g/m2) 

% N 

TN (g/m2) 

% P 

TP (g/m2) 
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Table 6. Means and comparisons of biomass, nutrient concentrations, and nutrient standing 
stocks. Superscripts are used to show comparisons between sites. Means with similar superscripts 
are not significantly different at p ≤ 0.05. SE(1) is one standard error and N is the number of 
samples. 

 CON GLP GPT SPF STN STS WDF All 

Biomass 
(g/m2) 

Mean a641.1 a395.4 ab811.1 a582.5 b1116.5 a423.4 ab666.7 662.4 
SE(1) 96.4 106.8 135.2 77.9 152.0 65.5 73.3 46.9 
N 10 10 10 10 10 10 10 70 

% N 
Mean ab0.72 b0.93 a0.54 ab0.70 ab0.83 b0.93 ab0.68 0.76 
SE(1) 0.02 0.10 0.04 0.14 0.07 0.09 0.03 0.03 
N 8 10 10 10 10 10 10 68 

TN 
(g/m2) 

Mean a4.66 a3.13 a4.06 a3.33 b9.44 a3.82 a4.49 4.70 
SE(1) 0.92 0.66 0.60 0.28 1.69 0.61 0.50 0.40 
N 8 10 10 10 10 10 10 68 

% P 
Mean abc0.12 bc0.17 a0.07 bc0.17 abc0.14 c0.18 ab0.12 0.14 
SE(1) 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 
N 10 10 10 10 10 10 10 70 

TP 
(g/m2) 

Mean a0.74 a0.60 a0.57 a0.89 b1.49 a0.72 a0.76 0.82 
SE(1) 0.06 0.14 0.10 0.12 0.19 0.11 0.08 0.06 
N 10 10 10 10 10 10 10 70 

% C 
Mean ab44.45 a41.10 b46.97 b45.80 b46.18 ab43.62 b45.20 44.77 
SE(1) 0.85 1.72 0.43 0.25 0.62 0.89 0.24 0.38 
N 8 10 10 10 10 10 10 68 

TC 
(g/m2) 

Mean a286.82 a174.12 ab384.94 a267.87 b512.99 a189.37 ab302.52 303.13 
SE(1) 54.70 51.51 65.97 36.50 69.26 32.53 34.38 22.80 
N 8 10 10 10 10 10 10 68 

C:N 
Mean ab61.95 a50.04 c91.82 bc86.03 ab59.92 ab49.71 abc68.28 66.96 
SE(1) 2.05 6.40 6.78 12.50 5.68 3.55 3.07 3.09 
N 8 10 10 10 10 10 10 68 

C:P 
Mean a375.68 a266.89 b709.94 a315.55 a343.16 a272.94 a401.79 383.94 
SE(1) 35.72 31.55 80.73 35.61 15.55 33.21 29.64 23.20 
N 8 10 10 10 10 10 10 68 

N:P 
Mean ab6.11 ab5.54 b7.66 a4.25 ab6.09 ab5.70 ab5.93 5.89 
SE(1) 0.63 0.43 0.55 0.66 0.50 0.76 0.41 0.24 
N 8 10 10 10 10 10 10 68 
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RELATIONSHIP BETWEEN HRT AND PLANT BIOMASS AND NUTRIENTS 

Relationship Based on ANOVA Results 

Site STN was shown to have significantly higher mean biomass than all but two other 

sites, and significantly higher TN and TP than all other sites (Table 6). As previously 

mentioned, the values of MHRT and NHRT for site STN were significantly greater (p ≤ 

0.05) than other sites. For example, the mean MHRT for all design storms for site STN 

was 28.3 hr, or 1.2 d, and the mean NHRT for all design storms for site STN was 131.7 

hr, or 5.5 d. The mean MHRT’s for all other sites were less than 1 d, ranging from 0.2 to 

18.1 hr, while the mean NHRT’s for all other sites ranged from 0.8 to 85.4 hr (3.6 d). 

Assuming that HRT does have a positive effect on plant biomass and nutrient stocks, then 

the higher HRT for site STN compared to all other sites would be expected.  

 

The fact that the high TN and TP at site STN is a function of biomass does not diminish 

the significance of the relationship between HRT and TN and TP. Greater HRT would 

likely result in greater plant biomass production, especially in the sampling year, in 

which a severe drought affected the entire region during the growing season. A site with 

greater HRT would be able to store relatively more storm runoff, providing more water 

and nutrients for plant growth, and ultimately more retention of nutrients. Retention of 

storm runoff  would be even more important in a year when water may have been a 

limited resource, even in wetlands. The relationship between high HRT and P retention is 

supported by Mitsch (1992), in which TP in AB in wetlands was found to be similar to 
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net retention of P as measured in experimental wetlands using a mass balance approach, 

and that wetlands with longer residence times retained more P than those with shorter 

residence times (83 – 96% versus 63 – 68% P). Research conducted by Silvan et al. 

(2004) supports the relationship between high nutrient availability and greater biomass. 

Silvan et al. found that when nutrients were added to wetland vegetation, there was an 

increase in biomass rather than an increase in the concentration of nutrients in the plant 

tissue. Herr-Turoff and Zedler (2005) also found that high-N treatment of wetland plants 

resulted in an increase in AB of greater than 90 %.  

 

Correlation Analyses 

The only significant correlations between measured values and HRT were between TP 

and both MHRT and NHRT at p < 0.05 for all but the MHRT’s for the 1-yr 24-hr ARC3 

and 10-yr 24-hr ARC2 design storms (Table 7). In contrast, correlations between HRT 

and both biomass and TN were not statistically significant (p ≤ 0.05) for any of the 

design storms. Total P was also the only measured variable that was significantly 

correlated (p = 0.007) with RWW (Table 8). These results suggest that P retention is 

more significantly a function of HRT than TN for storm-driven hydraulic loadings. One 

likely explanation for this is the relationship between the preferential flow paths of P and 

N and the hydrology of the studied wetlands. Transport of P from agricultural watersheds 

is more often linked to overland flow, while N transport has a significant linkage with 

subsurface flow (Royer et al. 2006; Domagalski et al. 2008; Sharpley et al. 2008). The 

wetlands in this study are fed primarily by surface runoff, as suggested by their relatively 

small size, fine soil textures (silt loam), and designs (i.e. berms and ditch plugs), which 
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impede the movement of surface water. So it may be that these wetlands received 

relatively greater P loadings than N loadings, and were therefore, N-limited for biomass 

production. The results also suggest that although RWW may provide a good indication 

of P retention, it explains nothing about N retention.  

 

Table 7. Spearman’s rho correlation coefficients (R) for measured variables (biomass, TN and 
TP) and MHRT and NHRT for six design storms. Significance level (p) of correlations (1-tailed) 
is also shown. 

Design 
Storm 

1/2-in 1-
hr ARC3 

1-in 4-hr 
ARC3 

1-in 1-hr 
ARC3 

1-yr 24-hr 
ARC2 

1-yr 24-hr 
ARC3 

10-yr 24-
hr ARC2 

MHRT 

Biomass 
R 0.286 0.286 0.286 0.286 0.071 0.071 

p 0.267 0.267 0.267 0.267 0.440 0.440 

TN 
R 0.143 0.143 0.143 0.143 -0.036 -0.107 

p 0.380 0.380 0.380 0.380 0.470 0.410 

TP 
R *0.714 *0.714 *0.714 *0.714 0.464 0.643 

p 0.036 0.036 0.036 0.036 0.147 0.060 

NHRT 

Biomass 
R 0.286 0.286 0.286 0.286 0.286 0.286 

p 0.267 0.267 0.267 0.267 0.267 0.267 

TN 
R 0.143 0.143 0.143 0.143 0.143 0.143 

p 0.380 0.380 0.380 0.380 0.380 0.380 

TP 
R *0.714 *0.714 *0.714 *0.714 *0.714 *0.714 

p 0.036 0.036 0.036 0.036 0.036 0.036 

*  Correlation is significant at the 0.05 level (1-tailed). 
 

Table 8. Spearman’s rho correlation coefficients (R) for measured variables (biomass, TN and 
TP) and RWW. For n = 6, site STN was excluded. Significance level (p) of correlations (1-tailed) 
is also shown. 

 
Biomass TN TP 

R
W

W
 n=7 

R 0.071 0.107 **0.857 

p 0.440 0.410 0.007 

n=6 
R -0.143 -0.029 **0.943 

p 0.394 0.479 0.002 

**  Correlation is significant at the 0.01 level (1-tailed). 
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The more significant relationship between TP and HRT may also have been due to the 

difference in transport mechanisms between N and P. Nitrogen is most often transported 

in solution, while P can be transported either in solution or as particulates attached to 

suspended sediment. Reinhardt et al. (2005) determined that when P-loading was mainly 

driven by short-term flood events, corresponding with water residence times of less than 

3 d, TP retention was primarily due to settling of particulate P (PP) attached to soil 

particles. In contrast, Reinhardt et al. (2005) found that dissolved reactive P (DRP) was 

not retained during short-term flood events. The DRP was being converted to PP in the 

form of phytoplankton, but the phytoplankton was not able to settle and be retained 

because of the low residence times. Even with greater HRT, TP removal may be mostly 

in the form of PP, as suggested by Coveney et al. (2002), who found this to be the case in 

wetlands with a mean HRT of 7 d. The significant correlations between HRT and TP in 

this study, are therefore, a likely indication that the wetlands were retaining soil-attached 

P, but were inefficient at retaining dissolved nutrients because of the short residence 

times (< 2 d for all sites). It is also possible, however, that these watersheds may not have 

had much DRP available because of limited use of land application of animal waste. 

 

The difference in nutrient removal pathways between N and P, and the relation of 

nutrient retention to plant uptake in this study were also likely responsible for the 

difference in correlations between TN and TP with HRT. Plant uptake only accounts for 

nutrients that remain in the wetland. Whereas both N and P can be removed from surface 

waters in dissolved or solid forms, via sediment storage, assimilation, or surface 
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discharge, only N can be removed as a gas, via denitrification or volatilization. Because 

denitrification is considered a major pathway for N removal in wetlands (Johnston 1991), 

it would likely have reduced the amount of N available for plant uptake.   

 

Correlation significance between both TN and TP and HRT was relatively consistent 

across design storms (TN vs. HRT: p = 0.380 for 10 out of 12 cases; TP vs. HRT: p = 

0.036 for 10 out of 12 cases). The less significant correlations were between both TN and 

TP and MHRT for the 1-yr 24-hr ARC3 and 10-yr 24-hr ARC2 design storms, the two 

storms with the greatest runoff. This is consistent with most studies, which indicate that 

net retention of N and P in wetlands will be less in the case of higher flows (Mitsch 1992; 

Raisin and Mitchell 1995; Spieles and Mitsch 2000; Fisher and Acreman 2004). 

However, the overall consistency in correlations across design storms could be related to 

greater nutrient loading during storm events (Crumpton 2001; Reinhardt et al. 2005; 

Sharpley et al. 2008), which could offset the lower nutrient retention during higher flows.  

 

Regression Analyses 

The scatter plots shown in Figure 13 display the importance of site STN on the 

correlations with measured variables and HRT. Modeled values (i.e., MHRT and NHRT) 

for site STN were significantly (p ≤ 0.05) greater than other sites. Any analysis including 

site STN and using non-transformed values would effectively be based upon two points – 

one for STN and the cluster of points for other sites. However, the log-transformed values 

resulted in less of an outlier effect, as can be seen in the scatter plots of Figure 14. 

Therefore, regression analyses that included site STN were conducted with the log-
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transformed values of measured variables and HRT. Because correlations between both 

biomass and TN and values of HRT were relatively poor, regression analyses were only 

conducted on TP. Total P was linearly regressed on both MHRT (R = 0.653, p = 0.056) 

and NHRT (R = 0.683, p = 0.045) for the 10-yr 24-hr ARC2 design storm. Total P was 

also regressed against RWW for n = 7 and n = 6, because of the significance of the 

correlations (n = 7, R = 0.666, p = 0.051; n = 6, R = 0.931, p = 0.003). Graphical 

representations and goodness-of-fit (GOF) statistics of the regression analyses are shown 

in Figures 14 and 15 (additional GOF statistics and criteria for qualitative assessment are 

in Appendix J).  

 

The regression of TP on MHRT and NHRT explained 43 and 47 percent, respectively, of 

the variation in TP. A t-test on the slope coefficient suggested that it was not significantly 

(α = 0.05) different from zero for MHRT (p = 0.115) or NHRT (p = 0.095). Goodness-of-

fit (GOF) statistics for TP versus MHRT (Se/Sy = 0.835 and Figure 14a) and NHRT 

(Se/Sy = 0.806 and Figure 14b) were fair to poor, and residuals were normally distributed 

based on the probability plot (Appendix J). Although the linear regression model 

explained some of the variation, consideration of other factors would likely improve the 

accuracy. Residuals showed a pattern with respect to TP (Appendix J), which suggests 

that a linear model structure may not be appropriate. The number of data points (n = 7) 

combined with the outlier effect of site STN did not allow for multiple regression 

analyses, because with few degrees of freedom (df ≤ 5), almost any variation renders the 

analysis insignificant . However, Figure 13c is somewhat suggestive of the hypothesized 

model structure discussed in Chapter 1 and shown in Figure 4. In Figure 13c, the 
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hypothesized first inflection point occurs at about 7 hr. This would be the point where the 

HRT became great enough to display a significant increase in retention of TP. Because 

site STN had both significantly greater HRT and TP than other sites, the trajectory of the 

line after the first inflection point is toward the point for site STN. The second inflection 

point in the hypothesized relationship, which occurs when increased HRT begins to show 

less of an effect on nutrient retention, is not shown by this data set. How far beyond the 

site STN data point the line trajectory would continue cannot be determined. However, 

studies of P removal in surface flow wetlands suggest the inflection point may occur at an 

HRT of 6 to 7 d. Reinhardt et al. (2005) reported a minimum HRT of 7 d for 50 percent 

NPSP P retention, while Coveney et al. (2002) reported a mass removal efficiency for TP 

of 30 to 67 percent in surface flow wetlands with a mean HRT of about 7 d. Tuncsiper 

(2007) reported peak removal efficiency of TP at an HRT of 6 d in constructed wetlands 

for tertiary treatment of wastewater. These studies suggest that the second inflection point 

would occur far beyond that of the site STN data point. 

 

Linear regression of TP on RWW explained 44 percent of the variation. A t-test on the 

slope coefficient suggested that it was not significantly (α = 0.05) different from zero (p = 

0.103). Goodness-of-fit statistics for TP versus RWW (Se/Sy = 0.820 and Figure 15a) 

with all sites included (n = 7) were fair to poor, suggesting little improvement of the 

estimate over use of the mean. When site STN was excluded (n = 6), linear regression on 

RWW explained 87 percent of the variation in TP, and the slope coefficient was 

significantly different from zero (p = 0.008). GOF statistics (Se/Sy = 0.407 and Figure 

15b) and residuals (Appendix J) indicated that RWW may be a good predictor of TP. 
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However, the Dixon-Thompson outlier test (Davis and McCuen 2005) was inconclusive 

as to whether TP at site STN was an outlier (R > Rc(α=0.05), R < Rc(α=0.01), Appendix 

M). Hence, this model would require data collection and analysis at additional sites to 

determine if site STN could accurately be considered an outlier, and subsequently, 

whether the model is statistically valid.  

 

The inclusion of site STN in regression analyses of TP on all three indicators of HRT 

(Figures 14a, 14b, 15a) resulted in unreliable models. Additional data could improve the 

linear model, or indicate the need for a different model structure, which perhaps, would 

be similar to the one hypothesized in this study (Figure 13c). If the latter was the case, 

then regression models of TP on indicators of HRT, excluding site STN, would be 

representative of the first segment of the hypothesized model. To evaluate this, TP was 

linearly regressed on MHRT and NHRT, excluding site STN (Figures 16a and 16b). Both 

models (MHRT: R2 = 0.200, Se/Sy = 1.000; NHRT: R2 = 0.322, Se/Sy = 0.923), however, 

provided relatively little explanation of the variation in TP, and were unreliable, 

suggesting little improvement over use of the mean. Student t-tests on the slope 

coefficients suggested both regression lines were not significantly different from zero (p 

> 0.200 for both MHRT and NHRT). Therefore, the first segment of the hypothesized 

model may best be represented by a line with zero slope. Speculation of the other 

segments of the hypothesized model could not be made without collection of additional 

data.  
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Figure 13. Scatter plots for biomass (a), TN (b), and TP (c) versus MHRT for the 10-yr 24-hr 
ARC2 design storm. The horizontal dashed line represents the mean for all sites. The solid line in 
(c) was drawn (not fitted) to show the similarity with the hypothesized relationship displayed in 
Figure 4. 
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Figure 14. Scatter plots and linear regression for log-transformed TP versus the log-transformed 
MHRT (a) and NHRT (b) for the 10-yr 24-hr ARC2 design storm. The horizontal dashed line 
represents the mean for all sites. Upper and lower 95% confidence intervals on the mean of the 
line are also shown. Criteria for qualitative assessment (shown in parentheses) of GOF statistics 
are in Appendix J. 

R2 = 0.467 (fair) 
Se/Sy = 0.806 (poor) 
Se(b0)/b0 = 0.317 (fair) 
Se(b1)/b1 = 0.482 (fair) 

R2 = 0.426 (fair) 
Se/Sy = 0.835 (poor) 
Se(b0)/b0 = 0.333 (fair) 
Se(b1)/b1 = 0.518 (poor) 
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Figure 15. Scatter plot and linear regression for TP versus the ratio of wetland area to watershed 
area. In 15a, TP is log-transformed. In 15b, site STN is excluded. The horizontal dashed line 
represents the mean for the sites. Upper and lower 95% confidence intervals on the mean of the 
line are also shown. Criteria for qualitative assessment (shown in parentheses) of GOF statistics 
are in Appendix J. 
 

R2 = 0.444 (fair) 
Se/Sy = 0.820 (poor) 
Se(b0)/b0 = 0.332 (fair) 
Se(b1)/b1 = 0.501 (poor) 

R2 = 0.867 (good) 
Se/Sy = 0.407 (fair) 
Se(b0)/b0 = 0.055 (good) 
Se(b1)/b1 = 0.195 (good) 
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Figure 16. Scatter plots and linear regression for TP versus MHRT (a) and NHRT (b) for the 10-
yr 24-hr ARC2 design storm, excluding site STN. The horizontal dashed line represents the mean 
for all sites. Upper and lower 95% confidence intervals on the mean of the line are also shown. 
Criteria for qualitative assessment (shown in parentheses) of GOF statistics are in Appendix J. 
 

R2 = 0.322 (fair) 
Se/Sy = 0.923 (poor) 
Se(b0)/b0 = 0.095 (good) 
Se(b1)/b1 = 0.667 (poor) 

R2 = 0.200 (poor) 
Se/Sy = 1.000 (poor) 
Se(b0)/b0 = 0.113 (good) 
Se(b1)/b1 = 1.000 (poor) 
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Chapter 6: Conclusion 

One objective of this study was to evaluate the relationship between HRT and indicators 

of nutrient retention – above-ground plant biomass and total above ground nutrient stocks 

of N and P in plants – and provide a model for optimizing HRT for nutrient retention. 

Although the analysis was not robust enough to produce a reliable model, the results 

provided some evidence for a significant relationship between storm event HRT and 

nutrient retention in wetland restorations in agricultural landscapes. One of the most 

significant relationships was between HRT and TP in above-ground plant biomass. The 

site with HRT values that were significantly greater than all other sites was also the only 

site with significantly greater TP, suggesting that greater storm event HRT’s are more 

effective for P removal. Based on other studies, this was thought to be more a result of 

retention of soil-attached P rather than soluble P, and subsequently, the storm event 

HRT’s for the studied wetlands may not have been effective for retention of dissolved 

nutrients. 

 

The other objectives were to evaluate the effects of typical wetland restoration design on 

HRT and nutrient retention, and to provide design recommendations for optimizing HRT. 

The study revealed some conclusions about the design of wetlands for treatment of 

NPSP: 

 

1. If one of the objectives of wetland restoration is to remove nutrients from surface 

runoff, then HRT needs to be considered in the design. It is likely that HRT was 
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not considered in the design for sites in this study, because values of HRT were 

lower than the recommended values for nutrient retention. Mitsch and Gosselink 

(2000) indicated that optimal nominal HRT for treatment of municipal wastewater 

ranges from 5 to 14 d, while Reinhardt et al. (2005) indicated a minimum HRT of 

7 d for 50 percent P removal from agricultural NPSP, and Tuncsiper (2007) 

indicated peak removal efficiencies for NO3-N, NH4-N, and TP at an HRT of 

approximately 6 d. All of the sites in this study had NHRT values of 5.5 d or less, 

with values as low as 0.8 hr. Values of MHRT were significantly less (range: 0.2 

– 28.3 hr).The pollutant form should also be taken into consideration, because 

retention of dissolved nutrients requires greater HRT than sediment-attached 

nutrients.  

 

2. The method for determination of HRT should take into account the variability of 

the discharge to the wetland. When hydrology of a wetland is primarily driven by 

storm runoff, nominal values of HRT may overestimate the “true” HRT. The 

calculation of MHRT in this study is more precise than the calculation of NHRT, 

so it is most likely a better measure of HRT for wetlands with storm-driven 

hydrology. Because of the greater precision of MHRT, it also would be more 

useful for relating HRT to mass balance studies. Calculation of MHRT is more 

time-intensive than the calculation of NHRT, but because MHRT can be 

accurately predicted from NHRT, it is possible that the time required for 

calculating MHRT can be reduced by developing regional models of the two 

types of HRT.  
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3. The ratio of wetland to watershed (RWW) is not always a good indicator of HRT. 

The RWW was inaccurate at predicting MHRT for the sites in this study. This 

was demonstrated by comparison of sites GLP and SPF, which had similar values 

of HRT, but the second largest difference in RWW between any of the sites. 

Although correlations between RWW and HRT were mostly significant, linear 

regression analysis provided a poor model for predicting HRT based on RWW. 

One reason for the poor model prediction was that RWW does not account for 

flow variability related to the design of the outlet.  

 

4. Outlet design is important for optimizing HRT and two-stage outlets are more 

land-efficient than single-stage outlets. Single-stage outlets designed to 

accommodate a large, infrequent storm, such as the 10-yr 24-hr ARC2 design 

storm, will typically result in consistently low values of HRT for all storms. The 

only way to increase HRT with a single-stage outlet is to increase the size of the 

wetland relative to the watershed. But it may be impractical to increase the RWW 

to the extent required for significant values of HRT. The study site with a single-

stage outlet that had the largest RWW had significantly lower values of HRT than 

two out of the three sites with two-stage outlets. The use of two-stage or multi-

stage outlets can more precisely accommodate a range of storm events, and 

provide consistent and significant values of HRT, while being more land-efficient 

in design.  
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Although NPSP is a major concern on the MES and in agricultural watersheds in general, 

it is clear that the wetlands in this study were not designed for the retention of dissolved 

nutrients. Because wetlands have the capacity for nutrient removal from agricultural non-

point sources, wetland restoration designs should incorporate the necessary components 

for nutrient removal, to the extent practical within the overall goals of the restoration 

project. A critical component lacking in these wetland designs was an adequate HRT for 

retention of dissolved nutrients. Because storm runoff is responsible for much of the 

pollution, wetlands should be designed to provide adequate HRT’s for a broad range of 

storm events. Futhermore, the design HRT should be estimated by a method that takes 

into account storm-driven hydraulic loading. A practical approach to achieve this is to 

utilize two-stage outlet designs that provide the minimum required HRT for the 1-yr 24-

hr design storm, to the extent that the HRT does not preclude the establishment and 

survival of emergent vegetation, which is critical for nutrient retention. For practicality of 

construction, a two-stage design would require that the emergency spillway be staged 

approximately 15 cm (0.5 ft) above the primary spillway. This would result in higher 

construction costs because freeboard requirements would necessitate that the top of the 

berm be 18 to 30 cm above the emergency spillway. However, these costs would be 

negligible compared to the costs of NPSP.   
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Chapter 7: Suggestions for Further Study 

To test the hypothetical model proposed in this study, an expansion of this study to 

include wetland restorations with greater HRT’s would be required. Calculations of HRT 

for potential study sites could be performed prior to biomass sampling and analysis to 

ensure that sites with greater HRT’s were included, assuming they exist. Further testing 

of the hypothetical model and validation of the relationship between biomass nutrient 

stocks and nutrient retention would be supported by real-time sampling of nutrient inputs 

and outputs during storm events, along with a mass balance analysis. This would most 

likely require the use of automated sampling devices because the typical watersheds are 

of a size that tend to produce ephemeral inflows and outflows. Analysis of the forms of N 

entering and leaving the wetlands during storm events would support a better 

understanding of factors affecting biomass production and nutrient uptake, because the 

form affects the potential for loss (e.g. through denitrification) and assimilation within the 

soils and biomass. The study of storm-driven hydrology at typical wetland restoration 

sites poses many challenges, and is evidenced by a lack of research on the topic, but it is 

critical for a more accurate assessment of the nutrient retention benefits of wetlands in 

agricultural landscapes. 

 

The design recommendations from this study would be supported by further research, 

similar to that by Sharpley et al. (2008), to determine the proportion of nutrients that are 

transported to surface waters in typical agricultural watersheds during storm events of 

various return periods. This information could be used to determine the range of storm 
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events to which the design HRT (e.g. 7 d) should be applied, and subsequently, to 

determine the most efficient wetland design. Additionally, this information would support 

improved accounting of the nutrient reduction benefits of wetland restorations, and could 

be used for cost/benefit analyses of agricultural best management practices.
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Appendix A: Runoff Curve Number (CN) Data 

Table A1. Watershed land cover and soils data used for runoff curve number determination.  

Site Land Cover 
Map 
Unit 

Soil Map Unit Description 
Area 
(ac) 

Hydrologic 
Group 

CON 

Cropland 

HnA Hammonton sandy loam, 0 to 2 percent slopes 12.2 B 

HnB Hammonton sandy loam, 2 to 5 percent slopes 0.5 B 

IgA Ingleside sandy loam, 0 to 2 percent slopes 2.2 B 

IgB Ingleside sandy loam, 2 to 5 percent slopes 6.7 B 

PiB Pineyneck silt loam, 2 to 5 percent slopes 3.2 B 

Hr Hurlock sandy loam 5.6 D 

Grass/Brush 

HnA Hammonton sandy loam, 0 to 2 percent slopes 0.9 B 

IgB Ingleside sandy loam, 2 to 5 percent slopes 0.6 B 

Hr Hurlock sandy loam 6.0 D 

GLP 

Cropland 

IgB Ingleside sandy loam, 2 to 5 percent slopes 5.4 B 

NsA Nassawango silt loam, 0 to 2 percent slopes 2.3 B 

NsB Nassawango silt loam, 2 to 5 percent slopes 2.2 B 

PiA Pineyneck silt loam, 0 to 2 percent slopes 0.2 B 

UsB Unicorn-Sassafras loams, 2 to 5 percent slopes 1.8 B 

MtA 
Mattapex-Butlertown silt loams, 0 to 2 percent 
slopes 

11.6 C 

Wh Whitemarsh silt loam 1.4 D 

Grass/Brush 
NsA Nassawango silt loam, 0 to 2 percent slopes 0.5 B 

Wh Whitemarsh silt loam 0.5 D 

GPT 

Cropland 

IgC Ingleside sandy loam, 5 to 10 percent slopes 0.4 B 

PiA Pineyneck silt loam, 0 to 2 percent slopes 2.4 B 

Wh Whitemarsh silt loam 2.5 D 

Grass/Brush 

IgC Ingleside sandy loam, 5 to 10 percent slopes 0.1 B 

PiA Pineyneck silt loam, 0 to 2 percent slopes 3.7 B 

Wh Whitemarsh silt loam 2.0 D 

SPF 

Cropland 

MpA 
Mattapex fine sandy loam, 0 to 2 percent 
slopes 

4.5 C 

MtA Mattapex silt loam, 0 to 2 percent slopes 8.9 C 

Fh Fallsington loam 0.6 D 

Wetland Area 
(Grass/Brush) 

MpA 
Mattapex fine sandy loam, 0 to 2 percent 
slopes 

3.9 C 

MtA Mattapex silt loam, 0 to 2 percent slopes 2.7 C 

Fa Fallsington sandy loam 1.9 D 

Fh Fallsington loam 3.7 D 

Oh Othello silt loam 2.0 D 
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Table A1. (Continued) 

SPF 
(con’t) 

Buffer Area 
(Grass/Brush) 

MpA 
Mattapex fine sandy loam, 0 to 2 percent 
slopes 

4.9 C 

MtA Mattapex silt loam, 0 to 2 percent slopes 3.2 C 

Fa Fallsington sandy loam 0.5 D 

Fh Fallsington loam 2.8 D 

Oh Othello silt loam 2.5 D 

STN 

Cropland 

HnB Hammonton sandy loam, 2 to 5 percent slopes 1.0 B 

IgB Ingleside sandy loam, 2 to 5 percent slopes 8.2 B 

Wh Whitemarsh silt loam 0.2 D 

Wetland Area 
(Grass/Brush) 

HnB Hammonton sandy loam, 2 to 5 percent slopes 0.7 B 

Wh Whitemarsh silt loam 2.7 D 

Buffer Area 
(Grass/Brush) 

HnB Hammonton sandy loam, 2 to 5 percent slopes 1.2 B 

Wh Whitemarsh silt loam 0.2 D 

STS 

Cropland 

HnB Hammonton sandy loam, 2 to 5 percent slopes 1.4 B 

IgB Ingleside sandy loam, 2 to 5 percent slopes 0.6 B 

PiA Pineyneck silt loam, 0 to 2 percent slopes 11.3 B 

Ca Carmichael loam 3.8 D 

Kn Kentuck mucky silt loam 0.5 D 

Grass/Brush 

HnB Hammonton sandy loam, 2 to 5 percent slopes 0.6 B 

PiA Pineyneck silt loam, 0 to 2 percent slopes 1.8 B 

Ca Carmichael loam 2.9 D 

Kn Kentuck mucky silt loam 5.8 D 

Woodland 

HnB Hammonton sandy loam, 2 to 5 percent slopes 1.2 B 

IgB Ingleside sandy loam, 2 to 5 percent slopes 0.2 B 

PiA Pineyneck silt loam, 0 to 2 percent slopes 0.7 B 

Ca Carmichael loam 0 D 

Kn Kentuck mucky silt loam 7.1 D 

WDF 

Cropland 
IgB Ingleside sandy loam, 2 to 5 percent slopes 1.9 B 

PiA Pineyneck silt loam, 0 to 2 percent slopes 1 B 

Grass/Brush 

IgB Ingleside sandy loam, 2 to 5 percent slopes 1.3 B 

PiA Pineyneck silt loam, 0 to 2 percent slopes 1 B 

PiB Pineyneck silt loam, 2 to 5 percent slopes 0.9 B 

MtA 
Mattapex-Butlertown silt loams, 0 to 2 
percent slopes 

0.8 C 

Ca Carmichael loam 3.6 D 

Ot Othello silt loam 5.3 D 

UoB Unicorn silt loam, 2 to 5 percent slopes 1.7 D 

Wh Whitemarsh silt loam 3.5 D 

Note: Data reported in units collected and calculated. 
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Table A2. Weighted runoff curve number (CN) calculation data. CN was calculated based on the 
method described in Chapter 3, Hydrologic Analysis. 

Site Cover Description 
Area and CN for Hydrologic Soils Groups 

Totals 
Weighted 

CN  
  A B C D 

CON 

Row crop – SR + crop 
residue - good 

Area (ac) 0 24.8 0 5.6   

  

CN 64 75 82 85 

Area x CN 0 1860 0 476 

Brush – brush, weed, grass 
mix - fair 

Area (ac) 0 0 0 6 

CN 35 56 70 77 

Area x CN 0 0 0 462 

Brush – brush, weed, grass 
mix - good 

Area (ac) 0 1.5 0 0 

CN 30 48 65 73 

Area x CN 0 72 0 0 

Totals 
Area (ac) 0 26.3 0 11.6 37.9 

Area x CN 0 1932 0 938 2870 76 

GLP 

Row crop – SR + crop 
residue - good 

Area (ac) 0 11.9 11.6 1.4 

  
 

CN 64 75 82 85 

Area x CN 0 892.5 951.2 119 

Brush – brush, weed, grass 
mix - poor 

Area (ac) 0 0 0 0.5 

CN 48 67 77 83 
Area x CN 0 0 0 41.5 

Brush – brush, weed, grass 
mix - good 

Area (ac) 0 0.5 0 0 

CN 30 48 65 73 

Area x CN 0 24 0 0 

Totals 
Area (ac) 0 12.4 11.6 1.9 25.9 

Area x CN 0 916.5 951.2 160.5 2028.2 78 

GPT 

Row crop – SR + crop 
residue - good 

Area (ac) 0 2.8 0 2.5 

  
 

CN 64 75 82 85 

Area x CN 0 210 0 212.5 

Brush – brush, weed, grass 
mix - good 

Area (ac) 0 3.8 0 2 

CN 30 48 65 73 

Area x CN 0 182.4 0 146 

Totals 
Area (ac) 0 6.6 0 4.5 11.1 

Area x CN 0 392.4 0 358.5 750.9 68 
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Table A2. (Continued) 

Site Cover Description 
Area and CN for Hydrologic Soils Groups 

Totals 
Weighted 

CN  
  A B C D 

SPF 

Row crop – SR + crop 
residue - good 

Area (ac) 0 0 13.4 0.6 

  
 

CN 64 75 82 85 

Area x CN 0 0 1098.8 51 

Brush – brush, weed, grass 
mix - poor 

Area (ac) 0 0 0 7.6 

CN 48 67 77 83 
Area x CN 0 0 0 630.8 

Brush – brush, weed, grass 
mix - fair 

Area (ac) 0 0 6.6 0 

CN 35 56 70 77 

Area x CN 0 0 462 0 

Brush – brush, weed, grass 
mix - good 

Area (ac) 0 0 8.1 5.8 

CN 30 48 65 73 

Area x CN 0 0 526.5 423.4 

Totals 
Area (ac) 0 0 28.1 14 42.1 

Area x CN 0 0 2087.3 1105.2 3192.5 76 

STN 

Row crop – SR + crop 
residue - good 

Area (ac) 0 9.2 0 0.2 

  
 

CN 64 75 82 85 

Area x CN 0 690 0 17 

Brush – brush, weed, grass 
mix - fair 

Area (ac) 0 0.7 0 2.7 

CN 35 56 70 77 

Area x CN 0 39.2 0 207.9 

Brush – brush, weed, grass 
mix - good 

Area (ac) 0 1.2 0 0.2 

CN 30 48 65 73 

Area x CN 0 57.6 0 14.6 

Totals 
Area (ac) 0 11.1 0 3.1 14.2 

Area x CN 0 786.8 0 239.5 1026.3 72 

STS 

Row crop – SR + crop 
residue - good 

Area (ac) 0 13.3 0 4.3 

  
 

CN 64 75 82 85 

Area x CN 0 997.5 0 365.5 

Brush – brush, weed, grass 
mix - good 

Area (ac) 0 2.4 0 8.7 

CN 30 48 65 73 

Area x CN 0 115.2 0 635.1 

Woods - fair 

Area (ac) 0 2.1 0 7.1 

CN 36 60 73 79 
Area x CN 0 126 0 560.9 

Totals 
Area (ac) 0 17.8 0 20.1 37.9 

Area x CN 0 1238.7 0 1561.5 2800.2 74 
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Table A2. (Continued) 

Site Cover Description 
Area and CN for Hydrologic Soils Groups 

Totals 
Weighted 

CN  
  A B C D 

WDF 

Row crop – SR + crop 
residue - good 

Area (ac) 0 2.9 0 0 

  
 

CN 64 75 82 85 

Area x CN 0 217.5 0 0 

Brush – brush, weed, grass 
mix - good 

Area (ac) 0 3.2 0.8 14.1 

CN 30 48 65 73 

Area x CN 0 153.6 52 1029.3 

Totals 
Area (ac) 0 6.1 0.8 14.1 21 

Area x CN 0 371.1 52 1029.3 1452.4 69 

Note: Data reported in units collected and calculated. 
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Appendix B: Time of Concentration (Tc) Data 

Table B1. Time of concentration (Tc) calculation data. Tc was calculated based on the method 
described in Chapter 3, Hydrologic Analysis. 

Site Flow Type 
Length 
(L, ft) 

Slope 
(S) 

Surface Cover 
Manning’s 

n 
Tt 

(hr) 

CON 

Sheet 100 0.0158 Cultivated > 20% residue 0.17 0.195 

Shallow Concentrated 1900 0.0158 Unpaved 0.05 0.260 

Shallow Concentrated 1000 0.0010 Unpaved 0.05 0.544 

Total 3000 
   

0.999 

GLP 

Sheet 100 0.0260 Cultivated > 20% residue 0.17 0.160 

Shallow Concentrated 470 0.0089 Unpaved 0.05 0.086 

Shallow Concentrated 1220 0.0025 Unpaved 0.05 0.420 

Total 1790 
   

0.666 

GPT 

Sheet 100 0.0300 Cultivated > 20% residue 0.17 0.151 

Shallow Concentrated 970 0.0050 Unpaved 0.05 0.236 

Shallow Concentrated 275 0.0010 Unpaved 0.05 0.150 

Total 1345 
   

0.537 

SPF 

Sheet 100 0.0056 Cultivated > 20% residue 0.17 0.296 

Shallow Concentrated 1370 0.0163 Unpaved 0.05 0.185 

Shallow Concentrated 750 0.0013 Unpaved 0.05 0.358 

Total 2220 
   

0.839 

STN 

Sheet 100 0.0286 Cultivated > 20% residue 0.17 0.154 

Shallow Concentrated 320 0.0281 Unpaved 0.05 0.033 

Shallow Concentrated 430 0.0023 Unpaved 0.05 0.154 

Total 850 
   

0.341 

STS 

Sheet 100 0.0100 Cultivated > 20% residue 0.17 0.235 

Shallow Concentrated 1300 0.0073 Unpaved 0.05 0.262 

Shallow Concentrated 900 0.0011 Unpaved 0.05 0.467 

Total 2300 
   

0.964 

WDF 

Sheet 100 0.0100 Grass Dense 0.24 0.309 

Shallow Concentrated 1400 0.0032 Unpaved 0.05 0.426 

Total 1500 
   

0.735 

Note: Data reported in units collected and calculated. 
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Appendix C: Stage-Discharge Rating Calculations and Outlet 
Descriptions 

FORMULAS FOR OUTLET STRUCTURE DISCHARGE RATING CALCULATIONS 

Some study sites had only broad-crested weirs for outlet structures. The weir flow 
formula was used to determine discharge at these sites. Some study sites used water 
control structures (diagram shown in Figure C1) as the primary spillway and used either 
broad-crested weirs or flow over natural ground as the emergency spillway. The flow 
capacity (Qmax) of the water control structure can be controlled by the weir, pipe, or 
orifice. To determine the Qmax for the structure, the Qmax for each type of flow was 
calculated using the desired head (H) value. The lowest Qmax value was assumed to be the 
limiting flow value. Weir, pipe, and orifice flow was calculated based on the following 
equations: 
 
Weir Flow Formula:  Q = CwLwHw

3/2 (C1) 
 

Where, Cw = weir coefficient 
 Lw = length of weir (ft) 
 Hw = head on weir (ft) 

 
Orifice Flow Formula: Q = Co Ao ( 2gHo )

0.5 (C2) 
 

Where, Co = orifice coefficient 
 Ao = cross-sectional area of orifice (in2) 
 g = 32.2 ft/s 
 Ho = head on orifice (ft) 

 
Pipe Flow Formula:  Q = Ap [ ( 2gHp ) / ( 1 + Ke + Kb + KpLp ) ]

0.5   (C3) 
 

Where, Ap = cross-sectional area of flow (ft2) 
 g = 32.2 ft/s 
 Hp = head on pipe (ft) 
 Ke = entrance coefficient 
 Kb = bend coefficient 
 Kp = ( 5087 n2 ) / dp

4/3 

 Lp = pipe length (ft) 
 n = manning’s coefficient 
 dp = diameter of pipe (in) 

 
Note: Variables reported in units collected and calculated. 
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STAGE-DISCHARGE RATINGS AND OUTLET DESCRIPTIONS 

Site CON 

Site CON does not have a designed structure. Overflow occurs over natural ground on an 
area that is approximately 180 ft in length. 
 
Lw = 180 ft 
Cw = 2.7 
Weir elevationa = 40.0 
 
Table C1. Stage-discharge rating for site CON. 

Water 
Elevation 

(ft)a 
Weir 

Head (ft) 
Weir Qmax 

(cfs)b 
40.0 0.0 0.0 
40.5 0.5 171.8 
41.0 1.0 486.0 
42.0 2.0 1374.6 

a/ Elevations at a site are relative to each other, but are not tied to a true ground elevation. 
b/ Calculated using equation C1. 
 
Note: Data reported in units collected and calculated. 
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Site GLP 

Site GLP has an Agri Drain inlet-style water control structure (WCS). The boards in the 
structure are kept in place through the fall, winter and early spring. The emergency 
spillway (ES) is natural ground at the end of the berm. At 1.3 ft above normal pool, the 
emergency spillway has a length of 8 ft. At 1.4 ft above normal pool, the emergency 
spillway has a length of 38 ft. 
 
Primary Water Control Structure (WCS) 
Type: Agri Drain inlet-style structure, made of PVC 
Weir elevationa = 50.8 ft 
Lw = 2.17 ft 
(See Table C8 and Figure C1 for additional structure values.) 
 
Emergency Spillway (ES) 
Type: Flow over natural ground (vegetated) 
Lw @ elevationa: 8.0 ft @ elevation = 52.1 ft; 38 ft @ elevation = 52.2 ft 
Cw = 2.7 
 
Table C2. Stage-discharge rating values for site GLP. The flow controls for the water control 
structure at each water elevation are shown in bold. Total Q = WCS Q + ES Q. 

Water 
Elevation 

(ft)a 

Weir/ 
Orifice 

Head (ft) 

Weir 
Qmax 
(cfs)b 

Orifice 
Qmax 
(cfs)c 

Pipe 
Head 
(ft) 

Pipe 
Qmax 
(cfs)d 

WCS Q 
(cfs) 

ES 
Head 
(ft) 

ES Q 
(cfs)b 

Total Q 
(cfs) 

50.8 0.00 0 0 0 0 0 0 0 0.0 
50.9 0.10 0.2 0.4 1.35 1.0 0.2 0 0 0.2 
51.0 0.20 0.6 0.6 1.45 1.0 0.6 0 0 0.6 
51.1 0.30 1.1 0.7 1.55 1.0 0.7 0 0 0.7 
51.5 0.70 3.9 1.1 1.95 1.2 1.1 0 0 1.1 

52.05 1.25 9.4 1.5 2.50 1.2 1.2 0 0 1.2 
52.2 1.40 11.1 1.6 2.65 1.3 1.3 0.1 0.7 2.0 
52.6 1.80 16.3 1.8 3.05 1.4 1.4 f0.5 28.1 29.5 

a/ Elevations at a site are relative to each other, but are not tied to a true ground elevation. 
b/ Calculated using eq. C1. 
c/ Calculated using eq. C2. 
d/ Calculated using eq. C3. 
 
Note: Data reported in units collected and calculated. 
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Site GPT 

Site GPT has only a broad-crested, vegetated earthen spillway.  
 
Lw = 20 ft 
Cw = 2.7 
Weir elevationa = 49.1 ft 
 
Table C3. Stage-discharge rating for site GPT. 

Water 
Elevation 

(ft)a 
Weir 

Head (ft) 

Weir 
Qmax 
(cfs)b 

49.1 0.00 0.0 
49.2 0.10 1.7 

49.35 0.25 6.75 
49.6 0.50 23.9 

a/ Elevations at a site are relative to each other, but are not tied to a true ground elevation. 
b/ Calculated using eq. C1. 
 
Note: Data reported in units collected and calculated. 
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Site SPF 

Site SPF has two broad-crested weirs and a pipe structure. The pipe structure is a PVC 
standpipe with a 90o elbow that can be turned down to partially drain the wetland for 
management. All three structures are set at different elevations. For the pipe structure, 
both weir and orifice flows were calculated at each water elevation to determine which 
one was the control. The lesser of the flow values was the assumed flow capacity (Qmax) 
of the pipe structure. The pipe flow equation was not used to calculate flow capacity for 
the pipe drawdown structure because, when in the upright position, the pipe entrance 
functions as a weir or orifice. The pipe drawdown structure normally remains in the 
upright position. 
 
Primary Structures 
Type: Broad-crested earthen weir 
Lw = 22 ft (each) 
Cw = 2.7 
Weir 1 elevationa = 50.3 
Weir 2 elevationa = 50.5 
 
Pipe Drawdown Structure 
Type: Schedule 40 PVC standpipe with 90o elbow 
Cw = 3.1 
Co = 0.6 
D = 6 in 
Top of pipe elevationa = 50.4 
 
Table C4. Stage-discharge rating values for site SPF. The flow controls for the pipe structure at 
each water elevation are shown in bold. Total Q = Weir 1 Q + Pipe Q + Weir 2 Q. 

Water 
Elevation 

(ft)a 

Weir 1 
Head 
(ft) 

Weir 1 
Q (cfs)b 

Pipe 
Head 
(ft) 

Pipe 
Weir 
Qmax 
(cfs)b 

Pipe 
Orifice 
Qmax 
(cfs)c 

Pipe Q 
(cfs) 

Weir 2 
Head 
(ft) 

Weir 2 
Q (cfs)b 

Total Q 
(cfs) 

50.3 0 0 0 0 0 0 0 0 0 
50.4 0.1 1.88 0 0 0 0 0 0 1.88 
50.5 0.2 5.31 0.1 0.15 0.30 0.15 0 0 5.46 
50.6 0.3 9.76 0.2 0.44 0.42 0.42 0.1 1.88 12.06 
50.7 0.4 15.03 0.3 0.80 0.52 0.52 0.2 5.31 20.86 
50.8 0.5 21 0.4 1.23 0.60 0.60 0.3 9.76 31.36 
51.3 1 59.4 0.9 4.16 0.90 0.90 0.8 42.5 102.8 

a/ Elevations at a site are relative to each other, but are not tied to a true ground elevation. 
b/ Calculated using eq. C1. 
c/ Calculated using eq. C2. 
 
Note: Data reported in units collected and calculated. 
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Site STN 

Site STN has a Agri Drain inlet-style PVC water control structure (WCS) and an earthen 
weir emergency spillway (ES). The total flow was calculated as the combined flow for 
the WCS and the ES. The WCS had removable boards, but the boards were left in place, 
with the controlling board at an elevation 0.8 ft below the top of the structure. Because of 
this setup, weir flow was calculated separately for flow over the board and flow over the 
top of the structure. The two weir flow values were summed to obtain the total weir flow. 
Both weir and pipe flow was calculated for each water elevation to determine the flow 
control. The lesser of the flow values was the assumed value through the WCS. Orifice 
flow was not assumed because the controlling board was at an elevation below the top of 
the WCS. 
 
Primary Water Control Structure (WCS) 
Type: Agri Drain inlet style structure, made of PVC 
Weir 1 Lw = 1.17 ft 
Weir 1 elevationa = 46.0 ft 
Weir 2 Lw = 1.17 ft + 0.67 ft + 1.17 ft + 0.67 ft = 3.68 ft 
Weir 2 elevationa = 46.8 ft 
(See Table C8 and Figure C1 for additional structure values.) 
 
Emergency Spillway (ES) 
Type: Broad-crested earthen weir 
Lw = 40 ft 
Cw = 2.7 
Weir elevationa = 46.8 ft 
 
Table C5. Stage-discharge rating values for site STN. The flow controls for the water control 
structure at each water elevation are shown in bold. Total Q = WCS Q + ES Q. 

Water 
Elevation 

(ft)a 

WCS 
Weir 1 
Head 
(ft) 

WCS 
Weir 1 
Qmax 
(cfs)b 

WCS 
Weir 2 
Head 
(ft) 

WCS 
Weir 2 
Qmax 
(cfs)b 

WCS 
Weir 
1+2 
Qmax 
(cfs) 

WCS 
Pipe 
Head 
(ft) 

WCS 
Pipe 
Qmax 

(cfs)d 

WCS
Q 

(cfs) 
ES Q 
(cfs)b 

Total 
Q 

(cfs) 
46.0 0.0 0 0 0 0 0 0 0 0 0 
46.1 0.1 0.12 0 0 0.12 1.685 3.4 0.12 0 0.12 
46.2 0.2 0.33 0 0 0.33 1.785 3.5 0.33 0 0.33 
46.5 0.5 1.32 0 0 1.32 2.085 3.7 1.32 0 1.32 
46.7 0.7 2.18 0 0 2.18 2.285 3.9 2.18 0 2.18 
46.8 0.8 2.66 0 0.00 2.66 2.385 4.0 2.66 0.00 2.66 
46.9 0.9 3.18 0.1 0.36 3.54 2.485 4.1 3.54 3.42 6.96 
47.0 1.0 3.72 0.2 1.02 4.74 2.585 4.2 4.2 9.66 13.86 
47.5 1.5 6.83 0.7 6.66 13.49 3.085 4.5 4.5 63.25 67.75 

a/ Elevations at a site are relative to each other, but are not tied to a true ground elevation. 
b/ Calculated using eq. C1. 
d/ Calculated using eq. C3. 
 
Note: Data reported in units collected and calculated. 
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Site STS 

Site STS has only a vegetated earthen spillway. 
 
Lw = 56 ft 
Cw = 2.7 
Weir elevationa = 40.0 ft 
 
Table C6. Stage-discharge rating for site STS. 

Water 
Elevation 

(ft)a 
Weir 

Head (ft) 

Weir 
Qmax 
(cfs)b 

40.0 0.00 0.00 
40.1 0.10 4.78 
40.2 0.20 13.52 
40.4 0.40 38.25 
40.5 0.50 53.46 

a/ Elevations at a site are relative to each other, but are not tied to a true ground elevation. 
b/ Calculated using eq. C1. 
 
Note: Data reported in units collected and calculated. 
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Site WDF 

Site WDF had an Agri Drain inlet-style PVC water control structure (WCS) and an 
earthen weir emergency spillway (ES). The normal condition for the WCS was to have 
all the boards in place, so that the top board was at the top of the WCS. Weir, orifice, and 
pipe flows were calculated to determine the flow control. 
 
Primary Water Control Structure (WCS) 
Type: Agri Drain inlet style structure, made of PVC 
Lw = 3.67 ft 
Weir elevationa = 49.94 
(See Table C8 and Figure C1 for additional structure values.) 
 
Emergency Spillway (ES) 
Type: Broad-crested earthen weir 
Lw = 31 ft 
Cw = 2.7 
Weir elevationa: 50.00 
 
Table C7. Stage-discharge rating values for site WDF. The flow controls for the pipe structure at 
each water elevation are shown in bold. Total Q = Weir 1 Q + Pipe Q + Weir 2 Q. 

Water 
Elevation 

(ft)a 

Weir/ 
Orifice 

Head (ft) 

Weir 
Qmax 
(cfs)b 

Orifice 
Qmax 
(cfs)c 

Pipe 
Head 
(ft) 

Pipe 
Qmax 
(cfs)d 

WCS 
Q (cfs) 

ES 
Head 
(ft) 

ES Q 
(cfs)b Total Q 

49.94 0.00 0 0 0 0 0 0 0 0 
49.99 0.05 0.1 0.84 0.50 1.2 0.1 0 0 0.1 
50.00 0.06 0.2 0.92 0.51 1.2 0.2 0 0 0.2 
50.10 0.16 0.8 1.50 0.61 1.40 0.80 0.10 2.65 3.45 
50.50 0.56 4.77 2.80 1.01 1.60 1.6 0.50 29.60 31.2 
51.00 1.06 12.42 3.85 1.51 1.90 1.9 1.00 83.70 85.6 

a/ Elevations at a site are relative to each other, but are not tied to a true ground elevation. 
b/ Calculated using eq. C1. 
c/ Calculated using eq. C2. 
d/ Calculated using eq. C3. 
 
Note: Data reported in units collected and calculated. 
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Figure C1. Diagram of Agri Drain inlet-style water control structure. 
 
 
Table C8. Structure values for Agri Drain water control structures at sites GLP, STN, and WDF. 
Measurements are identified in Figure C1. Where EL B = EL C, the boards were set at the top of 
the structure. 

Measurement 
Site 
GLP 

Site 
STN 

Site 
WDF 

Inlet elevation - EL A (ft)* 49.3 44.0 49.16 

Normal pool elevation - EL B (ft)* 50.8 46.0 49.94 

Top of box elevation - EL C (ft)* 50.8 46.8 49.94 

Top of berm elevation (ft)* 52.6 48.6 51.6 

Emergency spillway elevation (ft)* 52.1 46.8 50.0 

W (in) 8 14 14 

D (in) 5 8 8 

Cw 3.1 3.1 3.1 

Orifice area (W x D, in2) 40 112 112 

Co 0.6 0.6 0.6 

dp (in) 6 10 8 

Pipe length, Lp (ft) 31 40 28 

Pipe manning’s n 0.012 0.012 0.012 

Pipe head, Hp (ft) 1.25 1.585 0.45 

Pipe entrance coefficient, Ke 0.5 0.5 0.5 

Pipe bend coefficient, Kb 0 0 0 
* Elevations are relative to each other at a site, but are not tied to a true ground elevation. 
Data reported in units collected and calculated. 



 

96 

 
Figure C2. Photo of Agri Drain inlet-style water control structure. 
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Appendix D: Stage-Storage Rating Calculation Data 

The following data was used to determine the storage volume of the wetland above the 
normal pool elevation, based on equation 7. 
 
Table D1. Values for calculating stage-storage relationship for sites.  

Site A0 (ac) A1 (ac) D1 (ft) S (ac/ft) D (ft) 
Storage Volume 

(ac-ft) 

CON 

3.6 6.9 1.0 3.3 0.00 0.0 
    0.50 2.21 
    1.00 5.25 
    2.00 13.80 

GLP 

1.0 1.2 1 0.2 0.00 0.00 
    0.10 0.10 
    0.20 0.20 
    0.30 0.31 
    0.70 0.75 
    1.25 1.41 
    1.40 1.60 
    1.80 2.12 
    2.30 2.83 

GPT 

0.3 0.9 0.5 1.2 0.00 0.00 
    0.10 0.04 
    0.25 0.11 
    0.50 0.30 

SPF 

14.3 17.7 1.0 3.4 0.00 0.00 
    0.10 1.45 
    0.20 2.93 
    0.30 4.44 

    0.40 5.99 
    0.50 7.58 
    1.00 16.00 

STN 

3.4 4.7 0.8 1.625 0.00 0.00 
    0.10 0.35 
    0.20 0.71 
    0.50 1.90 
    0.70 2.78 
    0.80 3.24 
    0.90 3.72 
    1.00 4.21 
    1.50 6.93 

STS 

5.4 5.4 0.5 0 0.00 0.00 
    0.10 0.54 
    0.20 1.08 
    0.40 2.16 
    0.50 2.70 
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Table D1. (Continued) 

Site A0 (ac) A1 (ac) D1 (ft) S (ac/ft) D (ft) 
Storage Volume 

(ac-ft) 

WDF 

5.3 5.3 1.0 0 0.00 0.00 
    0.05 0.27 
    0.06 0.32 
    0.16 0.85 
    0.56 2.97 
    1.06 5.62 

Note: Data reported in units collected and calculated. 
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Appendix E: TR-20 Input Data 

The follow is the TR-20 input data, as entered into WinTR-20. Data reported in units 
collected and calculated. 
 
SUB-AREA:                                
          Sub-area  Sub-area Reach ID   Area (sqmi)   CN       Tc (hr) 
          WDF       WDF                 0.033         69       0.735            
          CON       CON                 0.059         76       0.999           
          GLP       GLP                 0.040         78       0.666            
          GPT       GPT                 0.017         68       0.537            
          SPF       SPF                 0.066         76       0.839           
          STN       STN                 0.022         72       0.341            
          STS       STS                 0.059         74       0.964            
 
 
STREAM REACH:                            
    Reach ID Receiving Reach Reach Structure ID 
          WDF       Outlet              str WDF                         
          CON       Outlet              str CON                         
          GLP       Outlet              str GLP                         
          GPT       Outlet              str GPT                        
          SPF       Outlet              str SPF                        
          STN       Outlet              str STN                        
          STS       Outlet              str STS                        
 
 
STORM ANALYSIS:                          
          Storm ID Rainfall (in) Rainfall Distribution Type ARC 
          1/2in 1hr 0.5 Custom: Constant Intensity 1 hr 3                   
          1in 1hr 1.0 Custom: Constant Intensity 1 hr 3                   
          1in 4hr 1.0 Custom: Constant Intensity 4 hr   3                   
          1y 24h a2 2.7 Type II    2                   
          1y 24h a3 2.7 Type II    3                   
          10y 24h a2 5.3 Type II    2                   
 
 
STRUCTURE RATING:                        
          Structure Elev (ft)*  Discharge (cfs)     Storage (ac-ft)      
 str WDF    
  49.94 0.00 0.000 
  49.99 0.10 0.265 
  50.00 0.20 0.318 
  50.10 3.45 0.848 
  50.50 31.20 2.968 
  51.00 85.60 5.620 
 str CON    
  40.00 0.00 0.000 
  40.50 171.80 2.210 
  41.00 486.00 5.250 
  42.00 1374.60 13.800 
 str GLP    
  50.80 0.00 0.000 
  50.90 0.20 0.100 
  51.00 0.60 0.200 
  51.10 0.70 0.310 
  51.50 1.10 0.750 
  52.05 1.20 1.410 
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  52.20 1.98 1.600 
  52.60 29.53 2.120 
  53.10 136.30 2.830 
 str GPT    
  49.10 0.00 0.000 
  49.20 1.71 0.040 
  49.35 6.75 0.110 
  49.60 23.86 0.300 
 str SPF    
  50.30 0.00 0.000 
  50.40 1.88 1.450 
  50.50 5.46 2.930 
  50.60 12.06 4.440 
  50.70 20.86 5.990 
  50.80 31.36 7.580 
  51.30 102.80 16.000 
 str STN    
  46.00 0.00 0.000 
  46.10 0.12 0.350 
  46.20 0.33 0.710 
  46.50 1.32 1.900 
  46.70 2.18  2.780 
  46.80 2.66  3.240 
  46.90 6.96  3.720 
  47.00 13.86 4.210 
  47.50 67.75 6.930 
 str STS    
  40.00 0.00 0.000 
  40.10 4.78 0.540 
  40.20 13.52 1.080 
  40.40 38.25 2.160 
  40.50 53.46 2.700 
 
 * Elevation is based on a benchmark that was not tied to actual 
    (i.e., mean sea level) elevations. 
 
 
DIMENSIONLESS UNIT HYDROGRAPH: Delmarva          
                    0.        .111      .356      .655      .896       
                    1.        .929      .828      .737      .656       
                    .584      .521      .465      .415      .371       
                    .331      .296      .265      .237      .212       
                    .190      .170      .153      .138      .123       
                    .109      .097      .086      .076      .066       
                    .057      .049      .041      .033      .027       
                    .024      .021      .018      .015      .013       
                    .012      .011      .009      .008      .008       
                    .006      .006      .005      .005      0.         
 
 
RAINFALL DISTRIBUTION:                             
          Type:   Custom: Constant Intensity 1 hr            
          Mass Rainfall Points: 0.     .25      .5        .75       1.         
          @ Time Increment: 0.25 hr 
 
          Type:   Custom: Constant Intensity 4 hr               
          Mass Rainfall Points: 0.     .25      .5        .75       1.         
          @ Time Increment: 1.00 hr 
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Appendix F: TR-20 Output Data 

The following is a portion of the TR-20 output data, described in TR-20 as the printed 
page file. The output shown here is for the 1-yr 24-hr ARC2 storm for site WDF. Units 
are shown in English because the data was outputted in English units and converted to SI 
units as part of the data analysis. The full output data and Win-TR20 input file are 
provided on disk. 
 
As shown, there are three sets of data for a storm event at a site. The first set of data has 
no rain gage ID or location name, and is the data representing the runoff hydrograph for 
the watershed. The second set of data is for the location identified as Upstream, and 
represents the hydrograph upstream of the outlet structure of the site. Because each site 
was modeled as a single watershed draining to a single outlet, the runoff hydrograph data 
and the data upstream of the outlet structure are the same. The third set of data is for the 
location identified as Downstream, and represents the flow hydrograph just downstream 
of the outlet structure. The downstream data differs from the other two sets of data 
because it takes into account the flow limitations of the outlet structure and the storage 
volume of the area upstream of the structure. 
 
Note: Data reported in units collected and calculated. 
 
                                           STORM 1y 24h a2  
 
Area or    Drainage  Rain Gage     Runoff   ------------ Peak Flow ------------ 
 Reach       Area      ID or       Amount   Elevation   Time      Rate      Rate 
Identifier  (sq mi)   Location      (in)      (ft)      (hr)     (cfs)     (csm) 
 
WDF           0.033                0.516               12.44      3.23     97.93 
 
   Line     
Start Time   ------------ Flow Values @ time increment of  0.098 hr ------------ 
      (hr)     (cfs)     (cfs)     (cfs)     (cfs)     (cfs)     (cfs)     (cfs) 
 
    11.753     0.013     0.115     0.458     1.100     1.904     2.634     3.090 
    12.439     3.232     3.195     3.103     2.988     2.862     2.732     2.606 
    13.125     2.485     2.368     2.256     2.150     2.051     1.956     1.867 
    13.811     1.782     1.703     1.628     1.557     1.488     1.422     1.361 
    14.497     1.304     1.250     1.199     1.151     1.105     1.061     1.019 
    15.183     0.981     0.950     0.921     0.893     0.866     0.842     0.820 
    15.869     0.799     0.778     0.759     0.740     0.722     0.705     0.689 
    16.555     0.672     0.653     0.638     0.627     0.616     0.606     0.597 
    17.241     0.588     0.580     0.572     0.565     0.558     0.551     0.544 
    17.927     0.537     0.531     0.525     0.519     0.513     0.507     0.501 
    18.613     0.495     0.489     0.483     0.477     0.472     0.466     0.460 
    19.299     0.455     0.449     0.443     0.437     0.431     0.426     0.420 
    19.985     0.414     0.408     0.402     0.397     0.391     0.386     0.382 
    20.671     0.378     0.374     0.371     0.368     0.365     0.362     0.360 
    21.357     0.357     0.355     0.353     0.351     0.349     0.348     0.346 
    22.043     0.345     0.343     0.342     0.340     0.339     0.338     0.337 
    22.729     0.335     0.334     0.333     0.332     0.331     0.330     0.329 
    23.415     0.328     0.327     0.326     0.324     0.323     0.322     0.321 
    24.101     0.317     0.306     0.287     0.262     0.234     0.208     0.185 
    24.787     0.165     0.146     0.130     0.116     0.103     0.091     0.081 
    25.473     0.072     0.063     0.056     0.049     0.044     0.038     0.034 
    26.159     0.029     0.026     0.022     0.019     0.016     0.014     0.012 
    26.845     0.010     0.009     0.007     0.006     0.005     0.004     0.004 
    27.531     0.003     0.003     0.002     0.002     0.002     0.001     0.001 
 
Area or    Drainage  Rain Gage     Runoff   ------------ Peak Flow ------------ 
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 Reach       Area      ID or       Amount   Elevation   Time      Rate      Rate 
Identifier  (sq mi)   Location      (in)      (ft)      (hr)     (cfs)     (csm) 
 
WDF           0.033  Upstream      0.516               12.44      3.23     97.93 
 
   Line     
Start Time   ------------ Flow Values @ time increment of  0.098 hr ------------ 
      (hr)     (cfs)     (cfs)     (cfs)     (cfs)     (cfs)     (cfs)     (cfs) 
 
    11.753     0.013     0.115     0.458     1.100     1.904     2.634     3.090 
    12.439     3.232     3.195     3.103     2.988     2.862     2.732     2.606 
    13.125     2.485     2.368     2.256     2.150     2.051     1.956     1.867 
    13.811     1.782     1.703     1.628     1.557     1.488     1.422     1.361 
    14.497     1.304     1.250     1.199     1.151     1.105     1.061     1.019 
    15.183     0.981     0.950     0.921     0.893     0.866     0.842     0.820 
    15.869     0.799     0.778     0.759     0.740     0.722     0.705     0.689 
    16.555     0.672     0.653     0.638     0.627     0.616     0.606     0.597 
    17.241     0.588     0.580     0.572     0.565     0.558     0.551     0.544 
    17.927     0.537     0.531     0.525     0.519     0.513     0.507     0.501 
    18.613     0.495     0.489     0.483     0.477     0.472     0.466     0.460 
    19.299     0.455     0.449     0.443     0.437     0.431     0.426     0.420 
    19.985     0.414     0.408     0.402     0.397     0.391     0.386     0.382 
    20.671     0.378     0.374     0.371     0.368     0.365     0.362     0.360 
    21.357     0.357     0.355     0.353     0.351     0.349     0.348     0.346 
    22.043     0.345     0.343     0.342     0.340     0.339     0.338     0.337 
    22.729     0.335     0.334     0.333     0.332     0.331     0.330     0.329 
    23.415     0.328     0.327     0.326     0.324     0.323     0.322     0.321 
    24.101     0.317     0.306     0.287     0.262     0.234     0.208     0.185 
    24.787     0.165     0.146     0.130     0.116     0.103     0.091     0.081 
    25.473     0.072     0.063     0.056     0.049     0.044     0.038     0.034 
    26.159     0.029     0.026     0.022     0.019     0.016     0.014     0.012 
    26.845     0.010     0.009     0.007     0.006     0.005     0.004     0.004 
    27.531     0.003     0.003     0.002     0.002     0.002     0.001     0.001 
  
Area or    Drainage  Rain Gage     Runoff   ------------ Peak Flow ------------ 
 Reach       Area      ID or       Amount   Elevation   Time      Rate      Rate 
Identifier  (sq mi)   Location      (in)      (ft)      (hr)     (cfs)     (csm) 
 
WDF           0.033 Downstream     0.514     50.02     15.57      0.87     26.42 
 
   Line     
Start Time   ------------ Flow Values @ time increment of  0.098 hr ------------ 
      (hr)     (cfs)     (cfs)     (cfs)     (cfs)     (cfs)     (cfs)     (cfs) 
 
    11.949     0.001     0.003     0.008     0.015     0.024     0.033     0.043 
    12.635     0.052     0.062     0.070     0.079     0.086     0.094     0.105 
    13.321     0.139     0.170     0.200     0.286     0.365     0.435     0.499 
    14.007     0.555     0.605     0.650     0.689     0.723     0.752     0.778 
    14.693     0.799     0.818     0.833     0.845     0.854     0.861     0.866 
    15.379     0.870     0.871     0.872     0.871     0.869     0.866     0.862 
    16.065     0.858     0.853     0.847     0.840     0.833     0.826     0.818 
    16.751     0.810     0.801     0.792     0.784     0.775     0.766     0.757 
    17.437     0.748     0.740     0.731     0.722     0.714     0.706     0.697 
    18.123     0.689     0.681     0.673     0.665     0.657     0.649     0.642 
    18.809     0.634     0.627     0.619     0.612     0.605     0.598     0.591 
    19.495     0.584     0.577     0.570     0.563     0.556     0.549     0.543 
    20.181     0.536     0.529     0.523     0.516     0.510     0.504     0.497 
    20.867     0.491     0.485     0.480     0.474     0.469     0.463     0.458 
    21.553     0.453     0.448     0.443     0.439     0.434     0.430     0.426 
    22.239     0.422     0.418     0.414     0.410     0.407     0.403     0.400 
    22.925     0.397     0.394     0.391     0.388     0.385     0.382     0.380 
    23.611     0.377     0.374     0.372     0.370     0.367     0.365     0.362 
    24.297     0.359     0.355     0.350     0.344     0.337     0.329     0.320 
    24.983     0.311     0.302     0.293     0.283     0.274     0.264     0.255 
    25.669     0.245     0.236     0.227     0.218     0.209     0.200     0.197 
    26.355     0.195     0.192     0.190     0.187     0.184     0.182     0.179 
    27.041     0.176     0.174     0.171     0.169     0.166     0.164     0.161 
    27.727     0.159     0.157     0.154     0.152     0.150     0.147     0.145 
    28.413     0.143     0.141     0.139     0.137     0.135     0.132     0.130 
    29.099     0.128     0.127     0.125     0.123     0.121     0.119     0.117 
    29.785     0.115     0.114     0.112     0.110     0.109     0.107     0.105 
    30.471     0.104     0.102     0.101     0.100     0.100     0.099     0.099 
    31.157     0.099     0.098     0.098     0.098     0.097     0.097     0.097 
    31.843     0.097     0.096     0.096     0.096     0.095     0.095     0.095 
    32.529     0.094     0.094     0.094     0.094     0.093     0.093     0.093 
    33.215     0.092     0.092     0.092     0.092     0.091     0.091     0.091 
    33.901     0.091     0.090     0.090     0.090     0.089     0.089     0.089 
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    34.587     0.089     0.088     0.088     0.088     0.088     0.087     0.087 
    35.273     0.087     0.086     0.086     0.086     0.086     0.085     0.085 
    35.959     0.085     0.085     0.084     0.084     0.084     0.084     0.083 
    36.645     0.083     0.083     0.083     0.082     0.082     0.082     0.082 
    37.331     0.081     0.081     0.081     0.081     0.080     0.080     0.080 
    38.017     0.080     0.079     0.079     0.079     0.079     0.078     0.078 
    38.703     0.078     0.078     0.077     0.077     0.077     0.077     0.077 
    39.389     0.076     0.076     0.076     0.076     0.075     0.075     0.075 
    40.075     0.075     0.074     0.074     0.074     0.074     0.074     0.073 
    40.761     0.073     0.073     0.073     0.072     0.072     0.072     0.072 
    41.447     0.072     0.071     0.071     0.071     0.071     0.070     0.070 
    42.133     0.070     0.070     0.070     0.069     0.069     0.069     0.069 
    42.819     0.069     0.068     0.068     0.068     0.068     0.068     0.067 
    43.505     0.067     0.067     0.067     0.066     0.066     0.066     0.066 
    44.191     0.066     0.065     0.065     0.065     0.065     0.065     0.064 
    44.877     0.064     0.064     0.064     0.064     0.063     0.063     0.063 
    45.563     0.063     0.063     0.063     0.062     0.062     0.062     0.062 
    46.249     0.062     0.061     0.061     0.061     0.061     0.061     0.060 
    46.935     0.060     0.060     0.060     0.060     0.060     0.059     0.059 
    47.621     0.059     0.059     0.059     0.058     0.058     0.058     0.058 
    48.307     0.058     0.058     0.057     0.057     0.057     0.057     0.057 
    48.993     0.057     0.056     0.056     0.056     0.056     0.056     0.056 
    49.679     0.055     0.055     0.055     0.055     0.055     0.054     0.054 
    50.365     0.054     0.054     0.054     0.054     0.054     0.053     0.053 
    51.051     0.053     0.053     0.053     0.053     0.052     0.052     0.052 
    51.737     0.052     0.052     0.052     0.051     0.051     0.051     0.051 
    52.423     0.051     0.051     0.050     0.050     0.050     0.050     0.050 
    53.109     0.050     0.050     0.049     0.049     0.049     0.049     0.049 
    53.795     0.049     0.049     0.048     0.048     0.048     0.048     0.048 
    54.481     0.048     0.047     0.047     0.047     0.047     0.047     0.047 
    55.167     0.047     0.046     0.046     0.046     0.046     0.046     0.046 
    55.853     0.046     0.046     0.045     0.045     0.045     0.045     0.045 
    56.539     0.045     0.045     0.044     0.044     0.044     0.044     0.044 
    57.225     0.044     0.044     0.043     0.043     0.043     0.043     0.043 
    57.911     0.043     0.043     0.043     0.042     0.042     0.042     0.042 
    58.597     0.042     0.042     0.042     0.042     0.041     0.041     0.041 
    59.283     0.041     0.041     0.041     0.041     0.041     0.040     0.040 
    59.969     0.040     0.040     0.040     0.040     0.040     0.040     0.039 
    60.655     0.039     0.039     0.039     0.039     0.039     0.039     0.039 
    61.341     0.038     0.038     0.038     0.038     0.038     0.038     0.038 
    62.027     0.038     0.038     0.037     0.037     0.037     0.037     0.037 
    62.713     0.037     0.037     0.037     0.037     0.036     0.036     0.036 
    63.399     0.036     0.036     0.036     0.036     0.036     0.036     0.035 
    64.085     0.035     0.035     0.035     0.035     0.035     0.035     0.035 
    64.771     0.035     0.034     0.034     0.034     0.034     0.034     0.034 
    65.457     0.034     0.034     0.034     0.034     0.033     0.033     0.033 
    66.143     0.033     0.033     0.033     0.033     0.033     0.033     0.033 
    66.829     0.032     0.032     0.032     0.032     0.032     0.032     0.032 
    67.515     0.032     0.032     0.032     0.031     0.031     0.031     0.031 
    68.201     0.031     0.031     0.031     0.031     0.031     0.031     0.030 
    68.887     0.030     0.030     0.030     0.030     0.030     0.030     0.030 
    69.573     0.030     0.030     0.030     0.029     0.029     0.029     0.029 
    70.259     0.029     0.029     0.029     0.029     0.029     0.029     0.029 
    70.945     0.029     0.028     0.028     0.028     0.028     0.028     0.028 
    71.631     0.028     0.028     0.028     0.028     0.028     0.027     0.027 
    72.317     0.027     0.027     0.027     0.027     0.027     0.027     0.027 
    73.003     0.027     0.027     0.027     0.026     0.026     0.026     0.026 
    73.689     0.026     0.026     0.026     0.026     0.026     0.026     0.026 
    74.375     0.026     0.026     0.025     0.025     0.025     0.025     0.025 
    75.061     0.025     0.025     0.025     0.025     0.025     0.025     0.025 
    75.747     0.025     0.024     0.024     0.024     0.024     0.024     0.024 
    76.433     0.024     0.024     0.024     0.024     0.024     0.024     0.024 
    77.119     0.024     0.023     0.023     0.023     0.023     0.023     0.023 
    77.805     0.023     0.023     0.023     0.023     0.023     0.023     0.023 
    78.491     0.023     0.022     0.022     0.022     0.022     0.022     0.022 
    79.177     0.022     0.022     0.022     0.022     0.022     0.022     0.022 
    79.863     0.022     0.022     0.021     0.021     0.021     0.021     0.021 
    80.549     0.021     0.021     0.021     0.021     0.021     0.021     0.021 
    81.235     0.021     0.021     0.021     0.020     0.020     0.020     0.020 
    81.921     0.020     0.020     0.020     0.020     0.020     0.020     0.020 
    82.607     0.020     0.020     0.020     0.020     0.020     0.020     0.019 
    83.293     0.019     0.019     0.019     0.019     0.019     0.019     0.019 
    83.979     0.019     0.019     0.019     0.019     0.019     0.019     0.019 
    84.665     0.019     0.019     0.018     0.018     0.018     0.018     0.018 
    85.351     0.018     0.018     0.018     0.018     0.018     0.018     0.018 
    86.037     0.018     0.018     0.018     0.018     0.018     0.018     0.017 
    86.723     0.017     0.017     0.017     0.017     0.017     0.017     0.017 
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    87.409     0.017     0.017     0.017     0.017     0.017     0.017     0.017 
    88.095     0.017     0.017     0.017     0.017     0.016     0.016     0.016 
    88.781     0.016     0.016     0.016     0.016     0.016     0.016     0.016 
    89.467     0.016     0.016     0.016     0.016     0.016     0.016     0.016 
    90.153     0.016     0.016     0.016     0.016     0.015     0.015     0.015 
    90.839     0.015     0.015     0.015     0.015     0.015     0.015     0.015 
    91.525     0.015     0.015     0.015     0.015     0.015     0.015     0.015 
    92.211     0.015     0.015     0.015     0.015     0.015     0.014     0.014 
    92.897     0.014     0.014     0.014     0.014     0.014     0.014     0.014 
    93.583     0.014     0.014     0.014     0.014     0.014     0.014     0.014 
    94.269     0.014     0.014     0.014     0.014     0.014     0.014     0.014 
    94.955     0.013     0.013     0.013     0.013     0.013     0.013     0.013 
    95.641     0.013     0.013     0.013     0.013     0.013     0.013     0.013 
    96.327     0.013     0.013     0.013     0.013     0.013     0.013     0.013 
    97.013     0.013     0.013     0.013     0.013     0.012     0.012     0.012 
    97.699     0.012     0.012     0.012     0.012     0.012     0.012     0.012 
    98.385     0.012     0.012     0.012     0.012     0.012     0.012     0.012 
    99.071     0.012     0.012     0.012     0.012     0.012     0.012     0.012 
    99.757     0.012     0.012     0.012     0.012     0.011     0.011     0.011 
   100.443     0.011     0.011     0.011     0.011     0.011     0.011     0.011 
   101.129     0.011     0.011     0.011     0.011     0.011     0.011     0.011 
   101.815     0.011     0.011     0.011     0.011     0.011     0.011     0.011 
   102.501     0.011     0.011     0.011     0.011     0.011     0.010     0.010 
   103.187     0.010     0.010     0.010     0.010     0.010     0.010     0.010 
   103.873     0.010     0.010     0.010     0.010     0.010     0.010     0.010 
   104.559     0.010     0.010     0.010     0.010     0.010     0.010     0.010 
   105.245     0.010     0.010     0.010     0.010     0.010     0.010     0.010 
   105.931     0.010     0.010     0.010     0.009     0.009     0.009     0.009 
   106.617     0.009     0.009     0.009     0.009     0.009     0.009     0.009 
   107.303     0.009     0.009     0.009     0.009     0.009     0.009     0.009 
   107.989     0.009     0.009     0.009     0.009     0.009     0.009     0.009 
   108.675     0.009     0.009     0.009     0.009     0.009     0.009     0.009 
   109.361     0.009     0.009     0.009     0.009     0.008     0.008     0.008 
   110.047     0.008     0.008     0.008     0.008     0.008     0.008     0.008 
   110.733     0.008     0.008     0.008     0.008     0.008     0.008     0.008 
   111.419     0.008     0.008     0.008     0.008     0.008     0.008     0.008 
   112.105     0.008     0.008     0.008     0.008     0.008     0.008     0.008 
   112.791     0.008     0.008     0.008     0.008     0.008     0.008     0.008 
   113.477     0.008     0.008     0.008     0.007     0.007     0.007     0.007 
   114.163     0.007     0.007     0.007     0.007     0.007     0.007     0.007 
   114.849     0.007     0.007     0.007     0.007     0.007     0.007     0.007 
   115.535     0.007     0.007     0.007     0.007     0.007     0.007     0.007 
   116.221     0.007     0.007     0.007     0.007     0.007     0.007     0.007 
   116.907     0.007     0.007     0.007     0.007     0.007     0.007     0.007 
   117.593     0.007     0.007     0.007     0.007     0.007     0.007     0.007 
   118.279     0.007     0.006     0.006     0.006     0.006     0.006     0.006 
   118.965     0.006     0.006     0.006     0.006     0.006     0.006     0.006 
   119.651     0.006     0.006     0.006     0.006     0.006     0.006     0.006 
   120.337     0.006     0.006     0.006     0.006     0.006     0.006     0.006 
   121.023     0.006     0.006     0.006     0.006     0.006     0.006     0.006 
   121.709     0.006     0.006     0.006     0.006     0.006     0.006     0.006 
   122.395     0.006     0.006     0.006     0.006     0.006     0.006     0.006 
   123.081     0.006     0.006     0.006     0.006     0.006     0.006     0.006 
   123.767     0.005     0.005     0.005     0.005     0.005     0.005     0.005 
   124.453     0.005     0.005     0.005     0.005     0.005     0.005     0.005 
   125.139     0.005     0.005     0.005     0.005     0.005     0.005     0.005 
   125.825     0.005     0.005     0.005     0.005     0.005     0.005     0.005 
   126.511     0.005     0.005     0.005     0.005     0.005     0.005     0.005 
   127.197     0.005     0.005     0.005     0.005     0.005     0.005     0.005 
   127.883     0.005     0.005     0.005     0.005     0.005     0.005     0.005 
   128.569     0.005     0.005     0.005     0.005     0.005     0.005     0.005 
   129.255     0.005     0.005     0.005     0.005     0.005     0.005     0.005 
   129.941     0.005     0.005     0.005     0.004     0.004     0.004     0.004 
   130.627     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   131.313     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   131.999     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   132.685     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   133.371     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   134.057     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   134.743     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   135.429     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   136.115     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   136.801     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   137.487     0.004     0.004     0.004     0.004     0.004     0.004     0.004 
   138.173     0.004     0.003     0.003     0.003     0.003     0.003     0.003 
   138.859     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   139.545     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
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   140.231     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   140.917     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   141.603     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   142.289     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   142.975     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   143.661     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   144.347     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   145.033     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   145.719     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   146.405     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   147.091     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   147.777     0.003     0.003     0.003     0.003     0.003     0.003     0.003 
   148.463     0.003     0.003     0.003     0.003     0.003     0.003     0.002 
   149.149     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   149.835     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   150.521     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   151.207     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   151.893     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   152.579     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   153.265     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   153.951     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   154.637     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   155.323     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   156.009     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   156.695     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   157.381     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   158.067     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   158.753     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   159.439     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   160.125     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   160.811     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   161.497     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   162.183     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   162.869     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   163.555     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   164.241     0.002     0.002     0.002     0.002     0.002     0.002     0.002 
   164.927     0.002     0.002     0.002     0.002     0.002     0.001     0.001 
   165.613     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   166.299     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   166.985     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   167.671     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   168.357     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   169.043     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   169.729     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   170.415     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   171.101     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   171.787     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   172.473     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   173.159     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   173.845     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   174.531     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   175.217     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   175.903     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   176.589     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   177.275     0.001     0.001     0.001     0.001     0.001     0.001     0.001 
   177.961     0.001     0.001     0.001     0.001     0.001                     
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Appendix G: Stage-Storage-Discharge Relationships 
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Figure G1. Stage-storage-discharge relationships for the seven study sites. For sites with two-
stage outlets, a vertical line is shown to represent the stage of the emergency spillway, and the 
values at the vertical lines are in bold type in the associated table.
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Appendix H: Additional Hydrologic and Hydraulic Analysis Results 

Table H1. Additional results of storm analysis with WinTR-20 and other hydraulic 
characteristics of sites. See Table 3 for other results of analysis. Storm abbreviations are: CI = 
constant intensity; T2 = Type II. ARC = Antecedent runoff condition. Storms are listed in order 
of increasing peak inflow. Variable definitions provided at end of table. 
 Design Storm CON GLP GPT SPF STN STS WDF 

R
u

n
o

ff
 In

te
n

si
ty

 
(m

m
/h

r)
 

½-in 1-hr CI  ARC3 0.16 0.31 0.06 0.19 0.19 0.13 0.04 

1-in 4-hr CI ARC3 0.79 1.13 0.69 0.88 1.06 0.72 0.56 

1-in 1-hr CI ARC3 1.05 1.66 0.99 1.23 1.82 0.96 0.74 

1-yr 24-hr T2 ARC2 1.11 1.37 0.81 1.17 1.14 1.00 0.80 

1-yr 24-hr T2 ARC3 1.80 2.01 1.82 1.87 2.02 1.76 1.69 

10-yr 24-hr T2 ARC2 3.21 3.70 3.13 3.37 3.68 3.12 2.99 

In
flo

w
 D

u
ra

tio
n

 (
hr

) ½-in 1-hr CI  ARC3 6.7 4.6 2.9 5.7 2.3 6.4 4.3 

1-in 4-hr CI ARC3 9.2 7.2 5.6 8.2 4.7 8.9 6.9 

1-in 1-hr CI ARC3 6.9 4.9 3.9 5.9 2.8 6.7 5.2 

1-yr 24-hr T2 ARC2 18.7 17.1 15.0 17.8 14.2 18.3 16.4 

1-yr 24-hr T2 ARC3 23.0 21.6 17.8 22.2 17.7 22.4 19.1 

10-yr 24-hr T2 ARC2 22.0 20.4 17.0 21.0 16.8 21.2 18.5 

O
u

tf
lo

w
 D

u
ra

tio
n

 
(h

r)
 

½-in 1-hr CI  ARC3 6.7 34.1 3.1 50.5 67.9 11.2 49.7 

1-in 4-hr CI ARC3 9.2 44.8 5.9 69.6 156.0 15.6 149.7 

1-in 1-hr CI ARC3 6.9 43.7 4.4 68.4 155.0 13.4 149.0 

1-yr 24-hr T2 ARC2 18.8 57.5 15.2 81.3 195.3 23.1 166.4 

1-yr 24-hr T2 ARC3 23.0 67.0 17.8 88.5 213.4 27.6 169.1 

10-yr 24-hr T2 ARC2 22.0 67.9 17.0 89.8 222.0 27.1 169.8 

∆
 F

lo
w

 D
u

ra
tio

n
 

(h
r)

 

½-in 1-hr CI  ARC3 0.0 29.5 0.2 44.8 69.8 4.8 45.4 

1-in 4-hr CI ARC3 0.0 37.6 0.3 61.4 428.4 6.7 142.8 

1-in 1-hr CI ARC3 0.0 38.8 0.5 62.5 429.6 6.7 143.8 

1-yr 24-hr T2 ARC2 0.1 40.4 0.2 63.5 591.7 4.8 150.0 

1-yr 24-hr T2 ARC3 0.0 45.4 0.0 66.3 705.2 5.2 150.0 

10-yr 24-hr T2 ARC2 0.0 47.5 0.0 68.8 771.0 5.9 151.3 

∆
T

O
 (

h
r)

 

½-in 1-hr CI  ARC3 0.0 29.5 0.2 44.8 69.8 4.8 45.4 

1-in 4-hr CI ARC3 0.0 36.1 0.3 61.4 428.4 6.7 142.8 

1-in 1-hr CI ARC3 0.0 37.3 0.5 62.5 429.6 6.7 143.8 

1-yr 24-hr T2 ARC2 0.1 39.0 0.2 63.5 591.7 4.8 150.0 

1-yr 24-hr T2 ARC3 0.0 44.1 0.0 66.3 705.2 5.2 150.0 

10-yr 24-hr T2 ARC2 0.0 46.3 0.0 68.8 771.0 5.9 151.3 
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Table H1 (continued) 
 CON GLP GPT SPF STN STS WDF 

Mean Depth (m) 0.30 0.39 0.19 0.50 0.36 0.26 0.56 

Approximate Dead Storage 
Volume (ha-m) 

0.45 0.15 0.02 2.88 0.51 0.58 1.17 

 
Variable Definitions 
 
Inflow Duration (hr) – Duration of time the wetland receives runoff. Calculated from TR-20 
watershed hydrograph as: time of last flow value - time of first flow value. 

Outflow Duration (hr) – Duration of time wetland outlet has flow from the design storm event. 
Calculated from TR-20 outlet hydrograph as: time of last flow value - time of first flow value. 

∆ Flow Duration (hr) – Difference between outflow and inflow duration, calculated as: outflow 
duration (hr) - inflow duration (hr). 

Mean Depth (m) – Mean depth of water in wetland when water surface is at normal pool 
elevation. Calculated from individual depths at sample locations. 

Approximate Dead Storage Volume (ha-m) – Approximate volume of wetland between ground 
surface and normal pool elevation. Calculated as: mean depth (m) x wetland area (ha).  
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Appendix I: Results of Regression Analyses of HRT and RWW 

Table I1. HRT and RWW linear regression analysis 
goodness of fit statistics, with qualitative assessment of 
measurements.  

Statistic 
Log(Mean MHRT) vs  

Log(Mean NHRT) 
1-in 4-hr ARC3 

Log(MHRT) vs RWW 
R 0.999 good 0.689 fair 

R2 0.998 good 0.475 fair 

y� 0.459  0.504  

Sy 0.888  0.933  

Se 0.046  0.740  

Se/Sy 0.052 good 0.793 poor 

b0 -0.633  -0.377  

Se(b0) 0.029  0.499  

Se(b0)/b0 0.046 good 1.324 poor 

b1 0.978  5.432  

Se(b1) 0.021  2.553  

Se(b1)/b1 0.021 good 0.470 fair 

e� 0.000  0.000  

e�/y� 0.000 good 0.000 good 
 
Criteria for qualitative assessment. 

Statistic good fair poor 
R ≥ 0.84 0.55 ≤ R < 0.84 < 0.55 

R2 ≥ 0.7 0.3 ≤ R2 < 0.7 < 0.3 

Se/Sy ≤ 0.3 0.3 < Se/Sy ≤ 0.7 > 0.7 

Se(b)/b ≤ 0.3 0.3 < Se(b)/b ≤ 0.5 > 0.5 

e�/y� ≤ 0.05 
0.05 < e�/y� ≤ 

0.10 
> 0.10 

 
Regression equation model: y = b0 + xb1 
 
Table I2. Hypothesis test on slope coefficient (HO: b1 = 0, HA: b1 ≠ 0). 

Regression Model n t 
α = .05 α = .01 

tα/2 Decision tα/2 Decision 
Log(Mean MHRT) vs. Log(Mean NHRT) 7 46.571 2.571 reject HO 4.032 reject HO 

1-in 4-hr ARC3 Log(MHRT) vs RWW 7 2.128 2.571 accept HO 4.032 accept HO 
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Log(Mean MHRT) vs Log(Mean NHRT) 
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Figure I1. Residual plots for regression analysis of the log-transformed mean MHRT versus the log-transformed mean NHRT and the log-
transformed MHRT for the 1-in 4-hr ARC3 design storm versus RWW.
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Appendix J: Results of Regression Analyses of Measured and Modeled Variables 

Table J1. Linear regression analysis goodness of fit statistics for TP versus hydrologic variables, with qualitative assessment 
of measurements. Where n = 6, site STN was excluded. 

Statistic 

Log(Mean TP) vs. 
10-yr 24-hr ARC2 

Log(MHRT) 
n=7 

Log(Mean TP) vs.  
10-yr 24-hr ARC2 

Log(NHRT) 
n=7 

Log(Mean TP) vs. 
RWW 
n=7 

Mean TP vs. RWW 
n=6 

Mean TP vs. 
10-yr 24-hr ARC2 

MHRT 
n=6 

Mean TP vs.  
10-yr 24-hr ARC2 

NHRT 
n=6 

R 0.653 fair 0.683 fair 0.666 fair 0.931 good 0.448 poor 0.567 fair 

R2 0.426 fair 0.467 fair 0.444 fair 0.867 good 0.200 poor 0.322 fair 

y� -0.105  -0.105  -0.105  0.713  0.713  0.713  

Sy 0.139  0.139  0.139  0.109  0.117  0.117  

Se 0.116  0.112  0.114  0.048  0.117  0.108  

Se/Sy 0.835 poor 0.806 poor 0.820 poor 0.407 fair 1.000 poor 0.923 poor 

b0 -0.141  -0.230  -0.232  0.582  0.657  0.653  

Se(b0) 0.047  0.073  0.077  0.032  0.074  0.062  

Se(b0)/b0 0.333 fair 0.317 fair 0.332 fair 0.055 good 0.113 good 0.095 good 

b1 0.114  0.114  0.785  0.877  0.018  0.003  

Se(b1) 0.059  0.055  0.393  0.171  0.018  0.002  

Se(b1)/b1 0.518 poor 0.482 fair 0.501 poor 0.195 good 1.000 poor 0.667 poor 

e� 0.000  0.000  0.000  0.000  0.000  0.000  

e�/y� 0.000 good 0.000 good 0.000 good 0.000 good 0.000 good 0.000 good 
 
Criteria for qualitative assessment. 

Statistic good fair poor 
R ≥ 0.84 0.55 ≤ R < 0.84 < 0.55 

R2 ≥ 0.7 0.3 ≤ R2 < 0.7 < 0.3 

Se/Sy ≤ 0.3 0.3 < Se/Sy ≤ 0.7 > 0.7 

Se(b)/b ≤ 0.3 0.3 < Se(b)/b ≤ 0.5 > 0.5 

e�/y� ≤ 0.05 
0.05 < e�/y� ≤ 

0.10 
> 0.10 
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Regression equation model: y = b0 + xb1  

Table J2. Hypothesis test on slope coefficient (HO: b1 = 0, HA: b1 ≠ 0). Where n = 6, site STN was excluded. 

Regression Model n t p 
α = .05 α = .01 

tα/2 Decision tα/2 Decision 
Log(Mean TP) vs. 10-yr 24-hr ARC2 Log(MHRT) 7 1.932 0.115 2.571 accept HO 4.032 accept HO 

Log(Mean TP) vs. 10-yr 24-hr ARC2 Log(NHRT) 7 2.073 0.095 2.571 accept HO 4.032 accept HO 

Log(Mean TP) vs. RWW 7 1.997 0.103 2.571 accept HO 4.032 accept HO 

Mean TP vs. RWW 6 5.129 0.008 2.776 reject HO 4.604 reject HO 

Mean TP vs. 10-yr 24-hr ARC2 MHRT 6 1.000 > 0.200 2.776 accept HO 4.604 accept HO 

Mean TP vs. 10-yr 24-hr ARC2 NHRT 6 1.500 > 0.200 2.776 accept HO 4.604 accept HO 
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Log(Mean TP) vs 10-yr 24-hr ARC2 Log(MHRT) (n=7) 
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Log(Mean TP) vs 10-yr 24-hr ARC2 Log(NHRT) (n=7) 
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Log(Mean TP) vs RWW (n=7) 
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Mean TP vs RWW (n=6) 
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Mean TP vs 10-yr 24-hr ARC2 MHRT (n=6) 
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Mean TP vs 10-yr 24-hr ARC2 NHRT (n=6) 
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Figure J1. Graphs for analysis of residuals for regression of mean TP on HRT and RWW. 
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Appendix K: Results of Tests for Normality 

Table K1. One-sample Kolmogorov-Smirnov tests for a normal distribution for MHRT, NHRT, 
and log-transformed values of both variables for each design storm for all sites. 

½-in 1-hr Design Storm  MHRT (hr) Log(MHRT) NHRT (hr) Log(NHRT) 
N 7 7 7 7 

Normal Parameters(a,b) Mean 8.4529 .4556 25.8943 .9586 
  Std. Deviation 9.35049 .86729 25.85157 .87596 
Most Extreme 
Differences 

Absolute .204 .215 .225 .265 

  Positive .204 .160 .225 .188 
  Negative -.188 -.215 -.164 -.265 
Kolmogorov-Smirnov Z .539 .569 .594 .701 
Asymp. Sig. (2-tailed) .934 .902 .872 .710 

1-in 4-hr Design Storm  MHRT (hr) Log(MHRT) NHRT (hr) Log(NHRT) 
N 7 7 7 7 

Normal Parameters(a,b) Mean 11.5357 .5037 52.9029 1.1260 
  Std. Deviation 14.35707 .93253 62.23485 1.01436 
Most Extreme 
Differences 

Absolute .275 .177 .213 .213 

  Positive .275 .157 .213 .170 
  Negative -.214 -.177 -.200 -.213 
Kolmogorov-Smirnov Z .728 .468 .563 .564 
Asymp. Sig. (2-tailed) .663 .981 .909 .908 

1-in 1-hr Design Storm  MHRT (hr) Log(MHRT) NHRT (hr) Log(NHRT) 
N 7 7 7 7 

Normal Parameters(a,b) Mean 11.5557 .5034 53.1771 1.1432 
  Std. Deviation 14.34443 .93674 62.27767 .99234 
Most Extreme 
Differences 

Absolute .276 .181 .214 .217 

  Positive .276 .153 .214 .167 
  Negative -.213 -.181 -.199 -.217 
Kolmogorov-Smirnov Z .730 .479 .565 .573 
Asymp. Sig. (2-tailed) .661 .976 .907 .898 

1-yr 24-hr ARC2 Design Storm  MHRT (hr) Log(MHRT) NHRT (hr) Log(NHRT) 
N 7 7 7 7 

Normal Parameters(a,b) Mean 9.6343 .4856 43.0857 1.1236 
  Std. Deviation 11.38215 .89647 51.68452 .89549 
Most Extreme 
Differences 

Absolute 
.226 .264 .214 .233 

  Positive .226 .162 .214 .162 
  Negative -.203 -.264 -.207 -.233 
Kolmogorov-Smirnov Z .598 .699 .566 .617 
Asymp. Sig. (2-tailed) .867 .713 .906 .841 
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Table K1 (continued) 

 1-yr 24-hr ARC3 Design Storm  MHRT (hr) Log(MHRT) NHRT (hr) Log(NHRT) 
N 7 7 7 7 

Normal Parameters(a,b) Mean 7.2800 .3967 42.7857 1.1648 
  Std. Deviation 8.92941 .84653 51.72590 .83470 
Most Extreme 
Differences 

Absolute .320 .290 .210 .224 

  Positive .320 .167 .191 .166 
  Negative -.213 -.290 -.210 -.224 
Kolmogorov-Smirnov Z .846 .768 .556 .592 
Asymp. Sig. (2-tailed) .472 .596 .917 .875 

10-yr 24-hr ARC2 Design Storm  MHRT (hr) Log(MHRT) NHRT (hr) Log(NHRT) 
N 7 7 7 7 

Normal Parameters(a,b) Mean 5.7729 .3121 38.5243 1.0950 
  Std. Deviation 7.63422 .80154 51.28821 .83364 
Most Extreme 
Differences 

Absolute .332 .266 .232 .178 

  Positive .332 .168 .232 .167 
  Negative -.231 -.266 -.232 -.178 
Kolmogorov-Smirnov Z .879 .703 .615 .471 
Asymp. Sig. (2-tailed) .422 .706 .844 .980 

a  Test distribution is Normal. 
b  Calculated from data. 
 
 
 
 
Table K2. One-sample Kolmogorov-Smirnov test for mean MHRT and NHRT, log-transformed 
mean MHRT and NHRT, and RWW for each site. 

 
Mean 

MHRT (hr) 
Log(Mean 

MHRT) 
Mean 

NHRT (hr) 
Log(Mean 

NHRT) RWW 
N 7 7 7 7 7 

Normal Parameters(a,b) Mean 9.0386 .4585 42.7286 1.1159 .1621 
  Std. Deviation 10.60700 .88755 49.75295 .90669 .11835 
Most Extreme 
Differences 

Absolute .234 .230 .203 .219 .172 

  Positive .234 .162 .203 .169 .143 
  Negative -.201 -.230 -.200 -.219 -.172 
Kolmogorov-Smirnov Z .620 .608 .537 .578 .455 
Asymp. Sig. (2-tailed) .837 .854 .935 .892 .986 

a  Test distribution is Normal. 
b  Calculated from data. 
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Table K3. One-Sample Kolmogorov-Smirnov Tests for paired differences in MHRT (hr) and 
NHRT (hr) at each site, as a precursor to paired samples T-test. 

CON GLP GPT SPF STN STS WDF 

N 6 6 6 6 6 6 6 

Normal Parameters(a,b) Mean 
-

0.612 
-

22.113 
-

0.810 
-

37.660 
-

103.423 
-

3.923 
-

67.287 

Std. Deviation 0.247 4.162 0.342 5.721 29.074 0.524 31.039 

Most Extreme Differences Absolute 0.256 0.229 0.180 0.193 0.415 0.166 0.223 

Positive 0.194 0.229 0.159 0.193 0.415 0.161 0.208 

Negative 
-

0.256 -0.133 
-

0.180 -0.138 -0.254 
-

0.166 -0.223 

Kolmogorov-Smirnov Z 0.628 0.562 0.440 0.472 1.017 0.407 0.547 

Asymp. Sig. (2-tailed) 0.826 0.910 0.990 0.979 0.253 0.996 0.926 
a  Test distribution is Normal. 
b  Calculated from data. 
 
Table K4. One-Sample Kolmogorov-Smirnov Tests for sample plot values of biomass, TN, TP, 
%N and %P at each site. 

Site CON  Biomass (g/m2) TN (g/m2) TP (g/m2) %N %P 

N 10 8 10 8 10 

Normal Parameters(a,b) Mean 641.1000 4.65863 .73540 .7225 .1240 
  Std. Dev. 304.84657 2.606138 .197867 .05676 .02675 
Most Extreme Differences Absolute .243 .236 .197 .186 .189 
  Positive .243 .224 .197 .148 .115 
  Negative -.186 -.236 -.117 -.186 -.189 
Kolmogorov-Smirnov Z .769 .667 .622 .526 .597 
Asymp. Sig. (2-tailed) .595 .766 .834 .945 .868 

Site GLP  Biomass (g/m2) TN (g/m2) TP (g/m2) %N %P 

N 10 10 10 10 10 

Normal Parameters(a,b) Mean 395.4000 3.12940 .60430 .9330 .1710 
  Std. Dev. 337.57607 2.079547 .452172 .30670 .05405 
Most Extreme Differences Absolute .212 .261 .276 .235 .217 
  Positive .200 .261 .276 .235 .217 
  Negative -.212 -.225 -.211 -.162 -.124 
Kolmogorov-Smirnov Z .669 .826 .872 .744 .686 
Asymp. Sig. (2-tailed) .762 .503 .432 .637 .735 

Site GPT Biomass (g/m2) TN (g/m2) TP (g/m2) %N %P 

N 10 10 10 10 10 

Normal Parameters(a,b) Mean 811.1000 4.05570 .56650 .5370 .0740 
  Std. Dev. 427.68146 1.908184 .304790 .12499 .02633 
Most Extreme Differences Absolute .162 .161 .176 .227 .210 
  Positive .159 .160 .176 .227 .210 
  Negative -.162 -.161 -.119 -.146 -.140 
Kolmogorov-Smirnov Z .513 .510 .556 .718 .664 
Asymp. Sig. (2-tailed) .955 .957 .917 .681 .771 
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Table K4 (continued) 
Site SPF  Biomass (g/m2) TN (g/m2) TP (g/m2) %N %P 

N 10 10 10 10 10 

Normal Parameters(a,b) Mean 582.5000 3.32500 .89340 .6970 .1660 
  Std. Dev. 246.45768 .899895 .364451 .43318 .07168 
Most Extreme Differences Absolute .143 .177 .221 .306 .218 
  Positive .143 .141 .213 .306 .218 
  Negative -.077 -.177 -.221 -.180 -.145 
Kolmogorov-Smirnov Z .451 .560 .698 .969 .688 
Asymp. Sig. (2-tailed) .987 .913 .715 .305 .731 

Site STN  Biomass (g/m2) TN (g/m2) TP (g/m2) %N %P 

N 10 10 10 10 10 

Normal Parameters(a,b) Mean 1116.5000 9.43560 1.49390 .8270 .1370 
  Std. Dev. 480.59460 5.345275 .613168 .21135 .01947 
Most Extreme Differences Absolute .196 .205 .164 .235 .161 
  Positive .163 .181 .164 .127 .119 
  Negative -.196 -.205 -.162 -.235 -.161 
Kolmogorov-Smirnov Z .619 .647 .517 .743 .510 
Asymp. Sig. (2-tailed) .838 .796 .952 .638 .957 

Site STS  Biomass (g/m2) TN (g/m2) TP (g/m2) %N %P 

N 10 10 10 10 10 

Normal Parameters(a,b) Mean 423.4000 3.81570 .72070 .9340 .1840 
  Std. Dev. 207.25518 1.920764 .333133 .29508 .07501 
Most Extreme Differences Absolute .149 .204 .145 .265 .221 
  Positive .149 .204 .145 .265 .221 
  Negative -.146 -.136 -.112 -.204 -.131 
Kolmogorov-Smirnov Z .472 .645 .458 .838 .700 
Asymp. Sig. (2-tailed) .979 .800 .985 .484 .712 

Site WDF  Biomass (g/m2) TN (g/m2) TP (g/m2) %N %P 

N 10 10 10 10 10 

Normal Parameters(a,b) Mean 666.7000 4.49110 .75740 .6750 .1180 
  Std. Dev. 231.94302 1.589336 .244004 .10384 .02700 
Most Extreme Differences Absolute .147 .221 .212 .257 .170 
  Positive .134 .186 .212 .257 .170 
  Negative -.147 -.221 -.086 -.156 -.130 
Kolmogorov-Smirnov Z .465 .699 .670 .814 .539 
Asymp. Sig. (2-tailed) .982 .713 .760 .521 .933 

a  Test distribution is Normal. 
b  Calculated from data. 
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Table K5. One-sample Kolmogorov-Smirnov tests for mean values of biomass, TN, TP, %N, 
%P, and log-transformed mean values of biomass, TN, and TP for all sites. 

 

Mean 
Biomass 

(g/m2) 
Mean 
%N 

Mean 
TN 

(g/m2) 
Mean 
%P 

Mean 
TP 

(g/m2) 

Log 
(Mean 

Biomass) 

Log 
(Mean 

TN) 

Log 
(Mean 

TP) 
N 7 7 7 7 7 7 7 7 
Normal 
Parameters(a,b) 
  

Mean 662.3857 .7608 4.7013 .1391 2.7967 .6431 -.1052 .8245 
Std. Dev. 246.1654 .1455 2.1616 .0380 .1562 .1593 .1394 .3139 

Most Extreme 
Differences 

Absolute .207 .175 .365 .189 .147 .294 .258 .299 

  Positive .207 .175 .365 .119 .147 .294 .258 .299 
  Negative -.139 -.167 -.234 -.189 -.135 -.177 -.155 -.206 
Kolmogorov-Smirnov Z .548 .464 .966 .499 .791 .390 .779 .684 
Asymp. Sig. (2-tailed) .924 .983 .309 .965 .559 .998 .578 .738 

a  Test distribution is Normal. 
b  Calculated from data. 
 
 
 
 
Table K6. One-sample Kolmogorov-Smirnov tests for mean values of biomass, TN, and TP, and 
values of RWW for all sites excluding site STN. 

 

Mean 
Biomass 

(g/m2) 
Mean TN 

(g/m2) 
Mean TP 

(g/m2) RWW 
N 6 6 6 6 

Normal Parameters(a,b) 
Mean 586.7000 3.9121 .7130 .1492 
Std. Dev. 156.84065 .61321 .11692 .12415 

Most Extreme 
Differences 

Absolute .184 .164 .193 .188 
Positive .184 .164 .185 .188 
Negative -.156 -.161 -.193 -.163 

Kolmogorov-Smirnov Z .452 .402 .473 .461 
Asymp. Sig. (2-tailed) .987 .997 .979 .984 

a  Test distribution is Normal. 
b  Calculated from data. 
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Appendix L: Biomass Sample Collection and Handling 

Table L1. Biomass sample collection and handling for each study site. 

Site 
Date 

Collected 
Climatic Conditions 

Date 
Transferred to 

Paper Bags 

Date Transferred 
to Environmental 

Chamber 

Environmental 
Chamber 

Temperature 

CON 10/25/07 
AM: Wind and light 
rain; PM: overcast 

10/27/07 11/1/07 30.6° C 

GLP 10/26/07 Steady rain all day 10/27/07 11/1/07 30.6° C 

GPT 10/28/07 Sunny and windy 10/28/07 11/1/07 30.6° C 

SPF 10/8/07 Sunny and dry 10/27/07 11/1/07 30.6° C 

STN 11/11/07 
Sunny with light 
breeze 

11/11/07 11/14/07 2.8° C 

STS 10/7/07 Sunny and dry 10/27/07 11/1/07 30.6° C 

WDF 11/3/07 Overcast and windy 11/3/07 11/14/07 2.8° C 

 

 
Figure L1. Photo of 1-m2 quadrat frame used for biomass sampling. 
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Appendix M: Dixon-Thompson Outlier Test on TP 

 
The Dixon-Thompson (Davis and McCuen 2005) outlier test was performed to determine 
if the mean TP for site STN could be considered an outlier. The test was performed on 
the log-transformed values of mean TP. 
 
Ho: All sample points are from the same normal population. 
Ha: The most extreme point in the sample is from either a population with a shifted mean 
or a population with the same mean but a larger variance. 
 
 
Table M1. Data for Dixon-Thompson outier test on mean TP. 

Site i 
Mean TP 

(g/m2) 
x =  

Log[mean TP (g/m2)] 
|xi - x�| 

GPT 1 0.57 -0.24 -0.14 
GLP 2 0.60 -0.22 -0.12 
STS 3 0.72 -0.14 -0.04 
CON 4 0.74 -0.13 -0.03 
WDF 5 0.76 -0.12 -0.01 
SPF 6 0.89 -0.05 0.05 
STN 7 1.49 0.17 0.28 

 
x� = -0.11 
Sx = 0.14 
n = 7 
 
High outlier test statistic for 3 ≤ n ≤ 7: 
 
R = (xn – xn-1) / (xn – x1) = (0.17 – (-0.05)) / (0.17 – (-0.24)) = 0.536 
 
If R > Rc, reject Ho 
 
Rc(α=0.05,n=7) = 0.503 reject Ho 
Rc(α=0.01,n=7) = 0.630 accept Ho 
 
∴ test is inconclusive 
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Appendix N: Study Site Photos 

(a)  
 

(b)  
Figure N1. Site CON (a) aerial view with longest flow path, and wetland pool and watershed 
boundaries and (b) ground-level photo. 
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(a)  
 

(b)  
Figure N2. Site GLP (a) aerial view with longest flow path, and wetland pool and watershed 
boundaries and (b) ground-level photo. 
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(a)  
 

(b)  
Figure N3. Site GPT (a) aerial view with longest flow path, and wetland pool and watershed 
boundaries and (b) ground-level photo. 
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Figure N4. Site SPF aerial view with longest flow path, and wetland pool and watershed 
boundaries. 
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(a)  
 

(b)  
Figure N5. Site GPT (a) aerial view with longest flow path, and wetland pool and watershed 
boundaries and (b) ground-level photo. 
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(a)  
 

(b)  
Figure N6. Site STS (a) aerial view with longest flow path, and wetland pool and watershed 
boundaries and (b) ground-level photo. 
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(a)  
 

(b)  
Figure N7. Site WDF (a) aerial view with longest flow path, and wetland pool and watershed 
boundaries and (b) ground-level photo. 
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